
HP OpenView Publishing Adapter Using
Radia
for the HP-UX and Windows operating systems*

Radia Release Version: 4.2i

Software Version: 3.1.2

Installation and Configuration Guide

*Information in this guide can be used for all supported platforms
except where indicated for a specific platform only.

Document Release Date: January 2006

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© Copyright 1998-2006 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained
in this material is subject to change without notice.

Trademark Notices

Linux is a registered trademark of Linus Torvalds.

Microsoft®, Windows®, and Windows® XP are U.S. registered trademarks of Microsoft

Corporation.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

PREBOOT EXECUTION ENVIRONMENT (PXE) SERVER

Copyright © 1996-1999 Intel Corporation.

2

TFTP SERVER

Copyright © 1983, 1993

The Regents of the University of California.

OpenLDAP

Copyright 1999-2001 The OpenLDAP Foundation, Redwood City, California, USA.

Portions Copyright © 1992-1996 Regents of the University of Michigan.

OpenSSL License

Copyright © 1998-2001 The OpenSSLProject.

Original SSLeay License

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

DHTML Calendar

Copyright Mihai Bazon, 2002, 2003

3

Documentation Updates

This manual’s title page contains the following identifying information:

• Software Version number, which indicates the software version

• Document release date, which changes each time the document is updated

• Software release date, which indicates the release date of this version of the software

To check for recent updates or to verify that you are using the most recent edition, visit the
following URL:

http://ovweb.external.hp.com/lpe/doc_serv/

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

4

http://ovweb.external.hp.com/lpe/doc_serv/

Support

Please visit the HP OpenView support web site at:

http://www.hp.com/managementsoftware/support

This web site provides contact information and details about the products, services, and
support that HP OpenView offers.

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit enhancement requests online

• Download software patches

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many

also require a support contract.

To find more information about access levels, go to:

http://www.hp.com/managementsoftware/access_level

To register for an HP Passport ID, go to:

http://www.managementsoftware.hp.com/passport-registration.html

5

http://www.hp.com/managementsoftware/support
http://www.hp.com/managementsoftware/access_level
http://www.managementsoftware.hp.com/passport-registration.html

6

Contents

1 Introduction .. 11

What is the Publishing Adapter?...12

Why Use the Publishing Adapter? ..12

The Publishing Adapter vs. Standard Radia Publishing ..13

Support for Radia Legacy Adapters..13

Overview..13

Publishing Modes ...15

Configuration File-Based Publishing..15

Object-Based Publishing..17

Radia Native Packaging ..17

System Requirements and Availability...17

Operating System Considerations ..18

Win32 Platforms..18

UNIX Platforms...18

Summary...20

2 Installing the Publishing Adapter.. 21

Recommendations...22

Installing the Publishing Adapter for Windows...22

Installing the Publishing Adapter for UNIX ..26

UNIX Graphical Installation...26

UNIX Non-Graphical Installation ..29

Summary...31

7

3 Configuration File-Based Publishing (promote.tkd)33

Using Configuration File-Based Publishing ...34

The PROMOTE Configuration File...35

The PROMOTE Configuration File Format...35

Sample PROMOTE Configuration File (promote.cfg) ..42

Specifying Additional Attributes ...44

Specifying Additional Attributes in the Configuration File..46

Specifying Connection Types ..47

Specifying Additional Attributes on the Command Line ..49

Filters and Filescans ...50

Summary...55

4 Object-Based Publishing (SCMAdapt.tkd)..................................57

Using Object-Based Publishing ...58

Input Objects...59

ZPROMDFT Variables ...60

ZINPUT Variables..62

The SCMADAPT Configuration File...63

The SCMADAPT Configuration File ..64

The SCMADAPT Configuration File Sample (scmadapt.cfg)65

Summary...66

5 Radia Native Packaging...67

What is Radia Native Packaging? ...68

Why use Radia Native Packaging?..68

Overview ...69

Radia Native Packaging System Requirements...69

Contents 8

Required Classes ..70

Radia Native Packaging and the Radia Client...70

Supported Native Package Types..70

Radia Native Packaging Command-Line Interface ...71

Radia Native Packaging Options File (rnp.cfg) ...75

Publishing with Radia Native Packaging...79

Examples..79

Publishing with Interactive Mode...79

Wrapped Native Packages...81

Automatic Inclusion of Required Packages ..85

Troubleshooting Radia Native Packaging...85

Operational Notes...86

Publishing...86

Deployment...87

Event Reporting..88

Viewing Event Details ...89

Summary...91

Index ... 93

Contents 9

10 Contents

1 Introduction

At the end of this chapter, you will:

•	 Be familiar with the Publishing Adapter.

•	 Understand the different publishing modes available with the Publishing
Adapter.

•	 Understand the Publishing Adapter system requirements.

11

What is the Publishing Adapter?

The Publishing Adapter is a command-line driven content publishing tool
that identifies a set of files and components (and their relationships) and
publishes them in a controlled, automated, repeatable manner, to the Radia
Database, where they are stored as objects. The Publishing Adapter can:

• scan for files on multiple drives or file systems,

• scan and publish files from any mapped drive or file systems,

• be configured to limit the subdirectories that are scanned,

• include or exclude at the file level, and

• select files by type.

Additionally, the Publishing Adapter can accommodate frequent patching of
internal applications, as well as publish build versions, and output from HP
legacy (PVCS or ClearCase) adapters. Its capacity to revise content material
is reliable, and can be designed to perform continuously, at designated times,
and in pre-determined intervals, and can be easily executed from within any
script or code capable of calling a command prompt.

Why Use the Publishing Adapter?

The Publishing Adapter offers a means of reliable and instant data updates
to information that must be posted in an automated fashion.

The primary function of the Publishing Adapter is to distribute updates to
content, data, and applications rather than the initial application packaging.
Typically, these types of data updates require a repeatable process. Digital
content, such as file sets, graphics, price lists, and interest rates, are types of
managed lists that might require an automated update process that the
Publishing Adapter can provide.

Since the Publishing Adapter is a repeatable process, it dynamically creates
package instances and names them (with date and sequence number) to

12 Chapter 1

accommodate multiple publishing sessions. The user can select from three
input modes: files, input objects, and a configuration file. A Radia Client is
not required.

The Publishing Adapter vs. Standard Radia Publishing

The Publishing Adapter provides a command-line alternative to the
Component Selection Mode of the graphical user interface of the Radia
Publisher. The Publishing Adapter offers an automated, repeatable
command-line process, whereas the Radia Publisher must be monitored from
start to finish. For more information on the Radia Publisher tool, refer to the
Installation and Configuration Guide for the HP OpenView Application
Manager Using Radia (Application Manager Guide) or the Installation and
Configuration Guide for the HP OpenView Software Manager Using Radia
(Software Manager Guide).

Support for Radia Legacy Adapters

Previous Radia Source Control Management Adapters (SCM Adapters) were
PVCS and ClearCase (Atria). The Publishing Adapter is intended as a
replacement for these tools, and will accept objects from these legacy
adapters.

Overview

The Publishing Adapter default operation creates standard instances of the
PACKAGE, FILE, PATH, DESKTOP, and REGISTRY classes in the
SOFTWARE domain of the Radia Database. Three additional features of the
Publishing Adapter are the ability to:

•	 publish into other classes, as well as a different domain.

•	 optionally create (and update, as needed) a ZSERVICE class instance
connection to a published package.

Introduction 13

•	 automatically generate the path information that is required for the
distribution of a package. The path information is generated dynamically
by a combination of configuration options and the location of the files
being published.

The Publishing Adapter is run one of two ways:

•	 By providing configuration objects.

• By specifying in the configuration file the targeted files to be published.

Table 1 shows how to apply each of these methods.

Table 1 Publishing Adapter Method Applications

method promote.tkd

(configuration file-based
publishing)

SCMAdapt.tkd

(object-based publishing)

scan intype=SCAN ZINPUT.ZAPPLIC=Y

file intype=FILE
(files specified in the insource
file)

ZINPUT.ZAPPLIC=N
(files specified by heap in
ZINPUT or ZPROMOTE)

object N/A intype=OBJ

filtering Available N/A

14	 Chapter 1

Publishing Modes

Configuration File-Based Publishing

Configuration file-based publishing allows for multiple publishing modes,
which are dictated by the information contained in a configuration file.
Multiple configuration files can be maintained and used for different
publishing jobs, providing an administrator with the ability to repeat a
publishing session as needed.

Files can be published to the Radia Database using either method available
with the Publishing Adapter, scanning a directory or publishing files listed in
an input file.

•	 The scanning method enables you to scan one or more directories. This
method also lets you specify:

—	 the depth of the scan (that is, the number of subdirectories),

—	 filters as selection criteria, and

—	 criteria for the inclusion/exclusion of files.

•	 The files listed method is more efficient if you want to publish a set of
files. Additionally, you can identify and target files to be published to
specific classes of the Radia Database. For example, you can designate
files with the "lnk" extension to be published to the DESKTOP class on
the Radia Database.

In configuration file-based publishing, when a name is designated in the
service option and addtosvc=1, a new connection is made to the service. If
the service doesn't exist, it is created and the connection is made. In either
case, this connection will occupy the first available CONNECT_TO field. In
the ZPROMDFT object, used in object-based publishing, the ZSERVICE
variable must contain a valid instance name, and the ZSVCCNCT variable
must be Y.

When a name for a package is specified with an asterisk (*), the package
name is sequentially generated (prefixYYYYMMDD#) with the same prefix
(prefix*). Multiple packages with the same name (identical prefix*) are linked

Introduction 15

to one another as REQUIRES connections within the service. The first
package promoted is linked directly (as an INCLUDES connection) to the
service in the first available CONNECT_TO field. See the following example.

SERVICE ---> INCLUDES connection ---> PCKG01

Subsequent packages (with the same prefix) that are promoted override the
previous package, and assume the direct link to the service, forcing that
previous package to adopt a REQUIRES link to it. And so it continues, with
each new same-named package breaking its predecessor's INCLUDES
connection to the service, and "demoting" that previous package to a
REQUIRES link to itself. See the following example.

SERVICE--->INCLUDES--->PCKG03
|

 |--->REQUIRES conn--->PCKG02
|
|-->REQUIRES-

>PCKG01

The prefix used to create a sequentially generated service name
must be a unique name and cannot match any existing service
names. For example, if the service name SAMPLE exists, the prefix
SAMPLE* cannot be used to create sequentially generated service
names using the addtosvc parameter.

Only in this scenario are the packages connected to the service as
REQUIRES, with the second package requiring the first, the third
package requiring the second, and so on.

Multiple packages with different names are linked to the service
independently at subsequent available connects. Each of these packages will
be added in the order in which it is received by the Radia Configuration
Server, and placed in the first available CONNECT_TO field.

The Publishing Adapter performs a CRC (cyclical redundancy
check) on the fully qualified path, not just the file name. In order for
the file to be recognized as a duplicate, it must consistently be
promoted from the same location. The Publishing Adapter does not
delete connections, except in the case of multiple promotes having
an identical prefix*, nor does it remove REQUIRES links.

