
HP Business Service Management
For the Windows, Linux operating systems

Software Version: 9.20

RTSM Developer Reference Guide

Document Release Date: August 2012

Software Release Date: August 2012

Legal Notices
Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice
© Copyright 2005 - 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

AMD and the AMD Arrow symbol are trademarks of AdvancedMicro Devices, Inc.

Google™ andGoogleMaps™ are trademarks of Google Inc.

Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and
other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

UNIX® is a registered trademark of TheOpenGroup.

HP Business ServiceManagement (9.20)Page 2 of 344

RTSM Developer Reference Guide

Acknowledgements
This product includes an interface of the 'zlib' general purpose compression library, which is
Copyright © 1995-2002 Jean-loupGailly andMark Adler.

This product includes software developed by Apache Software Foundation
(http://www.apache.org/licenses).

This product includes OpenLDAP code from OpenLDAP Foundation
(http://www.openldap.org/foundation/).

This product includes GNU code from Free Software Foundation, Inc. (http://www.fsf.org/).

This product includes JiBX code from Dennis M. Sosnoski.

This product includes the XPP3 XMLPull parser included in the distribution and used throughout
JiBX, from Extreme! Lab, Indiana University.

This product includes the Office Look and Feels License from Robert Futrell
(http://sourceforge.net/projects/officelnfs).

HP Business ServiceManagement (9.20)Page 3 of 344

RTSM Developer Reference Guide

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go
to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport
ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

PDF Version of Online Help

This document is a PDF version of the online help. This PDF file is provided so you can easily print
multiple topics from the help information or read the online help in PDF format.

This document was last updated: Thursday, July 26, 2012

HP Business ServiceManagement (9.20)Page 4 of 344

RTSM Developer Reference Guide

Support
Visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support
that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed tomanage your business. As a
valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest

l Submit and track support cases and enhancement requests

l Download software patches

l Manage support contracts

l Look up HP support contacts

l Review information about available services

l Enter into discussions with other software customers

l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Business ServiceManagement (9.20)Page 5 of 344

RTSM Developer Reference Guide

Contents
RTSM Developer Reference Guide 1

Contents 6

Creating Discovery and Integration Adapters 14

Adapter Development andWriting 15

Adapter Development andWriting Overview 16

Content Creation 17

The Adapter Development Cycle 17

Startup and Preparation of Copy 18

Development and Testing 19

Cleanup and Document 19

Create Package 19

Data Flow Management and Integration 19

Associating Business Value with Discovery Development 20

Researching Integration Requirements 21

Developing Integration Content 24

Developing Discovery Content 26

Discovery Adapters and Related Components 26

Separating Adapters 27

Implement a Discovery Adapter 28

Step 1: Create an Adapter 31

Step 2: Assign a Job to the Adapter 38

Step 3: Create Jython Code 40

Configure Remote Process Execution 41

Discovery Content Migration Guidelines 42

Discovery Content Migration Guidelines Overview 43

Version 9.0x New Infrastructure Features 44

Guidelines for Developing Cross-DataModel Scripts 47

Implementation Tips 48

HP Business ServiceManagement (9.20)Page 6 of 344

PackageMigration Utility 49

Troubleshooting and Limitations 50

Developing Jython Adapters 51

HP Data Flow Management API Reference 52

Create Jython Code 53

Use External Java JAR Files within Jython 53

Execution of the Code 54

Modifying Out-of-the-Box Scripts 54

Structure of the Jython File 54

Imports 55

Main Function – DiscoveryMain 55

Functions Definition 56

Results Generation by the Jython Script 57

TheObjectStateHolder Syntax 57

The Framework Instance 59

Finding the Correct Credentials (for Connection Adapters) 62

Handling Exceptions from Java 63

Support Localization in Jython Adapters 64

Add Support for a New Language 64

Change the Default Language 65

Determine the Character Set for Encoding 66

Define a New Job to OperateWith Localized Data 66

Decode Commands Without a Keyword 67

Work with Resource Bundles 68

API Reference 69

Fields 69

Arguments 70

Work with Discovery Analyzer 71

Tasks and Records 71

Logs 71

RunDiscovery Analyzer from Eclipse 77

Record DFM Code 87

HP Business ServiceManagement (9.20)Page 7 of 344

RTSM Developer Reference Guide
Contents

Jython Libraries and Utilities 89

Error Messages 92

Error Messages Overview 93

Error-Writing Conventions 94

Error Severity Levels 97

Developing Generic Database Adapters 98

Generic Database Adapter Overview 99

TQLQueries for the Generic Database Adapter 100

Reconciliation 102

Hibernate as JPA Provider 103

Prepare for Adapter Creation 106

Prepare the Adapter Package 111

Upgrade theGeneric DB Adapter from 9.00 or 9.01 to 9.02 and Later 114

Configure the Adapter –Minimal Method 115

Configure the Adapter – AdvancedMethod 118

Implement a Plugin 123

Deploy the Adapter 126

Edit the Adapter 127

Create an Integration Point 128

Create a View 129

Calculate the Results 130

View the Results 131

View Reports 132

Enable Log Files 133

Use Eclipse toMap Between CIT Attributes and Database Tables 134

Adapter Configuration Files 140

The adapter.conf File 141

The simplifiedConfiguration.xml File 142

The orm.xml File 143

The reconciliation_types.txt file 152

The reconciliation_rules.txt File (for backwards compatibility) 152

The transformations.txt File 154

HP Business ServiceManagement (9.20)Page 8 of 344

RTSM Developer Reference Guide
Contents

The discriminator.properties File 155

The replication_config.txt File 156

The fixed_values.txt File 156

The persistence.xml File 156

Out-of-the-Box Converters 158

Plugins 162

Configuration Examples 163

Simplified Definition 163

Advanced Definition 164

Simplified Definition 166

Advanced Definition 168

Simplified Definition 168

Advanced Definition 169

Simplified Definition 170

Advanced Definition 171

Adapter Log Files 172

External References 174

Troubleshooting and Limitations 175

Developing Java Adapters 176

Federation Framework Overview 177

SourceDataAdapter Flow 180

SourceChangesDataAdapter Flow 180

PopulateDataAdapter Flow 180

PopulateChangesDataAdapter Flow 181

Adapter andMapping Interaction with the Federation Framework 182

Federation Framework for Federated TQLQueries 183

Interactions between the Federation Framework, Server, Adapter, andMapping
Engine 185

Federation Framework Flow for Population 194

Adapter Interfaces 196

OneNode Interfaces 196

Data Adapter Interfaces 196

HP Business ServiceManagement (9.20)Page 9 of 344

RTSM Developer Reference Guide
Contents

Pattern Topology Interfaces (Deprecated as of UCMDB 9.00) 197

Additional Interfaces 197

Adapter Interfaces for Synchronization 197

Debug Adapter Resources 198

Add an Adapter for a New External Data Source 199

Implement theMapping Engine 206

Create a Sample Adapter 208

XMLConfiguration Tags and Properties 208

Developing Push Adapters 211

Developing Push Adapters Overview 212

Differential Synchronization 213

Prepare theMapping Files 214

Write Jython Scripts 217

Support Differential Synchronization 221

Build an Adapter Package 223

Mapping File Schema 225

Mapping Results Schema 237

Viewing KPIs in External Applications 240

Set Up an Adapter to View KPIs in an External Application 241

Using APIs 243

Introduction to APIs 244

APIs Overview 245

HP Universal CMDB API 246

Conventions 247

Using the HP Universal CMDB API 248

General Structure of an Application 249

Put the API Jar File in the Classpath 251

Create an Integration User 252

HP Universal CMDB API Reference 254

Use Cases 255

Examples 257

RTSM (HP Universal CMDB)Web Service API 258

HP Business ServiceManagement (9.20)Page 10 of 344

RTSM Developer Reference Guide
Contents

Conventions 259

RTSM (HP Universal CMDB)Web Service API Overview 260

RTSM (HP Universal CMDB)Web Service API Reference 262

Call theWeb Service 263

Query the RTSM 264

Update the RTSM 267

Query the BSMClass Model 269

getClassAncestors 269

getAllClassesHierarchy 269

getCmdbClassDefinition 270

Query for Impact Analysis 271

UCMDB General Parameters 272

UCMDB Output Parameters 275

UCMDB Query Methods 277

executeTopologyQueryByNameWithParameters 277

executeTopologyQueryWithParameters 278

getChangedCIs 279

getCINeighbours 279

getCIsByID 280

getCIsByType 280

getFilteredCIsByType 281

getQueryNameOfView 284

getTopologyQueryExistingResultByName 284

getTopologyQueryResultCountByName 285

pullTopologyMapChunks 285

releaseChunks 287

UCMDB UpdateMethods 288

addCIsAndRelations 288

addCustomer 289

deleteCIsAndRelations 289

removeCustomer 289

updateCIsAndRelations 289

HP Business ServiceManagement (9.20)Page 11 of 344

RTSM Developer Reference Guide
Contents

UCMDB Impact Analysis Methods 291

calculateImpact 291

getImpactPath 291

getImpactRulesByNamePrefix 292

Use Cases 293

Examples 295

The Example Base Class 295

Query Example 296

Update Example 308

Class Model Example 312

Impact Analysis Example 314

Adding Credentials Example 316

Internal-Global ID Conversion API 320

Using the Internal-Global ID Conversion API 321

How to Convert RTSM Internal IDs to Global IDs 322

Parameters 322

Example 322

How to Convert Global IDs to RTSM Internal IDs 325

Parameters 325

Example 325

Data Flow Management API 327

Data Flow Management API Overview 328

Conventions 329

Data Flow Management Web Service 330

Call theWeb Service 331

Data Flow Management Methods 332

Data Structures 332

Managing Discovery JobMethods 333

Managing Trigger Methods 334

Domain and Probe DataMethods 336

Credentials DataMethods 338

Data RefreshMethods 340

HP Business ServiceManagement (9.20)Page 12 of 344

RTSM Developer Reference Guide
Contents

Code Sample 342

HP Business ServiceManagement (9.20)Page 13 of 344

RTSM Developer Reference Guide
Contents

Part 1

Creating Discovery and Integration
Adapters

HP Business ServiceManagement (9.20)Page 14 of 344

Chapter 1

Adapter Development and Writing
This chapter includes:

Adapter Development andWriting Overview 16

Content Creation 17

Developing Integration Content 24

Developing Discovery Content 26

Implement a Discovery Adapter 28

Step 1: Create an Adapter 31

Step 2: Assign a Job to the Adapter 38

Step 3: Create Jython Code 40

Configure Remote Process Execution 41

HP Business ServiceManagement (9.20)Page 15 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Adapter Development and Writing Overview
Prior to beginning actual planning for development of new adapters, it is important to understand the
processes and interactions commonly associated with this development.

The following sections can help to enable you to successfully manage and execute a discovery
development project.

This chapter:

l Assumes a working knowledge of Run-time ServiceModel and some basic familiarity with the
elements of the system. It is meant to assist you in the learning process and does not provide a
complete guide.

l Covers the stages of planning, research, and implementation of new discovery content for Run-
time ServiceModel, together with guidelines and considerations that need to be taken into
account.

l Provides information on the key APIs of the Data Flow Management Framework. For full
documentation on the available APIs, see theHP UCMDB API Reference. (Other non-formal
APIs exist but even though they are used on out-of-the-box adapters, they may be subject to
change.)

HP Business ServiceManagement (9.20)Page 16 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Content Creation
This section includes:

l "The Adapter Development Cycle" below

l "Data Flow Management and Integration" on page 19

l "Associating Business Value with Discovery Development" on page 20

l "Researching Integration Requirements" on page 21

The Adapter Development Cycle
The following illustration shows a flowchart for adapter writing. Most of the time is spent in the
middle section, which is the iterative loop of development and testing.

Each phase of adapter development builds on the last one.

Once you are satisfied with the way the adapter looks and works, you are ready to package it.
Using either the BSM PackageManager or manual exporting of the components, create a package
*.zip file. As a best practice, you should deploy and test this package on another BSM system
before releasing it to production, to ensure that all the components are accounted for and
successfully packaged. For details on packaging, see "PackageManager" in theRTSM
Administration Guide.

The following sections expand on each of the phases showing themost critical steps and best
practices:

l "Research and Preparation Phase" on next page

l "Adapter Development and Testing" on next page

l "Adapter Packaging and Productization " on page 19

HP Business ServiceManagement (9.20)Page 17 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Research and Preparation Phase

The Research and Preparation phase encompasses the driving business needs and use cases,
and also accounts for securing the necessary facilities to develop and test the adapter.

1. When planning tomodify an existing adapter, the first technical step is to make a backup of
that adapter and ensure you can return it to its pristine state. If you plan to create a new
adapter, copy themost similar adapter and save it under an appropriate name. For details, see
Resources Pane in theData Flow Management Guide.

2. Research how the adapter should collect data:

n Use External tools/protocols to obtain the data

n Develop how the adapter should create CIs based on the data

n You now know what a similar adapter should look like

3. Determinemost similar adapter based on:

n SameCIs created

n SameProtocols used (SNMP)

n Same kind of targets (by OS type, versions, and so on)

4. Copy entire package.

5. Unzip into work space and rename the adapter (XML) and Jython (.py) files.

Adapter Development and Testing
The Adapter Development and Testing phase is a highly iterative process. As the adapter
begins to take shape, you begin testing against the final use cases, make changes, test again, and
repeat this process until the adapter complies with the requirements.

Startup and Preparation of Copy

l Modify XML parts of the adapter: Name (id) in line 1, Created CI Types, and Called Jython script
name.

l Get the copy running with identical results to the original adapter.

l Comment out most of the code, especially the critical result-producing code.

HP Business ServiceManagement (9.20)Page 18 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Development and Testing

l Use other sample code to develop changes

l Test adapter by running it

l Use a dedicated view to validate complex results, search to validate simple results

Adapter Packaging and Productization
The Adapter Packaging and Productization phase accounts for the last phase of development.
As a best practice, a final pass should bemade to clean up debugging remnants, documents, and
comments, to look at security considerations, and so on, beforemoving on to packaging. You
should always have at least a readme document to explain the inner workings of the adapter.
Someone (maybe even you) may need to look at this adapter in the future and will be aided greatly
by even themost limited documentation.

Cleanup and Document

l Remove debugging

l Comment all functions and add some opening comments in themain section

l Create sample TQL and view for the user to test

Create Package

l Export adapters, TQL, and so on with the PackageManager. For details, see "Package
Manager" in theRTSM Administration Guide.

l Check any dependencies your package has on other packages, for example, if the CIs created
by those packages are input CIs to your adapter.

l Use PackageManager to create a package zip. For details, see "PackageManager" in the
RTSM Administration Guide.

l Test deployment by removing parts of the new content and redeploying, or deploying on another
test system.

