

Mercury QuickTest Professional
Advanced Features User’s Guide

Version 9.0

Mercury QuickTest Professional Advanced Features User’s Guide, Version 9.0

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1992 - 2006 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

QTPAFUG9.0/01

iii

Multi-Volume Chapter Summary

QuickTest Professional user documentation is divided into two volumes:

➤ The QuickTest Professional Basic Features User’s Guide introduces QuickTest
and describes the basic features that are used in everyday testing.

➤ The QuickTest Professional Advanced Features User’s Guide describes advanced
features that you can use when testing applications. It also describes how to
work with other Mercury products.

A summary of the various chapters in each guide is provided below:

QuickTest Professional Basic Features User’s Guide

PART I: INTRODUCING QUICKTEST PROFESSIONAL

Chapter 1: Introduction ...3

Chapter 2: QuickTest at a Glance ..15

Chapter 3: Understanding the Test Object Model..57

PART II: CREATING TESTS

Chapter 4: Designing Tests ..75

Chapter 5: Working with the Keyword View ..107

Chapter 6: Working with Test Objects ..139

Chapter 7: Understanding Checkpoints ..209

Chapter 8: Checking Object Property Values ..217

Chapter 9: Checking Tables ...227

Chapter 10: Checking Text ..249

Multi-Volume Chapter Summary

iv

Chapter 11: Checking Bitmaps ..267

Chapter 12: Checking Databases ...279

Chapter 13: Checking XML ..295

Chapter 14: Configuring Values ..327

Chapter 15: Parameterizing Values ...347

Chapter 16: Outputting Values..393

Chapter 17: Working with Actions ..455

Chapter 18: Handling Missing Resources ..489

Chapter 19: Working with Data Tables ...501

Chapter 20: Adding Steps Containing Programming Logic525

PART III : RUNNING AND DEBUGGING TESTS

Chapter 21: Debugging Tests and Function Libraries.....................................575

Chapter 22: Running Tests...595

Chapter 23: Analyzing Test Results ...619

PART IV: CONFIGURING BASIC SETTINGS

Chapter 24: Setting Global Testing Options ...693

Chapter 25: Setting Options for Individual Tests..739

Chapter 26: Setting Record and Run Options ...773

PART V: WORKING WITH SUPPORTED ENVIRONMENTS

Chapter 27: Working with QuickTest Add-Ins...793

Chapter 28: Testing Web Objects..803

Multi-Volume Chapter Summary

v

QuickTest Professional Advanced Features User’s Guide

PART I: WORKING WITH ADVANCED TESTING FEATURES

Chapter 1: Working with Advanced Action Features ..3

Chapter 2: Learning Virtual Objects ..33

Chapter 3: Defining and Using Recovery Scenarios ..45

Chapter 4: Configuring Object Identification ...93

Chapter 5: Working with the Expert View and Function Library Windows ...123

Chapter 6: Working with User-Defined Functions and Function Libraries185

Chapter 7: Automating QuickTest Operations ..231

PART II: MANAGING AND MERGING OBJECT REPOSITORIES

Chapter 8: Managing Object Repositories ..243

Chapter 9: Merging Shared Object Repositories ..275

PART III : CONFIGURING ADVANCED SETTINGS

Chapter 10: Configuring Web Event Recording..311

Chapter 11: Customizing the Expert View and Function Library Windows ...333

Chapter 12: Setting Testing Options During the Run Session........................343

PART IV: WORKING WITH OTHER MERCURY PRODUCTS

Chapter 13: Working with WinRunner ..351

Chapter 14: Working with Quality Center...361

Chapter 15: Working with Business Process Testing403

Chapter 16: Working with Mercury Performance Testing and Business
Availability Center Products...413

PART V: APPENDIX

Appendix A: Working with QuickTest—Frequently Asked Questions...429

Multi-Volume Chapter Summary

vi

vii

Table of Contents

Multi-Volume Chapter Summary ... iii
QuickTest Professional Basic Features User’s Guide............................ iii
QuickTest Professional Advanced Features User’s Guide......................v

Welcome to QuickTest ... xiii
Using This Guide ..xiv
Product Documentation..xv
Additional Online Resources...xvii
Documentation Updates ... xviii
Typographical Conventions...xix

PART VI: WORKING WITH ADVANCED TESTING FEATURES

Chapter 1: Working with Advanced Action Features3
About Working with Advanced Action Features4
Inserting Calls to Existing Actions ..4
Setting Action Parameters ...12
Using Action Parameters ...16
Setting Action Call Properties ...21
Sharing Action Information..26
Understanding Action Syntax in the Expert View..............................29
Exiting an Action...31

Chapter 2: Learning Virtual Objects ...33
About Learning Virtual Objects ..33
Understanding Virtual Objects ...35
Understanding the Virtual Object Manager36
Defining a Virtual Object ..37
Removing or Disabling Virtual Object Definitions.............................42

Chapter 3: Defining and Using Recovery Scenarios45
About Defining and Using Recovery Scenarios...................................45
Deciding When to Use Recovery Scenarios...47
Defining Recovery Scenarios ...48
Understanding the Recovery Scenario Wizard52
Managing Recovery Scenarios ...79
Setting the Recovery Scenarios List for Your Tests..............................85
Programmatically Controlling the Recovery Mechanism91

Table of Contents

viii

Chapter 4: Configuring Object Identification93
About Configuring Object Identification ...94
Understanding the Object Identification Dialog Box.........................95
Configuring Smart Identification..109
Mapping User-Defined Test Object Classes119

Chapter 5: Working with the Expert View and Function Library
Windows ...123

About Working with the Expert View and Function Library
Windows ...124

Understanding and Using the Expert View125
Navigating in the Expert View and Function Libraries136
Understanding Basic VBScript Syntax...146
Using Programmatic Descriptions...155
Running and Closing Applications Programmatically165
Using Comments, Control-Flow, and Other VBScript Statements...167
Retrieving and Setting Test Object Property Values176
Accessing Run-Time Object Properties and Methods177
Running DOS Commands...179
Enhancing Your Tests and Function Libraries Using the

Windows API...180
Choosing Which Steps to Report During the Run Session...............182

Chapter 6: Working with User-Defined Functions and
Function Libraries ...185

About Working with User-Defined Functions and Function
Libraries...186

Managing Function Libraries ..188
Working with Associated Function Libraries200
Using the Function Definition Generator ..204
Registering User-Defined Functions as Test Object Methods219
Additional Tips for Working with User-Defined Functions225
Executing Externally-Defined Functions from Your Test228

Chapter 7: Automating QuickTest Operations231
About Automating QuickTest Operations ..232
Deciding When to Use QuickTest Automation Programs233
Choosing a Language and Development Environment for

Designing and Running Automation Programs235
Learning the Basic Elements of a QuickTest Automation Program..237
Generating Automation Scripts ..238
Using the QuickTest Automation Object Model Reference..............239

Table of Contents

ix

PART VII: MANAGING AND MERGING OBJECT REPOSITORIES

Chapter 8: Managing Object Repositories243
About Managing Object Repositories..244
Understanding the Object Repository Manager246
Working with Object Repositories ..253
Modifying Object Repositories..258
Working with Repository Parameters ...261
Modifying Test Object Details...268
Locating Objects..270
Performing Merge Operations...271
Performing Import and Export Operations.......................................272

Chapter 9: Merging Shared Object Repositories..............................275
About Merging Shared Object Repositories276
Understanding the Object Repository Merge Tool277
Using Object Repository Merge Tool Commands.............................282
Defining Default Settings ..284
Merging Two Object Repositories ...288
Updating a Shared Object Repository from Local Object

Repositories ...290
Viewing Merge Statistics..296
Understanding Object Conflicts ...297
Resolving Object Conflicts ..300
Filtering the Target Repository Pane ...302
Synchronizing Object Repository Views ...303
Finding Specific Objects ..304
Saving the Target Object Repository ...305

PART VIII : CONFIGURING ADVANCED SETTINGS

Chapter 10: Configuring Web Event Recording...............................311
About Configuring Web Event Recording ..312
Selecting a Standard Event Recording Configuration.......................313
Customizing the Event Recording Configuration315
Recording Right Mouse Button Clicks ..325
Saving and Loading Custom Event Configuration Files...................329
Resetting Event Recording Configuration Settings...........................331

Table of Contents

x

Chapter 11: Customizing the Expert View and Function Library
Windows ...333

About Customizing the Expert View and Function Library
Windows ...334

Customizing Editor Behavior ..335
Customizing Element Appearance..337
Personalizing Editing Commands...339

Chapter 12: Setting Testing Options During the Run Session.........343
About Setting Testing Options During the Run Session...................343
Setting Testing Options...344
Retrieving Testing Options..346
Controlling the Test Run ..346
Adding and Removing Run-Time Settings..347

PART IX: WORKING WITH OTHER MERCURY PRODUCTS

Chapter 13: Working with WinRunner ...351
About Working with WinRunner ...351
Calling WinRunner Tests ..352
Calling WinRunner Functions ..356

Chapter 14: Working with Quality Center..361
About Working with Quality Center ..362
Connecting to and Disconnecting from Quality Center..................363
Saving Tests to a Quality Center Project ...374
Opening Tests from a Quality Center Project...................................375
Working with Template Tests ...379
Running a Test Stored in a Quality Center Project from QuickTest.387
Managing Test Versions in QuickTest...389
Setting Preferences for Quality Center Test Runs398

Chapter 15: Working with Business Process Testing........................403
About Working with Business Process Testing403
Understanding Business Process Testing Roles404
Understanding Business Process Testing Methodology....................408

Table of Contents

xi

Chapter 16: Working with Mercury Performance Testing and
Business Availability Center Products...413

About Working with Mercury Performance Testing and
Business Availability Center Products ..414

Using QuickTest Performance Testing and Business Availability
Center Features ...415

Designing QuickTest Tests for Use with LoadRunner or
Business Process Monitor..416

Inserting and Running Tests in LoadRunner or Business Process
Monitor ...417

Measuring Transactions ..419
Using Silent Test Runner ..423

PART X: APPENDIX

Appendix A: Working with QuickTest—
Frequently Asked Questions ...429

Recording and Running Tests ...430
Programming in the Expert View..431
Working with Dynamic Content ..431
Advanced Web Issues ..432
Test Maintenance ..434
Testing Localized Applications..436
Improving QuickTest Performance ...437

Index..441

Table of Contents

xii

xiii

Welcome to QuickTest

Welcome to QuickTest Professional, the Mercury automated keyword-driven
testing solution. QuickTest provides everything you need to quickly create
and run tests.

Note: The QuickTest Professional Basic Features User’s Guide and QuickTest
Professional Advanced Features User’s Guide are available as separate books
only in the PDF version. In the context-sensitive Help, the information from
both books is combined.

Welcome

xiv

Using This Guide

This guide describes how to use QuickTest to test your applications. It
provides step-by-step instructions to help you create, debug, and run tests,
and report defects detected during the testing process. This guide contains
the following parts:

 Part I Working with Advanced Testing Features

Describes how to work with actions, virtual objects, recovery scenarios,
configure object identification, and create Smart Identification definitions.
It also describes how to work with user-defined functions and function
libraries in QuickTest. In addition, it describes several programming
techniques to create more powerful scripts, and describes how to enhance
your test using the Expert View. It also describes how to automate QuickTest
operations.

 Part II Managing and Merging Object Repositories

Describes how QuickTest identifies objects in your application and how to
manage and merge object repositories.

 Part III Configuring Advanced Settings

Describes how to configure Web event recording, customize the Expert
View, and set testing options during a run session.

 Part IV Working with Other Mercury Products

Describes how you can run tests and call functions in compiled modules
from WinRunner, the Mercury enterprise functional testing tool for
Microsoft Windows applications. This section also describes how QuickTest
can be used with Business Process Testing, and how QuickTest interacts with
Mercury Quality Center (formerly TestDirector), the Mercury centralized
quality solution. This section also describes considerations for designing
QuickTest tests for use with Mercury performance testing and application
management products.

 Part V Appendix

Provides information on frequently asked questions.

Welcome

xv

Product Documentation

In addition to this Advanced Features User’s Guide, QuickTest Professional
comes with the following documentation:

QuickTest Professional Installation Guide explains how to install QuickTest
Professional.

What’s New (available from Help > What’s New) describes the newest
features, enhancements, and supported environments in this latest version
of QuickTest Professional.

QuickTest Professional Basic Features User’s Guide provides step-by-step
instructions for using QuickTest Professional to test your application or Web
site.

QuickTest Professional for Business Process Testing User’s Guide provides
step-by-step instructions for using QuickTest Professional to create and
manage assets for use with Business Process Testing.

QuickTest Professional Tutorial teaches you basic QuickTest skills and shows
you how to design tests for your applications.

Readme (available from the QuickTest Professional Start menu program
folder) provides the latest news and information about QuickTest
Professional.

Printer-Friendly Documentation (available from Help > Printer-Friendly
Documentation) displays the complete documentation set in Adobe
portable document format (PDF). Online books can be read and printed
using Adobe Reader, which can be downloaded from the Adobe Web site
(http://www.adobe.com).

QuickTest Professional Context-Sensitive Help (available from specific dialog
boxes and windows) describes QuickTest dialog boxes and windows.

QuickTest Professional Object Model Reference (available from Help >
QuickTest Professional Help) describes QuickTest Professional test objects,
lists the methods and properties associated with each object, and provides
syntax information and examples for the methods.

http://www.adobe.com

Welcome

xvi

QuickTest Professional Automation Object Model Reference (available from
the QuickTest Professional Start menu program folder and from Help >
QuickTest Automation Object Model Reference) provides syntax, descriptive
information, and examples for the automation objects, methods, and
properties. It also contains a detailed overview to help you get started
writing QuickTest automation scripts. The automation object model assists
you in automating test management, by providing objects, methods and
properties that enable you to control virtually every QuickTest feature and
capability.

VBScript Reference (available from Help > QuickTest Professional Help)
contains Microsoft VBScript documentation, including VBScript, Script
Runtime, and Windows Script Host.

Welcome

xvii

Additional Online Resources

QuickTest Professional includes the following additional online resources:

Mercury Tours sample Web site (available from the QuickTest Professional
Start menu program folder and also available from the QuickTest
Professional Record and Run Settings dialog box) and the Mercury Tours
Windows sample flight application (available from the QuickTest
Professional Start menu program folder) are the basis for many examples in
this book. The URL for the Web site is http://newtours.mercury.com.

Knowledge Base (available from Help > Knowledge Base) uses your default
Web browser to open the Mercury Customer Support knowledge base, which
enables you to browse the Mercury and user-contributed knowledge base
articles, and add your own articles. The URL for this Web site is
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp.

Customer Support Web Site (available from Help > Customer Support Web
Site) uses your default Web browser to open the Mercury Customer Support
Web site. This site enables you to browse the knowledge base and add your
own articles, post to and search user discussion forums, submit support
requests, download patches and updated documentation, and more. The
URL for this Web site is http://support.mercury.com.

Send Feedback (available from Help > Send Feedback) enables you to send
online feedback about QuickTest Professional to the product team.

Mercury Home Page (available from Help > Mercury Home Page) uses your
default Web browser to open the Mercury home page. This site provides you
with the most up-to-date information on Mercury and its products. This
includes new software releases, seminars and trade shows, customer support,
educational services, and more. The URL for this Web site is
http://www.mercury.com.

Mercury Best Practices contain guidelines for planning, creating, deploying,
and managing a world-class IT environment. Mercury provides three types
of best practices: Process Best Practices, Product Best Practices, and People
Best Practices. Licensed customers of Mercury software can read and use the
Mercury Best Practices available from the Customer Support site,
http://support.mercury.com.

http://www.mercury.com
http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp
http://newtours.mercuryinteractive.com
http://support.mercury.com
http://support.mercury.com

Welcome

xviii

Documentation Updates

Mercury is continually updating its product documentation with new
information. You can download the latest version of this document from
the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Please Select Product, select QuickTest Professional.

Note that if QuickTest Professional does not appear in the list, you must add
it to your customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
updated recently, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

xix

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

> The greater-than sign separates menu levels (for example,
File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements (for example, the Run button) and other items
that require emphasis.

Bold Bold text indicates method or function names.

Italics Italic text indicates method or function arguments and
book titles. It is also used when introducing a new term.

<> Angle brackets enclose a part of a file path or URL address
that may vary from user to user (for example, <MyProduct
installation path>\bin).

Arial The Arial font is used for examples and text that is to be
typed literally.

Arial bold The Arial bold font is used in syntax descriptions for text
that should be typed literally.

SMALL CAPS The SMALL CAPS font indicates keyboard keys.

... In a line of syntax, an ellipsis indicates that more items of
the same format may be included. In a programming
example, an ellipsis is used to indicate lines of a program
that were intentionally omitted.

[] Square brackets enclose optional arguments.

| A vertical bar indicates that one of the options separated
by the bar should be selected.

Welcome

xx

Part I

Working with Advanced Testing Features

2

3

1
Working with Advanced Action Features

You can divide your test into actions to streamline the process of testing
your application or Web site. This chapter covers the advanced use of
actions in your test. Using basic action-related features is described in
Chapter 17, “Working with Actions” in the QuickTest Professional Basic
Features User’s Guide.

This chapter describes:

➤ About Working with Advanced Action Features

➤ Inserting Calls to Existing Actions

➤ Setting Action Parameters

➤ Using Action Parameters

➤ Setting Action Call Properties

➤ Sharing Action Information

➤ Understanding Action Syntax in the Expert View

➤ Exiting an Action

Part I • Working with Advanced Testing Features

4

About Working with Advanced Action Features

Actions help divide your test into logical units, such as the main sections of
a Web site, or specific activities that you perform in your application.

A test is comprised of calls to actions. When you create a new test, it
contains a call to a single action. By creating tests that call multiple actions,
you can design tests that are more modular and efficient.

You can pass information between actions in several ways. You can also
specify input parameters for actions, so that steps in an action can use
values supplied from elsewhere in the test. You can also output values from
actions to be used in steps later in the test, or to be passed back to the
application that ran the test. For more information, see “Using Action
Parameters” on page 16.

Inserting Calls to Existing Actions

When you plan a suite of tests, you may realize that each test requires some
identical activities, such as logging in. Rather than recording the login
process three times in three separate tests and enhancing this part of the
script (with checkpoints, parameterization, and programming statements)
separately for each test, you can create an action that logs into a flight
reservation system and store it with one test. Once you are satisfied with the
action you created, you can insert calls to the existing action into other
tests.

You can insert calls to an existing action by inserting a call to a copy of the
action, or by inserting a call to the original action.

For example, suppose you want to record the following three tests in the
Mercury Tours site—booking a flight, modifying a reservation, and deleting
a reservation. While planning your tests, you realize that for each test, you
need to log in and log out of the site, giving a total of five actions for all
three tests.

Chapter 1 • Working with Advanced Action Features

5

You would initially create three tests with five actions. Test 1 would contain
two reusable actions (Logging In and Logging Out). These actions can later
be called by Test 2 and Test 3.

You would then finish creating Test 2 and Test 3 by inserting calls to the
reusable actions you created in Test 1.

Part I • Working with Advanced Testing Features

6

Inserting Calls to Copies of Actions

When you insert a call to a copy of an action into a test, the original action
is copied in its entirety, including checkpoints, parameterization, the
corresponding action tab in the Data Table, plus any defined action
parameters. If the test you are copying has objects in the local object
repository, the copied action’s local object repository is also copied together
with the action.

The action is inserted into the test as an independent, non-reusable action
(even if the original action was reusable). Once the action is copied into
your test, you can add to, delete from, or modify the action just as you
would with any other non-reusable action. Any changes you make to this
action after you insert it affect only this action, and changes you make to
the original action do not affect the copied action.

Chapter 1 • Working with Advanced Action Features

7

To create a copy of an action and call the copy in your test:

 1 While recording or editing your test, choose Insert > Call to Copy of Action,
right-click an action icon and select Insert Call to Copy of Action, or right-
click any step and select Action > Insert Call to Copy. The Select Action
dialog box opens.

 2 Use the From test browse button to find the test containing the action you
want to copy. The Action box displays all local actions (actions that are
stored with the test you selected).

Note: You can enter a Quality Center folder or a relative path in the From
test box. If you enter a relative path, QuickTest searches for the test in the
folders listed in the Folders tab of the Options dialog box. For more
information, refer to “Setting Folder Testing Options” on page 698 in the
QuickTest Professional Basic Features User’s Guide.

Part I • Working with Advanced Testing Features

8

 3 In the Action list, select the action you want to insert. When you select an
action, its type (Non-reusable or Reusable Action) and description, if one
exists, are displayed. This helps you identify the action you want to copy.
For more information about action descriptions refer to “Setting General
Action Properties” on page 469 in the QuickTest Professional Basic Features
User’s Guide.

 4 If you want to modify the copied action’s properties, select the Edit new
action properties check box. If you select this option, the Action Properties
dialog box is displayed when you click OK. You can then modify the action
properties as described in “Setting Action Call Properties” on page 21.

Note: If you do not select this option, you can modify the action’s
properties later by right-clicking the action icon in the Keyword View and
selecting Action Properties.

 5 Decide where to insert the call to the copy of the action and select At the
end of the test or After the current step.

For more information about inserting actions within actions, see “Using
Action Parameters” on page 16.

Note: If the currently selected step is a reusable action from another test, the
call to the copy of the action is added automatically to the end of the test
(the After the current step option is disabled).

 6 Click OK. The action is inserted into the test as a call to an independent,
non-reusable action. You can move your action call to another location in
your test by dragging it to the desired location. For more information about
moving actions, refer to “Moving Actions and Steps in the Hierarchy” on
page 127 in the QuickTest Professional Basic Features User’s Guide.

Chapter 1 • Working with Advanced Action Features

9

Inserting a Call to an Existing Action

You can insert a call to a reusable action that is stored in your current test
(local action), or in any other test (external action). Inserting a call to an
existing action is similar to linking to it. You can view the steps of the action
in the action view, but you cannot modify them. The called action’s local
object repository (if it has one) is also read-only. If you call an external
action, you can choose, however, whether you want the data from the
action’s data sheet to be imported as a local, editable copy, or whether you
want to use the (read-only) data from the original action.

To modify a called, external action, you must open the test with which the
action is stored and make your modifications there. The modifications apply
to all tests that call that action. If you chose to use the original action’s data
when you call an external action, then changes to the original action’s data
are applied as well.

Tip: You can view the location of the original action in the General tab of
the Action Properties dialog box.

Part I • Working with Advanced Testing Features

10

To insert a call to an existing action:

 1 Choose Insert > Call to Existing Action, right-click an action icon and select
Insert Call to Existing Action, or right-click any step and select Action >
Insert Call to Existing. The Select Action dialog box opens.

 2 Use the From test browse button to find the test that contains the action
you want to call. The Action box displays all reusable actions in the test you
selected.

Note: You can enter a Quality Center folder or a relative path in the From
test box. If you enter a relative path, QuickTest searches for the test in the
folders listed in the Folders tab of the Options dialog box. For more
information, refer to “Setting Folder Testing Options” on page 698 in the
QuickTest Professional Basic Features User’s Guide.

Chapter 1 • Working with Advanced Action Features

11

 3 In the Action list, select the action you want to call. When you select an
action, its type (Reusable Action) and description, if one exists, are
displayed. This helps you identify the action you want to call. For more
information about action descriptions, refer to “Setting General Action
Properties” on page 469 in the QuickTest Professional Basic Features User’s
Guide.

Tip: External actions that the test calls are also displayed in the list. If the
action you want to call is already called from within the selected test, you
can select it from the list of actions. This creates another call to the original
action.

Note: QuickTest disables the Action list if the selected test does not contain
any reusable or external actions.

 4 Decide where to insert the call to the action and select At the end of the test
or After the current step.

Note: If the currently selected step is a reusable action from another test, the
call to the action is added automatically to the end of the test (the After the
current step is disabled).

For more information about inserting actions within actions, see “Using
Action Parameters” on page 16.

Part I • Working with Advanced Testing Features

12

 5 Click OK. A call to the action is inserted into the test flow. You can move
your action call to another location in your test by dragging it to the desired
location. For more information about moving actions, refer to “Moving
Actions and Steps in the Hierarchy” on page 127 in the QuickTest Professional
Basic Features User’s Guide.

Tip: You can create an additional call to any reusable or external action in
your test by pressing CTRL while you drag and drop the action to another
location at a parallel (sibling) level within your test.

Setting Action Parameters

You can specify input parameters for an action so that steps in the action
can use values supplied from elsewhere in the test. Input values for an
action parameter can be retrieved from the test (for a top-level action) or
from the parameters of the parent action that calls it (for a nested action), or
from the output of a previous action call (for a sibling action).

You can specify output parameters for an action, so that it can return values
for use later in the test. For example, you can output a parameter value to a
parent action so that a later nested action can use the value.

For each input or output action parameter, you define a name, a type, and
optionally, a description. You can also specify a default value for each action
input parameter, or you can use the default value that QuickTest provides
for the parameter value type that you choose. The default value is saved
with the action and is used by the action if a value is not defined for a
parameter in the action call. You can define, modify, and delete input and
output parameters in the Parameters tab of the Action Properties dialog box
(Edit > Action > Action Properties or right-click an action and choose Action
Properties).

Chapter 1 • Working with Advanced Action Features

13

For more information on using action parameters, see “Using Action
Parameters” on page 16 and “Guidelines for Working with Action
Parameters” on page 19.

To add a new input or output action parameter:

 1 Click the Add button above the Input parameters or Output parameters
lists to add a new parameter to the appropriate list. A row for the new
parameter is added to the relevant list.

 2 Click in the Name box and enter a name for the parameter.

Part I • Working with Advanced Testing Features

14

 3 Select the value type for the parameter in the Type box. You can select one
of the following types:

➤ String—A character string enclosed within a pair of quotation marks, for
example, “New York”. If you enter a value and do not include the
quotation marks, QuickTest adds them automatically when the value is
inserted in the script during the test run. The default value is an empty
string.

➤ Boolean—A true or false value. If you select a Boolean value type, you
can click in the Default Value column and click the arrow to select a True
or False value. The default value is True.

➤ Date—A date string, for example, 3/2/2005. If you select a Date value
type, you can click in the Default Value column and click the arrow to
open a calendar from which you can select a date. The default value is
today’s date.

➤ Number—Any number. The default value is 0.

➤ Password—An encrypted password value. If you select a Password value
type, the password characters are masked when you enter the password
in the Default Value field. In the action, however, the value appears
encrypted. The default value is an empty string, which also appears as an
encrypted value in the actual action.

➤ Any—A variant value type, which accepts any of the above value types.
Note that if you select the Any value type, you must specify the value in
the format that is required in the location where you intend to use the
value. For example, if you intend to use the value later as a string, you
must enclose it in quotation marks. When you specify a value of Any
type, QuickTest checks whether it is a number. If the value is not a
number, QuickTest automatically encloses it in quotation marks. If you
are editing an existing value, QuickTest automatically encloses it in
quotation marks if the previous value had quotation marks. The default
value is an empty string.

 4 If you are defining an input action parameter, click in the Default Value box
and enter a default value for the parameter. Alternatively, you can leave the
default value provided by QuickTest for the parameter value type. The
default value is required so that you can run the action without receiving
parameter values from elsewhere in the test.

Chapter 1 • Working with Advanced Action Features

15

 5 (Optional) Click in the Description box and enter a description of the
parameter, for example, the purpose of the parameter in the action.
QuickTest displays this description together with the name of the parameter
in any dialog box in which you can choose an action parameter, including
the Output Options, Parameter Options, and Value Configuration Options
dialog boxes.

To modify an existing action parameter:

 1 Select the parameter you want to modify from the Input parameters or
Output parameters list.

 2 Modify the values as necessary in the edit boxes of the parameter row.

To delete an existing action parameter:

 1 Select the parameter you want to delete from the Input parameters or
Output parameters list.

 2 Click the Delete button. The parameter is removed from the list.

Note: When you delete an action parameter, make sure that you also delete
any steps that use the action parameter.

Part I • Working with Advanced Testing Features

16

Using Action Parameters

Action parameters enable you to transfer input values from your test to a
top-level action, from a parent action to a nested action, or from an action
to a sibling action that occurs later in the test. Action parameters also enable
you to transfer output values from a step in an action to its parent action, or
from a top-level action back to the script or application that ran (called)
your test. For example, you can output a value from a step in a nested action
and store it in an output action parameter, and then use that value as input
in a later step in the calling parent action.

You can use action parameters in any step in your action (including
function calls). You define the parameters that an action can receive and the
output values that it can return in the Parameters tab of the Action
Properties dialog box (Edit > Action > Action Properties or right-click an
action and choose Action Properties). You specify the actual values that are
provided to these parameters and the locations in which the output values
are stored using the Parameter Values tab in the Action Call Properties
dialog box (opened by right-clicking an action and choosing Action Call
Properties).

You can specify input parameters for an action so it can receive input values
from elsewhere in the test. Input values for an action parameter can be
retrieved from the test (for a top-level action), from the parameters of the
parent action that calls it (for a nested action), or from the output of a
previous action call (for a sibling action). You can also specify output
parameters for an action, so that it can output values for use later in the test,
or pass values back to the application that ran (called) the test.

Chapter 1 • Working with Advanced Action Features

17

For example, suppose you want to take a value from the external application
that runs (calls) your test and use it in an action within your test. In the test
below, you would need to pass the input test parameter from the external
application through Action2 and Action3 to the required step in Action4.

You would do this as follows:

 1 Define the input test parameter (File > Settings > Parameters tab) with the
value that you want to use later in the test.

 2 Define an input action parameter for Action2 (Edit > Action > Action
Properties > Parameters tab) with the same value type as the input test
parameter.

 3 Parameterize the input action parameter value (Edit > Action > Action Call
Properties > Parameter Values tab) using the input test parameter value you
specified above.

 4 Define an input action parameter for Action3 (Edit > Action > Action
Properties > Parameters tab) with the same value type as the input test
parameter.

 5 Parameterize the input action parameter value.

➤ Choose Edit > Action > Action Call Properties > Parameter Values tab and
select the input action parameter value you specified for Action2.

➤ Use the Parameter utility object to specify the action parameter as the
parameter argument for the RunAction statement in the Expert View. For
more information, see “Calling Actions with Parameters” on page 29.

 6 Define an input action parameter for Action4 (Edit > Action > Action
Properties > Parameters tab) with the same value type as the input test
parameter.

Part I • Working with Advanced Testing Features

18

 7 Parameterize the input action parameter value.

➤ Choose Edit > Action > Action Call Properties > Parameter Values tab and
select the input action parameter value you specified for Action3.

➤ Use the Parameter utility object to specify the action parameter as the
parameter argument for the RunAction statement in the Expert View. For
more information, see “Calling Actions with Parameters” on page 29.

 8 Parameterize the value in the required step in Action4.

➤ Click the parameterization icon and specify the parameter in the
Value Configuration Options dialog box using the input action
parameter you specified for Action 4.

➤ Use the Parameter utility object in the Expert View to specify the value
to use for the step. For more information, refer to “Using Action
Parameters in Steps in the Expert View” on page 360 in the QuickTest
Professional Basic Features User’s Guide.

An action’s parameters are stored with the action and are the same for all
calls to that action. If you modify an action parameter’s name, type, or
description, and then view the action properties for a call to that same
action in a different part of the test, you will see that the action parameter
has changed.

The actual value specified for an input action parameter and the location
specified for action output parameter can be different for each call to the
action. When you insert a call to a copy of an action, the copy of the action
is inserted with the action parameters and action call parameter values that
were defined for the action you copied. When you split an action, the action
parameters are copied to both actions. The action call values for the second
action are taken from the default values of that action’s parameters.

For information on defining action parameters and the values used in action
calls, see “Setting Action Parameters” on page 12, and “Setting Action Call
Parameter Values” on page 23.

Chapter 1 • Working with Advanced Action Features

19

Guidelines for Working with Action Parameters

Consider the following guidelines when working with action parameters:

➤ Input action parameter values can be used only within the steps of the
current action. You can use an action input value from another action (or
from the test) only if you pass the value from action to action down the test
hierarchy to the action in which you want to use it. For example: Test ->
Action1 -> Action2 -> Action3 -> (Action3) Step 1

➤ Output action parameter values can be retrieved from a previous action at
the same hierarchical level, from a parent action, or from the current action.
You can use an action output value from one action within the step of
another action if:

➤ You pass the value from action to action up the test hierarchy to the
action in which you want to use it. For example:
(Action3) Step 1-> Action3 -> Action2 -> Action1 -> Test -> Action4

In this example, any step in Action 1, Action 2, or Action 3 can
potentially use the output value from (Action3) Step 1, even though the
example shows that the output value is used by steps in Action4.

Test Parameter
1

2

3

4

Test Parameter

1

2

3

4

5

Part I • Working with Advanced Testing Features

20

➤ You pass the value from a previous action to the sibling action in which
you want to use it. For example:
(Action2) Step 1 -> Action2 -> Action3 -> (Action3) Step 1

In this example, any step in Action 2 or Action 3 can potentially use the
output value from (Action2) Step 1, even though the example shows that
the output value is used by (Action3) Step 1.

➤ In subsequent steps of a calling action, you can use any type of action
output value as a variable, if the value was retrieved from the called action.
For example, if ActionA calls ActionB and specifies MyBVar as the variable in
which to store ActionB’s output parameter, then steps in ActionA after the
call to ActionB can use the MyBVar as a value (just as you would use any
other variable).

1

3

2

Chapter 1 • Working with Advanced Action Features

21

Setting Action Call Properties

The Action Call Properties dialog box controls the way the action behaves in
a specific call to the action. It enables you to specify how many times
QuickTest should run the called action (according to the number of rows in
the Data Table), and also to specify the initial value for any input action
parameters and the location in which you want to store the values of any
output action parameters.

Note: The following sections describe how to define action call properties
using the Action Call Properties dialog box. You can also define actions calls
and action call parameters in the Expert View. For more information, see
“Understanding Action Syntax in the Expert View” on page 29.

You can open the Action Call Properties dialog box while recording or
editing your test by:

➤ Choosing Edit > Action > Action Call Properties from the Keyword View
when an action node is highlighted.

➤ Right-clicking an action node in the Keyword View and selecting Action Call
Properties.

The Action Call Properties dialog box enables you to set options that apply
only to a specific action call. The dialog box contains both the Run tab and
the Parameter Values tab.

Part I • Working with Advanced Testing Features

22

Setting the Run Properties for an Action

You can use the Run tab of the Action Call Properties dialog box to instruct
QuickTest to run only one iteration on the called action, to run iterations on
all rows in the Data Table, or to run iterations only for a certain row range in
the Data Table.

The Run tab includes the following options:

Option Description

Run one iteration only Runs the called action only once, using the first
row in the action’s data sheet.

Run on all rows Runs the called action with the number of
iterations according to the number of rows in
the action’s Data Table.

Run from row __ to row __ Runs the called action with the number of
iterations according to the specified row range.

Chapter 1 • Working with Advanced Action Features

23

Notes:

If you run multiple iterations on an action, the action must begin and end
at the same point in the application, so that the application is in the proper
location and state to run the next iteration of the action.

The Run tab of the Action Call Properties dialog box applies to individual
action calls and refers to the rows in the action’s data sheet. You can set the
Run properties for an entire test (setting iterations for rows on the Global
data sheet) from the Run tab in the Test Settings dialog box. For more
information, refer to Chapter 25, “Setting Options for Individual Tests” in
the QuickTest Professional Basic Features User’s Guide.

Setting Action Call Parameter Values

You use the Parameter Values tab of the Action Call Properties dialog box to
specify the values of input action parameters used by the called action and
to specify the locations in which you want to store output action parameter
values. You can also parameterize the value used for a particular input action
parameter using any available parameter type.

The actual input and output action parameters that an action can receive or
return, and their types, are defined in the Action Properties dialog box.

Note: Specifying input and output parameter values in action calls is
optional.

If you do not set a value for an input action parameter, the default value
that is specified in the Action Properties dialog box is used.

If you do not define a storage location for an output parameter value, the
calling action still has access to the output parameter data generated by the
actions it calls. However, specifying a storage location can make your action
call statements more readable.

Part I • Working with Advanced Testing Features

24

For more information about defining input and output action parameters,
see “Setting Action Call Properties” on page 21. For general information
about using action parameters, see “Using Action Parameters” on page 16.

Chapter 1 • Working with Advanced Action Features

25

To specify the value for an input action parameter:

 1 In the Input parameters area, click in the Value box for the parameter and
enter a value. For a description of the different options available for each
value type, see the definitions included in “Setting Action Parameters” on
page 12.

Alternatively, you can click the parameterization button in the Value
box to open the Value Configuration Options dialog box in which you can
parameterize the value. You can parameterize the value using a test or action
parameter (test parameter for a top-level action, or action parameter for a
nested or sibling action), Data Table parameter, environment parameter, or
random number parameter. For more information, refer to Chapter 15,
“Parameterizing Values” in the QuickTest Professional Basic Features User’s
Guide.

 2 Repeat this procedure for any additional input action parameter values you
want to set.

To specify a location in which to store an output action parameter value:

 1 In the Output parameters area, click in the Store In box for the parameter
and enter a variable name.

Alternatively, you can click the output storage button in the Store In box
to open the Storage Location Options dialog box in which you can specify a
location for storing the output value. You can select to store the value in a
test parameter, the calling action parameter, a Data Table parameter, or an
environment parameter. For more information, refer to “Sharing Action
Information” on page 26 and “Storing Return Values and Action Output
Parameter Values” on page 544 in the QuickTest Professional Basic Features
User’s Guide.

 2 Repeat this procedure for each output action parameter value in the list.

Part I • Working with Advanced Testing Features

26

Sharing Action Information

There are several ways to share or pass values from one action to other
actions:

➤ Store values in the output action parameters of a called action and use those
values in steps that are performed after the action call within the calling
action, or in steps within sibling actions. For more information, refer to
“Storing Values in Test and Action Parameters” on page 398 in the QuickTest
Professional Basic Features User’s Guide.

➤ Store values from one action in the global Data Table and use these values as
Data Table parameters in other actions. For more information, see “Sharing
Values via the Global Data Table,” below.

➤ Set a value from one action as a user-defined environment variable and then
use the environment variable in other actions. For more information, see
“Sharing Values Using Environment Variables” on page 27.

➤ Add values to a Dictionary object in one action and retrieve the values in
other actions. For more information, see “Sharing Values Using the
Dictionary Object” on page 28.

Sharing Values via the Global Data Table

You can share a value that is generated in one action with other actions in
your test by storing the value in the global Data Table. Other actions can
then use the value in the Data Table as an input parameter. You can store a
value in the Data Table by outputting the value to the global Data Table or
by using DataTable, Sheet and Parameter objects and methods in the
Expert View to add or modify a value.

For example, suppose you are testing a flight reservation application. When
a user logs into the application, his or her full name is displayed on the top
of the page. Later, when the user chooses to purchase the tickets, the user
must enter the name that is listed on his or her credit card. Suppose your
test contains three actions—Login, SelectFlight, and PurchaseTickets and the
test is set to run multiple iterations with a different login name for each
iteration. In the Login action, you can create a text output value to store the
displayed name of the user. In the PurchaseTickets action, you can
parameterize the value that is set in the Credit Card Owner edit box using
the Data Table column containing the user’s full name.

Chapter 1 • Working with Advanced Action Features

27

For more information on output values, refer to Chapter 16, “Outputting
Values” in the QuickTest Professional Basic Features User’s Guide. For more
information on parameterization, refer to Chapter 15, “Parameterizing
Values” in the QuickTest Professional Basic Features User’s Guide. For more
information about DataTable objects and methods, refer to Chapter 19,
“Working with Data Tables” in the QuickTest Professional Basic Features User’s
Guide, and to the QuickTest Professional Object Model Reference.

Sharing Values Using Environment Variables

If you don’t need to run multiple iterations of your test or you want the
value you are sharing to stay constant for all iterations, you can use an
internal, user-defined environment variable that can be accessed by all local
actions in your test.

For example, suppose you want to test that your flight reservation
application correctly checks the credit card expiration date that the user
enters. The application should request a different credit card if the
expiration date that was entered is earlier than the scheduled flight
departure date. In the SelectFlight action, you can store the value entered in
the departure date edit box in an environment variable. In the
PurchaseTickets action, you can compare the value of the expiration date
edit box with the value stored in your environment variable.

For more information on environment variables, refer to Chapter 15,
“Parameterizing Values” in the QuickTest Professional Basic Features User’s
Guide. For information on the Environment object, refer to the QuickTest
Professional Object Model Reference.

Part I • Working with Advanced Testing Features

28

Sharing Values Using the Dictionary Object

As an alternative to using environment variables to share values between
actions as described above, you can use the Dictionary object. The
Dictionary object enables you to assign values to variables that are accessible
from all actions (local and external) called in the test in which the
Dictionary object is created.

To use the Dictionary object, you must first add a reserved object to the
registry (in HKEY_CURRENT_USER\Software\Mercury Interactive\QuickTest
Professional\MicTest\ReservedObjects\) with
ProgID = "Scripting.Dictionary". For example:

HKEY_CURRENT_USER\Software\Mercury Interactive\QuickTest
Professional\MicTest\ReservedObjects\GlobalDictionary

After you have added the reserved Dictionary object to the registry and
restarted QuickTest, you can add and remove values to the Dictionary in one
action and retrieve the values in another action from the same test.

For example, if you want to access the departure date set in the SelectFlight
action from the PurchaseTickets action, you can add the value of the
DepartDate WebEdit object to the dictionary in the SelectFlight action as
follows:

GlobalDictionary.RemoveAll
GlobalDictionary.Add "DateCheck", DepartDate

Then you can retrieve the date from the PurchaseTickets action as follows:

Dim CompareDate
CompareDate=GlobalDictionary("DateCheck")

For more information about the Dictionary object, refer to the VBScript
Reference documentation (Help > QuickTest Professional Help > VBScript
Reference > Script Runtime).

Chapter 1 • Working with Advanced Action Features

29

Understanding Action Syntax in the Expert View

An action call in the expert view can define the action iterations, input
parameter values, output parameter storage locations, and an action return
values.

Calling Actions Using Basic Syntax

In the Expert View, a call to an action with no parameters is displayed
within the calling action with the following basic syntax:

RunAction ActionName, IterationQuantity

For example, to call the Select Flight action and run it one iteration:

RunAction "Select Flight", oneIteration

For example, to call the Select Flight action and run it as many iterations as
there are rows in the Data Table:

RunAction "Select Flight", allIterations

For example, to call the Select Flight action and run it four iterations (for
the first four rows of the Data Table):

RunAction "Select Flight", "1 - 4"

Calling Actions with Parameters

If the action you are calling has input and/or output parameters defined,
you can also supply the values for the input parameters and the storage
location of the output parameters as arguments of the RunAction
statement. Input parameters are listed before output parameters.

For an input parameter, you can specify either a fixed value or you can
specify the name of another defined parameter (Data Table parameter,
environment parameter, or an action input parameter of the calling action)
from which the argument should take its value.

Part I • Working with Advanced Testing Features

30

For an output parameter, you can specify either a variable in which you
want to store the value or the name of a defined parameter (Data Table
parameter, environment parameter, or an action output parameter of the
calling action).

An action call with parameters has the following syntax:

RunAction ActionName, IterationQuantity, Parameters

For example, suppose you call Action2 from Action1, and Action2 has one
input and one output parameter defined.

The following statement supplies a string value of MyValue for the input
parameter and stores the resulting value of the output parameter in a
variable called MyVariable.

RunAction "Action2", oneIteration, “MyValue”, MyVariable

The following statement uses the value defined for Action1’s Axn1_In input
action parameter as the value for the input parameter, and stores the
resulting value of the output parameter in Action1’s Data Table sheet in a
column called Column1_out.

RunAction "Action2", oneIteration, Parameter(“Axn1_In”),
DataTable("Column1_out", dtLocalSheet)

In the following example, the first statement calls Action2 using its default
input parameter value. The second statement uses the value defined for
Action2’s Axn2_out output action parameter as the value for the call to
Action 3’s input parameter, and stores the resulting value of the output
parameter in Action1’s Axn1_out so that the output value is available at the
parent action level.

RunAction "Action2", oneIteration
RunAction "Action3", oneIteration, Parameter(“Action2”,”Axn2_out”),

 Parameter(“Axn1_out”)

Note that the Action2 output parameter is available for use in the call to
Action3, even though no storage location is specified in the call to Action2.

Chapter 1 • Working with Advanced Action Features

31

Storing Action Return Values

If the action called by the RunAction statement includes an ExitAction
statement, the RunAction statement can return the value of the
ExitAction's RetVal argument. Note that this return value is a return value of
the action call itself and is independent of any values returned by specific
output parameters of the action call.

To store the return value of an action call, use the syntax:

MyRetVal=RunAction (ActionName, IterationQuantity, Parameters)

For more information about the Expert View, see Chapter 5, “Working with
the Expert View and Function Library Windows.” For more information on
the RunAction statement, refer to the QuickTest Professional Object Model
Reference.

Exiting an Action

You can add a line in your script in the Expert View to exit an action before
it runs in its entirety. You may want to use this option to return the current
value of the action to the value at a specific point in the run or based on the
result of a conditional statement. There are four types of exit action
statements you can use:

➤ ExitAction—Exits the current action, regardless of its iteration attributes.

➤ ExitActionIteration—Exits the current iteration of the action.

➤ ExitRun—Exits the test, regardless of its iteration attributes.

➤ ExitGlobalIteration—Exits the current global iteration.

You can view the exit action node in the Test Results tree. If your exit action
statement returns a value, the value is displayed in the action, iteration, or
test summary, as applicable.

For more information about these functions, refer to the QuickTest
Professional Object Model Reference. For more information about the Test
Results, refer to Chapter 23, “Analyzing Test Results” in the QuickTest
Professional Basic Features User’s Guide.

Part I • Working with Advanced Testing Features

32

33

2
Learning Virtual Objects

You can teach QuickTest to recognize any area of your application as an
object by defining it as a virtual object. Virtual objects enable you to record
and run tests on objects that are not normally recognized by QuickTest.

This chapter describes:

➤ About Learning Virtual Objects

➤ Understanding Virtual Objects

➤ Understanding the Virtual Object Manager

➤ Defining a Virtual Object

➤ Removing or Disabling Virtual Object Definitions

About Learning Virtual Objects

Your application may contain objects that behave like standard objects but
are not recognized by QuickTest. You can define these objects as virtual
objects and map them to standard classes, such as a button or a check box.
QuickTest emulates the user’s action on the virtual object during the run
session. In the test results, the virtual object is displayed as though it is a
standard class object.

For example, suppose you want to record a test on a Web page containing a
bitmap that the user clicks. The bitmap contains several different hyperlink
areas, and each area opens a different destination page. When you record a
test, the Web site matches the coordinates of the click on the bitmap and
opens the destination page.

Part I • Working with Advanced Testing Features

34

To enable QuickTest to click at the required coordinates during a run
session, you can define a virtual object for an area of the bitmap, which
includes those coordinates, and map it to the button class. When you run a
test, QuickTest clicks the bitmap in the area defined as a virtual object so
that the Web site opens the correct destination page.

You define a virtual object using the Virtual Object Wizard (Tools > Virtual
Objects > New Virtual Object). The wizard prompts you to select the
standard object class to which you want to map the virtual object. You then
mark the boundaries of the virtual object using a crosshairs pointer. Next,
you select a test object as the parent of the virtual object. Finally, you specify
a name and a collection for the virtual object. A virtual object collection is a
group of virtual objects that is stored in the Virtual Object Manager under a
descriptive name.

Note: QuickTest does not support virtual objects for analog or low-level
recording. For additional information about low-level recording, see
“Recording and Running Tests” on page 430.

Chapter 2 • Learning Virtual Objects

35

Understanding Virtual Objects

QuickTest identifies a virtual object according to its boundaries. Marking an
object’s boundaries specifies its size and position on a Web page or
application window. When you assign a test object as the parent of your
virtual object, you specify that the coordinates of the virtual object
boundaries are relative to that parent object. When you record a test,
QuickTest recognizes the virtual object within the parent object and adds it
as a test object in the object repository so that QuickTest can identify the
object during the run session. QuickTest also recognizes the virtual object as
a test object when you add it manually to the object repository.

Note: During a run session, make sure that the application window is the
same size and in the same location as it was during recording, otherwise the
coordinates of the virtual object relative to its parent object may be
different, and this may affect the success of the run session.

You can disable recognition of virtual objects without deleting them from
the Virtual Object Manager. For additional information, see “Removing or
Disabling Virtual Object Definitions” on page 42.

Notes:

You can use virtual objects only when recording and running a test. You
cannot insert any type of checkpoint on a virtual object, or use the Object
Spy to view its properties.

In order to perform an operation in the Active Screen on a marked virtual
object, you must first record it, so that its properties are saved in the test
object description in the object repository. If you perform an operation in
the Active Screen on a virtual object that has not yet been recorded,
QuickTest treats it as a standard object.

Part I • Working with Advanced Testing Features

36

Understanding the Virtual Object Manager

The Virtual Object Manager contains all the virtual object collections
defined on your computer. From the Virtual Object Manager, you can define
and delete virtual objects and collections.

Available virtual object collections list—Displays the virtual object
collections defined on your computer and the virtual objects contained in
each one. Use the + and - signs next to a collection to view or hide the
virtual objects defined in that collection.

New—Opens the Virtual Object Wizard, which guides you through the
process of defining a new virtual object for a new or existing collection. For
more information, see “Defining a Virtual Object” on page 37.

Chapter 2 • Learning Virtual Objects

37

Delete—Deletes the selected virtual object or virtual object collection. For
more information, see “Removing or Disabling Virtual Object Definitions”
on page 42.

Note: The virtual object collections displayed in the Virtual Object Manager
are stored on your computer and not with the tests that contain virtual
object steps. This means that if you use a virtual object in a test step, the
object will be recognized during the run session only if it is run on a
computer containing the appropriate virtual object definition. To copy your
virtual object collection definitions to another computer, copy the contents
of your <QuickTest installation folder>\dat\VoTemplate folder (or
individual .vot collection files within this folder) to the same folder on the
destination computer.

Defining a Virtual Object

Using the Virtual Object Wizard, you can map a virtual object to a standard
object class, specify the boundaries and the parent of the virtual object, and
assign it a name. You can also group your virtual objects logically by
assigning them to collections.

Note: You can define virtual objects only for objects on which you can click
or double-click and that record a Click or DblClick step. Otherwise, the
virtual object is ignored. For example, if you define a virtual object over the
WinList object, the Select operation is recorded, and the virtual object is
ignored.

Part I • Working with Advanced Testing Features

38

To define a virtual object:

 1 With QuickTest open (but not in record mode), open your Web site or
application and display the object containing the area you want to define as
a virtual object.

 2 In QuickTest, choose Tools > Virtual Objects > New Virtual Object.
Alternatively, from the Virtual Object Manager, click New. The Virtual
Object Wizard opens.

Click Next.

Chapter 2 • Learning Virtual Objects

39

 3 Select a standard class to which you want to map your virtual object.

If you select the list class, specify the number of rows in the virtual object.
For the table class, select the number of rows and columns. Click Next.

 4 Click Mark Object.

Part I • Working with Advanced Testing Features

40

The QuickTest window and the Virtual Object Wizard are minimized. Use
the crosshairs pointer to mark the area of the virtual object. You can use the
arrow keys while holding down the left mouse button to make precise
adjustments to the area you define with the crosshairs.

Click Next.

Note: The virtual object should not overlap other virtual objects in your
application or Web page. If the virtual object overlaps another virtual object,
QuickTest may not record or run tests correctly on the virtual objects.

 5 Click an object in the object tree to assign it as the parent of the virtual
object.

The coordinates of the virtual object outline are relative to the parent object
you select.

Chapter 2 • Learning Virtual Objects

41

 6 In the Identify object using box, select how you want QuickTest to identify
and map the virtual object.

➤ If you want QuickTest to identify all occurrences of the virtual object,
select parent only. QuickTest identifies the virtual object using its direct
parent only, regardless of the entire parent hierarchy. For example, if the
virtual object was defined using Browser("A").Page("B").Image("C"),
QuickTest will recognize the virtual object even if the hierarchy changes
to Browser("X").Page("Y").Image("C").

➤ If you want QuickTest to identify the virtual object in one occurrence
only, select entire parent hierarchy. QuickTest identifies the virtual object
only if it has the exact parent hierarchy. For example, if the virtual object
was defined using Browser("A").Page("B").Image("C"), QuickTest will not
recognize it if the hierarchy changes to
Browser("X").Page("B").Image("C").

Click Next.

 7 Specify a name and a collection for the virtual object. Choose from the list
of collections or create a new one by entering a new name in the Collection
name box.

Part I • Working with Advanced Testing Features

42

 8 Perform one of the following:

➤ To add the virtual object to the Virtual Object Manager and close the
wizard, select No and then click Finish.

➤ To add the virtual object to the Virtual Object Manager and define
another virtual object, select Yes and then click Next. The wizard returns
to the Map to a Standard Class screen, where you can define the next
virtual object.

Removing or Disabling Virtual Object Definitions

You can remove virtual objects from your test by deleting them or by
disabling recognition of these objects while recording.

To delete a virtual object:

 1 Choose Tools > Virtual Objects > Virtual Object Manager. The Virtual Object
Manager opens.

 2 In the list of available virtual object collections, click the plus sign next to
the collection to display the virtual object you want to delete. Select the
virtual object, and click Delete.

To delete an entire collection, select it and click Delete.

Chapter 2 • Learning Virtual Objects

43

 3 Click Close.

Tip: Click New in the Virtual Object Manager to open the Virtual Object
Wizard, where you can define a new virtual object.

To disable recognition of virtual objects while recording:

 1 Choose Tools > Options or click the Options toolbar button. The Options
dialog box opens.

 2 In the General tab, select the Disable recognition of virtual objects while
recording check box.

 3 Click OK.

Note: When you want QuickTest to recognize virtual objects during
recording, ensure that the Disable recognition of virtual objects while
recording check box in the General tab of the Options dialog box is cleared.
For more information, refer to “Setting General Testing Options” on
page 696 in the QuickTest Professional Basic Features User’s Guide.

Part I • Working with Advanced Testing Features

44

45

3
Defining and Using Recovery Scenarios

You can instruct QuickTest to recover from unexpected events and errors
that occur in your testing environment during a run session.

This chapter describes:

➤ About Defining and Using Recovery Scenarios

➤ Deciding When to Use Recovery Scenarios

➤ Defining Recovery Scenarios

➤ Understanding the Recovery Scenario Wizard

➤ Managing Recovery Scenarios

➤ Setting the Recovery Scenarios List for Your Tests

➤ Programmatically Controlling the Recovery Mechanism

About Defining and Using Recovery Scenarios

Unexpected events, errors, and application crashes during a run session can
disrupt your run session and distort results. This is a problem particularly
when running tests unattended—the test is suspended until you perform
the operation needed to recover. For information on when to use recovery
scenarios, see “Deciding When to Use Recovery Scenarios” on page 47.

The Recovery Scenario Manager provides a wizard that guides you through
the process of defining a recovery scenario—a definition of an unexpected
event and the operation(s) necessary to recover the run session. For
example, you can instruct QuickTest to detect a Printer out of paper
message and recover the run session by clicking the OK button to close the
message and continue the test.

Part I • Working with Advanced Testing Features

46

A recovery scenario consists of the following:

➤ Trigger Event—The event that interrupts your run session. For example, a
window that may pop up on screen, or a QuickTest run error.

➤ Recovery Operation(s)—The operation(s) that need to be performed in
order to continue running the test. For example, clicking an OK button in a
pop-up window, or restarting Microsoft Windows.

➤ Post-Recovery Test Run Option—The instructions on how QuickTest should
proceed once the recovery operations have been performed, and from which
point in the test QuickTest should continue, if at all. For example, you may
want to restart a test from the beginning, or skip a step entirely and
continue with the next step in the test.