16 Chapter 1

Object-Based Publishing

For object-based publishing, the selection of files to be published is derived
from information in the ZPROMDFT and either a ZINPUT or ZPROMOTE
object, which are generated as a result of the existing Radia PVCS and
ClearCase adapters.

If you are not using either of these legacy tools, use the Radia Client Explorer
to create these objects as described in Input Objects on page 59.

Radia Native Packaging

Radia Native Packaging is a feature of the Publishing Adapter specifically
designed to publish UNIX native software packages (HP-UX and Solaris).
Radia Native Packaging is installed with the Publishing Adapter on UNIX
systems. See Radia Native Packaging for more information.

System Requirements and Availability

The Publishing Adapter is available for Win32 and the HP-UX operating
systems. It has these system requirements:

• Network connectivity to the Radia Configuration Server.

• A minimum of 2 MB of hard disk space.

• Access to any directories from which you want to publish.

Introduction 17

Operating System Considerations

Win32 Platforms

Registry files being published into the REGISTRY class need to be converted
from the REGEDIT4 registry export format to the Radia EDR format
required by the Radia client. The Publishing Adapter will perform this
conversion automatically, unless the file has an EDR extension. In this case,
promote.tkd assumes that the file has already been converted to the EDR
format.

The Publishing Adapter will not convert files from the REGEDIT5
registry export format.

UNIX Platforms

Before using the Publishing Adapter in a UNIX environment, it is necessary
to modify the filters all parameter in the configuration file. This
consideration is specific to the configuration file-based publishing method
(promote.cfg).

As you can see below the default values are:

filters all {

type file

class file

exclude "*.log *.bak"

include "*"

distroot {}

}

You will need to change the class parameter from its default of file to
unixfile.

filters all {

type file

class unixfile

exclude "*.log *.bak"

18 Chapter 1

include "*"
distroot {}

}

Make sure that the new class, UNIXFILE, is included in the Radia
Database. If your Configuration Server is version 4.3 or earlier,
contact HP Support in order to get the class definition.

The exclude, include, and distroot parameters should be set to the
values appropriate to the user's requirements.

Introduction 19

Summary

•	 The Publishing Adapter is a command-line driven content publishing
tool.

•	 The Publishing Adapter offers three publishing modes: Configuration
File-Based, Object-Based, and Radia Native Packaging.

•	 The Publishing Adapter requires connectivity to a Radia Database.

20	 Chapter 1

2 Installing the Publishing Adapter

At the end of this chapter, you will:

• Know how to install the Publishing Adapter.

21

The Publishing Adapter is available for Windows and UNIX operating
systems. Depending on your operating system, you will need to use either
setup.exe (for Windows) or install (for UNIX) from the CD media to
install the Publishing Adapter.

Recommendations

Stop any programs that are currently running before installing the
Publishing Adapter.

Installing the Publishing Adapter for Windows

To install the Publishing Adapter for Windows

1	 From the installation media, double-click Setup.exe.

The Welcome window opens.

2	 Click Next.

The HP Software License Terms window opens.

3	 Read the license terms and click Accept.

The Directory Location window opens.

22	 Chapter 2

4	 Type the name of the directory where you would like to install the
Publishing Adapter (default is C:\Novadigm\PublisherAdapter), or
click Browse to navigate to it.

5	 Click Next.

If the directory you specified already exists, the dialog box below appears.

6	 Click OK.

The license file window opens.

Installing the Publishing Adapter 23

7 Enter the location of your license file, or click Browse to navigate to it.

8 Click Next.

The Installation Settings window opens.

24 Chapter 2

9 Click Install.

10 When the installation is complete, click Finish.

You have successfully installed the Publishing Adapter for Windows.

Installing the Publishing Adapter 25

Installing the Publishing Adapter for UNIX

If you are installing the Publishing Adapter on a UNIX system that supports
graphics, the graphical installation will automatically begin after it is
started. For UNIX systems that support graphics, see UNIX Graphical
Installation below. For UNIX systems that do not support graphics, the non-
graphical installation program is automatically started. For UNIX systems
that do not support graphics, see UNIX Non-Graphical Installation on page
29.

If you are installing the Publishing Adapter onto a UNIX system
that supports graphics, but you would like to use the non-graphical
mode instead, change your current directory to the location of the
install program on the CD media and type:

./install –mode text

This will start the non-graphical installation of the Publishing
Adapter. See UNIX Non-Graphical Installation on page 29 for
instructions.

UNIX Graphical Installation

This section guides you through the graphical installation of the Publishing
Adapter.

To install the Publishing Adapter using the graphical interface

1	 Depending on your version of UNIX, change your current working
directory to the correct subdirectory on the installation media.

2	 Type ./install, and then press Enter.

The Welcome window opens.

3	 Click Next.

The HP Software License Terms window opens.

4	 Read the agreement and click Accept.

26	 Chapter 2

The Directory Location window opens.

5	 Type the name of the directory to which you would like to install the
Publishing Adapter (default is /opt/Novadigm/PublisherAdapter), or
click Browse to select a location.

6	 Click Next.

If the directory you specified already exists, the dialog box below appears.

7	 You can specify a new directory by clicking Cancel and returning to the
previous step, or click OK to proceed.

The license file window opens.

Installing the Publishing Adapter 27

8 Enter the location o your license file or click Browse to select the location
manually.

9 Click Next.

The Installation Settings window opens.

28 Chapter 2

10 Click Install.

11 When the installation is complete, click Finish.

You have successfully installed the Publishing Adapter for UNIX.

UNIX Non-Graphical Installation

This section guides you through the non-graphical installation of the
Publishing Adapter for UNIX.

To install the Publishing Adapter using the non-graphical installation

1 Depending on your version of UNIX, change your current working
directory to the correct client subdirectory on the installation media.

2 Type ./install –mode text and then press Enter.

The Publishing Adapter installation begins.

3 Type C, and then press Enter.

Installing the Publishing Adapter 29

4	 Press a key to view the End User License Agreement.

5	 When you are finished viewing the agreement, type Accept and press
Enter.

6	 Accept the default location for the Publishing Adapter (/opt/Novadigm/
PublisherAdapter) by pressing Enter, or specify a different location.

If the directory you specify already exists, you will be prompted to
continue. Alternatively, if the directory does not exist, the installation
program will display the Installation Settings.

7	 Type Y, and then press Enter.

8 Enter the location and name of your license file and press Enter.

9 Press Enter to accept the default (Y) and begin the installation.

If you do not want to begin the installation, type N, and then press Enter.

10 To complete the configured installation process, press Enter.

You have successfully installed the Publishing Adapter for UNIX.

30	 Chapter 2

Summary

•	 The Publishing Adapter is available for Windows and UNIX operating
systems.

•	 Before installing the Publishing Adapter, it is recommended that you stop
any running programs.

Installing the Publishing Adapter 31

32 Chapter 2

3	 Configuration File-Based Publishing
(promote.tkd)

At the end of this chapter, you will:

• Be familiar with Configuration File-Based publishing.

• Understand the command line parameters needed for promote.tkd.

• Understand the promote.cfg parameters.

• Understand how to specify additional attributes.

33

Using Configuration File-Based Publishing

One method available for publishing with the Publishing Adapter is
configuration file-based publishing. This method uses a configuration file
(promote.cfg) that includes your publishing specifications. The publishing
session is then executed from the command line. Command line parameters
are described in Table 2 below, and the configuration file is described in The
PROMOTE Configuration File on page 35.

Execute the command line from the directory where you installed the
Publishing Adapter (default is C:\Novadigm\PublisherAdpater\). The
command line is preceded with nvdkit promote.tkd, files that were
installed during the Publishing Adapter installation and contain the
Novadigm runtime Tcl interpreter and configuration file-based publishing
code respectively.

Example

nvdkit promote.tkd -cfg promote.cfg -user rad_mast -pass
radia

Table 2 Command-Line Parameters for promote.tkd

Parameter

-cfg
filename

-user userid

-pass
password

Description

Specifies the file that contains the configuration options
for this execution of the Publishing Adapter. The file
promote.cfg is provided as a sample configuration file,
and is the default value. This file can be re-named.

You can maintain multiple configuration files to facilitate
a variety of publishing jobs. This parameter is optional. If
no configuration file is specified, promote.cfg in the
current working directory is used.

Radia administrator user ID. The default is RAD_MAST.
This parameter is optional.

Radia administrator password. This parameter is
optional.

34 Chapter 3

Parameter

-phase input

Description

If present and the value is input (not case-sensitive), the
database will be created, but the files will not be
published. This is useful for testing filters, debugging,
and verifying that your selected criteria are producing the
expected results (the results are sent to the log and
displayed on the screen). This parameter is optional.

Note: Any value other than input will be ignored.

The PROMOTE Configuration File

Table 3 below describes the configuration file parameters.

The PROMOTE Configuration File Format

Table 3 PROMOTE Configuration File Format (promote.cfg)

Option Description

Package Defines the PACKAGE class instance name or prefix.
If specified without a trailing asterisk (*), the value is used
as the absolute PACKAGE class instance name.

If specified with a trailing asterisk (*), the value is used as
a prefix to dynamically generate the PACKAGE class
instance name. When used as a prefix, the PACKAGE class
instance name is generated as:

<pkgprfx>YYYYMMDDs

where YYYYMMDD is the current date, and s is a sequence
number used to guarantee uniqueness.

pkgname

pkgdesc

Specifies the friendly name of the PACKAGE class instance
(NAME).

Specifies a description of the PACKAGE class instance
(ZPKGDESC) attribute on the package that gets populated.

Configuration File-Based Publishing 35

Option

service

svcname

svcdesc

addtosvc

compress

Intype

Description

Defines the name of the ZSERVICE class instance that will
be optionally created (or updated) in the Radia Database
during the publishing session. The publishing session will
create a ZSERVICE class instance if one does not exist.

Note: This option will work only if addtosvc=1.

Specifies the friendly name of the ZSERVICE class instance
(NAME). This command is optional.

Specifies a description of the ZSERVICE class instance
(ZSVCNAME) attribute on the service that gets populated.
This command is optional.

Tells the Publishing Adapter whether to update a
ZSERVICE class instance with a connection to the newly
published package.

1 = Add connection to ZSERVICE.

0 = Do not add connection to ZSERVICE.

Note: If set to 1, the service command must have a value
specified.

Tells the Publishing Adapter whether to use compression.

1 = Use compression.

0 = Do not use compression.

Defines the type of the input source. Values are FILE and
SCAN.

FILE - Use when the list of files to be published is
contained in a file.

Note: The insource option must be used if intype=FILE.

SCAN - Use when the list of files to be published is to be
scanned on a drive/file system.

Note: The filescan option must be used if intype=SCAN.