Data Flow Management and Integration
DFM adapters are capable of integration with other products. Consider the following definitions:

l DFM collects specific content frommany targets.

l Integration collects multiple types of content from one system.

Note that these definitions do not distinguish between themethods of collection. Neither does
DFM. The process of developing a new adapter is the same process for developing new integration.
You do the same research, make the same choices for new vs. existing adapters, write the
adapters the sameway, and so on. Only a few things change:

HP Business ServiceManagement (9.20)Page 19 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

l The final adapter's scheduling. Integration adapters may runmore frequently than discovery, but
it depends on the use cases.

l Input CIs:

n Integration: non-CI trigger to run with no input: a file name or source is passed through the
adapter parameter.

n Discovery: uses regular, RTSM CIs for input.

For integration projects, you should almost always reuse an existing adapter. The direction of the
integration (from Run-time ServiceModel to another product, or from another product to Run-time
ServiceModel) may affect your approach to development. There are field packages available for
you to copy for your own uses, using proven techniques.

From Run-time ServiceModel to another project:

l Create a TQL that produces the CIs and relations to be exported.

l Use a generic wrapper adapter to execute the TQL and write the results to an XML file for the
external product to read.

Note: For examples of field packages, contact HP Software Support.

To integrate another product to Run-time ServiceModel, depending on how the other product
exposes its data, the integration adapter acts differently:

Integration Type Reference Example to Be Reused

Access the product's database directly HP ED

Read in a csv or xml file produced by an export HP ServiceCenter

Access a product's API BMC Atrium/Remedy

Associating Business Value with Discovery Development
The use case for developing new discovery content should be driven by a business case and plan
to produce business value. That is, the goal of mapping system components to CIs and adding
them to the RTSM is to provide business value.

The content may not always be used for applicationmapping, although this is a common
intermediate step for many use cases. Regardless of the end usage of the content, your plan should
answer these questions of this approach:

l Who is the consumer? How should the consumer act on the information provided by the CIs
(and the relationships between them)?What is the business context in which the CIs and
relationships are to be viewed? Is the consumer of these CIs a person or a product or both?

l Once the perfect combination of CIs and relationships exists in the RTSM, how do I plan on
using them to produce business value?

l What should the perfect mapping look like?

HP Business ServiceManagement (9.20)Page 20 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

n What term wouldmost meaningfully describe the relationships between each CI?

n What types of CIs would bemost important to include?

n What is the end usage and end user of themap?

l What would be the perfect report layout?

Once the business justification is established, the next step is to embody the business value in a
document. This means picturing the perfect map using a drawing tool and understanding the impact
and dependencies between CIs, reports, how changes are tracked, what change is important,
monitoring, compliance, and additional business value as required by the use cases.

This drawing (or model) is referred as the blueprint.

For example, if it is critical for the application to know when a certain configuration file has changed,
the file should bemapped and linked to the appropriate CI (to which it relates) in the drawnmap.

Work with an SME (Subject Matter Expert) of the area, who is the end user of the developed
content. This expert should point out the critical entities (CIs with attributes and relationships) that
must exist in the RTSM to provide business value.

Onemethod could be to provide a questionnaire to the application owner (also the SME in this
case). The owner should be able to specify the above goals and blueprint. The ownermust at least
provide a current architecture of the application.

You shouldmap critical data only and no unnecessary data: you can always enhance the adapter
later. The goal should be to set up a limited discovery that works and provides value. Mapping large
quantities of data gives more impressivemaps but can be confusing and time consuming to
develop.

Once themodel and business value is clear, continue to the next stage. This stage can be revisited
as more concrete information is provided from the next stages.

Researching Integration Requirements
The prerequisite of this stage is a blueprint of the CIs and relationships needed to be discovered by
DFM, which should include the attributes that are to be discovered. For details, see "Adapter
Development andWriting Overview" on page 16.

This section includes the following topics:

l "Modifying an Existing Adapter" below

l "Writing a New Adapter" on next page

l "Model Research" on next page

l "Technology Research" on next page

l "Guidelines for ChoosingWays to Access Data" on page 23

l "Summary" on page 23

Modifying an Existing Adapter
Youmodify an existing adapter when an out-of-the-box or field adapter exists, but:

HP Business ServiceManagement (9.20)Page 21 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

l it does not discover specific attributes that are needed

l a specific type of target (OS) is not being discovered or is being incorrectly discovered

l a specific relationship is not being discovered or created

If an existing adapter does some, but not all, of the job, your first approach should be to evaluate the
existing adapters and verify if one of them almost does what is needed; if it does, you canmodify
the existing adapter.

You should also evaluate if an existing field adapter is available. Field adapters are discovery
adapters that are available but are not out-of-the-box. Contact HP Software Support to receive the
current list of field adapters.

Writing a New Adapter
A new adapter needs to be developed:

l When it is faster to write an adapter than to insert the informationmanually into the RTSM
(generally, from about 50 to 100 CIs and relationships) or it is not a one-time effort.

l When the need justifies the effort.

l If out-of-the-box or field adapters are not available.

l If the results can be reused.

l When the target environment or its data is available (you cannot discover what you cannot see).

Model Research
l Browse the BSM class model (CI TypeManager) andmatch the entities and relations from your

blueprint to existing CITs. It is highly recommended to adhere to the current model to avoid
possible complications during version upgrade. If you need to extend themodel, you should
create new CITs since an upgrademay overwrite out-of-the-box CITs.

l If some entities, relations, or attributes are lacking from the current model, you should create
them. It is preferable to create a package with these CITs (which will also later hold all the
discovery, views, and other artifacts relating to this package) since you need to be able to
deploy these CITs on each installation of Run-time ServiceModel.

Technology Research
Once you have verified that the RTSM holds the relevant CIs, the next stage is to decide how to
retrieve this data from the relevant systems.

Retrieving data usually involves using a protocol to access amanagement part of the application,
actual data of the application, or configuration files or databases that are related to the application.
Any data source that can provide information on a system is valuable. Technology research
requires both extensive knowledge of the system in question and sometimes creativity.

For home-grown applications, it may be helpful to provide a questionnaire form to the application
owner. In this form the owner should list all the areas in the application that can provide information
needed for the blueprint and business values. This information should include (but does not have to
be limited to) management databases, configuration files, log files, management interfaces,
administration programs, Web services, messages or events sent, and so on.

For off-the-shelf products, you should focus on documentation, forums, or support of the product.
Look for administration guides, plug-ins and integrations guides, management guides, and so on. If

HP Business ServiceManagement (9.20)Page 22 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

data is still missing from themanagement interfaces, read about the configuration files of the
application, registry entries, log files, NT event logs, and any artifacts of the application that control
its correct operation.

Guidelines for Choosing Ways to Access Data
Relevance:Select sources or a combination of sources that provide themost data. If a single
source supplies most information whereas the rest of the information is scattered or hard to access,
try to assess the value of the remaining information by comparison with the effort or risk of getting
it. Sometimes youmay decide to reduce the blueprint if the value or cost does not warrant the
invested effort.

Reuse: If Run-time ServiceModel already includes a specific connection protocol support it is a
good reason to use it. It means the DFM Framework is able to supply a ready made client and
configuration for the connection. Otherwise, youmay need to invest in infrastructure development.
You can view the currently supported Run-time ServiceModel connection protocols: Data Flow
Management > Data Flow Probe Setup > Domains and Probes pane. For details, see
Domains and Probes Pane in theData Flow Management Guide.

You can add new protocols by adding new CIs to themodel. For details, contact HP Software
Support.

Note: To access Windows Registry data, you can use eitherWMI or NTCMD.

Security: Access to information usually requires credentials (user name, password), which are
entered in the RTSM and are kept secure throughout the product. If possible, and if adding security
does not conflict with other principles you have set, choose the least sensitive credential or protocol
that still answers access needs. For example, if information is available both through JMX
(standard administration interface, limited) and Telnet, it is preferable to use JMX since it inherently
provides limited access and (usually) no access to the underlying platform.

Comfort: Somemanagement interfaces may includemore advanced features. For example, it
might be easier to issue queries (SQL, WMI) than to navigate information trees or build regular
expressions for parsing.

Developer Audience: The people who will eventually develop adapters may have an inclination
towards a certain technology. This can also be considered if two technologies provide almost the
same information at an equal cost in other factors.

Summary
The outcome of this stage is a document describing the access methods and the relevant
information that can be extracted from eachmethod. The document should also contain amapping
from each source to each relevant blueprint data.

Each access method should bemarked according to the above instructions. Finally you should now
have a plan of which sources to discover and what information to extract from each source into the
blueprint model (which should by now have beenmapped to the corresponding BSMmodel).

HP Business ServiceManagement (9.20)Page 23 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Developing Integration Content
Before creating a new integration, youmust understand what the integration's requirements are:

l Should the integration copy data into the RTSM?Should the data be tracked by history? Is the
source unreliable?

Population is needed.

l Should the integration federate data on the fly for views and TQL queries? Is the accuracy of
changes to data critical? Is the amount of data too large to copy to the RTSM, but the requested
amount of data is usually small?

Federation is needed.

l Should the integration push data in to remote data sources?

Data Push is needed.

Note: Federation and Population flows may be configured for the same integration, for
maximum flexibility.

For details about the different types of integrations, see Integration Studio in theData Flow
Management Guide.

Four different options are available for creating integration adapters:

l Jython Adapter

n The classic discovery pattern

n Written in Jython

n Used for population

For details, see "Developing Jython Adapters" on page 51.

l Java Adapter

n An adapter that implements one of the adapter interfaces in the Federation SDK Framework.

n May be used for one or more of Federation, Population, or Data Push (depending on the
required implementation).

n Written from scratch in Java, which allows writing code that will connect to any possible
source or target.

n Suitable for jobs that each connect a single data source or target.

For details, see "Developing Java Adapters" on page 176.

l Generic DB Adapter

n An abstract adapter based on the Java Adapter and uses the Federation SDK Framework).

n Allows creation of adapters that connect to external data repositories.

n Supports both Federation and Population (with a Java plugin implemented for changes
support).

HP Business ServiceManagement (9.20)Page 24 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

n Relatively easy to define, as it is basedmainly on XML and property configuration files.

n Main configuration is based on an orm.xml file that maps between BSM classes and
database columns.

n Suitable for jobs that each connect a single data source.

For details, see "Developing Generic Database Adapters" on page 98.

l Generic Push Adapter

n An abstract adapter based on the Java Adapter (the Federation SDK Framework) and the
Jython Adapter.

n Allows creation of adapters that push data to remote targets.

n Relatively easy to define, as you need only to define themapping between BSM classes and
XML, and a Jython script that pushes the data to the target.

n Suitable for jobs that each connect a single data target.

n Used for Data Push.

For details, see "Developing Push Adapters" on page 211.

The following table displays the capabilities of each adapter:

Flow/Adapter Jython
Adapter

Java
Adapter

GDB
Adapter

Push
Adapter

Population X X X

Federation X X

Data Push X X

HP Business ServiceManagement (9.20)Page 25 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Developing Discovery Content
This section includes:

l "Discovery Adapters and Related Components " below

l "Separating Adapters" on next page

Discovery Adapters and Related Components
The following diagram shows an adapter's components and the components they interact with to
execute discovery. The components in green are the actual adapters, and the components in blue
are components that interact with adapters.

Note that theminimum notion of an adapter is two files: an XML document and a Jython script. The
Discovery Framework, including input CIs, credentials, and user-supplied libraries, is exposed to
the adapter at run time. Both discovery adapter components are administered through Data Flow
Management. They are stored operationally in the RTSM itself; although the external package
remains, it is not referred to for operation. The PackageManager enables preservation of the new
discovery and integration content capability.

Input CIs to the adapter are provided by a TQL, and are exposed to the adapter script in system-
supplied variables. Adapter parameters are also supplied as destination data, so you can configure
the adapter's operation according to an adapter's specific function.

The DFM application is used to create and test new adapters. You use the Discovery Control
Panel, Adapter Management, and Data Flow Probe Setup pages during adapter writing.

Adapters are stored and transported as packages. The PackageManager application and the JMX
console are used to create packages from newly created adapters, and to deploy adapters on new
systems.

HP Business ServiceManagement (9.20)Page 26 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Separating Adapters
Technically, an entire discovery could be defined in a single adapter. But good design demands that
a complex system be separated into simpler, moremanageable components.

The following are guidelines and best practices for dividing the adapter process:

l Discovery should be done in stages. Each stage should be represented by an adapter that
shouldmap an area or tier of the system. Adapters should rely on the previous stage or tier to be
discovered, to continue discovery of the system. For example, Adapter A is triggered by an
application server TQL result andmaps the application server tier. As part of this mapping, a
JDBC connection component is mapped. Adapter B registers a JDBC connection component as
a trigger TQL and uses the results of adapter A to access the database tier (for example, through
the JDBC URL attribute) andmaps the database tier.

l The two-phase connect paradigm: Most systems require credentials to access their data.
This means that a user/password combination needs to be tried against these systems. The
DFM administrator supplies credentials information in a secure way to the system and can give
several, prioritized login credentials. This is referred to as theProtocol Dictionary. If the
system is not accessible (for whatever reason) there is no point in performing further discovery.
If the connection is successful, there needs to be a way to indicate which credential set was
successfully used, for future discovery access.

These two phases lead to a separation of the two adapters in the following cases:

n Connection Adapter: This is an adapter that accepts an initial trigger and looks for the
existence of a remote agent on that trigger. It does so by trying all entries in the Protocol
Dictionary whichmatch this agent's type. If successful, this adapter provides as its result a
remote agent CI (SNMP, WMI, and so on), which also points to the correct entry in the Protocol
Dictionary for future connections. This agent CI is then part of a trigger for the content adapter.

n Content Adapter: This adapter's precondition is the successful connection of the previous
adapter (preconditions specified by the TQLs). These types of adapters no longer need to look
through all of the Protocol Dictionary since they have a way to obtain the correct credentials
from the remote agent CI and use them to log in to the discovered system.

l Different scheduling considerations can also influence discovery division. For example, a
systemmay only be queried during off hours, so even though it wouldmake sense to join the
adapter to the same adapter discovering another system, the different schedules mean that you
need to create two adapters.

l Discovery of different management interfaces or technologies to discover the same system
should be placed in separate adapters. This is so that you can activate the access method
appropriate for each system or organization. For example, some organizations haveWMI
access tomachines but do not have SNMP agents installed on them.