Recovery scenarios are saved in recovery scenario files. A recovery scenario
file is a logical collection of recovery scenarios, grouped according to your
own specific requirements.

To instruct QuickTest to perform a recovery scenario during a run session,
you must first associate the recovery scenario with that test. A test can have
any number of recovery scenarios associated with it. You can prioritize the
scenarios associated with your test to ensure that trigger events are
recognized and handled in the required order. For more information, see
“Adding Recovery Scenarios to Your Test” on page 85.

When you run a test for which you have defined recovery scenarios and an
error occurs, QuickTest looks for the defined trigger event(s) that caused the
error. If a trigger event has occurred, QuickTest performs the corresponding
recovery and post-recovery operations.

Chapter 3 • Defining and Using Recovery Scenarios

47

You can also control and activate your recovery scenarios during the run
session by inserting Recovery statements into your test. For more
information, see “Programmatically Controlling the Recovery Mechanism”
on page 91.

Note: If you choose On error in the Activate recovery scenarios box in the
Recovery tab of the Test Settings dialog box, the recovery mechanism does
not handle triggers that occur in the last step of a test. If you chose this
option and need to recover from an unexpected event or error that may
occur in the last step of a test, you can do this by adding an extra step to the
end of your test.

Deciding When to Use Recovery Scenarios

If you can predict that a certain event may happen at a specific point in
your test, it is highly recommended to handle that event directly within
your test by adding steps such as If statements or optional steps, rather than
depending on a recovery scenario. For example, if you know that an
Overwrite File message box may open when a Save button is clicked during
a run session, you can handle this event with an If statement that clicks OK
if the message box opens or by adding an optional step that clicks OK in the
message box. Handling an event directly within your test enables you to
handle errors more specifically than recovery scenarios, which by nature are
designed to handle a more generic set of unpredictable events. It also
enables you to control the timing of the corrective operation with minimal
resource usage and maximum performance. By default, recovery operations
are activated only occur after a step returns an error, which can potentially
occur several steps after the one that actually caused the error. The
alternative, checking for trigger events after every step, may slow
performance.

Part I • Working with Advanced Testing Features

48

You should use recovery scenarios only for unpredictable events, or events
that you cannot synchronize with a specific step in your test. For example, a
recovery scenario can handle a printer error by clicking the default button
in the Printer Error message box. You cannot handle this error directly in
your test, since you cannot know at what point the network will return the
printer error. You could try to handle this event in your test by adding an If
statement immediately after the step that sent a file to the printer, but if the
network takes time to return the printer error, your test may have progressed
several steps before the error is displayed. Therefore, for this type of event,
only a recovery scenario can handle it.

For more information on optional steps, refer to “Using Optional Steps” on
page 613 in the QuickTest Professional Basic Features User’s Guide. For more
information on inserting programming statements such as If statements,
refer to Chapter 20, “Adding Steps Containing Programming Logic” in the
QuickTest Professional Basic Features User’s Guide.

Defining Recovery Scenarios

The Recovery Scenario Manager dialog box enables you to create recovery
scenarios and save them in recovery files. You create recovery scenarios
using the Recovery Scenario Wizard, which leads you through the process of
defining each of the stages of the recovery scenario. You then save the
recovery scenarios in a recovery file, and associate them with specific tests.

Creating a Recovery File

You save your recovery scenarios in a recovery file. A recovery file is a
convenient way to organize and store multiple recovery scenarios together.
You can create a new recovery file or edit an existing one.

Chapter 3 • Defining and Using Recovery Scenarios

49

To create a recovery file:

 1 Choose Resources > Recovery Scenario Manager. The Recovery Scenario
Manager dialog box opens.

 2 By default, the Recovery Scenario Manager dialog box opens with a new
recovery file. You can either use this new file, or click the Open button to
choose an existing recovery file. Alternatively, you can click the arrow next
to the Open button to select a recently-used recovery file from the list.

You can now create recovery scenarios using the Recovery Scenario Wizard
and save them in your recovery file, as described in the following sections.

Part I • Working with Advanced Testing Features

50

Understanding the Recovery Scenario Manager Dialog Box

The Recovery Scenario Manager dialog box enables you to create and edit
recovery files, and create and manage recovery scenarios.

The Recovery Scenario Manager dialog box displays the name of the
currently open recovery file, a list of the scenario(s) saved in the recovery
file, and a description of each scenario.

Chapter 3 • Defining and Using Recovery Scenarios

51

The Recovery Scenario Manager dialog box contains the following toolbar
buttons:

Note: Each recovery scenario is represented by an icon that indicates its
type. For more information, see “Managing Recovery Scenarios” on page 79.

Option Description

Creates a new recovery file. For more information, see “Creating a
Recovery File” on page 48.

Opens an existing recovery file. You can also click the arrow to select a
recovery file from the list of recently-used recovery files.

Saves the current recovery file. For more information, see “Saving the
Recovery Scenario in a Recovery File” on page 78.

Opens the Recovery Scenario Wizard, in which you define a new
recovery scenario. For more information, see “Understanding the
Recovery Scenario Wizard” on page 52.

Opens the Recovery Scenario Wizard for the selected recovery
scenario, in which you can modify the recovery scenario settings. For
more information, see “Modifying Recovery Scenarios” on page 82.

Displays summary properties for the selected recovery scenario in
read-only format. For more information, see “Viewing Recovery
Scenario Properties” on page 81.

Copies a recovery scenario from the open recovery file to the
Clipboard. This enables you to paste a recovery scenario into another
recovery file. For more information, see “Copying Recovery Scenarios
between Recovery Scenario Files” on page 83.

Pastes a recovery scenario from the Clipboard into the open recovery
file. For more information, see “Copying Recovery Scenarios between
Recovery Scenario Files” on page 83.

Deletes a recovery scenario. For more information, see “Deleting
Recovery Scenarios” on page 82.

Part I • Working with Advanced Testing Features

52

Understanding the Recovery Scenario Wizard

The Recovery Scenario Wizard leads you, step-by-step, through the process
of creating a recovery scenario. The Recovery Scenario Wizard contains five
main steps:

➤ defining the trigger event that interrupts the run session

➤ specifying the recovery operation(s) required to continue

➤ choosing a post-recovery test run operation

➤ specifying a name and description for the recovery scenario

➤ specifying whether to associate the recovery scenario to the current test
and/or to all new tests

You open the Recovery Scenario Wizard by clicking the New Scenario
button in the Recovery Scenario Manager dialog box (Resources > Recovery
Scenario Manager).

Chapter 3 • Defining and Using Recovery Scenarios

53

Welcome to the Recovery Scenario Wizard Screen

The Welcome to the Recovery Scenario Wizard screen provides general
information about the different options in the Recovery Scenario Wizard,
and provides an overview of the stages involved in defining a recovery
scenario.

Click Next to continue to the Select Trigger Event screen.

Part I • Working with Advanced Testing Features

54

Select Trigger Event Screen

The Select Trigger Event screen enables you to define the event type that
triggers the recovery scenario, and the way in which QuickTest recognizes
the event.

Select a type of trigger and click Next. The next screen displayed in the
wizard depends on which of the following trigger types you select:

➤ Pop-up window—QuickTest detects a pop-up window and identifies it
according to the window title and textual content. For example, a message
box may open during a run session, indicating that the printer is out of
paper. QuickTest can detect this window and activate a defined recovery
scenario in order to continue the run session.

Select this option and click Next to continue to the Specify Pop-up Window
Conditions screen.

Chapter 3 • Defining and Using Recovery Scenarios

55

➤ Object state—QuickTest detects a specific test object state and identifies it
according to its property values and the property values of all its ancestors.
Note that an object is identified only by its property values, and not by its
class.

For example, a specific button in a dialog box may be disabled when a
specific process is open. QuickTest can detect the object property state of the
button that occurs when this problematic process is open and activate a
defined recovery scenario to close the process and continue the run session.

Select this option and click Next to continue to the Select Object screen.

➤ Test run error—QuickTest detects a run error and identifies it by a failed
return value from a method. For example, QuickTest may not be able to
identify a menu item specified in the method argument, due to the fact that
the menu item is not available at a specific point during the run session.
QuickTest can detect this run error and activate a defined recovery scenario
in order to continue the run session.

Select this option and click Next to continue to the Select Test Run Error
screen.

➤ Application crash—QuickTest detects an application crash and identifies it
according to a predefined list of applications. For example, a secondary
application may crash when a certain step is performed in the run session.
You want to be sure that the run session does not fail because of this crash,
which may indicate a different problem with your application. QuickTest
can detect this application crash and activate a defined recovery scenario to
continue the run session.

Part I • Working with Advanced Testing Features

56

Select this option and click Next to continue to the Recovery Operations
screen.

Notes:

The set of recovery operations is performed for each occurrence of the
trigger event criteria. For example, suppose you define a specific object state,
and two objects match this state, the set of recovery operations is performed
two times, once for each object that matches the specified state.

The recovery mechanism does not handle triggers that occur in the last step
of a test. If you need to recover from an unexpected event or error that may
occur in the last step of a test, you can do this by adding an extra step to the
end of your test.

Specify Pop-up Window Conditions Screen

If you chose a Pop-up window trigger in the Select Trigger Event screen, the
Specify Pop-up Window Conditions screen opens.

Chapter 3 • Defining and Using Recovery Scenarios

57

Perform one of the following to specify how the pop-up window should be
identified:

➤ Choose whether you want to identify the pop-up window according to
its Window title and/or Window text and then enter the text used to
identify the pop-up window. You can use regular expressions in the
window title or textual content by selecting the relevant Regular
expression check box and then entering the regular expression in the
relevant location. For information on regular expressions, refer to
“Understanding and Using Regular Expressions” on page 334 in the
QuickTest Professional Basic Features User’s Guide.

➤ Click the pointing hand and then click the pop-up window to capture
the window title and textual content of the window.

Note: Using the first option (Window title and/or Window text) instructs
QuickTest to identify any pop-up window that contains the relevant title
and/or text. Using the second option (pointing hand) instructs QuickTest to
identify only pop-up windows that match the object property values of the
window you select.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

Click Next to continue to the Recovery Operations screen.

Part I • Working with Advanced Testing Features

58

Select Object Screen

If you chose an Object state trigger in the Select Trigger Event screen, the
Select Object screen opens.

Click the pointing hand and then click the object whose properties you
want to specify.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

Chapter 3 • Defining and Using Recovery Scenarios

59

If the location you click is associated with more than one object, the Object
Selection–Object State Trigger dialog box opens.

Select the object whose properties you want to specify and click OK. The
selected object and its parents are displayed in the Select Object screen.

Note: The hierarchical object selection tree also enables you to select an
object that QuickTest would not ordinarily record (a non-parent object),
such as a web table.

 Click Next to continue to the Set Object Properties and Values screen.

Part I • Working with Advanced Testing Features

60

Set Object Properties and Values Screen

After you select the object whose properties you want to specify in the Select
Object screen, the Set Object Properties and Values screen opens.

For each object in the hierarchy, in the Edit property value box, you can
modify the property values used to identify the object. You can also click the
Add/Remove button to add or remove object properties from the list of
property values to check. Note that an object is identified only by its
property values, and not by its class.

Select the Regular expression check box if you want to use regular
expressions in the property value. For information on regular expressions,
refer to “Understanding and Using Regular Expressions” on page 334 in the
QuickTest Professional Basic Features User’s Guide.

Click Next to continue to the Recovery Operations screen.

Chapter 3 • Defining and Using Recovery Scenarios

61

Select Test Run Error Screen

If you chose a Test run error trigger in the Select Trigger Event screen, the
Select Test Run Error screen opens.

In the Error list, choose the run error that you want to use as the trigger
event:

➤ Any error—Any error code that is returned by a test object method.

➤ Item in list or menu is not unique—Occurs when more than one item in the
list, menu, or tree has the name specified in the method argument.

➤ Item in list or menu not found—Occurs when QuickTest cannot identify the
list, menu, or tree item specified in the method argument. This may be due
to the fact that the item is not currently available or that its name has
changed.

➤ More than one object responds to the physical description—Occurs when
more than one object in your application has the same property values as
those specified in the test object description for the object specified in the
step.

Part I • Working with Advanced Testing Features

62

➤ Object is disabled—Occurs when QuickTest cannot perform the step because
the object specified in the step is currently disabled.

➤ Object not found—Occurs when no object within the specified parent
object matches the test object description for the object.

➤ Object not visible—Occurs when QuickTest cannot perform the step because
the object specified in the step is not currently visible on the screen.

Click Next to continue to the Recovery Operations screen.

Select Processes Screen

If you chose an Application crash trigger in the Select Trigger Event screen,
the Select Processes screen opens.

The Running processes list displays all application processes that are
currently running. The Processes list displays the application processes that
will trigger the recovery scenario if they crash.

Chapter 3 • Defining and Using Recovery Scenarios

63

You can add application processes to the Processes list by typing them in
the Processes list or by selecting them from the Running processes list.

To add a process from the Running processes list, double-click a process in
the Running processes list or select it and click the Add button. You can
select multiple processes using standard Windows multiple selection
techniques (CTRL and SHIFT keys).

To add a process directly to the Processes list, click the Add New Process
button to enter the name of any process you want to add to the list.

To remove a process from the Processes list, select it and click the Remove
Process button.

Tip: You can modify the name of a process by selecting it in the Processes
list and clicking the process name to edit it.

Click Next to continue to the Recovery Operations screen.

Part I • Working with Advanced Testing Features

64

Recovery Operations Screen

The Recovery Operations screen enables you to manage the collection of
recovery operations in the recovery scenario. Recovery operations are
operations that QuickTest performs sequentially when it recognizes the
trigger event.

You must define at least one recovery operation. To define a recovery
operation and add it to the Recovery operations list, click Next to continue
to the Recovery Operation screen.

Chapter 3 • Defining and Using Recovery Scenarios

65

If you define two or more recovery operations, you can select a recovery
operation and use the Move Up or Move Down buttons to change the order
in which QuickTest performs the recovery operations. You can also select a
recovery operation and click the Remove button to delete a recovery
operation from the recovery scenario.

Note: If you define a Restart Microsoft Windows recovery operation, it is
always inserted as the last recovery operation, and you cannot change its
position in the list.

After you have defined at least one recovery operation, the Add another
recovery operation check box is displayed.

➤ Select the check box and click Next to define another recovery operation.

➤ Clear the check box and click Next to continue to the Post-Recovery Test
Run Options screen.

Part I • Working with Advanced Testing Features

66

Recovery Operation Screen

The Recovery Operation screen enables you to specify the operation(s)
QuickTest performs after it detects the trigger event.

Select a type of recovery operation and click Next. The next screen displayed
in the wizard depends on which recovery operation type you select.

You can define the following types of recovery operations:

➤ Keyboard or mouse operation—QuickTest simulates a click on a button in a
window or a press of a keyboard key. Select this option and click Next to
continue to the Recovery Operation – Click Button or Press Key screen.

➤ Close application process—QuickTest closes specified processes. Select this
option and click Next to continue to the Recovery Operation – Close
Processes screen.

Chapter 3 • Defining and Using Recovery Scenarios

67

➤ Function call—QuickTest calls a VBScript function. Select this option and
click Next to continue to the Recovery Operation – Function Call screen.

➤ Restart Microsoft Windows—QuickTest restarts Microsoft Windows. Select
this option and click Next to continue to the Recovery Operations screen.

Note: If you use the Restart Microsoft Windows recovery operation, you
must ensure that any test associated with this recovery scenario is saved
before you run it. You must also configure the computer on which the test is
run to automatically log in on restart.

Recovery Operation – Click Button or Press Key Screen

If you chose a Keyboard or mouse operation recovery operation in the
Recovery Operation screen, the Recovery Operation – Click Button or Press
Key screen opens.

Part I • Working with Advanced Testing Features

68

Specify the keyboard or mouse operation that you want QuickTest to
perform when it detects the trigger event:

➤ Click Default button / Press the ENTER key—Instructs QuickTest to click the
default button or press the ENTER key in the displayed window when the
trigger occurs.

➤ Click Cancel button / Press the ESCAPE key—Instructs QuickTest to click the
Cancel button or press the ESCAPE key in the displayed window when the
trigger occurs.

➤ Click button with label—Instructs QuickTest to click the button with the
specified label in the displayed window when the trigger occurs. If you select
this option, click the pointing hand and then click anywhere in the trigger
window.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

All button labels in the selected window are displayed in the list box. Select
the required button from the list.

➤ Press key or key combination—Instructs QuickTest to press the specified
keyboard key or key combination in the displayed window when the trigger
occurs. If you select this option, click in the edit box and then press the key
or key combination on your keyboard that you want to specify.

Click Next. The Recovery Operations screen reopens, showing the keyboard
or mouse recovery operation that you defined.

Chapter 3 • Defining and Using Recovery Scenarios

69

Recovery Operation – Close Processes Screen

If you chose a Close application process recovery operation in the Recovery
Operation screen, the Recovery Operation – Close Processes screen opens.

The Running processes list displays all application processes that are
currently running. The Processes to close list displays the application
processes that will be closed when the trigger is activated.

To add a process from the Running processes list, double-click a process in
the Running processes list or select it and click the Add button. You can
select multiple processes using standard Windows multiple selection
techniques (CTRL and SHIFT keys).

Part I • Working with Advanced Testing Features

70

To add a process directly to the Processes to close list, click the Add New
Process button to enter the name of any process you want to add to the list.

To remove a process from the Processes to close list, select it and click the
Remove Process button.

Tip: You can modify the name of a process by selecting it in the Processes to
close list and clicking the process name to edit it.

Click Next. The Recovery Operations screen reopens, showing the close
processes recovery operation that you defined.

Chapter 3 • Defining and Using Recovery Scenarios

71

Recovery Operation – Function Call Screen

If you chose a Function call recovery operation in the Recovery Operation
screen, the Recovery Operation – Function Call screen opens.

Select a recently specified function library in the Function Library box.
Alternatively, click the browse button to navigate to an existing function
library.

Note: QuickTest automatically associates the function library you select
with your test. Therefore, you do not need to associate the function library
with your test in the Resources tab of the Test Settings dialog box.

Part I • Working with Advanced Testing Features

72

After you select a function library, choose one of the following options:

➤ Select function—Choose an existing function from the function library you
selected.

Note: Only functions that match the prototype syntax for the trigger type
selected in the Select Trigger Event screen are displayed. Following is the
prototype for each trigger type:

Test run error trigger
OnRunStep
(
[in] Object as Object: The object of the current step.
[in] Method as String: The method of the current step.
[in] Arguments as Array: The actual method's arguments.
[in] Result as Integer: The actual method's result.
)

Pop-up window and Object state triggers
OnObject
(
[in] Object as Object: The detected object.
)

Application crash trigger
OnProcess
(
[in] ProcessName as String: The detected process's Name.
[in] ProcessId as Integer: The detected process' ID.
)

Chapter 3 • Defining and Using Recovery Scenarios

73

➤ Define new function—Create a new function by specifying a unique name
for it, and defining the function in the Function Name box according to the
displayed function prototype. The new function is added to the function
library you selected.

Note: If more than one scenario uses a function with the same name from
different function libraries, the recovery process may fail. In this case,
information regarding the recovery failure is displayed during the run
session.

Click Next. The Recovery Operations screen reopens, showing the function
operation that you defined.

Part I • Working with Advanced Testing Features

74

Post-Recovery Test Run Options Screen

When you clear the Add another recovery operation check box in the
Recovery Operations screen and click Next, the Post-Recovery Test Run
Options screen opens. Post-recovery test run options specify how to
continue the run session after QuickTest has identified the event and
performed all of the specified recovery operations.

QuickTest can perform one of the following run session options after it
performs the recovery operations you defined:

➤ Repeat current step and continue

The current step is the step that QuickTest was running when the recovery
scenario was triggered. If you are using the On error activation option for
recovery scenarios, the step that returns the error is often one or more steps
later than the step that caused the trigger event to occur.

Thus, in most cases, repeating the current step does not repeat the trigger
event. For more information, see “Enabling and Disabling Recovery
Scenarios” on page 89.

Chapter 3 • Defining and Using Recovery Scenarios

75

➤ Proceed to next step

Skips the step that QuickTest was running when the recovery scenario was
triggered. Keep in mind that skipping a step that performs operations on
your application may cause subsequent steps to fail.

➤ Proceed to next action or component iteration

Stops performing steps in the current action iteration and begins the next
action iteration from the beginning (or the next action if no additional
iterations of the current action are required).

➤ Proceed to next test iteration

Stops performing steps in the current action and begins the next test
iteration from the beginning (or stops running the test if no additional
iterations of the current action are required).

➤ Restart current test run

Stops performing steps and re-runs the test from the beginning.

➤ Stop the test run

Stops running the test.

Note: If you chose Restart Microsoft Windows as a recovery operation, you
can choose from only the last two test run options listed above.

Select a test run option and click Next to continue to the Name and
Description screen.

Part I • Working with Advanced Testing Features

76

Name and Description Screen

After you specify a test run option in the Post-Recovery Test Run Options
screen, and click Next, the Name and Description screen opens.

In the Name and Description screen, you specify a name by which to
identify your recovery scenario. You can also add descriptive information
regarding the scenario.

Enter a name and a textual description for your recovery scenario, and click
Next to continue to the Completing the Recovery Scenario Wizard screen.

Chapter 3 • Defining and Using Recovery Scenarios

77

Completing the Recovery Scenario Wizard Screen

After you specify a recovery scenario name and description in the Name and
Description screen and click Next, the Completing the Recovery Scenario
Wizard screen opens.

In the Completing the Recovery Scenario Wizard screen, you can review a
summary of the scenario settings you defined. You can also specify whether
to automatically associate the recovery scenario with the current test and/or
to add it to the default settings for all new tests.

You can select the Add scenario to current test check box to associate this
recovery scenario with the current test. When you click Finish, QuickTest
adds the recovery scenario to the Scenarios list in the Recovery tab of the
Test Settings dialog box.

Part I • Working with Advanced Testing Features

78

You can select the Add scenario to default test settings check box to make
this recovery scenario a default scenario for all new tests. The next time you
create a test, this scenario will be listed in the Scenarios list in the Recovery
tab of the Test Settings dialog box.

Note: You can remove scenarios from the default scenarios list. For more
information, refer to “Defining Recovery Scenario Settings for Your Test” on
page 768 in the QuickTest Professional Basic Features User’s Guide.

Click Finish to complete the recovery scenario definition.

Saving the Recovery Scenario in a Recovery File

After you create or modify a recovery scenario in a recovery file using the
Recovery Scenario Wizard, you need to save the recovery file.

To save a new or modified recovery file:

 1 Click the Save button. If you added or modified scenarios in an existing
recovery file, the recovery file and its scenarios are saved. If you are using a
new recovery file, the Save Attachment dialog box opens.

Tip: You can also click the arrow to the right of the Save button and select
Save As to save the recovery file under a different name.

 2 Choose the folder in which you want to save the file.

Chapter 3 • Defining and Using Recovery Scenarios

79

 3 Type a name for the file in the File name box. The recovery file is saved in
the specified location with the file extension .qrs.

Tip: If you have not yet saved the recovery file, and you click the Close
button in the Recovery Scenario Manager dialog box, QuickTest prompts
you to save the recovery file. Click Yes, and proceed with step 2 above. If
you added or modified scenarios in an existing recovery file, and you click
Yes to the message prompt, the recovery file and its scenarios are saved.

Managing Recovery Scenarios

Once you have created recovery scenarios, you can use the Recovery
Scenario Manager to manage them.

Part I • Working with Advanced Testing Features

80

The Recovery Scenario Manager contains the following recovery scenario
icons:

The Recovery Scenario Manager enables you to manage existing scenarios
by:

➤ Viewing Recovery Scenario Properties

➤ Modifying Recovery Scenarios

➤ Deleting Recovery Scenarios

➤ Copying Recovery Scenarios between Recovery Scenario Files

Icon Description

Indicates that the recovery scenario is triggered when a window pops
up in an open application during the run session.

Indicates that the recovery scenario is triggered when the property
values of an object in an application match specified values.

Indicates that the recovery scenario is triggered when a step in the test
does not run successfully.

Indicates that the recovery scenario is triggered when an open
application fails during the run session.

Chapter 3 • Defining and Using Recovery Scenarios

81

Viewing Recovery Scenario Properties

You can view properties for any defined recovery scenario.

To view recovery scenario properties:

 1 In the Scenarios box, select the recovery scenario whose properties you want
to view.

 2 Click the Properties button. Alternatively, you can double-click a scenario in
the Scenarios box. The Recovery Scenario Properties dialog box opens.

The Recovery Scenario Properties dialog box displays the following
read-only information about the selected scenario:

➤ General tab—Displays the name and description defined for the recovery
scenario, plus the name and path of the recovery file in which the scenario
is saved.

➤ Trigger Event tab—Displays the settings for the trigger event defined for the
recovery scenario.

Part I • Working with Advanced Testing Features

82

➤ Recovery Operation tab—Displays the recovery operation(s) defined for the
recovery scenario.

➤ Post-Recovery Operation tab—Displays the post-recovery operation defined
for the recovery scenario.

Modifying Recovery Scenarios

You can modify the settings for an existing recovery scenario.

To modify a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to modify.

 2 Click the Edit button. The Recovery Scenario Wizard opens, with the
settings you defined for the selected recovery scenario.

 3 Navigate through the Recovery Scenario Wizard and modify the details as
needed. For information on the Recovery Scenario Wizard options, see
“Defining Recovery Scenarios,” on page 48.

Note: Modifications you make are not saved until you click Save in the
Recovery Scenario Manager dialog box. If you have not yet saved your
modifications, and you click the Close button in the Recovery Scenario
Manager dialog box, QuickTest prompts you to save the recovery file. Click
Yes to save your changes.

Deleting Recovery Scenarios

You can delete an existing recovery scenario if you no longer need it. When
you delete a recovery scenario from the Recovery Scenario Manager, the
corresponding information is deleted from the recovery scenario file.

Note: If a deleted recovery scenario is associated with a test, QuickTest
ignores it during the run session.

Chapter 3 • Defining and Using Recovery Scenarios

83

To delete a recovery scenario:

 1 In the Scenarios box, select the scenario that you want to delete.

 2 Click the Delete button. The recovery scenario is deleted from the Recovery
Scenario Manager dialog box.

Note: The scenario is not actually deleted until you click Save in the
Recovery Scenario Manager dialog box. If you have not yet saved the
deletion, and you click the Close button in the Recovery Scenario Manager
dialog box, QuickTest prompts you to save the recovery file. Click Yes to
save the recovery scenario file and delete the scenarios.

Copying Recovery Scenarios between Recovery Scenario Files

You can copy recovery scenarios from one recovery scenario file to another.

To copy a recovery scenario from one recovery scenario file to another:

 1 In the Scenarios box, select the recovery scenario that you want to copy.

 2 Click the Copy button. The scenario is copied to the Clipboard.

 3 Click the Open button and select the recovery scenario file to which you
want to copy the scenario, or click the New button to create a new recovery
scenario file in which to copy the scenario.

Part I • Working with Advanced Testing Features

84

 4 Click the Paste button. The scenario is copied to the new recovery scenario
file.

Notes:

If a scenario with the same name already exists in the recovery scenario file,
you can choose whether you want to replace it with the new scenario you
have just copied.

Modifications you make are not saved until you click Save in the Recovery
Scenario Manager dialog box. If you have not yet saved your modifications,
and you click the Close button in the Recovery Scenario Manager dialog
box, QuickTest prompts you to save the recovery file. Click Yes to save your
changes.

Chapter 3 • Defining and Using Recovery Scenarios

85

Setting the Recovery Scenarios List for Your Tests

After you have created recovery scenarios, you associate them with selected
tests or components so that QuickTest will perform the appropriate
scenario(s) during the run sessions if a trigger event occurs. You can
prioritize the scenarios and set the order in which QuickTest applies the
scenarios during the run session. You can also choose to disable specific
scenarios, or all scenarios, that are associated with a test. You can also define
which recovery scenarios will be used as the default scenarios for all new
tests.

Adding Recovery Scenarios to Your Test

After you have created recovery scenarios, you can associate one or more
scenarios with a test in order to instruct QuickTest to perform the recovery
scenario(s) during the run session if a trigger event occurs. The Recovery tab
of the Test Settings dialog box lists all the recovery scenarios associated with
the current test.

Tip: When a trigger event occurs, QuickTest checks for applicable recovery
scenarios in the order in which they are displayed in the Recovery tab. You
can change this order as described in “Setting Recovery Scenario Priorities”
on page 88.

Part I • Working with Advanced Testing Features

86

To add a recovery scenario to a test:

 1 Choose File > Settings. The Test Settings dialog box opens. Select the
Recovery tab.

Chapter 3 • Defining and Using Recovery Scenarios

87

 2 Click the Add button . The Add Recovery Scenario dialog box opens.

 3 In the Recovery file box, select the recovery file containing the recovery
scenario(s) you want to associate with the test. Alternatively, click the
browse button to navigate to the recovery file you want to select. The
Scenarios box displays the names of the scenarios saved in the selected file.

 4 In the Scenarios box, select the scenario(s) that you want to associate with
the test and click Add Scenario. The Add Recovery Scenario dialog box
closes and the selected scenarios are added to the Scenarios list in the
Recovery tab.

Tip: You can edit a recovery scenario file path by clicking the path once to
highlight it, and then clicking it again to enter edit mode. For example, you
may want to modify an absolute file path to be a relative file path. If you
modify a recovery scenario file path, you must ensure that the recovery
scenario is defined in the new path location before running your test.

Part I • Working with Advanced Testing Features

88

Viewing Recovery Scenario Properties

You can view properties for any recovery scenario associated with your test.

Note: You modify recovery scenario settings from the Recovery Scenario
Manager dialog box. For more information, see “Modifying Recovery
Scenarios” on page 82.

To view recovery scenario properties:

 1 In the Scenarios box, select the recovery scenario whose properties you want
to view.

 2 Click the Properties button. Alternatively, you can double-click a scenario in
the Scenarios box. The Recovery Scenario Properties dialog box opens,
displaying read-only information regarding the settings for the selected
scenario. For more information, see “Viewing Recovery Scenario Properties”
on page 81.

Setting Recovery Scenario Priorities

You can specify the order in which QuickTest performs associated scenarios
during a run session. When a trigger event occurs, QuickTest checks for
applicable recovery scenarios in the order in which they are displayed in the
Recovery tab of the Test Settings dialog box.

To set recovery scenario priorities:

 1 In the Scenarios box, select the scenario whose priority you want to change.

 2 Click the Up or Down button. The selected scenario’s priority changes
according to your selection.

 3 Repeat steps 1-2 for each scenario whose priority you want to change.

Chapter 3 • Defining and Using Recovery Scenarios

89

Removing Recovery Scenarios from Your Test

You can remove the association between a specific scenario and a test using
the Recovery tab of the Test Settings dialog box. After you remove a scenario
from a test, the scenario itself still exists, but QuickTest will no longer
perform the scenario during a run session.

To remove a recovery scenario from your test:

 1 In the Scenarios box, select the scenario you want to remove.

 2 Click the Remove button. The selected scenario is no longer associated with
the test.

Enabling and Disabling Recovery Scenarios

You can enable or disable specific scenarios and determine when QuickTest
activates the recovery scenario mechanism in the Recovery tab of the Test
Settings dialog box. When you disable a specific scenario, it remains
associated with the test, but is not performed by QuickTest during the run
session. You can enable the scenario at a later time.

You can also specify the conditions for which the recovery scenario is to be
activated.

To enable/disable specific recovery scenarios:

➤ Select the check box to the left of one or more individual scenarios to enable
them.

➤ Clear the check box to the left of one or more individual scenarios to disable
them.

To define when the recovery mechanism is activated:

➤ Select one of the following options in the Activate recovery scenarios box:

➤ On every step—The recovery mechanism is activated after every step.

➤ On error—The recovery mechanism is activated only after steps that
return an error return value.

Note that the step that returns an error is often not the same as the step
that causes the exception event to occur.

Part I • Working with Advanced Testing Features

90

For example, a step that selects a check box may cause a pop-up dialog
box to open. Although the pop-up dialog box is defined as a trigger
event, QuickTest moves to the next step because it successfully
performed the check box selection step. The next several steps could
potentially perform checkpoints, functions or other conditional or
looping statements that do not require performing operations on your
application. It may only be ten statements later that a step instructs
QuickTest to perform an operation on the application that it cannot
perform due to the pop-up dialog box. In this case, it is this tenth step
that returns an error and triggers the recovery mechanism to close the
dialog box. After the recovery operation is completed, the current step is
this tenth step, and not the step that caused the trigger event.

➤ Never—The recovery mechanism is disabled.

Note: Choosing On every step may result in slower performance during the
run session.

Tip: You can also enable or disable specific scenarios or all scenarios
associated with a test programmatically during the run session. For more
information, see “Programmatically Controlling the Recovery Mechanism”
on page 91.

Setting Default Recovery Scenario Settings for All New Tests

You can click the Set as Default button in the Recovery tab of the Test
Settings dialog box to set the current list of recovery scenarios to be the
default scenarios for all new tests. Any future changes you make to the
current recovery scenario list only affect the current test, and do not change
the default list that you defined.

Chapter 3 • Defining and Using Recovery Scenarios

91

Programmatically Controlling the Recovery Mechanism

You can use the Recovery object to control the recovery mechanism
programmatically during the run session. For example, you can enable or
disable the entire recovery mechanism or specific recovery scenarios for
certain parts of a run session, retrieve status information about specific
recovery scenarios, and explicitly activate the recovery mechanism at a
certain point in the run session.

By default, QuickTest checks for recovery triggers when an error is returned
during the run session. You can use the Recovery object’s Activate method
to force QuickTest to check for triggers after a specific step in the run
session. For example, suppose you know that an object property checkpoint
will fail if certain processes are open when the checkpoint is performed. You
want to be sure that the pass or fail of the checkpoint is not affected by these
open processes, which may indicate a different problem with your
application.

However, a failed checkpoint does not result in a run error. So by default, the
recovery mechanism would not be activated by the object state. You can
define a recovery scenario that looks for and closes specified open processes
when an object’s properties have a certain state. This state shows the object’s
property values as they would be if the problematic processes were open.
You can instruct QuickTest to activate the recovery mechanism if the
checkpoint fails so that QuickTest will check for and close any problematic
open processes and then try to perform the checkpoint again. This ensures
that when the checkpoint is performed the second time it is not affected by
the open processes.

For more information on the Recovery object and its methods, refer to the
QuickTest Professional Object Model Reference.

Part I • Working with Advanced Testing Features

92

93

4
Configuring Object Identification

When you record an operation on an object or add an object to the object
repository, QuickTest learns a set of properties and values that uniquely
describe the object within the object hierarchy. In most cases, this
description is sufficient to enable QuickTest to identify the object during the
run session.

If you find that the description QuickTest uses for a certain object class is
not the most logical one for the objects in your application, or if you expect
that the values of the properties in the object description may change
frequently, you can configure the way that QuickTest learns and identifies
objects. You can also map user-defined objects to standard test object classes
and configure the way QuickTest learns objects from your user-defined
object classes.

This chapter describes:

➤ About Configuring Object Identification

➤ Understanding the Object Identification Dialog Box

➤ Configuring Smart Identification

➤ Mapping User-Defined Test Object Classes

Part I • Working with Advanced Testing Features

94

About Configuring Object Identification

QuickTest has a predefined set of properties that it learns for each test
object. If these mandatory property values are not sufficient to uniquely
identify an object you record or add, QuickTest can add some assistive
properties and/or an ordinal identifier to create a unique description.

Mandatory properties are properties that QuickTest always learns for a
particular test object class.

Assistive properties are properties that QuickTest learns only if the
mandatory properties that QuickTest learns for a particular object in your
application are not sufficient to create a unique description. If several
assistive properties are defined for an object class, then QuickTest learns one
assistive property at a time, and stops as soon as it creates a unique
description for the object. If QuickTest does learn assistive properties, those
properties are added to the test object description.

Note: If the combination of all defined mandatory and assistive properties is
not sufficient to create a unique test object description, QuickTest also
learns the value for the selected ordinal identifier. For more information, see
“Selecting an Ordinal Identifier” on page 102.

When you run a test, QuickTest searches for the object that matches the
description it learned (without the ordinal identifier). If it cannot find any
object that matches the description, or if it finds more than one object that
matches, QuickTest uses the Smart Identification mechanism (if enabled) to
identify the object. In many cases, a Smart Identification definition can help
QuickTest identify an object, if it is present, even when the learned
description fails due to changes in one or more property values. The test
object description is used together with the ordinal identifier only in cases
where the Smart Identification mechanism does not succeed in narrowing
down the object candidates to a single object.

Chapter 4 • Configuring Object Identification

95

You use the Object Identification dialog box (Tools > Object Identification)
to configure the mandatory, assistive, and ordinal identifier properties that
QuickTest uses to learn descriptions of the objects in your application, and
to enable and configure the Smart Identification mechanism.

The Object Identification dialog box also enables you to configure new
user-defined classes and map them to an existing test object class so that
QuickTest can recognize objects from your user-defined classes when you
run your test.

Understanding the Object Identification Dialog Box

You use the main screen of the Object Identification dialog box to set
mandatory and assistive properties, to select the ordinal identifier, and to
specify whether you want to enable the Smart Identification mechanism for
each test object.

From the Object Identification dialog box, you can also define user-defined
object classes and map them to Standard Windows object classes, and you
can configure the Smart Identification mechanism for any object displayed
in the Test Object classes list for a selected environment.

Notes:

Any changes you make in the Object Identification dialog box have no
effect on objects already added to the object repository.

The learned and Smart Identification properties of certain test objects
cannot be configured, for example, the WinMenu, VbLabel, VbObject, and
VbToolbar objects. These objects are therefore not included in the
Test Object classes list for the selected environment.

Part I • Working with Advanced Testing Features

96

For more information, see:

➤ “Configuring Mandatory and Assistive Recording Properties” on page 96

➤ “Selecting an Ordinal Identifier” on page 102

➤ “Enabling and Disabling Smart Identification” on page 107

➤ “Restoring Default Object Identification Settings for Test Objects” on
page 108

➤ “Generating Automation Scripts for Your Object Identification Settings” on
page 108

➤ “Configuring Smart Identification” on page 109

➤ “Mapping User-Defined Test Object Classes” on page 119

Configuring Mandatory and Assistive Recording Properties

If you find that the description QuickTest uses for a certain object class is
not the most logical one for the objects in your application, or if you expect
that the values of the properties currently used in the object description
may change, you can modify the mandatory and assistive properties that
QuickTest learns when you learn an object of a given class.

During the run session, QuickTest looks for objects that match all properties
in the test object description—it does not distinguish between properties
that were learned as mandatory properties and those that were learned as
assistive properties.

Chapter 4 • Configuring Object Identification

97

For example, the default mandatory properties for a Web Image object are
the alt, html tag, and image type properties. There are no default assistive
properties defined. Suppose your Web site contains several space holders for
different collections of rotating advertisements. You want to record a test
that clicks on the images in each one of these space holders. However, since
each advertisement image has a different alt value, one alt value would be
recorded when you create the test, and most likely another alt value will be
captured when you run the test, causing the run to fail. In this case, you
could remove the alt property from the Web Image mandatory properties
list. Instead, since each advertisement image displayed in a certain space
holder in your site has the same value for the image name property, you
could add the name property to the mandatory properties to enable
QuickTest to uniquely identify the object.

Also, suppose that whenever a Web image is displayed more than once on a
page (for example, a logo displayed on the top and bottom of a page), the
Web designer adds a special ID property to the Image tag. The mandatory
properties are sufficient to create a unique description for images that are
displayed only once on the page, but you also want QuickTest to learn the
ID property for images that are displayed more than once on a page. To do
this, you add the ID property as an assistive property, so that QuickTest
learns the ID property only when it is necessary for creating a unique test
object description.

Part I • Working with Advanced Testing Features

98

To configure mandatory and assistive properties for a test object class:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

 2 Select the appropriate environment in the Environment list. The test object
classes associated with the selected environment are displayed
alphabetically in the Test Object classes list. (In Standard Windows, the
user-defined objects appear at the bottom of the list.)

Note: The environments included in the Environment list correspond to the
loaded add-in environments. For more information on loading add-ins,
refer to Chapter 27, “Working with QuickTest Add-Ins.” in the QuickTest
Professional Basic Features User’s Guide.

 3 In the Test Object classes list, select the test object class you want to
configure.

Chapter 4 • Configuring Object Identification

99

 4 In the Mandatory Properties list, click Add/Remove. The Add/Remove
Properties dialog box for mandatory properties opens.

 5 Select the properties you want to include in the Mandatory Properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property using the
format attribute/<PropertyName> and click OK. The new property is added to
the Mandatory Properties list. For example, to add a property called
MyColor, enter attribute/MyColor.

Part I • Working with Advanced Testing Features

100

 6 Click OK to close the Add/Remove Properties dialog box. The updated set of
mandatory properties is displayed in the Mandatory Properties list.

 7 In the Assistive Properties list, click Add/Remove. The Add/Remove
Properties dialog box for assistive properties opens.

 8 Select the properties you want to include in the assistive properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

Chapter 4 • Configuring Object Identification

101

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Assistive Properties list. For example, to add a property called MyColor,
enter attribute/MyColor.

 9 Click OK to close the Add/Remove Properties dialog box. The properties are
displayed in the Assistive Properties list.

 10 Use the up and down arrows to set your preferred order for the assistive
properties. When you learn an object, and assistive properties are necessary
to create a unique object description, QuickTest adds the assistive properties
to the description one at a time until it has enough information to create a
unique description, according to the order you set in the Assistive Properties
list.

Part I • Working with Advanced Testing Features

102

Selecting an Ordinal Identifier

In addition to learning the mandatory and assistive properties specified in
the Object Identification dialog box, QuickTest can also learn a backup
ordinal identifier for each test object. The ordinal identifier assigns the
object a numerical value that indicates its order relative to other objects
with an otherwise identical description (objects that have the same values
for all properties specified in the mandatory and assistive property lists).
This ordered value enables QuickTest to create a unique description when
the mandatory and assistive properties are not sufficient to do so.

Because the assigned ordinal property value is a relative value and is
accurate only in relation to the other objects displayed when QuickTest
learns an object, changes in the layout or composition of your application
page or screen could cause this value to change, even though the object
itself has not changed in any way. For this reason, QuickTest learns a value
for this backup ordinal identifier only when it cannot create a unique
description using all available mandatory and assistive properties.

In addition, even if QuickTest learns an ordinal identifier, it will use it
during the run session only if the learned description and the Smart
Identification mechanism are not sufficient to identify the object in your
application. If QuickTest can use other test object properties to identify the
object during a run session, the ordinal identifier is ignored.

QuickTest can use the following types of ordinal identifiers to identify an
object:

➤ Index—Indicates the order in which the object appears in the application
code relative to other objects with an otherwise identical description. For
more information, see “Identifying an Object Using the Index Property” on
page 103.

➤ Location—Indicates the order in which the object appears within the parent
window, frame, or dialog box relative to other objects with an otherwise
identical description. For more information, see “Identifying an Object
Using the Location Property” on page 104.

➤ CreationTime (Browser object only)—Indicates the order in which the
browser was opened relative to other open browsers with an otherwise
identical description. For more information, see “Identifying an Object
Using the CreationTime Property” on page 105.

Chapter 4 • Configuring Object Identification

103

By default, an ordinal identifier type exists for each test object class. To
modify the default ordinal identifier, you can select the desired type from
the Ordinal identifier box.

Tip: While recording, if QuickTest successfully creates a unique test object
description using the mandatory and assistive properties, it does not learn
an ordinal identifier value. You can add an ordinal identifier to an object’s
test object properties at a later time using the Add/Remove option from the
Object Properties or Object Repository dialog box. For more information,
refer to Chapter 6, “Working with Test Objects” in the QuickTest Professional
Basic Features User’s Guide.

Identifying an Object Using the Index Property

While learning an object, QuickTest can assign a value to the test object’s
Index property to uniquely identify the object. The value is based on the
order in which the object appears within the source code. The first
occurrence is 0.

Index property values are object-specific. Therefore, if you use Index:=3 to
describe a WebEdit test object, QuickTest searches for the fourth WebEdit
object in the page. However, if you use Index:=3 to describe a WebElement
object, QuickTest searches for the fourth Web object on the page—regardless
of the type—because the WebElement object applies to all Web objects.

For example, suppose a page contains the following objects:

➤ an image with the name Apple

➤ an image with the name UserName

➤ a WebEdit object with the name UserName

➤ an image with the name Password

➤ a WebEdit object with the name Password

Part I • Working with Advanced Testing Features

104

The following statement refers to the third item in the list, as this is the first
WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0")

In contrast, the following statement refers to the second item in the list, as
that is the first object of any type (WebElement) with the name UserName:

WebElement("Name:=UserName", "Index:=0")

Identifying an Object Using the Location Property

While learning an object, QuickTest can assign a value to the test object’s
Location property to uniquely identify the object. The value is based on the
order in which the object appears within the window, frame, or dialog box,
in relation to other objects with identical properties. The first occurrence of
the object is 0. Values are assigned in columns from top to bottom, and left
to right.

In the following example, the radio buttons in the dialog box are numbered
according to their location property.

Location property values are object-specific. Therefore, if you use Location:=3
to describe a WinButton test object, QuickTest searches from top to bottom,
and left to right for the fourth WinButton object in the page. However, if
you use Location:=3 to describe a WinObject object, QuickTest searches from
top to bottom, and left to right for the fourth standard object on the page—
regardless of the type—because the WinObject object applies to all standard
objects.

Chapter 4 • Configuring Object Identification

105

For example, suppose a dialog box contains the following objects:

➤ a button object with the name OK

➤ a button object with the name Add/Remove

➤ a check box object with the name Add/Remove

➤ a button object with the name Help

➤ a check box object with the name Check spelling

The following statement refers to the third item in the list, as this is the first
check box object on the page with the name Add/Remove.

WinCheckBox("Name:=Add/Remove", "Location:=0")

In contrast, the following statement, refers to the second item in the list, as
that is the first object of any type (WinObject) with the name Add/Remove.

WinObject("Name:=Add/Remove", "Location:=0")

Identifying an Object Using the CreationTime Property

While learning a browser object, if QuickTest is unable to uniquely identify
the object according to its test object description, it assigns a value to the
CreationTime test object property. This value indicates the order in which
the browser was opened relative to other open browsers with an otherwise
identical description. The first browser that opens receives the value
CreationTime = 0.

During the run session, if QuickTest is unable to identify a browser object
based solely on its test object description, it examines the order in which the
browsers were opened, and then uses the CreationTime property to identify
the correct one.

For example, if you record a test on three otherwise identical browsers that
are opened at 9:01 pm, 9:03 pm, and 9:05 pm, QuickTest assigns the
CreationTime values, as follows: CreationTime = 0 to the 9:01 am browser,
CreationTime = 1 to the 9:03 am browser, and CreationTime = 2 to the
9:06 am browser.

Part I • Working with Advanced Testing Features

106

At 10:30 pm, when you run your test, suppose the browsers are opened at
10:31 pm, 10:33 pm, and 10:34 pm. QuickTest identifies the browsers, as
follows: the 10:31 pm browser is identified with the browser test object with
CreationTime = 0, 10:33 pm browser is identified with the test object with
CreationTime = 1, 10:34 pm browser is identified with the test object with
CreationTime = 2.

If there are several open browsers, the one with the lowest CreationTime is
the first one that was opened and the one with the highest CreationTime is
the last one that was opened. For example, if there are three or more
browsers open, the one with CreationTime = 2 is the third browser that was
opened. If seven browsers are opened during a recording session, the
browser with CreationTime = 6 is the last browser opened.

If a step was recorded on a browser with a specific CreationTime value, but
during a run session there is no open browser with that CreationTime value,
the step will run on the browser that has the highest CreationTime value.
For example, if a step was recorded on a browser with CreationTime = 6, but
during the run session there are only two open browsers, with CreationTime
= 0 and CreationTime = 1, then the step runs on the last browser opened,
which in this example is the browser with CreationTime = 1.

Note: It is possible that at a particular time during a session, the available
CreationTime values may not be sequential. For example, if you open six
browsers during a record or run session, and then during that session, you
close the second and fourth browsers (CreationTime values 1 and 3), then at
the end of the session, the open browsers will be those with CreationTime
values 0, 2, 4, and 5).

Chapter 4 • Configuring Object Identification

107

Enabling and Disabling Smart Identification

Selecting the Enable Smart Identification check box for a particular test
object class instructs QuickTest to learn the property values of all properties
specified as the object’s base and/or optional filter properties in the Smart
Identification Properties dialog box.

By default, some test objects already have Smart Identification
configurations and others do not. Those with default configurations also
have the Enable Smart Identification check box selected by default.

You should enable the Smart Identification mechanism only for test object
classes that have defined Smart Identification configuration. However, even
if you define a Smart Identification configuration for a test object class, you
may not always want to learn the Smart Identification property values. If
you do not want to learn the Smart Identification properties, clear the
Enable Smart Identification check box.

Note: Even if you choose to learn Smart Identification properties for an
object, you can disable use of the Smart Identification mechanism for a
specific object in the Object Properties or Object Repository dialog box.
You can also disable use of the mechanism for an entire test in the Run tab
of the Test Settings dialog box. For more information, refer to Chapter 6,
“Working with Test Objects,” and “Defining Run Settings for Your Test” on
page 747 in the QuickTest Professional Basic Features User’s Guide.

However, if you do not learn Smart Identification properties, you cannot
enable the Smart Identification mechanism for an object later.

For more information on the Smart Identification mechanism, see
“Configuring Smart Identification” on page 109.

Part I • Working with Advanced Testing Features

108

Restoring Default Object Identification Settings for Test
Objects

You can restore the default settings for object identification and Smart
Identification property settings for all loaded environments, for the current
environment only, or for a selected test object.

Only built-in object properties can be reset. User-defined objects will be
deleted when resetting the Standard Windows environment.

Note: Only currently loaded environments are listed in the Environments
box in the Object Identification dialog box.

By default, the Reset Test Object button is displayed, but you can click the
down arrow to select one of the following options:

➤ Reset Test Object—Resets the settings for the selected test object to the
system default.

➤ Reset Environment—Resets the settings for all the test objects in the current
environment to the system default.

➤ Reset All—Resets the settings for all currently loaded environments to the
system default.

Generating Automation Scripts for Your Object Identification
Settings

You can click the Generate Script button to generate an automation script
containing the current object identification settings. For more information,
see “Automating QuickTest Operations” on page 231, or refer to the
QuickTest Automation Object Model Reference (Help > QuickTest Automation
Object Model Reference).

Chapter 4 • Configuring Object Identification

109

Configuring Smart Identification

Configuring Smart Identification properties enables you to help QuickTest
identify objects in your application, even if some of the properties in the
object’s learned description have changed.

When QuickTest uses the learned description to identify an object, it
searches for an object that matches all of the property values in the
description. In most cases, this description is the simplest way to identify
the object, and, unless the main properties of the object change, this
method will work.

If QuickTest is unable to find any object that matches the learned object
description, or if it finds more than one object that fits the description, then
QuickTest ignores the learned description, and uses the Smart Identification
mechanism to try to identify the object.

While the Smart Identification mechanism is more complex, it is more
flexible. Therefore, if configured logically, a Smart Identification definition
can probably help QuickTest identify an object, if it is present, even when
the learned description fails.

The Smart Identification mechanism uses two types of properties:

➤ Base Filter Properties—The most fundamental properties of a particular test
object class; those whose values cannot be changed without changing the
essence of the original object. For example, if a Web link’s tag was changed
from <A> to any other value, you could no longer call it the same object.

➤ Optional Filter Properties—Other properties that can help identify objects
of a particular class. These properties are unlikely to change on a regular
basis, but can be ignored if they are no longer applicable.

Part I • Working with Advanced Testing Features

110

Understanding the Smart Identification Process

If QuickTest activates the Smart Identification mechanism during a run
session (because it was unable to identify an object based on its learned
description), it follows the following process to identify the object:

 1 QuickTest “forgets” the learned test object description and creates a new
object candidate list containing the objects (within the object’s parent
object) that match all of the properties defined in the Base Filter Properties
list.

 2 QuickTest filters out any object in the object candidate list that does not
match the first property listed in the Optional Filter Properties list. The
remaining objects become the new object candidate list.

 3 QuickTest evaluates the new object candidate list:

➤ If the new object candidate list still has more than one object, QuickTest
uses the new (smaller) object candidate list to repeat step 2 for the next
optional filter property in the list.

➤ If the new object candidate list is empty, QuickTest ignores this optional
filter property, returns to the previous object candidate list, and repeats
step 2 for the next optional filter property in the list.

➤ If the object candidate list contains exactly one object, then QuickTest
concludes that it has identified the object and performs the statement
containing the object.

 4 QuickTest continues the process described in steps 2 and 3 until it either
identifies one object, or runs out of optional filter properties to use.

If, after completing the Smart Identification elimination process, QuickTest
still cannot identify the object, then QuickTest uses the learned description
plus the ordinal identifier to identify the object.

If the combined learned description and ordinal identifier are not sufficient
to identify the object, then QuickTest stops the run session and displays a
Run Error message.

Chapter 4 • Configuring Object Identification

111

Reviewing Smart Identification Information in the Test Results

If the learned description does not enable QuickTest to identify a specified
object in a step, and a Smart Identification definition is defined (and
enabled) for the object, then QuickTest tries to identify the object using the
Smart Identification mechanism.

If QuickTest successfully uses Smart Identification to find an object after no
object matches the learned description, the Test Results receive a warning
status and indicate that the Smart Identification mechanism was used.

If the Smart Identification mechanism cannot successfully identify the
object, QuickTest uses the learned description plus the ordinal identifier to
identify the object. If the object is still not identified, the test fails and a
normal failed step is displayed in the results.

For more information, refer to “Analyzing Smart Identification Information
in the Test Results” on page 670 in the QuickTest Professional Basic Features
User’s Guide.

Walking Through a Smart Identification Example

The following example walks you through the object identification process
for an object.

Suppose you have the following statement in your test:

Browser("Mercury Tours").Page("Mercury Tours").Image("Login").Click 22,17

When you created your test, QuickTest learned the following object
description for the Login image:

However, at some point after you created your test, a second login button
(for logging into the VIP section of the Web site) was added to the page, so
the Web designer changed the original Login button’s alt tag to: basic login.

Part I • Working with Advanced Testing Features

112

The default description for Web Image objects (alt, html tag, image type)
works for most images in your site, but it no longer works for the Login
image, because that image’s alt property no longer matches the learned
description. Therefore, when you run your test, QuickTest is unable to
identify the Login button based on the learned description. However,
QuickTest succeeds in identifying the Login button using its Smart
Identification definition.

The explanation below describes the process that QuickTest uses to find the
Login object using Smart Identification:

 1 According to the Smart Identification definition for Web image objects,
QuickTest learned the values of the following properties when you recorded
the click on the Login image:

Chapter 4 • Configuring Object Identification

113

The learned values are as follows:

Base Filter Properties:

Optional Filter Properties:

 2 QuickTest begins the Smart Identification process by identifying the five
objects on the Mercury Tours page that match the base filter properties
definition (html tag = INPUT and image type = Image Button). QuickTest
considers these to be the object candidates and begins checking the object
candidates against the Optional Filter Properties list.

 3 QuickTest checks the alt property of each of the object candidates, but none
have the alt value: Login, so QuickTest ignores this property and moves on
to the next one.

 4 QuickTest checks the name property of each of the object candidates, and
finds that two of the objects (both the basic and VIP Login buttons) have
the name: login. QuickTest filters out the other three objects from the list,
and these two login buttons become the new object candidates.

 5 QuickTest checks the file name property of the two remaining object
candidates. Only one of them has the file name login.gif, so QuickTest
correctly concludes that it has found the Login button and clicks it.

Property Value

html tag INPUT

Property Value

alt Login

image type Image Button

name login

file name login.gif

class <null>

visible 1

Part I • Working with Advanced Testing Features

114

Step-by-Step Instructions for Configuring a Smart Identification
Definition

You use the Smart Identification Properties dialog box, accessible from the
Object Identification dialog box, to configure the Smart Identification
definition for a test object class.