Chapter 3 36

Option

Insource

Configuration File-Based Publishing

Description

Specifies the name of the source file. The specified file
should contain a list of qualified filenames, one per line, to
be published. Additionally, numsplit and distroot can be
specified in the file. These options behave in the same
manner as described in the filescan section of this table.

Note: Relevant only when intype=FILE.

The formats that are accepted for the lines in the file are
presented below:

•	 global distroot <value> - Specifies the distroot
value to be used for the files listed on the lines that
follow it. If not specified, the original location of the
file will be used as the distribution directory.

•	 global numsplit <value> - Specifies the numsplit
position to be used for the files listed on the lines that
follow it. The default value is 1.

•	 <filename> - Specifies the fully qualified name of a
file to be published.

Notes: Filters will still be applied to the files before
publishing. If a file does not match any filters, it will not be
published.

The commands global distroot and global numsplit
can be specified at any point in the insource file. Their
values affect only the lines that follow them, and remain in
effect until the next global command is encountered.
Therefore, group together files by their common distroot
and numsplit values.

In the examples below, note the values of numsplit (3 and
2) and distroot (d:/myapps and d:/place). The
resulting outputs are presented also.

37

Option

mgrdiff

loglvl

logfile

host

path

filescan
{body}

Description

Example A Example B

global numsplit 3
global distroot d:/myapps
d:/temp/src/apps/a.dat
d:/temp/src/apps/test2.tc
l

global numsplit 2
global distroot d:/place
d:/temp/list.pdf
d:/temp/mymk.tcl

Output: Output:

 (distroot) |
(stem)
d:/myapps/apps/a.dat
d:/myapps/apps/test2.tcl

 (distroot) | (stem)
d:/place/list.pdf
d:/place/mymk.tcl

Reserved for future use.

1 = to activate comparison with existing resources for
service.

0 = to turn off.

Defines the log tracing level. A value of 3 will show
informational log messages. A value greater than 3 will
show debugging log messages.

Specifies the name of log file.

Defines the name and port (in URL format) of the host
Radia Configuration Server. For example:
radia://localhost:3464

Defines the Radia Database path to the file and domain to
which the package will be published, for example,
PRIMARY.SOFTWARE.

Specifies the control information for file scanner. The
configuration file sample shows two filescan sections, to
indicate that multiple filescan functions are supported.
However, if you are performing only one filescan
function, you must delete the additional section.

Note: This applies only when intype is set to SCAN.

Each filescan must contain the following options:

dir - Directory to scan.

38 Chapter 3

Option Description

distroot - Optional root directory for distribution to be
used in the creation of PATH class instance. If omitted, the
root is derived by applying the value of numsplit to dir.

numsplit - Ordinal position in which to split file paths into
root and stem (starting with the drive letter on Win32
systems, and the first directory on UNIX platforms). The
root that results from the split will be used in the creation
of PATH class instances, unless distroot is specified. The
resulting stem is used to create the class instances as
specified in the filters.{class} option.

Value Full path Root Stem

0 c:/program
files/my app

empty c:/program
files/my app

1 c:/program
files/my app

c:/ program files/my
app

0 /work/myapp empty /work/myapp

1 /work/myapp /work /myapp

Important Note: We recommend that you specify a
minimum value of 1 on Win32 platforms, because a value of
0 will result in the drive letter being included in the stem,
rather than the root.

depth - Defines how may directory levels the file scanner
will scan, starting with (and including) the directory
specified for dir. A value of -1 is a special case that tells
the file scanner to scan to any depth. Scan depth cases are:

depth result

-1 root directory and all of its subdirectories

0 root directory only

1 root directory and its files

>1 root directory and its files down to the specified
depth

Configuration File-Based Publishing 39

Option

filters
{body}

Description

Filters to use as selection criteria during the scan process.
Multiple filters are supported. Priority of filters is the order
in which they are specified. Therefore, filters for desktop
links should be placed before filters for regular files. Once a
file meets the selection criteria of a filter, the remaining
filters do not evaluate it.

type - Identifies the type of Radia Configuration Server file
being filtered. This value tells the publishing session how to
create the instance in the Radia Database for a given file
that matches the filtering criteria. Accepted values are
FILE, DESKTOP, and REGISTRY.

class - Radia Database class to be used for files selected by
filters. For example: FILE, DESKTOP, and REGISTRY.

Note: Refer to the section, Operating System
Considerations on page 18 for more information.

exclude - Specifies a file to be excluded. Values should be
enclosed in quotes, with multiple values separated by a
space, as in, "*.lnk .exe". This option will accept an
asterisk (*) wildcard.

include – Specifies a file to be included. Values should be
enclosed in quotes, with multiple values separated by a
space, as in, "*.lnk *.exe". This option will accept an
asterisk (*) wildcard.

distroot - Optional root directory (for distribution) to be
used in the creation of PATH class instances for any files
that match this filter.

Note: This setting overrides the distroot value specified
in filescan.

value(s) - Optional ZSTOP expression to be used in
PACKAGE class instance. Multiple expressions are
supported, and should be arranged as one expression per
line.

40 Chapter 3

Option Description

expression The ZSTOP expression to be used in the PACKAGE class
instance. Multiple expressions are supported, but should be
arranged one per line. This parameter is optional.

Note: Although the expression is optional, the variable
expression must be specified in the *.cfg file. Its value
will be set in ZSTOP in the published package.

replacepkg

attr {body}

Replace existing package with new package. This
parameter works only for packages that do not contain a
PACKAGE connection. If the new package promote session
does not complete, the original package remains available
renamed with a leading underscore (_packageName). If
promote session completes successfully, the original
package is deleted.

1 = Replace existing package with new package.

0 = Do not replace existing package. If package exists, the
Publishing Adapter session is aborted.

Additional instance attribute values to be added during the
promote. The instance names and values should be enclosed
in brackets, one per line. Use only valid instance names.

When specifying connection type instances, use an
enumerated instance name, with the exception of the first
instance, for example, ALWAYS connections should be
designated as: _ALWAYS_, _ALWAYS_#2, _ALWAYS_#3.
Alternatively, you can specify a connection as CONN0001.
The enumerated instance names are defined as follows:

METHOD Connections:
METH0001, METH0002, METH0003…

ALWAYS Connections:
CONN0001, CONN0002, CONN0003…

INCLUDES Connections:
INCL0001, INCL0002, INCL0003…

REQUIRES Connections:
REQU0001, REQU0002, REQU0003…

Refer to the section Specifying Additional Attributes on
page 44 for more information.

Configuration File-Based Publishing 41

Sample PROMOTE Configuration File (promote.cfg)

The sample of code below presents a sample promote.cfg including the
standard defaults. Remove the section in bold if doing only one filescan
function.

promote.cfg

Publishing Adapter Default Options

package package instance name or prefix (i.e., foo or foo_*)
pkgname to be used as friendly name of package (NAME)
pkgdesc to be used as description of package (DESCRIPT)
service zservice instance name
svcname to be used as friendly name of service (ZSVCNAME)
svcdesc to be used as a description of the service (NAME)
addtosvc connect package to service
compress 1 to request compression
intype source type for list of resources (FILE/SCAN)
insource file path for input if type is FILE
mgrdiff Reserved for future use.
1 - to activate comparison with existing resources for service
0 – to turn off

package
pkgname
pkgdesc

" "
" "
" "

service " "
svcname " "
svcdesc " "
addtosvc 0

compress
 intype
insource

1
SCAN
" "

mgrdiff 0

loglvl
logfile
host
 path
 replacepkg

3
promote.log
radia://localhost:3464
PRIMARY.SOFTWARE

1

 #

42 Chapter 3

 # File Scanner Control Info
 # depth number of subdirs to traverse (-1 = all)
 # numsplit number of subdirs (includes drive in Win) to use in root
 # distroot distribution root to be used to create path instance

if left blank, root of dir is used

 filescan {
dir {}
distroot {}
numsplit 2
depth -1

}

 filescan {

 dir {}

 distroot {}

 numsplit 1

 depth -1

}

 # Priority of the component classes as receiving bucket is based on filter order

 # Specialized (like desktop) should be put before file class filters

 # Abstract Filters (multi-type)
 # class database class used for files that satisfy this filter
 # expressionexpression strings for ZSTOPs in package instance

 filters lnk {
type desktop
class desktop
exclude " "
include "*.lnk"
distroot {}

}

 filters reg {
type registry
class registry
exclude " "
include "*.reg *.edr"
distroot {}

}

 filters all {
type file
class file
exclude "*.log *.bak"

Configuration File-Based Publishing 43

include "*"
distroot {}

attr {
 ALWAYS_#3 SOFTWARE.ZSERVICE.REDBOX
 NAME Redbox

}

}

 expression {
}

Specifying Additional Attributes

Use the Publishing Adapter attr parameter to automatically create Service,
Package, and Component instances for individual applications via a
publishing session. These additional attribute values can be specified in the
configuration file or directly on the command line as command line
arguments.

When specifying additional attributes, the following rules apply:

•	 The attributes and their values only affect the instances being created or
promoted during that publishing session. For example, if the ZRSCVRFY
attribute and its value for the UNIXFILE class are specified as input to
the publishing session, only instances of the UNIXFILE class created
during that publishing session are affected. No other instances of the
UNIXFILE class or any other class are affected.

•	 The value of the attributes, which may share an identical name with
attributes in other classes, will not be contaminated by the value
specified for a named class. For example, if a Publishing Adapter
execution will create both FILE and UNIXFILE instances in the same
publishing session, it is possible to specify an altered value of the
ZRSCVRFY attribute for UNIXFILE without altering the default value to
be applied to the ZRSCVRFY attribute of the FILE class.

•	 No new attributes will be added to a class using the Publishing Adapter.
If an additional attribute is specified that is not defined in the class

44	 Chapter 3

template, the attribute will not be included with the promote object and a
warning will be issued in the log file (promote.log) as follows:

Warning: Invalid Attribute: XYZ!
Warning: Not defined in class template
Warning: -zservice-attr-XYZ discarded

•	 Attributes defined in the configuration file will overwrite the attributes
inherited from the base instance.

•	 Attributes defined on the command line will overwrite the attributes
defined in the configuration file and the attributes inherited from the
base instance.

•	 The following attributes are generated by the promote process and cannot
be specified in the configuration file or on the command line:

ZRSCDATE

ZRSCTIME

ZRSCSIZE

ZCMPSIZE

ZRSCSIG

SIGTYPE

The following message will be issued to the log if one of these attributes is
specified:

Warning: Restricted Attribute: ZRSCDATE!
Warning: ZRSCDATE is set during promote
Warning: -all-attr-ZRSCDATE discarded

•	 The ZRSCCRC represents a special case. The ZRSCCRC will be
calculated if the additional attribute ZRSCCRC is set to YES. Not
including the additional attribute will leave the ZRSCCRC field blank.

•	 There is no error checking of attribute values specified in the
configuration file or on the command line. If a value specified is too large
for its field or the character type is incorrect, the value will be truncated
and the incorrect character type will be promoted. For example,

Configuration File-Based Publishing 45

specifying a two-character numeric field such as ZOBJPRI with the value
ABCD will result in a value of AB after promotion.