HP Business ServiceManagement (9.20)Page 27 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Implement a Discovery Adapter
A DFM task has the aim of accessing remote (or local) systems, modeling extracted data as CIs,
and saving the CIs to the RTSM. The task consists of the following steps:

1. Create an adapter.

You configure an adapter file that holds the context, parameters, and result types by selecting
the scripts that are to be part of the adapter. For details, see "Step 1: Create an Adapter" on
page 31.

2. Create a Discovery job.

You configure a job with scheduling information and a trigger query. For details, see "Step 2:
Assign a Job to the Adapter" on page 38.

3. Edit Discovery code.

You can edit the Jython or Java code that is contained in the adapter files and that refers to the
DFM Framework. For details, see "Step 3: Create Jython Code" on page 40.

To write new adapters, you create each of the above components, each one of which is
automatically bound to the component in the previous step. For example, once you create a job and
select the relevant adapter, the adapter file binds to the job.

Adapter Code
The actual implementation of connecting to the remote system, querying its data, andmapping it as
RTSM data is performed by the Jython code. For example, the code contains the logic for
connecting to a database and extracting data from it. In this case, the code expects to receive a
JDBC URL, a user name, a password, a port, and so on. These parameters are specific for each
instance of the database that answers the TQL query. You define these variables in the adapter (in
the Trigger CI data) and when the job runs, these specific details are passed to the code for
execution.

The adapter can refer to this code by a Java class name or a Jython script name. In this section we
discuss writing DFM code as Jython scripts.

An adapter can contain a list of scripts to be used when running discovery. When creating a new
adapter, you usually create a new script and assign it to the adapter. A new script includes basic
templates, but you can use one of the other scripts as a template by right-clicking it and selecting
Save as:

HP Business ServiceManagement (9.20)Page 28 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

For details on writing new Jython scripts, see "Step 3: Create Jython Code" on page 40. You add
scripts through the Resources pane:

The list of scripts are run one after the other, in the order in which they are defined in the adapter:

HP Business ServiceManagement (9.20)Page 29 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Note: A script must be specified even though it is being used solely as a library by another
script. In this case, the library script must be defined before the script using it. In this example,
the processdbutils.py script is a library used by the last host_processes.py script.
Libraries are distinguished from regular runable scripts by the lack of the DiscoveryMain()
function.

HP Business ServiceManagement (9.20)Page 30 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Step 1: Create an Adapter
An adapter can be considered as the definition of a function. This function defines an input
definition, runs logic on the input, defines the output, and provides a result.

Each adapter specifies input and output: Both input and output are Trigger CIs that are specifically
defined in the adapter. The adapter extracts data from the input Trigger CI and passes this data as
parameters to the code. (Data from related CIs is sometimes passed to the code too. For details,
see "Related CIs Window" in theData Flow Management Guide.) An adapter's code is generic,
apart from these specific input Trigger CI parameters that are passed to the code.

For details on input components, see "Data Flow Management Concepts" in theData Flow
Management Guide.

This section includes the following topics:

l "Define Adapter Input (Trigger CIT and Input Query)" below

l "Define Adapter Output" on page 34

l "Override Adapter Parameters" on page 35

l " Override Probe Selection - Optional" on page 36

l "Configure a classpath for a remote process - Optional" on page 37

1. Define Adapter Input (Trigger CIT and Input Query)
You use the Trigger CIT and Input Query components to define specific CIs as adapter input:

n The Trigger CIT defines which CIT is used as the input for the adapter. For example, for an
adapter that is going to discover IPs, the input CIT is Network.

n The Input query is a regular, editable query that defines the query against the RTSM. The
Input Query defines additional constraints on the CIT (for example, if the task requires a
hostID or application_ip attribute), and can definemore CI data, if needed by the
adapter.

If the adapter requires additional information from the CIs that are related to the Trigger CI, you
can add additional nodes to the input TQL. For details, see "Example of Input Query Definition"
on next page below and "AddQuery Nodes and Relationships to a TQLQuery" in theModeling
Guide.

n The Trigger CI data contains all the required information on the Trigger CI as well as
information from the other nodes in the Input TQL, if they are defined. DFM uses variables to
retrieve data from the CIs. When the task is downloaded to the Probe, the Trigger CI data
variables are replaced with actual values that exist on the attributes for real CI instances.

Example of Trigger CIT Definition:

In this example, a Trigger CIT defines that IP CIs are permitted in the adapter.

a. Access Admin > RTSM Administration > Data Flow Management > Adapter
Management. Select theHostProcesses adapter (Packages > Host_Resources_
Basic > Adapters > HostProcesses).

HP Business ServiceManagement (9.20)Page 31 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

b. Locate the Input CI Type box. For details, see "Adapter Definition Tab" in theData
Flow Management Guide.

c. Click the button to open the Choose Discovered Class dialog box. For details, see
"Choose Discovered Class Dialog Box" in theData Flow Management Guide.

d. Select the CIT.

In this example, the IP CI (Host) is permitted in the adapter:

Example of Input Query Definition

In this example, the Input TQL query defines that the IpAddress CI (configured in the
previous example as the Trigger CIT) must be connected to a Node CI.

a. Access Admin > RTSM Administration > Data Flow Management > Adapter
Management. Locate the Input TQL box. Click theEdit button to open the Input TQL
Editor. For details, see "Input Query EditorWindow" in theData Flow Management
Guide.

b. In the Input TQL Editor, name the Trigger CI nodeSOURCE: right-click the node and
chooseQuery Node Properties. In theElement Name box, change the name to
SOURCE.

c. Add a Node CI and a Containment relationship to the IpAddress CI. For details on
working with the Input TQL Editor, see "Input Query EditorWindow" in theData Flow

HP Business ServiceManagement (9.20)Page 32 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Management Guide.

The IpAddressCI is connected to aNodeCI. The input TQL consists of two nodes,
Node and IpAddress, with a link between them. The IpAddressCI is namedSOURCE.

Example of Adding Variables to the Input TQL Query:

In this example, you add DIRECTORY and CONFIGURATION_FILE variables to the
Input TQL query created in the previous example. These variables help to define what
must be discovered, in this case, to find the configuration files residing on the hosts that
are linked to the IPs you need to discover.

a. Display the Input TQL created in the previous example.

Access Admin > RTSM Administration > Data Flow Management > Adapter
Management. Locate the Triggered CI Data pane. For details, see "Adapter Definition
Tab" in theData Flow Management Guide.

b. Add variables to the Input TQL. For details, access Admin > RTSM
Administration > Data Flow Management > Adapter Management. Locate the
Triggered CI Data pane. For details, see the Variables field in "Adapter Definition Tab"
in theData Flow Management Guide.

Example of Replacing Variables with Actual Data:

HP Business ServiceManagement (9.20)Page 33 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

In this example, variables replace the IpAddressCI data with actual values that exist on
real IpAddressCI instances in your system.

The Triggered CI data for the IpAddressCI includes a fileName variable. This variable
enables the replacement of theCONFIGURATION_DOCUMENT node in the Input TQL
with the actual values of the configuration file located on a host:

The Trigger CI data is uploaded to the Probe with all variables replaced by actual values.
The adapter script includes a command to use the DFM Framework to retrieve the actual
values of the defined variables:

Framework.getTriggerCIData ('ip_address')

The fileName and path variables use the data_name and document_path attributes
from theCONFIGURATION_DOCUMENT node (defined in the Input Query Editor – see
previous example).

The Protocol, credentialsId, and ip_address variables use the root_class,
credentials_id, and application_ip attributes:

2. Define Adapter Output
The output of the adapter is a list of discovered CIs (Admin > RTSM Administration > Data
Flow Management > Adapter Management > Adapter Definition tab > Discovered CITs)
and the links between them:

HP Business ServiceManagement (9.20)Page 34 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

You can also view the CITs as a topology map, that is, the components and the way in which
they are linked together (click theView Discovered CITs as Map button):

The discovered CIs are returned by the DFM code (that is, the Jython script) in the format of
BSM's ObjectStateHolderVector. For details, see "Results Generation by the Jython
Script" on page 57.

Example of Adapter Output:

In this example, you define which CITs are to be part of the IP CI output.

a. Access Admin > RTSM Administration > Data Flow Management > Adapter
Management.

b. In the Resources pane, select Network > Adapters > NSLOOKUP_on_Probe.

c. In the Adapter Definition tab, locate the Discovered CITs pane.

d. The CITs that are to be part of the adapter output are listed. Add CITs to, or remove
from, the list. For details, see "Adapter Definition Tab" in theData Flow Management
Guide.

3. Override Adapter Parameters
To configure an adapter for more than one job, you can override adapter parameters. For
example, the adapter SQL_NET_Dis_Connection is used by both the MSSQL
Connection by SQL and the Oracle Connection by SQL jobs.

HP Business ServiceManagement (9.20)Page 35 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Example of Overriding an Adapter Parameter:

This example illustrates overriding an adapter parameter so that one adapter can be used
to discover bothMicrosoft SQL Server andOracle databases.

a. Access Admin > RTSM Administration > Data Flow Management > Adapter
Management.

b. In the Resources pane, select Database Basic > Adapters > SQL_NET_Dis_
Connection.

c. In the Adapter Definition tab, locate theDiscovery Pattern Parameters pane. The
protocolType parameter has a value of all:

d. Right-click theSQL_NET_Dis_Connection_MsSql adapter and chooseGo to
Discovery Job > MSSQL Connection by SQL.

e. Display the Properties tab. Locate the Parameters pane:

The all value is overwritten with the MicrosoftSQLServer value.

Note: TheOracle Connection by SQL job includes the same parameter but the value is
overwritten with anOracle value.

For details on adding, deleting, or editing parameters, see "Adapter Definition Tab" in the
Data Flow Management Guide.

DFM begins looking for Microsoft SQL Server instances according to this parameter.

4. Override Probe Selection - Optional
In the UCMDB server there is a dispatchingmechanism that takes the trigger CIs received by
the UCMDB and automatically chooses which probe should run the job for each trigger CI
according to one of the following options.

n For the IP address CI type: take the probe that is defined for this IP.

n For the running software CI type:use the attributes application_ip and application_ip_

HP Business ServiceManagement (9.20)Page 36 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

domain and choose the probe that is defined for the IP in the relevant domain.

n For other CI types: take the node’s IP according to the CI’s related node (if it exists).

The automatic probe selection is done according to the CI’s related node. After obtaining the
CI’s related node, the dispatchingmechanism chooses one of the node’s IPs and chooses the
probe according to the probe’s network scope definitions.

In the following cases, you need to specify the probemanually and not use the automatic
dispatchingmechanism:

n You already know which probe should be run for the adapter and you do not need the
automatic dispatchingmechanism to select the probe (for example if the trigger CI is the
probe gateway).

n The automatic probe selectionmight fail. This can happen in the following situations:

o A trigger CI does not have a related node (such as the network CIT)

o A trigger CI’s node has multiple IPs, each belonging to a different probe.

To resolve these issues, you can specify which probe to use with the adapter as follows:

a. In the Probe selection section, select Override default probe selection as shown below.

b. In the Probe box, type the probe to use for the task.

5. Configure a classpath for a remote process - Optional
For details, see "Configure Remote Process Execution" on page 41.

HP Business ServiceManagement (9.20)Page 37 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Step 2: Assign a Job to the Adapter
Each adapter has one or more associated jobs that define the execution policy. Jobs enable
scheduling the same adapter differently over different sets of Triggered CIs and also enable
supplying different parameters for each set.

The jobs appear in the Discovery Modules tree, and this is the entity that the user activates, as
shown in the picture below.

Choose a Trigger TQL
Each job is associated with Trigger TQLs. These Trigger TQLs publish results that are used as
Input Trigger CIs for the adapter of this job.

A Trigger TQL can add constraints to an Input TQL. For example, if an input TQL's results are IPs
connected to SNMP, a trigger TQL's results can be IPs connected to SNMP within the range
195.0.0.0-195.0.0.10.

Note: A trigger TQLmust refer to the same objects that the input TQL refers to. For example, if
an input TQL queries for IPs running SNMP, you cannot define a trigger TQL (for the same job)
to query for IPs connected to a host, because some of the IPs may not be connected to an
SNMP object, as required by the input TQL.

Set Scheduling Information
The scheduling information for the Probe specifies when to run the code on Trigger CIs. If the
Invoke on new triggered CIs Immediately check box is selected, the code also runs once on
each Trigger CI when it reaches the Probe, regardless of future schedule settings.

HP Business ServiceManagement (9.20)Page 38 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

For each scheduled occurrence for each job, the Probe runs the code against all Trigger CIs
accumulated for that job. For details, see Discovery Scheduler Dialog Box in theData Flow
Management Guide.

Override Adapter Parameters
When configuring a job you can override the adapter parameters. For details, see "Override Adapter
Parameters" on page 35.

HP Business ServiceManagement (9.20)Page 39 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Step 3: Create Jython Code
Run-time ServiceModel uses Jython scripts for adapter-writing. For example, the SNMP_
Connection.py script is used by the SNMP_NET_Dis_Connection adapter to try and connect
to machines using SNMP. Jython is a language based on Python and powered by Java.

For details on how to work in Jython, you can refer to theseWeb sites:

l http://www.jython.org

l http://www.python.org

For details, see "Create Jython Code" on page 53.

HP Business ServiceManagement (9.20)Page 40 of 344

RTSM Developer Reference Guide
Chapter 1: Adapter Development andWriting

Configure Remote Process Execution
You can run discovery for a discovery job in a process separate from the Data Flow Probe's
process.

For example, you can run the job in a separate remote process if the job uses jar libraries that are a
different version to the Probe's libraries or that are incompatible with the Probe's libraries.

You can also run the job in a separate remote process if the job potentially consumes a lot of
memory (brings a lot of data) and you want to isolate the Probe from potential OutOMemory
problems.

To configure a job to run as a remote process, define the following parameters in its adapter's
configuration file:

Parameter Description

remoteJVMArgs JVM parameters for the remote Java process.

runInSeparateProcess When set to true, the discovery job runs in a separate process.

remoteJVMClasspath (Optional) Enables customization of the classpath of the remote
process, overriding the default Probe classpath. This is useful if there
might be version incompatibility between the Probe's jars and custom
jars required for the customer-defined discovery.

If the remoteJVMClasspath parameter is not defined, or is left empty,
the default Probe classpath is used.