To configure Smart Identification properties:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

Chapter 4 • Configuring Object Identification

115

 2 Select the appropriate environment in the Environment list. The test object
classes associated with the selected environment are displayed in the Test
object classes list.

Note: The environments included in the Environment list are those that
correspond to the loaded add-in environments. For more information on
loading add-ins, refer to Chapter 27, “Working with QuickTest Add-Ins.” in
the QuickTest Professional Basic Features User’s Guide.

 3 Select the test object class you want to configure.

 4 Click the Configure button next to the Enable Smart Identification check
box. The Configure button is enabled only when the Enable Smart
Identification option is selected. The Smart Identification Properties dialog
box opens:

Part I • Working with Advanced Testing Features

116

 5 In the Base Filter Properties list, click Add/Remove. The Add/Remove
Properties dialog box for base filter properties opens.

 6 Select the properties you want to include in the Base Filter Properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the base and optional
property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Base Filter Properties list. For example, to add a property called MyColor,
enter attribute/MyColor.

Chapter 4 • Configuring Object Identification

117

 7 Click OK to close the Add/Remove Properties dialog box. The updated set of
base filter properties is displayed in the Base Filter Properties list.

 8 In the Optional Filter Properties list, click Add/Remove. The Add/Remove
Properties dialog box for optional filter properties opens.

 9 Select the properties you want to include in the Optional Filter Properties
list and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the base and optional
property lists.

Part I • Working with Advanced Testing Features

118

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Optional Filter Properties list. For example, to add a property called
MyColor, enter attribute/MyColor.

 10 Click OK to close the Add/Remove Properties dialog box. The properties are
displayed in the Optional Filter Properties list.

 11 Use the up and down arrows to set your preferred order for the optional
filter properties. When QuickTest uses the Smart Identification mechanism,
it checks the remaining object candidates against the optional properties
one-by-one according to the order you set in the Optional Filter Properties
list until it filters the object candidates down to one object.

Chapter 4 • Configuring Object Identification

119

Mapping User-Defined Test Object Classes

The Object Mapping dialog box enables you to map an object of an
unidentified or custom class to a Standard Windows class. For example, if
your application has a button that cannot be identified, this button is
learned as a generic WinObject. You can teach QuickTest to identify your
object as if it belonged to a standard Windows button class. Then, when you
click the button while recording, QuickTest records the operation in the
same way as a click on a standard Windows button. When you map an
unidentified or custom object to a standard object, your object is added to
the list of Standard Windows test object classes as a user-defined test object.
You can configure the object identification settings for a user defined object
class just as you would any other object class.

You should map an object that cannot be identified only to a standard
Windows class with comparable behavior. For example, do not map an
object that behaves like a button to the edit class.

Note: You can define user-defined classes only when Standard Windows is
selected in the Environment box.

To map an unidentified or custom class to a standard Windows class:

 1 Choose Tools > Object Identification. The Object Identification dialog box
opens.

 2 Select Standard Windows in the Environment box. The User-Defined button
becomes enabled.

Part I • Working with Advanced Testing Features

120

 3 Click User-Defined. The Object Mapping dialog box opens.

 4 Click the pointing hand and then click the object whose class you want to
add as a user-defined class. The name of the user-defined object is displayed
in the Class Name box.

Tip: Hold the left CTRL key to change the window focus or perform
operations such as a right-click or mouseover to display a context menu. If
the window containing the object you want to select is minimized, you can
display it by holding the left CTRL key, right-clicking the application in the
Windows task bar, and choosing Restore from the context menu.

 5 In the Map to box, select the standard object class to which you want to
map your user-defined object class and click Add. The class name and
mapping is added to the object mapping list.

 6 If you want to map additional objects to standard classes, repeat steps 4-5
for each object.

Chapter 4 • Configuring Object Identification

121

 7 Click OK. The Object Mapping dialog box closes and your object is added to
the list of Standard Windows test object classes as a user-defined test object.
Note that your object has an icon with a red U in the lower-right corner,
identifying it as a user-defined class.

 8 Configure the object identification settings for your user defined object class
just as you would any other object class. For more information, see
“Configuring Mandatory and Assistive Recording Properties,” on page 96,
and “Configuring Smart Identification,” on page 109.

To modify an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to modify from
the object mapping list. The class name and current mapping are displayed
in the Class name and Map to boxes.

 2 Select the standard object class to which you want to map the selected
user-defined class and click Update. The class name and mapping is updated
in the object mapping list.

 3 Click OK to close the Object Mapping dialog box.

To delete an existing mapping:

 1 In the Object Mapping dialog box, select the class you want to delete from
the object mapping list.

 2 Click Delete. The class name and mapping is deleted from the object
mapping list in the Object Mapping dialog box.

 3 Click OK. The Object Mapping dialog box closes and the class name is
deleted from the Standard Windows test object classes list in the Object
Identification dialog box.

Part I • Working with Advanced Testing Features

122

123

5
Working with the Expert View and
Function Library Windows

In QuickTest, tests are composed of statements coded in Microsoft’s VBScript
programming language. The Expert View provides an alternative to the
Keyword View for testers who are familiar with VBScript. You can also create
function libraries in QuickTest using VBScript.

This chapter explains how to work in the Expert View, provides a brief
introduction to VBScript, and shows you how to enhance your tests and
function libraries using a few simple programming techniques.

This chapter describes:

➤ About Working with the Expert View and Function Library Windows

➤ Understanding and Using the Expert View

➤ Navigating in the Expert View and Function Libraries

➤ Understanding Basic VBScript Syntax

➤ Using Programmatic Descriptions

➤ Running and Closing Applications Programmatically

➤ Using Comments, Control-Flow, and Other VBScript Statements

➤ Retrieving and Setting Test Object Property Values

➤ Accessing Run-Time Object Properties and Methods

➤ Running DOS Commands

➤ Enhancing Your Tests and Function Libraries Using the Windows API

➤ Choosing Which Steps to Report During the Run Session

Part I • Working with Advanced Testing Features

124

About Working with the Expert View and Function Library
Windows

In the Expert View, you can view an action in VBScript. If you are familiar
with VBScript, you can add and update statements and enhance your tests
and function libraries with programming. You can also create and work with
function libraries using the Function Library window.

When you record steps, the Expert View displays the steps as VBScript
statements. After you record your test, you can increase its power and
flexibility by adding recordable and non-recordable VBScript statements.

To learn about working with VBScript, you can view the VBScript
documentation directly from the QuickTest Help menu (Help > QuickTest
Professional Help > VBScript Reference).

You can add statements that perform operations on objects or retrieve
information from your application. For example, you can add a step that
checks that an object exists, or you can retrieve the return value of a
method.

You can add steps to your test or function library either manually or using
the Step Generator. For more information on using the Step Generator, refer
to “Inserting Steps Using the Step Generator” on page 527 in the QuickTest
Professional Basic Features User’s Guide.

You can print the test displayed in the Expert View or a function library at
any time. You can also include additional information in the printout. For
more information on printing from the Expert View, refer to “Printing a
Test” on page 103 in the QuickTest Professional Basic Features User’s Guide. For
more information on printing a function library, see “Printing a Function
Library” on page 198.

Chapter 5 • Working with the Expert View and Function Library Windows

125

Understanding and Using the Expert View

If you prefer to work with VBScript statements, you can choose to work with
your tests in the Expert View, as an alternative to using the Keyword View.
You can move between the two views as you wish, by selecting the Expert
View or Keyword View tab at the bottom of the Test pane in the QuickTest
window.

The Expert View displays the same steps and objects as the Keyword View,
but in a different format:

➤ In the Keyword View, QuickTest displays information about each step and
shows the object hierarchy in an icon-based table. For more information,
refer to Chapter 5, “Working with the Keyword View” in the QuickTest
Professional Basic Features User’s Guide.

➤ In the Expert View, QuickTest displays each step as a VBScript line or
statement. In object-based steps, the VBScript statement defines the object
hierarchy.

The following diagram shows how the same object hierarchy is displayed in
the Expert View and in the Keyword View:

Each line of VBScript in the Expert View represents a step in the test. The
example above represents a step in a test in which the user inserts the name
mercury into an edit box. The hierarchy of the step enables you to see the
name of the site, the name of the page, the type and name of the object in
the page, and the name of the method performed on the object.

Part I • Working with Advanced Testing Features

126

The table below explains how the different parts of the same step are
represented in the Keyword View and the Expert View:

In the Expert View, an object’s description is displayed in parentheses
following the object type. For all objects stored in the object repository, the
object name is a sufficient object description. In the following example, the
object type is Browser, and the object name is Welcome: Mercury Tours:

Browser ("Welcome: Mercury Tours")

Tip: Test object and method names are not case sensitive.

The objects in the object hierarchy are separated by a dot. In the following
example, Browser and Page are two separate objects in the same hierarchy:

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours")

Keyword View Expert View Explanation

Browser
("Welcome:
Mercury Tours")

The name of the browser
test object is Welcome:
Mercury Tours.

Page ("Welcome:
Mercury Tours")

The name of the current
page is Welcome: Mercury
Tours.

WebEdit
("userName")

The object type is WebEdit;
the name of the edit box on
which the operation is
performed is userName.

Set The method performed on
the edit box is Set.

"mercury" The value inserted into the
username edit box is
mercury.

Chapter 5 • Working with the Expert View and Function Library Windows

127

The operation (method) performed on the object is always displayed at the
end of the statement, followed by any values associated with the operation.
In the following example, the word mercury is inserted in the userName edit
box using the Set method:

Browser("Welcome: Mercury Tours").Page("Welcome: Mercury Tours").
WebEdit("userName").Set "mercury"

When you record your test, QuickTest records the operations you perform
on your application in terms of the objects in it.

The objects in QuickTest are divided by environment. QuickTest
environments include standard Windows objects, Visual Basic objects,
ActiveX objects, and Web objects, as well as objects from other
environments available as external add-ins.

Most objects have corresponding methods. For example, the Back method
is associated with the Browser object.

For a complete list of objects and their associated methods and properties,
choose Help > QuickTest Professional Help, and open the Object Model
Reference from the Contents tab.

For more information about adding steps that use methods to perform
operations, see “Generating Statements in the Expert View or a Function
Library” on page 130.

For more information about using VBScript, see “Understanding Basic
VBScript Syntax” on page 146.

Part I • Working with Advanced Testing Features

128

Understanding Checkpoint and Output Statements

In QuickTest, you can create checkpoints and output values on pages, text
strings, tables, and other objects. When you create a checkpoint or output
value in the Keyword View, QuickTest creates a corresponding line in
VBScript in the Expert View. It uses the Check method to perform the
checkpoint, and the Output method to perform the output value step.

For example, in the following statement QuickTest performs a check on the
words New York:

Browser("Mercury Tours").Page("Flight Confirmation").Check
Checkpoint("New York")

The corresponding step in the Keyword View is displayed as follows:

Notes:

The details about a checkpoint are set in the relevant Checkpoint Properties
dialog box and are stored with the object it checks. The details about an
output value step are set in the relevant Output Value Properties dialog box
and are stored with the object whose values it outputs. The statement
displayed in the Expert View is a reference to the stored information.
Therefore, you cannot insert a checkpoint or output value statement in the
Expert View manually and you cannot copy a Checkpoint or Output
statement from the Expert View to another test.

For more information on inserting and modifying checkpoints, refer to
Chapter 7, “Understanding Checkpoints” in the QuickTest Professional Basic
Features User’s Guide. For more information on inserting and modifying
output values, refer to Chapter 16, “Outputting Values” in the QuickTest
Professional Basic Features User’s Guide.

Chapter 5 • Working with the Expert View and Function Library Windows

129

Understanding Parameter Indications

You can use QuickTest to enhance your tests by parameterizing values. A
parameter is a variable that is assigned a value from an external data source
or generator.

When you create a parameter in the Keyword View, QuickTest creates a
corresponding line in VBScript in the Expert View.

For example, if you define the value of a method argument as a Data Table
parameter, QuickTest retrieves the value from the Data Table using the
following syntax:

Object_Hierarchy.Method DataTable (parameterID, sheetID)

For example, suppose you are recording a test on the Mercury Tours site, and
you select San Fransisco as your destination. The following statement is
inserted into your test in the Expert View:

Browser("Welcome: Mercury").Page("Find a Flight:").WebList("toPort").
Select "San Francisco"

Item Description

Object_Hierarchy The hierarchical definition of the test object, consisting of
one or more objects separated by a dot.

Method The name of the method that QuickTest executes on the
parameterized object.

DataTable The reserved object representing the Data Table.

parameterID The name of the column in the Data Table from which to
take the value.

sheetID The name of the sheet in which the value is stored. If the
parameter is a global parameter, dtGlobalSheet is the sheet
ID.

Part I • Working with Advanced Testing Features

130

Now suppose you parameterize the destination value, and you create a
Destination column in the Data Table. The previous statement is modified
to the following:

Browser("Welcome: Mercury").Page("Find a Flight:").WebList("toPort").
Select DataTable("Destination",dtGlobalSheet)

In this example, Select is the method name, DataTable is the object that
represents the Data Table, Destination is the name of the column in the Data
Table, and dtGlobalSheet indicates the Global sheet in the Data Table.

In the Keyword View, this step is displayed as follows:

For more information on using and defining parameter values, refer to
Chapter 15, “Parameterizing Values” in the QuickTest Professional Basic
Features User’s Guide.

Generating Statements in the Expert View or a Function
Library

You can generate statements in the following ways:

➤ You can use the Step Generator to add steps that use methods and functions.
For more information, refer to “Inserting Steps Using the Step Generator”
on page 527 in the QuickTest Professional Basic Features User’s Guide.

➤ You can manually insert VBScript statements that use methods to perform
operations. QuickTest includes IntelliSense, a statement completion feature
that helps you select the test object, method, property, or collection for your
statement and to view the relevant syntax as you type in the Expert View or
a function library. For more information, see “Generating a Statement for an
Object,” below.

➤ When you start to type a VBScript keyword in the Expert View or a function
library, QuickTest automatically adds the relevant syntax or blocks to your
script, if the Auto-expand VBScript syntax option is enabled. For more
information, see “Automatically Completing VBScript Syntax” on page 135.

Chapter 5 • Working with the Expert View and Function Library Windows

131

Generating a Statement for an Object

When you type in the Expert View or a function library, IntelliSense (the
statement completion feature included with QuickTest) enables you to select
the test object, method, property, or collection for your statement from a
drop-down list and view the relevant syntax.

The Statement Completion option is enabled by default. You can disable or
enable this option in the Editor Options dialog box. For additional
information, see Chapter 11, “Customizing the Expert View and Function
Library Windows.”

When the Statement Completion option is enabled:

➤ If you type an object followed by an open parenthesis (, for example, Page(,
QuickTest displays a list of all test objects of this type in the object
repository. If there is only one object of this type in the object repository,
QuickTest automatically enters its name in quotes after the open
parenthesis.

➤ If you type a period after a test object in a statement, QuickTest displays a
list of the relevant test objects, methods, properties, collections, and
registered functions that you can add after the object you typed.

➤ If you type the name of a method or property, QuickTest displays a list of
available methods and properties. Pressing CTRL+SPACE automatically
completes the word if there is only one option, or highlights the first
method or property (alphabetically) that matches the text you typed.

➤ If you type the name of a method or property, QuickTest displays the syntax
for it, including its mandatory and optional arguments. When you add a
step that uses a method or property, you must define a value for each
mandatory argument associated with the method or property.

➤ If you press CTRL+SPACE, QuickTest displays a list of the relevant test objects,
methods, properties, collections, VBScript functions, user-defined functions,
VBScript constants, and utility objects that you can add. This list is
displayed even if you typed an object that has not yet been added to the
object repository. If the test contains a function, or is associated with a
function library, the functions are also displayed in the list.

Part I • Working with Advanced Testing Features

132

➤ If you use the Object property in your statement, if the object data is
currently available in the Active screen or the open application, QuickTest
displays native methods and properties of any run-time object in your
application. For more information on the Object property, see “Accessing
Run-Time Object Properties and Methods” on page 177.

To generate a statement using statement completion in the Expert View or
a function library:

 1 Confirm that the Statement completion option is selected (Tools > View
Options > General tab).

 2 Perform one of the following:

➤ If you are working in a function library, skip to step 4.

➤ If you are working in the Expert View, type an object followed by an
open parenthesis (.

If there is only one object of this type in the object repository, QuickTest
automatically enters its name in quotes after the open parenthesis. If
more than one object of this type exists in the object repository,
QuickTest displays them in a list.

 3 Double-click an object in the list or use the arrow keys to choose an object
and press ENTER. QuickTest inserts the object into the statement.

Chapter 5 • Working with the Expert View and Function Library Windows

133

 4 Perform one of the following:

➤ If you are working in the Expert View, type a period (.) after the object on
which you want to perform the method.

➤ If you are working in a function library, type the full hierarchy of an
object, for example:

Browser("Welcome: Mercury Tours").Page("Book a Flight:
Mercury).WebEdit("username").

 5 Type a period (.) after the object description, for example ("username").
QuickTest displays a list of the available methods and properties for the
object.

Tip: You can press CTRL+SPACE or choose Edit > Advanced > Complete Word
after a period, or after you have begun to type a method or property name.
QuickTest automatically completes the method or property name if only
one method or property matches the text you typed. If more than one
method or property matches the text, the first method or property
(alphabetically) that matches the text you typed is highlighted.

Part I • Working with Advanced Testing Features

134

 6 Double-click a method or property in the list or use the arrow keys to choose
a method or property and press ENTER. QuickTest inserts the method or
property into the statement. If the method or property contains arguments,
QuickTest displays the syntax of the method or property in a tooltip, as
shown in this example from the Expert View.

In the above example, the Set method has one argument, called Text. The
argument name represents the text to insert in the box.

Tip: You can also place the cursor on any method or function that contains
arguments and press CTRL+SHIFT+SPACE or choose Edit > Advanced >
Argument Info to display the statement completion (argument syntax)
tooltip for that item.

 7 Enter the method arguments after the method according to the displayed
syntax.

Note: After you have added a step in the Expert View, you can view the new
step in the Keyword View. If the statement that you added in the Expert
View contains syntax errors, QuickTest displays the errors in the
Information pane when you select the Keyword View. For more
information, see “Handling VBScript Syntax Errors” on page 153.

Statement completion tooltip

Chapter 5 • Working with the Expert View and Function Library Windows

135

For more details and examples of any QuickTest method, refer to the
QuickTest Professional Object Model Reference.

For more information about VBScript syntax, see “Understanding Basic
VBScript Syntax” on page 146.

Automatically Completing VBScript Syntax

When the Auto-expand VBScript syntax option is enabled and you start to
type a VBScript keyword in the Expert View or a function library, QuickTest
automatically recognizes the first two characters of the keyword and adds
the relevant VBScript syntax or blocks to the script. For example, if you
enter the letters if and then enter a space at the beginning of a line,
QuickTest automatically enters:

If Then
End If

The Auto-expand VBScript syntax option is enabled by default. You can
disable or enable this option in the Editor Options dialog box. For more
information, see “Customizing Editor Behavior” on page 335.

If you enter two characters that are the initial characters of multiple
keywords, the Select a Keyword dialog box is displayed and you can select
the keyword you want. For example, if you enter the letters pr and then
enter a space, the Select a Keyword dialog box opens containing the
keywords private and property.

Part I • Working with Advanced Testing Features

136

You can then select a keyword from the list and click OK. QuickTest
automatically enters the relevant VBScript syntax or block in the script.

For more information on VBScript syntax, see “Understanding Basic
VBScript Syntax” on page 146.

Navigating in the Expert View and Function Libraries

You can use the Go To dialog box or bookmarks to jump to a specific line in
the Expert View or a function library. You can also find specific text strings
in the Expert View or a function library, and, if desired, replace them with
different strings. These options make it easier to navigate through sections
of a long action or function.

Note: When working with tests, the Expert View displays only one action.
The navigation features described in this section are available only for the
currently selected action and not for the entire test.

Using the Go To Dialog Box

You can use the Go To dialog box to navigate to a specific line in an action
or in a function library.

Tip: By default, line numbers are displayed in the Expert View and in
function libraries. If they are not displayed, you can select the Show line
numbers option in the Tools > View Options > General tab. For more
information on the Editor options, see Chapter 11, “Customizing the Expert
View and Function Library Windows.”

Chapter 5 • Working with the Expert View and Function Library Windows

137

To navigate to a line in the Expert View or a function library using the Go To
dialog box:

 1 Click the Expert View tab or activate a function library.

 2 Click the Go To button, or choose Edit > Go To. The Go To dialog box opens.

 3 Enter the line to which you want to navigate in the Line number box and
click OK. The cursor moves to the beginning of the line you specify.

Working with Bookmarks

You can use bookmarks to mark important sections in your action or
function library so that you can easily navigate between the various parts. In
tests, bookmarks apply only within a specific action; they are not preserved
when you navigate between actions and they are not saved with the test or
function library.

Part I • Working with Advanced Testing Features

138

When you assign a bookmark, an icon is added to the left of the selected
line in the Expert View or function library. You can then use the Go To
button in the Bookmarks dialog box to jump to the bookmarked rows.

Bookmarks look the same in tests and in function libraries. In the following
example, two bookmarks have been added to an action in a test.

Bookmarked lines

Chapter 5 • Working with the Expert View and Function Library Windows

139

To set bookmarks:

 1 Click the Expert View tab or activate a function library.

 2 Click in the line to which you want to assign a bookmark.

 3 Choose Edit > Bookmarks. The Bookmarks dialog box opens.

 4 In the Bookmark name field, enter a unique name for the bookmark and
click Add. The bookmark is added to the Bookmarks dialog box, together
with the line number at which it is located and the textual content of the
line. In addition, a bookmark icon is added to the left of the selected line
in the Expert View or function library.

 5 To delete a bookmark, select it in the list and click Delete.

Part I • Working with Advanced Testing Features

140

To navigate to a specific bookmark:

 1 Click the Expert View tab or activate a function library.

 2 Choose Edit > Bookmarks. The Bookmarks dialog box opens.

 3 Select a bookmark from the list and click the Go To button. QuickTest jumps
to the appropriate line in the current action or function library.

Tip: By default, line numbers are displayed in the Expert View and in
function libraries. If they are not displayed, you can select the Show line
numbers option in the Tools > View Options > General tab. For more
information on the Editor options, see Chapter 11, “Customizing the Expert
View and Function Library Windows.”

Finding Text Strings

You can specify text strings to locate in the current action in the Expert View
or in a function library. You can also search for strings in the Edit HTML
Source and Edit HTML Tags dialog boxes, and in the “With” Generation
Results dialog box. You can either search for literal text or use regular
expressions for a more advanced search. You can also use other options to
further fine-tune your search results.

Chapter 5 • Working with the Expert View and Function Library Windows

141

To find a text string:

 1 In the Expert View or function library, perform one of the following:

➤ Click the Find button.

➤ Choose Edit > Find.

Tip: In the Expert View, you can also perform one of the following:

Choose Edit > Advanced > Apply “With” to Script, and then press CTRL+F.

In the Page Checkpoint Properties dialog box, click Edit HTML Source or
Edit HTML Tags, and then right-click and choose Find in the displayed
dialog box.

The Find dialog box opens.

 2 In the Find what box, enter the text string you want to locate.

 3 If you want to use regular expressions in the string you specify, click the
arrow button and select a regular expression. When you select a regular
expression from the list, it is automatically inserted in the Find what box at
the cursor location. For more information, see “Using Regular Expressions in
the Find and Replace Dialog Boxes” on page 145.

Part I • Working with Advanced Testing Features

142

 4 Select any of the following options to help fine-tune your search:

➤ Match case—Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization matches the text you entered in
the Find what box exactly.

➤ Match whole word—Searches for occurrences that are only whole words
and not part of longer words.

➤ Regular expression—Treats the specified text string as a regular
expression. This option is automatically selected when you select a
regular expression from the list.

➤ Wrap at beginning/end—Continues the search from the beginning or
end of the action, dialog box, or function library text when either the
beginning or end is reached, depending on the selected search direction.

➤ Restrict to selection—Searches only within the selected part of the
action, dialog box, or function library text.

➤ Place cursor at end—Places the cursor at the end of the highlighted
occurrence when the search string is located.

 5 Specify the direction in which you want to search, from the current cursor
location in the action, dialog box, or function library: Up or Down

 6 Click Find Next to highlight the next occurrence of the specified string in
the current action or dialog box, or in the active function library.

Replacing Text Strings

You can specify text strings to locate in the current action in the Expert View
or function library, and specify the text strings you want to use to replace
them. You can also search and replace strings in the Edit HTML Source and
Edit HTML Tags dialog boxes. You can either find and replace literal text or
use regular expressions for a more advanced process. You can also use other
options to further fine-tune your find and replace process.

Chapter 5 • Working with the Expert View and Function Library Windows

143

To replace a text string:

 1 In the Expert View or function library, perform one of the following:

➤ Click the Replace button.

➤ Choose Edit > Replace.

Tip: (For tests only) In the Page Checkpoint Properties dialog box, click Edit
HTML Source or Edit HTML Tags, and then right-click and choose Replace in
the displayed dialog box.

The Replace dialog box opens.

 2 In the Find what box, enter the text string you want to locate.

 3 In the Replace with box, enter the text string you want to use to replace the
found text.

 4 If you want to use regular expressions in the Find what or Replace with
string, click the arrow button and select a regular expression. When you
select a regular expression from the list, it is automatically inserted in the
Find what or Replace with box at the cursor location. For more information,
see “Using Regular Expressions in the Find and Replace Dialog Boxes” on
page 145.

Part I • Working with Advanced Testing Features

144

 5 Select any of the following options to help fine-tune your search:

➤ Match case—Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization exactly matches the text you
entered in the Find what box.

➤ Preserve case—Checks each occurrence of the Find what string for all
lowercase, all uppercase, sentence caps or mixed case. The Replace with
string is converted to the same case as the occurrence found, except
when the occurrence found is mixed case. In this case, the Replace with
string is used without modification.

➤ Match whole word—Searches for occurrences that are whole words only
and not part of longer words.

➤ Regular expression—Treats the specified text string as a regular
expression. This option is automatically selected when you select a
regular expression from the list.

➤ Wrap at beginning/end—Continues the search from the beginning or
end of the action, dialog box, or function library text when either the
beginning or end is reached, depending on the selected search direction.

➤ Restrict to selection—Searches only within the selected part of the
action, dialog box, or function library text.

➤ Place cursor at end—Places the cursor at the end of the highlighted
occurrence when the search string is located.

 6 Click Find Next to highlight the next occurrence of the specified text string
in the current action or dialog box, or in the active function library.

 7 Click Replace to replace the highlighted text with the text in the Replace
with box, or click Replace All to replace all occurrences specified in the Find
what box with the text in the Replace with box in the current action or
dialog box, or in the active function library.

Chapter 5 • Working with the Expert View and Function Library Windows

145

Using Regular Expressions in the Find and Replace Dialog Boxes

You can use regular expressions in the Find what and Replace with strings to
enhance your search. For a general understanding of regular expressions,
refer to “Understanding and Using Regular Expressions” on page 334 in the
QuickTest Professional Basic Features User’s Guide. Note that there are
differences in the expressions supported by the Find and Replace dialog
boxes and the expressions supported in other parts of QuickTest.

You display the regular expressions available for selection by clicking the
arrow button in the Find or Replace dialog boxes.

You can select from a predefined list of regular expressions. You can also use
tagged expressions. When you use regular expressions to search for a string,
you may want the string to change depending on what was already found.

For example, you can search for (save\:n)\1, which will find any occurrence
of save followed by any number, immediately followed by save, as well as
the same number that was already found (meaning that it will find
save6save6 but not save6save7).

Part I • Working with Advanced Testing Features

146

You can also use tagged expressions to insert parts of what is found into the
replace string. For example, you can search for save(\:n) and replace it with
open\1. This will find save followed by any number, and replace it with
open and the number that was found.

Select Tag an Expression from the regular expressions list to insert
parentheses "()" to indicate a tagged expression in the search string.

Select Match Tagged Expression and then select the specific tag group
number to specify the tagged expression you want to use, in the format '\'
followed by a tag group number 1-9. (Count the left parentheses '(' in the
search string to determine a tagged expression number. The first (left-most)
tagged expression is "\1" and the last is "\9".)

Understanding Basic VBScript Syntax

VBScript is an easy-to-learn, yet powerful scripting language. You can use
VBScript to develop scripts to perform both simple and complex
object-based tasks, even if you have no previous programming experience.

This section provides some basic guidelines to help you use VBScript
statements to enhance your QuickTest test or function library. For more
detailed information about using VBScript, you can view the VBScript
documentation from the QuickTest Help menu (Help > QuickTest
Professional Help > VBScript Reference).

Chapter 5 • Working with the Expert View and Function Library Windows

147

Each VBScript statement has its own specific syntax rules. If you do not
follow these rules, errors will be generated when you run the problematic
step. Additionally, if you try to move to the Keyword View from the Expert
View, QuickTest lists any syntax errors found in the document in the
Information pane. You cannot switch to the Keyword View without fixing
or eliminating the syntax errors. For more information, see “Handling
VBScript Syntax Errors” on page 153.

Tip: You can check the syntax of the current document at any time by
clicking the Check Syntax button, or by choosing Tools > Check Syntax. If a
test is open, the syntax of all the actions is checked. If a function library is
open, the syntax of the library script is checked.

When working in the Expert View or in a function library, you should
consider the following general VBScript syntax rules and guidelines:

➤ Case-sensitivity—By default, VBScript is not case sensitive and does not
differentiate between upper-case and lower-case spelling of words, for
example, in variables, object and method names, or constants.

For example, the two statements below are identical in VBScript:

Browser("Mercury").Page("Find a Flight:").WebList("toDay").Select "31"
browser("mercury").page("find a flight:").weblist("today").select "31"

➤ Text strings—When you enter a value as a text string, you must add
quotation marks before and after the string. For example, in the above
segment of script, the names of the Web site, Web page, and edit box are all
text strings surrounded by quotation marks.

Note that the value 31 is also surrounded by quotation marks, because it is a
text string that represents a number and not a numeric value.

Part I • Working with Advanced Testing Features

148

In the following example, only the property name (first argument) is a text
string and is in quotation marks. The second argument (the value of the
property) is a variable and therefore does not have quotation marks. The
third argument (specifying the timeout) is a numeric value, which also does
not need quotation marks.

Browser("Mercury").Page("Find a Flight:").WaitProperty("items count",
Total_Items, 2000)

➤ Variables—You can specify variables to store strings, integers, arrays and
objects. Using variables helps to make your script more readable and
flexible. For more information, see “Using Variables,” below.

➤ Parentheses—To achieve the desired result and to avoid errors, it is
important that you use parentheses () correctly in your statements. For more
information, see “Using Parentheses” on page 150.

➤ Indentation—You can indent or outdent your script to reflect the logical
structure and nesting of the statements. For more information, see
“Formatting VB Script Text” on page 151.

➤ Comments—You can add comments to your statements using an
apostrophe ('), either at the beginning of a separate line, or at the end of a
statement. It is recommended that you add comments wherever possible, to
make your scripts easier to understand and maintain. For more information,
see “Formatting VB Script Text” on page 151, and “Inserting Comments” on
page 167.

➤ Spaces—You can add extra blank spaces to your script to improve clarity.
These spaces are ignored by VBScript.

For more information on using specific VBScript statements to enhance
your tests or function libraries, see “Using Comments, Control-Flow, and
Other VBScript Statements” on page 167.

Using Variables

You can specify variables to store test objects or simple values in your test or
function library. When using a variable for a test object, you can use the
variable instead of the entire object hierarchy in other statements. Using
variables in this way makes your statements easier to read and to maintain.

Chapter 5 • Working with the Expert View and Function Library Windows

149

To specify a variable to store an object, use the Set statement, with the
following syntax:

Set ObjectVar = ObjectHierarchy

In the example below, the Set statement specifies the variable UserEditBox
to store the full Browser > Page > WebEdit object hierarchy for the username
edit box. The Set method then enters the value John into the username edit
box, using the UserEditBox variable:

Set UserEditBox = Browser("Mercury Tours").Page("Mercury Tours").
WebEdit("username")

UserEditBox.Set "John"

Note: Do not use the Set statement to specify a variable containing a simple
value (such as a string or a number). The example below shows how to
define a variable for a simple value:

MyVar = Browser("Mercury Tours").Page("Mercury Tours").
WebEdit("username").GetTOProperty("type")

You can also use the Dim statement to declare variables of other types,
including strings, integers, and arrays. This statement is not mandatory, but
you can use it to improve the structure of your test or function library. In
the following example, the Dim statement is used to declare the passengers
variable, which can then be used in different statements within the current
action or function library:

Dim passengers
passengers = Browser("Mercury Tours").Page("Find Flights").

WebEdit("numpassengers").GetROProperty("value")

Part I • Working with Advanced Testing Features

150

Using Parentheses

When programming in VBScript, it is important that you follow the rules for
using or not using parentheses () in your statements.

You must use parentheses around method arguments if you are calling a
method that returns a value and you are using the return value.

For example, use parentheses around method arguments if you are
returning a value to a variable, if you are using the method in an If
statement, or if you are using the Call keyword to call an action or function.
You also need to add parentheses around the name of a checkpoint if you
want to retrieve its return value.

Tip: If you receive an Expected end of statement error message when
running a step in your test or function library, it may indicate that you need
to add parentheses around the arguments of the step's method.

Following are several examples showing when to use or not use parentheses.

The following example requires parentheses around the method arguments
for the ChildItem method because it returns a value to a variable.

Set WebEditObj = Browser("Mercury Tours").Page("Method of Payment").
WebTable("FirstName").ChildItem (8, 2, "WebEdit", 0)

WebEditObj.Set "Example"

The following example requires parentheses around the method arguments
because Call is being used.

Call RunAction("BookFlight", oneIteration)

or

Call MyFunction("Hello World")
...
...

Chapter 5 • Working with the Expert View and Function Library Windows

151

The following example requires parentheses around the WaitProperty
method arguments because the method is used in an If statement.

If Browser("index").Page("index").Link("All kind of").
WaitProperty("attribute/readyState", "complete", 4) Then
Browser("index").Page("index").Link("All kind of").Click

End If

The following example requires parentheses around the Check method
arguments, since it returns the value of the checkpoint.

a = Browser("MyBrowser").Page("MyPage").Check (CheckPoint("MyProperty"))

The following example does not require parentheses around the Click
method arguments because it does not return a value.

Browser("Mercury Tours").Page("Method of Payment").WebTable("FirstName").
Click 3,4

Formatting VB Script Text

When working in the Expert View or in a function library, it is important to
follow accepted VBScript practices for comments and indentation.

Use comments to explain sections of a script. This improves readability and
make tests and function libraries easier to maintain and update. For more
information, see “Inserting Comments” on page 167.

Part I • Working with Advanced Testing Features

152

Use indentation to reflect the logical structure and nesting of your
statements.

➤ Adding Comments—You can add comments to your statements by adding
an apostrophe ('), either at the beginning of a separate line, or at the end of
a statement.

Tips:

You can comment a statement by clicking anywhere in the statement and
clicking the Comment Block button.

You can comment a selected block of text by clicking the Comment Block
button, or by choosing Edit > Advanced > Comment Block. Each line in the
block will be preceded by an apostrophe.

➤ Removing Comments—You can remove comments from your statements by
deleting the apostrophe ('), either at the beginning of a separate line, or at
the end of a statement.

Tip: You can remove the comments from a selected block or line of text by
clicking the Uncomment Block button, or by choosing Edit > Advanced >
Uncomment Block.

➤ Indenting Statements—You can indent your statements by selecting the
statements and clicking the Indent button. Alternatively, you can select text
and choose Edit > Advanced > Indent or press the TAB key. The text is
indented according to the tab spacing selected in the Editor Options dialog
box, as described in “Customizing Editor Behavior” on page 335.

Note: The Indent selected text when using the Tab key check box must be
selected in the Editor Options dialog box, otherwise pressing the TAB key
will delete the selected text.

Chapter 5 • Working with the Expert View and Function Library Windows

153

➤ Outdenting Statements—You can outdent your statements by selecting the
statement and clicking the Outdent button. Alternatively, you can choose
Edit > Advanced > Outdent or you can delete the space at the beginning of
the statements.

For more detailed information about formatting in VBScript, you can view
the VBScript documentation from the QuickTest Help menu (Help >
QuickTest Professional Help > VBScript Reference).

Handling VBScript Syntax Errors

When you select the Keyword View tab from the Expert View, QuickTest
attempts to display the updated information in the Keyword View. If a new
or updated VBScript statement contains syntax errors, the text Error flashes
in red at the right of the status bar, and an error message is displayed in the
status bar informing you that you should view the Information pane for
information about syntax errors in the script. QuickTest is unable to display
the document in the Keyword View until you have fixed all the syntax
errors.

You can view a description of each of the VBScript errors in the VBScript
Reference. For more information, choose Help > QuickTest Professional Help
> VBScript Reference > VBScript > Reference > Errors > VBScript Syntax
Errors.

Tips:

You can check the syntax of the current document at any time by clicking
the Check Syntax button, or by choosing Tools > Check Syntax. If a test is
open, the syntax of all the actions is checked. If a function library is open,
the syntax of the library script is checked.

The Microsoft VBScript Language Reference defines VBScript syntax errors
as: “errors that result when the structure of one of your VBScript statements
violates one or more of the grammatical rules of the VBScript scripting
language”. To learn about working with VBScript, you can view the VBScript
Reference from the QuickTest Help menu (Help > QuickTest Professional
Help > VBScript Reference).

Part I • Working with Advanced Testing Features

154

The Information pane lists the syntax errors found in your document, and
enables you to locate each syntax error so that you can correct it.

The Information pane shows the following information for each syntax
error:

Pane Element Description

Details The description of the syntax error. For example, if you opened a
conditional block with an If statement but did not close it with
an End If statement, the description is Expected 'End If'.

Note: In certain cases, QuickTest is unable to identify the exact
error and displays a number of possible error conditions,
for example: Expected 'End Sub', or 'End Function', or 'End
Property’. Check the statement at the specified line to
clarify which error is relevant in your case.

Item The name of the test or function library containing the
problematic statement.

Action The name of the action containing the problematic statement.
This column is not relevant for function libraries that are
associated with business components (via application areas).

Line The line containing the syntax error. Lines are numbered from
the beginning of each action or function library.

Chapter 5 • Working with the Expert View and Function Library Windows

155

Using the Information Pane

➤ Hold your mouse over the description of a syntax error to display the
currently incorrect syntax.

➤ To navigate to the line containing a specific syntax error, double-click the
syntax error in the Information pane.

➤ You can resize the columns in the Information pane to make the
information more readable by dragging the column headers.

➤ You can sort the details in the Information pane in ascending or descending
order by clicking the column header.

➤ You can press F1 on an error in the Information pane to display information
about VBScript syntax errors.

Using Programmatic Descriptions

When you record an operation on an object, QuickTest adds the appropriate
test object to the object repository. Once the object exists in the object
repository, you can add statements in the Expert View to perform additional
methods on that object. To add these statements, you usually enter the
name (not case sensitive) of each of the objects in the object’s hierarchy as
the object description, and then add the appropriate method.

For example, in the statement below, username is the name of an edit box.
The edit box is located on a page with the name Mercury Tours and the page
was recorded in a browser with the name Mercury Tours.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username")

Because each object in the object repository has a unique name, the object
name is all you need to specify. During the run session, QuickTest finds the
object in the object repository based on its name and parent objects, and
uses the stored test object description for that test object to identify the
object in your Web site or application.

You can also instruct QuickTest to perform methods on objects without
referring to the object repository or to the object’s name. To do this, you
provide QuickTest with a list of properties and values that QuickTest can use
to identify the object or objects on which you want to perform a method.

Part I • Working with Advanced Testing Features

156

Such a programmatic description can be very useful if you want to perform
an operation on an object that is not stored in the object repository. You can
also use programmatic descriptions in order to perform the same operation
on several objects with certain identical properties, or in order to perform an
operation on an object whose properties match a description that you
determine dynamically during the run session.

For example, suppose you are testing a Web site that generates a list of
potential employers based on biographical information you provide, and
offers to send your resume to the employer names you select from the list.
You want your test to select all the employers displayed in the list, but when
you design your test, you do not know how many check boxes will be
displayed on the page, and you cannot, of course, know the exact object
description of each check box. In this situation, you can use a programmatic
description to instruct QuickTest to perform a Set "ON" method for all
objects that fit the description: HTML TAG = input, TYPE = check box.

There are two types of programmatic descriptions. You can either list the set
of properties and values that describe the object directly in a test statement,
or you can add a collection of properties and values to a Description object,
and then enter the Description object name in the statement.

Entering programmatic descriptions directly into your statements may be
the easier method for basic object description needs. However, in most
cases, the Description object method is more powerful and more efficient.

Chapter 5 • Working with the Expert View and Function Library Windows

157

Entering Programmatic Descriptions Directly into Statements

You can describe an object directly in a statement by specifying
property:=value pairs describing the object instead of specifying an object’s
name.

The general syntax is:

TestObject("PropertyName1:=PropertyValue1", "..." ,
 "PropertyNameX:=PropertyValueX")

TestObject—the test object class.

PropertyName:=PropertyValue—the test object property and its value.
Each property:=value pair should be separated by commas and quotation
marks.

Note that you can enter a variable name as the property value if you want to
find an object based on property values you retrieve during a run session.

Note: QuickTest evaluates all property values in programmatic descriptions
as regular expressions. Therefore, if you want to enter a value that contains a
special regular expression character (such as *, ?, or +), use the \ (backslash)
character to instruct QuickTest to treat the special characters as literal
characters. For more information on regular expressions, refer to
“Understanding and Using Regular Expressions” on page 334 in the
QuickTest Professional Basic Features User’s Guide.

Part I • Working with Advanced Testing Features

158

The statement below specifies a WebEdit test object in the Mercury Tours
page with the Name author and an index of 3. During the run session,
QuickTest finds the WebEdit object with matching property values and
enters the text Mark Twain.

Browser("Mercury Tours").Page("Mercury Tours").WebEdit("Name:=Author",
 "Index:=3").Set "Mark Twain"

Note: When using programmatic descriptions from a specific point within a
test object hierarchy, you must continue to use programmatic descriptions
from that point onward within the same statement. If you specify a test
object by its object repository name after other objects in the hierarchy have
been specified using programmatic descriptions, QuickTest cannot identify
the object.

For example, you can use the following statement since it uses
programmatic descriptions throughout the entire test object hierarchy:

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain"

You can also use the statement below, since it uses programmatic
descriptions from a certain point in the description (starting from the Page
object description):

Browser("Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Name:=Author", "Index:=3").Set "Mark Twain"

However, you cannot use the following statement, since it uses
programmatic descriptions for the Browser and Page objects but then
attempts to use an object repository name for the WebEdit test object:

Browser("Title:=Mercury Tours").Page("Title:=Mercury Tours").
WebEdit("Author").Set "Mark Twain"

QuickTest tries to locate the WebEdit object based on its name, but cannot
locate it in the repository because the parent objects were specified using
programmatic descriptions.

Chapter 5 • Working with the Expert View and Function Library Windows

159

For more information on working with test objects, refer to Chapter 6,
“Working with Test Objects” in the QuickTest Professional Basic Features User’s
Guide.

If you want to use the same programmatic description several times in one
test or function library, you may want to assign the object you create to a
variable.

For example, instead of entering:

Window("Text:=Myfile.txt - Notepad").Move 50, 50
Window("Text:=Myfile.txt - Notepad").WinEdit("AttachedText:=Find what:").

Set "hello"
Window("Text:=Myfile.txt - Notepad").WinButton("Caption:=Find next").Click

You can enter:

Set MyWin = Window("Text:=Myfile.txt - Notepad")
MyWin.Move 50, 50
MyWin.WinEdit("AttachedText:=Find what:").Set "hello"
MyWin.WinButton("Caption:=Find next").Click

Alternatively, you can use a With statement:

With Window("Text:=Myfile.txt - Notepad")
.Move 50, 50
.WinEdit("AttachedText:=Find what:").Set "hello"
.WinButton("Caption:=Find next").Click

End With

For more information about the With statement, see “With Statement” on
page 174.

Part I • Working with Advanced Testing Features

160

Using Description Objects for Programmatic Descriptions

You can use the Description object to return a Properties collection object
containing a set of Property objects. A Property object consists of a
property name and value. You can then specify the returned Properties
collection in place of an object name in a statement. (Each property object
contains a property name and value pair.)

Note: By default, the value of all Property objects added to a Properties
collection are treated as regular expressions. Therefore, if you want to enter
a value that contains a special regular expression character (such as *, ?, +),
use the \ (backslash) character to instruct QuickTest to treat the special
characters as literal characters. For more information about regular
expressions, refer to “Understanding and Using Regular Expressions” on
page 334 in the QuickTest Professional Basic Features User’s Guide.

You can set the RegularExpression property to False in order to specify a
value as a literal value for a specific Property object in the collection. For
more information, refer to the Utility section of the QuickTest Professional
Object Model Reference.

To create the Properties collection, you enter a Description.Create
statement using the following syntax:

Set MyDescription = Description.Create()

Once you have created a Properties object (such as MyDescription in the
example above), you can enter statements to add, edit, remove, and retrieve
properties and values to or from the Properties object during the run
session. This enables you to determine which, and how many properties to
include in the object description in a dynamic way during the run session.

After you fill the Properties collection with a set of Property objects
(properties and values), you can specify the Properties object in place of an
object name in a test statement.

Chapter 5 • Working with the Expert View and Function Library Windows

161

For example, instead of entering:

Window("Error").WinButton("text:=OK", "width:=50").Click

you can enter:

Set MyDescription = Description.Create()
MyDescription("text").Value = "OK"
MyDescription("width").Value = 50
Window("Error").WinButton(MyDescription).Click

Tip: When creating a programmatic description for an ActiveX test object
and the relevant run-time object is windowless (has no window handle
associated with it), you must add the windowless property to the
description and set its value to True.

For example:

Set ButDesc = Description.Create
ButDesc("ProgId").Value = "Forms.CommandButton.1"
ButDesc("Caption").Value = "OK"
ButDesc("Windowless").Value = True
Window("Form1").AcxButton(ButDesc).Click

Note: When using programmatic descriptions from a specific point within a
test object hierarchy, you must continue to use programmatic descriptions
from that point onward within the same statement. If you specify a test
object by its object repository name after other objects in the hierarchy have
been described using programmatic descriptions, QuickTest cannot identify
the object.

For example, you can use Browser(Desc1).Page(Desc1).Link(desc3), since it
uses programmatic descriptions throughout the entire test object hierarchy.

Part I • Working with Advanced Testing Features

162

You can also use Browser("Index").Page(Desc1).Link(desc3), since it uses
programmatic descriptions from a certain point in the description (starting
from the Page object description).

However, you cannot use Browser(Desc1).Page(Desc1).Link("Example1"),
since it uses programmatic descriptions for the Browser and Page objects but
then attempts to use an object repository name for the Link test object
(QuickTest tries to locate the Link object based on its name, but cannot
locate it in the repository because the parent objects were specified using
programmatic descriptions).

When working with Properties objects, you can use variable names for the
properties or values in order to generate the object description based on
properties and values you retrieve during a run session.

You can create several Properties objects in your test if you want to use
programmatic descriptions for several objects.

For more information on the Description and Properties objects and their
associated methods, refer to the QuickTest Professional Object Model Reference.

Retrieving Child Objects

You can use the ChildObjects method to retrieve all objects located inside a
specified parent object, or only those child objects that fit a certain
programmatic description. In order to retrieve this subset of child objects,
you first create a description object and add the set of properties and values
that you want your child object collection to match using the Description
object.

Note: You must use the Description object to create the programmatic
description for the ChildObjects description argument. You cannot enter
the programmatic description directly into the argument using the
property:=value syntax.

Chapter 5 • Working with the Expert View and Function Library Windows

163

Once you have “built” a description in your description object, use the
following syntax to retrieve child objects that match the description:

Set MySubSet=TestObject.ChildObjects(MyDescription)

For example, the statements below instruct QuickTest to select all of the
check boxes on the Itinerary Web page:

Set MyDescription = Description.Create()
MyDescription("html tag").Value = "INPUT"
MyDescription("type").Value = "checkbox"

Set Checkboxes =
Browser("Itinerary").Page("Itinerary").ChildObjects(MyDescription)
NoOfChildObjs = Checkboxes.Count
For Counter=0 to NoOfChildObjs-1

Checkboxes(Counter).Set "ON"
Next

For more information about the ChildObjects method, refer to the
QuickTest Professional Object Model Reference.

Using Programmatic Descriptions for the WebElement Object

The WebElement object enables you to perform methods on Web objects
that may not fit into any other Mercury test object class. The WebElement
test object is never recorded, but you can use a programmatic description
with the WebElement object to perform methods on any Web object in
your Web site.

For example, when you run the statement below:

Browser("Mercury Tours").Page("Mercury Tours").
WebElement("Name:=UserName", "Index:=0").Click

or

set WebObjDesc = Description.Create()
WebObjDesc("Name").Value = "UserName"
WebObjDesc("Index").Value = "0"
Browser("Mercury Tours").Page("Mercury Tours").WebElement(WebObjDesc).

Click

Part I • Working with Advanced Testing Features

164

QuickTest clicks on the first Web object in the Mercury Tours page with the
name UserName.

For more information about the WebElement object, refer to the QuickTest
Professional Object Model Reference.

Using the Index Property in Programmatic Descriptions

The index property can sometimes be a useful test object property for
uniquely identifying an object. The index test object property identifies an
object based on the order in which it appears within the source code, where
the first occurrence is 0.

Index property values are object-specific. Thus, if you use an index value
of 3 to describe a WebEdit test object, QuickTest searches for the fourth
WebEdit object in the page.

If you use an index value of 3 to describe a WebElement object, however,
QuickTest searches for the fourth Web object on the page regardless of the
type, because the WebElement object applies to all Web objects.

For example, suppose you have a page with the following objects:

➤ an image with the name Apple

➤ an image with the name UserName

➤ a WebEdit object with the name UserName

➤ an image with the name Password

➤ a WebEdit object with the name Password

The description below refers to the third item in the list above, as it is the
first WebEdit object on the page with the name UserName:

WebEdit("Name:=UserName", "Index:=0")

Chapter 5 • Working with the Expert View and Function Library Windows

165

The following description, however, refers to the second item in the list
above, as that is the first object of any type (WebElement) with the name
UserName.

WebElement("Name:=UserName", "Index:=0")

Note: If there is only one object, using index=0 will not retrieve it. You
should not include the index property in the object description.

Running and Closing Applications Programmatically

In addition to using the Record and Run dialog box to instruct QuickTest to
open a new browser or application when a test run begins, and/or opening
the application you want to test manually, you can also insert statements
into your test that open and close the applications you want to test.

You can run any application from a specified location using a
SystemUtil.Run statement. This is especially useful if your test includes
more than one application, and you selected the Record and run test on any
application check box in the Record and Run Settings dialog box. You can
specify an application and pass any supported parameters, or you can
specify a file name and the associated application starts with the specified
file open.

You can close most applications using the Close method.

Part I • Working with Advanced Testing Features

166

For example, you could use the following statements to open a file named
type.txt in the default text application (Notepad), type happy days, save the
file using shortcut keys, and then close the application:

SystemUtil.Run "C:\type.txt", "","",""
Window("Text:=type.txt - Notepad").Type "happy days"
Window("Text:=type.txt - Notepad").Type micAltDwn & "F" & micAltUp
Window("Text:=type.txt - Notepad").Type micLShiftDwn & "S" & micLShiftUp
Window("Text:=type.txt - Notepad").Close

Notes:

When you specify an application to open using the Record and Run Settings
dialog box, QuickTest does not add a SystemUtil.Run statement to your
test.

The InvokeApplication method can open only executable files and is used
primarily for backward compatibility.

For more information, refer to the QuickTest Professional Object Model
Reference.

Chapter 5 • Working with the Expert View and Function Library Windows

167

Using Comments, Control-Flow, and Other VBScript
Statements

QuickTest enables you to incorporate decision-making into your test or
function library by adding conditional statements that control the logical
flow of your test or function library. In addition, you can define messages in
your test that QuickTest sends to your test results. To improve the
readability of your tests and function libraries, you can also add comments
to them.

For information on how to use these programming concepts in the Keyword
View, refer to Chapter 20, “Adding Steps Containing Programming Logic” in
the QuickTest Professional Basic Features User’s Guide.

Note: The VBScript Reference (available from Help > QuickTest Professional
Help) contains Microsoft VBScript documentation, including VBScript,
Script Runtime, and Windows Script Host.

Inserting Comments

A comment is a line or part of a line in a script that is preceded by an
apostrophe ('). When you run a test, QuickTest does not process comments.
Use comments to explain sections of a script in order to improve readability
and to make tests and function libraries easier to update.

The following example shows how a comment describes the purpose of the
statement below it:

‘Sets the word "mercury" into the "username" edit box.
Browser("Mercury Tours").Page("Mercury Tours").WebEdit("username").

Set "mercury"

Part I • Working with Advanced Testing Features

168

By default, comments are displayed in green in the Expert View and in
function libraries. You can customize the appearance of comments in the
Editor Options dialog box. For more information, see “Customizing Element
Appearance” on page 337.

Tips:

You can comment a block of text by choosing Edit > Advanced > Comment
Block or by clicking the Comment Block button.

To remove the comment, choose Edit > Advanced > Uncomment Block or
click the Uncomment Block button.

Note: You can also add a comment line using VBScript’s Rem statement. For
additional information, refer to the Microsoft VBScript Language Reference
(choose Help > QuickTest Professional Help > VBScript Reference >
VBScript).

Chapter 5 • Working with the Expert View and Function Library Windows

169

Performing Calculations

You can write statements that perform simple calculations using
mathematical operators. For example, you can use a multiplication operator
to multiply the values displayed in two text boxes in your site. VBScript
supports the following mathematical operators:

In the following example, the multiplication operator is used to calculate
the maximum luggage weight of the passengers at 100 pounds each:

'Retrieves the number of passengers from the edit box using the GetROProperty
method

passenger = Browser ("Mercury_Tours").Page ("Find_Flights").
WebEdit("numPassengers").GetROProperty("value")

'Multiplies the number of passengers by 100

weight = passenger * 100

'Inserts the maximum weight into a message box.

msgbox("The maximum weight for the party is "& weight &"pounds.")

Operator Description

+ addition

– subtraction

– negation (a negative number—unary operator)

* multiplication

/ division

^ exponent

Part I • Working with Advanced Testing Features

170

For...Next Statement

A For...Next loop instructs QuickTest to execute one or more statements a
specified number of times. It has the following syntax:

For counter = start to end [Step step]
statement

Next

In the following example, QuickTest calculates the factorial value of the
number of passengers using the For statement:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
For i=1 To passengers

total = total * i
Next
MsgBox "!" & passengers & "=" & total

Item Description

counter The variable used as a counter for the number of
iterations.

start The start number of the counter.

end The last number of the counter.

step The number to increment at the end of each loop.
Default = 1.
Optional.

statement A statement, or series of statements, to be executed
during the loop.

Chapter 5 • Working with the Expert View and Function Library Windows

171

For...Each Statement

A For...Each loop instructs QuickTest to execute one or more statements for
each element in an array or an object collection. It has the following syntax:

For Each item In array
statement

Next

The following example uses a For...Each loop to display each of the values
in an array:

MyArray = Array("one","two","three","four","five")
For Each element In MyArray

msgbox element
Next

Do...Loop Statement

The Do...Loop statement instructs QuickTest to execute a statement or series
of statements while a condition is true or until a condition becomes true. It
has the following syntax:

Do [{while} {until} condition]
statement

Loop

Item Description

item A variable representing the element in the array.

array The name of the array.

statement A statement, or series of statements, to be executed during
the loop.