Specifying Additional Attributes in the Configuration File

To specify an additional attribute with its associated value, an attr section
must be added to the appropriate filter section or class section of the
configuration file. Attributes are specified in the filter section for the
components they apply to using a unique filter name. Additional Package,
Service, and Path attributes are specified in a separate attr section.

The sample code below displays an excerpt from a configuration file
containing the all filter with an additional attribute section (attr):

filters all {

type file

 class unixfile

exclude ""

include "*"

 distroot {/xyz/test}

attr {
ZCREATE {PKUNZIP &ZRSCCFIL}
ZPERUID (&(USER)/&(GRP))
}

}

Within each appropriate filter section an attr section is added. The
arguments of the attr section must be included within curly brackets ({ }).
These arguments make up the attribute name and value list for that filter.

The Package, Service, and Path class instances created by the Publishing
Adapter do not have filters associated with them. To specify attributes for
these class instances use the format shown below, with the attributes and
their values specified between the braces.

attr PACKAGE {

RELEASE 3.5.6

}

There is only one attribute and its associated value or value list allowed per
line. If the value of the variable is multiple words the value must be enclosed
in brackets { } or double quotes as in the value {PKUNZIP &ZRSCCFIL}.

46 Chapter 3

Attribute names are not case-sensitive; the values are promoted in the same
case in which they are specified.

If an attribute is specified and it is not part of the PACKAGE, ZSERVICE, or
PATH class or it is not part of a recognized filter, the attribute is deleted and
the following message is written to the log:

Warning: Invalid Filter: abc !
Warning: -abc-attr-ZUSERID discarded

If an attribute specified does not exist in the class template, when this
attribute is processed the attribute is discarded and the log will display:

Warning: Invalid Attribute: NOTGOOD!
Warning: Not defined in class template
Warning: -all-attr-NOTGOOD discarded

There is no limit to the number of additional attributes that can be specified
or the order in which they can be specified.

Specifying Connection Types

INCLUDES, REQUIRES and ALWAYS connections can be specified for all
classes that contain these type of connections. There are two methods of
specifying connection types.

•	 Specifying the explicit connection type with a sequential number
appended such as _ALWAYS_#3.

•	 Specifying the numbered type connection such as CONN0001.

REGISTRY, DESKTOP, FILE, PACKAGE, and ZSERVICE classes contain
INCLUDES, REQUIRES, and ALWAYS connections defined in the default
database. The connection must be specified with the name and the number.

The sample code below, displays an example of specifying connections for the
ZSERVICE instance.

attr zservice {
ALWAYS#3 SOFTWARE.ZSERVICE.REDBOX
ALWAYS#2 SOFTWARE.ZSERVICE.DRAGVIEW

}

Configuration File-Based Publishing 47

The connection takes the slot number specified with one exception. The
ALWAYS connection of the ZSERVICE class is reserved for use by the
package instance created by the Publishing Adapter session. If this
connection is specified on the command line or in the configuration file, the
value specified in the configuration file or on the command line will overwrite
the package connection created from the promote process.

The formats for specifying additional attributes using connection types are as
follows:

•	 Method Connections:
METH0001, METH0002, METH0003

•	 Always Connections:
CONN0001, CONN0002, CONN0003

•	 Includes Connections:
INCL0001, INCL0002, INCL0003

•	 Requires Connections:
REQU0001, REQU0002, REQU0003

The following is an excerpt of the configuration file with the connection type
attributes specified.

filters all {
 type file
 class file
 exclude "*.log *.bak"
 include "*"
 distroot {}
 attr {

meth0001 notepad
 CONN0003 test123

}
}

A table is printed in the promote.log that shows:

•	 All attributes in the class.

•	 The connection type (V=variable, M=method, C=class, I=includes,
R=requires).

•	 The connection type name.

48	 Chapter 3

• The value inherited from the base instance.

• The value set for the Publishing Adapter promote.

The following is an excerpt of the table presented in the log file.

Info: --
Info: filter = all classname = FILE
Info:
Info: Name Type Connection BaseInst RPA
Info: --
Info: ZOBJDATE V 20010910
Info: ZOBJTIME V 17:04:57
Info: ZOBJID V D0010BE54B1E
Info: ZRSCMO V M O
Info: ZINIT M METH0001 notepad
Info: _ALWAYS_#3 C CONN0003 test123

If the same attribute is set using an explicit connection (for example, ZINIT
= {pzunzip &zrsccfil}) and a connection type connection (for example,
meth0001 = notepad.exe), the following error is generated and the
Publishing Adapter session is halted.

Error:!!!Conflict of Additional Attributes
Error: Specify either Explicit or Connection type for
Attribute
Error: Explicit type: -all-attr-ZINIT = pzunzip &zrsccfil
Error: Connection type: -all-attr-METH0001 = notepad.exe

Specifying Additional Attributes on the Command Line

With this enhancement the use of a configuration file is no longer a
required configuration argument.

Additional attributes can also be specified directly on the command line.
Attributes added using the command line take the following format:

-(filter name)-attr-(variable name) value

or

-(class name)-attr-(variable name) value

Configuration File-Based Publishing 49

Example

-all-attr-zinit "PKUNZIP &ZRSCCFIL"
-package-attr-release 1.2.3

Therefore an example of a Publishing Adapter command line with additional
attributes specified would be as follows:

nvdkit promote.tkd cfg promote.cfg -all-attr-zinit "PKUNZIP
&ZRSCCFIL"

Additional attribute command line arguments are specified in lowercase with
the exception of the attribute values. The attribute values will retain the case
they were specified in when promoted. If the value of the attribute contains
multiple words, the value should be surrounded by double quotes as in the
example above.

The filter name, attr keyword, and variable name must be separated by
hyphens.

If the second element of the string is not attr, a warning is issued to the
promote.log:

Warning: Problem command line attribute !
Warning: -zservice-axxt-zinit discarded

If the configuration file is specified and the .cfg file exists, no new
configuration file is unpacked. If the configuration file doesn't exist, a blank
configuration file is unpacked with the name specified for the .cfg file. If no
.cfg file is specified, the default name of promote.cfg is used for the blank
configuration file that is unpacked.

When the promote.tkd is run, a sample .cfg file is unpacked.

Filters and Filescans

To specify filters and filescan configuration on the command line use the
following formats.

50 Chapter 3

Filescans

Only one filescan can be specified on the command line. If additional filescans
are needed they must be specified in the configuration file. The command line
options for filescan are:

-fs-dir

-fs- distroot {}

-fs- numsplit 1

-fs- depth -1

Filters

To specify a filter on the command line use the following argument format:

-filters <filtername>
-<filtername>-type value
-<filtername>-class value
-<filtername>-exclude value
-<filtername>-include value

The filters argument must be used to specify the unique name of the filter.
There can be multiple filters entries each specifying a unique filter name.
Multiple filters can be defined on the command line.

Command line example:

nvdkit promote.tkd -filters testrpa -testrpa-type file
testrpa-class file -testrpa-exclude "" -testrpa-include "*"

The filter executed on the command line above is displayed in the
promote.log excerpt below:

20020918 11:42:05 Info: Filter[testrpa]:
20020918 11:42:05 Info: filtername = testrpa
20020918 11:42:05 Info: type = file
20020918 11:42:05 Info: class = file
20020918 11:42:05 Info: include = *
20020918 11:42:05 Info: exclude = {}

There is no limit to the number of additional attributes that can be specified
or the order in which they can be specified. The same rules that apply to the

Configuration File-Based Publishing 51

configuration file for valid attributes also apply to the command line
attributes.

Specifying attributes on the command line, the attribute must be in a
recognized filter or in the zservice, package or path class. If not, the following
message is written to the log:

Warning: Invalid Filter: abc !
Warning: -abc-attr-ZUSERID discarded

If a package name is not specified on the command line, the default package
name of rpadefault* is used.

Radia Automated Publishing Interface

package - package instance name or prefix (i.e. foo or foo_*)
pkgname - to be used as friendly name of package (NAME)
pkgdesc - to be used as description of package (DESCRIPT)
service - zservice instance name
svcname - to be used as friendly name of the service (ZSVCNAME)
svcdesc - to be used as a description of the service (NAME)
addtosvc - connect package to service
compress - 1 to request compression
intype - source type for list of resources (FILE/SCAN)
insource - file path for input if type is FILE
mgrdiff - 1 to activate comparison with existing resources for service - not

implemented

 package "attr_test"
 pkgname "attr_test"
 pkgdesc "attr_test"

 service "attr_test"

 svcname "attr_test"

 svcdesc "attr_test"

 addtosvc 1

 compress 1

 intype SCAN

 insource ""

 mgrdiff 0

 loglvl 3

 logfile promote.log

 host radia://localhost:3464

52 Chapter 3

 path PRIMARY.SOFTWARE

File Scanner Control Info
depth - number of subdirs to traverse (-1 = all)
numsplit - number of subdirs (includes drive in win) to use in root
distroot - distribution root to be used to create path instance
if left blank, root of dir is used
#
 filescan {

dir {c:/attr/test}

distroot {}

numsplit 2

depth 2

}

Priority of the component classes as receiving bucket is based on

filter order

Specialized (like desktop) should be put before file class filters

 #

Abstract Filters (multi-type)

class - database class used for files that satisfy this filter

expression - expression strings for ZSTOPs in package instance

filters reg {
type registry
class registry
exclude ""
include "*.reg *.edr"
distroot {}

}

filters lnk {
type desktop
class desktop
exclude ""
include "*.lnk"
distroot {}
attr {
MACHUSER TESTUSER
ZCREATE {PKUNZIP &ZRSCCFIL}
}

}
filters all {

type file
class file
exclude ""
include "*"
distroot {/john/test}
attr {

Configuration File-Based Publishing 53

 ZCREATE TESTSTART
 ZDELETE TESTOVER

 }
}

 expression {

}

attr package {
releASE 3.5.6
wrong thisiswrong
includes SOFTWARE.PACKAGE.ADAPT
includes#2 SOFTWARE.PACKAGE.RAPILINK

}
 attr zservice {

ZSVCMO m
URL {WWW.NOVADIGM.COM}
ALWAYS#3 SOFTWARE.ZSERVICE.REDBOX
ALWAYS#2 SOFTWARE.ZSERVICE.DRAGVIEW
}

attr path {

 zrscmo O

}

54 Chapter 3

Summary

• Execute configuration file-based publishing from the command line.

• Edit promote.cfg to include your required publishing parameters.

• Use the attr parameter to specify additional attributes.

Configuration File-Based Publishing 55

56 Chapter 3

4	 Object-Based Publishing
(SCMAdapt.tkd)

At the end of this chapter, you will:

• Be familiar with Object-Based publishing.

• Understand SCMAdapt.tkd command line parameters.

• Understand the SCMAdapt.cfg parameters.