If you develop a new discovery job and you want to ensure that the
Probe jar library version does not collide with the job's jar libraries, you
must use at least theminimal classpath required to execute basic
discovery. Theminimal classpath is defined in the
DiscoveryProbe.properties file in the basic_discovery_minimal_
classpath parameter.

Examples of remoteJVMClasspath customization:

l To prepend or append custom jars to the default Probe classpath.
customize the remoteJVMClasspath parameter as follows:

custom1.jar;%classpath%;custom2.jar -

In this case, custom1.jar is placed before default Probe classpath,
and custom2.jar is appended to the Probe classpath.

l To use theminimal classpath, customize the
remoteJVMClasspath parameter as follows:

custom1.jar;%minimal_classpath%;custom2.jar

HP Business ServiceManagement (9.20)Page 41 of 344

Chapter 2

Discovery Content Migration Guidelines
This chapter includes:

Discovery Content Migration Guidelines Overview 43

Version 9.0x New Infrastructure Features 44

Guidelines for Developing Cross-DataModel Scripts 47

Implementation Tips 48

PackageMigration Utility 49

Troubleshooting and Limitations 50

HP Business ServiceManagement (9.20)Page 42 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Discovery Content Migration Guidelines Overview
In BSM version 9.0x, the datamodel significantly evolved, forcing correlated changes in the former
Data Flow Management content code. Consequently, some coremechanisms of the Data Flow
Management content have changed. Thus, content developed for BSM prior to version 9.0x has to
be upgraded to correspond with the 9.0x datamodel (UDM: Universal DataModel). This section
guides you through the process of adopting Data Flow Management content and aligning it with
UDM.

HP Business ServiceManagement (9.20)Page 43 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Version 9.0x New Infrastructure Features

Note: For details on accessing the UDM documentation online, see Access Universal Data
Model (UDM) Documentation Online.

This section includes:

Differences between BSM 8.0x Class Model and BSM 9.0x Data Model
Changes made between the BSM version 8.0x class model and UDM are downloaded to the Probe
in the following Discovery configuration file:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\
discoveryConfigFiles\flat-class-model-changes.xml.

bdm_changes.xml. This XML file holds information regarding changes made to class names,
attributes names, removed classes, attributes, qualifiers, and so on.

New CIT Identification Mechanism
In BSM versions prior to version 9.0x, key attributes are used to identify CIs. In BSM version 9.0x,
this concept has been generalized and the identification is now done in a server component named
Reconciliation Engine. The Reconciliation Engine is capable of identifying CIs by logical rules
called DDA (Data Definition Algorithm) rules.

This new mechanism is mostly useful for CITs where the related topology is important for their
identification (for example, the Node CIT—Host in prior versions—is identified by its name and the
related topology, such as the IP Address and Interface CITs). SomeCITs are still identified by key
attributes; for those CITs, a DDA rule is not defined.

For details about the Reconciliation Engine, see Reconciliation Overview in the Data Flow
Management Guide.

Running Software Mechanism
The version 8.0x Software ElementCI is calledRunning Software in version 9.0x UDM. This
CIT is identified in version 9.0x by a DDA rule and not by key attributes.

Say you have added a custom CIT derived from theRunning SoftwareCIT. In previous versions
this custom CIT was identified by its key attributes. However, in version 9.0x it is identified by an
inherited DDA rule, and thus defined key attributes are ignored.

So if you add a derived CIT, consider the following:

l To identify the new CIT by the sameDDA rule as all the Running Software CITs, you should
keep the current configuration.

l To identify the new CIT by key attributes, you should create a new DDA rule, defining the
identification by key attributes. Following is an example for such a DDA rule, defined for the
objectCIT:

<identification-config type="object">

 <identification-criteria>

 <identification-criterion targetType="root">

 <key-attributes-condition>

HP Business ServiceManagement (9.20)Page 44 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

 </identification-criterion>

</identification-criteria>

</identification-config>

Probe Side Identification
DDM_ID_ATTRIBUTE. The version 9.0x Data Flow Probe identifies CIs only by their key
attributes (that is, ID_ATTRIBUTE). If a CIT includes a DDA rule (that is, a reconciliation rule), the
CIT may not include a key attribute. In this case, the CIT main attributes aremarked with aDDM_
ID_ATTRIBUTE qualifier. Therefore, for the purposes of identifying a CI, the Probe considers all
DDM_ID_ATTRIBUTE as well as ID_ATTRIBUTE qualifiers.

DDM_REQUIRED_TOPOLOGY. A DDA rule for a specific CIT may depend on different CIs
reported in the same bulk, together with the examined CI. For example, J2EE Domain CIT
identification is carried out not only by the domain name attribute but also by the J2EE Application
Server CIT connected to it with amembership link.

To ensure that all the required CIs are reported with the examined CI, you shouldmark each one of
the examined CIs with the DDM_REQUIRED_TOPOLOGY qualifier that contains a data item
specifying the required link type. For example, in the above example, the J2EE Domain CIT is
marked with the DDM_REQUIRED_TOPOLOGY qualifier and with amember link data item, so
that when Discovery reports a J2EE domain, the servers are also reported. Data item namewhich
specifies link types is LINK_TYPES.

As an example, to identify the Node CIT by interfaces and IPs connected to it, then the following
qualifier should be added to the Node CIT definition:

<Class-Qualifier name="DDM_REQUIRED_TOPOLOGY">

 <Data-Items>

 <Data-Item name="LINK_TYPES" type="string">containment,

composition</Data-Item>

 <Data-Item name="LINK_ENDS" type="string">ip_address,

interface</Data-Item>

 <Data-Item name="LINK_DIRECTIONS" type="string">OUT,OUT</Data-

Item>

 <Data-Item name="APPLY_TO_CHILD_TYPES"

type="string">true</Data-Item>

 </Data-Items>

</Class-Qualifier>

where:

l LINK_TYPES (mandatory) indicates the link types of the current CIT topology.

l LINK_ENDS (optional) provides definitions for the CITs on the opposite ends of the specified
link types according to their appearance in the LINK_TYPES list. These "opposite" ends are
always applied hierarchically.

Omitting the LINK_ENDS data item or leaving one end as an empty string in the list means that
the opposite end can be of any CIT.

l LINK_DIRECTION (optional) indicates the link direction, "OUT", "IN" or "BOTH", to check from
the current CIT.

HP Business ServiceManagement (9.20)Page 45 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Omitting the LINK_DIRECTION data item or leaving an empty entry in the list means that both
directions are checked.

l APPLY_TO_CHILD_TYPES (optional) indicates that the qualifier will be applied recursively to
all children of the current CIT.

Omitting the APPLY_TO_CHILD_TYPES data itemmeans that the qualifier is applied only to
the current CIT.

If DDM_REQUIRED_TOPOLOGY is defined for a specific CIT, this will override the qualifier
defined for its parent.

For details on qualifiers, seeQualifiers Page in theModeling Guide.

Transformation Layer
To ensure backward compatibility, a new transformationmechanism is introduced in version 9.0x
on the Probe. The new mechanism is capable of converting version 8.0x topologies to 9.0x
topologies at runtime. It enables the Probe to continue running tasks, such as Jython scripts, which
report topologies compatible with version 8.0x.

The new transformationmechanism uses the data kept in the bdm_changes.xml file, and
performs the required changes (class and attributes name changes, attribute removal, hierarchy
changes, and so on) to make the 8.0x topologies compatible with the UDM. Concurrently (and
independently of the topologies reported by the tasks executed by the Probe), the BSM Server
receives topologies compatible with UDM.

HP Business ServiceManagement (9.20)Page 46 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Guidelines for Developing Cross-Data Model
Scripts

The following guidelines are applicable for both version 8.0x and 9.0x.

Discovery Scripts API Library

The Discovery API library is fully backward compatible and therefore all version 8.0x libraries and
APIs are supported. For details, see "Jython Libraries and Utilities" on page 89.

The 9.0x API includes more elements andmethods. For example, a Jython script now reports an
error code (integer) instead of a string error message, thus enabling localized discovery error
messages. For details, see "Error-Writing Conventions" on page 94.

HP Business ServiceManagement (9.20)Page 47 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Implementation Tips
l Use themodelingmodule for creating aRunning SoftwareCIT or any descendant for which

the relevant method is present.

l UseHostBuilder for creating CIT of typeNode.

l Use themodeling.createOshByCmdbIdString to restore OSH by its ID.

l Use theShellUtils instance of the shellutilsmodule for all shell-based connections.

l Use the built-in mechanism to retrieve the BSM version: logger.Version().getVersion
(framework). For example, if an additional attribute application_ip is added only for
BSM version 9.0x or later:

versionAsDouble = logger.Version().getVersion(Framework)

if versionAsDouble >= 9:

 appServerOSH.setAttribute('application_ip', ip)

l Usewmiutils for creating aWMI-based discovery.

l Use snmputils for creating a SNMP-based discovery.

HP Business ServiceManagement (9.20)Page 48 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Package Migration Utility
The BSM 9.0x installation includes an external PackageMigration Utility that enables content
developers to convert a content package from the 8.0x class model to the 9.0x datamodel. The
PackageMigration Utility converts package resources, subsystem by subsystem, so that they are
compatible with the new class model. CIT definitions, queries, jobs, adapters, andmodules are
transformed according to the data held in the bdm_changes.xml file. As a result, they can be
deployed and used by a BSM 9.0x Server.

Package Migration Utility Limitations
l Jython scripts are not upgraded by the PackageMigration Utility. For supporting scripts that are

designed to correspond with the BSM version 8.0x class model, a new Transformation layer
module is introduced in BSM 9.0x. For details, see "Transformation Layer" on page 46.

l Discovery Adapters of type Integration are not upgraded by the PackageMigration Utility and
thus should be upgradedmanually.

l The Layer 2 Topology discovery job (and its corresponding resources, such as Discovery
Adapter, TQL, and so on) has significantly changed and is removed by the PackageMigration
Utility instead of being upgraded.

HP Business ServiceManagement (9.20)Page 49 of 344

RTSM Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Troubleshooting and Limitations
l The ip_address value is not passed by default to the pattern. It should be added explicitly to the

pattern as Trigger CI Data.

l If a non-out-of-the-box Jython script requires an external jar or resource in the classpath, it
should be located in the relevant package under a sub-folder named discoveryResources.

l While working with attributes of type List such as StringVector and IntegerVector (inherited
from BaseVector), you cannot use both the add element and remove element operations on
the same list object.

HP Business ServiceManagement (9.20)Page 50 of 344

Chapter 3

Developing Jython Adapters
This chapter includes:

HP Data Flow Management API Reference 52

Create Jython Code 53

Support Localization in Jython Adapters 64

Work with Discovery Analyzer 71

Run Discovery Analyzer from Eclipse 77

Record DFM Code 87

Jython Libraries and Utilities 89

HP Business ServiceManagement (9.20)Page 51 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

HP Data Flow Management API Reference
For full documentation on the available APIs, seeHP Universal CMDB Data Flow Management
API Reference. These files are located in the following folder:

\\< Gateway Server root directory>\AppServer\webapps\site.war\amdocs\eng\API_
docs\DDM_JavaDoc\index.html

HP Business ServiceManagement (9.20)Page 52 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Create Jython Code
Run-time ServiceModel uses Jython scripts for adapter-writing. For example, the SNMP_
Connection.py script is used by the SNMP_NET_Dis_Connection adapter to try and connect
to machines using SNMP. Jython is a language based on Python and powered by Java.

For details on how to work in Jython, you can refer to theseWeb sites:

l http://www.jython.org

l http://www.python.org

The following section describes the actual writing of Jython code inside the DFM Framework. This
section specifically addresses those contact points between the Jython script and the Framework
that it calls, and also describes the Jython libraries and utilities that should be used whenever
possible.

Note:

l Scripts written for DFM should be compatible with Jython version 2.1.

l For full documentation on the available APIs, see theHP Universal CMDB Data Flow
Management API Reference.

This section includes the following topics:

l "Use External Java JAR Files within Jython" below

l "Execution of the Code" on next page

l "Modifying Out-of-the-Box Scripts" on next page

l "Structure of the Jython File" on next page

l "Results Generation by the Jython Script" on page 57

l "The Framework Instance" on page 59

l "Finding the Correct Credentials (for Connection Adapters)" on page 62

l "Handling Exceptions from Java" on page 63

Use External Java JAR Files within Jython
When developing new Jython scripts, external Java Libraries (JAR files) or third-party executable
files are sometimes needed as either Java utility archives, connection archives such as JDBC
Driver JAR files, or executable files (for example, nmap.exe is used for credential-less discovery).

These resources should be bundled in the package under theExternal Resources folder. Any
resource put in this folder is automatically sent to any Probe that connects to your RTSM server.

In addition, when discovery is launched, any JAR file resource is loaded into the Jython's
classpath, making all the classes within it available for import and use.

HP Business ServiceManagement (9.20)Page 53 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Execution of the Code
After a job is activated, a task with all the required information is downloaded to the Probe.

The Probe starts running the DFM code using the information specified in the task.

The Jython code flow starts running from amain entry in the script, executes code to discover CIs,
and provides results of a vector of discovered CIs.

Modifying Out-of-the-Box Scripts
Whenmaking out-of-the-box script modifications, make only minimal changes to the script and
place any necessary methods in an external script. You can track changes more efficiently and,
whenmoving to a newer Run-time ServiceModel version, your code is not overwritten.

For example, the following single line of code in an out-of-the-box script calls amethod that
calculates aWeb server name in an application-specific way:

serverName = iplanet_cspecific.PlugInProcessing(serverName,

transportHN, mam_utils)

Themore complex logic that decides how to calculate this name is contained in an external script:

implement customer specific processing for 'servername' attribute of

httpplugin

#

def PlugInProcessing(servername, transportHN, mam_utils_handle):

 # support application-specific HTTP plug-in naming

 if servername == "appsrv_instance":

 # servername is supposed to match up with the j2ee

server name, however some groups do strange things with their

 # iPlanet plug-in files. this is the best work-around

we could find. this join can't be done with IP address:port

 # because multiple apps on a web server share the same

IP:port for multiple websphere applications

 logger.debug('httpcontext_webapplicationserver

attribute has been changed from [' + servername + '] to [' +

transportHN[:5] + '] to facilitate websphere enrichment')

 servername = transportHN[:5]

 return servername

Save the external script in the External Resources folder. For details, see Resources Pane in the
Data Flow Management Guide. If you add this script to a package, you can use this script for other
jobs, too. For details on working with PackageManager, see "PackageManager" in theRTSM
Administration Guide.