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be executed during
the loop.

Part I • Working with Advanced Testing Features

172

In the following example, QuickTest calculates the factorial value of the
number of passengers using the Do...Loop:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numPassengers").GetROProperty("value")

total = 1
i = 1
Do while i <= passengers

 total = total * i
 i = i + 1

Loop
MsgBox "!" & passengers & "=" & total

While...Wend Statement

A While...Wend statement instructs QuickTest to execute a statement or
series of statements while a condition is true. It has the following syntax:

While condition
statement

Wend

In the following example, QuickTest performs a loop using the While
statement while the number of passengers is fewer than ten. Within each
loop, QuickTest increments the number of passengers by one:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

While passengers < 10
passengers = passengers + 1

Wend

msgbox("The number of passengers in the party is " & passengers)

Item Description

condition A condition to be fulfilled.

statement A statement or series of statements to be executed during
the loop.

Chapter 5 • Working with the Expert View and Function Library Windows

173

If...Then...Else Statement

The If...Then...Else statement instructs QuickTest to execute a statement or
a series of statements based on specified conditions. If a condition is not
fulfilled, the next Elseif condition or Else statement is examined. It has the
following syntax:

If condition Then
statement

ElseIf condition2 Then
statement

Else
statement

End If

In the following example, if the number of passengers is fewer than four,
QuickTest closes the browser:

passengers = Browser("Mercury Tours").Page("Find Flights").
WebEdit("numpassengers").GetROProperty("value")

If (passengers < 4) Then
Browser("Mercury Tours").Close

Else
Browser("Mercury Tours").Page("Find Flights").Image("continue").Click 69,5

End If

Item Description

condition Condition to be fulfilled.

statement Statement to be executed.

Part I • Working with Advanced Testing Features

174

The following example, uses If, ElseIf, and Else statements to check
whether a value is equal to 1, 2, or a different value:

value = 2
If value = 1 Then
 msgbox "one"
ElseIf value = 2 Then
 msgbox "two"
Else
 msgbox "not one or two"
End If

With Statement

With statements make your script more concise and easier to read and write
or edit by grouping consecutive statements with the same parent hierarchy.

Note: Applying With statements to your script has no effect on the run
session itself, only on the way your script appears in the Expert View.

The With statement has the following syntax:

With object
statements

End With

Item Description

object An object or a function that returns an object.

statements One or more statements to be executed on an object.

Chapter 5 • Working with the Expert View and Function Library Windows

175

For example, you could replace this script:

Window("Flight Reservation").WinComboBox("Fly From:").Select "London"
Window("Flight Reservation").WinComboBox("Fly To:").Select "Los Angeles"
Window("Flight Reservation").WinButton("FLIGHT").Click
Window("Flight Reservation").Dialog("Flights Table").WinList("From").

Select "19097 LON "
Window("Flight Reservation").Dialog("Flights Table").WinButton("OK").Click

with the following:

With Window("Flight Reservation")
.WinComboBox("Fly From:").Select "London"
.WinComboBox("Fly To:").Select "Los Angeles"
.WinButton("FLIGHT").Click
With .Dialog("Flights Table")

.WinList("From").Select "19097 LON "

.WinButton("OK").Click
End With 'Dialog("Flights Table")

End With 'Window("Flight Reservation")

Note that entering With statements in the Expert View does not affect the
Keyword View in any way.

Note: In addition to entering With statements manually, you can also
instruct QuickTest to automatically generate With statements as you record
or to generate With statements for an existing test. For more information,
refer to “Generating With Statements for Your Test” on page 556 in the
QuickTest Professional Basic Features User’s Guide.

Part I • Working with Advanced Testing Features

176

Retrieving and Setting Test Object Property Values

Test object properties are the set of properties defined by QuickTest for each
object. You can set and retrieve a test object’s property values, and you can
retrieve the values of test object properties from a run-time object.

When you run your test, QuickTest creates a temporary version of the test
object that is stored in the test object repository. You can use the
GetTOProperty, GetTOProperties, and SetTOProperty methods in your
test or function library to set and retrieve the test object property values of
the test object.

The GetTOProperty and GetTOProperties methods enable you to retrieve a
specific property value or all the properties and values that QuickTest uses to
identify an object.

The SetTOProperty method enables you to modify a property value that
QuickTest uses to identify an object.

Note: Because QuickTest refers to the temporary version of the test object
during the run session, any changes you make using the SetTOProperty
method apply only during the course of the run session, and do not affect
the values stored in the test object repository.

For example, the following statements would set the Submit button’s name
value to my button, and then retrieve the value my button to the ButtonName
variable:

Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").SetTOProperty "Name", "my button"

ButtonName=Browser("QA Home Page").Page("QA Home Page").
WebButton("Submit").GetTOProperty("Name")

You use the GetROProperty method to retrieve the current value of a test
object property from a run-time object in your application.

Chapter 5 • Working with the Expert View and Function Library Windows

177

For example, you can retrieve the target value of a link during the run
session as follows:

link_href = Browser("Mercury Technologies").Page("Mercury Technologies").
Link("Jobs").GetROProperty("href")

Tip: If you do not know the test object properties of objects in your Web site
or application, you can view them using the Object Spy. For information on
the Object Spy, refer to Chapter 3, “Understanding the Test Object Model”
in the QuickTest Professional Basic Features User’s Guide.

For a list and description of test object properties supported by each object,
and for additional information about the GetROProperty, GetTOProperty,
GetTOProperties, and SetTOProperty methods, refer to the QuickTest
Professional Object Model Reference.

Accessing Run-Time Object Properties and Methods

If the test object methods and properties available for a particular test object
do not provide the functionality you need, you can access the native
methods and properties of any run-time object in your application using the
Object property.

You can use QuickTest’s statement completion feature with object properties
to view a list of the available native methods and properties of an object. For
more information about the statement completion option, see “Generating
Statements in the Expert View or a Function Library” on page 130.

Tip: If the object is a Web object, you can also reference its native properties
in programmatic descriptions using the attribute/property notation. For
more information, see “Accessing User-Defined Properties of Web Objects”
on page 178.

Part I • Working with Advanced Testing Features

178

Retrieving Run-Time Object Properties

You can use the Object property to access the native properties of any
run-time object. For example, you can retrieve the current value of the
ActiveX calendar’s internal Day property as follows:

Dim MyDay
Set MyDay=
Browser("index").Page("Untitled").ActiveX("MSCAL.Calendar.7").Object.Day

For more information on the Object property, refer to the QuickTest
Professional Object Model Reference.

Activating Run-Time Object Methods

You can use the Object property to activate the internal methods of any
run-time object. For example, you can activate the native focus method of
the edit box as follows:

Dim MyWebEdit
Set MyWebEdit=Browser("Mercury Tours").Page("Mercury Tours").

WebEdit("username").Object
MyWebEdit.focus

For more information on the Object property, refer to the QuickTest
Professional Object Model Reference.

Accessing User-Defined Properties of Web Objects

You can use the attribute/<property name> notation to access native
properties of Web objects and use these properties to identify such objects
with programmatic descriptions.

For example, suppose a Web page has the same company logo image in two
places on the page:

Chapter 5 • Working with the Expert View and Function Library Windows

179

You could identify the image that you want to click using a programmatic
description by including the user-defined property LogoID in the
description as follows:

Browser("Mercury Tours").Page("Find Flights").Image("src:=logo.gif",
"attribute/LogoID:=123").Click 68, 12

For more information on programmatic descriptions, see “Using
Programmatic Descriptions” on page 155.

Running DOS Commands

You can run standard DOS commands in your QuickTest test or function
using the VBScript Windows Scripting Host Shell object (WSCript.shell). For
example, you can open a DOS command window, change the path to C:\,
and execute the DIR command using the following statements:

Dim oShell
Set oShell = CreateObject ("WSCript.shell")
oShell.run "cmd /K CD C:\ & Dir"
Set oShell = Nothing

For more information, refer to the Microsoft VBScript Language Reference
(choose Help > QuickTest Professional Help > VBScript Reference >
VBScript).

Part I • Working with Advanced Testing Features

180

Enhancing Your Tests and Function Libraries Using the
Windows API

Using the Windows API, you can extend testing abilities and add usability
and flexibility to your tests and function libraries. The Windows operating
system provides a large number of functions to help you control and
manage Windows operations. You can use these functions to obtain
additional functionality.

The Windows API is documented in the Microsoft MSDN Web site, which
can be found at: http://msdn.microsoft.com/library/en-
us/winprog/winprog/windows_api_start_page.asp?frame=true

A reference to specific API functions can be found at:
http://msdn.microsoft.com/library/en-
us/winprog/winprog/windows_api_reference.asp?frame=true

To use Windows API functions:

 1 In MSDN, locate the function you want to use in your test or function
library.

 2 Read its documentation and understand all required parameters and return
value(s).

 3 Note the location of the API function. API functions are located inside
Windows DLLs. The name of the DLL in which the requested function is
located is usually identical to the Import Library section in the function’s
documentation. For example, if the documentation refers to User32.lib, the
function is located in a DLL named User32.dll, typically located in your
System32 library.

 4 Use the QuickTest Extern object to declare an external function. For more
information, refer to the QuickTest Professional Object Model Reference.

The following example declares a call to a function called
GetForegroundWindow, located in user32.dll:

extern.declare micHwnd, "GetForegroundWindow", "user32.dll",
"GetForegroundWindow"

 5 Call the declared function, passing any required arguments, for example,
hwnd = extern.GetForegroundWindow().

http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_start_page.asp?frame=true
http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_start_page.asp?frame=true
http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_reference.asp?frame=true

Chapter 5 • Working with the Expert View and Function Library Windows

181

In this example, the foreground window’s handle is retrieved. You can
enhance your test or function library if the foreground window is not in the
object repository or cannot be determined beforehand (for example, a
window with a dynamic title). You may want to use this handle as part of a
programmatic description of the window, for example:

Window("HWND:="&hWnd).Close

In some cases, you may have to use predefined constant values as function
arguments. Since these constants are not defined in the context of your test
or function, you need to find their numerical value in order to pass them to
the called function. The numerical values of these constants are usually
declared in the function’s header file. A reference to header files can also be
found in each function’s documentation under the Header section. If you
have Microsoft Visual Studio installed on your computer, you can typically
find header files under X:\Program Files\Microsoft Visual Studio\VC98\Include.

For example, the GetWindow API function expects to receive a numerical
value that represents the relationship between the specified window and the
window whose handle is to be retrieved. In the MSDN documentation, you
can find the constants: GW_CHILD, GW_ENABLEDPOPUP,
GW_HWNDFIRST, GW_HWNDLAST, GW_HWNDNEXT, GW_HWNDPREV
and GW_HWNDPREV. If you open the WINUSER.H file, mentioned in the
GetWindow documentation, you will find the following flag values:

/*
 * GetWindow() Constants
 */
#define GW_HWNDFIRST0
#define GW_HWNDLAST 1
#define GW_HWNDNEXT2
#define GW_HWNDPREV 3
#define GW_OWNER 4
#define GW_CHILD 5
#define GW_ENABLEDPOPUP 6
#define GW_MAX 6

Part I • Working with Advanced Testing Features

182

Example

The following example retrieves a specific menu item's value in the Notepad
application.

' Constant Values:
const MF_BYPOSITION = 1024
' API Functions Declarations
Extern.Declare micHwnd,"GetMenu","user32.dll","GetMenu",micHwnd
Extern.Declare
micInteger,"GetMenuItemCount","user32.dll","GetMenuItemCount",micHwnd
Extern.Declare
micHwnd,"GetSubMenu","user32.dll","GetSubMenu",micHwnd,micInteger
Extern.Declare
micInteger,"GetMenuString","user32.dll","GetMenuString",micHwnd,micInteger,

micString+micByRef,micInteger,micInteger
' Notepad.exe
hwin = Window("Notepad").GetROProperty ("hwnd")' Get Window's handle
MsgBox hwin
men_hwnd = Extern.GetMenu(hwin)' Get window's main menu's handle
MsgBox men_hwnd
' Use API Functions
item_cnt = Extern.GetMenuItemCount(men_hwnd)
MsgBox item_cnt
hSubm = Extern.GetSubMenu(men_hwnd,0)
MsgBox hSubm
rc = Extern.GetMenuString(hSubm,0,value,64 ,MF_BYPOSITION)
MsgBox value

Choosing Which Steps to Report During the Run Session

You can use the Report.Filter method to determine which steps or types of
steps are included in the Test Results. You can completely disable or enable
reporting of steps following the statement, or you can indicate that you
only want subsequent failed or failed and warning steps to be included in
the report. You can also use the Report.Filter method to retrieve the current
report mode.

Chapter 5 • Working with the Expert View and Function Library Windows

183

The following report modes are available:

To disable reporting of subsequent steps, enter the following statement:

Reporter.Filter = rfDisableAll

To re-enable reporting of subsequent steps, enter:

Reporter.Filter = rfEnableAll

To instruct QuickTest to include only subsequent failed steps in the Test
Results, enter:

Reporter.Filter = rfEnableErrorsOnly

To instruct QuickTest to include only subsequent failed or warning steps in
the Test Results, enter:

Reporter.Filter = rfEnableErrorsAndWarnings

To retrieve the current report mode, enter:

MyVar=Reporter.Filter

For more information, refer to the QuickTest Professional Object Model
Reference.

Mode Description

0 or rfEnableAll All events are displayed in the Test Results.
Default.

1 or
rfEnableErrorsAndWarnings

Only events with a warning or fail status are
displayed in the Test Results.

2 or rfEnableErrorsOnly Only events with a fail status are displayed in
the Test Results.

3 or rfDisableAll No events are displayed in the Test Results.

Part I • Working with Advanced Testing Features

184

185

6
Working with User-Defined Functions and
Function Libraries

In addition to the test objects, methods, and built-in functions supported by
the QuickTest Test Object Model, you can define your own function libraries
containing VBScript functions, subroutines, modules, and so forth, and
then call their functions from your test.

This chapter describes:

➤ About Working with User-Defined Functions and Function Libraries

➤ Managing Function Libraries

➤ Working with Associated Function Libraries

➤ Using the Function Definition Generator

➤ Registering User-Defined Functions as Test Object Methods

➤ Additional Tips for Working with User-Defined Functions

➤ Executing Externally-Defined Functions from Your Test

Part I • Working with Advanced Testing Features

186

About Working with User-Defined Functions and Function
Libraries

If you have segments of code that you need to use several times in your
test(s), you may want to create a user-defined function. A user-defined
function encapsulates an activity (or a group of steps that require
programming) into a keyword (or operation). By using user-defined
functions, your tests are shorter, and easier to design, read, and maintain.
You can then call user-defined functions from an action by inserting the
relevant keywords (or operations) into that action.

You can register a user-defined function as a method for a QuickTest test
object. A registered method can either override the functionality of an
existing test object method for the duration of a run session, or be registered
as a new method for a test object class. For more information about
registering user-defined functions, see “Using the Function Definition
Generator” on page 204 and “Registering User-Defined Functions as Test
Object Methods” on page 219.

Note: When you create a user-defined function, do not give it the same
name as a built-in function (for example, GetLastError, MsgBox, or Print).
Built-in functions take priority over user-defined functions, so if you call a
user-defined function that has the same name as a built-in function, the
built-in function is called instead. For a list of built-in functions, refer to the
Built-in functions list in the Step Generator (Insert > Step Generator).

Using QuickTest, you can define and store your user-defined functions
either in a function library (saved as a .qfl file, by default) or directly in an
action within a test. A function library is a Visual Basic script containing
VBscript functions, subroutines, modules, and so forth. You can also use
QuickTest to modify and debug any existing function libraries (such as .vbs
or .txt files). For information on using VBScript, see “Handling VBScript
Syntax Errors” on page 153 and “Understanding Basic VBScript Syntax” on
page 146.)

Chapter 6 • Working with User-Defined Functions and Function Libraries

187

When you store a function in a function library and associate the function
library with a test, the test can call the public functions in that function
library. For more information, see “Working with Associated Function
Libraries” on page 200. Functions that are stored in an associated function
library can be accessed from the Step Generator and the Operation column
in the Keyword View, as well as being entered manually in the Expert View.

When you store a function in a test action, it can be called only from within
that action—the function cannot be called from any other action or test.
This is useful if you do not want the function to be available outside of a
specific action.

You can also define private functions and store them in a function library.
Private functions are functions that can be called only by other functions
within the same function library. This is useful if you to reuse segments of
code in your public functions.

You can define functions manually or using the Function Definition
Generator, which creates the basic function definition for you
automatically. Even if you prefer to define functions manually, you may still
want to use the Function Definition Generator to view the syntax required
to add header information, register a function to a test object, or set the
function as the default method for the test object. For more information, see
“Using the Function Definition Generator” on page 204.

Part I • Working with Advanced Testing Features

188

Managing Function Libraries

You can create function libraries in QuickTest and call their functions from
an action in your test. A function library is a separate QuickTest document
containing VBscript functions, subroutines, modules, and so forth. Each
function library opens in a separate window, enabling you to open and work
on one or several function libraries at the same time. After you finish editing
a function library, you can close it, leaving your QuickTest session open. You
can also close all open function libraries simultaneously.

By implementing user-defined functions in function libraries and
associating them with your test, you and other users can choose functions
that perform complex operations, such as adding if/then statements and
loops to test steps, or working with utility objects—without adding the code
directly to the test. In addition, you save time and resources by
implementing and using reusable functions.

QuickTest provides tools that enable you to edit and debug any function
library, even if it was created using an external editor. For example,
QuickTest can check the syntax of your functions, and the function library
window provides the same editing features that are available in the Expert
View. For more information on the options available in the Expert View, see
Chapter 5, “Working with the Expert View and Function Library Windows.”

Note: In QuickTest, when you open a test, QuickTest creates a local copy of
the external resources that are saved to your Quality Center project.
Therefore, if another user modifies an external resource saved in your
Quality Center project, such as a function library, or if you modify a
resource using an external editor (not QuickTest)—the changes will not be
implemented in the test until the test is closed and reopened.

In contrast with this, any changes you apply to external resources saved in
the file system, such as function libraries, are implemented immediately, as
these files are accessed directly and are not saved as local copies when you
open your test.

Chapter 6 • Working with User-Defined Functions and Function Libraries

189

Creating a Function Library

You can create a new function library at any time.

To create a new function library in QuickTest:

Perform one of the following:

➤ Choose File > New > Function Library

➤ Click the New button down arrow and choose Function Library

A new function library opens.

You can now add content to your function library and/or save it. When you
add content to your function library, QuickTest applies the same formatting
it applies to content in the Expert View. You can modify the formatting, if
needed. For more information, see “Customizing the Expert View and
Function Library Windows” on page 333.

Saving a Function Library

After you create or edit a function library in QuickTest, you can save it to
your Quality Center project or to the file system.

Tips:

➤ When you modify a function library, an asterisk (*) is displayed in the
title bar until the function library is saved.

➤ To save all open documents, choose File > Save All. QuickTest prompts
you to specify a location in which to save any new files that have not yet
been saved.

➤ To save multiple documents, choose Window > Windows. In the Window
dialog box, select the documents you want to save and click the Save
button. QuickTest prompts you for the save location for any new files
that have not yet been saved.

➤ You can also choose File > Save As to save the active function library
under a different name or using a different path.

Part I • Working with Advanced Testing Features

190

To save a function library:

 1 Make sure that the function library you want to save is the active document.
(You can click the function library’s tab to bring it into focus.)

 2 Perform one of the following:

➤ Click the Save button

➤ Choose File > Save

➤ Right-click the function library document’s tab and choose Save

If the function library was previously saved, QuickTest saves it with your
changes. Otherwise, if this is the first time you are saving this function
library, the Save Function Library dialog box opens.

Chapter 6 • Working with User-Defined Functions and Function Libraries

191

 3 Save the function library to your Quality Center project or to the file system.
(If the function library will be used in a business process test, you must save
it to your Quality Center project.)

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the relevant Save dialog box.

➤ To save the function library to your Quality Center project, in the Test
Plan Tree box, choose the folder in which you want to save the function
library. In the Attachment name box, type a name for the function
library and click OK.

➤ To save the function library to the file system, in the Save Function
Library dialog box, type a name for the function library in the File name
box and click Save.

QuickTest saves the function library with a .qfl extension (unless you specify
a different extension, such as .vbs or .txt, or remove the extension
altogether).

Opening a Function Library

In QuickTest, you can open any function library that is saved in the file
system or your Quality Center project—even if another document is already
open in QuickTest. You can only open a function library if you have read or
read-write permissions for the file.

Part I • Working with Advanced Testing Features

192

You can choose to open a function library in edit mode or read-only mode:

➤ Edit mode—Enables you to view and modify the function library. While the
function library is open on your computer, other users can view the file in
read-only mode, but they cannot modify it.

➤ Read-only mode—Enables you to view the function library but not modify
it. By default, when you open a function library that is currently open on
another computer, it opens in read-only mode. You can also choose to open
a function library in read-only mode if you want to review it, but you do not
want to prevent another user from modifying it.

Tip: You can also navigate directly from a function in your document to its
function definition in another function library. For more information, see
“Navigating to a Specific Function in a Function Library” on page 195.

To open an existing function library:

Perform one of the following:

➤ Choose File > Open > Function Library

➤ Click the Open button down arrow and choose Function Library

Tips:

If the function library was recently created or opened, you can choose it
from the recent files list in the File menu.

If the function library is associated with the open test, you can choose it
from Resources > Associated Function Libraries. (If you choose a function
library that is stored in a Quality Center project, QuickTest must be
connected to that project to open the associated function library.)

Chapter 6 • Working with User-Defined Functions and Function Libraries

193

The Open Function Library dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the relevant Open dialog box.

Tip: You can open the function library in read-only mode by selecting the
Open in read-only mode check box.

Browse to and select a function library, and click Open. QuickTest opens the
specified function library in a new window. You can now view and modify
its content. For more information, see “Editing a Function Library” on
page 195 and “Debugging a Function Library” on page 197.

Part I • Working with Advanced Testing Features

194

Navigating Between Open QuickTest Documents

You can open multiple function libraries while a test is open, and you can
navigate between all of your open documents.

To navigate between open QuickTest documents:

Perform one of the following:

➤ Click the tab for the required document in the Document pane

Tip: If not all tabs are displayed due to lack of space, use the left and right
scroll arrows in the Document pane to display the required document’s tab.

➤ Press CTRL+TAB on your keyboard to scroll between open documents

➤ Choose the required document from the Window menu

➤ Choose Window > Windows, select the required document in the Windows
dialog box, and click the Activate button

Note: You can also choose Resources > Associated Function Libraries and
choose the required function library from the list. This also opens closed
function libraries that are associated with your test.

Chapter 6 • Working with User-Defined Functions and Function Libraries

195

Navigating to a Specific Function in a Function Library

After you insert a call to a function, you can navigate directly to its
definition in the source document. The function definition can be located
either in the same document (test or function library) or in another
function library that is associated with your test. If the document
containing the function definition is already open, QuickTest activates the
window (brings the window into focus). If the document is closed,
QuickTest opens it.

To navigate to a function's definition:

 1 In the Expert View or function library, click in the step containing the
relevant function.

 2 Perform one of the following:

➤ Choose Edit > Advanced > Go to Function Definition

➤ Right-click the step and choose Go to Function Definition from the
context menu

QuickTest activates the relevant document (if the function definition is
located in another function library) and positions the cursor at the
beginning of the function definition.

Editing a Function Library

You can edit a function library at any time using the QuickTest editing
features that are available in the Expert View.

You can drag and drop a function (or part of it) from one document to
another. (To do so, you must first separate the tabbed documents into
separate document panes by clicking the Restore Down button (located
below the QuickTest window’s Restore Down / Maximize button).)

Part I • Working with Advanced Testing Features

196

You can add steps to your function library manually or using the Step
Generator. The Step Generator enables you to add steps that contain
reserved objects (the objects that QuickTest supplies for enhancement
purposes, such as utility objects), VBScript functions (such as MsgBox),
utility statements (such as Wait), and user-defined functions that are
defined in the same function library. IntelliSense is available for all
functions defined in your action or for public functions defined in
associated function libraries.

Note: In function libraries, IntelliSense does not enable you to view test
object names or collections because function libraries are not connected to
object repositories.

You can instruct QuickTest to check syntax by clicking the Check Syntax
button, or by choosing Tools > Check Syntax.

Tips:

For information on using VBScript, see “Understanding Basic VBScript
Syntax” on page 146.

To check the syntax for all function libraries associated with your test, click
the Check Syntax button in the Resources tab of the Test Settings dialog box
(File > Settings). For more information, refer to “Defining Resource Settings
for Your Test” on page 751 in the QuickTest Professional Basic Features User’s
Guide.

Chapter 6 • Working with User-Defined Functions and Function Libraries

197

Editing a Read-Only Function Library

If you open a function library in read-only mode and then decide to modify
it, you can convert the function library to an editable file—as long as the
function library is not locked by another user. For more information on the
options available when opening a function library, see “Opening a Function
Library” on page 191.

Note: During a debug session, all documents (such as tests and function
libraries) are read-only. To edit a document during a debug session, you
must first stop the debug session.

To edit a read-only function library:

Choose File > Enable Editing or click the Enable Editing button. You can
now edit the function library.

Debugging a Function Library

Before you can debug a function library, you must first associate it with a
test and then insert a call to at least one of its functions. For example, you
can use the Debug Viewer to view, set, or modify the current value of objects
or variables in your function library. You can step into functions (including
user-defined functions), set breakpoints, stop at breakpoints, view
expressions, and so forth. You can begin debugging from a specific step, or
you can instruct QuickTest to pause at a specific step. For more information,
refer to “Debugging Tests and Function Libraries” on page 575 in the
QuickTest Professional Basic Features User’s Guide.

Note: During a debug session, all documents are read-only and cannot be
edited. To edit a document during a debug session, you must first stop the
debug session.

Part I • Working with Advanced Testing Features

198

Printing a Function Library

You can print a function library at any time. You can also include additional
information in the printout.

To print from the function library:

 1 Click the Print button or choose File > Print. The Print dialog box opens.

 2 Specify the print options that you want to use:

➤ Printer—Displays the printer to which the print job will be sent. You can
change the printer by clicking the Setup button.

➤ Selection only—Prints only the text that is currently selected
(highlighted) in the function library.

➤ Insert document name in header—Includes the name of the function
library at the top of the printout.

➤ Insert date in header—Includes today’s date at the top of the printout.
The date format is taken from your Windows regional settings.

➤ Page numbers—Includes page numbers on the bottom of the printout
(for example, page 1 of 3).

➤ Show line numbers every __ lines—Displays line numbers to the left of
the script lines, as specified.

➤ Number of copies—Specifies the number of times to print the document.

 3 If you want to print to a different printer or change your printer preferences,
click Setup to display the Print Setup dialog box.

 4 Click Print to print according to your selections.

Chapter 6 • Working with User-Defined Functions and Function Libraries

199

Closing a Function Library

You can close an individual function library, or if you have several function
libraries open, you can close some or all of them simultaneously. If any of
the function libraries are not saved, QuickTest prompts you to save them.

To close an individual function library:

Perform one of the following:

➤ Make sure that the function library you want to save is the active
document—you can click the function library’s tab to bring it into
focus—and choose File > Close

➤ Right-click the function library document’s tab and choose Close

➤ Click the Close button in the top right corner of the function library
window

➤ Choose Window > Windows. In the Windows dialog box, select the
function library to close if it is not already selected, and click the Close
Window(s) button

To close several function libraries:

Choose Window > Windows. In the Windows dialog box, select the function
libraries you want to close and click the Close Window(s) button.

To close all open function libraries:

Choose File > Close All Function Libraries, or Window > Close All Function
Libraries.

Part I • Working with Advanced Testing Features

200

Working with Associated Function Libraries

In QuickTest, you can create function libraries containing functions,
subroutines, modules, and so forth, and then associate the files with your
test. This enables you to insert a call to a public function or subroutine in
the associated function library from that test. (Public functions stored in
function libraries can be called from any associated test, whereas private
functions can be called only from within the same function library.)

If a test can no longer access a function that was used in a step (for example,
if the function was deleted from the associated function library), the

icon is displayed adjacent to the step in the Keyword View. When you
run the test, an error will occur when it reaches the step using the
nonexistent function.

Note: Any text file written in standard VBScript syntax can be used as a
function library.

You can specify the default function libraries for all new tests in the Test
Settings dialog box (File > Settings > Resources tab). After a test is created,
the list of default function libraries is integrated into the test. Therefore any
changes to the default function libraries list in the Test Settings dialog box
do not affect existing tests.

Chapter 6 • Working with User-Defined Functions and Function Libraries

201

You can edit the list of associated function libraries for an existing test in the
Test Settings dialog box. For more information, refer to “Defining Resource
Settings for Your Test” on page 751 in the QuickTest Professional Basic Features
User’s Guide.

Notes:

➤ In addition to the functions available in the associated function libraries,
you can also call a function contained in any function library (or
VBscript file) directly from any action using the ExecuteFile function.
You can also insert ExecuteFile statements within an associated function
library. For more information, see “Executing Externally-Defined
Functions from Your Test” on page 228.

➤ You cannot debug a file that is called using an ExecuteFile statement, or
any of the functions contained in the file. In addition, when debugging a
test that contains an ExecuteFile statement, the execution marker may
not be correctly displayed.

Working with Associated Function Libraries in Quality Center

You can associate a function library with your test, regardless of whether the
function library is stored in the file system or your Quality Center project.
However, if you are planning on using the function library in a business
process test, you must save it in your Quality Center project.

When working with Quality Center and associated function libraries, you
must save the associated function library as an attachment in your Quality
Center project before you specify the associated file in the Resources tab of
the Test Settings dialog box. You can add a new or existing function library
to your Quality Center project.

If you add an existing function library from the file system to a Quality
Center project, you are actually adding a copy of that file to the project.
Therefore, if you later make modifications to either of these function
libraries (in the file system or in your Quality Center project), the other
function library remains unaffected.

Part I • Working with Advanced Testing Features

202

Associating Function Libraries with a Test

You can associate an open function library with the currently open test.

You can also associate function libraries with the currently open test using
the associated function libraries list. For more information, see “Modifying
Function Library Associations” on page 203.

To associate a function library with a test:

 1 Make sure that the test with which you want to associate the function
library is open in QuickTest.

 2 Create or open a function library in QuickTest. (Before continuing to the
next step, make sure that the function library you want to associate with the
test is the active document—you can click the function library’s tab to bring
it into focus.) For more information, see “Managing Function Libraries” on
page 188.

 3 Save the function library either in your Quality Center project as an
attachment or in the file system. For more information, see “Saving a
Function Library” on page 189.

 4 In QuickTest, choose File > Associate Library '<Function Library>' with
'<Test>' or right-click in the in the function library and choose Associate
Library '<Function Library>' with '<Test>'. QuickTest associates the function
library with the open test.

Chapter 6 • Working with User-Defined Functions and Function Libraries

203

Modifying Function Library Associations

You can modify the list of associated function libraries for a test. You can
add or remove function libraries from the list, and change their priorities.

To modify function library associations in your test:

 1 In the Test Settings dialog box, click the Resources tab.

 2 In the associated function libraries list, click the Add button. QuickTest
displays a browse button enabling you to browse to a function library in the
file system. If you are connected to a Quality Center project, QuickTest also
adds [QualityCenter] to the file path, indicating that you can browse to a
function library either in your Quality Center project or in the file system.

Tip: If you want to add a file from your Quality Center project but are not
connected to Quality Center, press and hold the SHIFT key and click the Add
button. QuickTest adds [QualityCenter], and you can enter the path
manually. If you do, make sure there is a space after [QualityCenter]. For
example: [QualityCenter] Subject\Tests

Note that QuickTest searches Quality Center project folders only when you
are connected to the corresponding Quality Center project.

 3 Select the function library you want to associate with your test and click
Open or OK (depending on whether you are selecting it from the file system
or your Quality Center project).

Tip: You can remove an associated function library from the list by selecting
it and clicking the Remove button. You can also prioritize associated
function libraries by using the Up and Down arrows.

For more information, refer to “Defining Resource Settings for Your Test” on
page 751 in the QuickTest Professional Basic Features User’s Guide.

Part I • Working with Advanced Testing Features

204

Using the Function Definition Generator

QuickTest provides a Function Definition Generator, which enables you to
generate definitions for new user-defined functions and add header
information to them. You can then register these functions to a test object,
if needed. You fill in the required information and the Function Definition
Generator creates the basic function definition for you. After you define the
function definition, you can insert the definition in your function library
and associate it with your test, or you can insert the definition directly in a
test script in the Expert View. Finally, you complete the function by adding
its content (code).

Note: If you insert the function directly in the Expert View, the test will be
able to access the function anywhere within the specific action.

If you register the function to a test object, it can be called by that test
object, and is displayed in the list of available operations for that test object.

If you do not register the function to a test object, it becomes a global
operation and is displayed in the list of operations in the Operation box in
the Step Generator, and in the Operation column in the Keyword View, and
when using IntelliSense. If you register a function, you can define it as the
default operation that is displayed in the Step Generator or the Keyword
View when the test object to which it is registered is selected.

Finally, you can document your user-defined function by defining the
tooltip that displays when the cursor is positioned over the operation in the
Step Generator, in the Keyword View, and when using IntelliSense. You can
also add a sentence that describes what the step that includes the
user-defined function actually does. This sentence is then displayed in the
Keyword View in the Step documentation box of the Step Generator and in
the Documentation column.

Chapter 6 • Working with User-Defined Functions and Function Libraries

205

As you add information to the Function Definition Generator, the Preview
area displays the emerging function definition. After you finish defining the
function, you insert the definition in the active QuickTest document. If you
insert it in a function library, the function will be accessible to any
associated test. If you insert the function directly in a test in the Expert
View, it can be called only from within the specific action. Finally, you add
the content (code) of the function.

The following section provides an overview of the steps you perform when
using the Function Definition Generator to create a function.

To use the Function Definition Generator:

 1 Open the Function Definition Generator, as described in “Opening the
Function Definition Generator” on page 206.

 2 Define the function, as described in “Defining the Function Definition” on
page 208.

 3 Register the function to a test object, if needed, as described in “Registering
a Function Using the Function Generator” on page 209.

By default, functions that are not registered to a test object are automatically
defined as global functions that can be called by selecting the Functions
category in the Step Generator, the Operation item in the Keyword View, or
when using IntelliSense. Note that if you register the function to a test
object, you can also define the function (operation) as the default operation
for that selected test object.

 4 Add arguments to the function, as described in “Specifying Arguments for
the Function” on page 213.

 5 Document the function by adding header information to it, as described in
“Documenting the Function” on page 214.

 6 Preview the function before finalizing it, as described in “Previewing the
Function” on page 216.

 7 Generate another function definition, if needed, as described in “Generating
Another User-Defined Function” on page 216.

Part I • Working with Advanced Testing Features

206

 8 Finalize each function by inserting it in your active document and adding
content to it, as described in “Finalizing the User-Defined Function” on
page 217.

Note: Each of the steps listed in this section assumes that you have
performed the previous steps.

Opening the Function Definition Generator

You open the Function Definition Generator from QuickTest.

To open the Function Definition Generator:

 1 Make sure that the function library or test in which you want to insert the
function definition is the active document. (You can click the document’s
tab to bring it into focus.) This is because the Function Definition Generator
inserts the function in the currently active document after you finish
defining it.

Chapter 6 • Working with User-Defined Functions and Function Libraries

207

 2 Choose Insert > Function Definition Generator or click the Function
Definition Generator button. The Function Definition Generator opens.

After you open the Function Definition Generator, you can begin to define a
new function.

Part I • Working with Advanced Testing Features

208

Defining the Function Definition

After you open the Function Definition Generator, you can begin defining a
function.

For example, if you want to define a function that verifies the value of a
specified property, you might name it VerifyProperty and define it as a public
function so that it can be called from any associated test. (If you define it as
private, the function can only be called from elsewhere in the same function
library. Private functions cannot be registered to a test object.)

To define a function:

 1 In the Name box, enter a name for the new function. The name should
clearly indicate what the operation does so that it can be easily selected
from the Step Generator or the Keyword View. Function names cannot
contain non-English letters or characters. In addition, function names must
begin with a letter and cannot contain spaces or any of the following
characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

Note: Do not give the user-defined function the same name as a built-in
function (for example, GetLastError, MsgBox, or Print). Built-in functions
take priority over user-defined functions, so if you call a user-defined
function that has the same name as a built-in function, the built-in function
is called instead. For a list of built-in functions, refer to the Built-in functions
list in the Step Generator (Insert > Step Generator).

 2 From the Type list, choose Function or Sub, according to whether you want
to define a function or a subroutine.

Chapter 6 • Working with User-Defined Functions and Function Libraries

209

 3 From the Scope list, choose the scope of the function—either Public (to
enable the function to be called by any test that is associated with this
function library), or Private (to enable the function to be called only from
elsewhere in the same function library). By default, the scope is set to Public.
(Only public functions can be registered to a test object.)

Note: If you create a user-defined function manually and do not define the
scope as Public or Private, it will be treated as a public function, by default.

After you define a public function, you can register the function.
Alternatively, if you defined a private function, or if you do not want to
register the function, you can continue by specifying arguments for the
function. For more information, see “Specifying Arguments for the
Function” on page 213.

Registering a Function Using the Function Generator

You can register a public function to a test object to enable the function
(operation) to be performed on a test object. When you register a function
to a test object, you can choose to override the functionality of an existing
operation, or you can register the function as a new operation for the test
object.

After you register a function to a test object, it is displayed as an operation in
the Step Generator when that test object is selected, and in the Keyword
View Operation list when that test object is selected from the Item list, as
well as in IntelliSense and in the general Operation list in the Step
Generator. When you register a function to a test object, it can only be
called by that test object.

Part I • Working with Advanced Testing Features

210

If you choose to register the function to a test object, the Function
Definition Generator automatically adds the argument, test_object, as the
first argument in the Arguments area in the top-right corner of the Function
Definition Generator. The Function Definition Generator also automatically
adds a RegisterUserFunc statement with the correct argument values
immediately after your function definition.

When you register a function to a test object, you can optionally define it as
the default operation for that test object. This instructs QuickTest to display
the function in the Operation column, by default, when you or the Subject
Matter Expert choose the associated test object in the Item list. It also
enables you to select the function from IntelliSense. When you define a
function as the default function for a test object, the value True is specified
as the fourth argument of the RegisterUserFunc statement.

If you do not register the function to a specific test object, the function is
automatically defined as a global function. Global functions can be called
by selecting the Functions category in the Step Generator, or the Operation
item in the Keyword View. A list of global functions can be viewed
alphabetically in the Operation box when the Functions category is selected
in the Step Generator, in the Operation list when the Operation item is
selected from the Item list in the Keyword View, and when using
IntelliSense.

Chapter 6 • Working with User-Defined Functions and Function Libraries

211

During run-time, QuickTest first searches the test for the specified function
and then searches the function libraries in the order in which they are listed
in the Resources tab. If QuickTest finds more than one function that
matches the function name in a specific test or function library, it uses the
last function it finds in that test or function library. If QuickTest finds two
functions with the same name in two different function libraries, it uses the
function from the function library that has the higher priority. To avoid
confusion, it is recommended that you verify that within the resources
associated with a test, each function has a unique name.

Tip: If you choose not to register your function at this time, you can
manually register it later by adding a RegisterUserFunc statement after your
function as shown in the following example:
RegisterUserFunc “WebEdit”, “MySet”, “MySetFunc”

In this example, the MySet method (operation) is added to the WebEdit test
object using the MySetFunc user-defined function. If you choose the
WebEdit test object from the Item list in the Keyword View, the MySet
operation will then be displayed in the Operation list (together with other
registered and out of the box operations for the WebEdit test object).

You can also register your function to other test objects by duplicating
(copying and pasting) the RegisterUserFunc statement and modifying the
argument values as needed when you save the function code in a function
library.

To define this function as the default function, you define the value of the
fourth argument of the RegisterUserFunc statement as True. For example:
RegisterUserFunc “WebEdit”, “MySet”, “MySetFunc”, True

Note: A registered or global function can only be called from a test after it is
added to the test script or a function library that is associated with the test.

Part I • Working with Advanced Testing Features

212

To register the function to a test object:

 1 Select the Register to a test object check box. The options in this area are
enabled, and a new argument, test_object, is automatically added to the list
of arguments in the Arguments area in the top-right corner of the Function
Definition Generator. (The test_object argument receives the test object to
which you want to register the function.)

Note: If you clear the Register to a test object check box, the default
test_object argument is automatically removed from the Arguments area
(unless you renamed it).

 2 Choose a Test object from the list of available objects. For example, for the
sample VerifyProperty function, you might want to register it to the Link
test object.

 3 Specify the Operation that you want to add or override for the test object.

➤ To define a new operation, enter a new operation name in the Operation
box. For example, for the sample VerifyProperty function, you may
want to define a new VerifyProperty operation.

➤ To override the standard functionality of an existing operation, choose
an operation from the list of available operations in the Operation box.

Chapter 6 • Working with User-Defined Functions and Function Libraries

213

 4 If you want the function to be displayed as the default operation in the
Operation column when you or the Subject Matter Expert choose the
associated item, select the Register as default operation check box.

For example, if you were to define the VerifyProperty operation as the
default operation for the Link test object, the value True would be defined as
the fourth argument of the RegisterUserFunc statement, and the syntax
would appear as follows:

RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty", True

After you specify the test object registration information, you specify
additional arguments for the function.

Specifying Arguments for the Function

After you define the basic function definition and specify the test object
registration information, if any, you can specify the function’s arguments.

For example, if you choose to register the function to a test object, as we did
the example described in “Registering a Function Using the Function
Generator” on page 209, you may want to assign the arguments prop_name
(the name of the property to check) and expected_value (the expected value
of the property), in addition to the first argument, test_object. You must
define the required argument(s) for your function to run correctly.

You can list the arguments in any order. However, if you are registering the
function to a test object, the first argument must always receive the test
object.

Part I • Working with Advanced Testing Features

214

To define the arguments for the function:

In the Arguments area, specify the argument(s) for the function. You can
add as many arguments as needed. To ensure clarity, the name for each
argument should indicate the value that needs to be entered.

➤ To add an argument, click and enter a name for the argument. The
argument name should clearly indicate the value that needs to be
entered for the argument. Argument names may not contain
non-English letters or characters. In addition, argument names must
begin with a letter and cannot contain spaces or any of the following
characters:
! @ # $ % ^ & * () + = [] \ { } | ; ‘ : ““ , / < > ?

By default, the Pass Mode is set as By value. This instructs QuickTest to
pass the argument to the function by value. If you want to pass the
argument by reference, choose By reference in the Pass Mode box.

➤ To remove an argument, select it and click . The argument is removed
from the Function Definition Generator.

➤ To set the order of the arguments, use the and arrows. The order
of the arguments only affects the readability of the function code (except
if you want to register the public function—in this case, the first
argument must receive the test object).

Documenting the Function

The Function Definition Generator enables you to add header information
to your user-defined function. You can add a description, which is displayed
as a tooltip when the cursor is positioned over the operation. You can then
use this tooltip to determine which operation to choose from the list of
available operations. (It is advisable to keep the description text as brief and
clear as possible.)

In addition, you can add documentation that specifies exactly what a step
using your function does. You can include the test object name, test object
type, and any argument values in the text. You can also add text manually,
as needed. This text that you add here is displayed in the Keyword View in
the Step documentation box of the Step Generator and in the
Documentation column. Therefore, the sentence must be a clear and
understandable.

Chapter 6 • Working with User-Defined Functions and Function Libraries

215

For example, if you were checking a link to “Mercury” from a search engine,
you might define the following documentation using the Function
Definition Generator:

‘@Documentation Check if the <Test object name> <Test object type>
<prop_name> value matches the expected value: <expected_value>.

After choosing values for the arguments in the Keyword View, the above
documentation might appear as follows: Check if the “Mercury Business
Technology” link “text” value matches the expected value: “Mercury Business
Technology Optimization (BTO) Software”.

Tip: You can right-click on any column header in the Keyword View and
select the Documentation only option to view or print a list of steps. This
instructs QuickTest to display only the Documentation column. You can
also choose Edit > Copy Documentation to Clipboard and then paste the
documentation in any application. Therefore, the sentence displayed for the
step in this column must also be clear enough to use for manual testing
instructions.

To document the function:

 1 In the Description box, enter the text to be displayed as a tooltip when the
cursor is positioned over the function name in the Operation list in the Step
Generator, in the Operation column in the Keyword View, and in
IntelliSense.

For example, for the sample VerifyProperty function, you may want to
enter: Checks whether a property value matches the actual value.

Part I • Working with Advanced Testing Features

216

 2 In the Documentation box, enter the text to be displayed in the Step
documentation box in the Step Generator in the Keyword View and in the
Documentation column of the Keyword View. You can use arguments in the
Documentation text by clicking and selecting the relevant argument. If
you selected the Register to a test object check box, clicking also enables
you to add the Test object name and/or Test object type items to the
Documentation column from the displayed list. If you use these test object
and argument items in the Documentation text, they are replaced
dynamically by the relevant test object names and types or argument values.

Previewing the Function

The Preview area displays the function code as you define it, in read-only
format. You can review your function and make any changes, as needed, in
the various areas of the Function Definition Generator.

For example, for the sample VerifyProperty function, the Preview area
displays the following code.

After you review the code (before you insert it in the active document), you
can choose either to generate another function definition or to finalize the
code for the function you defined.

Generating Another User-Defined Function

After you preview the code—before you insert the function in the active
document—you can decide whether you want to generate an additional
function definition.

Note: If you do not want to define an additional function, continue to the
next section.

Chapter 6 • Working with User-Defined Functions and Function Libraries

217

To generate an additional user-defined function:

 1 Select the Insert another function definition check box and click Insert.
QuickTest inserts the function definition in the active document and clears
the data from the Function Definition Generator. The Function Definition
Generator remains open.

 2 Define the new function beginning from “Defining the Function
Definition” on page 208.

Finalizing the User-Defined Function

After you preview the code, you insert it in the active document. If you
insert it in a function library, any test associated with the function library
can access the function. If you insert the function directly in a test (in the
Expert View), the test can contain a call to the function from anywhere
within the specific action.

After you insert the code in the required location, you can finalize the
function. For example, for the VerifyProperty function, the following code
would be inserted in your function library or test:

‘@Description Checks whether a property matches its expected value
‘@Documentation Check whether the <Test object name> <Test object type>
<prop_name> value matches the expected value: <expected_value>.
Public Function VerifyProperty (test_object, prop_name, expected_value)

‘TODO: add function body here
End Function
RegisterUserFunc "Link", "VerifyProperty", "VerifyProperty"

Tip: The RegisterUserFunc statement (in the last line) registers the
VerifyProperty function to the Link test object. If you want to register the
function to more than one test object, you could copy this line and
duplicate it for each test object, changing the argument values, as required.

Part I • Working with Advanced Testing Features

218

To finalize the function, you add its content (replacing the TODO
comment). For example, if you want the function to verify whether the
expected value of a property matches the actual property value of a specific
test object, you might add the following to the body of the function:

Dim actual_value
' Get the actual property value
actual_value = obj.GetROProperty(prop_name)
' Compare the actual value to the expected value
If actual_value = expected_value Then

Reporter.ReportEvent micPass, "VerifyProperty Succeeded", "The " &
prop_name & " expected value: " & expected_value & " matches the actual
value"

VerifyProperty = True
Else

Reporter.ReportEvent micFail, "VerifyProperty Failed", "The " &
prop_name & " expected value: " & expected_value & " does not match the
actual value: " & actual_value

VerifyProperty = False
End If

To finalize the user-defined function:

 1 Click OK. QuickTest inserts the function definition in the active document
and closes the Function Definition Generator.

Note: If you define a function directly in an action, the function can be
called only in that action.

Chapter 6 • Working with User-Defined Functions and Function Libraries

219

 2 In your function library or test, add content to the function code, as
required, by replacing the TODO line.

Tip: To display the function in the test results tree (Test Results window)
after a run session, add a Reporter.ReportEvent statement to the function
code (as shown in the example above).

Note that if your user-defined function uses a default test object method,
this step will appear in the Test Results window after the run session.
However, you can still add a Reporter.ReportEvent statement to the
function code to provide additional information and to modify the test
status, if required.

 3 If you inserted the code in a function library, you must associate the
function library with a test to enable access to the user-defined function(s).
You also need to check its syntax to ensure that tests will have access to the
functions, and that you will be able to see and use the functions. For more
information, see “Working with Associated Function Libraries” on page 200.

Registering User-Defined Functions as Test Object Methods

In addition to using the QuickTest Function Definition Generator to register
a function, as described in “Registering a Function Using the Function
Generator” on page 209, you can also use the RegisterUserFunc statement
to add new methods to test objects or to change the behavior of an existing
test object method during a run session.

When you register a function to a test object, you can define it as the default
operation for that test object, if required. The default operation is displayed
by default in the Step Generator or the Operation column in the Keyword
View when the test object to which it is registered is selected.

Part I • Working with Advanced Testing Features

220

If you choose not to register a function to a test object, it becomes a global
function. Global functions can be called by selecting the Functions category
in the Step Generator, the Operation item in the Keyword View, or when
using IntelliSense. You use the UnregisterUserFunc statement to disable
new methods or to return existing methods to their original QuickTest
behavior.

To register a method, you first define a function in your test or in an
associated function library. You then enter a RegisterUserFunc statement at
the end of the function that specifies the test object class, the function to
use, and the method name that calls your function. You can register a new
method for a test object class, or you can use an existing method name to
(temporarily) override the existing functionality of the specified method.

Your registered method applies only to the test or function library in which
you register it. In addition, QuickTest clears all function registrations at the
beginning of each run session.

Preparing the User-Defined Function

You can write your user-defined function directly into your test if you want
to limit its use only to the local action, or you can store the function in an
associated function library to make it available to many actions and tests
(recommended). If the same function name exists locally within your action
and within an associated function library, QuickTest uses the function
defined in the action.

Chapter 6 • Working with User-Defined Functions and Function Libraries

221

When you run a statement containing a registered method, it sends the test
object as the first argument. For this reason, your user-defined function
must have at least one argument. Your user-defined function can have any
number of arguments, or it can have only the test object argument. Make
sure that if the function overrides an existing method, it has the exact
syntax of the method it is replacing. This means that its first argument is the
test object and the rest of the arguments match all the original method
arguments.

Tip: You can use the parent test object property to retrieve the parent of the
object represented by the first argument in your function. For example:
ParentObj = obj.GetROProperty("parent")

When writing your function, you can use standard VBScript statements as
well as any QuickTest reserved objects, methods, functions, and any method
associated with the test object specified in the first argument of the
function.

For example, suppose you want to report the current value of an edit box to
the Test Results before you set a new value for it. You can override the
standard QuickTest Set method with a function that retrieves the current
value of an edit box, reports that value to the Test Results, and then sets the
new value of the edit box.

The function would look something like this:

Function MyFuncWithParam (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MyFuncWithParam=obj.Set (x)

End Function

Note: This function defines a return value, so that each time it is called from
a test, the function returns the Set method argument value.

Part I • Working with Advanced Testing Features

222

Registering User-Defined Test Object Methods

You can use the RegisterUserFunc statement to instruct QuickTest to use
your user-defined function as a method of a specified test object class for the
duration of a test run, or until you unregister the method.

Note: If you call an external action that registers a method (and does not
unregister it at the end of the action), the method registration also takes
effect for the remainder of the test that called the action.

To register a user-defined function as a test object method, use the
following syntax:

RegisterUserFunc TOClass, MethodName, FunctionName, SetAsDefault

Item Description

TOClass Any test object class.

Note: You cannot register a method for a QuickTest
reserved object (such as DataTable, Environment,
Reporter, and so forth).

MethodName The name of the method you want to register (and display
in QuickTest, for example, in the Keyword View and
IntelliSense). If you enter the name of a method already
associated with the specified test object class, your
user-defined function overrides the existing method. If
you enter a new name, it is added to the list of methods
that the object supports.

FunctionName The name of the user-defined function that you want to
call from your test. The function can be located in your
test or in any associated function library.

SetAsDefault Indicates whether the registered function is used as the
default method for the test object.
When you select a test object in the Keyword View or Step
Generator, the default method is automatically displayed
in the Operation column (Keyword View) or Operation
box (Step Generator).

Chapter 6 • Working with User-Defined Functions and Function Libraries

223

Tip: If the function you are registering is defined in a function library, it is
recommended to include the RegisterUserFunc statement in the function
library as well so that the method will be immediately available for use in
any test using that function library.

For example, suppose that the Find Flights Web page contains a Country
edit box, and by default, the box contains the value USA. The following
example registers the Set method to use the MySet function in order to
retrieve the default value of the edit box before the new value is entered.

Function MySet (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MySet=obj.Set(x)

End Function

RegisterUserFunc "WebEdit", "Set", "MySet"
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada"

For more information and examples, refer to the QuickTest Professional Object
Model Reference.

Part I • Working with Advanced Testing Features

224

Unregistering User-Defined Test Object Methods

When you register a method using a RegisterUserFunc statement, your
method becomes a recognized method of the specified test object for the
remainder of the test, or until you unregister the method. If your method
overrides a QuickTest method, unregistering the method resets the method
to its normal behavior. Unregistering other methods removes them from the
list of methods supported by the test object.

Unregistering methods is especially important when a reusable action
contains registered methods that override QuickTest methods. For example,
if you do not unregister a method that uses a function defined directly
within a called action, then the calling test will fail if the registered method
is called again in a later action, because it will not be able to find the
function definition.

If the registered function was defined in a function library, then the calling
test may succeed (assuming the function library is associated with the
calling test). However, unexpected results may be produced as the author of
the calling test may not realize that the called action contained a registered
function, and therefore, may use the registered method in later actions,
expecting normal QuickTest behavior.

To unregister a user-defined method, use the following syntax:

UnRegisterUserFunc TOClass, MethodName

Item Description

TOClass The test object class for which your method is registered.

MethodName The method you want to unregister.

Chapter 6 • Working with User-Defined Functions and Function Libraries

225

For example, suppose that the Find Flights Web page contains a Country
edit box, and by default, the box contains the value USA. The following
example registers the Set method to use the MySet function in order to
retrieve the default value of the edit box before the new value is entered.
After using the registered method in a WebEdit.Set statement for the
Country edit box, the UnRegisterUserFunc statement is used to return the
Set method to its standard functionality.

Function MySet (obj, x)
dim y
y = obj.GetROProperty("value")
Reporter.ReportEvent micDone, "previous value", y
MySet=obj.Set(x)

End Function

RegisterUserFunc "WebEdit", "Set", "MySet"
Browser("MercuryTours").Page("FindFlights").WebEdit("Country").Set "Canada"
UnRegisterUserFunc "WebEdit", "Set"

Additional Tips for Working with User-Defined Functions

When working with user-defined functions, consider the following tips and
guidelines:

➤ For an in-depth view of the required syntax, you can define a function using
the Function Definition Generator and experiment with the various
options.

➤ When you register a function, it applies to an entire test object class. You
cannot register a method for a specific test object.

➤ If you want to call a function from additional test objects, you can copy the
RegisterUserFunc line, paste it immediately after another function and
replace any relevant argument values.

➤ If the function you are registering is defined in a function library, it is
recommended to include the RegisterUserFunc statement in the function
library as well so that the method will be immediately available for use in
any test using that function library.

Part I • Working with Advanced Testing Features

226

➤ QuickTest clears all method registrations at the beginning of each run
session.

➤ If you use a partial run or debug option, such as Run from step or Start from
step, to begin running a test from a point after method registration was
performed in a test step (and not in a function library), QuickTest does not
recognize the method registration because it occurred prior to the beginning
of the current run session.

➤ To use an Option Explicit statement in a function library associated with
your test, you must include it in all the function libraries associated with the
test. If you include an Option Explicit statement in only some of the
associated function libraries, QuickTest ignores all the Option Explicit
statements in all function libraries. You can use Option Explicit statements
directly in your action scripts without any restrictions.