57

Using Object-Based Publishing

Object-based publishing is accomplished through the use of SCMAdapt.tkd, a
file included with your installation of the Publishing Adapter. Using
SCMAdapt.tkd, the Publishing Adapter takes the input or output objects
from one of the Novadigm legacy Source Control Management adapters
(EDMPVCS or EDMATRIA), and publishes the specified files to Radia. This
is done using command line arguments. Command line parameters are
described in Table 4 below and the configuration file parameters are
described in The SCMADAPT Configuration File on page 63.

Execute SCMAdapt.tkd on a command line from the directory where you
installed the Publishing Adapter (default is
C:\Novadigm\PublisherAdapter). Once executed, SCMADapt.tkd uses the
supplied arguments to determine the location of the objects and configuration
file for the publishing session.

Example

nvdkit scmadapt.tkd -objdir <Object Directory> -cfg
<scmadapt.cfg>-user <userid> -pass <password> -phase input

Table 4 Command-Line Parameters for scmadapt.tkd

Parameter

-objdir
object
directory

-cfg
filename

-user userid

Description

If a valid set of objects is not found, SCMAdapt will
terminate. This parameter is required.

Specifies the file that contains the configuration options
for this execution of the Publishing Adapter. This
parameter is optional. If not present, the scmadapt.cfg
file in the current working directory will be used. If
scmadapt.cfg is not found, SCMAdapt will terminate.
This file can be re-named. You can maintain multiple
configuration files to facilitate a variety of publishing
jobs. This parameter is required. See Table 4.3 for a
description of the configuration file parameters.

Radia administrator user ID. The default is RAD_MAST.
This parameter is optional.

58 Chapter 4

Parameter

-pass
password

Radia administrator password. The default is " " (no
password). This parameter is optional.

-phase input Optional parameter. If present and the value is input
(not case-sensitive), the database will be created, but the
files will not be published. This is useful for testing
filters, debugging, and verifying that your selected
criteria are producing the expected results (the results
are sent to the log and displayed on the screen).

Note: Any value other than input will be ignored.

Description

Input Objects

SCMAdapt requires an input of two objects, ZPROMDFT, and one of the
others as detailed below. All of these objects are from a Novadigm legacy
SCM Adapter.

•	 ZPROMDFT Object

default values for the adapter.

and

•	 ZINPUT Object
input to the adapter. (Use the Radia Screen Painter or the Radia Client
Explore to build input to SCMAdapt.)

or

•	 ZPROMDFT Object

default values for the adapter.

and

•	 ZPROMOTE Object
output of the adapter (output from a Novadigm legacy SCM Adapter).

If the secondary input object is ZINPUT, no SCM access is done.
Only the file or application defined in the heap will be published.

Object-Based Publishing 59

ZPROMDFT Variables

Table 5 below shows the variables of the ZPROMDFT object. Although all the
variables listed might appear in a Novadigm legacy SCM adapter object,
those marked N/A are not used by the Publishing Adapter. Using an object
editor (such as the Radia Client Explorer), open the ZPROMDFT object to
ensure that the required variables are present.

Table 5 ZPROMDFT Variables

Variable

UNIQUE

ZADMCLAS

ZADMDOMN

ZADMFILE

ZADMIPRE

ZADMMLOC

ZAPPNAME

ZCOMPRESS

ZEXETYPE

ZPACKAGE

ZPKGDESC

ZPKGNAME

ZPROMDIR

ZPROMOTE

Description

N/A

 N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

The instance name of the package. This variable is
required.

If this variable is suffixed with "*", the value will be used
as a prefix. The instance names will contain this prefix,
followed by the date and a sequence number.

A description of the package. This variable is required.

The friendly name of the package. This variable is
required.

N/A

N/A

60 Chapter 4

Variable

ZSERVICE

ZSVCCNCT

ZSVCNAME

ZTRACEL

ZVLBLTYP

ZSERVICE

ZSVCCNCT

ZSVCNAME

ZTRACEL

ZVLBLTYP

Description

Contains the instance name of the service to which the
published package should be attached.

Note: If the instance name does not conform to instance
naming rules, an error will be generated.

Defines whether a service is to be connected.

If Y, attach (connect) the package to the service. This
requires that ZSERVICE and ZSVCNAME be present for
the service to be connected.

If N, do not attach the package to the service.

The friendly name of the service.

This variable must exist if ZSERVICE exists.

N/A

N/A

Contains the instance name of the service to which the
published package should be attached.

Note: If the instance name does not conform to instance
naming rules, an error will be generated.

Defines whether a service is to be connected.

If Y, attach (connect) the package to the service. This
requires that ZSERVICE and ZSVCNAME be present for
the service to be connected.

If N, do not attach the package to the service.

The friendly name of the service.

This variable must exist if ZSERVICE exists.

N/A

N/A

Object-Based Publishing 61

ZSERVICE, ZSVCNAME and ZSVCCNCT are not required
variables.

However, they all must be present in order for a package to be
connected to a service. If either of these variables is missing, a
notice is sent to the log and the console, and the package will be
created and the resources published, but the package will not be
connected to a service.

ZINPUT Variables

These variables have to be added to the ZINPUT object:

• ZSPLIT
The position in the ZPRPCFIL value where to split the file name into a
root and a stem.

The value of the root becomes the PATH instance value, and the FILE
instance value adopts the value of the stem. For example:

ZPRPCFIL: F:\intstage\s054ptest\test\bin\TESTING.TXT
ZSPLIT: 2

The root is: F:\intstage\.

The stem is: s054ptest\test\bin\TESTING.TXT

A PATH instance is created with a value of:
F:\intstage\.

A FILE instance is created with a value of:
s054ptest\test\bin\TESTING.TXT.

• ZDSTROOT
The deployment location. This variable is equivalent to ZLOCCLNT in
EDM.

If present, the PATH instance will be set to this value.

If not present, the PATH instance will be set to the root directory of the
promoted resource (for example, &(ZRSCCDRV)&(ZRSCCDIR)).

62 Chapter 4

The ZDSTROOT value will be retrieved from the ZINPUT object, if it is
present.

If ZDSTROOT is not specified, the path from where the resource was
published will be assumed.

• ZCLASS
This variable identifies the file type specified in the heap. The acceptable
values are FILE, DESKTOP, and REGISTRY. The default is FILE.

If ZCLASS is not present, a message indicating that the variable is being
defaulted will be printed in the log and on the console.

ZCLASS is only honored on ZINPUT heaps that specify a file,
not an application (such as, when ZAPPLIC=N).

• ZAPPLIC
The flag that states whether the ZINPUT heap is an application.

If Y, ZPRPCFIL will be the base directory (root) from where to start the
file scan, and all its files and subdirectories will be published.

If N, ZPRPCFIL will be the file to be published.

The SCMADAPT Configuration File

The following two sections present detailed information on the SCMADAPT
configuration file. The first section, The SCMADAPT Configuration File,
presents a table in the format of the configuration file. The second section,
The SCMADAPT Configuration File Sample, presents a sample
scmadapt.cfg, showing the standard defaults.

Object-Based Publishing 63

The SCMADAPT Configuration File

Table 6 The SCMADAPT Configuration File Parameters

Option Description

compress Tells the Publishing Adapter whether to use compression.

1 = Use compression.

0 = Do not use compression.

intype

mgrdiff

loglvl

logfile

host

path

fileclass

expression

Defines the type of the input source. OBJ is the only valid
value.

Reserved for future use.

1 = to activate comparison with existing resources for service.

0 = to turn off.

Defines the log tracing level. A value of 3 will show
informational log messages. A value greater than 3 will show
debugging log messages.

Specifies the name of log file.

Defines the name and port (in URL format) of the host Radia
Configuration Server, for example,
radia://localhost:3464.

Defines the Radia Database path to the file and domain to
which the package will be published, for example,
PRIMARY.SOFTWARE.

Sets the file class name. This command is specific to
SCMAdapt, and will override the defaults of FILE (Win32)
and UNIXFILE (UNIX).

The ZSTOP expression to be used in the PACKAGE class
instance. Multiple expressions are supported, but should be
arranged one per line. This parameter is optional.

Although the expression is optional, the variable expression
must be specified in the *.cfg file. Its value will be set in
ZSTOP in the published package.

64 Chapter 4

The SCMADAPT Configuration File Sample (scmadapt.cfg)

It should not be necessary to modify the default configuration file (except for
the host value) unless the name of the fileclass is to be changed. The
following table presents the commands of the Configuration File, as well as a
description with guidelines for specifying.

A sample configuration file is shown below:

scmadapt.cfg
Publishing Adapter Default Options

compress 1 to request compression
intype source type for list of resources (OBJ)
insource This field must be present, but must not be
specified
mgrdiff Reserved for future use.

 1 - to activate comparison with existing resources
for service

 0 – to turn off
fileclass File class name - defaults to FILE in Win
Platforms
defaults to UNIXFILE on UNIX
platforms
 compress 1

intype OBJ

 insource " "

 mgrdiff 0

loglvl 3

 logfile SCMAdapt.log

host radia://localhost:3464

path PRIMARY.SOFTWARE

 fileclass " "

 expression {

}

Object-Based Publishing 65

Summary

• Execute object-based publishing from the command line.

• Edit SCMAdapt.cfg to include your required publishing parameters.

66 Chapter 4

5 Radia Native Packaging

At the end of this chapter, you will:

• Be familiar with Radia Native Packaging.

• Understand Radia Native Packaging system requirements.

• Understand the Radia Native Packaging command-line interface.

• Know how to publish using Radia Native Packaging.

67

What is Radia Native Packaging?

Version 3.1.2 of the Publishing Adapter supports HP-UX native
packaging only.

Radia Native Packaging is a feature of the Publishing Adapter specifically
designed for UNIX environments. Radia Native Packaging is a command-line
driven content-publishing tool supporting native HP-UX software; it is
neither a graphical publishing tool nor a mainstream publisher tool. Radia
Native Packaging is installed during the regular installation of the
Publishing Adapter on a UNIX system.

Radia Native Packaging explores UNIX native software depots, searches for
available native packages and publishes wrapped native packages to the
Radia Configuration Server. Radia Native Packaging will publish all
necessary information that will allow you immediate installation of native
software to end clients.

Additionally, Radia Native Packaging publishes information about native
package dependencies and will optionally include them with a published
package.

Why use Radia Native Packaging?

Radia Native Packaging supports HP-UX (SD) software package formats.
With the use of Radia Native Packaging you can easily publish wrapped
native UNIX software, updates, and patches without any need for re­
packaging. Wrapped UNIX native software enables policy-based centralized
software management of your UNIX clients.

This document assumes that the system administrator using the Radia
Native Packager possesses packaging/publishing knowledge for a Radia
infrastructure database.

68 Chapter 5

Overview

Radia Native Packaging creates the standard instances of ZSERVICE,
PACKAGE, and PATH in the SOFTWARE domain of the Radia Database.
Radia Native Packaging creates instances of SD classes for each published
wrapped native package depending on the operating system (HP-UX).