During upgrade, the change youmake to the single line of code is overwritten by the new version of
the out-of-the-box script, so you will need to replace the line. However, the external script is not
overwritten.

Structure of the Jython File
The Jython file is composed of three parts in a specific order:

HP Business ServiceManagement (9.20)Page 54 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

1. "Imports" below

2. "Structure of the Jython File" on previous page

3. "Functions Definition" on next page (optional)

The following is an example of a Jython script:

imports section

from appilog.common.system.types import ObjectStateHolder

from appilog.common.system.types.vectors import

ObjectStateHolderVector

Function definition

def foo:

 # do something

Main Function

def DiscoveryMain(Framework):

 OSHVResult = ObjectStateHolderVector()

 ## Write implementation to return new result CIs here...

 return OSHVResult

Imports

Jython classes are spread across hierarchical namespaces. In version 7.0 or later, unlike in
previous versions, there are no implicit imports, and so every class you usemust be imported
explicitly. (This change was made for performance reasons and to enable an easier understanding
of the Jython script by not hiding necessary details.)

l To import a Jython script:

import logger

l To import a Java class:

from appilog.collectors.clients import ClientsConsts

Main Function – DiscoveryMain

Each Jython runable script file contains amain function: DiscoveryMain.

The DiscoveryMain function is themain entry into the script; it is the first function that runs. The
main functionmay call other functions that are defined in the scripts:

def DiscoveryMain(Framework):

The Framework argument must be specified in themain function definition. This argument is used
by themain function to retrieve information that is required to run the scripts (such as information on
the Trigger CI and parameters) and can also be used to report on errors that occur during the script
run.

You can create a Jython script without any mainmethod. Such scripts are used as library scripts
that are called from other scripts.

HP Business ServiceManagement (9.20)Page 55 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Functions Definition

Each script can contain additional functions that are called from themain code. Each such function
can call another function, which either exists in the current script or in another script (use the
import statement). Note that to use another script, youmust add it to the Scripts section of the
package:

Example of a Function Calling Another Function:

In the following example, themain code calls the doQueryOSUsers(..)method which calls
an internal method doOSUserOSH(..):

def doOSUserOSH(name):

 sw_obj = ObjectStateHolder('winosuser')

 sw_obj.setAttribute('data_name', name)

 # return the object

 return sw_obj

def doQueryOSUsers(client, OSHVResult):

 _hostObj = modeling.createHostOSH(client.getIpAddress())

 data_name_mib = '1.3.6.1.4.1.77.1.2.25.1.1,

1.3.6.1.4.1.77.1.2.25.1.2,string'

 resultSet = client.executeQuery(data_name_mib)

 while resultSet.next():

 UserName = resultSet.getString(2)

 ########## send object ##############

 OSUserOSH = doOSUserOSH(UserName)

 OSUserOSH.setContainer(_hostObj)

 OSHVResult.add(OSUserOSH)

def DiscoveryMain(Framework):

 OSHVResult = ObjectStateHolderVector()

 try:

HP Business ServiceManagement (9.20)Page 56 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

 client = Framework.getClientFactory(ClientsConsts.SNMP_

PROTOCOL_NAME).createClient()

 except:

 Framework.reportError('Connection failed')

 else:

 doQueryOSUsers(client, OSHVResult)

 client.close()

 return OSHVResult

If this script is a global library that is relevant to many adapters, you can add it to the list of scripts in
the jythonGlobalLibs.xml configuration file, instead of adding it to each adapter (Admin >
RTSM Administration > Adapter Management > Resources Pane >
AutoDiscoveryContent > Configuration Files).

Results Generation by the Jython Script
Each Jython script runs on a specific Trigger CI, and ends with results that are returned by the
return value of the DiscoveryMain function.

The script result is actually a group of CIs and links that are to be inserted or updated in the RTSM.
The script returns this group of CIs and links in the format of ObjectStateHolderVector.

The ObjectStateHolder class is a way to represent an object or link defined in the RTSM. The
ObjectStateHolder object contains the CIT name and a list of attributes and their values. The
ObjectStateHolderVector is a vector of ObjectStateHolder instances.

The ObjectStateHolder Syntax

This section explains how to build the DFM results into a BSMmodel.

HP Business ServiceManagement (9.20)Page 57 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Example of Setting Attributes on the CIs:

TheObjectStateHolder class describes the DFM result graph. Each CI and link (relationship) is
placed inside an instance of the ObjectStateHolder class as in the following Jython code
sample:
siebel application server 1 appServerOSH = ObjectStateHolder('siebelappserver') 2
appServerOSH.setStringAttribute('data_name', sblsvrName) 3
appServerOSH.setStringAttribute ('application_ip', ip) 4 appServerOSH.setContainer
(appServerHostOSH)
l Line 1 creates a CI of type siebelappserver.

l Line 2 creates an attribute called data_namewith a value of sblsvrNamewhich is a Jython
variable set with the value discovered for the server name.

l Line 3 sets a non-key attribute that is updated in the RTSM.

l Line 4 is the building of containment (the result is a graph). It specifies that this application
server is contained inside a host (another ObjectStateHolder class in the scope).

Note: Each CI being reported by the Jython script must include values for all the key attributes
of the CI's CI Type.

Example of Relationships (Links):

The following link example explains how the graph is represented:
1 linkOSH = ObjectStateHolder('route') 2 linkOSH.setAttribute('link_end1', gatewayOSH) 3
linkOSH.setAttribute('link_end2', appServerOSH)
l Line 1 creates the link (that is also of the ObjectStateHolder class. The only difference

is that route is a link CI Type).

l Lines 2 and 3 specify the nodes at the end of each link. This is done using the end1 and
end2 attributes of the link whichmust be specified (because they are theminimal key
attributes of each link). The attribute values are ObjectStateHolder instances. For
details on End 1 and End 2, see Link in theData Flow Management Guide.

Caution: A link is directional. You should verify that End 1 and End 2 nodes correspond to valid
CITs at each end. If the nodes are not valid, the result object fails validation and is not reported
correctly. For details, see CI Type Relationships in theHP Universal CMDB Modeling Guide.

Example of Vector (Gathering CIs):

After creating objects with attributes, and links with objects at their ends, youmust now group
them together. You do this by adding them to an ObjectStateHolderVector instance, as
follows:

oshvMyResult = ObjectStateHolderVector()

oshvMyResult.add(appServerOSH)

oshvMyResult.add(linkOSH)

For details on reporting this composite result to the Framework so it can be sent to the RTSM
server, see the sendObjects method in the Interface BaseFramework API documentation.

HP Business ServiceManagement (9.20)Page 58 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Once the result graph is assembled in an ObjectStateHolderVector instance, it must be
returned to the DFM Framework to be inserted into the RTSM. This is done by returning the
ObjectStateHolderVector instance as the result of the DiscoveryMain() function.

Note: For details on creatingOSH for commonCITs, see "modeling.py" in "Jython Libraries
and Utilities" on page 89.

The Framework Instance
The Framework instance is the only argument that is supplied in themain function in the Jython
script. This is an interface that can be used to retrieve information required to run the script (for
example, information on trigger CIs and adapter parameters), and is also used to report on errors
that occur during the script run. For details, see "HP Data Flow Management API Reference" on
page 52.

The correct usage of Framework instance is to pass it as argument to eachmethod that uses it.

Example:

def DiscoveryMain(Framework):

OSHVResult = helperMethod (Framework)

 return OSHVResult

def helperMethod (Framework):

probe_name = Framework.getDestinationAttribute('probe_

name')

...

return result

This section describes themost important Framework usages:

l "Framework.getTriggerCIData(String attributeName)" below

l "Framework.createClient(credentialsId, props)" on next page

l "Framework.getParameter (String parameterName)" on page 61

l "Framework.reportError(Stringmessage) and Framework.reportWarning(Stringmessage)" on
page 62

Framework.getTriggerCIData(String attributeName)
This API provides the intermediate step between the Trigger CI data defined in the adapter and the
script.

HP Business ServiceManagement (9.20)Page 59 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Example of Retrieving Credential Information:

You request the following Trigger CI data information:

To retrieve the credential information from the task, use this API:

credId = Framework.getTriggerCIData('credentialsId')

Framework.createClient(credentialsId, props)
Youmake a connection to a remotemachine by creating a client object and executing commands
on that client. To create a client, retrieve the ClientFactory class. The getClientFactory()
method receives the type of the requested client protocol. The protocol constants are defined in the
ClientsConsts class in the API documentation. For details on credentials and supported protocols,
see Domain Credential References in theData Flow Management Guide.

Example of Creating a Client Instance for the Credentials ID:

To create a Client instance for the credentials ID:

properties = Properties()

codePage = Framework.getCodePage()

properties.put(BaseAgent.ENCODING, codePage)

client = Framework.createClient(credentailsID ,properties)

You can now use the Client instance to connect to the relevant machine or application.

Example of Creating a WMI Client and Running a WMI Query:

To create aWMI client and run aWMI query using the client:

wmiClient = Framework.createClient(credential)

resultSet = wmiClient. executeQuery("SELECT TotalPhysicalMemory

FROM Win32_LogicalMemoryConfiguration")

Note: Tomake the createClient() API work, add the following parameter to the Trigger CI
data parameters: credentialsId = ${SOURCE.credentials_id} in the Triggered CI Data pane.
Or you canmanually add the credentials ID when calling the function:
wmiClient = clientFactory().createClient(credentials_id).

HP Business ServiceManagement (9.20)Page 60 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

The following diagram illustrates the hierarchy of the clients, with their commonly-supported
APIs:

For details on the clients and their supported APIs, see BaseClient, ShellClient, and
QueryClient in theHP Discovery and Dependency Mapping SchemaReference. These files
are located in the following folder:

\\<BSM root directory>\AppServer\webapps\site.war\amdocs\eng\API_docs\DDM_
Schema\webframe.html

Framework.getParameter (String parameterName)
In addition to retrieving information on the Trigger CI, you often need to retrieve an adapter
parameter value. For example:

Example of Retrieving the Value of the protocolType Parameter:

To retrieve the value of the protocolType parameter from the Jython script, use the
following API:

protocolType = Framework.getParameterValue('protocolType')

HP Business ServiceManagement (9.20)Page 61 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Framework.reportError(String message) and Framework.reportWarning
(String message)
Some errors (for example, connection failure, hardware problems, timeouts) can occur during a
script run. When such errors are detected, Framework can report on the problem. Themessage that
is reported reaches the server and is displayed for the user.

Example of a Report Error and Message:

The following example illustrates the use of the reportError(<Error Msg>) API:

try:

 client = Framework.getClientFactory(ClientsConsts.SNMP_

PROTOCOL_NAME)

 createClient()

except:

 strException = str(sys.exc_info()[1]).strip()

 Framework. reportError ('Connection failed: %s' %

strException)

You can use either one of the APIs—Framework.reportError(String message),
Framework.reportWarning(String message)—to report on a problem. The difference
between the two APIs is that when reporting an error, the Probe saves a communication log file with
the entire session's parameters to the file system. In this way you are able to track the session and
better understand the error.

Finding the Correct Credentials (for Connection
Adapters)

An adapter trying to connect to a remote system needs to try all possible credentials. One of the
parameters needed when creating a client (through ClientFactory) is the credentials ID. The
connection script gains access to possible credential sets and tries them one by one using the
clientFactory.getAvailableProtocols() method. When one credential set succeeds,
the adapter reports a CI connection object on the host of this trigger CI (with the credentials ID that
matches the IP) to the RTSM. Subsequent adapters can use this connection object CI directly to
connect to the credential set (that is, the adapters do not have to try all possible credentials again).

The following example shows how to obtain all entries of the SNMP protocol. Note that here the IP
is obtained from the Trigger CI data (# Get the Trigger CI data values).

The connection script requests all possible protocol credentials (# Go over all the

protocol credentials) and tries them in a loop until one succeeds (resultVector). For
details, see the two-phase connect paradigm entry in "Separating Adapters" on page 27.

import logger

from appilog.collectors.clients import ClientsConsts

from appilog.common.system.types.vectors import

ObjectStateHolderVector

 def mainFunction(Framework):

resultVector = ObjectStateHolderVector()

 # Get the Trigger CI data values

 ip_address = Framework.getDestinationAttribute('ip_address')

HP Business ServiceManagement (9.20)Page 62 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

 ip_domain = Framework.getDestinationAttribute('ip_domain')

 # Create the client factory for SNMP

 clientFactory = framework.getClientFactory(ClientsConsts.SNMP_

PROTOCOL_NAME)

 protocols = clientFactory.getAvailableProtocols(ip_address,

ip_domain)

 connected = 0

 # Go over all the protocol credentials

 for credentials_id in protocols:

 client = None

 try:

 # try to connect to the snmp agent

 client = clientFactory.createClient(credentials_id)

 // Query the agent

 # connection succeed

 connected = 1

 except:

 if client != None:

 client.close()

 if (not connected):

 logger.debug('Failed to connect using all credentials')

 else:

 // return the results as OSHV

 return resultVector

Handling Exceptions from Java
Some Java classes throw an exception upon failure. It is recommended to catch the exception and
handle it, otherwise it causes the adapter to terminate unexpectedly.

When catching a known exception, in most cases you should print its stack trace to the log and
issue a proper message to the UI, for example:

try:

 client = Framework.getClientFactory().createClient()

except Exception, msg:

 Framework.reportError('Connection failed')

 logger.debugException('Exception while connecting: %s' %

(msg))

 return

If the exception is not fatal and the script can continue, you should omit the call for the
reportError()method and enable the script to continue.

HP Business ServiceManagement (9.20)Page 63 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Support Localization in Jython Adapters
Themulti-lingual locale feature enables DFM to work across different operating system (OS)
languages, and to enable appropriate customizations at runtime.

Previously, before Content Pack 3.00, DFM used statically-specified encoding to treat output from
all network targets. However, this approach does not suit a multi-lingual IT network: to discover
hosts with different OS languages, Probe administrators had to re-run DFM jobs manually several
times with different job parameters each time. This procedure produced a serious overhead on
network load but, evenmore, it avoided several key features of DFM, such as immediate job
invocation on a trigger CI or automatic data refreshing in RTSM by the ScheduleManager.

The following locale languages are supported by default: Japanese, Russian, andGerman. The
default locale is English.

This section includes:

l "Add Support for a New Language" below

l "Change the Default Language" on next page

l "Determine the Character Set for Encoding" on page 66

l "Define a New Job to OperateWith Localized Data" on page 66

l "Decode Commands Without a Keyword" on page 67

l "Work with Resource Bundles" on page 68

l "API Reference" on page 69

Add Support for a New Language
This task describes how to add support for a new language.