➤ Each function library must have unique variables in its global scope. If you
have two associated function libraries that define the same variable in the
global scope using a Dim statement or define two constants with the same
name, the second definition causes a syntax error. If you need to use more
than one variable with the same name in the global scope, include a Dim
statement only in the last function library (since function libraries are
loaded in the reverse order).

➤ By default, steps that use user-defined functions are not displayed in the test
results tree of the Test Results window after a run session. If you want the
function to appear in the test results tree, you must add a
Reporter.ReportEvent statement to the function code. For example, you
may want to provide additional information or to modify the test status, if
required.

➤ If you delete a function in use from an associated function library, the test
step using the function will display the icon. In subsequent run sessions
for the test, an error will occur when the step using the non-existent
function is reached.

➤ If another user modifies a function library that is referenced by a test, or if
you modify the function library using an external editor (not QuickTest),
the changes will take effect only after the test is reopened.

Chapter 6 • Working with User-Defined Functions and Function Libraries

227

➤ When more than one function with the same name exists in the test script
or function library, the last function will always be called. (QuickTest
searches the test script for the function prior to searching the function
libraries.) To avoid confusion, make sure that you verify that within the
resources associated with a test, each function has a unique name.

➤ If you register a method within a reusable action, it is strongly
recommended to unregister the method at the end of the action (and then
re-register it at the beginning of the next action if necessary), so that tests
calling your action will not be affected by the method registration.

➤ You can re-register the same method to use different user-defined functions
without first unregistering the method. However, when you do unregister
the method, it resets to its original QuickTest functionality (or is cleared
completely if it was a new method), and not to the previous registration.

For example, suppose you enter the following statements:

RegisterUserFunc "Link", "Click", "MyClick"
RegisterUserFunc "Link", "Click", "MyClick2"
UnRegisterUserFunc "Link", "Click"

After running the UnRegisterUserFunc statement, the Click method stops
using the functionality defined in the MyClick2 function, and returns to
the original QuickTest Click functionality, and not to the functionality
defined in the MyClick function.

➤ For more information about creating functions and subroutines using
VBScript, you can view the VBScript documentation from the QuickTest
Help menu (Help > QuickTest Professional Help > VBScript Reference).

Part I • Working with Advanced Testing Features

228

Executing Externally-Defined Functions from Your Test

If you decide not to associate a function library (any VBScript file) with a
test, but do want to be able to call its functions, subroutines, and so forth
from an action in your test or from another function library, you can do so
by inserting an ExecuteFile statement in your action.

When you run your test, the ExecuteFile statement executes all global code
in the function library making all definitions in the file available from the
global scope of the action’s script.

Note: You cannot debug a file that is called using an ExecuteFile statement,
or any of the functions contained in the file. In addition, when debugging a
test that contains an ExecuteFile statement, the execution marker may not
be correctly displayed.

Tip: If you want to include the same ExecuteFile statement in every action
you create, you can add the statement to an action template. For more
information, refer to “Creating an Action Template” on page 487 in the
QuickTest Professional Basic Features User’s Guide.

To execute an externally-defined function:

 1 Create a VBScript file using standard VBScript syntax. For more information,
refer to the Microsoft VBScript Language Reference (Help > QuickTest
Professional Help > VBScript Reference > VBScript).

 2 Store the file in any folder that you can access from the computer running
your test.

 3 Add an ExecuteFile statement to an action in your test using the following
syntax:

ExecuteFile FileName

where FileName is the absolute or relative path of your VBScript file.

Chapter 6 • Working with User-Defined Functions and Function Libraries

229

 4 Use the functions, subroutines, and so forth, from the specified VBScript file
as necessary in your action.

Notes:

The ExecuteFile statement utilizes the VBScript ExecuteGlobal statement.
For more information, refer to the Microsoft VBScript Language Reference
(choose Help > QuickTest Professional Help > VBScript Reference >
VBScript).

When you run an ExecuteFile statement within an action, you can call the
functions in the file only from the current action. To make the functions in
a VBScript file available to your entire test, add the file name to the
associated function libraries list in the Resources tab of the Test Settings
dialog box. For more information, see “Working with Associated Function
Libraries” on page 200.

Part I • Working with Advanced Testing Features

230

231

7
Automating QuickTest Operations

Just as you use QuickTest to automate the testing of your applications, you
can use the QuickTest Professional automation object model to automate
your QuickTest operations. Using the objects, methods, and properties
exposed by the QuickTest automation object model, you can write programs
that configure QuickTest options and run tests instead of performing these
operations manually using the QuickTest interface.

Automation programs are especially useful for performing the same tasks
multiple times or on multiple tests, or quickly configuring QuickTest
according to your needs for a particular environment or application.

This chapter describes:

➤ About Automating QuickTest Operations

➤ Deciding When to Use QuickTest Automation Programs

➤ Choosing a Language and Development Environment for Designing and
Running Automation Programs

➤ Learning the Basic Elements of a QuickTest Automation Program

➤ Generating Automation Scripts

➤ Using the QuickTest Automation Object Model Reference

Part I • Working with Advanced Testing Features

232

About Automating QuickTest Operations

You can use the QuickTest Professional automation object model to write
programs that automate your QuickTest operations. The QuickTest
automation object model provides objects, methods, and properties that
enable you to control QuickTest from another application.

What is Automation?

Automation is a Microsoft technology that makes it possible to access
software objects inside one application from other applications. These
objects can be easily created and manipulated using a scripting or
programming language such as VBScript or VC++. Automation enables you
to control the functionality of an application programmatically.

An object model is a structural representation of software objects (classes)
that comprise the implementation of a system or application. An object
model defines a set of classes and interfaces, together with their properties,
methods and events, and their relationships.

What is the QuickTest Automation Object Model?

Essentially all configuration and run functionality provided via the
QuickTest interface is in some way represented in the QuickTest automation
object model via objects, methods, and properties. Although a one-on-one
comparison cannot always be made, most dialog boxes in QuickTest have a
corresponding automation object, most options in dialog boxes can be set
and/or retrieved using the corresponding object property, and most menu
commands and other operations have corresponding automation methods.

You can use the objects, methods, and properties exposed by the QuickTest
automation object model, along with standard programming elements such
as loops and conditional statements to design your program.

Automation programs are especially useful for performing the same tasks
multiple times or on multiple tests, or quickly configuring QuickTest
according to your needs for a particular environment or application.

Chapter 7 • Automating QuickTest Operations

233

For example, you can create and run an automation program from Microsoft
Visual Basic that loads the required add-ins for a test, starts QuickTest in
visible mode, opens the test, configures settings that correspond to those in
the Options, Test Settings, and Record and Run Settings dialog boxes, runs
the test, and saves the test.

You can then add a simple loop to your program so that your single program
can perform the operations described above for multiple tests.

You can also create an initialization program that opens QuickTest with
specific configuration settings. You can then instruct all of your testers to
open QuickTest using this automation program to ensure that all of your
testers are always working with the same configuration.

Deciding When to Use QuickTest Automation Programs

Like the tests you design using QuickTest, creating a useful QuickTest
automation program requires planning, design time, and testing. You must
always weigh the initial investment with the time and human-resource
savings you gain from automating potentially long or tedious tasks.

Any QuickTest operation that you must perform many times in a row or
must perform on a regular basis is a good candidate for a QuickTest
automation program.

Part I • Working with Advanced Testing Features

234

The following are just a few examples of useful QuickTest automation
programs:

➤ Initialization programs—You can write a program that automatically starts
QuickTest and configures the options and the settings required for recording
on a specific environment.

➤ Maintaining your tests—You can write a program that iterates over your
collection of tests to accomplish a certain goal. For example:

➤ Updating values—opening each test with the proper add-ins, running it
in update run mode against an updated application, and saving it in
order to update the values in all of your tests to match the updated values
in your application.

➤ Applying new options to existing tests—When you upgrade to a new
version of QuickTest, you may find that the new version offers certain
options that you want to apply to your existing tests. You can write a
program that opens each existing test, sets values for the new options,
then saves and closes it.

➤ Calling QuickTest from other applications—You can design your own
applications with options or controls that run QuickTest automation
programs. For example, you could create a Web form or simple Windows
interface from which a product manager could schedule QuickTest runs,
even if the manager is not familiar with QuickTest.

Chapter 7 • Automating QuickTest Operations

235

Choosing a Language and Development Environment for
Designing and Running Automation Programs

You can choose from a number of object-oriented programming languages
for your automation programs. For each language, there are a number of
development environments available for designing and running your
automation programs.

Writing Your Automation Program

You can write your QuickTest automation programs in any language and
development environment that supports automation. For example, you can
use: VBScript, JavaScript, Visual Basic, Visual C++, or Visual Studio.NET.

Some development environments support referencing a type library. A type
library is a binary file containing the description of the objects, interfaces,
and other definitions of an object model.

If you choose a development environment that supports referencing a type
library, you can take advantage of features like Microsoft IntelliSense,
automatic statement completion, and status bar help tips while writing your
program. The QuickTest automation object model supplies a type library file
named QTObjectModel.dll. This file is stored in <QuickTest installation
folder>\bin.

Part I • Working with Advanced Testing Features

236

If you choose an environment that supports it, be sure to reference the
QuickTest type library before you begin writing or running your automation
program. For example, if you are working in Microsoft Visual Basic, choose
Project > References to open the References dialog box for your project.
Then select QuickTest Professional <Version> Object Library (where
<Version> is the current installed version of the QuickTest automation type
library).

Running Your Automation Program

There are several applications available for running automation programs.
You can also run automation programs from command line using
Microsoft's Windows Script Host.

For example, you could use the following command line to run your
automation program:

WScript.exe /E:VBSCRIPT myScript.vbs

Chapter 7 • Automating QuickTest Operations

237

Learning the Basic Elements of a QuickTest Automation
Program

Like most automation object models, the root object of the QuickTest
automation object model is the Application object. The Application object
represents the application level of QuickTest. You can use this object to
return other elements of QuickTest such as the Test object (which represents
a test document), Options object (which represents the Options dialog box),
or Addins collection (which represents a set of add-ins from the Add-in
Manager dialog box), and to perform operations like loading add-ins,
starting QuickTest, opening and saving tests, and closing QuickTest.

Each object returned by the Application object can return other objects,
perform operations related to the object and retrieve and/or set properties
associated with that object.

Every automation program begins with the creation of the QuickTest
Application object. Creating this object does not start QuickTest. It simply
provides an object from which you can access all other objects, methods
and properties of the QuickTest automation object model.

Note: You can also optionally specify a remote QuickTest computer on
which to create the object (the computer on which to run the program). For
more information, refer to the “Running Automation Programs on a Remote
Computer” section of the online QuickTest Automation Object Model Reference.

The structure for the rest of your program depends on the goals of the
program.You may perform a few operations before you start QuickTest such
as retrieving the associated add-ins for a test, loading add-ins, and
instructing QuickTest to open in visible mode.After you perform these
preparatory steps, if QuickTest is not already open on the computer, you can
open QuickTest using the Application.Launch method. Most operations in
your automation program are performed after the Launch method.

Part I • Working with Advanced Testing Features

238

For information on the operations you can perform in an automation
program, refer to the online QuickTest Automation Object Model Reference. For
more information on this Help file, see “Using the QuickTest Automation
Object Model Reference” on page 239.

When you finish performing the necessary operations, or you want to
perform operations that require closing and restarting QuickTest, such as
changing the set of loaded add-ins, use the Application.Quit method.

Generating Automation Scripts

The Properties tab of the Test Settings dialog box, the General tab of the
Options dialog box, and the Object Identification dialog box each contain a
Generate Script button. Clicking this button generates an automation script
file (.vbs) containing the current settings from the corresponding dialog
box.

You can run the generated script as is to open QuickTest with the exact
configuration of the QuickTest application that generated the script, or you
can copy and paste selected lines from the generated files into your own
automation script.

For example, the generated script for the Options dialog box may look
something like this:

Dim App 'As Application
Set App = CreateObject("QuickTest.Application")
App.Launch
App.Visible = True
App.Options.DisableVORecognition = False
App.Options.AutoGenerateWith = False
App.Options.WithGenerationLevel = 2
App.Options.TimeToActivateWinAfterPoint = 500
...
...
App.Options.WindowsApps.NonUniqueListItemRecordMode = "ByName"
App.Options.WindowsApps.RecordOwnerDrawnButtonAs = "PushButtons"
App.Folders.RemoveAll

Chapter 7 • Automating QuickTest Operations

239

For more information on the Generate Script button and for information
on the options available in the Options, Object Identification, and Test
Settings dialog boxes, see Chapter 4, “Configuring Object Identification,”
and refer to Chapter 24, “Setting Global Testing Options,” and Chapter 25,
“Setting Options for Individual Tests” in the QuickTest Professional Basic
Features User’s Guide.

Using the QuickTest Automation Object Model Reference

The QuickTest Automation Object Model Reference is a Help file that
provides detailed descriptions, syntax information, and examples for the
objects, methods, and properties in the QuickTest automation object model.

You can open the QuickTest Automation Object Model Reference from the:

➤ QuickTest program folder (Start > Programs > QuickTest Professional >
Documentation > QuickTest Automation Reference)

➤ QuickTest Help menu (Help > QuickTest Automation Object Model
Reference)

Part I • Working with Advanced Testing Features

240

Part II

Managing and Merging Object
Repositories

242

243

8
Managing Object Repositories

The Object Repository Manager enables you to manage all of the shared
object repositories used in your organization from a single, central location,
including adding and defining objects, modifying objects and their
descriptions, parameterizing repositories to make them more generic,
maintaining and organizing repositories, merging repositories, and
importing and exporting repositories in XML format.

This chapter describes:

➤ About Managing Object Repositories

➤ Understanding the Object Repository Manager

➤ Working with Object Repositories

➤ Modifying Object Repositories

➤ Working with Repository Parameters

➤ Modifying Test Object Details

➤ Locating Objects

➤ Performing Merge Operations

➤ Performing Import and Export Operations

Part II • Managing and Merging Object Repositories

244

About Managing Object Repositories

The Object Repository Manager enables you to create and maintain shared
object repositories. You can work with object repositories saved both in the
file system and in a Quality Center project.

Each object repository contains the information that enables QuickTest to
identify the objects in your application. QuickTest enables you to maintain
the reusability of your tests by storing all the information regarding your
test objects in a shared object repository. When objects in your application
change, the Object Repository Manager provides a single, central location in
which you can update test object information for multiple tests.

Note: Instead of, or in addition to, shared object repositories, you can
choose to store all or some of the objects in a local object repository for each
action. For more information on local object repositories, refer to Chapter 6,
“Working with Test Objects” in the QuickTest Professional Basic Features User’s
Guide.

If an object with the same name and description is located in both the local
object repository and in a shared object repository that is associated with
the same action, the action uses the local object definition. If an object with
the same name and description is located in more than one shared object
repository, and these shared object repositories are all associated with the
same action, QuickTest uses the object definition from the first occurrence
of the object, according to the order in which the shared object repositories
are associated with the action. For more information on associating shared
object repositories, refer to “Associating Object Repositories with Actions”
on page 472 in the QuickTest Professional Basic Features User’s Guide.

You can use the same shared object repository with multiple actions. You
can also use multiple object repositories with each action. In addition, you
can save objects directly with an action in a local object repository. This
enables them to be accessed only from that action.

Chapter 8 • Managing Object Repositories

245

If one or more of the property values of an object in your application differ
from the property values QuickTest uses to identify the object, your test may
fail. Therefore, when the property values of objects in your application
change, you should modify the corresponding test object property values in
the corresponding object repository so that you can continue to use your
existing tests.

You can modify objects in a shared object repository using the Object
Repository Manager, as described in this chapter. You can modify objects
stored in a local object repository using the Object Repository window. For
information on the Object Repository window, refer to Chapter 6, “Working
with Test Objects” in the QuickTest Professional Basic Features User’s Guide.

Part II • Managing and Merging Object Repositories

246

Understanding the Object Repository Manager

You open the Object Repository Manager by choosing Resources > Object
Repository Manager. The Object Repository Manager enables you to open
multiple shared object repositories and modify them as needed. You can
open shared object repositories both from the file system and from a Quality
Center project.

Tip: While the Object Repository Manager is open, you can continue
working with other QuickTest windows.

Chapter 8 • Managing Object Repositories

247

You can open as many shared object repositories as you want. Each shared
object repository opens in a separate document window. You can then
resize, maximize, or minimize the windows to arrange them as you require
to copy, drag, and move objects between different shared object repositories,
as well as perform operations on a single object repository. For more
information on the information shown in the shared object repository
windows, see “Understanding the Shared Object Repository Windows” on
page 251.

You open shared object repositories from the Open Shared Object
Repository dialog box. In this dialog box, the Open in read-only mode check
box is selected, by default. If you clear this check box, the shared object
repository opens in editable mode. Otherwise, the shared object repository
opens in read-only mode and you must click the Enable Editing button to
modify it. For more information, see “Editing Object Repositories” on
page 260.

When you choose a menu item or click a toolbar button in the Object
Repository Manager, the operation you select is performed on the shared
object repository whose window is currently active (in focus). The name and
file path of the shared object repository is shown in the title bar of the
window. For more information on the Object Repository Manager toolbar
buttons, see “Using the Object Repository Manager Toolbar” on page 248.

Many of the shared object repository operations you can perform in the
Object Repository Manager are done in a similar way to how you modify
objects stored in a local object repository (using the Object Repository
window). For this reason, many of the procedures are actually described in
Chapter 6, “Working with Test Objects” in the QuickTest Professional Basic
Features User’s Guide. Most of the procedures apply equally to the Object
Repository Manager and the Object Repository window, but the windows
and options may differ slightly.

Part II • Managing and Merging Object Repositories

248

Using the Object Repository Manager Toolbar

You can access frequently performed operations using the Object Repository
Manager toolbar. The Object Repository Manager toolbar contains the
following buttons:

Button Description

Enables you to create a new shared object repository. For more
information, see “Creating New Object Repositories” on page 253.

Enables you to open a shared object repository from the file system or
from Quality Center. For more information, see “Opening Object
Repositories” on page 254.

Enables you to save the active shared object repository to the file
system or to Quality Center. For more information, see “Saving Object
Repositories” on page 255.

Enables you to edit the active shared object repository, by making the
shared object repository editable. For more information, see “Editing
Object Repositories” on page 260.

Enables you to undo the previous operation performed in the active
shared object repository. You do this in the same way as in a local
object repository. For more information, see “Copying, Pasting, and
Moving Objects in the Object Repository” on page 191.

Enables you to redo the operation that was previously undone in the
active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Copying, Pasting,
and Moving Objects in the Object Repository” on page 191.

Enables you to cut the selected item or object in the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Copying, Pasting, and Moving
Objects in the Object Repository” on page 191.

Enables you to copy the selected item or object to the Clipboard in the
active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Copying, Pasting,
and Moving Objects in the Object Repository” on page 191.

Chapter 8 • Managing Object Repositories

249

Enables you to paste the data from the Clipboard to the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Copying, Pasting, and Moving
Objects in the Object Repository” on page 191.

Enables you to delete the selected item or object in the active shared
object repository. You do this in the same way as in a local object
repository. For more information, see “Deleting Objects from the
Object Repository” on page 194.

Enables you to find an object, property, or property value in the
active shared object repository. You can also find and replace
specified property values. You do this in the same way as in a local
object repository. For more information, see “Finding Objects in an
Object Repository” on page 195.

Enables you to add objects to the active shared object repository. You
do this in the same way as in a local object repository. For more
information, see “Adding Objects to the Object Repository” on
page 180.

Enables you to update test object properties in the active shared object
repository according to the actual properties of the object in your
application. You do this in the same way as in a local object
repository. For more information, see “Updating Test Object Properties
from an Object in Your Application” on page 162.

Enables you to select an object in the active shared object repository
and highlight it in your application. You do this in the same way as in
a local object repository. For more information, see “Highlighting an
Object in Your Application” on page 198.

Enables you to select an object in your application and highlight it in
the active shared object repository. You do this in the same way as in a
local object repository. For more information, see “Locating an Object
in the Object Repository” on page 199.

Enables you to define a test object that does not yet exist in your
application and add it to the active shared object repository. You do
this in the same way as in a local object repository. For more
information, see “Defining New Test Objects” on page 188.

Button Description

Part II • Managing and Merging Object Repositories

250

Enables you to connect to Quality Center to work with object
repository files stored in a Quality Center project. You can connect to
Quality Center from the main QuickTest window or from the Object
Repository Manager. For more information, see “Connecting
QuickTest to Quality Center” on page 364.

Enables you to open the Object Spy to view run-time or test object
properties and values of objects in your application. For more
information, refer to “Viewing Object Properties Using the Object
Spy” on page 66 in the QuickTest Professional Basic Features
User’s Guide.

Enables you to add, edit, and delete repository parameters in the
active shared object repository. For more information, see “Managing
Repository Parameters” on page 262.

Button Description

Chapter 8 • Managing Object Repositories

251

Understanding the Shared Object Repository Windows

Each shared object repository that you open in the Object Repository
Manager is displayed in a standalone document window. Each shared object
repository window displays a tree of all objects in the object repository,
together with test object information for the selected object.

For each test object you select in the tree, the Object Repository window
displays information about the selected test object. You can view the test
object description of any test object in the shared object repository, modify
test objects and their properties, and add objects to the shared object
repository. For more information, see “Modifying Object Repositories” on
page 258 and “Modifying Test Object Details” on page 268.

Part II • Managing and Merging Object Repositories

252

Each object repository window contains the following information:

Note: Even when steps containing a test object are deleted from your action,
the objects remain in the object repository. You can delete objects from a
shared object repository using the Object Repository Manager, in much the
same was as you delete objects from a local object repository. For more
information, refer to “Deleting Objects from the Object Repository” on
page 194 in the QuickTest Professional Basic Features User’s Guide.

Information Description

Object Repository
tree

Contains all test objects in the shared object repository.

Name The name that QuickTest assigns to the selected test
object. You can change the test object name. For more
information, refer to “Renaming Test Objects” on
page 164 in the QuickTest Professional Basic Features
User’s Guide.

Class The class of the selected object.

Test object details Enables you to view and modify the properties and
property values used to identify the selected object during
a run session. For more information, see “Modifying Test
Object Details” on page 268.

Chapter 8 • Managing Object Repositories

253

Working with Object Repositories

You can use the Object Repository Manager to create new object
repositories, open and modify existing object repositories, and save and
close them when you are finished.

Creating New Object Repositories

You can create a new object repository, add objects to it, and then save it.
You can then associate one or more actions with the object repository from
within QuickTest. For more information on associating shared object
repositories, refer to “Associating Object Repositories with Actions” on
page 472 in the QuickTest Professional Basic Features User’s Guide.

To create a new object repository:

In the Object Repository Manager, choose File > New or click the New
button. A new object repository opens. You can now add objects to it,
modify it, and save it. For more information, see “Modifying Object
Repositories” on page 258 and “Saving Object Repositories” on page 255.

Part II • Managing and Merging Object Repositories

254

Opening Object Repositories

You can open existing object repositories to view or modify them. You can
open object repositories from the file system or from a Quality Center
project.

You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting QuickTest to Quality
Center” on page 364.

Note for users of previous QuickTest versions:

When you open an object repository that was created using an earlier
version of QuickTest, QuickTest must convert it to the current format before
you can edit it.

If the object repository contains test objects from external add-ins, the
relevant add-in must be installed to convert the object repository to the
current format. Otherwise, you can open it only in read-only format.

If you do not want to convert the object repository, you can view it in
read-only format. After the file is converted and you save it, you cannot use
it with earlier versions of QuickTest.

To open an object repository:

 1 In the Object Repository Manager, choose File > Open or click the Open
button. The Open Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Open Shared Object Repository dialog box.

Chapter 8 • Managing Object Repositories

255

 2 Select the object repository you want to open, and click Open or OK
(depending on whether you are opening it from the file system or a Quality
Center project). The object repository opens.

By default, the object repository opens in read-only mode. You can open it
in editable format by clearing the Open in read-only mode check box in the
Open Shared Object Repository dialog box. You can also enable editing for
an object repository as described in “Editing Object Repositories” on
page 260.

If the object repository is editable, you can add objects to it, modify it, and
save it. For more information, see “Modifying Object Repositories” on
page 258 and “Saving Object Repositories” on page 255.

Tip: You can also open an object repository from the Recent Files list in the
File menu.

Saving Object Repositories

After you finish creating or modifying an object repository, you should save
it. When you modify an object repository, an asterisk (*) is displayed in the
title bar until the object repository is saved.

Part II • Managing and Merging Object Repositories

256

You can save an object repository to the file system or to a Quality Center
project (if you are connected to a Quality Center project). You connect to a
Quality Center project either from QuickTest or from the Object Repository
Manager by choosing File > Quality Center Connection or clicking the
Quality Center Connection button. For more information on connecting to
Quality Center, see “Connecting QuickTest to Quality Center” on page 364.

Note: All changes you make to an object repository are automatically
updated in all tests open on the same computer that use the object
repository as soon as you make the change—even if you have not yet saved
the object repository with your changes. If you close the object repository
without saving your changes, the changes are rolled back in any open tests
that were open at the time. When you open a test on the same computer on
which you modified the object repository, the test is automatically updated
with all saved changes made in the associated object repository. To see saved
changes in a test or repository open on a different computer, you must open
the test or object repository file or lock it for editing on your computer to
load the changes.

To save an object repository:

 1 Make sure that the object repository you want to save is the active window.

 2 Choose File > Save or click the Save button. If the file has already been
saved, the changes you made are saved. If the file has not yet been saved,
the Save Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Open Shared Object Repository dialog box.

 3 Select the folder in which you want to save the object repository.

Chapter 8 • Managing Object Repositories

257

 4 Enter a name for the object repository in the File name or Attachment Name
box (depending on whether you are saving it to the file system or a Quality
Center project). Use a descriptive name that will help you easily identify the
file.

Note: You cannot use any of the following characters in the object
repository name:
\ / : * " ? < > |

 5 Click Save or OK (depending on whether you are saving it to the file system
or a Quality Center project). QuickTest saves the object repository with a .tsr
extension in the specified location and displays the object repository name
and path in the title bar of the repository window.

Closing Object Repositories

After you finish modifying or using an object repository, you should close it.
When you close the file it is automatically unlocked so that it can be used or
modified by others. You can also choose to close all open object repositories.

Note: If you close QuickTest, the Object Repository Manager also closes. If
you have made changes that are not yet saved, you are prompted to do so
before the Object Repository Manager closes.

To close an object repository:

 1 Make sure that the object repository you want to close is the active window.

 2 Choose File > Close or click the Close button in the object repository
window’s title bar. The object repository is closed and is automatically
unlocked. If you have made changes that are not yet saved, you are
prompted to do so before the file closes.

Part II • Managing and Merging Object Repositories

258

To close all open object repositories:

Choose File > Close All Windows, or Window > Close All Windows. All open
object repositories are closed and are automatically unlocked. If you have
made changes that are not yet saved, you are prompted to do so before the
files close.

Modifying Object Repositories

You can modify your object repositories in a variety of ways to either
prepare them for initial use or update them throughout the testing process.
You can add and modify objects and object properties in a shared object
repository, copy or move objects from one object repository to another, drag
objects to a different location in the hierarchy, delete objects, and rename
objects. When you modify an object repository, an asterisk (*) is displayed in
the title bar until the object repository is saved.

Tip: You can use the Edit > Undo and Edit > Redo options or Undo and Redo
buttons to cancel or repeat your changes as necessary. The Undo and Redo
options are related to the active document. When you save an object
repository, you cannot undo and redo operations that were performed on
that file before the save operation.

Chapter 8 • Managing Object Repositories

259

If you opened the object repository in read-only mode, you must enable
editing for the object repository before you can modify it. This locks the
object repository and prevents it from being modified simultaneously by
multiple users.

Note: All changes you make to an object repository are automatically
updated in all tests open on the same computer that use the object
repository as soon as you make the change—even if you have not yet saved
the object repository with your changes. If you close the object repository
without saving your changes, the changes are rolled back in any open tests
that were open at the time. When you open a test on the same computer on
which you modified the object repository, the test is automatically updated
with all saved changes made in the associated object repository. To see saved
changes in a test or repository open on a different computer, you must open
the test or object repository file or lock it for editing on your computer to
load the changes.

Tip: You can also modify a shared object repository by merging it with
another shared object repository. If you merge two shared object
repositories, a new shared object repository is created, containing the
content of both object repositories. If you merge a shared object repository
with a local object repository, the shared object repository is updated with
the content of the local object repository. For more information, see
Chapter 9, “Merging Shared Object Repositories.”

Part II • Managing and Merging Object Repositories

260

After making sure that your shared object repository is editable, and that it
is the active window, you modify it in the same way as you modify a local
object repository. For more information, see:

➤ “Editing Object Repositories,” below.

➤ “Adding Objects to the Object Repository” on page 180 in the QuickTest
Professional Basic Features User’s Guide.

➤ “Copying, Pasting, and Moving Objects in the Object Repository” on
page 191 in the QuickTest Professional Basic Features User’s Guide.

➤ “Deleting Objects from the Object Repository” on page 194 in the QuickTest
Professional Basic Features User’s Guide.

Editing Object Repositories

When you open an object repository, it is opened in read-only mode by
default. You can open it in editable format by clearing the Open in read-only
mode check box in the Open Shared Object Repository dialog box when you
open it.

If you opened the object repository in read-only mode, you must enable
editing for the object repository before you can modify it. You do not need
to enable editing for an object repository if you only want to view it or copy
objects from it to another object repository.

When you enable editing for an object repository, it locks the object
repository so that it cannot be modified by other users. To enable other users
to modify the object repository, you must first unlock it (by disabling edit
mode, or by closing it). If an object repository is already locked by another
user, it is saved in read-only format, or if you do not have the permissions
required to open it, you cannot enable editing for it.

Note for users of previous QuickTest versions: If you want to edit an
object repository that was created using an earlier version of QuickTest,
QuickTest must convert it to the current format before you can edit it. If you
do not want to convert it, you can view it in read-only format. After the file
is converted and saved, you cannot use it with earlier versions of QuickTest.

Chapter 8 • Managing Object Repositories

261

To enable editing for an object repository:

 1 Make sure that the object repository you want to edit is the active window.

 2 Choose File > Enable Editing or click the Enable Editing button. The object
repository becomes editable.

Working with Repository Parameters

Repository parameters enable you to specify that certain property values
should be parameterized, but leave the actual parameterization to be defined
in each test that is associated with the object repository that contains the
parameterized test object property values.

Repository parameters are useful when you want to create and run tests on
an object that changes dynamically. An object may change dynamically if it
is frequently updated in the application, or if its property values are set
using dynamic content, for example, from a database.

For example, you may have a button whose text property value changes in a
localized application depending on the language of the user interface. You
can parameterize the name property value using a repository parameter, and
then in each test that uses the object repository you can specify the location
from which the property value should be taken. For example, in one test
that uses this object repository you can specify that the property value
comes from an environment variable, in another test it can come from the
Data Table, and in a third test you can specify it as a constant value.

You define all the repository parameters for a specific object repository using
the Manage Repository Parameters dialog box. You define each repository
parameter together with an optional default value and meaningful
description. For more information, see “Managing Repository Parameters”
on page 262.

Part II • Managing and Merging Object Repositories

262

When you open a test that uses an object repository with a repository
parameter that has no default value, an indication that there is a repository
parameter that needs mapping is displayed in the Missing Resources pane.
You can then map the repository parameter as needed in the test. You can
also map repository parameters that have default values, and change
mappings for repository parameters that are already mapped. For more
information on mapping repository parameters, refer to “Handling
Unmapped Shared Object Repository Parameter Values” on page 499 in the
QuickTest Professional Basic Features User’s Guide.

Managing Repository Parameters

The Manage Repository Parameters dialog box enables you to add, edit, and
delete repository parameters for a single shared object repository.

To manage repository parameters:

 1 Make sure that the object repository whose parameters you want to manage
is the active window.

 2 If the object repository is in read-only format, choose File > Enable Editing
or click the Enable Editing button. The object repository becomes editable.

Chapter 8 • Managing Object Repositories

263

 3 Choose Tools > Manage Repository Parameters or click the Manage
Repository Parameters button. The Manage Repository Parameters dialog
box opens.

Part II • Managing and Merging Object Repositories

264

The Manage Repository Parameters dialog box contains the following
information and options:

Adding Repository Parameters

The Add Repository Parameter dialog box enables you to define a new
repository parameter. You can also specify a default value for the parameter,
and a meaningful description to help identify it when it is used in a test
step.

Option Description

Repository name Displays the name and path of the object
repository whose repository parameters you are
managing.

Enables you to add a new repository parameter. For
more information, see “Adding Repository
Parameters” on page 264.

Enables you to delete the currently selected
repository parameter(s). For more information, see
“Deleting Repository Parameters” on page 267.

Parameter list Displays the list of repository parameters currently
defined in this object repository. You can modify a
parameter’s default value and description directly
in the parameter list. For more information, see
“Modifying Repository Parameters” on page 266.

Find in Repository Searches for and highlights the first test object in
the object repository tree that uses the selected
repository parameter. You can click this button
again to find the next occurrence of the selected
parameter, and so forth.

Chapter 8 • Managing Object Repositories

265

To add a repository parameter:

 1 In the Manage Repository Parameters dialog box, click the Add Repository
Parameter button. The Add Repository Parameter dialog box opens.

 2 In the Name box, specify a meaningful name for the parameter. Parameter
names must start with an English letter and can contain only alphanumeric
characters and underscores.

 3 In the Default value box, you can specify a default value to be used for the
repository parameter. This value is used if you do not map the repository
parameter to a value or parameter type in a test that uses this object
repository. If you do not specify a default value, the repository parameter
will appear as unmapped in any tests that use this shared object repository.

Tip: If you specify a default value, you can later remove it by clicking in the
Default Value cell of the relevant parameter in the Manage Repository
Parameters dialog box and then clicking the Clear Default Value button. The
text {No Default Value} is displayed in the cell.

 4 In the Description box, you can enter a description of the repository
parameter. The description will help you identify the parameter when
mapping repository parameters within a test.

 5 Click OK to add the parameter to the list of parameters in the Manage
Repository Parameters dialog box.

Part II • Managing and Merging Object Repositories

266

Modifying Repository Parameters

You can modify the default value of a repository parameter or modify a
repository parameter description directly in the Manage Repository
Parameters dialog box. However, you cannot modify a repository parameter
name.

To modify a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the required
parameter.

 2 To modify the default value, click in the Default Value cell of the required
parameter. You can either modify the default value by entering a new value,
or you can remove the default value by clicking the Clear Default Value
button. If you remove the default value, the text {No Default Value} is
displayed in the cell. If you do not specify a default value, the repository
parameter will appear as unmapped in any tests that use this shared object
repository.

Note: If you delete the text manually, it does not remove the default value.
It creates a default value of an empty string. You must click the Clear Default
Value button if you want to remove the default value.

 3 To modify the parameter description, click in the Description cell of the
required parameter and enter the required description.

Chapter 8 • Managing Object Repositories

267

Deleting Repository Parameters

You can delete a repository parameter definition if it is no longer needed.
When you delete a repository parameter that is used in a test object
definition, the test object property value remains mapped to the parameter,
even though the parameter no longer exists. Therefore, before deleting a
repository parameter, you should make sure that it is not used in any test
object descriptions, otherwise tests that have steps using these test objects
will fail when you run them.

Tip: You can use the Find in Repository button in the Manage Repository
Parameters dialog box to see where a repository parameter is being used.

To delete a repository parameter:

 1 In the Manage Repository Parameters dialog box, select the repository
parameter(s) that you want to delete by clicking in the selection area to the
left of the parameter name.

 2 Click the Delete Repository Parameter button. The selected repository
parameter is deleted.

Part II • Managing and Merging Object Repositories

268

Modifying Test Object Details

The Test object details area for shared object repositories open in the Object
Repository Manager enables you to view and modify the properties and
property values used to identify an object during a run session.

After making sure that your shared object repository is editable, and that it
is the active window, you modify test object details for objects in a shared
object repository in the same way as you modify them for local objects. For
more information, see the QuickTest Professional Basic Features User's Guide:

➤ “Adding Properties to a Test Object Description” on page 167

➤ “Defining New Test Object Properties” on page 171

➤ “Updating Test Object Properties from an Object in Your Application” on
page 162

➤ “Restoring Default Properties for a Test Object” on page 164

➤ “Removing Properties from a Test Object Description” on page 173

➤ “Specifying Ordinal Identifiers” on page 174

➤ “Renaming Test Objects” on page 164

Note: You can use the Edit > Undo and Edit > Redo options or Undo and
Redo buttons to cancel or repeat your changes as necessary. The Undo and
Redo options are related to the active document. When you save a
repository, you cannot undo and redo operations that were performed on
that file before the save operation.

You use the Object Repository Manager to specify property values for test
object descriptions in a shared object repository. The options available when
specifying property values for objects in shared object repositories are
different from those available when specifying properties for objects in local
repositories. For more information on specifying property values for objects
in shared object repositories, see “Specifying a Property Value,” on page 269.

Chapter 8 • Managing Object Repositories

269

Specifying a Property Value

You can specify or modify values for properties in the test object description.
You can specify a value using a constant value (either a simple value or a
constant value that includes regular expressions) or you can parameterize it
using a repository parameter. For more information on repository
parameters, see “Working with Repository Parameters” on page 261.

To specify a property value:

 1 Select the test object whose property value you want to specify.

 2 In the Test object details area, click in the value cell for the required
property.

 3 Specify the property value in one of the following ways:

➤ If you want to specify a simple constant value, enter it in the value cell.
The remaining steps in this procedure are not necessary if you specify a
constant value in the value cell. You can also specify a constant value
using a regular expression in the Repository Parameter dialog box, as
described below.

➤ If you want to parameterize the value using a repository parameter, click
the parameterization button in the value cell. The Repository Parameter
dialog box opens.

Part II • Managing and Merging Object Repositories

270

 4 Choose one of the following options to specify a value for the property:

➤ Select the Constant radio button and specify a constant value. You can
also enter a constant value directly in the value cell of the Test object
details area. If you used a regular expression in the constant value, select
the Regular expression check box.

➤ Select the Parameter radio button and select a repository parameter from
the list of defined parameters. If a default value is defined for the
parameter, it is also shown.

Note: You define repository parameters using the Manage Repository
Parameters dialog box. For more information, see “Managing Repository
Parameters” on page 262.

 5 Click OK to close the Repository Parameter dialog box. If you parameterized
the value, the parameter name is shown with an icon in the Value column
of the Test object details area, as shown below. Otherwise, the constant
value you specified is shown in the Value column.

Locating Objects

You can search for a specific object in your object repository in several ways.
You can search for an object according to its type. For example, you can
search for a specific edit box, or you can point to an object in your
application to automatically highlight that same object in your repository.
You can replace specific property values with other property values. For
example, you can replace a property value userName with the value
user name. You can also select an object in your object repository and
highlight it in your application to check which object it is.

Chapter 8 • Managing Object Repositories

271

After making sure that your shared object repository is the active window,
you locate an object in a shared object repository in the same way as you
locate it in a local object repository. If you want to replace property values,
you must also make sure that the object repository is editable.

For more information, see the QuickTest Professional Basic Features User's Guide:

➤ “Finding Objects in an Object Repository” on page 195

➤ “Highlighting an Object in Your Application” on page 198

➤ “Locating an Object in the Object Repository” on page 199

Performing Merge Operations

The Object Repository Merge Tool enables you to merge objects from the
local object repository of one or more actions to a shared object repository
using the Update from Local Repository option in the Object Repository
Manager (Tools > Update from Local Repository). For example, you may
have learned objects locally in a specific action in your test and want to add
them to the shared object repository so they are available to all actions in
different tests that use that object repository. You can also use the Object
Repository Merge Tool to merge two shared object repositories into a single
shared object repository.

You open the Object Repository Merge Tool by choosing Tools > Object
Repository Merge Tool in the Object Repository Manager. For more
information on performing merge operations and updating object
repositories with local objects, see Chapter 9, “Merging Shared Object
Repositories.”

Note: While the Object Repository Merge Tool is open, you cannot work
with the Object Repository Manager.

Part II • Managing and Merging Object Repositories

272

Performing Import and Export Operations

You can import and export object repositories from and to XML files. XML
provides a structured, accessible format that enables you to make changes to
object repositories using the XML editor of your choice and then import
them back into QuickTest. You can view the required format for the object
repository by exporting a saved object repository.

You can import and export files either from and to the file system or a
Quality Center project (if QuickTest is connected to Quality Center).

You connect to a Quality Center project either from QuickTest or from the
Object Repository Manager by choosing File > Quality Center Connection or
clicking the Quality Center Connection button. For more information on
connecting to Quality Center, see “Connecting QuickTest to Quality
Center” on page 364.

Importing from XML

You can import an XML file (created using the required format) as an object
repository. The XML file can either be an object repository that you
exported to XML format using the Object Repository Manager, or an XML
file created using a tool such as QuickTest Siebel Test Express or a custom
built utility. You must adhere to the XML structure and format.

Tip: To view the required XML structure and format, you can export an
existing shared object repository to XML and then use the XML file as a
guide. For more information, see “Exporting to XML” on page 273.

Chapter 8 • Managing Object Repositories

273

To import from XML:

 1 Choose File > Import from XML. The Import from XML dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Import from XML dialog box.

 2 Select the XML file you want to import, and click Open or OK (depending
on whether you are opening it from the file system or a Quality Center
project).

 3 The XML file is imported and a summary message box opens showing
information regarding the number of objects, parameters, and metadata
that were successfully imported from the specified file.

 4 Click OK to close the message box. The imported XML file is opened as a
new object repository. You can now modify it as required and save it as an
object repository.

Exporting to XML

You can export the contents of an object repository to an XML file. This
enables you to easily edit it using any XML editor, and also enables you to
save it in an accessible, versatile format.

Part II • Managing and Merging Object Repositories

274

To export to XML:

 1 Make sure that the object repository you want to export is the active
window.

 2 Choose File > Export to XML. The Export to XML dialog box opens.

Note: If you are connected to Quality Center, the dialog box that opens is
different from the standard file system dialog box. You can switch between
the two dialog box versions by clicking the File System and Quality Center
buttons in the Export to XML dialog box.

 3 Select the location in which to save the file, specify the file or attachment
name, and click Save or OK (depending on whether you are saving it to the
file system or a Quality Center project).

 4 The object repository is exported to the specified XML file and a summary
message box opens showing information regarding the number of objects,
parameters, and metadata that were successfully exported to the specified
file.

 5 Click OK to close the message box. You can now open the XML file and view
or modify it with any XML editor.

275

9
Merging Shared Object Repositories

QuickTest Professional enables you to merge two shared object repositories
into a single shared object repository using the Object Repository Merge
Tool. You can also use this tool to merge objects from the local object
repository of one or more actions into a shared object repository.

This chapter describes:

➤ About Merging Shared Object Repositories

➤ Understanding the Object Repository Merge Tool

➤ Using Object Repository Merge Tool Commands

➤ Defining Default Settings

➤ Merging Two Object Repositories

➤ Updating a Shared Object Repository from Local Object Repositories

➤ Viewing Merge Statistics

➤ Understanding Object Conflicts

➤ Resolving Object Conflicts

➤ Filtering the Target Repository Pane

➤ Synchronizing Object Repository Views

➤ Finding Specific Objects

➤ Saving the Target Object Repository

Part II • Managing and Merging Object Repositories

276

About Merging Shared Object Repositories

QuickTest Professional provides the ability to merge existing assets from two
repositories into a single shared object repository using the Object
Repository Merge Tool. This tool enables you to merge two shared object
repositories (called the primary object repository and the secondary object
repository), into a new third object repository, called the target object
repository. Objects in the primary and secondary object repositories are
automatically compared and then added to the target object repository
according to preconfigurable rules that define how conflicts between objects
are resolved.

After the merge process, the Object Repository Merge Tool provides a
graphic presentation of the original objects in the primary and secondary
repositories, which remain unchanged, as well as the objects in the merged
target object repository. Objects that had conflicts are highlighted. The
conflict of each object that you select in the target object repository is
described in detail. The Object Repository Merge Tool provides specific
options that enable you to keep the suggested resolution for each conflict,
or modify each conflict resolution individually, according to your
requirements.

The Object Repository Merge Tool also enables you to merge objects from
the local object repository of one or more actions into a shared object
repository. For example, you may have learned objects locally in a specific
action in your test and want to add them to the shared object repository, so
that they are available to all actions in different tests that use that object
repository.

Note: When the Object Repository Merge Tool is open, you cannot work
with the Object Repository Manager. For more information on the Object
Repository Manager, see Chapter 8, “Managing Object Repositories.”

Chapter 9 • Merging Shared Object Repositories

277

Understanding the Object Repository Merge Tool

You open the Object Repository Merge Tool by choosing Tools > Object
Repository Merge Tool in the Object Repository Manager.

An example of the Object Repository - Merge Tool window is shown below:

The Object Repository - Merge Tool window contains the following key
elements:

➤ Menu bar—Displays menus of Object Repository Merge Tool commands.
These commands are described in various places throughout this chapter.
Shortcut keys for menu commands are described in “Performing Commands
Using Shortcut Keys” on page 283.

➤ Toolbar—Contains buttons of commonly used menu commands to assist
you in merging, managing, and saving object repositories. Toolbar buttons
are described in “Using Toolbar Commands” on page 282.

Menu Bar
Toolbar

Status Bar

Target
Repository
Pane

Primary
Repository
Pane

Secondary
Repository
Pane

Resolution
Options
Pane

Part II • Managing and Merging Object Repositories

278

➤ Target Repository Pane—Displays the test objects that were merged from
the primary and secondary repositories. You can also choose to show or hide
the Target Repository Object Properties pane, which displays the properties
of any test object that is selected in the Target Repository pane. For more
information, see “Target Repository Pane” on page 279.

➤ Primary Repository Pane—Displays the test objects in the primary object
repository. For more information, see “Primary and Secondary Repository
Panes” on page 280.

➤ Secondary Repository Pane—Displays the test objects in the secondary
object repository. For more information, see “Primary and Secondary
Repository Panes” on page 280.

➤ Resolution Options Pane—Provides source, conflict, and resolution details
about the objects in the target repository pane, and enables you to modify
the resolution method that was applied to any conflict. For more
information, see “Resolution Options Pane” on page 280.

➤ Status Bar—Provides source, conflict, and resolution details about the object
selected in the target repository pane, and an icon legend. For more
information, see “Status Bar” on page 281.

Changing the View

You can change the view presented by the Object Repository Merge Tool
according to your working preferences.

➤ Drag the edges of the panes to resize them in the Object Repository Merge
Tool window.

➤ Choose Primary Repository, Secondary Repository, Target Repository Object
Properties, or Resolution Options from the View menu to hide or show
these panes in the Object Repository Merge Tool.

➤ Choose View > Set as Default Layout to set your current view as the default
view, which displays each time you open the Object Repository Merge Tool.
You can choose View > Restore Default Layout to restore the view to the
default settings after you have made any changes.

Chapter 9 • Merging Shared Object Repositories

279

Target Repository Pane

The target repository pane displays a hierarchy of the test objects, as well as
their respective properties and values, that were merged from the primary
and secondary repositories. In the column to the left of the object hierarchy,
the pane displays the source file of each object (1 is displayed for the
primary file and 2 for the secondary file), and an icon representing the type
of conflict, if any.

When you save the target object repository, the file path is displayed above
the object hierarchy.

Note: To make it easier to see the status of an object at a glance, the text
colors of the object names in the target object repository can be set
according to their source and whether they caused a conflict. For more
information, see “Specifying Color Settings” on page 284.

The target repository pane provides the following functionality:

➤ When you select an object in the target object repository, the corresponding
object in the primary and/or secondary source file hierarchy is located and
indicated by a check mark.

➤ When you select an object in the target object repository, its properties and
values are displayed in the Object Properties - Target File area at the bottom
of the target repository pane (View > Target Repository Object Properties).

➤ If the merge results in a conflict, an icon is displayed to the left of the
conflicting object in the target object repository. You can see a tooltip
description of the conflict type by positioning your pointer over the icon.

➤ When you right-click an object, a context-sensitive menu opens. You can
choose an option to expand or collapse the entire hierarchy in the target
object repository, or, when applicable, to change the conflict resolution
method and result.

➤ You can expand or collapse the hierarchy of the node by double-clicking a
node. You can also expand or collapse the entire hierarchy in the target
object repository by choosing Collapse All or Expand All from the View
menu.

Part II • Managing and Merging Object Repositories

280

➤ You can jump directly to the next or previous conflict in the target object
repository hierarchy by choosing Next Conflict or Previous Conflict from the
Navigate menu, or by clicking the Next Conflict or Previous Conflict buttons
in the toolbar or Resolution Options pane.

➤ You can locate one or more objects in the target object repository by using
the Find dialog box. For more information, see “Finding Specific Objects”
on page 304.

➤ You can show or hide the target repository object properties by choosing
View > Target Repository Object Properties.

Primary and Secondary Repository Panes

The primary and secondary repository panes display the hierarchies of the
test objects, and their properties and values, in the original source
repositories that you chose to merge. The file path is shown above each
object hierarchy.

The panes provide the following functionality:

➤ You can expand or collapse the hierarchy of a selected item by
double-clicking the item.

➤ You can view the properties and values of an object in the Test object details
area by selecting it in the relevant pane.

➤ You can show or hide the panes by selecting or clearing Primary Repository
or Secondary Repository in the View menu.

Resolution Options Pane

The Resolution Options pane provides information about any conflict
encountered during the merge for the object selected in the target object
repository. The pane also provides options that enable you to keep or
change the conflict resolution method that was applied using the default
resolution options.

Chapter 9 • Merging Shared Object Repositories

281

The Resolution Options pane provides the following functionality:

➤ When you select a conflicting object in the target object repository, the pane
displays a textual description of the conflict and the resolution method used
by the Object Repository Merge Tool. A choice of alternative resolution
methods is offered.

➤ You can select a radio button to choose an alternative resolution method for
the conflict. Every time you make a change, the target object repository is
automatically updated and is redisplayed.

➤ You can jump directly to the next or previous conflict in the target
repository hierarchy by clicking the Previous Conflict or Next Conflict
buttons.

➤ You can show or hide the pane by selecting or clearing Resolution Options
in the View menu.

Status Bar

The status bar shows the conflict number (if any) of the object selected in
the target repository pane, and a legend of the icons used in the target
repository pane.

The following icons may be displayed in the status bar and (and in the
target repository pane):

➤ Similar Description Conflict

➤ Same Name Different Description Conflict

➤ Same Description Different Name Conflict

Position your pointer over the icon to see a tooltip description of the
conflict type.

Part II • Managing and Merging Object Repositories

282

For more information on conflict types, see “Understanding Object
Conflicts” on page 297.

Tips:

Click any of the conflict icons in the Status bar to view the Statistics dialog
box. For more information, see “Viewing Merge Statistics” on page 296.

Click in the box to the left of the icons to view the Filter dialog box. This
area shows a Filter icon when a filter is currently in use. For more
information, see “Filtering the Target Repository Pane” on page 302.

Using Object Repository Merge Tool Commands

You can select Object Repository Merge Tool commands from the menu bar
or from the toolbar. Certain commands can be executed by pressing
shortcut keys, as described in “Performing Commands Using Shortcut Keys”
on page 283. You can also select an object in the target repository pane and
choose commands from the context-sensitive (right-click) menu.

Using Toolbar Commands

You can perform frequently used commands by clicking buttons in the
toolbar.

Save
Find
Next

Find
Previous

Filter

Settings
Previous
Conflict

Next
Conflict

Find

Synchronize
ViewsNew

Merge

Chapter 9 • Merging Shared Object Repositories

283

Performing Commands Using Shortcut Keys

You can perform some Object Repository Merge Tool commands by pressing
shortcut keys. The shortcut keys listed below are shown next to the
respective menu commands.

You can perform the following File menu commands by pressing the
corresponding shortcut keys:

You can perform the following Navigate menu commands by pressing the
corresponding shortcut keys:

Command Shortcut Key Function

New Merge CTRL+N Enables you to specify two object
repositories with which to perform
a new merge operation.

Save CTRL+S Saves the merged shared object
repository.

Command Shortcut Key Function

Next Conflict F4 Finds the next conflicting object in
the merged object repository.

Previous Conflict SHIFT+F4 Finds the previous conflicting
object in the merged object
repository.

Find CTRL+F Opens the Find dialog box.

Find Next F3 Finds the next object in the merged
object repository according to the
search specifications in the Find
dialog box.

Find Previous SHIFT+F3 Finds the previous object in the
merged object repository according
to the search specifications in the
Find dialog box.

Part II • Managing and Merging Object Repositories

284

Defining Default Settings

The Object Repository Merge Tool is supplied with predefined settings that
are used when merging object repositories. These are the default settings:

➤ Specify the text color of the object names that are displayed in the target
object repository.

➤ Configure how the Object Repository Merge Tool deals with conflicting
objects in the primary and secondary repositories (or local and shared
repositories when updating a shared object repository from local object
repositories).

You can change these settings at any time to create new default settings.
After you change the settings, all new merges are performed according to
the new default settings.

Tip: If you want to change the settings before merging two repositories, you
must click Cancel to close the New Merge dialog box, change the settings as
described in the next sections, and then perform the merge.

Specifying Color Settings

You can specify the color in which object names are displayed in the target
object repository according to their source, and whether they caused a
conflict. This enables you to see more easily the status of each object.

Note: The options in the Colors tab of the Settings dialog box apply equally
to objects added from the local (primary) and shared (secondary) object
repositories, when performing an Update from Local Repository operation.

Chapter 9 • Merging Shared Object Repositories

285

To specify color settings:

 1 Choose Tools > Settings or click the Settings button. The Settings dialog box
opens.

 2 For each item in the Colors tab, click the down arrow next to the text
box and select an identifying color.

 3 Click OK. Object names in the target object repository are displayed in the
selected color according to your selections.

Specifying Default Resolution Settings

You can configure how the Object Repository Merge Tool automatically
deals with conflicting objects during the merge process.

Note: The options in the Resolution tab of the Settings dialog box also apply
to objects added from the local and shared object repositories, when
performing an Update from Local Repository operation.

Part II • Managing and Merging Object Repositories

286

To specify default resolution settings:

 1 Choose Tools > Settings or click the Settings button. The Settings dialog box
opens.

 2 Click the Resolution tab.

 3 Select the appropriate radio buttons to specify the default resolution settings
that the Object Repository Merge Tool applies when dealing with conflicting
objects.

➤ Take object description that is—Specifies how to resolve conflicts in
which two test objects have the same name, but their descriptions differ.
You can specify that the target object repository takes the object
description that is more generic or less generic.

• More generic—Instructs the Object Repository Merge Tool to take the
object that has fewer identifying properties than the object with
which it conflicts, or uses regular expressions in its property values.
This is the default setting.

• Less generic—Instructs the Object Repository Merge Tool to take the
object that has all the identifying properties of the object with which
it conflicts, plus additional identifying properties.

Chapter 9 • Merging Shared Object Repositories

287

➤ Take object name from—Specifies how to resolve conflicts where two test
objects have the same or similar descriptions, but their names differ. You
can select the source from which the target object repository takes the
object name:

• Primary repository file—The target object repository takes the object
name from the object in the primary object repository. This is the
default setting.

• Secondary repository file—The target object repository takes the
object name from the object in the secondary object repository.

• Same file as the object description—The target object repository takes
the object name from the object in the same object repository from
which it took the object description.

 4 Click OK. The Object Repository Merge Tool will apply your selections when
resolving conflicts between objects in all future repository merges.

Note: If you make any change to the resolution settings while you have a
merged object repository open, you are asked whether you want to merge
the open files again with the new settings. Click Yes to merge the files again
with the new settings, or click No to keep the existing merge created with
the previous settings. If you click No, the new settings will apply only to
future merges.