For each native software package selected, Radia Native Packaging will
create an instance of SD class. This instance holds actual content (software
depot) and native method calls that will do actual install/removal/update on
the client. Additionally it will create an instance of the PACKAGE class that
will contain the newly created SD instance and an instance of ZSERVICE
class that contains the new PACKAGE instance.

Publish native packages from the specific UNIX platform to which
you will be deploying. For example, you can't use Radia Native
Packaging on HP to promote Solaris SVR4 packages and or Solaris
Patches – Radia Native Packaging would be unable to use the
native UNIX utilities to interrogate details of the package.

Radia Native Packaging System Requirements

Radia Native Packaging is available for the HP-UX operating systems. It has
these system requirements:

• Root permissions are required to use Radia Native Packaging.

• Network connectivity to the Radia Configuration Server.

• Space on /tmp file system for temporary depot files used for publishing.

Response files are not supported for HP-UX SD native software
packages.

Radia Native Packaging 69

Required Classes

Radia Native Packaging requires specific classes for each operating system.
Make sure your Radia Database includes these SOFTWARE domain classes
before using Radia Native Packaging.

Table 7 Required SOFTWARE Domain Classes

Operating Class
System

HP-UX SD Packages (SD)

SD Product Bundles (SD)

Radia Native Packaging and the Radia Client

During the installation of the Radia Client, a Tcl script is installed into the
IDMSYS directory along with the Radia Client components. This script is
required for deployment of packages published using Radia Native
Packaging. The actual Tcl script installed depends on your UNIX operating
system. The scripts (sd.tcl for HP-UX) contain native command calls to
deploy the software.

A common helper Tcl script method_utils.tcl is also installed with the
Radia client, on all platforms where Radia Native Packaging is supported.

Radia client version 4.2i or higher is required to deploy packages
published to the database using Radia Native Packaging. Contact
your HP sales representative for more information.

Supported Native Package Types

Table 8 on page 71 lists the native package types supported by Radia Native
Packaging and their expected formats.

70 Chapter 5

Table 8 Native Package and Supported Formats

Native Package Supported Format

HP-UX SD Product File system format (extracted to disk,
the software depot contains
subdirectories reflecting the SD
Product tag as well as the SD depot
catalog).

HP-UX SD Product/Patch Bundle File system format (extracted to disk,
the software depot contains sub­
directories reflecting the SD Product
tag as well as the SD depot catalog).

Radia Native Packaging Command-Line Interface

Radia Native Packaging is run from the command line. The base input
parameter for Radia Native Packaging is the source depot containing HP-UX
software. The native packages must be in a disk depot format (the native
software packages are resident on disk in a format which can be immediately
utilized by the native operating system’s software management tools). Radia
Native Packaging is capable of publishing one or more packages in a single
publishing session.

In addition, you can specify the selection of the software you want to publish,
and in the event Radia Database user verification is enabled, an optional
user ID and password can be designated. Here's an example of command line
usage for Radia Native Packaging:

Usage: rnp -d depot_path -m manager_ip:manager_port
 [-v] [-debug type] [-tmp dir]
 [-user user_id] [-pass password]
 [-domain domain] [-l logfile] [-help]

 [-i] [-coreq] [-I] [-M] [-S]
 [-a | -A type | -p

package1[,r=revision][,a=arch][,v=vendor]
-p

package2[,r=revision][,a=arch][,v=vendor]...]
 [-P] [-r] [-f prefix]
 [-s] [-t svc_type] [-c flag]

The table below contains the description of the command line arguments for
Radia Native Packaging.

Radia Native Packaging 71

Table 9 Command-Line Parameters

Parameter

-a

-A type

-c flag

-coreq

-d depot
path

Description

Specifies to publish all native software available in the

depot. This parameter is optional. You cannot use this

parameter together with –p.

Select and publish all packages of specific type.

type can also be one of the following:

help or

for a list of valid types for the running platform.

all
to select all package types. This option would then
behave like the –a option.

none
to select none of the package types. This would then
behave like having neither the –a or –A options specified.

Multiple package types can be specified and separated by
commas.

This parameter is optional.

This option enables or disables compression on all
packages to be published.

flag can be one of the following:

• yes
Enable compression for all packages

• no
Disables compression for all packages

Default behavior is dependent on each package type
being published.

This parameter is optional.

Includes co-requisite (on HP-UX) packages promoted into
a “mini-depot”.

Specifies the path to the depot directory containing SD
native software Packages. Software contained in this
depot, will serve as an input to Radia Native Packaging.
This parameter is required.

72 Chapter 5

Parameter

-debug type

-domain
domain

-f prefix

-help

-i

-I

Description

Specify the level of debugging desired.

type can be one of the following:

init for initialization data

func for detailed function debugging

trace for function tracing

cmd for native command executions

pub for publishing information

rapi for RAPI details

all for all the above

none to disable debugging

Multiple types can be specified and separated by
commas.

The default behavior is that debugging is disabled. This
parameter is optional.

Specify which Configuration Server domain the packages
are to be published to.

The default domain used is PRIMARY.SOFTWARE. This
parameter is optional.

Instructs Radia Native Packaging to prefix the package
class and service class instance names used for the new
published package with this prefix. This parameter is
optional.

Display help on the command-line usage and the
rnp.cfg configuration file format.

Instructs Radia Native Packaging to include prerequisite
software package with the package you have selected if
prerequisite software is present in the source depot.
Dependency information is published regardless of this
parameter. This parameter is optional.

Interactive mode. Allows user to select additionally
required packages (dependency). Ignored if neither –i nor
–coreq are present or no additional package is required.

Radia Native Packaging 73

Parameter

-l logfile

-m ip:port

-M

-p package
[,r=revision]

[,a=arch]

[,v=vendor]

-P

-pass
password

-r

Description

Instructs Radia Native Packaging to store the log details
in the logfile specified. If this option is omitted, the
default log file created is publish.log. This parameter
is optional.

Specifies the host name or IP address and port of the
Radia Configuration Server to which you intend to
publish software. This parameter is required.

Multiple. If –i or –coreq is present (so additional
packages are required), and there are several versions of
an additional package, then all of them will be displayed
in the additional packages menu. Otherwise, only one
version of each additional package will be displayed
(default). It is ignored if –I is not present.

Specifies a software package to publish to the
Configuration Server. Specify the following:

an SD product software selection on HP-UX (software
selection with optional revision, architecture and vendor.
Specifying the software selection alone will work, but if
there are multiple products with the same identifier,
they will all be published). This parameter is optional.

You can specify multiple –p package parameters for
multiple package selections. On HP-UX the following
parameters can be used to define more specific package
selection:

r = Revision number of software being published
a = Architecture
v = Operating System Vendor

Note: If a package is not specified on the command line,
you will be presented with a list of all available packages
within the specified depot.

Not applicable

Radia administrator password. This parameter is
optional.

Not applicable

74 Chapter 5

Parameter

-s

-S

-t svc_type

-tmp dir

-user user ID

-v

Description

Instructs Radia Native Packaging to skip the creation of
services for the packages to be published.

Strict mode. If any requirements for a package are not
met (for example, if –i or –coreq option are present and
not all additionally required packages are in the depot),
the package will not be promoted. It is ignored if –I
option is present.

Use this option to specify the type of service to create.
Available values:

M for Mandatory

O for Optional

Default Service type created is M. This parameter is
ignored when the -s option is specified.

Specify an alternative temporary directory to use when
creating packages.

The default value is /tmp. This parameter is useful when
/tmp on the machine where publishing is performed has
limited available disk space. This parameter is optional.

Radia administrator user ID. The default is RAD_MAST.
This parameter is optional.

Displays the version and build number of the Radia
Native Packager rnp command. This parameter is
optional.

When no packages are specified with the –p option or by selecting
all packages with the –a or –A options, the Radia Native Packaging
command will present a text based menu of native packages found
in the depot directory specified. You can then select individual or all
packages from the menu to be published.

Radia Native Packaging Options File (rnp.cfg)

If you usually use the same source depot or publish to the same Radia
Configuration Server you can create a file, rnp.cfg, in the same directory

Radia Native Packaging 75

where you have the Radia Native Packaging components installed. Use of
this configuration file provides a means to preset default option values in the
following format:

parameter=value

Example:

depot=<depot path>

manager_ip=<Radia configuration server IP or hostname>

manager_port=<port number that the Radia configuration

server uses>

By default, rnp.cfg is not supplied.

Table 10 Supported rnp.cfg Settings and Default Values

Setting Expected Values Default Value

depot Fully qualified path to the depot
directory

None

manager_ip IP address or hostname of the
Configuration Server

None

manager_port Port number of the Radia
Configuration Server

manager_port=3464

create_service create_service=[yes/no]

A value of yes will create a
ZSERVICE instance for each of
the promoted packages. A value
of no will not automatically
create a ZSERVICE instance for
each of the promoted packages

create_service=yes

service_type service_type=[M/O]

A value of M will cause the
promoted ZSERVICE instance to
be set as a mandatory service.

A value of O will cause the
promoted ZSERVICE instance to
be set as an optional service.

service_type=M

76 Chapter 5

Setting Expected Values Default Value

select_patches select_patches=[yes/no]

A value of yes shall set the
default publishing behavior on
Solaris to be for the publishing of
patches.

select_patches=no

include_responses

include_dependencie
s

include_responses=[yes/no]

include_dependencies=[yes/n
o]

A value of yes will attempt to
publish SD dependent packages
if they are in the specified depot.

A value of no will not attempt to
publish SD dependent packages.

include_responses=no

include_dependencies=n
o

include_corequisite
s

include_corequisites=[yes/n
o]

A value of yes will attempt to
publish SD dependent packages
if they are in the specified depot.

A value of no will not attempt to
publish SD dependent packages.

include_corequisites=n
o

select_types select_types=[type1,type2,…]

Publish all packages of specific
type(s) found in the depot
directory.

Run rnp with the –A help option
to get a complete list of
supported types for the running
platform.

select_types=none

debug debug=[type1,type2,…]

List specific types of debugging
to enable.

valid types are: init, func, trace,
cmd, pub, rapi, all or none.

debug=none

Radia Native Packaging 77

Setting Expected Values Default Value

temp_dir temp_dir=[dir]

Specify an alternate temporary
directory to use for creating the
packages to publish.

temp_dir=/tmp

user user=userid

Administrator ID used for
authentication with the Radia
Configuration Server.

User=RAD_MAST

domain domain=FILE.DOMAIN

Specify the target
FILE.DOMAIN in the RCS
database where to publish the
packages.

domain=PRIMARY.SOFT
WARE

compress compress=[yes/no]

Enable or disable compression
for all packages to be published.
The default behavior is that
compression depends on the
package type being published.

Package Dependent

password password=pass

Administrator password, used for
authentication with the Radia
Configuration Server.