This task includes the following steps:

l "Add a Resource Bundle (*.properties Files)" below

l "Declare and Register the LanguageObject" on next page

1. Add a Resource Bundle (*.properties Files)
Add a resource bundle according to the job that is to be run. The following table lists the DFM
jobs and the resource bundle that is used by each job:

Job
Base Name of Resource
Bundle

File Monitor by Shell langFileMonitoring

Host Resources and Applications by Shell langHost_Resources_By_
TTY, langTCP

HP Business ServiceManagement (9.20)Page 64 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Job
Base Name of Resource
Bundle

Hosts by Shell using NSLOOKUP in DNS Server langNetwork

Host Connection by Shell langNetwork

Collect Network Data by Shell or SNMP langTCP

Host Resources and Applications by SNMP langTCP

Microsoft Exchange Connection by NTCMD, Microsoft
Exchange Topology by NTCMD

msExchange

MS Cluster by NTCMD langMsCluster

For details on bundles, see "Work with Resource Bundles" on page 68.

2. Declare and Register the Language Object
To define a new language, add the following two lines of code to the shellutils.py script, that
currently contains the list of all supported languages. The script is included in the
AutoDiscoveryContent package. To view the script, access the Adapter Management
window. For details, see Adapter Management Window in the Data Flow Management Guide.

a. Declare the language, as follows:

LANG_RUSSIAN = Language(LOCALE_RUSSIAN, 'rus', ('Cp866',

'Cp1251'), (1049,), 866)

For details on class language, see "API Reference" on page 69. For details on the Class
Locale object, see http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html. You can
use an existing locale or define a new locale.

b. Register the language by adding it to the following collection:

LANGUAGES = (LANG_ENGLISH, LANG_GERMAN, LANG_SPANISH, LANG_

RUSSIAN, LANG_JAPANESE)

Change the Default Language
If the OS language cannot be determined, the default one is used. The default language is specified
in the shellutils.py file.

#default language for fallback

DEFAULT_LANGUAGE = LANG_ENGLISH

To change the default language, you initialize the DEFAULT_LANGUAGE variable with a different
language. For details, see "Add Support for a New Language" on previous page.

HP Business ServiceManagement (9.20)Page 65 of 344

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Determine the Character Set for Encoding
The suitable character set for decoding command output is determined at runtime. Themulti-lingual
solution is based on the following facts and assumptions:

1. It is possible to determine the OS language in a locale-independent way, for example, by
running the chcp command onWindows or the locale command on Linux.

2. Relation Language-Encoding is well known and can be defined statically. For example, the
Russian language has two of themost popular encoding: Cp866 and Windows-1251.

3. One character set for each language is preferable, for example, the preferable character set for
Russian language is Cp866. This means that most of the commands produce output in this
encoding.

4. Encoding in which the next command output is provided is unpredictable, but it is one of the
possible encoding for a given language. For example, when working with aWindows machine
with a Russian locale, the system provides the ver command output in Cp866, but the
ipconfig command is provided inWindows-1251.

5. A known command produces known key words in its output. For example, the ipconfig
command contains the translated form of the IP-Address string. So the ipconfig command
output contains IP-Address for the English OS, for the Russian OS, IP-Adresse
for the GermanOS, and so on.

Once it is discovered in which language the command output is produced (point 1 above), possible
character sets are limited to one or two (point 2 above). Furthermore, it is knownwhich key words
are contained in this output (point 5 above).

The solution, therefore, is to decode the command output with one of the possible encoding by
searching for a key word in the result. If the key word is found, the current character set is
considered the correct one.

Define a New Job to Operate With Localized Data
This task describes how to write a new job that can operate with localized data.

Jython scripts usually execute commands and parse their output. To receive this command output
in a properly decodedmanner, use the API for theShellUtils class. For details, see "RTSM (HP
Universal CMDB)Web Service API Overview" on page 260.

This code usually takes the following form:

client = Framework.createClient(protocol, properties)

shellUtils = shellutils.ShellUtils(client)

languageBundle = shellutils.getLanguageBundle ('langNetwork',

shellUtils.osLanguage, Framework)

strWindowsIPAddress = languageBundle.getString('windows_ipconfig_

str_ip_address')

ipconfigOutput = shellUtils.executeCommandAndDecode('ipconfig

/all', strWindowsIPAddress)

HP Business ServiceManagement (9.20)Page 66 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

#Do work with output here

1. Create a client:

client = Framework.createClient(protocol, properties)

2. Create an instance of theShellUtils class and add the operating system language to it. If the
language is not added, the default language is used (usually English):

shellUtils = shellutils.ShellUtils(client)

During object initialization, DFM automatically detects machine language and sets preferable
encoding from the predefined Language object. Preferable encoding is the first instance
appearing in the encoding list.

3. Retrieve the appropriate resource bundle from shellclient using the getLanguageBundle
method:

languageBundle = shellutils.getLanguageBundle ('langNetwork',

shellUtils.osLanguage, Framework)

4. Retrieve a keyword from the resource bundle, suitable for a particular command:

strWindowsIPAddress = languageBundle.getString('windows_ipconfig_

str_ip_address')

5. Invoke the executeCommandAndDecodemethod and pass the keyword to it on the
ShellUtils object:

ipconfigOutput = shellUtils.executeCommandAndDecode('ipconfig

/all', strWindowsIPAddress)

The ShellUtils object is also needed to link a user to the API reference (where this method
is described in detail).

6. Parse the output as usual.

Decode Commands Without a Keyword
The current approach for localization uses a keyword to decode all of the command output. For
details, see the step "Retrieve a keyword from the resource bundle, suitable for a particular
command:" in "Define a New Job to OperateWith Localized Data" on previous page.

However, another approach uses a keyword to decode the first command output only, and then
decodes further commands with the character set used to decode the first command. To do this,
you use the getCharsetName and useCharsetmethods of theShellUtils object.

The regular use case works as follows:

1. Invoke the executeCommandAndDecodemethod once.

2. Obtain themost recently used character set name through the getCharsetNamemethod.

3. Make shellUtils use this character set by default, by invoking the useCharsetmethod on the
ShellUtils object.

HP Business ServiceManagement (9.20)Page 67 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

4. Invoke the execCmdmethod of ShellUtils one or more times. The output is returned with the
character set specified in the previous step. No additional decoding operations occur.

Work with Resource Bundles
A resource bundle is a file that takes a properties extension (*.properties). A properties file can be
considered a dictionary that stores data in the format of key = value. Each row in a properties
file contains one key = value association. Themain functionality of a resource bundle is to
return a value by its key.

Resource bundles are located on the Probemachine:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\discoveryConfigFiles. They are
downloaded from the RTSM Server as any other configuration file. They can be edited, added, or
removed, in the Resources window. For details, see Configuration File Pane in the Data Flow
Management Guide.

When discovering a destination, DFM usually needs to parse text from command output or file
content. This parsing is often based on a regular expression. Different languages require different
regular expressions to be used for parsing. For code to be written once for all languages, all
language-specific datamust be extracted to resource bundles. There is a resource bundle for each
language. (Although it is possible that a resource bundle contain data for different languages, in
DFM one resource bundle always contains data for one language.)

The Jython script itself does not include hard coded, language-specific data (for example, language-
specific regular expressions). The script determines the language of the remote system, loads the
proper resource bundle, and obtains all language-specific data by a specific key.

In DFM, resource bundles take a specific name format: <base_name>_<language_
identifier>.properties, for example, langNetwork_spa.properties. (The default
resource bundle takes the following format: <base_name>.properties, for example,
langNetwork.properties.)

The base_name format reflects the intended purpose of this bundle. For example, langMsCluster
means the resource bundle contains language-specific resources used by theMS Cluster jobs.

HP Business ServiceManagement (9.20)Page 68 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

The language_identifier format is a 3-letter acronym used to identify the language. For
example, rus stands for the Russian language and ger for the German language. This language
identifier is included in the declaration of the Language object.

API Reference
This section includes:

l "The Language Class" below

l "The executeCommandAndDecodeMethod" below

l "The getCharsetNameMethod" on next page

l "The useCharset Method" on next page

l "The getLanguageBundle Method" on next page

l "The osLanguage Field" on next page

The Language Class
This class encapsulates information about the language, such as resource bundle postfix, possible
encoding, and so on.

Fields

Name Description

locale Java object which represents locale.

bundlePostfix Resource bundle postfix. This postfix is used in resource bundle file names to
identify the language. For example, the langNetwork_ger.properties bundle
includes a ger bundle postfix.

charsets Character sets used to encode this language. Each language can have several
character sets. For example, the Russian language is commonly encoded with
the Cp866 and Windows-1251 encoding.

wmiCodes The list of WMI codes used by theMicrosoft Windows OS to identify the
language. All possible codes are listed at http://msdn.microsoft.com/en-
us/library/aa394239(VS.85).aspx (the OSLanguage section). One of the
methods for identifying the OS language is to query theWMI class OS for the
OSLanguage property.

codepage Code page used with a specific language. For example, 866 is used for Russian
machines and 437 for Englishmachines. One of themethods for identifying the
OS language is to retrieve its default codepage (for example, by the chcp
command).

The executeCommandAndDecode Method
This method is intended to be used by business logic Jython scripts. It encapsulates the decoding
operation and returns a decoded command output.

HP Business ServiceManagement (9.20)Page 69 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Arguments

Name Description

cmd The actual command to be executed.

keyword The keyword to be used for the decoding operation.

framework The Framework object passed to every executable Jython script in DFM.

timeout The command timeout.

waitForTimeout Specifies if client should wait when timeout is exceeded.

useSudo Specifies if sudo should be used (relevant only for UNIX machine clients).

language Enables specifying the language directly instead of automatically detecting a
language.

The getCharsetName Method
This method returns the name of themost recently used character set.

The useCharset Method
This method sets the character set on the ShellUtils instance, which uses this character set for
initial data decoding.

Name Description

charsetName The name of the character set, for example, windows-1251 or UTF-8.

See also "The getCharsetNameMethod" above.

The getLanguageBundle Method
This method should be used to obtain the correct resource bundle. This replaces the following API:

Framework.getEnvironmentInformation().getBundle(...)

Name Description

baseName The name of the bundle without the language suffix, for example, langNetwork.

language The language object. The ShellUtils.osLanguage should be passed here.

framework The Framework, common object which is passed to every executable Jython script
in DFM.

The osLanguage Field
This field contains an object that represents the language.

HP Business ServiceManagement (9.20)Page 70 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Work with Discovery Analyzer
The Discovery Analyzer tool is intended for debugging purposes when developing packages,
scripts, or any other content. The tool runs a job against a remote destination and returns logs
containing information, warning, and error details and results of discovered CIs.

Note that results are not always reported to the UI. This is because the results are reported in two
ways and only one of them is supported. Also, the communication log is not supported from
Eclipse.

When executing the tool from Eclipse, theDiscoveryProbe.properties file
(C:\hp\UCMDB\DataFlowProbe\conf\DiscoveryProbe.properties) must contain the following
parameter set to true:

appilog.agent.local.discoveryAnalyzerFromEclipse = true

For details, see "Run Discovery Analyzer from Eclipse" on page 77.

In all other cases (when the tool is executed from the cmd file or while the Probe is running) this flag
must be set to false:

appilog.agent.local.discoveryAnalyzerFromEclipse = false

Tasks and Records
A task file contains data regarding a task to be executed. The task consists of information such as
the job's name and required parameters that define the trigger CI, for example, the remote
destination address.

A record file contains task information as well as the results of a specific execution, that is, the
detailed communication (including a response) between the Probe or Discovery Analyzer
(whichever module executed the task) and the remote destination.

A task that is defined by a task file can be executed against a remote destination, whereas a task
that is defined by a record file (that contains extra data regarding a specific execution) can be
executed and can also be played back (that is, can reproduce the same execution documented in
the record file).

Logs
Logs provide information about the latest run, as follows:

l General Log. This log includes all information data, errors, and warnings that occurred during
the run.

l Communication Log. This log contains the detailed communication between the Discovery
Analyzer and the remote destination (including its response). After the execution, the log can be
saved as a record file.

l Results Log. Displays a list of discovered CIs. The appearance time of each CI depends on the
design of the adapters and scripts.

HP Business ServiceManagement (9.20)Page 71 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

You can save all logs together or each log separately. When you save all the logs, they are saved
together under one name.

If you replay a record file, the same data is displayed in the communication log, the only difference
being the time of execution.

Limitation: The Communication and Results logs are not available when running Discovery
Analyzer through Eclipse.

This section includes the following steps:

l "Prerequisites" below

l "Access Discovery Analyzer" below

l "Define a Task" on next page

l "Define a New Task" on next page

l "Retrieve a Record" on page 74

l "Open a Task File" on page 75

l "Import a Task from the Database" on page 75

l "Edit a Task" on page 75

l "Save the Task and Logs" on page 75

l "Run the Task" on page 75

l "Send a Task Result to the Server" on page 75

l "Import Settings" on page 76

l "Breakpoints" on page 76

l "Configure Eclipse" on page 76

1. Prerequisites
n The Probemust be installed. (The Discovery Analyzer is installed as part of the Probe

installation process and shares resources with it.)

n The Probe does not need to be running while you are working with Discovery Analyzer.

However, if the Probe has already run against an RTSM Server, all the required resources are
already downloaded to the file system. If the Probe has not run, you can upload resources
needed by Discovery Analyzer through the Settings menu. For details, see "Import Settings"
on page 76.

n The RTSM Server does not need to be installed.

2. Access Discovery Analyzer
You access Discovery Analyzer either:

n Whenworking with Eclipse.

The Probe installation comes with a default Eclipse workspace located at
C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzerWorkspace. This workspace

HP Business ServiceManagement (9.20)Page 72 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

includes a Jython script to start Discovery Analyzer (startDiscoveryAnalyzerScript.py) as
well as a link to all DFM scripts. If you start the tool in this way, you can locate breakpoints
within the Jython scripts for debugging purposes.

n Directly, by double-clicking the file in the following folder:
C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzer.cmd. For details, see "Run
Discovery Analyzer from Eclipse" on page 77.

The Discovery Analyzer window opens:

3. Define a Task
You define a task using one of the followingmethods:

n By defining a new task. For details, see "Define a New Task" below.

n By importing a task from a record file. For details, see "Retrieve a Record" on next page.

n By importing a saved task from a task file. For details, see "Open a Task File" on page 75.

n By retrieving a job from the Probe's internal database. For details, see "Import a Task from
the Database" on page 75.