Part II • Managing and Merging Object Repositories

288

Merging Two Object Repositories

Using the Object Repository Merge Tool, you can merge two source object
repositories to create a new shared object repository. Objects in the
repositories are automatically compared and added to the new repository
according to configurable rules that define how conflicts between objects
are resolved. The original source files are not changed.

Note: An object repository that is currently open by another user is locked.
If you try to merge the locked file, a warning message displays, but you can
still perform the merge because the merge process does not modify the
source files. Note that changes made to the locked file by the other user may
not be included in the merged object repository.

To merge two object repositories:

 1 In the Object Repository Manager, choose Tools > Object Repository Merge
Tool. The New Merge dialog box opens on top of the Object Repository -
Merge Tool window.

Chapter 9 • Merging Shared Object Repositories

289

Tips:

If the Object Repository - Merge Tool window is already open, you can
choose File > New Merge or click the New Merge button to open the New
Merge dialog box.

If you want to change the configured settings before merging the
repositories, click Cancel to close the New Merge dialog box, change the
settings as described in “Defining Default Settings” on page 284, and then
perform the merge.

 2 In the Primary file and Secondary file boxes, enter or browse to and select
the .tsr object repositories that you want to merge into a single repository.
You can click the down arrow next to each box to view and select
recently used files.

Notes:

It is recommended that you select as your primary repository the object
repository in which you have invested the most effort, meaning the
repository with more objects, object properties, and values.

A warning icon is displayed next to the relevant text box if you enter the
name of a file without a .tsr suffix, a file with an incorrect path, or a file that
does not exist. You can position your pointer over the icon to see a tooltip
explanation of the error. Enter or select an existing .tsr file with the correct
path.

If you want to merge an object repository that was created using an earlier
version of QuickTest, you must first open and save it in the Object
Repository Manager to update it to the new format.

 3 Click OK. The Object Repository Merge Tool automatically merges the
selected object repositories into a new target object repository according to
the configured resolution settings, and displays the results in the Statistics
dialog box on top of the Object Repository - Merge Tool window.

Part II • Managing and Merging Object Repositories

290

 4 Review the merge statistics, as described in “Viewing Merge Statistics” on
page 296, and click Close.

In the Object Repository - Merge Tool window, you can:

➤ Modify any conflict resolutions between objects from the source
repositories, if necessary, as described in “Resolving Object Conflicts” on
page 300.

➤ Filter the objects in the target object repository, as described in “Filtering
the Target Repository Pane” on page 302.

➤ Find specific objects in the target object repository, as described in
“Synchronizing Object Repository Views” on page 303.

➤ Save the target object repository to the file system or to a Quality Center
project, as described in “Saving the Target Object Repository” on
page 305.

Updating a Shared Object Repository from Local Object
Repositories

You can update a shared object repository by merging local object
repositories associated with actions in one or more tests into the shared
object repository. The objects that are merged from the local object
repositories are then available to any actions that use that shared object
repository in any tests.

In the merge process, the objects in the local object repository for the
selected action are moved to the target shared object repository. The action
then uses the objects from the updated shared object repository.

Chapter 9 • Merging Shared Object Repositories

291

If you choose to add local object repositories for more than one action,
QuickTest performs multiple merges, merging each action’s local object
repository with the target object repository one at a time, for all the actions
in the list. You can view and modify the results of each merge if necessary.

Note: You can only merge local object repositories from actions that are
associated with the shared object repository you are updating.

To update a shared object repository from a local object repository:

 1 Choose Resources > Object Repository Manager. The Object Repository
Manager opens.

Note: For more information on the Object Repository Manager, see
Chapter 8, “Managing Object Repositories.”

 2 In the Object Repository Manager, choose File > Open or click the Open
button. The Open Shared Object Repository dialog box opens.

If you are currently connected to a Quality Center project, the Open Shared
Object Repository dialog box displays the test plan tree for the project.
Select a test to view the shared object repositories attached to the test.

 3 Browse to the .tsr file that contains the shared object repository you want to
update, clear the Open in read-only mode check box, and click Open, or
click OK in the case of Quality Center attached files. The file opens with the
objects and properties displayed in editable format.

Tip: If you opened the object repository in read-only mode, choose File >
Enable Editing or click the Enable Editing button in the Object Repository
Manager toolbar. The object repository file is made editable.

Part II • Managing and Merging Object Repositories

292

 4 Choose Tools > Update from Local Repository. The Update from Local
Repository dialog box opens.

 5 Click the down arrow next to the Add Tests button, and choose Browse
for Test. The Open Test dialog box opens. If you are currently connected to a
Quality Center project, the Open Test from Quality Center Project dialog
box opens.

Browse to the test containing actions whose local object repositories you
want to merge into the shared object repository.

Note: You can only add a test containing actions that are associated with the
shared object repository you are updating and whose local object
repositories contain objects.

 6 Repeat step 5 to add additional tests if required.

Note: The local object repositories associated with all the actions contained
in the listed tests are included in the merge. If you want to remove an action
from the merge, select it in the list and click Delete.

Chapter 9 • Merging Shared Object Repositories

293

 7 Click Update All. QuickTest automatically merges the first action local
object repository into the shared object repository according to the
configured settings, and displays the results in the Statistics dialog box on
top of the Object Repository Merge Tool window.

Note: Before each merge, QuickTest checks whether the local object
repository is in use by another user. If so, the local object repository is
locked and the objects for the selected action cannot be moved to the target
shared object repository. A warning message is displayed. The merge can be
performed when the local object repository is no longer in use by the other
user.

 8 Review the merge statistics, as described in “Viewing Merge Statistics” on
page 296, and click Close.

Part II • Managing and Merging Object Repositories

294

The Object Repository - Merge Tool window for a local object repository
merge displays the local object repository as the primary object repository,
and the shared object repository as the target object repository.

Chapter 9 • Merging Shared Object Repositories

295

At the left of each object in the target object hierarchy is an icon that
indicates the source of the objects:

 indicates that the node was added from the local object repository

 indicates that the node already existed in the shared object repository

Note: If you specified more than one action in the Update from Local
Repository dialog box, QuickTest performs multiple merges, merging each
action’s local object repository with the target object repository one at a
time. The Statistics dialog box and the Object Repository Merge Tool -
Multiple Merge window displayed after this step show the merge results of
the first merge (the local object repository of the first action being merged
into the shared object repository). QuickTest enables you to view, and
modify if necessary, the results of each merge in sequence. The number of
each merge set in a multiple merge is displayed in the title bar, for example,
[Set 2 of 3].

 9 For each object merged into the shared object repository, you can accept the
automatic merge or use the Resolution Options pane to:

➤ Add a specific object to the shared object repository and remove it from
the local object repository.

➤ Keep a specific object in the local object repository and not add it to the
shared object repository.

For more information, see “Resolving Object Conflicts” on page 300.

 10 If you are performing multiple merges, click the Save and Merge Next
button in the Object Repository Merge Tool toolbar to perform the next
merge (the local object repository of the next action being merged into the
shared object repository).

 11 Click Yes to save your changes between merges. If you click No, the current
merge (objects merged from the last action) will not be saved.

 12 Repeat steps 8 through 11 to complete the multiple merges.

 13 Choose File > Exit, then click Yes to save the updated object repository.

Part II • Managing and Merging Object Repositories

296

Viewing Merge Statistics

After you merge two object repositories, the Object Repository Merge Tool
displays the Statistics dialog box, which describes how the files were merged,
and the number and type of any conflicts that were resolved during the
merge.

Note: The statistics shown after performing an Update from Local
Repository operation differ slightly from the options shown above.

Tip: You can view the merge statistics in the Statistics dialog box at any time
by choosing View > Statistics in the Object Repository - Merge Tool window
or by clicking a conflict icon in the status bar.

Chapter 9 • Merging Shared Object Repositories

297

The Statistics dialog box displays the following information:

➤ The number and type of any conflicts between the objects added to the
target object repository. Conflict types are described in “Resolving Object
Conflicts” on page 300.

➤ The number of items added to the target object repository that are
unique in each of the primary or secondary (or local) files, or are
identical in both files.

Tip: Select the Go to first conflict check box to jump to the first conflict in
the target object repository immediately after you close the Statistics dialog
box.

Understanding Object Conflicts

Merging two object repositories can result in conflicts arising from
similarities between the test objects they contain. The Object Repository
Merge Tool identifies three possible conflict types:

➤ Similar Description Conflict—Two test objects which have the same name
and the same object hierarchy, but which have slightly different
descriptions. In this conflict type, one of the objects always has a subset of
the properties set of the other object. These conflicts are described on
page 298.

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object that has
fewer identifying properties than the object with which it conflicts. For
information on changing the default settings, see “Defining Default
Settings” on page 284.

➤ Same Name Different Description Conflict—Two test objects which have the
same name and the same object hierarchy, but differ somehow in their
description (for example, they have different properties, or the same
property with different values). These conflicts are described on page 299.

Part II • Managing and Merging Object Repositories

298

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object from both
files. The object that is added from the secondary file is renamed by adding
an incremental numeric suffix to the name, for example, Edit_1. For
information on changing the default settings, see “Defining Default
Settings” on page 284.

➤ Same Description Different Name Conflict—Two test objects which have
identical descriptions, have the same object hierarchy, but differ in their
object names. These conflicts are described on page 299.

By default, the conflict resolution settings for conflicts of this type are
configured so that the target object repository takes the object name from
the primary source file. For information on changing the default settings,
see “Defining Default Settings” on page 284.

Note: Objects that do not have a description, such as Page or Browser
objects, are compared by name only. If the same object is contained in both
the source repositories but with different names, they will be merged into
the target object repository as two separate objects.

Similar Description Conflict

An object in the primary object repository and an object in the secondary
object repository have the same name, and they have similar, but not
identical, description properties and values. One of the objects always has a
subset of the properties set of the other object. For example, an object
named Button_1 in the secondary object repository has the same description
properties and values as an object named Button_1 in the primary object
repository, but also has additional properties and values.

Chapter 9 • Merging Shared Object Repositories

299

You can resolve this conflict type by:

➤ Taking the object description from the object that is added from the primary
repository.

➤ Taking the object description from the object that is added from the
secondary repository.

➤ Taking both objects into the target object repository. In this case, the Object
Repository Merge Tool automatically renames the object that is added from
the secondary file by adding an incremental numeric suffix to the name, for
example, Edit_1.

Same Name Different Description Conflict

An object in the primary object repository and an object in the secondary
object repository have the same name, but completely different description
properties and values.

You can resolve this conflict type by:

➤ Keeping the object added from the primary repository only

➤ Keeping the object added from the secondary repository only

➤ Keeping the object from both repositories. In this case, the Object
Repository Merge Tool automatically renames the object that is added from
the secondary file by adding an incremental numeric suffix to the name, for
example, Edit_1.

Same Description Different Name Conflict

An object in the primary object repository and an object in the secondary
object repository have different names, but the same description properties
and values.

You can resolve this conflict type by:

➤ Taking the object name from the object in the primary repository

➤ Taking the object name from the object in the secondary repository

Part II • Managing and Merging Object Repositories

300

Resolving Object Conflicts

Conflicts between objects in the primary and secondary object repositories
are resolved automatically by the Object Repository Merge Tool according to
the default resolution settings that you can configure before performing the
merge. For more information, see “Defining Default Settings” on page 284.

However, the Object Repository Merge Tool also allows you to change the
way the merge was performed for each individual object that causes a
conflict.

For example, an object in the primary repository could have the same name
as an object in the secondary repository, but have a different description.
You may have defined in the default settings that in this case, the object
with the more generic object description, meaning the object with fewer
properties, should be added to the target object repository. However, when
you review the conflicts after the automatic merge, you could decide to
handle the specific conflict differently, for example, by keeping both
objects.

Note: Changes that you make to the default conflict resolution can
themselves affect the target object repository by causing new conflicts. In
the above example, keeping both objects would cause a name conflict.
Therefore, the target object repository is updated after each conflict
resolution change and redisplayed.

You can identify objects that caused conflicts, and the conflict type, by the
icon displayed to the left of the object name in the target object repository
pane of the Object Repository Merge Tool and the text color. When you
select a conflicting object, a full description of the conflict, including how it
was automatically resolved by the Object Repository Merge Tool, is
displayed in the Resolutions Options pane.

Chapter 9 • Merging Shared Object Repositories

301

The Resolutions Options pane offers alternative resolution options. You can
choose to keep the default resolution if it suits your needs, or use the
alternative options to resolve the conflict in a different way.

Tip: You can also change the default resolution settings and merge the files
again. For more information, see “Defining Default Settings” on page 284.

To resolve object conflicts:

 1 In the target object repository, select an object that has a conflict, as
indicated by the icon to the left of the object name. The conflicting objects
are highlighted in the source repositories.

A description of the conflict and the resolution method used by the Object
Repository Merge Tool is described in the Resolution Options pane. A radio
button for each possible alternative resolution method is displayed. For
information on each of the conflict types, see “Understanding Object
Conflicts” on page 297.

 2 In the Resolution Options pane, select a radio button to choose an
alternative resolution method. The target object repository is updated
according to your selection and redisplayed.

 3 In the Resolution Options pane, click the Previous Conflict or Next Conflict
buttons to jump directly to the next or previous conflict in the target object
repository hierarchy.

 4 Repeat steps 1 through 3 to modify additional conflict resolutions, as
necessary.

 5 Save the target object repository, as described in “Saving the Target Object
Repository” on page 305.

Part II • Managing and Merging Object Repositories

302

Filtering the Target Repository Pane

Merging two object repositories can result in a target object repository
containing a large number of objects. To make navigation and the location
of specific objects easier in the target repository pane, the Object Repository
Merge Tool enables you to filter the objects in the pane and show only the
objects that have conflicts that were resolved during the merge.

Note: The filter only affects which objects are displayed in the target
repository pane. It does not affect which objects are included in the target
object repository.

To filter the objects in the target repository pane:

 1 Choose Tools > Filter or click the Filter button. The Filter dialog box opens.

Tip: You can also click in the box to the left of the icons in the status bar to
view the Filter dialog box. A Filter icon is shown in this area when a filter is
currently in use.

Chapter 9 • Merging Shared Object Repositories

303

 2 Select a radio button according to the objects you want to view in the target
object repository.

➤ Show all objects—Shows all objects in the target object repository

➤ Show only objects with conflicting descriptions—Shows only objects in
the target object repository that had description conflicts

 3 Click OK. The objects in the pane are filtered and the target object
repository displays only the requested object types.

Synchronizing Object Repository Views

The Object Repository Merge Tool enables you to navigate the target,
primary, and secondary object repositories independently. You can also
resize the various panes to display only some of the objects contained in the
repositories. When using large object repositories, this can result in the
various panes displaying different areas of the repository hierarchies,
making it difficult to locate and track specific objects affected by the merge
process.

To synchronize the repositories to display the same object in both views,
select the object in the primary or secondary object repository in which it is
currently visible and click Synchronize Views.

Part II • Managing and Merging Object Repositories

304

Finding Specific Objects

You can use the Find feature in the Object Repository Merge Tool to locate
one or more objects in the target object repository whose name contains a
specified string. The located object is also highlighted in the relevant
primary and/or secondary repositories.

To find an object:

 1 Choose Navigate > Find or click the Find button. The Find dialog box opens.

 2 In the Object name contains box, enter the full or partial name of the object
you want to find.

 3 In the Criteria box, refine your search by selecting which objects to search.
The following criteria are available:

➤ All objects

➤ Objects from one source

➤ Objects with conflicts

➤ Objects with conflicts or from one source

 4 Select one or both of the following options to help fine-tune your search:

➤ Match case—Distinguishes between upper-case and lower-case characters
in the search. When Match case is selected, QuickTest finds only those
occurrences in which the capitalization exactly matches the text you
entered in the Object name contains box.

➤ Match whole word—Searches for occurrences that are whole words only
and not part of larger words.

Chapter 9 • Merging Shared Object Repositories

305

 5 Specify the direction from the current cursor location in which you want to
search: Up or Down

Tip: Selecting Up or Down searches to the beginning or the end of the target
object repository from the current cursor location. To search the entire
repository, select the first (or last) object in the hierarchy and select Down
(or Up).

 6 Click Find Next to highlight the next object that matches the specified
criteria in the target object repository.

You can also close the Find dialog box and use the following commands:

➤ Click the Find Next button or choose Navigate > Find Next to highlight
the next object that matches the specified criteria.

➤ Click the Find Previous button or choose Navigate > Find Previous to
highlight the previous object that matches the specified criteria.

Saving the Target Object Repository

When you are sure that the object conflicts are resolved satisfactorily, you
can save the target object repository to the file system or to a Quality Center
project (if QuickTest is currently connected to the Quality Center project).

The file you can save depends on the type(s) of object repositories that were
merged. If you merged two shared object repositories, you can save the new
target object repository file that was created. If you merged one or more
local object repositories with a shared object repository, you can save the
existing shared object repository file that now contains the objects and data
from the local object repositories.

Part II • Managing and Merging Object Repositories

306

Saving the Object Repository to the File System

You can save the new merged shared object repository to the file system at
any time.

To save an object repository to the file system:

 1 Choose File > Save or click the Save button. If the file was saved previously,
the current changes you made are saved. If the file has not yet been saved,
the Save Shared Object Repository dialog box opens.

Note: If you are connected to Quality Center, the Save Shared Object
Repository dialog box is different from the standard file selection dialog
box. You can switch to save the file to the file system by clicking the File
System button in that dialog box.

 2 Navigate to and select the folder in which you want to save the object
repository. Enter a name for the object repository in the File name box.

Use a descriptive name that will help you easily identify the file. You cannot
use the following characters in an object repository name:
\ / : " ? < > | *

 3 Click Save. QuickTest saves the object repository with a .tsr extension in the
specified location and displays the file name and path above the target
object repository in the Object Repository - Merge Tool window.

Saving the Object Repository to a Quality Center Project

If you are connected to Quality Center, you can save your merged shared
object repository as an attachment to a test in the test plan tree of your
project.

Note: You cannot overwrite an existing object repository in Quality Center.

Chapter 9 • Merging Shared Object Repositories

307

To save an object repository in a Quality Center project:

 1 Choose File > Save or click the Save button. If the file was saved to Quality
Center previously, the current changes you made are saved to the object
repository. If the file has not yet been saved, the Save Shared Object
Repository dialog box opens.

 2 In the test plan tree, select the test or folder in which you want to save the
object repository.

You can also click the New Folder button to create a new test folder in the
test plan tree in Quality Center.

Note: You can switch to save the file to the file system by clicking the File
System button in the Save Shared Object Repository dialog box. You can
switch back to the Save Shared Object Repository dialog box for Quality
Center by clicking the Quality Center button.

Part II • Managing and Merging Object Repositories

308

 3 Enter a name for the object repository in the Attachment Name box.

Use a descriptive name that will help you easily identify the object
repository. You cannot use the following characters in an object repository
name:
\ / : " ? < > | *

Note: You cannot overwrite an existing object repository.

 4 Click OK. QuickTest saves the object repository to Quality Center and
displays the file name and path above the target object repository in the
Object Repository - Merge Tool window. In Quality Center, the file is shown
in the Attachments tab of the relevant test or folder.

Part III

Configuring Advanced Settings

310

311

10
Configuring Web Event Recording

If QuickTest does not record Web events in a way that matches your needs,
you can configure the events you want to record for each type of Web
object.

This chapter describes:

➤ About Configuring Web Event Recording

➤ Selecting a Standard Event Recording Configuration

➤ Customizing the Event Recording Configuration

➤ Recording Right Mouse Button Clicks

➤ Saving and Loading Custom Event Configuration Files

➤ Resetting Event Recording Configuration Settings

Part III • Configuring Advanced Settings

312

About Configuring Web Event Recording

QuickTest creates your test by recording the events you perform on your
Web-based application. An event is a notification that occurs in response to
an operation, such as a change in state, or as a result of the user clicking the
mouse or pressing a key while viewing the document. You may find that
you need to record more or fewer events than QuickTest automatically
records by default. You can modify the default event recording settings by
using the Web Event Recording Configuration dialog box to select one of
three standard configurations, or you can customize the individual event
recording configuration settings to meet your specific needs.

For example, QuickTest does not generally record mouseover events on link
objects. If, however, you have mouseover behavior connected to a link, it
may be important for you to record the mouseover event. In this case, you
could customize the configuration to record mouseover events on link
objects whenever they are connected to a behavior.

Notes:

Event configuration is a global setting and therefore affects all tests that are
recorded after you change the settings.

Changing the event configuration settings does not affect tests that have
already been recorded. If you find that QuickTest recorded more or less than
you need, change the event recording configuration and then re-record the
part of your test that is affected by the change.

Changes to the custom Web event recording configuration settings do not
take effect on open browsers. To apply your changes for an existing test,
make the changes you need in the Web Event Recording Configuration
dialog box, refresh any open browsers, and then start a new recording
session.

Chapter 10 • Configuring Web Event Recording

313

Selecting a Standard Event Recording Configuration

The Web Event Recording Configuration dialog box offers three standard
event-configuration levels. By default, QuickTest uses the Basic
recording-configuration level. If QuickTest does not record all the events
you need, you may require a higher event-configuration level.

Level Description

Basic Default

• Always records click events on standard Web
objects such as images, buttons, and radio
buttons.

• Always records the submit event within forms.

• Records click events on other objects with a
handler or behavior connected.
For more information on handlers and
behaviors, see “Listening Criteria” on page 321.

• Records the mouseover event on images and
image maps only if the event following the
mouseover is performed on the same object.

Medium Records click events on the <DIV>, , and
<TD> HTML tag objects, in addition to the objects
recorded in the basic level.

High Records mouseover, mousedown, and double-click
events on objects with handlers or behaviors
attached, in addition to the objects recorded in the
basic level.

For more information on handlers and behaviors,
see “Listening Criteria” on page 321.

Part III • Configuring Advanced Settings

314

To set a standard event-recording configuration:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Use the slider to select your preferred standard event recording
configuration.

Tip: You can click the Custom Settings button to open the Custom Web
Event Recording dialog box where you can customize the event recording
configuration. For more information, see “Customizing the Event Recording
Configuration,” below.

You can click the Default Settings button to return the scale to the Basic
level.

 3 Click OK.

Chapter 10 • Configuring Web Event Recording

315

Customizing the Event Recording Configuration

If the standard event configuration levels do not exactly match your
recording needs, you can customize the event recording configuration using
the Custom Web Event Recording Configuration dialog box.

The Custom Web Event Recording Configuration dialog box enables you to
customize event recording in several ways. You can:

➤ Add or delete objects to which QuickTest should apply special listening or
recording settings.

➤ Add or delete events for which QuickTest should listen.

➤ Modify the listening or recording settings for an event.

To customize the event recording configuration:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

Part III • Configuring Advanced Settings

316

 3 Customize the event recording configuration using the following options:

Option Description

Objects pane Displays a list of Web test object classes and HTML tag
objects.

• To add an object, choose Object > Add.

• Only HTML Tag objects can be deleted. To delete an
HTML object from the list, choose Object > Delete.

For more information, see “Adding and Deleting Objects in
the Custom Configuration Object List” on page 317.

Events pane Displays a list of events associated with the object.

• To add an event to the Events pane, choose
Event > Add.

• To delete an event, choose Event > Delete.

For more information, see “Adding and Deleting Listening
Events for an Object” on page 319.

Event Name The name of the event.

Listen The criteria for when QuickTest listens to the event.

• Always—Always listens to the event.

• If Handler—Listens to the event if a handler is attached
to it. A handler is code in a Web page, typically a
function or routine written in a scripting language, that
receives control when the corresponding event occurs.

• If Behavior—Listens to the event if a DHTML behavior
is attached to it. A DHTML behavior encapsulates
specific functionality or behavior on a page. When
applied to a standard HTML element on a page, a
behavior enhances that element's default behavior.

• If Handler or Behavior—Listens to the event if a
handler or behavior is attached to it.

• Never—Never listens to the event.

For more information, see “Modifying the Listening and
Recording Settings for an Event” on page 321.

Chapter 10 • Configuring Web Event Recording

317

 4 Click OK. The Custom Web Event Recording Configuration dialog box
closes. The slider scale on the Web Event Recording Configuration dialog
box is hidden and the configuration description displays Custom.

 5 Click OK to close the Web Event Recording Configuration dialog box.

Adding and Deleting Objects in the Custom Configuration
Object List

The Custom Web Event Recording Configuration dialog box lists objects in
an object hierarchy. The top of the hierarchy is Any Web Object. The
settings for Any Web Object apply to any object on the Web page being
tested, for which there is no specific event recording configuration set.
Below this are the Web Objects and HTML Tag Objects categories, each of
which contains a list of objects.

Record Enables or disables recording of the event for the selected
object, or enables recording of the event only if the
subsequent event occurs on the same object.

Reset Enables you to reset your settings to a preconfigured level.

Option Description

Part III • Configuring Advanced Settings

318

When working with the objects in the Custom Web Event Recording
Configuration dialog box, keep the following principles in mind:

➤ If an object is listed in the Custom Web Event Recording Configuration
dialog box, then the settings for that object override the settings for Any
Web Object.

➤ You cannot delete or add to the list of objects in the Web Objects category,
but you can modify the settings for any of these objects.

➤ You can add any HTML Tag object in your Web page to the HTML Tag
Objects category.

To add objects to the event configuration object list:

 1 In the Custom Web Event Recording Configuration dialog box, choose
Object > Add. A New Object object is displayed in the HTML Tag Objects
list.

 2 Click New Object to rename it. Enter the exact HTML Tag name.

By default the new object is set to listen and record onclick events with
handlers attached.

Chapter 10 • Configuring Web Event Recording

319

For more information on adding or deleting events, see “Adding and
Deleting Listening Events for an Object,” below. For more information on
listening and recording settings, see “Modifying the Listening and
Recording Settings for an Event” on page 321.

To delete objects from the HTML Tag Objects list:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object in the HTML Tag Objects category that you want to delete.

 2 Choose Object > Delete. The object is deleted from the list.

Note: You cannot delete objects from the Web Objects category.

Adding and Deleting Listening Events for an Object

You can add or delete events from the list of events that trigger QuickTest to
listen to an object.

To add listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object to which you want to add an event, or select Any Web Object.

Part III • Configuring Advanced Settings

320

 2 Choose Event > Add. A list of available events opens.

 3 Select the event you want to add. The event is displayed in the Event Name
column in alphabetical order. By default, QuickTest listens to the event
when a handler is attached and always records the event (as long as it is
listened to at some level).

For more information on listening and recording settings, see “Modifying
the Listening and Recording Settings for an Event,” below.

To delete listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object from which you want delete an event, or select Any Web Object.

 2 Select the event you want to delete from the Event Name column.

 3 Choose Event > Delete. The event is deleted from the Event Name column.

Chapter 10 • Configuring Web Event Recording

321

Modifying the Listening and Recording Settings for an Event

You can select the listening criteria and set the recording status for each
event listed for each object.

Note: The listen and record settings are mutually independent. This means
that you can choose to listen to an event for particular object, but not record
it, or you can choose not to listen to an event for an object, but still record
the event. For more information, see “Tips for Working with Event Listening
and Recording” on page 323.

Listening Criteria

For each event, you can instruct QuickTest to listen every time the event
occurs on the object if an event handler is attached to the event, if a DHTML
behavior is attached to the event, if an event handler or DHTML behavior
are attached to the event, or to never listen to the event.

An event handler is code in a Web page, typically a function or routine
written in a scripting language, that receives control when the
corresponding event occurs.

A DHTML behavior encapsulates specific functionality or behavior on a
page. When applied to a standard HTML element on a page, a behavior
enhances that element's default behavior.

To specify the listening criterion for an event:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the listening criterion or select Any
Web Object.

Part III • Configuring Advanced Settings

322

 2 In the row of the event you want to modify, select the listening criterion
you want from the Listen column.

You can select Always, If Handler, If Behavior, If Handler or Behavior, or
Never.

Recording Status

For each event, you can enable recording, disable recording, or enable
recording only if the next event is dependent on the selected event.

➤ Enabled—Records the event each time it occurs on an object as long as
QuickTest listens to the event on the selected object, or on another object to
which the event bubbles.

Bubbling is the process whereby, when an event occurs on a child object,
the event can travel up the chain of hierarchy within the HTML code until it
encounters an event handler to process the event.

➤ Disabled—Does not record the specified event and ignores event bubbling
where applicable.

➤ Enabled on next event—Same as Enabled, except that it records the event
only if a subsequent event occurs on the same object. For example, suppose
a mouseover behavior modifies an image link. You may not want to record
the mouseover event each time you happen to move the mouse over this
image. It is essential, though, that the mouseover event be recorded before a
click event on the same object because only the image that is displayed after
the mouseover event enables the link event. This option applies only to the
Image and WebArea objects.

Chapter 10 • Configuring Web Event Recording

323

To set the recording status for an event:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the recording status or select Any Web
Object.

 2 In the row of the event you want to modify, select a recording status from
the Record column.

Tips for Working with Event Listening and Recording

It can sometimes be difficult to find the ideal listen and recording settings.
When defining these settings, keep in mind the following guidelines:

➤ If settings for different objects in the Objects Pane conflict, QuickTest gives
first priority to settings for specific HTML Tag Objects and second priority to
Web Objects settings. QuickTest only applies the settings for Any Web
Object to Web objects that were not defined in the HTML Tag Object or Web
Objects areas.

➤ To record an event on an object, you must instruct QuickTest to listen for
the event, and to record the event when it occurs. You can listen for an
event on a child object, even if a parent object contains the handler or
behavior, or you can listen for an event on a parent object, even if the child
object contains the handler or behavior.

However, you must enable recording for the event on the source object (the
object on which the event actually occurs, regardless of which parent object
contains the handler or behavior).

Part III • Configuring Advanced Settings

324

For example, suppose a table cell with an onmouseover event handler
contains two images. When the mouse moves over either of the images, the
event also bubbles up to the cell, and the bubbling includes information on
the image that the mouse moved over. You can record this mouseover event
by:

➤ Setting Listen on the <TD> tag mouseover event to If Handler (so that
QuickTest “hears” the event when it occurs), while disabling recording
on it, and then setting Listen on the tag mouseover event to
Never, while setting Record on the tag to Enable (to record the
mouseover event on the image after it is listened to at the <TD> level).

➤ Setting Listen on the tag mouseover event to Always (to listen for
the mouseover event even though the image tag does not contain a
behavior or handler), and setting Record on the tag to Enabled
(to record the mouseover event on the image).

➤ Instructing QuickTest to listen for many events on many objects may lower
performance, so it is recommended to limit Listen settings to the required
objects.

➤ In rare situations, listening to the object on which the event occurs (the
source object) can interfere with the event.

If you find that your application works properly until you begin recording
on the application using QuickTest, your Listen settings may be interfering.

If this problem occurs with a mouse event, try selecting the appropriate Use
standard Windows mouse events option(s) in the Advanced Web Options
dialog box. For more information, refer to “Advanced Web Options” on
page 733 in the QuickTest Professional Basic Features User’s Guide.

If this problem occurs with a keyboard or internal event, or the Use
standard Windows mouse events option does not solve your problem, set
the Listen settings for the event to Never on the source object (but keep the
record setting enabled on the source object), and set the Listen settings to
Always for a parent object.

Chapter 10 • Configuring Web Event Recording

325

Recording Right Mouse Button Clicks

QuickTest enables you to record clicks made using left, center, and right
mouse buttons. By default, only left clicks are recorded, but you can modify
the configuration to record clicks from the right and center buttons, as well.

QuickTest records the Click statement when the OnClick event is triggered.
QuickTest differentiates between the mouse buttons by listening for events
configured for each of the mouse buttons. By default, it listens for the
OnMouseUp event, but you can also configure it to listen for the
OnMouseDown event using the Web Event Recording Configuration dialog
box.

Notes:

Recording of simultaneous clicking of more than one mouse button is not
supported.

QuickTest does not record the right click that opens the browser context
menu, or the selection of an item from the context menu. For more
information on modifying the script manually to enable these options, refer
to the following Knowledge Base articles:

➤ Problem ID 31270: How to replay right-clicking on an object to open a
pop-up menu

➤ Problem ID 27184: How to select an item from a right-click menu

Part III • Configuring Advanced Settings

326

Configuring QuickTest to Record Right Mouse Clicks

You instruct QuickTest to record right mouse clicks by modifying the
configuration file manually and then loading it.

To configure QuickTest to record right mouse clicks:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

Chapter 10 • Configuring Web Event Recording

327

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

 3 In the Custom Web Event Recording Configuration dialog box, choose File >
Save Configuration As. The Save As dialog box opens.

 4 Navigate to the folder in which you want to save the web event recording
configuration file, and enter a configuration file name. The extension for
configuration files is .xml.

 5 Click Save to save the file and close the dialog box.

 6 Open the saved configuration file for editing in any text editor. The
configuration file uses a defined structure. For more information on the
XML file structure, see “Understanding the Web Event Recording
Configuration XML Structure” on page 330.

The beginning of the file, which is relevant for Web objects, is shown below.

Part III • Configuring Advanced Settings

328

The Property Name argument controls the recording of the mouse buttons.
The value of the mouse buttons are defined as follows:

➤ 1—Left

➤ 2—Right

➤ 4—Middle

 7 Edit the file as follows:

➤ To record a left mouse click for the onmouseup event, add the following
line:

<Property Name=”button” Value=”1” Listen=”2” Record=”2”/>

➤ To record right and left mouse clicks for the onmousedown event, add
the following lines:

<Event Name=”onmousedown” Listen=”2” Record=”1”>

<Property Name=”button” Value=”2” Listen=”2” Record=”2”/>

<Property Name=”button” Value=”1” Listen=”2” Record=”2”/>

</Event>

Note: Only one event, either onmouseup or onmousedown, should be used
to handle mouse clicks. If both events are used, QuickTest will record two
clicks instead of one. By default, QuickTest listens for the onmouseup event.

 8 Save the file.

 9 In the Custom Web Event Recording Configuration dialog box, choose File >
Load Configuration. The Open dialog box opens.

 10 Navigate to the folder in which you saved the edited configuration file,
select the file, and click Open. The Custom Web Recording Configuration
dialog box reopens.

 11 Click OK. The new configuration is loaded, with all preferences
corresponding to those you defined in the XML configuration file. Any Web
objects you now record will be recorded according to these new settings.

Chapter 10 • Configuring Web Event Recording

329

Saving and Loading Custom Event Configuration Files

You can save the changes you make in the Custom Web Event Recording
Configuration dialog box, and load them at any time.

You can also modify the XML file before loading it. For more information on
the XML file structure, see “Understanding the Web Event Recording
Configuration XML Structure” on page 330.

To save a custom configuration:

 1 Customize the event recording configuration as desired. For more
information on how to customize the configuration, see “Customizing the
Event Recording Configuration” on page 315.

 2 In the Custom Web Event Recording Configuration dialog box, Choose
File > Save Configuration As. The Save As dialog box opens.

 3 Navigate to the folder in which you want to save your event configuration
file and enter a configuration file name. The extension for configuration
files is .xml.

 4 Click Save to save the file and close the dialog box.

To load a custom configuration:

 1 Choose Tools > Web Event Recording Configuration and then click Custom
Settings to open the Custom Web Event Recording Configuration dialog
box.

 2 Choose File > Load Configuration. The Open dialog box opens.

 3 Locate the event configuration file (.xml) that you want to load and click
Open. The dialog box closes and the selected configuration is loaded.

Part III • Configuring Advanced Settings

330

Understanding the Web Event Recording Configuration XML
Structure

The Web event recording configuration XML file is structured in a certain
format. If you are modifying the file, or creating your own file, you must
ensure that you adhere to this format, in order for your settings to take
effect.

Following is a sample XML file:

<XML>
<Object Name="Any Web Object">

<Event Name="onclick" Listen="2" Record="2"/>
<Event Name="onmouseup" Listen="2" Record="1">

<Property Name="button" Value="2" Listen="2" Record="2"/>
</Event>

</Object>
. . .
. . .
. . .

<Object Name="WebList">
<Event Name="onblur" Listen="1" Record="2"/>
<Event Name="onchange" Listen="1" Record="2"/>
<Event Name="onfocus" Listen="1" Record="2"/>

</Object>
</XML>

Chapter 10 • Configuring Web Event Recording

331

You define the listening criteria and recording status options in the XML
using the following possible values:

Resetting Event Recording Configuration Settings

You can restore standard settings after you set custom settings by resetting
the event recording configuration settings to the basic level from the Web
Event Recording Configuration dialog box. You can also restore the default
custom level settings from the Custom Web Event Recording Configuration
dialog box.

Note: When you choose to reset standard settings, your custom settings are
cleared completely. If you do not want to lose your changes, be sure to save
your settings in an event configuration file. For more information, see
“Saving and Loading Custom Event Configuration Files” on page 329.

Settings Possible Values

Listen 1—Always

2—If Handler

4—If Behavior

6—If Handler or Behavior

0—Never

Record 1—Disabled

2—Enabled

6—Enabled on Next Event

Part III • Configuring Advanced Settings

332

To reset basic level configuration settings from the Web Event Recording
Configuration dialog box:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click Default. The standard configuration slider is displayed again and all
event settings are restored to the Basic event recording configuration level.

 3 If you want to select a different standard configuration level, see “Selecting a
Standard Event Recording Configuration” on page 313.

You can also restore the settings to a specific (base) custom configuration
from within the Custom Web Event Recording Configuration dialog box so
that you can begin customizing from that point.

To reset the settings to a custom level from the Custom Web Event
Recording Configuration dialog box:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

 3 In the Reset to box, select the standard event recording level you want.

 4 Click Reset. All event settings are restored to the defaults for the level you
selected.

333

11
Customizing the Expert View and
Function Library Windows

You can customize the way your test is displayed when you work in the
Expert View and the way functions are displayed in the function library
windows. Any changes you make are applied globally to the Expert View
and to all function library windows.

This chapter describes:

➤ About Customizing the Expert View and Function Library Windows

➤ Customizing Editor Behavior

➤ Customizing Element Appearance

➤ Personalizing Editing Commands

Part III • Configuring Advanced Settings

334

About Customizing the Expert View and Function Library
Windows

QuickTest includes a powerful and customizable editor that enables you to
modify many aspects of the Expert View and function library windows.

The Editor Options dialog box enables you to change the way scripts and
function libraries are displayed in the Expert View and function library
windows. You can also change the font style and size of text in your scripts
and function libraries, and change the color of different elements, including
comments, strings, QuickTest reserved words, operators, and numbers. For
example, you can display all text strings in red.

QuickTest includes a list of default keyboard shortcuts that enable you to
move the cursor, delete characters, and cut, copy, and paste information to
and from the Clipboard. You can replace these shortcuts with shortcuts you
prefer. For example, you could change the Line start command from the
default HOME to ALT + HOME.

You can also modify the way your script or function library is printed using
options in the Print dialog box. For more information, refer to “Printing a
Test” on page 103 in the QuickTest Professional Basic Features User’s Guide and
see “Printing a Function Library” on page 198.

For more information on using the Expert View, see Chapter 5, “Working
with the Expert View and Function Library Windows.” For more
information on working with function libraries, see Chapter 6, “Working
with User-Defined Functions and Function Libraries.”

Chapter 11 • Customizing the Expert View and Function Library Windows

335

Customizing Editor Behavior

You can customize how scripts and function libraries are displayed in the
Expert View and function library windows. For example, you can show or
hide character symbols, and choose to display line numbers. For more
information on using the Expert View, see Chapter 5, “Working with the
Expert View and Function Library Windows.” For more information on
working with function libraries, see Chapter 6, “Working with User-Defined
Functions and Function Libraries.”

To customize editor behavior:

 1 When the Expert View or a function library window is active, choose Tools >
View Options. The Editor Options dialog box opens.

 2 Click the General tab.

Part III • Configuring Advanced Settings

336

 3 Choose from the following options:

Options Description

Show line numbers Displays a line number to the left of each line in the
script or function.

Auto-indent Causes lines following an indented line to
automatically begin at the same point as the
previous line. You can click the HOME key on your
keyboard to move the cursor back to the left
margin.

Indent selected text when
pressing Tab key

Pressing the TAB key indents the selected text.
When this option is not enabled, pressing the Tab
key replaces the selected text with a single Tab
character.

Statement completion When this option is selected, if you type:

• a dot after a test object—QuickTest displays a
list of available test objects and methods that
you can add after the object you typed.

• an open parenthesis after an object—QuickTest
displays a list of all test objects of this type in the
object repository. If there is only one object of
this type in the object repository, QuickTest
automatically enters its name in quotes after the
open parenthesis.

• a method—QuickTest displays the syntax for the
method, including its specific mandatory and
optional arguments.

• the Object property—if the object data is
currently available in the Active screen or the
open application, QuickTest displays native
methods and properties of any run-time object
in your application.

For more information on using the statement
completion (IntelliSense) feature, see “Generating
Statements in the Expert View or a Function
Library” on page 130.

Draw box around current
line

Displays a box around the line of the test in which
the cursor is currently located.

Chapter 11 • Customizing the Expert View and Function Library Windows

337

 4 Click OK to save the changes and close the dialog box.

Customizing Element Appearance

QuickTest scripts and function libraries contain many different elements,
such as comments, strings, QuickTest and VBScript reserved words,
operators, and numbers. Each element of a QuickTest script can be displayed
in a different color. You can also specify the font style and size to use for all
elements in the Expert View. You can create your own personalized color
scheme for each script element. For example, all comments in your scripts
could be displayed as blue letters on a yellow background.

To set font and color preferences for elements:

 1 When the Expert View or a function library window is active, choose Tools >
View Options. The Editor Options dialog box opens.

Show all characters Displays all Tab, New Line and Space character
symbols. You can also select to display only some of
these characters by selecting or clearing the relevant
check boxes.

Auto-expand VBScript
syntax

Automatically recognizes the first two characters of
keywords and adds the relevant VBScript syntax or
blocks to the script, when you type the relevant
keyword.

For example, if you enter the letters if and then
enter a space at the beginning of a line in the Expert
View, QuickTest automatically enters:

If Then
End If

Use tab character Inserts a TAB character when the TAB key on the
keyboard is used. When this option is not enabled,
the specified number of space characters is inserted
when you press the TAB key.

Options Description

Part III • Configuring Advanced Settings

338

 2 Click the Fonts and Colors tab.

 3 In the Fonts area, select the Font name and Size that you want to use to
display all elements. By default, the editor uses the Microsoft Sans Serif font,
which is a Unicode font.

Note: When testing in a Unicode environment, you must select a
Unicode-compatible font. Otherwise, elements in your test or function
library may not be correctly displayed in the Expert View or function library
windows. However, the test or function library will still run in the same way,
regardless of the font you choose. If you are working in an environment that
is not Unicode-compatible, you may prefer to choose a fixed-width font,
such as Courier, to ensure better character alignment.

Chapter 11 • Customizing the Expert View and Function Library Windows

339

 4 Select an element from the Element list.

 5 Choose a foreground color and a background color.

 6 Choose a font style for the element (Normal, Bold, Italic, or Underline).

An example of your change is displayed in the Preview pane at the bottom
of the dialog box.

 7 Repeat steps 4 to 6 for each element you want to modify.

 8 Click OK to apply the changes and close the dialog box.

Personalizing Editing Commands

You can personalize the default keyboard shortcuts you use for editing.
QuickTest includes keyboard shortcuts that let you move the cursor, delete
characters, and cut, copy, or paste information to and from the Clipboard.
You can replace these shortcuts with your preferred shortcuts. For example,
you could change the Line end command from the default END to ALT +
END.

Note: The default QuickTest menu shortcut keys override any key bindings
that you may define. For example, if you define the Paste command key
binding to be CTRL+P, it will be overridden by the default QuickTest shortcut
key for opening the Print dialog box (corresponding to the File > Print
option). For a complete list of QuickTest menu shortcut keys, refer to
“Executing Commands Using Shortcut Keys” on page 43 in the QuickTest
Professional Basic Features User’s Guide.

Part III • Configuring Advanced Settings

340

To personalize editing commands:

 1 When the Expert View or a function library window is active, choose Tools >
View Options. The Editor Options dialog box opens.

 2 Click the Key Binding tab.

 3 Select a command from the Command list.

 4 Click in the Press new shortcut key box and then press the key(s) you want
to use for the selected command. For example, press and hold the CTRL key
while you press the number 4 key to enter CTRL+4.

Chapter 11 • Customizing the Expert View and Function Library Windows

341

 5 Click Add.

Note: If the key combination you specify is not supported, or is already
defined for another command, a message to this effect is displayed below
the shortcut key box.

 6 Repeat steps 3 - 5 for any additional commands.

 7 If you want to delete a key sequence from the list, select the command in
the Command list, then highlight the key(s) in the Uses keys list, and click
Delete.

 8 Click OK to apply the changes and close the dialog box.

Part III • Configuring Advanced Settings

342

343

12
Setting Testing Options During the Run
Session

You can control how QuickTest records and test runs by setting and
retrieving testing options during a run session.

This chapter describes:

➤ About Setting Testing Options During the Run Session

➤ Setting Testing Options

➤ Retrieving Testing Options

➤ Controlling the Test Run

➤ Adding and Removing Run-Time Settings

About Setting Testing Options During the Run Session

QuickTest testing options affect how you record and run tests. For example,
you can set the maximum time that QuickTest allows for finding an object
in a page.

You can set and retrieve the values of testing options during a run session
using the Setting object in the Expert View. For more information on
working in the Expert View, see Chapter 5, “Working with the Expert View
and Function Library Windows.”

By retrieving and setting testing options using the Setting object, you can
control how QuickTest runs a test.

Part III • Configuring Advanced Settings

344

You can also set many testing options using the Options dialog box (global
testing options) and the Test Settings dialog box (test-specific settings). For
more information, refer to Chapter 24, “Setting Global Testing Options”
and Chapter 25, “Setting Options for Individual Tests” in the QuickTest
Professional Basic Features User’s Guide.

This chapter describes some of the QuickTest testing options that can be
used with the Setting object from within a test script. For detailed
information on all the available methods and properties for the Setting
object, refer to the Utility section of the QuickTest Professional Object Model
Reference.

Note: You can also control QuickTest options as well as most other
QuickTest operations from an external application using automation
programs. For more information, see “Automating QuickTest Operations”
on page 231, or refer to the QuickTest Automation Object Model Reference
(Help > QuickTest Automation Object Model Reference).

Setting Testing Options

You can use the Setting object to set the value of a testing option from
within the test script. To set the option, use the following syntax:

Setting (testing_option) = new_value

Some options are global and others are per-test settings.

Using the Setting object with a global testing option changes a testing
option globally, and this change is reflected in the Options dialog box.

For example, if you execute the following statement:

Setting("AutomaticLinkRun")=1

Chapter 12 • Setting Testing Options During the Run Session

345

QuickTest disables automatically created checkpoints in the test. The setting
remains in effect during your current QuickTest session until it is changed
again, either with another Setting statement, or by clearing the Ignore
automatic checkpoints while running tests check box in the Advanced Web
Options dialog box (Choose Tools > Options > Web tab, and click
Advanced).

Using the Setting object to set per-test options is also reflected in the Test
Settings dialog box. You can also use the Setting object to change a setting
for a specific part of a specific test. For more information see “Controlling
the Test Run” on page 346.

For example, if you execute the following statement:

Setting("WebTimeOut")=50000

QuickTest automatically changes the amount of time it waits for a Web page
to load before running a test step to 50000 milliseconds. The setting remains
in effect during your current QuickTest session until it is changed again,
either with another Setting statement, or by setting the Browser Navigation
Timeout option in the Web tab of the Test Settings dialog box.

Note: Although the changes you make using the Setting object are reflected
in the Options and Test Settings dialog boxes, these changes are not saved
when you close QuickTest, unless you make other changes in the same
dialog box manually and click Apply or OK (which saves all current settings
in that dialog box).

Part III • Configuring Advanced Settings

346

Retrieving Testing Options

You can also use the Setting object to retrieve the current value of a testing
option.

To store the value in a variable, use the syntax:

new_var = Setting (testing_option)

To display the value in a message box, use the syntax:

MsgBox (Setting (testing_option))

For example:

LinkCheckSet = Setting("AutomaticLinkRun")

assigns the current value of the AutomaticLinkRun setting to the user-defined
variable LinkCheckSet.

Other examples of testing options that you can use to retrieve a setting are
shown in “Setting Testing Options” on page 344.

Controlling the Test Run

You can use the retrieve and set capabilities of the Setting object together to
control a run session without changing global settings. For example, if you
want to change the DefaultTimeOut testing option to 5 seconds for objects
on one Web page only, insert the following statement after the Web page
opens in your test script:

‘Keep the original value of the DefaultTimeOut testing option
old_delay = Setting ("DefaultTimeOut")

‘Set temporary value for the DefaultTimeOut testing option
Setting("DefaultTimeOut")= 5000

Chapter 12 • Setting Testing Options During the Run Session

347

To return the DefaultTimeOut testing option to its original value at the end
of the Web page, insert the following statement immediately before linking
to the next page in the script:

‘Change the DefaultTimeOut testing option back to its original value.
Setting("DefaultTimeOut")=old_delay

Adding and Removing Run-Time Settings

In addition to the global and specific settings, you can also add, modify, and
remove custom run-time settings. These settings are applicable during the
run session only.

To add a new run-time setting, use the syntax:

Setting.Add "testing_option", "value"

For example, you could create a setting that indicates the name of the
current tester and displays the name in a message box.

Setting.Add "Tester Name", "Mark Train"
MsgBox Setting(“Tester Name")

Note: When using a Setting.Add statement, an error occurs if you try to add
an existing key value. To avoid this error you should use a Setting.Exists
statement first. For more details about all the Setting methods, refer to the
QuickTest Professional Object Model Reference.

Part III • Configuring Advanced Settings

348

To modify a run-time setting that has already been initialized, use the same
syntax you use for setting any standard setting option:

Setting (testing_option) = new_value

For example:

Setting("Tester Name")="Alice Wonderlin"

To delete a custom run-time setting, use the following syntax:

Setting.Remove (testing_option)

For example:

Setting.Remove ("Tester Name")

Part IV

Working with Other Mercury Products

350

351

13
Working with WinRunner

When you work with QuickTest, you can also run WinRunner tests and call
TSL or user-defined functions in compiled modules.

This chapter describes:

➤ About Working with WinRunner

➤ Calling WinRunner Tests

➤ Calling WinRunner Functions

About Working with WinRunner

If you have WinRunner 7.5 or later installed on your computer, you can
include calls to WinRunner tests and functions in your QuickTest test.

Note: For WinRunner versions earlier than 7.6, you cannot run WinRunner
tests on Web pages (using WinRunner’s WebTest Add-in) from QuickTest if
the QuickTest Web Add-in is loaded. For WinRunner 7.6, you can enable this
functionality by installing patch WR76P10 - Support WR/QTP integration
from the patch database on the Mercury Customer Support site
(http://support.mercury.com). For future versions of WinRunner, this
functionality will be provided built-in.

Once you create a call to a WinRunner test or function, you can modify the
argument values in call statements by editing them in the Expert View or
Keyword View.

http://support.mercury.com

Part IV • Working with Other Mercury Products

352

When QuickTest is connected to a Quality Center project that contains
WinRunner tests or compiled modules, you can call a WinRunner test or
function that is stored in that Quality Center project.

Calling WinRunner Tests

When QuickTest links to WinRunner to run a test, it starts WinRunner,
opens the test, and runs it. Information about the WinRunner test run is
displayed in the QuickTest Test Results window.

You can insert a call to a WinRunner test using the Call to WinRunner Test
dialog box or by entering a TSLTest.RunTestEx statement in the Expert View.

Note: You cannot call a WinRunner test that includes calls to QuickTest
tests.

To insert a call to a WinRunner test using the Call to WinRunner Test dialog
box:

 1 Choose Insert > Call to WinRunner > Test. The Call to WinRunner Test
dialog box opens.

Chapter 13 • Working with WinRunner

353

 2 In the Test path box, enter the path of the WinRunner test or browse to it.

If you are connected to Quality Center when you click the browse button,
the Open WinRunner Test from Quality Center project dialog box opens so
that you can select the module from the Quality Center project. For more
information on this dialog box, see “Opening Tests from a Quality Center
Project” on page 375.

 3 The Parameters box lists any test parameters required for the WinRunner
test. To enter values for the parameters:

➤ Highlight the parameter in the Test Parameters list. The selected
parameter is displayed in the Name box below the list

➤ Enter the new value in the Value box.

Note: You can also use the parameter values from a QuickTest random
environment parameter or from the QuickTest Data Table as the parameters
for your WinRunner test. You do this by entering the parameter information
manually in the TSLTest.RunTestEx statement. For more information, see
“Passing QuickTest Parameterized Values to a WinRunner Test” on page 354.

 4 Select Run WinRunner minimized if you do not want to view the WinRunner
window while the test runs. (This option is supported only for
WinRunner 7.6 and later.)

 5 Select Close WinRunner after running the test if you want the WinRunner
application to close when the step calling the WinRunner test is complete.
(This option is supported only for WinRunner 7.6 and later.)

 6 Click OK to close the dialog box.

For information on WinRunner test parameters, refer to the WinRunner
User’s Guide.

Part IV • Working with Other Mercury Products

354

In QuickTest, the call to the WinRunner test is displayed as:

➤ a WinRunner RunTestEx step in the Keyword View. For example:

➤ a TSLTest.RunTestEx statement in VBScript in the Expert View. For
example:

TSLTest.RunTestEx "C:\WinRunner\Tests\basic_flight",TRUE, 0, "MyValue"

The RunTestEx method has the following syntax:

TSLTest.RunTestEx TestPath , RunMinimized, CloseApp [, Parameters]

Note: Tests created in QuickTest 6.0 may contain calls to WinRunner tests
using the RunTest method, which has slightly different syntax. Your tests
will continue to run successfully with this method. However, if you are
working with WinRunner 7.6 or later, it is recommended to update your
tests to the RunTestEx method (and corresponding argument syntax). For
more information on these methods, refer to the QuickTest Professional
Object Model Reference.

For additional information on the RunTestEx method and an example of
usage, refer to the QuickTest Professional Object Model Reference.

Passing QuickTest Parameterized Values to a WinRunner Test

Rather than setting fixed values for the parameters required for a
WinRunner test, you can pass WinRunner parameter values defined in a
QuickTest Data Table, random or environment parameter. You specify these
parameterized values by entering the appropriate statement as the
Parameters argument in the TSLTest.RunTestEx statement.

Chapter 13 • Working with WinRunner

355

For example, suppose you want to run a WinRunner test on a Windows-
based Flight Reservation application, and that the test includes
parameterized statements for the number of passengers on the flight and the
seat class. You can pass the WinRunner test the value for its first parameter
from a QuickTest random parameter (that generates a random number
between 1 and 100), and pass it the value for the seat class from a QuickTest
Data Table column labeled Class. Your TSLTest.RunTestEx statement in
QuickTest might look something like this:

TSLTest.RunTestEx "D:\test1", TRUE, FALSE, RandomNumber(1, 100) ,
DataTable("Class", dtGlobalSheet)

For more information on the syntax and usage of the RandomNumber,
Environment, and DataTable methods, refer to the Utility section of the
QuickTest Professional Object Model Reference.

Viewing the Results

When you run a call to a WinRunner test, and WinRunner 7.6 or later is
installed on your computer, your QuickTest results include a node for each
event that would normally be included in the WinRunner results. When
you select a node corresponding to a WinRunner step, the right pane
displays a summary of the WinRunner test and details about the selected
step.

Note: You can also view the results of the called WinRunner test from the
results folder of the WinRunner test. For WinRunner tests stored in Quality
Center, you can also view the WinRunner test results from Quality Center.

For more information, refer to “Viewing WinRunner Test Steps in the Test
Results” on page 684 in the QuickTest Professional Basic Features User’s Guide.

For more information on designing and running WinRunner tests, refer to
your WinRunner documentation.

Part IV • Working with Other Mercury Products

356

Calling WinRunner Functions

When QuickTest links to WinRunner to call a function, it starts WinRunner,
loads the compiled module, and calls the function. This is useful when you
want to use a user-defined function from WinRunner in QuickTest.