Blank

interactive interactive=[yes/no]

Publish using interactive mode.
Interactive mode allows you to
choose whether or not to include
required packages.

interactive=no

strict strict=[yes/no]

Publish using strict mode. Strict
mode will not publish packages
missing required components.

strict=no

78 Chapter 5

Setting Expected Values Default Value

multiple multiple=[yes/no] multiple=no

Display multiple versions of
additional required packages,

Publishing with Radia Native Packaging

Examples

See Table 9 on page 72 for an explanation of the Radia Native Packager
command-line parameters.

To publish SD product SD_PROD from default depot on HP-UX

1	 Change your current working directory to the Publishing Adapter
directory (default /opt/Novadigm/PublisherAdapter/).

2	 On the command line, type:

./rnp -user rad_mast -pass radia –d /var/spool/sw –p
SD_PROD,r=1.0,v=HP

If a package is not supplied on the command line via the –p
parameter, you will be presented with a list of all available
packages within the specified depot.

Publishing with Interactive Mode

Specifying the parameter–I on the command line invokes the Radia Native
Packager’s interactive mode. This allows you to select which of the available
required software you would like to include with your current package.
Additionally, you will see which required prerequisite software is not
available in the current depot.

The interactive mode option is ignored if neither the –I nor –coreq or -i
parameters are specified on the command-line (indicating prerequisite

Radia Native Packaging 79

software is required for the current package). Here's an example of
Interactive Mode:

Processing additional software required for dev-2.7.18-3.i386.rpm
Following required prereqs are not found in software depot
and cannot be included in to promote package:

mktemp
textutils

Following additionally required software is found in software depot
and selected to be included in to promote package:

1. prereqs: - shadow-utils-19990827-8.i386.rpm – included
2. prereqs: - grep-2.4-3.i386.rpm – included
3. prereqs: - sed-3.02-6.i386.rpm – included
4. prereqs: - fileutils-4.0-21.i386.rpm - included

Please toggle the selection:
select (a)ll; (d)eselect all; (c)ontinue; (s)kip current package; (q)uit entire session:

You can choose to exclude any of the required software by entering the
corresponding number. A message at the end of each line (included or not
included) lets you know whether or not the required software will be included
with the current package.

•	 Enter the number of the required software or type another option
available in the interactive mode menu and press Enter to continue the
native packaging process.

Table 11 Interactive Mode Selections

Selection

a

c

d

q

s

Description

Selects all available required software to include with the
current package. Available required software is included by
default. (Set all available required software to included)

Continue the native packaging process.

Deselects all included software. (Set all available required
software to not included)

Quit the Radia Native Packaging process.

Skip the current package.

80	 Chapter 5

Wrapped Native Packages

The following section lists all Radia Database class instances and their
attributes that are created when you publish native UNIX software with
Radia Native Packaging.

Radia Native Packaging utilizes a method harness to invoke client
methods, therefore when a package is published to the Radia Database,
populated method attributes such as ZCREATE, ZDELETE, ZUPDATE,
ZVERIFY, and ZREPAIR will contain the text "hide nvdkit method".

The supplied client methods are designed to invoke the native software
management utilities, therefore, the methods are not interchangeable
between client platforms. For example: The file sd.tcl supplied with HP-UX
Radia clients invokes native HP-UX package management utilities and
therefore the successful execution of this method on an operating system
other than HP-UX is not possible.

When publishing native Unix packages using the Radia Native Publisher, the
software packages are published to the Radia Database (in compressed
format) specifically to the class SD. The depot containing native software in
compressed format is promoted to SD class (class is similar to UNIXFILE
class). The tables below list the modified attributes:

Table 12 SD Class Instance Attributes Modified

Attribute

ZRSCNAME

ZRSCCFIL

AUTOBOOT

Description

Specifies a string that is used by native methods to identify
software contained in the published depot. This is the
complete software spec on HP-UX (tag, version, architecture
and vendor).

Specifies the path to the file that is included in this
instance. This file contains the native packaged software.

This Boolean variable is set to Y in case the wrapped SD
software contains a reboot file set.

Radia Native Packaging 81

Attribute

ZCREATE

ZDELETE

ZUPDATE

ZVERIFY

ZREPAIR

ADDDEPS

PREREQ

COREQ

Description

Uses method "Harness" call. The Radia client method sd.tcl
script contains a native command call to install the software
package:

hide nvdkit method

Note: If all the file systems listed in /etc/fstab are not
mounted, ZCREATE (swinstall) will fail. This default
behavior assures that later installations will work correctly.

Uses method "Harness" call. The Radia client method sd.tcl
script contains a native command call to remove the
software package:

hide nvdkit method

Note: When a native software application is removed, the
application files are deleted, but the directory structure will
remain.

Uses method "Harness" call. The Radia client method sd.tcl
script contains a native command call to update the
software package:

hide nvdkit method

Uses method "Harness" call. The Radia client method sd.tcl
script contains a native command call to verify the installed
software package:

hide nvdkit method

Uses method "Harness" call. The Radia client method sd.tcl
script contains a native command call to repair the installed
software package(reinstall):

hide nvdkit method

Auto-select dependencies. Set to N by default.

Software spec of prerequisite SD product. Note that SD's
dependencies are on the fileset level. Since Radia Native
Packaging wraps SD products, dependencies are elevated to
product level. Informational attribute only.

Software spec of corequisite SD product. Informational
attribute only.

82 Chapter 5

Attribute

EXREQ

CONTENTS

INSTOPTS

Description

Software spec of exrequisite SD product. Informational
attribute only.

Required Packages Included in Tar.

Note: If the promoted package is a bundle, CONTENTS will
contain the value BUNDLE, and the attributes PREREQ,
COREQ and EXREQ will contain no value.

 Package installation options.

(For example, -xenforce_dependencies=true

-xallow_downdate=true)

An instance of PACKAGE class is created that contains the instance of SD
class. Table 13 below describes how Radia Native Packaging maps native
package information into PACKAGE class attributes.

Table 13 PACKAGE Class Attributes

Attribute

Instance
Name

RELEASE

NAME

DESCRIPT

ZSTOP000

ZSTOP001

FILE

Description

On HP-UX Radia Native Packaging will take SD product
tag, prefix SD_ and append a date and sequence number to
guarantee uniqueness (SD_<tag>_yyyymmddn).

Note: When instance names generated are longer than 32
characters, the package/patch names parts of the instance
names shall be truncated.

SD revision version native attributes are mapped into
RELEASE.

On HP-UX, NAME is composed from SD_ and SD product's
software spec (SD_<software_spec>).

SD's title is mapped into DESCRIPT.

Contains an expression that contains target operating
system information.

On HP-UX possibly contains SD products target OS release.

Holds reference to respective instance of SD class.

Radia Native Packaging also creates an instance of ZSERVICE class holding
previously created instance of PACKAGE class. Table 14 above lists the
modified attributes.

Radia Native Packaging 83

Table 14 ZSERVICE Class Attributes

Attribute

Instance
Name

VERSION

NAME

ZSVCNAME

VENDOR

ZSVCMO

ALWAYS

Description

On HP-UX, the Radia Native Packager will take the SD
product or bundle tag, prefix SD_ and append a date and
sequence number to guarantee uniqueness
(SD_<TAG>_yyyymmddn).

Note: When instance names generated are longer than 32
characters, the package/patch names parts of the instance
names shall be truncated.

SD revision version native attributes are mapped into
VERSION.

On HP-UX NAME is composed from SD_ and SD product's
software spec (SD_<software_spec>).

SD's title name attributes are mapped into ZSVCNAME.

Specifies vendor of the native UNIX package.

Service is set to mandatory by default. Valid values of this
attribute are:

• M for mandatory
• O for optional

Holds reference to the respective instance of PACKAGE
class.

In version 4.2i, the radskman command line parameter to enable a
system reboot is set to Y by default, therefore, if you wish to
suppress a system reboot you must pass the radskman command
line option hreboot=n.

Refer to the Installation and Configuration Guide for the HP
OpenView Application Manager Using Radia for UNIX (Application
Manager Guide), for more information.

If a package requires a system reboot after a Client Connect, make
sure the hreboot radskman parameter is set to Y. Refer to the
Application Manager Guide for more information.

84 Chapter 5

Automatic Inclusion of Required Packages

If you specify the –i command line option, Radia Native Packaging will
include prerequisite packages into the depot with the (main) package you are
publishing to Radia. The prerequisite package needs to exist in the depot
Radia Native Packaging is using as a source.

The –coreq command option will include corequisite packages for SD
(COREQ).

When using the –i or –coreq options, the promotion of native software
packages will not fail because of a missing prerequisite or corequisite package
(unless the –S option is specified). Installation will fail only if prerequisite or
corequisite packages are missing from both the promoted native software
package and from the target machine.

Alternatively, if a prerequisite or corequisite package is already installed on
the target machine, including these in a native software package for
promotion will result only in using more network bandwidth and disk space
than necessary.

Troubleshooting Radia Native Packaging

Should you encounter problems publishing native UNIX Software Packages,
please perform the following steps before contacting technical support:

•	 Enable full diagnostic tracing by appending the text -debug all to your
command line and re-run the publishing session.

•	 Have the log file produced by the rnp publishing readily accessible to
provide to support. By default, the log file would be called publish.log
located in the directory where you installed the Publishing Adapter.

The command line option –debug all should only be used to
diagnose publishing problems.

Radia Native Packaging 85

Operational Notes

The following describes the operations involved during the publishing and
deployment of native packages. This is provided to give a better
understanding of the current processes and capabilities provided to manage
these packages

Publishing

1	 All packages are selected from the software depot specified by using the
-d option.

2	 Dependency checking is performed on the target (selected) package or
patch.

3	 Dependencies are not checked when processing certain package formats
that contain multiple entries (such as HP-UX bundles). This process is
typically performed when these ‘bundles’ are created.

4	 Use the –S (strict) option to ensure that all identified dependencies are
included in the deployment. If required dependencies are not found in
the software depot, an error message will be displayed and publishing
will be terminated.

5	 Using Interactive mode allows you to:

—	 See all packages in the software depot available for selection

—	 Review all dependencies found for a selected package or patch

—	 Select / de-select dependencies. This allows the administrator who
has knowledge of his target machines to tailor the deployment to fit
his environment and needs. Some dependencies can be large, and
rather than waste bandwidth and client processing, if not needed, it
can be removed from the deployment.

86	 Chapter 5

Deployment

1	 If the target package is already installed on the machine and is newer
than the one to be deployed, no further processing is done, and the
deployment is viewed as successful. However, since it was not deployed, it
will not be removed when the service is deleted. NOTE: If back-leveling of
the package is required, this behavior can be overridden by specifying the
appropriate native command line option in the attribute INSTOPTS for
HP-UX. This requires the use of the Systems Explorer.

2	 If the target package already exists and is the same release level, it is
first verified. If verification fails, it will be re-installed. Subsequent verify
or delete processing would occur as usual.