4. Define a New Task

a. Display the Task Editor: click theNew Task button .

The Task Editor displays a list of jobs that currently exist in the file system. This list is
updated each time the Probe receives tasks from the server, or packages are deployed
manually from the Settings menu.

HP Business ServiceManagement (9.20)Page 73 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

b. Select a job.

c. Enter values for all parameters.

The parameters displayed here are DFM adapter parameters. They can be viewed in the
Discovery Pattern Parameters pane in the Pattern Signature tab. For details, see Adapter
Definition Tab in theData Flow Management Guide.

All fields aremandatory (unless a job's script demands that the field be empty).

For parameters that require an ID or credentials ID input value, you can use randomly
created IDs: right-click the value box and select Generate random CMDB ID or
Credential Chooser.

The task is now active and the name of the open task is displayed in the title bar:

d. Continue with the procedure for defining a task. For details, see "Save the Task and Logs"
on next page.

5. Retrieve a Record
You can define a task by opening a record file containing data regarding a specific execution. If
a task is defined in this way, you can reproduce the specific execution by selecting the
playback option. (If a task is replayed, responses are received from the data stored in the
record file and not from the remote destination.)

Select File > Open Record. Browse to the folder where you saved the record. The record is
now active and the name of the task is displayed in the title bar.

For details on acquiring a record file, see "Record DFM Code" on page 87.

HP Business ServiceManagement (9.20)Page 74 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

6. Open a Task File
You can define a task from a task file: Select File > Open Task.

7. Import a Task from the Database
You can retrieve a task from the Probe database on condition that the Probe has already run
and has active tasks in its internal database. You can use the parameter values to define the
task.

a. Select File > Import Task from Probe Database.

b. In the dialog box that opens, select the task to run and click OK.

c. Continue with the procedure for defining a task. For details, see "Save the Task and Logs"
below.

8. Edit a Task
After a task is defined, the name of the task (or the file) is displayed in the title bar. Now the file
can be edited.

a. Select Edit > Edit Task.

b. Make any changes to the task and click OK.

9. Save the Task and Logs
You can save task parameters: Select File > Save Task.

The following options are available only after a task is executed:

n Save a record of the task. You can save the task parameters and the results of the task run:
Select File > Save Record.

n Save a log of the task: Select File > Save General Log.

n Save results: Select File > Save Results.

10. Run the Task
The next step in the procedure is to run the task you created.

a. Import the credentials/ranges configuration file. For details, see "Import Settings" on next
page.

b. To execute the task only against a remote destination, click theRun Task button.

Discovery Analyzer executes the job and displays information in the three log files:
General, Communication, andResults.

c. You can save the log files, either together or separately: Select File > Save General Log,
Save Record, Save Results, orSave All Logs. For details on the log files, see "Logs" on
page 71.

d. If a task is retrieved from a record file, the execution that is documented in this file can be
reproduced by clicking thePlayback button. The sameCommunication log is displayed,
but the execution time is updated.

11. Send a Task Result to the Server

HP Business ServiceManagement (9.20)Page 75 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

If a task's execution ends with results (that is, the Results Log tab displays a list of discovered
CIs), you can send the results to the RTSM Server. This is useful if, for example, you were
previously testing a script when the server was down.

Note: You can send results only to a an RTSM Server that receives tasks from the Probe
that is installed on the samemachine as Discovery Analyzer.

12. Import Settings
To run tasks or the playback record file, youmust import the domainScopeDocument.bin
file. During import, you enter a password.

a. Launch aWeb browser and enter the following URL: http://localhost:8080/jmx-console.
Youmay have to log in with a user name and password.

b. Click UCMDB:service=DiscoveryManager to open the JMX MBEAN View page.

c. Locate the exportCredentialsAndRangesInformation operation. Do the following:

o Enter the customer ID (the default is 1).

o Enter a name for the exported file.

o Enter the password.

o Set isEncrypted to False.

d. Click Invoke to export the domainScopeDocument.bin file.

When the export process completes successfully, the file is saved to the following location:
C:\hp\UCMDB\UCMDBServer\conf\discovery\<customer_dir>.

e. Copy the domainScopeDocument.bin file to the Data Flow Probe file system and import
it by selecting: Settings > Import domainScopeDocument.

Note: During the domainScopeDocument file import, you are requested to provide a
password. This request is also displayed following each Discovery Analyzer restart
and before the first task or record is executed.

13. Breakpoints
If you run Discovery Analyzer from the Python script, you can add breakpoints to your script.

14. Configure Eclipse
For details on running your Jython scripts in debugmode, see "Run Discovery Analyzer from
Eclipse" on next page.

HP Business ServiceManagement (9.20)Page 76 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Run Discovery Analyzer from Eclipse
This task explains how to configure Eclipse so that you can run your Jython scripts in debugmode,
thus enabling better visibility to job threads, trigger CIs, and results.

This section includes the following steps:

l "Prerequisites" below

l "Unpack Eclipse and start it." below

l "Configure the default workspace" below

l "Configure the PyDev Extensions" below

l "Configure the Discovery AnalyzerWorkspace" on page 79

l "Configure the classpath and interpreter" on page 83

l "Run Discovery Analyzer" on page 85

1. Prerequisites
n Install the latest Eclipse version on your computer. The application is available at

www.eclipse.org.

n Verify that the Data Flow Probe is installed on the same computer.

n Verify that the appilog.agent.local.discoveryAnalyzerFromEclipse parameter in the
DiscoveryProbe.properties file is set to true.

2. Unpack Eclipse and start it.

3. Configure the default workspace
Configure the default workspace where Eclipse saves and stores all projects and the related
data.

4. Configure the PyDev Extensions
a. Access Help > Install New Software, click Add, type a name for the PyDev plugin, and

HP Business ServiceManagement (9.20)Page 77 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

in the Location field add the URL of the site where pydev can be downloaded:
http://pydev.org/updates. Click OK.

Note: PyDev and PyDev Extensions are now merged into one plugin since PyDev
Extensions are now open source. For additional information visit http://pydev.org.

b. In the window that opens, select Pydev. The second plugin is a plugin for task-focused UI.
Click Next, check the installation details, and click Next again.

c. Accept the license agreement and click Next.

d. Pydev is installed. If you are asked to install unsigned content, confirm by clickingOK.

HP Business ServiceManagement (9.20)Page 78 of 344

http://pydev.org/updates
http://pydev.org/

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

e. Restart Eclipse.

PyDev is now installed in your Eclipse IDE. You have new perspectives in Eclipse and the
IDE is able to interpret Python scripts (text highlighting, additional configuration options,
and so on).

5. Configure the Discovery Analyzer Workspace
a. Import necessary files: Right-click in the white area in Package Explorer and click Import

to import the pre-configured discoveryAnalyzerWorkspace, included with the Probe
installation.

HP Business ServiceManagement (9.20)Page 79 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

b. UnderGeneral, select Existing projects into Workspace to import the project into the
Eclipse workspace.

HP Business ServiceManagement (9.20)Page 80 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

c. UnderSelect root directory, select the Analyzer workspace, usually located under:

C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzerWorkspace.

d. Select Copy projects into workspace to create a real copy of the existing workspace.
This is an important step: In case of failure, you can re-import the original
discoveryAnalyserWorkspace.

e. Click Finish to start the import.

HP Business ServiceManagement (9.20)Page 81 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

HP Business ServiceManagement (9.20)Page 82 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

6. Configure the classpath and interpreter
a. Right-click discoveryAnalyzerWorkspace and select Properties to display the Project

specific settings.

b. Go toPydev > Interpreter/Grammar and click Please configure an interpreter in the
related preferences before proceeding.

This step configures the same Jython interpreter as the Probe is using to ensure that
scripts are not interpreted by a different Jython version.

c. Click New, type a name for the interpreter, and select the file from the following folder:
C:\hp\UCMDB\DataFlowProbe\jython\jython.jar.

HP Business ServiceManagement (9.20)Page 83 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

d. Click OK. If a window is displayed, asking you to select the folders that should be imported
into your Python system path, do not change anything (should be
C:\hp\UCMDB\DataFlowProbe\jython andC:\hp\UCMDB\DataFlowProbe\jython\lib)
and click OK.

e. Click Apply and thenOK.

f. Click Interpreter and select the interpreter just created.

HP Business ServiceManagement (9.20)Page 84 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

g. Click Apply and thenOK.

The Jython interpreter is now the same as the one the Probe is using.

7. Run Discovery Analyzer
a. Add a breakpoint in the Jython script to be debugged.

b. To start Discovery Analyzer, select startDiscoveryAnalyzerScript.py in the
discoveryAnalyzerWorkspace\src project. Right-click the file and chooseDebug as >
Jython run.

HP Business ServiceManagement (9.20)Page 85 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

HP Business ServiceManagement (9.20)Page 86 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Record DFM Code
It can be very useful to record an entire execution, including all parameters, for example, when
debugging and testing code. This task describes how to record an entire execution with all relevant
variables. Furthermore, you can view extra debug information that is usually not printed to log files
even at the debug level.

To record DFM code:

1. Access Admin > RTSM Administration > Data Flow Management > Discovery Control
Panel. Right-click the job whose runmust be logged and select Edit adapter to open the
Adapter Management application.

2. Locate theExecution Options pane in theAdapter Configuration tab, as shown below.

3. Change theCreate communication log box toAlways. For details on setting logging options,
see "Execution Options Pane" in the Data Flow Management Guide.

The following example is the XML log file that is created when the Host Connection by

Shell job is run and theCreate communication logs box is set toAlways orOn Failure:

HP Business ServiceManagement (9.20)Page 87 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

The following example shows themessage and stacktrace parameters:

HP Business ServiceManagement (9.20)Page 88 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

Jython Libraries and Utilities
Several utility scripts are used widely in adapters. These scripts are part of the AutoDiscovery
package and are located under:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\discoveryScriptswith the other scripts
that are downloaded to the Probe.

Note: The discoveryScript folder is created dynamically when the Probe begins working.

To use one of the utility scripts, add the following import line to the import section of the script:

import <script name>

The AutoDiscovery Python library contains Jython utility scripts. These library scripts are
considered DFM's external library. They are defined in the jythonGlobalLibs.xml file (located
in theConfiguration Files folder).

Each script that appears in the jythonGlobalLibs.xml file is loaded by default at Probe
startup, so there is no need to use them explicitly in the adapter definition.

This section includes the following topics:

l "logger.py" below

l "modeling.py" on next page

l "netutils.py" on next page

l "shellutils.py" on next page

logger.py
The logger.py script contains log utilities and helper functions for error reporting. You can call its
debug, info, and error APIs to write to the log files. Logmessages are recorded in
C:\hp\UCMDB\DataFlowProbe\runtime\log.

Messages are entered in the log file according to the debug level defined for the PATTERNS_
DEBUG appender in theC:\hp\UCMDB\DataFlowProbe\conf\log\probeMgrLog4j.properties
file. (By default, the level is DEBUG.) For details, see "Error Severity Levels" on page 97.

HP Business ServiceManagement (9.20)Page 89 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

###

################ PATTERNS_DEBUG log

####################

###

log4j.category.PATTERNS_DEBUG=DEBUG, PATTERNS_DEBUG

log4j.appender.PATTERNS_DEBUG=org.apache.log4j.RollingFileAppender

log4j.appender.PATTERNS_

DEBUG.File=C:\hp\UCMDB\DataFlowProbe\runtime\log/probeMgr-

patternsDebug.log

log4j.appender.PATTERNS_DEBUG.Append=true

log4j.appender.PATTERNS_DEBUG.MaxFileSize=15MB

log4j.appender.PATTERNS_DEBUG.Threshold=DEBUG

log4j.appender.PATTERNS_DEBUG.MaxBackupIndex=10

log4j.appender.PATTERNS_DEBUG.layout=org.apache.log4j.PatternLayout

log4j.appender.PATTERNS_DEBUG.layout.ConversionPattern=<%d> [%-5p]

[%t] - %m%n

log4j.appender.PATTERNS_DEBUG.encoding=UTF-8

The info and error messages also appear in the Command Prompt console.

There are two sets of APIs:

l logger.<debug/info/warn/error>

l logger.<debugException/infoException/warnException/errorException>

The first set issues the concatenation of all its string arguments at the appropriate log level and the
second set issues the concatenation as well as issuing the stack trace of themost recently-thrown
exception, to providemore information, for example:

logger.debug('found the result')

logger.errorException('Error in discovery')

modeling.py
Themodeling.py script contains APIs for creating hosts, IPs, process CIs, and so on. These APIs
enable the creation of common objects andmake the codemore readable. For example:

ipOSH= modeling.createIpOSH(ip)

host = modeling.createHostOSH(ip_address)

member1 = modeling.createLinkOSH('member', ipOSH, networkOSH)

netutils.py
The netutils.py library is used to retrieve network and TCP information, such as retrieving
operating system names, checking if a MAC address is valid, checking if an IP address is valid,
and so on. For example:

dnsName = netutils.getHostName(ip, ip)

isValidIp = netutils.isValidIp(ip_address)

address = netutils.getHostAddress(hostName)

shellutils.py
The shellutils.py library provides an API for executing shell commands and retrieving the end
status of an executed command, and enables runningmultiple commands based on that end

HP Business ServiceManagement (9.20)Page 90 of 344

RTSM Developer Reference Guide
Chapter 3: Developing Jython Adapters

status. The library is initialized with a Shell Client, and uses the client to run commands and retrieve
results. For example:

ttyClient = clientFactory.createClient(Props)

clientShUtils = shellutils.ShellUtils(ttyClient)

if (clientShUtils.isWinOs()):

 logger.debug ('discovering Windows..')

HP Business ServiceManagement (9.20)Page 91 of 344

Chapter 4

Error Messages
This chapter includes:

Error Messages Overview 93

Error-Writing Conventions 94

Error Severity Levels 97

HP Business ServiceManagement (9.20)Page 92 of 344

RTSM Developer Reference Guide
Chapter 4: Error Messages

Error Messages Overview
During discovery, many errors may be uncovered, for example, connection failures, hardware
problems, exceptions, time-outs, and so on. DFM displays these errors in Discovery Control Panel,
in both Basic and AdvancedMode, whenever the regular discovery flow does not succeed. You can
drill down from the Trigger CI that caused the problem to view the error message itself.