You call a WinRunner function from QuickTest by specifying the function
and the compiled module containing the function.

Note: You cannot retrieve the values returned by the WinRunner function
in your QuickTest test. However, you can view the returned value in the
results.

To call a user-defined function from a WinRunner compiled module:

 1 Choose Insert > Call to WinRunner > Function. The Call to WinRunner
Function dialog box opens.

Chapter 13 • Working with WinRunner

357

 2 In the Module box, enter the path of the compiled module containing the
function or browse to it.

If you are connected to Quality Center when you click the browse button,
the Open WinRunner Test from Quality Center project dialog box opens so
that you can select the compiled module from the Quality Center project.

To call a WinRunner TSL function, enter the path of any compiled module.

 3 In the Function name box, enter the name of a function defined in the
specified compiled module, or enter any WinRunner TSL function.

 4 Click inside the Arguments box. If WinRunner is currently open on your
computer, the Arguments box displays the argument names as defined for
the selected function. If WinRunner is not open, the Arguments box lists
p1-p15, representing a maximum of fifteen (15) possible arguments for the
function.

 5 Enter values for in or inout arguments as follows:

➤ Highlight the argument in the Arguments box. The argument name is
displayed in the Name box.

➤ In the Type box, select the correct argument type (in/out/inout).

➤ If the argument type is “in” or “inout,” enter the value in the Value box.

Note: You can also use the parameter values from a QuickTest random or
environment parameter or from the QuickTest Data Table as the in or inout
arguments for your function. You do this by entering the argument
information manually in the TSLTest.CallFuncEx statement. For more
information, see “Passing QuickTest Parameters to a WinRunner Function,”
below.

For more information on function parameters, refer to the WinRunner User’s
Guide.

 6 Select Run WinRunner minimized if you do not want to view the WinRunner
window while the function runs. (This option is supported only for
WinRunner 7.6 and later.)

Part IV • Working with Other Mercury Products

358

 7 Select Close WinRunner after running the test if you want the WinRunner
application to close when the step calling the WinRunner function is
complete. (This option is supported only for WinRunner 7.6 and later.)

 8 Click OK to close the dialog box.

In QuickTest, the call to the TSL function is displayed as:

➤ a WinRunner CallFuncEx step in the Keyword View. For example:

➤ a TSLTest.CallFuncEx statement in VBScript in the Expert View. For
example:

CallFuncEx "C:\WinRunner\Tests\TlStep","TlStep1",TRUE, 0, "MyArg1"

The CallFuncEx function has the following syntax:

TSLTest.CallFuncEx ModulePath, Function, RunMinimized, CloseApp [,
Arguments]

Note: Tests created in QuickTest 6.0 may contain calls to WinRunner tests
using the CallFunc method, which has slightly different syntax. Your tests
will continue to run successfully with this method. However, if you are
working with WinRunner 7.6 or later, it is recommended to update your
tests to the CallFuncEx method (and corresponding argument syntax). For
more information on these methods, refer to the QuickTest Professional
Object Model Reference.

For additional information on the CallFuncEx method and an example of
usage, refer to the QuickTest Professional Object Model Reference.

For information on WinRunner functions, function arguments, and
WinRunner compiled modules, refer to the WinRunner User’s Guide and the
WinRunner TSL Reference Guide.

Chapter 13 • Working with WinRunner

 359

Passing QuickTest Parameters to a WinRunner Function

Rather than setting fixed values for the in and inout arguments in a
WinRunner function, you can instruct QuickTest to have WinRunner use
the parameter values defined in a QuickTest random or environment
parameter, or in a QuickTest Data Table. You specify these parameters by
entering the appropriate statement as the Parameters argument in the
TSLTest.CallFuncEx statement.

For example, suppose you created a user-defined function in WinRunner
that runs an application and enters the user name and password for the
application.

You can instruct QuickTest to have WinRunner take the value for the user
name and password from QuickTest Data Table columns labeled
FlightUserName and FlightPwd. Your TSLTest.CallFuncEx statement in
QuickTest might look something like this:

TSLTest.CallFuncEx "D:\flightfuncs", "run_flight", TRUE, FALSE,
DataTable("FlightUserName", dtGlobalSheet), DataTable("FlightPwd",
dtGlobalSheet)

For more information on the syntax and usage of the RandomNumber,
Environment and DataTable methods, refer to the Utility section of the
QuickTest Professional Object Model Reference.

Viewing the Results

After you run a WinRunner function in WinRunner 7.6 or later from
QuickTest, you can view the results of your function call. The QuickTest Test
Results window shows the start of the WinRunner function and the
WinRunner function results. If the called function included events such as
report_msg or tl_step, information about the results of these events are also
included.

Part IV • Working with Other Mercury Products

360

Highlight the WinRunner Function Results item in the results tree to display
the function return value and additional information about the call to the
function.

For more information on working with WinRunner functions and compiled
modules, refer to your WinRunner documentation.

361

14
Working with Quality Center

To ensure comprehensive testing of your application or applications, you
typically must create and run many tests. Mercury Quality Center, the
centralized quality solution (formerly TestDirector), can help you organize
and control the testing process.

Note: References to Quality Center features and options in this chapter
apply to all currently supported versions of both Quality Center and
TestDirector. Refer to the QuickTest Professional Readme for a list of the
supported versions of Quality Center and TestDirector.

This chapter describes:

➤ About Working with Quality Center

➤ Connecting to and Disconnecting from Quality Center

➤ Saving Tests to a Quality Center Project

➤ Opening Tests from a Quality Center Project

➤ Working with Template Tests

➤ Running a Test Stored in a Quality Center Project from QuickTest

➤ Managing Test Versions in QuickTest

➤ Setting Preferences for Quality Center Test Runs

Part IV • Working with Other Mercury Products

362

About Working with Quality Center

QuickTest integrates with Quality Center, the Mercury centralized quality
solution. Quality Center helps you maintain a project of all kinds of tests
(such as QuickTest tests, business process tests, manual tests, tests created
using other Mercury products, and so forth) that cover all aspects of your
application’s functionality. Each test in your project is designed to fulfill a
specified testing requirement of your application. To meet the goals of a
project, you organize the tests in your project into unique groups.

Quality Center provides an intuitive and efficient method for scheduling
and running tests, collecting results, analyzing the results, and managing
test versions. It also features a system for tracking defects, enabling you to
monitor defects closely from initial detection until resolution.

A Quality Center project is a database for collecting and storing data
relevant to a testing process. For QuickTest to access a Quality Center
project, you must connect to the local or remote Web server where Quality
Center is installed. When QuickTest is connected to Quality Center, you can
create tests and save them in your Quality Center project. After you run
your tests, you can view the results in Quality Center.

You must have the following access permissions to use QuickTest with
Quality Center:

➤ Full read and write permissions to the Quality Center cache folder

➤ Full read and write permissions to the QuickTest Add-in for Quality
Center installation folder

When working with Quality Center, you can associate tests with external
files attached to a Quality Center project. You can associate external files for
all tests or for a single test. For example, suppose you set the shared object
repository mode as the default mode for new tests. You can instruct
QuickTest to use a specific object repository stored in Quality Center.

For more information on specifying external files for all tests, refer to
Chapter 24, “Setting Global Testing Options” in the QuickTest Professional
Basic Features User’s Guide. For more information on specifying external files
for a single test, refer to Chapter 25, “Setting Options for Individual Tests”
in the QuickTest Professional Basic Features User’s Guide.

Chapter 14 • Working with Quality Center

363

You can report defects to a Quality Center project either automatically as
they occur, or manually directly from QuickTest’s Test Results window. For
information on manually or automatically reporting defects to a Quality
Center project, refer to “Submitting Defects Detected During a Run Session”
on page 682 in the QuickTest Professional Basic Features User’s Guide.

For more information on working with Quality Center, refer to the Mercury
Quality Center User’s Guide. For the latest information and tips regarding
QuickTest and Quality Center integration, refer to the QuickTest Professional
Readme (available from Start > Programs > QuickTest Professional >
Readme).

Connecting to and Disconnecting from Quality Center

If you are working with both QuickTest and Quality Center, QuickTest can
communicate with your Quality Center project.

You can connect or disconnect QuickTest to or from a Quality Center
project at any time during the testing process. However, do not disconnect
QuickTest from Quality Center while a QuickTest test is opened from
Quality Center or while QuickTest is using a shared resource from Quality
Center (such as a shared object repository or Data Table file).

Note: You can connect to any currently supported version of Quality Center
or TestDirector. Refer to the QuickTest Professional Readme for a list of the
supported versions of Quality Center and TestDirector. For more
information, see “Working with the Quality Center Connectivity Add-in”
on page 373.

Part IV • Working with Other Mercury Products

364

Connecting QuickTest to Quality Center

The connection process has two stages. First, you connect QuickTest to a
local or remote Quality Center server. This server handles the connections
between QuickTest and the Quality Center project.

Next, you log in and choose the project you want QuickTest to access. The
project stores tests and run session information for the Web site or
application you are testing. Note that Quality Center projects are password
protected, so you must provide a user name and a password.

To connect QuickTest to a Quality Center server:

 1 Choose File > Quality Center Connection or click the Quality Center
Connection toolbar button. The Quality Center Connection - Server
Connection dialog box opens.

 2 In the Server URL box, type the URL address of the Web server where
Quality Center is installed.

Note: You can choose a Quality Center server accessible via a Local Area
Network (LAN) or a Wide Area Network (WAN).

 3 To automatically reconnect to the Quality Center server the next time you
open QuickTest, select the Reconnect to server on startup check box.

Chapter 14 • Working with Quality Center

365

 4 Click Connect.

The second stage of the connection process depends on the version of the
server to which you connected. Refer to the relevant section:

➤ “Connecting to a Project Using an 8.x Server,” on page 365

➤ “Connecting to a Project Using a 9.0 Server,” on page 367

Connecting to a Project Using an 8.x Server

If you connected to a TestDirector 8.0 Service Pack 2 server or a Mercury
Quality Center 8.2 Service Pack 1 server, you specify the domain and project
to which you want to connect and then log in to the project.

To connect to a project using an 8.x server:

 1 If you connected to a project in TestDirector 8.0 Service Pack 2 or Mercury
Quality Center 8.2 Service Pack 1, the Quality Center Connection - Project
Connection dialog box opens.

The server’s name is displayed in read-only format in the QC Server box.

Part IV • Working with Other Mercury Products

366

 2 In the Domain box, select the domain that contains the Quality Center
project.

 3 In the Project box, select the project with which you want to work.

Note: If you select a project for which you do not have access permission, a
notification is displayed when you click Connect.

 4 In the User name box, type a user name for opening the selected project.

 5 In the Password box, type the password for the selected project.

 6 Click Connect to connect QuickTest to the selected project.

Once the connection to the selected project is established, the fields in the
Project Connection area are displayed in read-only format.

 7 To automatically reconnect to the Quality Center server the next time you
open QuickTest, select the Reconnect to server on startup check box.

 8 If the Reconnect to server on startup check box is selected, then the
Reconnect to project on startup check box is enabled. To automatically
connect to the selected project on startup, select the Reconnect to project
on startup check box.

 9 If the Reconnect to project on startup check box is selected, the Save
password for reconnection on startup check box is enabled. To save your
password for reconnection on startup, select the Save password for
reconnection on startup check box.

If you do not save your password, you will be prompted to enter it when
QuickTest connects to Quality Center on startup.

Chapter 14 • Working with Quality Center

367

 10 Click Close to close the Quality Center Connection - Project Connection
dialog box. The Quality Center icon is displayed on the status bar to indicate
that QuickTest is currently connected to a Quality Center project.

Tip: To view the current Quality Center connection, point to the Quality
Center icon on the status bar. A tooltip displays the Quality Center server
name and project to which QuickTest is connected. To open the Quality
Center Connection dialog box, double-click the Quality Center icon.

Connecting to a Project Using a 9.0 Server

If you connected to a Mercury Quality Center 9.0 server, you specify the
domain and project to which you want to connect and then log in to the
project.

Part IV • Working with Other Mercury Products

368

To connect to a project using a 9.0 server:

 1 If you connected to a project in Quality Center 9.0, the Quality Center
Connection dialog box opens.

The Quality Center server’s name is displayed in read-only format in the
Server URL box.

 2 In the User name box, type your Quality Center user name.

 3 In the Password box, type your Quality Center password.

Chapter 14 • Working with Quality Center

369

 4 Click Authenticate to authenticate your user information against the
Quality Center server.

Once your user information has been authenticated, the fields in the
Authenticate user information area are displayed in read-only format. The
Authenticate button changes to a Change User button.

Tip: You can log in to the same Quality Center server using a different user
name by clicking Change User, and then entering a new user name and
password and clicking Authenticate again.

 5 In the Domain box, select the domain that contains the Quality Center
project. Only those domains that you have permission to connect to are
displayed.

 6 In the Project box, select the project with which you want to work. Only
those projects that you have permission to connect to are displayed.

 7 Click Login.

 8 To automatically reconnect to the Quality Center server the next time you
open QuickTest, select the Reconnect to server on startup check box.

 9 If the Reconnect to server on startup check box is selected, then the
Authenticate on startup check box is enabled. To automatically authenticate
your user information the next time you open QuickTest, select the
Authenticate on startup check box.

 10 If the Authenticate on startup check box is selected, the Login to project on
startup check box is enabled. To log in to the selected project on startup,
select the Login to project on startup check box.

Part IV • Working with Other Mercury Products

370

 11 Click Close to close the Quality Center Connection dialog box. The Quality
Center icon is displayed on the status bar to indicate that QuickTest is
currently connected to a Quality Center project.

Tip: To view the current Quality Center connection, point to the Quality
Center icon on the status bar. A tooltip displays the Quality Center server
name and project to which QuickTest is connected. To open the Quality
Center Connection dialog box, double-click the Quality Center icon.

Disconnecting QuickTest from Quality Center

You can disconnect from a Quality Center project or server. Note that if you
disconnect QuickTest from a Quality Center server without first
disconnecting from a project, QuickTest’s connection to that project
database is automatically disconnected.

Note: If a Quality Center test, or shared file (such as a shared object
repository or Data Table file) is open when you disconnect from Quality
Center, then QuickTest closes it.

Chapter 14 • Working with Quality Center

371

To disconnect QuickTest from an 8.x server:

 1 Choose File > Quality Center Connection or click the Quality Center
Connection toolbar button. The Quality Center Connection - Project
Connection dialog box opens.

 2 To disconnect QuickTest from the selected project, in the Project
Connection area, click Disconnect.

 3 To disconnect QuickTest from the selected Quality Center server, in the
Server Connection area, click Disconnect.

 4 Click Close to close the Quality Center Connection - Project Connection
dialog box.

Part IV • Working with Other Mercury Products

372

To disconnect QuickTest from a 9.0 server:

 1 Choose File > Quality Center Connection or click the Quality Center
Connection toolbar button. The Quality Center Connection dialog box
opens.

 2 To disconnect QuickTest from the selected project, in the Step 3: Login to
project area, click Logout.

 3 To disconnect QuickTest from the selected Quality Center server, in the
Step 1: Connect to server area, click Disconnect.

Tip: You can log in to the same Quality Center server using a different user
name by clicking Change User and then entering a new user name and
password and clicking Authenticate again.

 4 Click Close to close the Quality Center Connection dialog box.

Chapter 14 • Working with Quality Center

373

Working with the Quality Center Connectivity Add-in

To connect to Quality Center, the Quality Center Connectivity Add-in must
be installed. This add-in is installed automatically when you connect to
Quality Center using the Quality Center Connection dialog box.

To view the version of the Quality Center Connectivity Add-in that is
currently installed on your computer, choose Help > About and then click
the Product Information button. For more information, refer to “Viewing
Product Information” on page 54 in the QuickTest Professional Basic Features
User’s Guide.

To manually install the Quality Center Connectivity Add-in, choose Quality
Center Connectivity from the Quality Center Add-ins page (available from
the Quality Center main screen).

Note: The Quality Center Connectivity Add-in also enables access to TDOTA
functionality (i.e. via an automation program), even if Quality Center is not
installed on your computer. For more information on accessing TDOTA
using automation programs, refer to the QuickTest Automation Object Model
Reference.

Part IV • Working with Other Mercury Products

374

Saving Tests to a Quality Center Project

When QuickTest is connected to a Quality Center project, you can create
new tests in QuickTest and save them directly to your project. To save a test,
you give it a descriptive name and associate it with the relevant subject in
the test plan tree. This helps you to keep track of the tests created for each
subject and to quickly view the progress of test planning and creation.

To save a test to a Quality Center project:

 1 Connect to a Quality Center server and project. For more information, see
“Connecting QuickTest to Quality Center” on page 364.

 2 In QuickTest, click Save or choose File > Save to save the test. The Save Test
to Quality Center dialog box opens and displays the test plan tree.

Note that the Save Test to Quality Center dialog box opens only when
QuickTest is connected to a Quality Center project.

To save a test directly in the file system, click the File System button to open
the Save QuickTest Test dialog box. (From the Save QuickTest Test dialog
box, you can return to the Save Test to Quality Center project dialog box by
clicking the Quality Center button.)

Chapter 14 • Working with Quality Center

375

 3 Select the relevant subject folder in the test plan tree. To expand the tree and
view a sublevel, double-click a closed folder. To collapse a sublevel, double-
click an open folder.

 4 In the Test Name box, enter a name for the test. Use a descriptive name that
will help you easily identify the test. Note that a test name cannot exceed
220 characters (including the path), cannot begin or end with spaces, and
cannot include the following characters:
\ / : * ? " < > | % ' ;

 5 Confirm that the Save Active Screen files is selected if you want to save the
Active Screen files with your test. Note that if you clear this box, your Active
Screen files will be deleted, and you will not be able to edit your test using
Active Screen options. For more information, refer to “Saving a Test” on
page 100 in the QuickTest Professional Basic Features User’s Guide.

 6 Click OK to save the test and close the dialog box. Note that the text in the
status bar changes while QuickTest saves the test.

The next time you start Quality Center, the new test will be included in
Quality Center’s test plan tree. For more information, refer to the Mercury
Quality Center User’s Guide.

Opening Tests from a Quality Center Project

When QuickTest is connected to a Quality Center project, you can open
QuickTest tests that are a part of your Quality Center project. You locate
tests according to their position in the test plan tree, rather than by their
actual location in the file system. You can also open tests from the recent
tests list in the File menu.

When you open a test in a Quality Center project with version control
support, icons indicate the test’s version control status.

Part IV • Working with Other Mercury Products

376

To open a test from a Quality Center project:

 1 Connect to a Quality Center server and project. For more information, see
“Connecting QuickTest to Quality Center” on page 364.

 2 In QuickTest, click Open or choose File > Open > Test to open the test. The
Open Test from Quality Center dialog box opens and displays the test plan
tree.

Note that the Open Test from Quality Center Project dialog box opens only
when QuickTest is connected to a Quality Center project.

Note: To open a test directly from the file system while you are connected to
Quality Center, click the File System button to open the Open Test dialog
box. (From the Open Test dialog box, you can click the Quality Center
button to return to the Open Test from Quality Center Project dialog box.)

 3 Click the relevant subject in the test plan tree. To expand the tree and view
sublevels, double-click closed folders. To collapse the tree, double-click open
folders.

Chapter 14 • Working with Quality Center

377

Note that when you select a subject, the tests that belong to the subject are
displayed in the right pane of the Open Test from Quality Center Project
dialog box.

➤ If the test is stored in a Quality Center project with version control
support, icons next to the Test Name indicate the test’s version control
status. For more information, see “Opening Tests from a Quality Center
Project with Version Control Support” on page 378.

➤ The Test Name column lists the names of the tests that belong to the
selected subject.

➤ The Status column indicates whether each test is in Design stage or is
Ready for test runs. Note that by default, tests saved to a Quality Center
project from QuickTest are labeled as Design. The status can be changed
only from the Quality Center client.

➤ The Created column indicates the date on which each test was created.

 4 Select a test in the Test Name list. The test is displayed in the read-only Test
Name box.

 5 If you want to open the test in read-only mode, select the Open in read-only
mode check box.

 6 Click OK to open the test.

As QuickTest downloads and opens the test, the operations it performs are
displayed in the status bar.

When the test opens, the QuickTest title bar displays [Quality Center], the full
subject path and the test name. For example:

[Quality Center] Subject\System\qa_test1

The test opens in read-only mode if:

➤ You selected Open in read-only mode

➤ You opened a test that is currently checked in to the Quality Center
version control database (for projects that support version control)

➤ You opened a test that is currently checked out to another user (for
projects that support version control)

For more information, see “Opening Tests from a Quality Center Project
with Version Control Support” on page 378.

Part IV • Working with Other Mercury Products

378

Opening Tests from the Recent Files List

You can open Quality Center tests from the recent files list in the File menu.
If you select a test located in a Quality Center project, but QuickTest is
currently not connected to Quality Center or to the correct project for the
test, the Connect to Quality Center Project dialog box opens and displays
the correct server, project, and the name of the user who most recently
opened the test on this computer.

Log in to the project, and click OK.

The Connect to Quality Center Project dialog box also opens if you choose
to open a test that was last edited on your computer using a different
Quality Center user name. You can either log in using the displayed name or
you can click Cancel to stay logged in with your current user name.

Opening Tests from a Quality Center Project with Version
Control Support

When you click the Open toolbar button or choose File > Open > Test to
open a test from a Quality Center project with version control support, the
Open QuickTest Test from Quality Center Project dialog box displays icons
that indicate the version control status of each test in the selected subject.

When you open a test from a Quality Center project with version control
support, the test opens in read-write or read-only mode depending on the
current version control status of the test.

Chapter 14 • Working with Quality Center

379

The table below summarizes the version control status icons and the open
mode for each status:

For more information about working with tests stored in a Quality Center
project with version control, see “Managing Test Versions in QuickTest” on
page 389.

Working with Template Tests

Template tests serve as the basis for all QuickTest tests created in Quality
Center. A template test is a QuickTest test that contains default test settings.
For example, a template test might specify the QuickTest add-ins, associated
function libraries, and recovery scenarios that are associated with a test. You
can modify these test settings in the Test Settings dialog box (File > Settings)
in QuickTest.

In addition to default test settings, a template test can also contain any
comments or steps you want to include with all new QuickTest tests created
in Quality Center. For example, you may want to add a comment notifying
users which add-ins are associated with the template test, or you may want
to add a step that opens a specific Web page or application at the beginning
of every test. Any steps or comments you add to a template test are included
in all new tests created in Quality Center that are based on that template
test.

Icon Description Open Mode

<None> The test is currently checked in to the
version control database.

Read-only

The test is currently checked out to you. Read-write

The test is currently checked out to
another user.

Read-only

An old version of the test is currently open
on your computer.

As is

Part IV • Working with Other Mercury Products

380

A default template test is installed on each Quality Center client when the
QuickTest Professional Add-in for Quality Center is installed. You can
modify this default template test, or you can create other template tests with
various test settings.

If you decide to modify the default template test, it is recommended to copy
the modified template test to the relevant Templates folder on all computers
from which Quality Center users might create tests. This overwrites the local
template test and ensures that all Quality Center users will create QuickTest
tests based on the same template test (and not their default local copy). For
more information, see “Working with the Default Template Test” below.

All template tests are saved in your Quality Center project (except for the
default template test, which is located on the Quality Center client). These
template tests do not need to be copied to each user’s local computer. This
enables users to customize their local template tests, if needed, and still have
access to globally maintained template tests. For more information, see
“Working with New Template Tests” on page 381.

When tests based on a specific template test are run from Quality Center,
QuickTest automatically loads the associated add-ins and applies the
required settings, as defined in the test.

Working with the Default Template Test

When you install the QuickTest Add-in for Quality Center, default template
tests for all supported QuickTest versions are installed in the <QuickTest
Add-in for Quality Center folder>\bin\Templates folder on your computer
(for example: C:\Program Files\Mercury Interactive\QuickTest Add-in for Quality
Center\bin\Templates\Template90).

When a Quality Center user creates a new QuickTest test in Quality Center,
the default template test for the installed QuickTest version is automatically
associated with the test unless the users selects another template test, as
described in “Creating a QuickTest Test in Quality Center” on page 384.

Chapter 14 • Working with Quality Center

381

You can modify the template test that is installed by default with the
QuickTest Add-in for Quality Center. Because the default template test is
installed locally, any changes you make to the template test are applied only
to tests created on your computer (using the Quality Center client).
Therefore, if you want to modify the template test for a group of users, you
should copy your modified template test to all Quality Center client
computers. This ensures that every new test created in Quality Center based
on the default template test has the same basic test settings defined.

Alternatively, you can create a new template test, as described in the
following sections.

For more information on applying the default template test to a new
QuickTest in Quality Center, see “Creating a QuickTest Test in Quality
Center” on page 384.

Working with New Template Tests

When you create new template tests, they are stored in your Quality Center
project, making them available as the basis for new QuickTest tests created
in that Quality Center project.

You can create multiple template tests, each for a specific testing purpose.
For example, you may want to create one template test for QuickTest tests
that test Web applications with ActiveX controls, and another for QuickTest
tests that test standard Windows applications. You would associate the
ActiveX and Web Add-ins with the first template test. For the second
template test, you would not associate any QuickTest add-ins at all, but you
might specify the Windows application on which you want to record and
run. You could also make other modifications to the test settings for each of
the template tests, as needed.

Part IV • Working with Other Mercury Products

382

As you create each template test, you can save it with a descriptive name
that clearly indicates its purpose, such as, ActiveX_Web_Addins_Template or
Std_Windows_Template_Test. Users can then choose the appropriate
template test when creating QuickTest tests in Quality Center.

Note: When you define a template test that associates specific QuickTest
add-ins, make sure that the add-ins are actually installed on the QuickTest
computer on which the which the test will eventually run. Otherwise, when
the test is run, QuickTest will not be able to load the required add-ins and
the test may fail. For more information on running QuickTest tests from
Quality Center, refer to the Mercury Quality Center documentation.

Creating a New Template Test

You create a template test by first creating a blank test in QuickTest with the
required test settings. Then, in the Test Plan module of your Quality Center
project, you browse to your QuickTest test and save it as a Template Test.

Note: When you save the test in QuickTest, you should apply a descriptive
name that clearly indicates its purpose. For example, if the template test is
to used to associate the ActiveX and Web Add-ins with a new test, you could
call it ActiveX_Web_Addins_Template.

Tip: In the Quality Center test plan tree (Test Plan module), you may want
to create a special folder for your template tests. This will enable other users
to quickly locate the relevant template test when they create new QuickTest
tests in Quality Center.

Chapter 14 • Working with Quality Center

383

To create a template test:

In QuickTest:

 1 Open QuickTest with the required add-ins loaded. For more information on
loading QuickTest add-ins, refer to “Loading QuickTest Add-ins” on
page 795 in the QuickTest Professional Basic Features User’s Guide.

 2 Define the required settings in the Test Settings dialog box (File > Settings).
For more information, refer to “Using the Test Settings Dialog Box” on
page 741 in the QuickTest Professional Basic Features User’s Guide.

 3 If you want to include comments or steps in all tests based on this template
test, add them.

 4 Click the Save button or choose File > Save to save the test. The Save Test to
Quality Center dialog box opens. Save the test to your Quality Center
project using a descriptive name that clearly indicates its purpose. For more
information, see “Saving Tests to a Quality Center Project” on page 374.

In Quality Center:

 5 Open the project in Quality Center, click the Test Plan button on the sidebar
to open the Test Plan module, and browse to the test you saved in step 4.

 6 Right-click the test and choose Template Test. The test is converted to a
template test.

 7 Repeat steps 1 to 6 to create additional template tests, as needed.

Part IV • Working with Other Mercury Products

384

Creating a QuickTest Test in Quality Center

In Quality Center, you create QuickTest tests in the Test Plan module. When
you create a QuickTest test, you apply a template test to it. You can choose
either the default template test stored on your QuickTest client, or a
template test that is saved in your Quality Center project.

If you do not have any template tests saved in your Quality Center project,
or if you choose <None> in the Template box (in the Create New Test dialog
box shown on page 375), Quality Center uses the settings defined in the
template test that was installed with the QuickTest Add-in for Quality Center
on your Quality Center client. For more information, see “Working with the
Default Template Test” on page 380. Otherwise, if you have at least one
template test saved in your Quality Center project, you can select it when
creating a new QuickTest test. For more information, see “Working with
New Template Tests” on page 381.

Note: When you create a QuickTest test in Quality Center, you must choose
a template test that specifies the QuickTest add-ins to be associated with the
test. Otherwise the required QuickTest add-ins will not be loaded during the
run session.

Your new QuickTest test will use all of the settings defined in the template
test you choose. When the test runs from Quality Center, QuickTest uses the
settings specified in the Test Settings dialog box, and automatically loads the
required QuickTest add-ins.

Note: The following procedure describes how to create a test in Quality
Center using a template test. This procedure may be different depending on
your version of Quality Center. For the most updated instructions on
creating a new test in Quality Center, refer to the Mercury Quality Center
User’s Guide.

Chapter 14 • Working with Quality Center

385

To create a test in Quality Center using a template test:

 1 In Quality Center, click the Test Plan button on the sidebar to open the Test
Plan module.

 2 In the test plan tree, choose a folder.

 3 Click the New Test button, or choose Test > New Test. The Create New Test
dialog box opens.

Note: The Template box is displayed only if the Quality Center Add-in or
QuickTest Professional Add-in is installed on your computer. If the Template
box is not displayed, you must install the Quality Center Add-in from the
QuickTest Professional CD-ROM or the QuickTest Professional Add-in from
the More Mercury Quality Center Add-ins page (opened from the Mercury
Quality Center options or login windows > Add-ins Page link).

 4 From the Test Type list, select QUICKTEST_TEST.

 5 In the Test Name box, type a name for the test using alphanumeric
characters (and underscores, if needed). Note that a test name cannot exceed
220 characters (including the path), cannot begin or end with spaces, and
cannot include the following characters:
\ / : * ? " < > | % ' ;

 6 Click the Template box browse button. The Select Tests dialog box opens.

Part IV • Working with Other Mercury Products

386

 7 Expand the folder containing your template test.

 8 Select the template test on which to base your new test and click the Add
button. The Select Tests dialog box closes and the template test you selected
is displayed in the Template box (in the Create New Test dialog box).

 9 In the Create New Test dialog box, click OK. The new test is created with the
test settings defined in the template test.

 10 Click OK to close the Create New Test dialog box. The new test is displayed
in the test plan tree under the subject folder you selected.

Note: If the Required Fields dialog box opens, set the required values and
click OK. For more information, refer to the Mercury Quality Center
Administrator’s Guide.

 11 Continue creating the test. For more information on creating tests in
Quality Center, refer to the Mercury Quality Center User’s Guide.

Chapter 14 • Working with Quality Center

387

Running a Test Stored in a Quality Center Project from
QuickTest

QuickTest can run a test from a Quality Center project and save the run
results in the project. To save the run results, you specify a name for the run
session and a test set in which to store the results.

To save run results to a Quality Center project:

 1 In QuickTest, click the Run button or choose Automation > Run. The Run
dialog box opens.

 2 The Project name box displays the Quality Center project to which you are
currently connected.

To save the run results in the Quality Center project, accept the default Run
name, or type a different one in the box.

 3 Accept the default Test set, or browse to select another one.

Part IV • Working with Other Mercury Products

388

 4 If there is more than one instance of the test in the test set, specify the
instance of the test for which you want to save the results in the Instance
box.

Note: A test set is a group of tests selected to achieve specific testing goals.
For example, you can create a test set that tests the user interface of the
application or the application’s performance under stress. You define test
sets when working in Quality Center’s test run mode. For more information,
refer to your Quality Center documentation.

To run the test, overwriting the previous test run results, select the
Temporary run results folder (not saved in the project) option.

Note: QuickTest stores temporary test run results for all tests in <System
Drive:\Temp\TempResults>. The path in the text box of the Temporary run
results folder (not saved in the project) option is read-only and cannot be
changed.

 5 Click OK. The Run dialog box closes and QuickTest begins running the test.
As QuickTest runs the test, it highlights each step in the Keyword View.

When the test stops running, the Test Results window opens unless you
have cleared the View results when test run ends check box in the Run tab
of the Options dialog box. For more information about the Options dialog
box, refer to Chapter 24, “Setting Global Testing Options” in the QuickTest
Professional Basic Features User’s Guide.

Chapter 14 • Working with Quality Center

389

When the test stops running, Uploading is displayed in the status bar. The
Test Results window opens when the uploading process is completed.

Note: You can report defects to a Quality Center project either automatically
as they occur, or manually directly from QuickTest’s Test Results window.
For more information, refer to “Submitting Defects Detected During a Run
Session” on page 682 in the QuickTest Professional Basic Features User’s Guide.

Managing Test Versions in QuickTest

When QuickTest is connected to a Quality Center project with version
control support, you can update and revise your automated test scripts
while maintaining old versions of each test. This helps you keep track of the
changes made to each test script, see what was modified from one version of
a script to another, or return to a previous version of the test script.

You add a test to the version control database by saving it in a project with
version control support. You manage test versions by checking tests in and
out of the version control database.

The test with the latest version is the test that is located in the Quality
Center test repository and is used by Quality Center for all test runs.

Notes:

A Quality Center project with version control support requires the
installation of version control software as well as Quality Center’s Version
Control Add-in. For more information, refer to your Quality Center
documentation.

The Quality Center Version Control options in the File menu are available
only when you are connected to a Quality Center project database with
version control support and you have a Quality Center test open.

Part IV • Working with Other Mercury Products

390

Adding Tests to the Version Control Database

When you use Save As to save a new test in a Quality Center project with
version control support, QuickTest automatically saves the test in the
project, checks the test into the version control database with version
number 1.1.1 and then checks it out so that you can continue working.

The QuickTest status bar indicates each of these operations as they occur.
Note, however, that saving your changes to an existing test does not check
them in. Even if you save and close the test, the test remains checked out
until you choose to check it in. For more information, see “Checking Tests
into the Version Control Database” on page 392.

Checking Tests Out of the Version Control Database

When you choose File > Open > Test to open a test that is currently checked
in to the version control database, it is opened in read-only mode.

Note: The Open Test from Quality Center Project dialog box displays icons
that indicate the version control status of each test in your project. For more
information, see “Opening Tests from a Quality Center Project” on
page 375.

You can review the checked-in test. You can also run the test and view the
results.

To modify the test, you must check it out. When you check out a test,
Quality Center copies the test to your unique check-out directory
(automatically created the first time you check out a test), and locks the test
in the project database. This prevents other users of the Quality Center
project from overwriting any changes you make to the test. However, other
users can still run the version that was last checked in to the database.

Chapter 14 • Working with Quality Center

391

You can save and close the test, but it remains locked until you return the
test to the Quality Center database. To release the test either check the test
in, or undo the check out operation. For more information on checking tests
in, see “Checking Tests into the Version Control Database” on page 392. For
more information on undoing the check-out, see “Canceling a Check-Out
Operation” on page 397.

By default, the check out option accesses the latest version of the test. You
can also check out older versions of the test. For more information, see
“Using the Version History Dialog Box” on page 394.

To check out the latest version of a test:

 1 Open the test you want to check out. For more information, see “Opening
Tests from a Quality Center Project” on page 375.

Note: Make sure the test you open is currently checked in. If you open a test
that is checked out to you, the Check Out option is disabled. If you open a
test that is checked out to another user, all Quality Center Version Control
options, except the Version History option, are disabled.

 2 Choose File > Quality Center Version Control > Check Out. The Check Out
dialog box opens and displays the test version to be checked out.

 3 You can enter a description of the changes you plan to make in the
Comments box.

 4 Click OK. The read-only test closes and automatically reopens as a writable
test.

Part IV • Working with Other Mercury Products

392

 5 View or edit your test as necessary.

Note: You can save changes and close the test without checking the test in,
but your changes will not be available to other Quality Center users until
you check it in. If you do not want to check your changes in, you can undo
the check-out. For more information on checking tests in, see “Checking
Tests into the Version Control Database” on page 392. For more information
on undoing the check-out, see “Canceling a Check-Out Operation” on
page 397.

Checking Tests into the Version Control Database

While a test is checked out, Quality Center users can run the previously
checked-in version of your test. For example, suppose you check out
version 1.2.3 of a test and make a number of changes to it and save the test.
Until you check the test back in to the version control database as version
1.2.4 (or another number that you assign), Quality Center users can
continue to run version 1.2.3.

When you have finished making changes to a test and you are ready for
Quality Center users to use your new version, you check it in to the version
control database.

Note: If you do not want to check your changes into the Quality Center
database, you can undo the check-out operation. For more information, see
“Canceling a Check-Out Operation” on page 397.

When you check a test back into the version control database, Quality
Center deletes the test copy from your checkout directory and unlocks the
test in the database so that the test version will be available to other users of
the Quality Center project.

Chapter 14 • Working with Quality Center

393

To check in the currently open test:

 1 Confirm that the currently open test is checked out to you. For more
information, see “Viewing Version Information For a Test” on page 394.

Note: If the open test is currently checked in, the Check In option is
disabled. If you open a test that is checked out to another user, all Quality
Center Version Control options, except the Version History option, are
disabled.

 2 Choose File > Quality Center Version Control > Check In. The Check In
dialog box opens.

 3 Accept the default new version number and proceed to step 7, or click the
browse button to specify a custom version number. If you click the browse
button, The Edit Check In Version Number dialog box opens.

 4 Modify the version number manually or using the up and down arrows next
to each element of the version number. You can enter numbers 1-900 in the
first element. You can enter numbers 1-999 in the second and third
elements. You cannot enter a version number lower than the most recent
version of this test in the version control database.

Part IV • Working with Other Mercury Products

394

 5 Click OK to save the version number and close the Edit Check In Version
Number dialog box.

 6 If you entered a description of your change when you checked out the test,
the description is displayed in the Comments box. You can enter or modify
the comments in the box.

 7 Click OK to check in the test. The test closes and automatically reopens as a
read-only test.

Using the Version History Dialog Box

You can use the Version History dialog box to view version information
about the currently open test and to view or retrieve an older version of the
test.

Viewing Version Information For a Test

You can view version information for any open test that has been stored in
the Quality Center version control database, regardless of its current status.

To open the Version History dialog box for a test, open the test and choose
File > Quality Center Version Control > Version History.

Chapter 14 • Working with Quality Center

395

The Version History dialog box provides the following information:

Test name—The name of the currently open test.

Test status—The status of the test. The test can be:

➤ Checked-in—The test is currently checked in to the version control
database. It is currently open in read-only format. You can check out the
test to edit it.

➤ Checked-out—The test is checked out by you. It is currently open in read-
write format.

➤ Checked-out by <another user>—The test is currently checked out by
another user. It is currently open in read-only format. You cannot check
out or edit the test until the specified user checks in the test.

My open version—The test version that is currently open on your QuickTest
computer.

Version details—The version details for the test.

➤ Version—A list of all versions of the test.

➤ User—The user who checked in each listed version.

➤ Date and Time—The date and time that each version was checked in.

Version comments—The comments that were entered when the selected test
version was checked in.

Working with Previous Test Versions

You can view an old version of a test in read-only mode or you can check
out an old version and then check it in as the latest version of the test.

To view an old version of a test:

 1 Open the Quality Center test. The latest version of the test opens. For more
information, see “Opening Tests from a Quality Center Project” on
page 375.

 2 Choose File > Quality Center Version Control > Version History. The Version
History dialog box opens.

 3 Select the test version you want to view in the Version details list.

Part IV • Working with Other Mercury Products

396

 4 Click the Get Version button. QuickTest reminds you that the test will open
in read-only mode because it is not checked out.

 5 Click OK to close the QuickTest message. The selected version opens in read-
only mode.

Tips:

To confirm the version number that you now have open in QuickTest, look
at the My open version value in the Version History dialog box.

After using the Get Version option to open an old version in read-only
mode, you can check-out the open test by choosing File > Quality Center
Version Control > Check Out. This is equivalent to using the Check Out
button in the Version History dialog box.

To check out an old version of a test:

 1 Open the Quality Center test. The latest version of the test opens. For more
information, see “Opening Tests from a Quality Center Project” on
page 375.

 2 Choose File > Quality Center Version Control > Version History. The Version
History dialog box opens.

 3 Select the test version you want to view in the Version details list.

 4 Click the Check Out button. A confirmation message opens.

 5 Confirm that you want to check out an older version of the test. The Check
Out dialog box opens and displays the test version to be checked out.

Chapter 14 • Working with Quality Center

397

 6 You can enter a description of the changes you plan to make in the
Comments box.

 7 Click OK. The open test closes and the selected version opens as a writable
test.

 8 View or edit the test as necessary.

 9 If you want to check in your test as the new, latest version in the Quality
Center database, choose File > Quality Center Version Control > Check In. If
you do not want to upload the modified test to Quality Center, choose File >
Quality Center Version Control > Undo Check out.

For more information on checking tests in, see “Checking Tests into the
Version Control Database” on page 392. For more information on undoing
the check-out, see “Canceling a Check-Out Operation” on page 397.

Canceling a Check-Out Operation

If you check out a test and then decide that you do not want to upload the
modified test to Quality Center you should cancel the check-out operation
so that the test will be available for check out by other Quality Center users.

To cancel a check-out operation:

 1 If it is not already open, open the checked-out test.

 2 Choose File > Quality Center Version Control > Undo Check out.

 3 Click Yes to confirm the cancellation of your check-out operation. The
check-out operation is cancelled. The checked-out test closes and the
previously checked-in version reopens in read-only mode.

Part IV • Working with Other Mercury Products

398

Setting Preferences for Quality Center Test Runs

You can run QuickTest tests that are stored in a Quality Center database via
QuickTest, via a Quality Center client that is installed on your computer, or
via a remote Quality Center client or server. When Quality Center runs your
QuickTest test, it uses the associated add-ins list to load the proper add-ins
for your test on the QuickTest computer. For more information, refer to
“Modifying Associated Add-Ins” on page 745 and “Working with Template
Tests” on page 379 in the QuickTest Professional Basic Features User’s Guide.

Note: You cannot run QuickTest tests from Quality Center if the QuickTest
computer is logged off or locked.

You can instruct QuickTest to report a defect for each failed step when
Quality Center test runs on your QuickTest computer. You can also submit
defects to Quality Center manually from the QuickTest Test Results window.
For more information, refer to “Submitting Defects Detected During a Run
Session” on page 682 in the QuickTest Professional Basic Features User’s Guide.

Before you instruct a remote Quality Center client to run QuickTest tests on
your computer, you must give Quality Center permission to use your
QuickTest application. You can also view or modify the QuickTest Remote
Agent Settings.

Enabling Quality Center to Run Tests on a QuickTest Computer

For security reasons, remote access to your QuickTest application is not
enabled. If you want to allow Quality Center (or other remote access clients)
to open and run QuickTest tests, you must select the Allow other Mercury
products to run tests and components option.

In addition, if you want to run QuickTest tests remotely from Quality
Center, and QuickTest is installed on Windows XP Service Pack 2 or
Windows 2003 Server, you must first change DCOM permissions and open
firewall ports. For more information, refer to the QuickTest Professional
Installation Guide, or access the knowledge base
(http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp) and search for
article number 43245.

http://support.mercury.com/cgi-bin/portal/CSO/kbBrowse.jsp

Chapter 14 • Working with Quality Center

399

To enable remote Quality Center clients to run tests on your QuickTest
computer:

 1 Open QuickTest.

 2 Choose Tools > Options or click the Options toolbar button. The Options
dialog box opens.

 3 Click the Run tab.

 4 Select the Allow other Mercury products to run tests and components check
box.

For more information on this option, refer to “Setting Run Testing Options”
on page 709 in the QuickTest Professional Basic Features User’s Guide.

Tip: To access QuickTest tests from Quality Center, you must also have the
QuickTest Add-in for Quality Center installed on the Quality Center
computer. For more information on this add-in, refer to the QuickTest
Professional Add-in screen (accessible from the main Quality Center screen).

Setting QuickTest Remote Agent Preferences

When you run a QuickTest test from Quality Center, the QuickTest Remote
Agent opens on the QuickTest computer. The QuickTest Remote Agent
determines how QuickTest behaves when a test is run by a remote
application such as Quality Center.

You can open the Remote Agent Settings dialog box at any time to view or
modify the settings that your QuickTest application uses when Quality
Center runs a QuickTest test on your computer.

Part IV • Working with Other Mercury Products

400

To open the Remote Agent Settings dialog box:

 1 Choose Start > Programs > QuickTest Professional > Tools > Remote Agent.
The Remote Agent opens and the Remote Agent icon is displayed in the task
bar tray.

 2 Right-click the Remote Agent icon and choose Settings. The Remote Agent
Settings dialog box opens.

 3 View or modify the settings in the dialog box. For more information, see
“Understanding the Remote Agent Settings Dialog Box,” below.

 4 Click OK to save your settings and close the dialog box.

 5 Right-click the Remote Agent icon and choose Exit to end the Remote Agent
session.

Chapter 14 • Working with Quality Center

401

Understanding the Remote Agent Settings Dialog Box

The Remote Agent Settings dialog box enables you to view or modify the
settings that your QuickTest application uses when Quality Center runs a
QuickTest test on your computer.

The Remote Agent Settings dialog box contains the following options:

Option Description

Level The level of detail to include in the log that is
created when Quality Center runs a QuickTest
test.

None (default)—No log is created.

Low—The log lists any Quality Center-QuickTest
communication errors.

Medium—The log includes Quality Center-
QuickTest communication errors and information
on other major operations that result in Quality
Center-QuickTest communication.

High—The log includes all available information
related to Quality Center-QuickTest
communications.

Log folder The folder path for storing the log file. Required if a
log type is specified in the Level option.

Restart testing tool after
__ runs

Restarts the QuickTest application after the Quality
Center completes the specified number of test runs.
When QuickTest restarts, it continues with the next
test in the test set.

You may want to use this option to maximize
available memory.

If you do not want QuickTest to restart during a test
set, enter 0 (default).

Save the open, modified
test before the test run

If an existing (named) test is open in QuickTest
when the Remote Agent begins running a test, this
option ensures that any modifications to the test
are saved.

Part IV • Working with Other Mercury Products

402

Save the open, new test
before the test run

If a new (untitled) test is open in QuickTest when
the Remote Agent begins running a test, this option
saves the test in:
<QuickTest installation folder>\Tests\Quality
Center with a sequential test name.

Open a new test after the
test run

By default, the last test run by the remote agent
stays open in QuickTest when it finishes running all
tests. However, if any shared resources (such as a
shared object repository or Data Table file) are
associated with the open test, those resources are
locked to other users until the test is closed. You can
select this option to ensure that the last test that
Quality Center runs is closed, and a blank test is
open instead.

Run QuickTest in hidden
mode

Specifies whether to run QuickTest in hidden
(silent) mode.

Restart testing tool after Restarts QuickTest if there is no response after the
specified number of seconds for:

Operations—QuickTest operations such as Open or
Run.

Queries—Standard status queries that remote
applications perform to confirm that the
application is responding (such as Quality
Center’s get_status query).

The default value for both options is 2700 seconds
(45 minutes). However, while QuickTest operations
may take a long time between responses, queries
usually take only several seconds. Therefore, you
may want to set different values for each of these
options.

Option Description

403

15
Working with Business Process Testing

When you are connected to a Quality Center project with Business Process
Testing support, QuickTest enables you to create and/or implement the steps
for the components that are used in Quality Center business process tests.

This chapter describes:

➤ About Working with Business Process Testing

➤ Understanding Business Process Testing Roles

➤ Understanding Business Process Testing Methodology

About Working with Business Process Testing

Business Process Testing enables Subject Matter Experts to create tests using
a keyword-driven methodology for testing as well as an improved
automated testing environment.

Business Process Testing integrates QuickTest with Quality Center and can
be enabled by purchasing a specific Business Process Testing license. To work
with Business Process Testing from within QuickTest, you must connect to a
Quality Center project with Business Process Testing support.

This section provides an overview of the Business Process Testing model. For
more information, refer to the Business Process Testing User’s Guide (included
in the Quality Center documentation package) and the QuickTest Professional
for Business Process Testing User’s Guide.

Part IV • Working with Other Mercury Products

404

Understanding Business Process Testing Roles

The Business Process Testing model is role-based, allowing non-technical
Subject Matter Experts (working in Quality Center) to collaborate effectively
with Automation Engineers (working in QuickTest Professional). Subject
Matter Experts define and document business processes, business
components, and business process tests, while Automation Engineers define
the required resources and settings, such as shared object repositories,
function libraries, and recovery scenarios. Together, they can build,
data-drive, document, and run business process tests, without requiring
programming knowledge on the part of the Subject Matter Expert.

Note: The role structure and the tasks performed by various roles in your
organization may differ from those described here according to the
methodology adopted by your organization. These roles are flexible and
depend on the abilities and time resources of the personnel using Business
Process Testing. For example, the tasks of the Subject Matter Expert and the
Automation Engineer may be performed by the same person. There are no
product-specific rules or limitations controlling which roles must be defined
in a particular organization, or which types of users can do which Business
Process Testing tasks (provided that the users have the correct permissions).

The following user roles are identified in the Business Process Testing model:

Subject Matter Expert—The Subject Matter Expert has specific knowledge of
the application logic, a high-level understanding of the entire system, and a
detailed understanding of the individual elements and tasks that are
fundamental to the application being tested. This enables the Subject Matter
Expert to determine the operating scenarios or business processes that must
be tested and identify the key business activities that are common to
multiple business processes.

Chapter 15 • Working with Business Process Testing

405

Using the Business Components module in Quality Center, the Subject
Matter Expert creates business components that describe the specific tasks
that can be performed in the application, and the condition or state of the
application before and after those tasks. The Subject Matter Expert then
defines the individual steps for each business component comprising the
business process in the form of manual, or non-automated steps.

During the design phase, the Subject Matter Expert works with the
Automation Engineer to identify the resources and settings needed to
automate the components, enabling the Automation Engineer to prepare
them. When the resources and settings are ready, the Subject Matter Expert
automates the manual steps by converting them to keyword-driven
components. Part of this process entails choosing an application area for
each component. The application area contains all of the required resource
files and settings that are specific to a particular area of the application
being tested. Associating each component with an application area enables
the component to access these resources and settings.

Using the Quality Center Test Plan module, the Subject Matter Expert
combines the business components into business process tests, composed of
a serial flow of the components. For example, most applications require
users to log in before they can access any of the application functionality.
The Subject Matter Expert could create one business component that
represents this login procedure. This component procedure can be used in
many business process tests, resulting in easier and more cost-efficient
maintenance, updating, and test management.

The Subject Matter Expert configures the values used for business process
tests, runs them in test sets, and reviews the results. The Subject Matter
Expert is also responsible for maintaining the testing steps for each of the
individual business components.

While defining components, Subject Matter Experts continue collaborating
with the Automation Engineer. For example, they may request new
operations (functions) for a component or discuss future changes planned
for the component.

Automation Engineer—The Automation Engineer is an expert in using an
automated testing tool, such as QuickTest Professional. The Automation
Engineer works with the Subject Matter Expert to identify the resources that
are needed for the various business process tests.

Part IV • Working with Other Mercury Products

406

The Automation Engineer then prepares the resources and settings required
for testing the features associated with each specific component, and stores
them in an application area within the same Quality Center project used by
the Subject Matter Experts who create and run the business process tests for
the specific application.

Each application area serves as a single entity in which to store all of the
resources and settings required for a component, providing a single point of
maintenance for all elements associated with the testing of a specific part of
an application. Application areas generally include one or more shared
object repositories, a list of keywords that are available for use with a
component, function libraries containing automated functions (operations),
recovery scenarios for failed steps, and other resources and settings that are
needed for a component to run correctly. Components are linked to the
resources and settings in the application area. Therefore, when changes are
made in the application area, all associated components are automatically
updated.

The Automation Engineer uses QuickTest’s features and functionality to
create these resources from within QuickTest. For example, in QuickTest, the
Automation Engineer can create and populate various object repositories
with test objects that represent the different objects in the application being
tested, even before the application is fully developed. The Automation
Engineer can then add repository parameters, and so forth, as needed. The
Automation Engineer can manage the various object repositories using the
Object Repository Manager, and merge repositories using the Object
Repository Merge Tool. Automation Engineers can also use QuickTest’s
function library editor to create and debug function libraries containing
functions that use programming logic to encapsulate the steps needed to
perform a particular task.

Using the resources created by the Automation Engineer, the Subject Matter
Experts can automate component steps, and create and maintain
components and business process tests.

Automation Engineers can also create, debug, and modify components in
QuickTest, if required.

Chapter 15 • Working with Business Process Testing

407

Understanding the Business Process Testing Workflow

The Business Process Testing workflow may differ according to your testing
needs. Following is an example of a common workflow:

Part IV • Working with Other Mercury Products

408

Understanding Business Process Testing Methodology

Each scenario that the Subject Matter Expert creates is a business process
test. A business process test is composed of a serial flow of components.
Each component performs a specific task. A component can pass data to a
subsequent component.

Understanding Components

Components are easily-maintained reusable scripts that perform a specific
task, and are the building blocks from which an effective business process
testing structure can be produced. Components are parts of a business
process that has been broken down into smaller parts. For example, in most
applications users need to log in before they can do anything else. A Subject
Matter Expert can create one component that represents the login procedure
for an application. Each component can then be reused in different business
process tests, resulting in easier maintenance, updating, and test
management.

Components are comprised of steps. For example, the login component’s
first step may be to open the application. Its second step could be entering a
user name. Its third step could be entering a password, and its fourth step
could be clicking the Enter button.

You can create and edit components in QuickTest by adding steps on any
supported environment, parameterizing selected items, and enhancing the
component by incorporating functions (operations) that encapsulate the
steps needed to perform a particular task. In Quality Center, a Subject
Matter Expert creates components and combines them into business process
tests, which are used to check that the application behaves as expected.

Chapter 15 • Working with Business Process Testing

409

Creating Components in the Quality Center Business
Components Module

The Subject Matter Expert can create a new component and define it in the
Quality Center Business Components module.

The Business Component module includes the following elements:

➤ Details—Provides a general summary of the component’s purpose or goals,
and the condition of the application before and after a component is run
(its pre-conditions and post-conditions).

➤ Snapshot—Displays an image that provides a visual cue or description of the
component’s purpose or operations.

➤ Parameters—Specifies the input and output component parameter values
for the business component. Implementing and using parameters enables a
component to receive data from an external source and to pass data to other
components in the business process test flow.

➤ Design Steps—Enables you to create or view the manual steps of your
business component, and to automate it if required.

Components
tree

Business Components
module tabs

Quality Center
sidebar

Menu bar

Toolbar

Quality Center
common toolbar

Component
Requests
pane

Part IV • Working with Other Mercury Products

410

➤ Automation—Displays or provides access to automated components. For
keyword-driven components, enables you to create and modify the steps of
your automated business component in a keyword-driven, table format, and
provides a plain-language textual description of each step of the
implemented component.

➤ Used by—Provides details about the business process tests that include the
currently selected business component. The tab also includes a link to the
relevant business process test in the Test Plan module.

➤ Component Requests pane—Enables you to handle new component
requests that were generated in the Test Plan module. Component requests
are requests to add a new business component to the project.

Implementing Components in QuickTest Professional

Generally, components are created by Subject Matter Experts in Quality
Center, although they can also be created and debugged in QuickTest.

In QuickTest, you create components by recording steps on any supported
environment or by adding steps manually (if the object repository is
populated and the required operations are available). You can parameterize
selected items. You can also view and set options specific to components.

QuickTest enables you to create and modify two types of components:
business components and scripted components. A business component is
an easily-maintained, reusable unit comprising one or more steps that
perform a specific task. A scripted component is an automated component
that can contain programming logic. Scripted components share
functionality with both test actions and business components. For example,
you can use the Keyword View, the Expert View, and other QuickTest tools
and options to create, view, modify, and debug scripted components in
QuickTest. Due to their complexity, scripted components can be edited only
in QuickTest.