3	 During verify, only the target package is verified and not its
dependencies.

4	 After installation, the native package database is queried to make sure
the target package was properly installed and registered in the database.

5	 When installing an HP-UX (SD) patch, the method will first check to see
if it has been superseded. If so, no further processing is performed, as it is
regarded as obsolete.

6	 During removal, the package is checked to make sure it exists (as it may
have been upgraded or superseded). If it does not exist, no attempt to
delete it is made, and the process is viewed as successful. Only the target
package is deleted. Dependent packages are not deleted, as they may be
required for other packages.

7	 If the verify attribute (ZRSCVRFY) of the package instance is set to N,
the source depot (file actually deployed from server) is deleted after a
successful installation. If a subsequent verification of the installed target
package fails, this file is again downloaded and used to repair the
damaged package.

Radia Native Packaging 87

Event Reporting

The RNPEVENT object is used for reporting events to the Radia
Configuration Server. Similar to the APPEVENT object, RNPEVENT uses
the same variable set and is created if the Radia Administrator has enabled
the reporting flags for a particular event in the EVENTS variable of the
ZSERVICE class. The RNPEVENT variables are listed in the table below.

Table 15 RNPEVENT Variables

Variable Description Sample Value

EVENT Text description of the
current event.

create

STATUS Error messages. Successful

CMDRC Return code from native
command.

0

CMDMSG Message from native
command.

Main package <Regina> on
desktop <2.0> is newer
than in RCS <1.0>.
Skipping further
processing.

POSTRC Return code from RNP
post-processing check.

0

POSTMSG Message from RNP post­
processing check

Post installation is
successful for gaim

ZOBJDOMN The domain name for the
application.

SOFTWARE

ZOBJCLAS The class name for the
application.

ZSERVICE

ZOBJNAME The instance name for
the application.

RPM_GAIM_200504123

ZOBJID The objects id for the
instance.

D123ACD45F67

ZUSERID Radia user that installed
the application.

RPMUSER_LINUX

88 Chapter 5

Variable Description Sample Value

DELDATE ISO8601 date time when
the delete event occurred.

2005-05-10T16:45:00Z

VERDATE ISO8601 date time when
the verify event occurred.

2005-06-10T16:47:00Z

INSTDATE ISO8601 date time when
the install event
occurred.

2005-07-10T16:44:00Z

FIXDATE ISO8601 date time when
the repair event occurred.

2005-08-10T16:43:00Z

UPGDATE ISO8601 date time when
the update event
occurred.

2005-09-10T16:42:00Z

JOBID Session identifier MachineConnect

CJOBID Session identifier 11122:3

Viewing Event Details

Use the Radia Reporting Server to view the details of your Radia Native
Package Events. View the details of the Radia Managed Service, then select
the Radia Native Package Events report. Refer to the Reporting Server guide
for details on using the HP OpenView Reporting Server Using Radia.

Radia Native Packaging 89

Figure 1 Radia Native Package Event Details report

90 Chapter 5

Summary

•	 Radia Native Packaging is a feature of the Publishing Adapter
specifically designed for UNIX environments.

•	 Radia Native Packaging requires specific classes for each operating
system.

Radia Native Packaging 91

92 Chapter 5

C

Index

_
ALWAYS attribute, 84

A
ADDDEPS attribute, 82

Additional Attributes

specifying, 44

specifying in the configuration file, 46

specifying on the command line, 49

addtosvc parameter, 16, 36, 42

AUTOBOOT attribute, 81

compress parameter, 36, 64

config file, commands

addtosvc, 36

compress, 36, 64

expression, 41, 64

fileclass, 64

filescan, 38

depth, 39

dir, 38

distroot, 39

numsplit, 39

filters, 40

class, include, 40

type, 40

host, 38, 64

insource, 37

global distroot, 37

global numsplit, 37

mgrdiff, 38

intype, 36, 64

logfile, 38, 64

loglvl, 38, 64

package, 35

path, 38, 64

pkgdesc, 35

pkgname, 35

service, 36

svcdesc, 36

svcname, 36

configuration file

PROMOTE, 35

format, 35

SCMADAPT, 63

format, 63

sample, 65

configuration file format

promote.cfg, 35

scmadapt.cfg, 63

configuration file-based publishing, 15

COREQ attribute, 82

create_service setting, 76

customer support, 5

D
depot setting, 76

DESCRIPT attribute, 83

DESKTOP class, 15

distroot parameter, 19, 37

documentation updates, 4

E
EDMATRIA, 58

EDMPVCS, 58

EDR format, 18

exclude parameter, 19

expression parameter, 41, 64

EXREQ attribute, 83

F
features of RPA, 13

FILE attribute, 83

fileclass parameter, 64

filescan parameter, 37, 38

93

G
global distroot, 37

global numsplit, 37

H
handle_reboot parameter, 84

host parameter, 38, 64

I

include parameter, 19

include_corequisites setting, 77

include_dependencies setting, 77

include_responses setting, 77

INCLUDES connection, 16

insource parameter, 37, 42

installing RPA for

UNIX, 26

Windows, 22

Instance Name attribute, 83, 84

intype parameter, 36, 42, 64

L
logfile parameter, 38, 64

loglvl parameter, 38, 64

M
manager_ip setting, 76

manager_port setting, 76

method harness, 81

method_utils.tcl, 70

mgrdiff parameter, 38, 42, 64

N
NAME attribute, 83, 84

Novadigm EDR file format, 18

Novadigm legacy adapters, 13

Novadigm SCM Adapters, 13

numsplit parameter, 37

nvdkit.exe, 58

94

O
operating system considerations

UNIX, 18

Win32, 18

P
package parameter, 35

password setting, 78

PATH instance, 62

path parameter, 38, 64

pkgdesc parameter, 35, 42

pkgname parameter, 35, 42

PREREQ attribute, 82

PROMOTE Configuration File, 35

promote.cfg, 18

promote.tkd, 18

example, 34

Publishing Adapter

UNIX installation, 26

vs. standard Radia publishing, 13

Windows installation, 22

publishing modes, 15

configuration file-based, 15

file listing, 15

scanning, 15

object-based, 17

R
Radia Native Packaging, 68, 91

command-line interface, 71

overview, 69

Radia Client requirements, 70

required classes, 70

supported platforms, 68

radskman, 84

RedHat Linux, 69

REGEDIT4 file format, 18

REGISTRY class, 18

RELEASE attribute, 83

replacepkg parameter, 41

REQUIRES connections, 16

S
SCMAdapt

Index

V

input objects, 59

ZINPUT, 59

ZPROMDFT, 59

ZPROMOTE, 59

ZINPUT variables, 62

root, 62

stem, 62

ZAPPLIC, 63

ZCLASS, 63

ZDSTROOT, 62

ZSPLIT, 62

ZPROMDFT variables, 60

ZPACKAGE, 60

ZPKGDESC, 60

ZPKGNAME, 60

ZSERVICE, 61

ZSVCCNCT, 61

ZSVCNAME, 61

SCMADAPT Configuration File, 63

scmadapt.tkd, 36, 58

example, 58

sd.tcl, 70, 81

select_patches setting, 77

service parameter, 36

service_type setting, 76

SOFTWARE domain, 13

svcdesc parameter, 36, 42

svcname parameter, 36, 42

T
technical support, 5

U
UNIQUE variable, 60

UNIX installation

graphical, 26

non-graphical, 29

updates to doc, 4

user setting, 78

VENDOR attribute, 84

VERSION attribute, 84

W
wrapped native packages, 81

Radia Native Packaging

Z
ZADMCLAS variable, 60

ZADMDOMN variable, 60

ZADMFILE variable, 60

ZADMIPRE variable, 60

ZADMMLOC variable, 60

ZAPPLIC variable, 63

ZAPPNAME variable, 60

ZCLASS variable, 63

ZCOMPRESS variable, 60

ZCREATE attribute, 82

ZDELETE attribute, 82

ZDSTROOT variable, 62

ZEXETYPE variable, 60

ZINPUT object, 17, 59, 62

ZLOCCLNT variable, 62

ZPACKAGE variable, 60

ZPKGDESC variable, 60

ZPKGNAME variable, 60

ZPROMDFT object, 15, 17, 59

ZPROMDFT variables, 60

ZPROMDIR variable, 60

ZPROMOTE object, 17, 59

ZPROMOTE variable, 60

ZPRPCFIL variable, 62, 63

ZREPAIR attribute, 82

ZRSCCFIL attribute, 81

ZRSCNAME attribute, 81

ZSERVICE variable, 61

ZSPLIT variable, 62

ZSTOP expression, 41

ZSTOP000 attribute, 83

ZSTOP001 attribute, 83

ZSVCCNCT variable, 15, 61

ZSVCMO attribute, 84

ZSVCNAME parameter, 36, 61, 84

ZTRACEL variable, 61

ZUPDATE attribute, 82

ZVERIFY attribute, 82

ZVLBLTYP variable, 61

95

96

	1 Introduction
	What is the Publishing Adapter?
	Why Use the Publishing Adapter?
	The Publishing Adapter vs. Standard Radia Publishing
	Support for Radia Legacy Adapters

	Overview
	Publishing Modes
	Configuration File-Based Publishing
	Object-Based Publishing
	Radia Native Packaging

	System Requirements and Availability
	Operating System Considerations
	Win32 Platforms
	UNIX Platforms

	Summary

	2 Installing the Publishing Adapter
	Recommendations
	Installing the Publishing Adapter for Windows
	Installing the Publishing Adapter for UNIX
	UNIX Graphical Installation
	UNIX Non-Graphical Installation

	Summary

	3 Configuration File-Based Publishing (promote.tkd)
	Using Configuration File-Based Publishing
	The PROMOTE Configuration File
	The PROMOTE Configuration File Format
	Sample PROMOTE Configuration File (promote.cfg)

	Specifying Additional Attributes
	Specifying Additional Attributes in the Configuration File
	Specifying Connection Types

	Specifying Additional Attributes on the Command Line
	Filters and Filescans

	Summary

	4 Object-Based Publishing (SCMAdapt.tkd)
	Using Object-Based Publishing
	Input Objects
	ZPROMDFT Variables
	ZINPUT Variables
	The SCMADAPT Configuration File
	The SCMADAPT Configuration File
	The SCMADAPT Configuration File Sample (scmadapt.cfg)

	Summary

	5 Radia Native Packaging
	What is Radia Native Packaging?
	Why use Radia Native Packaging?
	Overview
	Radia Native Packaging System Requirements
	Required Classes

	Radia Native Packaging and the Radia Client
	Supported Native Package Types
	Radia Native Packaging Command-Line Interface
	Radia Native Packaging Options File (rnp.cfg)

	Publishing with Radia Native Packaging
	Examples

	Publishing with Interactive Mode
	Wrapped Native Packages
	Automatic Inclusion of Required Packages

	Troubleshooting Radia Native Packaging
	Operational Notes
	Publishing
	Deployment

	Event Reporting
	Viewing Event Details

	Summary

	Index