In Quality Center, the Subject Matter Expert can open components created
in QuickTest. The Subject Matter Expert can then view and edit business
components, but can only view the details for scripted components.

Chapter 15 • Working with Business Process Testing

411

Creating Business Process Tests in the Quality Center Test Plan
Module

To create a business process test, the Subject Matter Expert selects (drags and
drops) the components that apply to the business process test and
configures their run settings.

Each component can be used differently by different business process tests.
For example, in each test the component can be configured to use different
input parameter values or run a different number of iterations.

If, while creating a business process test, the Subject Matter Expert realizes
that a component has not been defined for an element that is necessary for
the business process test, the Subject Matter Expert can submit a component
request from the Test Plan module.

Running Business Process Tests and Analyzing the Results

You can use the run and debug options in QuickTest to run and debug an
individual component.

You can debug a business process test by running the test from the Test Plan
module in Quality Center. When you choose to run from this module, you
can choose which components to run in debug mode. (This pauses the run
at the beginning of a component.)

When the business process test has been debugged and is ready for regular
test runs, the Subject Matter Expert runs it from the Test Lab module similar
to the way any other test is run in Quality Center. Before running the test,
the Subject Matter Expert can define run-time parameter values and
iterations using the Iterations column in the Test Lab module grid.

From the Test Lab module, you can view the results of the entire business
process test run. The results include the value of each parameter, and the
results of individual steps reported by QuickTest.

You can click the Open Report link to open the complete QuickTest report.
The hierarchical report contains all the different iterations and components
within the business process test run.

Part IV • Working with Other Mercury Products

412

Understanding the Differences Between Components and Tests

If you are already familiar with using QuickTest to create action-based tests,
you will find that the procedures for creating and editing components are
quite similar. However, due to the design and purpose of the component
model, there are certain differences in the way you create, edit, and run
components. The guidelines below provide an overview of these differences.

➤ A component is a single entity. It cannot contain multiple actions or have
calls to other actions or to other components.

➤ When working with components, all external files are stored in the Quality
Center project to which you are currently connected.

➤ The name of the component node in the Keyword View is the same as the
saved component. You cannot rename the node.

➤ Business components are created in the Keyword View, not the Expert View.

➤ You add resources via the component’s application area, and not directly to
the component.

➤ Components use custom keywords created in function libraries to perform
operations, such as verifying property values and opening the application
you are testing.

413

16
Working with Mercury Performance
Testing and Business Availability Center
Products

After you use QuickTest to create and run a suite of tests that test the
functional capabilities of your application, you may want to test how much
load your application can handle or to monitor your application as it runs.

Mercury LoadRunner tests the performance of applications under controlled
and peak load conditions. To generate load, LoadRunner runs hundreds or
thousands of virtual users. These virtual users provide consistent, repeatable,
and measurable load to exercise your application just as real users would.

Mercury Business Availability Center enables real-time monitoring of the
end user experience. Business Process Monitor runs virtual users to perform
typical activities on the monitored application.

If you have already created and perfected a test in QuickTest that is a good
representation of your users’ actions, you may be able to use your QuickTest
test as the basis for performance testing and application management
activities. You can use Silent Test Runner to check in advance that a
QuickTest test will run correctly from LoadRunner and Business Process
Monitor.

This chapter describes:

➤ About Working with Mercury Performance Testing and Business Availability
Center Products

➤ Using QuickTest Performance Testing and Business Availability Center
Features

Part IV • Working with Other Mercury Products

414

➤ Designing QuickTest Tests for Use with LoadRunner or Business Process
Monitor

➤ Inserting and Running Tests in LoadRunner or Business Process Monitor

➤ Measuring Transactions

➤ Using Silent Test Runner

About Working with Mercury Performance Testing and
Business Availability Center Products

QuickTest enables you to create complex tests that examine the full
spectrum of your application’s functionality to confirm that every element
of your application works as expected in all situations.

The run mechanisms used in all Mercury Performance Testing and Mercury
Business Availability Center products are the same. This means that you can
create tests that are compatible with LoadRunner and Business Process
Monitor, enabling you to take advantage of tests or test segments that have
already been designed and debugged in QuickTest.

For example, you can add QuickTest tests to specific points in a LoadRunner
scenario to confirm that the application’s functionality is not affected by the
extra load at those sensitive points. You can also run QuickTest tests on
Business Process Monitor to simulate end user experience and ensure that
your application is running correctly and in a timely manner.

QuickTest also offers several features that are designed specifically for
integration with LoadRunner and Business Process Monitor. However, since
LoadRunner and Business Process Monitor are designed to run tests using
virtual users representing many users simultaneously performing standard
user operations, some QuickTest features may not be available when
integrating these products with QuickTest.

Chapter 16 • Working with Mercury Performance Testing and Business Availability Center Products

415

If you do plan to use a single test in both QuickTest and LoadRunner and/or
Business Process Monitor, you should take into account the different
options supported in each product as you design your test. For more
information, see “Designing QuickTest Tests for Use with LoadRunner or
Business Process Monitor” on page 416 and “Inserting and Running Tests in
LoadRunner or Business Process Monitor” on page 417.

Using QuickTest Performance Testing and Business
Availability Center Features

You can use the Services object and its associated methods to insert
statements that are specifically relevant to Performance Testing and Business
Availability Center. These include AddWastedTime,
EndDistributedTransaction, EndTransaction, GetEnvironmentAttribute,
LogMessage, Rendezvous, SetTransaction, SetTransactionStatus,
StartDistributedTransaction, StartTransaction, ThinkTime, and
UserDataPoint. For more information on these methods, refer to the
Services section of the QuickTest Professional Object Model Reference and your
LoadRunner or Business Availability Center documentation.

You can also insert StartTransaction and EndTransaction statements using
the Insert > Start Transaction and Insert > End Transaction menu options or
toolbar buttons to insert the statement. For more information on these
options, see “Measuring Transactions” on page 419.

Note: LoadRunner and Business Process Monitor use only the data that is
included within a transaction, and ignore any data in a test outside of a
transaction.

Part IV • Working with Other Mercury Products

416

Designing QuickTest Tests for Use with LoadRunner or
Business Process Monitor

The QuickTest tests you use with LoadRunner or Business Process Monitor
should be simple, designed to pinpoint specific operations, and should
avoid using external actions and references to other external files (including
resources stored in Quality Center). Also, when working with action
iterations, corresponding StartTransaction and EndTransaction statements
must be contained within the same action.

Designing Tests for LoadRunner

Consider the following guidelines when designing tests for use with
LoadRunner:

➤ Do not include references to external actions or other external resources
(including resources stored in Quality Center), such as an external Data
Table file, environment variable file, shared object repositories, function
libraries, and so forth. This is because LoadRunner may not have access to
the external action or resource. (However, if the resource can be found on
the network, QuickTest will use it.)

➤ Every QuickTest test must contain at least one transaction to provide useful
information in LoadRunner.

➤ Make sure that the last step(s) in the test closes the application being tested,
as well as any child processes that are running. This enables the next
iteration of the test to open the application again.

Designing Tests for Business Process Monitor

Consider the following guidelines when designing tests for use with
Business Process Monitor:

➤ Every QuickTest test must contain at least one transaction to provide useful
information in Business Process Monitor.

➤ When measuring a distributed transaction over two different Business
Process Monitor profiles, the profile with the StartDistributedTransaction
statement must be run before the profile with the associated
EndDistributedTransaction.

Chapter 16 • Working with Mercury Performance Testing and Business Availability Center Products

417

➤ When measuring distributed transactions, make sure that you relate the
tests to a single Business Process Monitor instance. Business Process Monitor
searches for the end transaction name in all instances, and may close the
wrong distributed transaction if it is included in more than one instance.

➤ When measuring a distributed transaction over two Business Process
Monitor profiles, make sure that the timeout value you specify is large
enough so that the profile that contains the StartDistributedTransaction
step and all the profiles that run before the profile that contains the
EndDistributedTransaction step, will finish running in a time that is less
than the value of the specified timeout.

➤ Business Process Monitor does not support running QuickTest Professional
tests that require access to external resources, including resources stored in
Quality Center (such as a shared object repository, function library, external
Data Table, external actions, and so forth). Tests that require external
resources may fail to run on Business Process Monitor. (However, if the
resource can be found on the network, QuickTest will use it.)

➤ Make sure that the last step(s) in the test closes the application being tested,
as well as any child processes that are running. This cleanup step enables the
next test run to open the application again.

Inserting and Running Tests in LoadRunner or Business
Process Monitor

Before you insert and run your QuickTest test in LoadRunner or Business
Process Monitor, you should consider the guidelines below.

Note: You can simulate how the test will run from LoadRunner or Business
Process Monitor by using Silent Test Runner. For more information, see
“Using Silent Test Runner” on page 423.

Part IV • Working with Other Mercury Products

418

Inserting and Running Tests in a LoadRunner Scenario

➤ You can run only one GUI Vuser concurrently per computer. (A GUI Vuser is
a Vuser that runs a QuickTest test.)

➤ To insert a QuickTest test in a LoadRunner scenario, in the Controller Open
Test dialog box, browse to the test folder and select Astra Tests in the Files of
type box. This enables you to view QuickTest tests in the folder.

➤ Ensure that QuickTest is closed on the QuickTest computer before running a
QuickTest test in LoadRunner.

➤ Transaction breakdown is not supported for tests (scripts) recorded with
QuickTest.

➤ QuickTest cannot run on a computer that is:

➤ logged off or locked. In these cases, consider running QuickTest on a
terminal server.

➤ already running a QuickTest test. Make sure that the test is finished
before starting to run another QuickTest test.

➤ The settings in the LoadRunner Run-time Settings dialog box are not
relevant for QuickTest tests.

➤ You cannot use the ResultDir QuickTest environment variable when running
a test in LoadRunner.

For more information on working with LoadRunner, refer to your
LoadRunner documentation.

Inserting and Running Tests from Business Process Monitor

➤ Before you try to run a QuickTest test in Business Process Monitor, check
which versions of QuickTest are supported by your version of Business
Process Monitor. For more information, refer to the Business Process
Monitor documentation.

➤ Business Process Monitor can run only one QuickTest test at a time. Make
sure that the previous QuickTest test is finished before starting to run
another QuickTest test.

➤ Ensure that QuickTest is closed on the QuickTest computer before running a
QuickTest test in Business Process Monitor.

Chapter 16 • Working with Mercury Performance Testing and Business Availability Center Products

419

➤ Transaction breakdown is not supported for tests recorded with QuickTest.

➤ If you make changes to your local copy of a QuickTest test after uploading it
to Business Availability Center, you will need to upload the zipped test again
to enable Business Process Monitor to run the test with your changes.

➤ QuickTest cannot run tests on a computer that is logged off, locked, or
running QuickTest as a non-interactive service.

➤ You cannot use the ResultDir QuickTest environment variable when running
a test in Business Process Monitor.

For more information on working with Business Availability Center, refer to
your Mercury Business Availability Center documentation.

Measuring Transactions

You can measure how long it takes to run a section of your test by defining
transactions. A transaction represents the process in your application that
you are interested in measuring. Your test must include transactions to be
used by LoadRunner or the Business Process Monitor. LoadRunner and the
Business Process Monitor use only the data that is included within a
transaction, and ignore any data in a test outside of a transaction.

You define transactions within your test by enclosing the appropriate
sections of the test with start and end transaction statements. For example,
you can define a transaction that measures how long it takes to reserve a
seat on a flight and for the confirmation to be displayed on the client’s
terminal.

During the test run, the StartTransaction step signals the beginning of the
time measurement. The time measurement continues until the
EndTransaction step is reached. The test report displays the time it took to
perform the transaction.

For information on the statements you can use in transactions, refer to the
QuickTest Professional Object Model Reference.

There is no limit to the number of transactions that can be added to a test.
You can also insert a transaction within a transaction.

Part IV • Working with Other Mercury Products

420

Part of a sample test with a transaction is shown below, as it is displayed in
the Keyword View:

The same part of the test is displayed in the Expert View as follows:

Services.StartTransaction "ReserveSeat"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("fromPort").Select "London"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("toPort").Select "Frankfurt"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("toDay").Select "12"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebRadioGroup("servClass").Select "Business"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

WebList("airline").Select "Blue Skies Airlines"
Browser("Welcome: Mercury Tours").Page("Find a Flight: Mercury").

Image("findFlights").Click 65,12
Browser("Welcome: Mercury Tours").Page("Select a Flight: Mercury").

WebRadioGroup("outFlight").Select "Blue Skies Airlines"
Browser("Welcome: Mercury Tours").Page("Select a Flight: Mercury").

WebRadioGroup("inFlight").Select "Blue Skies Airlines"
Browser("Welcome: Mercury Tours").Page("Select a Flight: Mercury").

Image("reserveFlights").Click 46,8
Services.EndTransaction "ReserveSeat"

Start
transaction

End
transaction

Chapter 16 • Working with Mercury Performance Testing and Business Availability Center Products

421

You can insert a variety of transaction-related statements using the Step
Generator or Expert View. For more information, refer to the Services
section of the QuickTest Professional Object Model Reference. You can also enter
Start Transaction and End Transaction steps using options in the QuickTest
window.

For more information, see:

➤ “Inserting Transactions,” below

➤ “Ending Transactions” on page 422

Inserting Transactions

During the test run, the Start Transaction signals the beginning of the time
measurement. You define the beginning of a transaction in the Start
Transaction dialog box.

To insert a transaction:

 1 Click the step where you want the transaction timing to begin. The page is
displayed in the Active Screen tab.

 2 Click the Start Transaction button or choose Insert > Start Transaction. The
Start Transaction dialog box opens.

 3 Enter a meaningful name in the Name box.

Note: You cannot include spaces in a transaction name.

Part IV • Working with Other Mercury Products

422

 4 Decide where you want the transaction timing to begin:

➤ To insert a transaction before the current step, select Before current step.

➤ To insert a transaction after the current step, select After current step.

 5 Click OK. A Start Transaction step is added to the Keyword View.

Ending Transactions

During the test run, the End Transaction signals the end of the time
measurement. You define the end of a transaction in the End Transaction
dialog box.

Note: There may be cases in which you want to instruct QuickTest to
perform all the steps in a transaction, even though an error occurs during
the run session. In the Run tab of the Test Settings dialog box (File >
Settings), select proceed to next step from the When error occurs during
run session list.

To end a transaction:

 1 Click the step where you want the transaction timing to end. The page
opens in the Active Screen.

 2 Click the End Transaction button or choose Insert > End Transaction. The
End Transaction dialog box opens.

 3 The Name box contains a list of the transaction names you defined in the
current test. Select the name of the transaction you want to end.

Chapter 16 • Working with Mercury Performance Testing and Business Availability Center Products

423

 4 Decide where to insert the end of the transaction:

➤ To insert a transaction before the current step, select Before current step.

➤ To insert a transaction after the current step, select After current step.

 5 Click OK. An End Transaction step is added to the Keyword View.

Using Silent Test Runner

Silent Test Runner enables you to simulate the way a QuickTest test runs
from LoadRunner and Business Availability Center. When you run a test
using Silent Test Runner, it runs without opening the QuickTest user
interface, and the test runs at the same speed as when it is run from
LoadRunner or Business Availability Center At the end of the test run, you
can view information about the test run and transaction times.

You can also use Silent Test Runner to verify that your QuickTest test is
compatible with LoadRunner and Business Availability Center. A test will
fail when run using Silent Test Runner if it uses a feature that is not
supported by LoadRunner or Business Availability Center. For more
information on features that are not supported, see “Designing QuickTest
Tests for Use with LoadRunner or Business Process Monitor” on page 416,
and “Inserting and Running Tests in LoadRunner or Business Process
Monitor” on page 417.

Note: You cannot run Silent Test Runner if QuickTest is already open or
another test is currently running. You must close QuickTest and wait for its
process to end before running your test using Silent Test Runner.

You cannot use the ResultDir QuickTest environment variable when running
a test from Silent Test Runner.

Part IV • Working with Other Mercury Products

424

To run a QuickTest test using Silent Test Runner:

 1 To open Silent Test Runner, choose Start > Programs > QuickTest
Professional > Tools > Silent Test Runner. The Silent Test Runner dialog box
opens.

 2 Click the Browse button to navigate to your test. The Open Test dialog box
opens and displays the tests located in your <QuickTest Professional>\Tests
folder.

 3 Select the test you want to run and click Open. The Open Test dialog box
closes, the test name appears in the Test box of the Silent Test Runner dialog
box, and the Run Test button is enabled.

Note: If you select a test that you ran previously, the Test Run Log and
Transaction Summary buttons are enabled and you can display information
about the last run of the selected test. The first time you run a test, the Test
Run Log and Transaction Summary buttons are disabled.

Chapter 16 • Working with Mercury Performance Testing and Business Availability Center Products

425

 4 Click Run Test to run your test. The test runs without opening the QuickTest
user interface. The text Running test... appears next to the Run Test button
while the test is running.

Note: After you start a test run, you cannot stop the test run from Silent Test
Runner. If you close Silent Test Runner, the test continues to run. You can
end a test by ending the mdrv.exe process.

 5 When the test run finishes, the text Running test... is replaced with the text
Test run completed. If Silent Test Runner was unable to run your test, the
text Test could not be run appears. If previously disabled, the Test Run Log
button is enabled. The Transaction Summary button is also enabled if you
ran a test with transactions and the button was previously disabled. For
more information about viewing the log files, see ““Viewing Test Run
Information,” below.

Viewing Test Run Information

Silent Test Runner provides test run information in log files. Each test
generates a test run log, and any test with transactions generates an
additional transaction summary.

Viewing the Test Run Log

The test run log is saved as output.txt in the <QuickTest
Professional>\Tests\<test name> folder. A log file is saved for each test run
with Silent Test Runner and is overwritten when you rerun the test. To open
the log file, click Test Run Log.

The log file displays information about the test run. For example,
information is shown about each iteration, action call, step transaction,
failed step, and so forth. Each line displays a message or error ID. For more
information on message and error codes in the log file, refer to your
Performance Center or Business Availability Center documentation.

Part IV • Working with Other Mercury Products

426

Viewing the Transaction Summary

The transaction summary is saved as transactions.txt in the <QuickTest
Professional>\Tests\<test name> folder. A transaction summary is saved for
each test that includes transactions and is overwritten when you rerun the
test. To open the log file, click Transaction Summary. The transaction
summary displays a line for each transaction in the test. For each
transaction, the status is displayed together with the total duration time and
any wasted time (in seconds). The transaction measurements in Silent Test
Runner are exactly the same as if the test was run from LoadRunner or
Business Availability Center.

Notes:

A transaction summary is available only for a test that contains transactions
ending with an EndTransaction statement. If a transaction started but did
not end because of test failure, it is not included in the transaction
summary.

Distributed transactions (transactions that start in one test and end in
another) are not reported in the transaction summary but are included in
the test run log.

Any transaction information included in the transaction summary is also
included in the test run log.

Part V

Appendix

428

429

A
Working with QuickTest—Frequently
Asked Questions

This chapter answers some of the questions that are asked most frequently
by advanced users of QuickTest. The questions and answers are divided into
the following sections:

➤ Recording and Running Tests

➤ Programming in the Expert View

➤ Working with Dynamic Content

➤ Advanced Web Issues

➤ Test Maintenance

➤ Testing Localized Applications

➤ Improving QuickTest Performance

Part V • Appendix

430

Recording and Running Tests

➤ How does QuickTest capture user processes in Web pages?

QuickTest hooks the Microsoft Internet Explorer browser. As the user
navigates the Web-based application, QuickTest records the user actions.
(For information about modifying which user actions are recorded, see
Chapter 10, “Configuring Web Event Recording.”) QuickTest can then run
the test by running the steps as they originally occurred.

➤ How can I record on objects or environments not supported by
QuickTest?

You can do this in a number of ways:

➤ By default, QuickTest supports several developmental environments. You
can also enable support for additional environments, such as Java,
Oracle, .NET, SAP Solutions, Siebel, PeopleSoft, terminal emulators, and
Web services, by installing and loading any of the external add-ins that
are available for QuickTest Professional.

➤ You can map objects of an unidentified or custom class to standard
Windows classes. For more information on object mapping, see
“Mapping User-Defined Test Object Classes” on page 119.

➤ You can define virtual objects for objects that behave like test objects,
and then record in the normal recording mode. For more information on
defining virtual objects, see Chapter 2, “Learning Virtual Objects.”

➤ You can record your clicks and keyboard input based on coordinates in
the low-level recording or analog modes. For more information on low-
level and analog recording, refer to “Choosing the Recording Mode” on
page 90 in the QuickTest Professional Basic Features User’s Guide.

Appendix A • Working with QuickTest—Frequently Asked Questions

431

Programming in the Expert View

➤ Can I store functions and subroutines in a function library?

You can define functions within an individual test, or you can create one or
more VBScript function libraries containing your functions, and then call
them from any test.

You can also register your functions as methods for QuickTest test objects.
Your registered methods can override the functionality of an existing test
object method for the duration of a run session, or you can register a new
method for a test object class.

For more information, see Chapter 6, “Working with User-Defined
Functions and Function Libraries.”

Working with Dynamic Content

➤ How can I record and run tests on objects that change dynamically
from viewing to viewing?

Sometimes the content of objects in a Web page or application changes due
to dynamic content. You can create dynamic descriptions of these objects so
that QuickTest will recognize them when it runs the test. For more
information, refer to Chapter 6, “Working with Test Objects” in the
QuickTest Professional Basic Features User’s Guide.

➤ How can I check that a child window exists (or does not exist)?

Sometimes a link in one window creates another window.

You can use the Exist property to check whether or not a window exists. For
example:

Browser("Window_name").Exist

You can also use the ChildObjects method to retrieve all child objects (or
the subset of child objects that match a certain description) on the Desktop
or within any other parent object.

Part V • Appendix

432

For more information on the Exist property and ChildObjects method,
refer to the QuickTest Professional Object Model Reference.

➤ How does QuickTest record on dynamically generated URLs and Web
pages?

QuickTest actually clicks links as they are displayed on the page. Therefore,
QuickTest records how to find a particular object, such as a link on the page,
rather than the object itself. For example, if the link to a dynamically
generated URL is an image, then QuickTest records the “IMG” HTML tag,
and the name of the image. This enables QuickTest to find this image in the
future and click on it.

Advanced Web Issues

➤ How does QuickTest handle cookies?

Server side connections, such as CGI scripts, can use cookies both to store
and retrieve information on the client side of the connection.

QuickTest stores cookies in the memory for each user, and the browser
handles them as it normally would.

➤ How does QuickTest handle session IDs?

The server, not the browser, handles session IDs, usually by a cookie or by
embedding the session ID in all links. This does not affect QuickTest.

➤ How does QuickTest handle server redirections?

When the server redirects the client, the client generally does not notice the
redirection, and misdirections generally do not occur. In most cases, the
client is redirected to another script on the server. This additional script
produces the HTML code for the subsequent page to be viewed. This has no
effect on QuickTest or the browser.

Appendix A • Working with QuickTest—Frequently Asked Questions

433

➤ How does QuickTest handle meta tags?

Meta tags do not affect how the page is displayed. Generally, they contain
information only about who created the page, how often it is updated, what
the page is about, and which keywords represent the page's content.
Therefore, QuickTest has no problem handling meta tags.

➤ Does QuickTest work with .asp?

Dynamically created Web pages utilizing Active Server Page technology have
an .asp extension. This technology is completely server-side and has no
bearing on QuickTest.

➤ Does QuickTest work with COM?

QuickTest complies with the COM standard.

QuickTest supports COM objects embedded in Web pages (which are
currently accessible only using Microsoft Internet Explorer) and you can
drive COM objects in VBScript.

➤ Does QuickTest work with XML?

XML is eXtensible Markup Language, a pared-down version of SGML for
Web documents, that enables Web designers to create their own customized
tags. QuickTest supports XML and recognizes XML tags as objects.

You can also create XML checkpoints to check the content of XML
documents in Web pages, frames or files. QuickTest also supports XML
output and schema validation.

For more information, see Chapter 13, “Checking XML” in the QuickTest
Professional Basic Features User’s Guide.

Part V • Appendix

434

Test Maintenance

➤ How do I maintain my test when my application changes?

The way to maintain a test when your application changes depends on how
much your application changes. This is one of the main reasons you should
create a small group of tests rather than one large test for your entire
application. When your application changes, you can re-record part of a
test. If the change is not significant, you can manually edit a test to update
it.

You can also use QuickTest’s action feature to design more modular and
efficient tests. While recording, you divide your test into several actions,
based on functionality. When your application changes, you can rerecord a
specific action, without changing the rest of the test. Whenever possible,
insert calls to reusable actions rather than creating identical pieces of script
in several tests. This way, changes to your original reusable action are
automatically applied to all tests calling that action. For more information,
see Chapter 1, “Working with Advanced Action Features.”

If you have many tests and actions that contain the same test objects, it is
recommended to work with shared object repositories so that you can
update object information in a centralized location.

To update the information in your checkpoints, the Active Screen, or about
your test object properties when object properties change, or to add new
objects or steps on an Active Screen image without rerecording steps, use the
Update Run Mode option. For more information, refer to “Updating a Test”
on page 604 in the QuickTest Professional Basic Features User’s Guide.

➤ Can I increase or decrease Active Screen information after I finish
recording a test?

If you find that the information saved in the Active Screen after recording is
not sufficient for your test editing needs, or if you no longer need Active
Screen information, and you want to decrease the size of your test, there are
several methods of changing the amount of Active Screen information saved
with your test.

Appendix A • Working with QuickTest—Frequently Asked Questions

435

➤ To decrease the disk space used by your test, you can delete Active Screen
information by selecting Save As, and clearing the Save Active Screen
files check box. For more information, refer to “Saving a Test” on
page 100 in the QuickTest Professional Basic Features User’s Guide.

➤ If you chose not to save all information in the Active Screen when testing
a Windows application, you can use one of several methods to increase
the information stored in the Active Screen.

Confirm that the Active Screen capture preference in the Active Screen
tab of the Options dialog box is set to capture the amount of information
you need and then:

• Perform an Update Run Mode operation to save the required amount
of information in the Active Screen for all existing steps. For more
information on the Update Run Mode options, refer to “Updating a
Test” on page 604 in the QuickTest Professional Basic Features User’s
Guide.

• Re-record the step(s) containing the object(s) you want to add to the
Active Screen.

To re-record the step, select the step after which you want to record
your step, position your application to match the selected location in
your test, and then begin recording. Alternatively, place a breakpoint
in your test at the step before which you want to add a step and run
your test to the breakpoint. This will bring your application to the
correct place in order to record the step. For more information on
setting breakpoints, refer to “Setting Breakpoints” on page 585 in the
QuickTest Professional Basic Features User’s Guide.

For more information on changing the amount of information saved in the
Active Screen for Windows applications, refer to “Setting Active Screen
Options,” on page 701 in the QuickTest Professional Basic Features User’s
Guide.

Part V • Appendix

436

Testing Localized Applications

➤ I am testing localized versions of a single application, each with
localized user interface strings. How do I create efficient tests in
QuickTest?

You can parameterize these user interface strings using parameters from the
global Environment variable list. This is a list of variables and corresponding
values that can be accessed from any test. For more information, refer to
Chapter 15, “Parameterizing Values” in the QuickTest Professional Basic
Features User’s Guide.

➤ I am testing localized versions of a single application. How can I
efficiently input different data in my tests, depending on the language
of the application?

If you are running a single iteration of your test, or if you want values to
remain constant for all iterations of an action or test, use environment
variables, and then change the active environment variable file for each test
run.

If you are running multiple iterations of your test or action, and you want
the input data to change in each iteration, you can create an external Data
Table for each localized version of your application. When you change the
localized version of the application you are testing, you simply switch the
Data Table file for your test in the Resources tab of the Test Settings dialog
box.

For more information on working with Data Tables, refer to Chapter 19,
“Working with Data Tables” in the QuickTest Professional Basic Features User’s
Guide. For more information on selecting the Data Table file for your test,
refer to “Defining Resource Settings for Your Test” on page 751 in the
QuickTest Professional Basic Features User’s Guide.

Appendix A • Working with QuickTest—Frequently Asked Questions

437

Improving QuickTest Performance

➤ How can I improve the working speed of QuickTest?

You can improve the working speed of QuickTest by doing any of the
following:

➤ Do not load unnecessary add-ins in the Add-in Manager when QuickTest
starts. This will improve both recording time and run session
performance. For more information about loading add-ins, refer to
“Loading QuickTest Add-ins” on page 795 in the QuickTest Professional
Basic Features User’s Guide.

➤ Run your tests in "fast mode." From the Run tab in the Options dialog
box, select the Fast option. This instructs QuickTest to run your test
without displaying the execution arrow for each step, enabling the test to
run faster. For more information on the Run tab of the Options dialog
box, refer to “Setting Run Testing Options” on page 709 in the QuickTest
Professional Basic Features User’s Guide.

➤ If you are not using the Active Screen while editing your test, hide the
Active Screen while editing your test to improve editing response time.
Choose View > Active Screen, or toggle the Active Screen toolbar button
to hide the Active Screen. For more information, refer to Chapter 2,
“QuickTest at a Glance” in the QuickTest Professional Basic Features User’s
Guide.

➤ Decide if and how much information you want to capture and save in
the Active Screen. The more information you capture, the easier it is to
add steps to your test using the many Active Screen options, but more
captured information also leads to slower recording and editing times.
You can choose from the following Active Screen options to improve
performance:

• If you are testing Windows applications, you can choose to save all
Active Screen information in every step, save information only in
certain steps, or to disable Active Screen captures entirely. You set this
preference in the Active Screen tab of the Options dialog box. For
more information, refer to “Setting Active Screen Options” on
page 701 in the QuickTest Professional Basic Features User’s Guide.

Part V • Appendix

438

• If you are testing Web applications, you can disable screen capture of
all steps in the Active Screen. From the Active Screen tab of the
Options dialog box, click Custom Level to open the Custom Active
Screen Capture Settings dialog box.

Select the Disable Active Screen Capture option. This will improve
recording time. For more information on the Active Screen tab of the
Options dialog box, refer to “Setting Active Screen Options” on
page 701 in the QuickTest Professional Basic Features User’s Guide.

• When you save a new test, or when you save a test with a new name
using Save As, you can choose not to save the captured Active Screen
files with the test by clearing the Save Active Screen files option in the
Save or Save As dialog box. This is especially useful when you have
finished designing your test and you plan to use your test only for test
runs. Tests without Active Screen files open more quickly and use
significantly less disk space.

➤ Decide when you want to capture and save images of the application for
the test results. From the Run tab in the Options dialog box, select an
option from the Save step screen capture to test results box. You can
improve test run time and reduce disk space by saving screen captures
only in certain situations or by not saving the images at all. For more
information on the Active Screen tab of the Options dialog box, refer to
“Setting Active Screen Options” on page 701 in the QuickTest Professional
Basic Features User’s Guide.

Tip: If you need to recover Active Screen files after you save a test without
Active Screen files, re-record the necessary steps or use the Update Run
Mode option to recapture screens for all steps in your test. For more
information, refer to “Updating a Test” on page 604 in the QuickTest
Professional Basic Features User’s Guide.

Appendix A • Working with QuickTest—Frequently Asked Questions

439

➤ How can I decrease the disk space used by QuickTest?

You can decrease the disk space used by QuickTest by doing any of the
following:

➤ Decide when you want to capture and save images of the application for
the test results. From the Run tab in the Options dialog box, select an
option from the Save step screen capture to test results box. You can
reduce disk space and improve test run time by saving screen captures
only in certain situations or not saving images at all. For more
information on the Active Screen tab of the Options dialog box, refer to
“Setting Active Screen Options” on page 701 in the QuickTest Professional
Basic Features User’s Guide.

➤ Decide if and how much information you want to capture and save in
the Active Screen. The more information you capture, the easier it is to
add steps to your test using the many Active Screen options, but more
captured information also leads to slower recording and editing times.
You can choose from the following Active Screen options to improve
performance:

• If you are testing Windows applications, you can choose to Save all
Active Screen information in every step, save information only in
certain steps, or to disable Active Screen captures entirely. You set this
preference in the Active Screen tab of the Options dialog box. For
more information, refer to “Setting Active Screen Options” on
page 701 in the QuickTest Professional Basic Features User’s Guide.

• If you are testing Web applications, you can disable screen capture of
all steps in the Active Screen. From the Active Screen tab, click Custom
Level to open the Custom Active Screen Capture Settings dialog box.
Select the Disable Active Screen Capture option. This will improve
recording time. For more information on the Active Screen tab of the
Options dialog box, refer to “Setting Active Screen Options” on
page 701 in the QuickTest Professional Basic Features User’s Guide.

Part V • Appendix

440

• When you save a new test, or when you save a test with a new name
using Save As, you can choose not to save the captured Active Screen
files with the test by clearing the Save Active Screen files option in the
Save or Save As dialog box. This is especially useful when you have
finished designing your test and you plan to use your test only for test
runs. Tests without Active Screen files use significantly less disk space.

Tip: If you need to recover Active Screen files after you save a test without
Active Screen files, re-record the necessary steps or use the Update Run
Mode option to recapture screens for all steps in your test. For more
information, refer to “Updating a Test” on page 604 in the QuickTest
Professional Basic Features User’s Guide.

➤ Is there a recommended length for tests?

Although there is no formal limit regarding test length, it is recommended
that you divide your tests into actions and that you use reusable actions in
tests, whenever possible. An action should contain no more than a few
hundreds steps and, ideally, no more than a few dozen. For more
information, refer to Chapter 17, “Working with Actions” in the QuickTest
Professional Basic Features User’s Guide.

441

A

action call
iterations 22
parameter values 23
properties 21
run properties 22
setting run properties 22

action parameters 16
guidelines 19

actions 3
basic syntax 29
diagram 4, 5
inserting

call to 9
copy of 6
existing 4

nesting 16
overview 4
sharing values 26

using Dictionary objects 28
syntax 29
syntax for parameters 29
syntax for storing return values 31

Active Screen
increasing/decreasing saved

information 434
Active Server Page technology 433
Add Repository Parameter dialog box 264
Add/Remove dialog box, object

identification 98, 114
adding tests to version control 390
add-ins, associating with QuickTest test in

Quality Center 379
Agent, Remote 399
Allow other Mercury tools to run tests 398
API

using Windows 180

Application crash trigger 54
Application Management, integrating with

QuickTest 413
applications

closing 165
running 165
sample xvii
testing localized versions 436

asp files 433
assistive properties, configuring 96
associated function libraries 200

modifying 203
associating

current function library 202
add-ins with test created in Quality

Center 382
attribute property 178
auto-expand VBScript syntax 337
automation

Application object 237
definition 232
development environment 235
language 235
object model 231
type library 235

Automation Engineer 405

B

Basic event recording configuration level 313
Basic Features User’s Guide, QuickTest

Professional xv
behavior, DHTML 321
bitmaps

checking. See QuickTest Professional
Basic Features User’s Guide

bookmarks 137

Index

Index

442

bubbling 322
business analyst

role in Business Process Testing 404
Business Process Monitor, integrating with

QuickTest 413
Business Process Testing 403

roles 404
workflow 407

Business Process Testing User’s Guide,
QuickTest Professional for xv

business process tests 408
running 411

C

calculations, in the Expert View and function
libraries 169

Call to WinRunner Function dialog box 356
Call to WinRunner Test dialog box 352
calling TSL functions

from QuickTest 356
CGI scripts 432
Check In command 390, 392
Check Out command 390
checking tests out of version control 390
checkpoints

in Expert View 128
Close application process operation 66
Close method 165
closing

object repositories 257
collection, properties. See programmatic

descriptions
collections, of virtual objects 33
color settings

Object Repository Merge Tool 284
COM 433
comments

in the Expert View and function
libraries 167

Completing the Recovery Scenario Wizard
screen 77

configuration levels
customizing 315
standard 313

conflict resolution settings
Object Repository Merge Tool 285

conflicts, resolving in merged object
repository 300

connecting QuickTest to Quality Center 363
conventions. See typographical conventions
converting

object repositories 254
cookies 432
copying function code 217
creation time identifier. See ordinal identifier
CreationTime property, understanding 105
custom event-recording configuration 315

adding listening events 319
adding objects to the list 318
deleting objects from the list 319
procedure 315
specifying listening criteria 321

custom objects, mapping 119
custom web event configuration files

loading 329
saving 329

Custom Web Event Recording Configuration
dialog box 315, 326

customer support, Web site xvii
customizing function libraries 333

general options 335
highlighting elements 337

customizing test scripts 333
general options 335
highlighting script elements 337

D

data tables. See QuickTest Professional Basic
Features User’s Guide

databases
checking. See QuickTest Professional

Basic Features User’s Guide
debugging

function libraries 197
See also QuickTest Professional Basic

Features User’s Guide
decreasing Active Screen information 434
default object identification settings 108
defining arguments 208

Index

443

deleting
objects from list 319
repository parameters 267

descriptive programming. See programmatic
descriptions

Dictionary object 28
Dim statement, in the Expert View and

function libraries 149
disconnecting from Quality Center 370
disk space, saving 437
Do...Loop statement, in the Expert View and

function libraries 171
documentation

Basic Features User’s Guide xv
Installation Guide xv
online xvii
Tutorial xv
updates xviii

documenting a function 214
DOS commands, run within tests 179
dynamic Web content 431
dynamically generated URLs and

Web pages 432

E

Editor Options dialog box 335
End Transaction dialog box 422
ending transactions 422
errors in VBScript syntax 153
event-recording configuration 311

customizing levels 315
resetting 331
standard levels 313

ExecuteFile function 228
ExecuteFile statement

using 201
Exist property 431
existing actions, inserting 4

Expert View 123, 431
action syntax 29
basic action syntax 29
checkpoints 128
closing applications 165
customizing appearance of 333
finding text 140
replacing text 142
running applications 165
syntax for action parameters 29
syntax for action return values 31
understanding 125
understanding parameters 129

exporting
object repository to XML file 273

expressions, using in the Expert View and
function libraries 145

eXtensible Markup Language (XML) 433
external functions, executing from script 228

F

FAQs 429
Filter dialog box

Object Repository Merge Tool 302
filter properties (Smart Identification) 109
filtering

target repository 302
finalizing function code 217
Find dialog box

Object Repository Merge Tool 304
finding text in Expert View 140
For...Each statement, in the Expert View and

function libraries 171
For...Next statement, in the Expert View and

function libraries 170
frequently asked questions 429
function arguments, passing parameters

from QuickTest to WinRunner 359
Function call operation 66

Index

444

Function Definition Generator 208
defining a function 208
documenting a function 214
opening 206
previewing function code 216
registering a function 209
using 204

function libraries 185
associated 200
associating current 202
creating 189
customizing appearance of 333
debugging 197
editing 195
general options 335
highlighting elements 337
managing 188
modifying associated 203
navigating 194
opening 191, 199
read-only, editing 197
saving 189

functions, user-defined 185

G

general options 335
Generate Script option 238
GetROProperty method 176
Go To dialog box 136
guidelines

user-defined functions 225

H

handler 321
Help, online, from within QuickTest

Professional xvii
High event recording configuration level 313
home page, Mercury xix

I

If...Then...Else statement, in Expert View and
function libraries 173

importing
object repository from XML file 272

increasing Active Screen information 434
index identifier. See ordinal identifier
Index property, programmatic

descriptions 164
Index property, understanding 103
initialization scripts 233
inserting transactions 421
Installation Guide, QuickTest Professional xv
IntelliSense 130, 336
iterations 22

K

key assignments, in Expert View 339
key assignments, in function libraries 339
Keyboard or mouse operation 66
keyboard shortcuts

in Expert View 339
in function libraries 339

Keyword view. See QuickTest Professional
Basic Features User’s Guide

knowledge base xix

L

LoadRunner, integrating with QuickTest 413
local object repositories

merging 290
localized applications, testing 436
location identifier. See ordinal identifier
Location property, understanding 104
low-level recording 430

M

Manage Repository Parameters dialog
box 262

managing tests
testing process 361

mandatory properties, configuring 96
mapping

custom objects 119
measuring transactions 419
Medium event recording configuration

level 313
Mercury Application Management,

integrating with QuickTest 413

Index

445

Mercury Best Practices xix
Mercury Quality Center. See Quality Center
Mercury Tours, sample application xix
merging

local object repositories 290
shared object repositories 275

meta tags 433
methods

adding new or changing behavior
of 219

run-time objects 177
user-defined 219

modifying
object repositories 260
repository parameters 266

N

Name and Description screen 76
nesting actions 16
New Merge dialog box 288

O

object identification
generating automation scripts 108
restoring defaults 108

Object Identification dialog box 95
Object Mapping dialog box 119
object model

automation 231
definition 232

Object property, run-time methods 178
object repositories

closing 257
converting 254
creating 253
exporting to XML 273
importing from XML 272
managing 244
modifying 260
opening 254
saving 255

Object Repository Manager 246
Object Repository Merge Tool 275

changing the view 278
color settings 284
conflict resolution settings 285
conflicts 297
filtering the target repository 302
primary repository pane 280
resolution options pane 280
resolving conflicts 300
secondary repository pane 280
target repository pane 279
window 277

Object state trigger 54
objects

identification 93
methods, run-time 177
properties, run-time 177

Open Test from Quality Center Project dialog
box 376, 378

opening tests
in a Quality Center project 375

Option Explicit statement 226
Options dialog box

Generate Script option 238
ordinal identifier 102
output values. See QuickTest Professional

Basic Features User’s Guide
output.txt log file 425

P

parameter values for action calls 23
parameterizing

property values using repository
parameters 269

parameterizing values. See QuickTest
Professional Basic Features User’s
Guide

Index

446

parameters
action 16
action guidelines 19
adding repository 264
deleting repository 267
in the Expert View 129
managing repository 262
modifying repository 266
repository 261
syntax for calling action 29

passing parameters
to a WinRunner function 359
to a WinRunner test 354

performance testing products, integrating
with QuickTest 413

performance, improving 437
Pop-up window trigger 54
post-recovery test run options 45
Post-Recovery Test Run Options screen 74
power users, advanced features for 429
previewing function code 216
primary repository 276
primary repository pane 280
printing

function library 198
priority

setting for recovery scenarios 88
programmatic descriptions 155

for description objects 160
for WebElement objects 163
in statement 157

using the With statement 159
using the Index property 164
using variables 157

programming 431
in Expert View and function

libraries 123
in VBScript 146

programming logic. See QuickTest
Professional Basic Features User’s
Guide

project (Quality Center)
connecting to 363
disconnecting from 370
opening tests in 375
saving tests to 374

properties
CreationTime 105
Index 103
Location 104
run-time objects 177
setting for action calls 21
viewing for recovery scenarios 81, 88

property collection. See programmatic
descriptions

property values
specifying in the test object

description 269

Q

QA engineer
role in Business Process Testing 404

QA Tester
role in Business Process Testing 404

Quality Center 361
associated function libraries 200
Connectivity Add-in 373
disconnecting from 370
opening tests in 375
project

connecting QuickTest to 363
running QuickTest tests remotely 398
version control for 389

Quality Center Connection dialog box 367
Quality Center Connection - Project

Connection dialog box 365
Quality Center Connection - Server

Connection dialog box 364
Quality Center project

saving tests to 374

Index

447

QuickTest
automation object model 231
integrating with Business Process

Monitor 413
integrating with LoadRunner 413
integrating with Mercury Application

Management 413
integrating with performance testing

products 413
introduction. See QuickTest

Professional Basic Features User’s
Guide

overview. See QuickTest Professional
Basic Features User’s Guide

QuickTest Automation Object Model
Reference 239

R

Readme, QuickTest Professional xvii
recording

low-level 430
right mouse button clicks 325
status, options 322
time, improving 437

recovery
associating scenarios with tests 85
copying scenarios 83
deleting scenarios 82
disabling scenarios 89
files 48
modifying scenarios 82
operations 45
removing scenarios from tests 89
saving scenarios 78
scenarios 45
setting scenario priority 88
viewing scenario properties 81, 88

recovery operation
Close application process 66
Function call 66
Keyboard or mouse operation 66
Restart Microsoft Windows 66

Recovery Operation - Click Button or Press
Key screen 67

Recovery Operation - Close Processes
screen 69

Recovery Operation - Function Call screen 71
Recovery Operation screen 66
Recovery Operations screen 64
Recovery Scenario Manager Dialog Box 48
Recovery Scenario Wizard 52

Click Button or Press Key screen 67
Close Processes screen 69
Completing the Recovery Scenario

Wizard screen 77
Function screen 71
Name and Description screen 76
Post-Recovery Test Run Options

screen 74
Recovery Operation screen 66
Recovery Operations screen 64
Select Object screen 58
Select Processes screen 62
Select Test Run Error screen 61
Select Trigger Event screen 54
Set Object Properties and Values

screen 60
Specify Pop-up Window Conditions

screen 56
redirection of server 432
registering functions 209
registering methods 219

using the RegisterUserFunc
statement 222

RegisterUserFunc statement 209, 219
regular expressions

using in the Expert View and function
libraries 145

See also QuickTest Professional Basic
Features User’s Guide

remote access to QuickTest 398
Remote Agent 399
replacing text in Expert View 142
reports, filter 182
Repository Parameter dialog box 269

Index

448

repository parameters 261
adding 264
deleting 267
managing 262
modifying 266
parameterizing values 269

repository. See also object repository
reserved objects 200
resolution options pane 280
resolving conflicts

Object Repository Merge Tool 300
Restart Microsoft Windows operation 66
right mouse button

configuring QuickTest to record 325
recording clicks 325

roles in Business Process Testing 404
run properties, setting for action calls 22
running tests

advanced issues 430
from a Quality Center project 387
running WinRunner tests 352
using Silent Test Runner 424

run-time
objects 177
settings, adding and removing 347

S

sample application, Mercury Tours xix
Save Shared Object Repository dialog

box 306, 307
Save Test to Quality Center Project dialog

box 374
saving

object repositories 255
recovery scenarios 78
target repository 305

saving tests
to a Quality Center project 374

scenarios
associating with tests 85
copying recovery 83
deleting recovery 82
disabling recovery 89
modifying recovery 82
recovery 45
removing recovery from tests 89
saving recovery 78
setting recovery priority 88
viewing recovery properties 81, 88

scripts
general options 335
highlighting script elements 337

scripts, test. See test scripts
secondary repository 276
secondary repository pane 280
Select Action dialog box 7, 10
Select Object screen 58
Select Processes screen 62
Select Test Run Error screen 61
Select Trigger Event screen 54
server

Quality Center, disconnecting
from 370

redirections 432
server-side connections 432

session IDs 432
Set Object Properties and Values screen 60
Set statement, in the Expert View and

function libraries 149
Setting object 344
SGML 433
shared object repositories

merging 275
shared object repository window 251
sharing action values

using Dictionary objects 28
using environment variables 27
via the global Data Table 26

Index

449

shortcuts
in Expert View 339
in function libraries 339
in Object Repository Merge Tool 283

Silent Test Runner 423
opening 424
running tests from 424

Silent Test Runner dialog box 424
Smart Identification

configuring 109
enabling from the Object

Identification dialog box 107, 108
Smart Identification Properties dialog

box 114
Specify Pop-up Window Conditions

screen 56
standard event-recording configuration 313
Start Transaction dialog box 421
statement completion 130, 336
Statistics dialog box 296
status bar

Object Repository Merge Tool 281
steps

adding with programming logic. See
QuickTest Professional Basic
Features User’s Guide

Subject Matter Expert (SME) 404
support

knowledge base xix
Web site xix

syntax
for action parameters 29
for action return values 31
for actions 29

syntax errors, VBScript 153
SystemUtil.Run method 165

T

target repository 276
target repository pane 279
technical support. See customer support
template tests 379

creating 382
test database, maintaining 233

Test Object Model. See QuickTest
Professional Basic Features User’s
Guide

test objects
property values, retrieving and

setting 176
test results

enabling and filtering 182
Test run error trigger 54
Test Run Log 425
test run time, improving 437
test scripts

customizing 333
test set 388
Test Settings dialog box

Generate Script option 238
test versions in QuickTest 389
TestDirector. See Quality Center
testing options

during a test run 343
restoring 346
retrieving 346
run-time 347
setting 344

testing process
introduction. See QuickTest

Professional Basic Features User’s
Guide

tests
and components, a comparison 412
associating recovery scenarios with 85
creating in Quality Center using a

template test 384
diagram 4, 5
disabling recovery scenarios 89
opening in a Quality Center

project 375
removing recovery scenarios from 89
running using Silent Test Runner 424
running. See QuickTest Professional

Basic Features User’s Guide
saving to a Quality Center project 374

Index

450

text
checking. See QuickTest Professional

Basic Features User’s Guide
finding in Expert View 140
replacing in Expert View 142

timing transactions 419
toolbar

Object Repository Merge Tool 282
transactions 419

defining 419
ending 422
inserting 421
measuring 419

trigger
Application crash 54
events 45
Object state 54
Pop-up window 54
test run error 54

TSL functions
calling from QuickTest 356

Tutorial, QuickTest Professional xvii
typographical conventions xxi

U

unregistering methods, using the
UnregisterUserFunc statement 224

UnregisterUserFunc statement 219
update from local

merging repositories 290
updates, documentation xviii
user-defined

functions 185
methods 219
properties, accessing 178
test objects, mapping 119

user-defined function
adding a tooltip to 214
documenting 214
finalizing 217
Function Definition Generator 204
generating additional 216
guidelines for 225
previewing code in Function

Definition Generator 216
registering 209

V

values
configuring. See QuickTest

Professional Basic Features User’s
Guide

variables
unique in global scope 226

VB Script
formatting text 151

VBScript
associated function libraries

with Quality Center 200
auto-expand syntax 337
documentation 167
syntax 146
syntax errors 153

version control 389
adding tests to 390
checking tests in to 390, 392
checking tests out of 390

version manager 389
Virtual Object Manager 42
Virtual Object wizard 38
virtual objects 33

defining 37
removing 42

Index

451

W

Web content, dynamic 431
Web Event Recording Configuration dialog

box 314, 326
Web site, Mercury xvii
WebElement objects, programmatic

descriptions 163
Web-event-recording configuration 311

customizing 315
standard 313

What’s New xv
While statement, in the Expert View and

function libraries 172
Windows API 180
WinRunner

calling tests
from QuickTest 352

calling TSL functions
from QuickTest 356

function arguments, passing
parameters from QuickTest 359

tests, passing parameters from
QuickTest 354

working with 351
With statements

entering manually 174
workflow in Business Process Testing 407
working test 390

X

XML
exporting from object repository 273
importing as object repository 272

Index

452

	Mercury QuickTest Professional Advanced Features User's Guide
	Multi-Volume Chapter Summary
	QuickTest Professional Basic Features User’s Guide
	QuickTest Professional Advanced Features User’s Guide

	Table of Contents
	Welcome to QuickTest
	Using This Guide
	Product Documentation
	Additional Online Resources
	Documentation Updates
	Typographical Conventions

	Working with Advanced Testing Features
	Working with Advanced Action Features
	About Working with Advanced Action Features
	Inserting Calls to Existing Actions
	Setting Action Parameters
	Using Action Parameters
	Setting Action Call Properties
	Sharing Action Information
	Understanding Action Syntax in the Expert View
	Exiting an Action

	Learning Virtual Objects
	About Learning Virtual Objects
	Understanding Virtual Objects
	Understanding the Virtual Object Manager
	Defining a Virtual Object
	Removing or Disabling Virtual Object Definitions

	Defining and Using Recovery Scenarios
	About Defining and Using Recovery Scenarios
	Deciding When to Use Recovery Scenarios
	Defining Recovery Scenarios
	Understanding the Recovery Scenario Wizard
	Managing Recovery Scenarios
	Setting the Recovery Scenarios List for Your Tests
	Programmatically Controlling the Recovery Mechanism

	Configuring Object Identification
	About Configuring Object Identification
	Understanding the Object Identification Dialog Box
	Configuring Smart Identification
	Mapping User-Defined Test Object Classes

	Working with the Expert View and Function Library Windows
	About Working with the Expert View and Function Library Windows
	Understanding and Using the Expert View
	Navigating in the Expert View and Function Libraries
	Understanding Basic VBScript Syntax
	Using Programmatic Descriptions
	Running and Closing Applications Programmatically
	Using Comments, Control-Flow, and Other VBScript Statements
	Retrieving and Setting Test Object Property Values
	Accessing Run-Time Object Properties and Methods
	Running DOS Commands
	Enhancing Your Tests and Function Libraries Using the Windows API
	Choosing Which Steps to Report During the Run Session

	Working with User-Defined Functions and Function Libraries
	About Working with User-Defined Functions and Function Libraries
	Managing Function Libraries
	Working with Associated Function Libraries
	Using the Function Definition Generator
	Registering User-Defined Functions as Test Object Methods
	Additional Tips for Working with User-Defined Functions
	Executing Externally-Defined Functions from Your Test

	Automating QuickTest Operations
	About Automating QuickTest Operations
	Deciding When to Use QuickTest Automation Programs
	Choosing a Language and Development Environment for Designing and Running Automation Programs
	Learning the Basic Elements of a QuickTest Automation Program
	Generating Automation Scripts
	Using the QuickTest Automation Object Model Reference

	Managing and Merging Object Repositories
	Managing Object Repositories
	About Managing Object Repositories
	Understanding the Object Repository Manager
	Working with Object Repositories
	Modifying Object Repositories
	Working with Repository Parameters
	Modifying Test Object Details
	Locating Objects
	Performing Merge Operations
	Performing Import and Export Operations

	Merging Shared Object Repositories
	About Merging Shared Object Repositories
	Understanding the Object Repository Merge Tool
	Using Object Repository Merge Tool Commands
	Defining Default Settings
	Merging Two Object Repositories
	Updating a Shared Object Repository from Local Object Repositories
	Viewing Merge Statistics
	Understanding Object Conflicts
	Resolving Object Conflicts
	Filtering the Target Repository Pane
	Synchronizing Object Repository Views
	Finding Specific Objects
	Saving the Target Object Repository

	Configuring Advanced Settings
	Configuring Web Event Recording
	About Configuring Web Event Recording
	Selecting a Standard Event Recording Configuration
	Customizing the Event Recording Configuration
	Recording Right Mouse Button Clicks
	Saving and Loading Custom Event Configuration Files
	Resetting Event Recording Configuration Settings

	Customizing the Expert View and Function Library Windows
	About Customizing the Expert View and Function Library Windows
	Customizing Editor Behavior
	Customizing Element Appearance
	Personalizing Editing Commands

	Setting Testing Options During the Run Session
	About Setting Testing Options During the Run Session
	Setting Testing Options
	Retrieving Testing Options
	Controlling the Test Run
	Adding and Removing Run-Time Settings

	Working with Other Mercury Products
	Working with WinRunner
	About Working with WinRunner
	Calling WinRunner Tests
	Calling WinRunner Functions

	Working with Quality Center
	About Working with Quality Center
	Connecting to and Disconnecting from Quality Center
	Saving Tests to a Quality Center Project
	Opening Tests from a Quality Center Project
	Working with Template Tests
	Running a Test Stored in a Quality Center Project from QuickTest
	Managing Test Versions in QuickTest
	Setting Preferences for Quality Center Test Runs

	Working with Business Process Testing
	About Working with Business Process Testing
	Understanding Business Process Testing Roles
	Understanding Business Process Testing Methodology

	Working with Mercury Performance Testing and Business Availability Center Products
	About Working with Mercury Performance Testing and Business Availability Center Products
	Using QuickTest Performance Testing and Business Availability Center Features
	Designing QuickTest Tests for Use with LoadRunner or Business Process Monitor
	Inserting and Running Tests in LoadRunner or Business Process Monitor
	Measuring Transactions
	Using Silent Test Runner

	Appendix
	Working with QuickTest-Frequently Asked Questions
	Recording and Running Tests
	Programming in the Expert View
	Working with Dynamic Content
	Advanced Web Issues
	Test Maintenance
	Testing Localized Applications
	Improving QuickTest Performance

	Index