DFM differentiates between errors that can sometimes be ignored (for example, an unreachable
host) and errors that must be dealt with (for example, credentials problems ormissing configuration
or DLL files). Moreover, DFM reports errors once, even if the same error occurs on successive
runs, and reports an error even it if occurs once only.

When creating a package, you can add appropriate messages as resources to the package. During
package deployment, themessages are also deployed in the correct location. Messages must
conform to conventions, as described in "Error-Writing Conventions" on next page.

DFM supports multi-language error messages. You can localize themessages you write so that
they appear in the local language.

For details on searching for errors, see "Discovery Overview/Status Pane" in theData Flow
Management Guide.

For details on setting communication logs, see "Execution Options Pane" in theData Flow
Management Guide.

HP Business ServiceManagement (9.20)Page 93 of 344

RTSM Developer Reference Guide
Chapter 4: Error Messages

Error-Writing Conventions
l Each error is identified by an error message code and an array of arguments (int, String[]). A

combination of amessage code and an array of arguments defines a specific error. The array of
parameters can be null.

l Each error code is mapped to a short messagewhich is a fixed string and a detailed message
which is a template string contains zero or more arguments. Matching is assumed between the
number of arguments in the template and the actual number of parameters.

Example of Error Message Code:

10234may represent an error with the short message:

Connection Error

and the detailedmessage:

Could not connect via {0} protocol due to timeout of {1} msec

where

{0} = the first argument: a protocol name

{1} = the second argument: the timeout length in msec

This section also includes the following topics:

l "Property File Content" below

l "Error Messages Property File" below

l "Locale Naming Conventions" on next page

l "Error Message Codes" on next page

l "Unclassified Content Errors" on next page

l "Changes in Framework" on page 96

Property File Content
A property file should contain two keys for each error message code. For example, for error 45:

l DDM_ERROR_MESSAGE_SHORT_45. Short error description.

l DDM_ERROR_MESSAGE_LONG_45. Long error description (can contain parameters, for
example, {0},{1}).

Error Messages Property File
A property file contains amap between an error message code and twomessages (short and
detailed).

Once a property file is deployed, its data is merged with existing data, that is, new message codes
are added while old message codes are overridden.

Infrastructure property files are part of theAutoDiscoveryInfra package.

HP Business ServiceManagement (9.20)Page 94 of 344

RTSM Developer Reference Guide
Chapter 4: Error Messages

Locale Naming Conventions
l For the default locale: <file name>.properties.errors

l For a specific locale: <file name>_xx.properties.errors

where xx is the locale (for example, infraerr_fr.properties.errors or infraerr_en_
us.properties.errors).

Error Message Codes
The following error codes are included by default with HP Universal CMDB. You can add your own
error messages to this list.

Error Name
Error
Code Description

Internal 100-
199

Mostly resolved from exceptions thrown during Jython script runs

Connection 200-
299

Connection failed, no agent on target machine, destination
unreachable, and so on

Credential
Related

300-
399

Permission denied, connection attempt blocked due to a lack of
credentials

Timeout 400-
499

Time-out during connection/command

Unexpected or
Invalid Behavior

500-
599

Missing configuration files, unexpected interruptions, and so on

Information
Retrieval

600-
699

Missing information on target machines, failure querying agent for
information, and so on

Resources
Related

700-
799

Errors relating to out-of-memory or clients not released properly

Parsing 800-
899

Error parsing text

Encoding 900 Error in input, unsupported encoding

SQLRelated 901-
903,
924

Errors received from SQL operations

HTTP Related 904-
909

Errors generated during HTTP connections, parsed from HTTP error
codes.

Specific
Application

910-
923

Error reported due to application-specific problems, for example,
wrong LSOF version, NoQueueManagers found, and so on

Unclassified Content Errors
To support old content without causing a regression, the application and SDK relevant methods
handle errors of message code 100 (that is, unclassified script error) differently.

HP Business ServiceManagement (9.20)Page 95 of 344

RTSM Developer Reference Guide
Chapter 4: Error Messages

These errors are not grouped (that is, they are not considered as being errors of the same type) by
their message code but are grouped by the content of themessage. That is, if a script reports an
error by the old, deprecatedmethods (with amessage string and without an error code), all
messages receive the same error code, but in the application or in the SDK relevant methods,
different messages are displayed as different errors.

Changes in Framework
(com.hp.ucmdb.discovery.library.execution.BaseFramework)

The followingmethods are added to the interface:

l void reportError(int msgCode, String[] params);

l void reportWarning(int msgCode, String[] params);

l void reportFatal(int msgCode, String[] params);

The following oldmethods are still supported for backward compatibility purposes but aremarked
as deprecated:

l void reportError(String message);

l void reportWarning (String message);

l void reportFatal (String message);

HP Business ServiceManagement (9.20)Page 96 of 344

RTSM Developer Reference Guide
Chapter 4: Error Messages

Error Severity Levels
When an adapter finishes running against a trigger CI, it returns a status. If no error or warning is
reported, the status is Success.

Severity levels are listed here from the narrowest to widest scope:

Fatal Errors
This level reports serious errors such as a problem with the infrastructure, missing DLL files, or
exceptions:

l Failed generating the task (Probe is not found, variables are not found, and so on)

l It is not possible to run the script

l Processing of the results fails on the Server and the data is not written to the CMDB

Errors
This level reports problems that cause DFM not to retrieve data. Look through these errors as they
usually require some action to be taken (for example, to increase time-out, to change a range, to
change a parameter, to add another user credential, and so on).

l In cases where user interventionmay help, an error is reported, either a credentials or network
problem that may need further investigation. (These are not errors in discovery but in
configuration.)

l Internal failure, usually because of unexpected behavior from the discoveredmachine or
application, for example, missing configuration files, and so on

Warning
When a run is successful but theremay be non-serious problems that you should be aware of, DFM
marks the severity asWarning. You should look at these CIs to see whether data is missing,
before beginning amore detailed debugging session.Warning can includemessages about the
lack of an installed agent on a remote host, or that invalid data caused an attribute not to be properly
calculated.

l Missing connection agent (SNMP, WMI)

l Discovery succeeds, but not all available information is discovered

HP Business ServiceManagement (9.20)Page 97 of 344

Chapter 5

Developing Generic Database Adapters
This chapter includes:

Generic Database Adapter Overview 99

TQLQueries for the Generic Database Adapter 100

Reconciliation 102

Hibernate as JPA Provider 103

Prepare for Adapter Creation 106

Prepare the Adapter Package 111

Upgrade theGeneric DB Adapter from 9.00 or 9.01 to 9.02 and Later 114

Configure the Adapter –Minimal Method 115

Configure the Adapter – AdvancedMethod 118

Implement a Plugin 123

Deploy the Adapter 126

Edit the Adapter 127

Create an Integration Point 128

Create a View 129

Calculate the Results 130

View the Results 131

View Reports 132

Enable Log Files 133

Use Eclipse toMap Between CIT Attributes and Database Tables 134

Adapter Configuration Files 140

Out-of-the-Box Converters 158

Plugins 162

Configuration Examples 163

Adapter Log Files 172

External References 174

Troubleshooting and Limitations 175

HP Business ServiceManagement (9.20)Page 98 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Generic Database Adapter Overview
The purpose of the generic database adapter platform is to create adapters that can integrate with
relational databasemanagement systems (RDBMS) and run TQL queries and population jobs
against the database. The RDBMS supported by the generic database adapter are Oracle,
Microsoft SQL Server, andMySQL.

This version of the database adapter implementation is based on a JPA (Java Persistence API)
standard with the Hibernate ORM library as the persistence provider.

HP Business ServiceManagement (9.20)Page 99 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

TQL Queries for the Generic Database Adapter
For population jobs, every required layout of a CI must be checked in the Layout Settings Dialog
Box in theModeling Studio. For details, seeQuery Node/Relationship Properties Dialog Box in the
Modeling Guide. It is important to note that a CI might require an attribute to be identified, and
without those attributes the CI will fail to be added to RTSM.

The following limitations exist on the TQL queries calculated by the Generic Database Adapter
only:

l Subgraphs are not supported

l Compound relationships are not supported

l Cycles or cycle parts are not supported

The following TQL query is an example of a cycle:

l Function layout is not supported.

l 0..0 cardinality is not supported.

l The Join relationship is not supported.

l Qualifier conditions are not supported.

l To connect between two CIs, a relationship in the form of a table or foreign key must exist in the

HP Business ServiceManagement (9.20)Page 100 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

external database source.

HP Business ServiceManagement (9.20)Page 101 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Reconciliation
Reconciliation is carried out as part of the TQL calculation on the adapter side. For reconciliation to
occur, the RTSM side is mapped to a federated entity called reconciliation CIT.

Mapping. Each attribute in the RTSM is mapped to a column in the data source.

Althoughmapping is done directly, transformation functions on themapping data are also
supported. You can add new functions through the Java code (for example, lowercase, uppercase).
The purpose of these functions is to enable value conversions (values that are stored in the RTSM
in one format and in the federated database in another format).

Note:

l To connect the RTSM and external database source, an appropriate associationmust exist
in the database. For details, see "Prerequisites" on page 106.

l Reconciliation with the RTSM id is also supported.

HP Business ServiceManagement (9.20)Page 102 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Hibernate as JPA Provider
Hibernate is an object-relational (OR)mapping tool, which enables mapping Java classes to tables
over several types of relational databases (for example, Oracle andMicrosoft SQL Server). For
details, see "Functional Limitations" on page 175.

In an elementary mapping, each Java class is mapped to a single table. More advancedmapping
enables inheritancemapping (as can occur in the RTSM database).

Other supported features includemapping a class to several tables, support for collections, and
associations of types one-to-one, one-to-many, andmany-to-one. For details, see "Associations"
on next page below.

For our purposes, there is no need to create Java classes. Themapping is defined from the RTSM
class model CITs to the database tables.

This section also includes the following topics:

l "Examples of Object-Relational Mapping" below

l "Associations" on next page

l "Usability" on page 105

Examples of Object-Relational Mapping
The following examples describe object-relational mapping:

Example of One RTSM Class Mapped to One Database Table:

Class M1, with attributes A1, A2, and A3, is mapped to table 1 columns c1, c2, and c3. This
means that any M1 instance has amatching row in table 1.

Example of One RTSM Class Mapped to Two Database Tables:

HP Business ServiceManagement (9.20)Page 103 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Example of Inheritance:

This case is used in the RTSM, where each class has its own database table.

Example of Single Table Inheritance with Discriminator:

An entire hierarchy of classes is mapped to a single database table, whose columns comprise
a super-set of all attributes of themapped classes. The table also contains an additional
column (Discriminator), whose value indicates which specific class should bemapped to
this entry.

When you use discriminator capabilities, you cannot skip a class in the hierarchy; that is, since
C3 inherits from C2 and C2 inherits from C1, you cannot just define C1 and C3, youmust
define all three classes.

Associations
There are three types of associations: one-to-many, many-to-one andmany-to-many. To connect
between the different database objects, one of these associations must be defined by using a
foreign key column (for the one-to-many case) or amapping table (for themany-to-many case).

HP Business ServiceManagement (9.20)Page 104 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Usability
As the JPA schema is very extensive, a streamlined XML file is provided to ease definitions.

The use case for using this XML file is as follows: Federated data is modeled into one federated
class. This class has many-to-one relations to a non-federated RTSM class. In addition, there is
only one possible relation type between the federated class and the non-federated class.

HP Business ServiceManagement (9.20)Page 105 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Prepare for Adapter Creation
This task describes the preparations that are necessary for creating an adapter.

Note: You can view samples for the Generic DB adapter in the UCMDB API. Specifically, the
DDMi Adapter sample contains a complicated orm.xml file, as well as the implementations for
some plugin interfaces.

This task includes the following steps:

l "Prerequisites" below

l "Create a CI Type" on next page

l "Create a Relationship" on page 108

1. Prerequisites
To validate that you can use the database adapter with your database, check the following:

n The reconciliation classes and their attributes (also known as multinodes) exist in the
database. For example, if the reconciliation is run by node name, verify that there is a table
that contains a columnwith node names. If the reconciliation is run according to node
cmdb_id, verify that there is a columnwith RTSM IDs that matches the RTSM IDs of the
nodes in the RTSM. For details on reconciliation, see "Reconciliation" on page 102.

ID NAME IP_ADDRESS

31 BABA 16.59.33.60

33 ext3.devlab.ad 16.59.59.116

46 LABM1MAM15 16.59.58.188

72 cert-3-j2ee 16.59.57.100

102 labm1sun03.devlab.ad 16.59.58.45

114 LABM2PCOE73 16.59.66.79

116 CUT 16.59.41.214

117 labm1hp4.devlab.ad 16.59.60.182

n To correlate two CITs with a relationship, theremust be correlation data between the CIT
tables. The correlation can be either by a foreign key column or by amapping table. For
example, to correlate between node and ticket, theremust be a column in the ticket table
that contains the node ID, a column in the node table with the ticket ID that is connected to
it, or amapping table whose end1 is the node ID and end2 is the ticket ID. For details on
correlation data, see "Hibernate as JPA Provider" on page 103.

The following table shows the foreign key NODE_ID column:

HP Business ServiceManagement (9.20)Page 106 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

NODE_
ID

CARD_
ID CARD_TYPE CARD_NAME

2015 1 Serial Bus Controller Intel 82801EB USB Universal Host
Controller

3581 2 System Intel 631xESB/6321ESB/3100 Chipset
LPC

3581 3 Display ATI ES1000

3581 4 Base System
Peripheral

HP ProLiant iLO 2 Legacy Support
Function

n Each CIT can bemapped to one or more tables. Tomap one CIT tomore than one table,
check that there is a primary table whose primary key exists in the other tables, and is a
unique value column.

For example, a ticket is mapped to two tables: ticket1 and ticket2. The first table has
columns c1 and c2 and the second table has columns c3 and c4. To enable them to be
considered as one table, bothmust have the same primary key. Alternatively, the first table
primary key can be a column in the second table.

In the following example, the tables share the same primary key called CARD_ID:

CARD_ID CARD_TYPE CARD_NAME

1 Serial Bus Controller Intel 82801EB USB Universal Host Controller

2 System Intel 631xESB/6321ESB/3100 Chipset LPC

3 Display ATI ES1000

4 Base System Peripheral HP ProLiant iLO 2 Legacy Support Function

CARD_ID CARD_VENDOR

1 Hewlett-Packard Company

2 (Standard USB Host Controller)

3 Hewlett-Packard Company

4 (Standard system devices)

5 Hewlett-Packard Company

2. Create a CI Type
In this step you create a CIT that represents the data in the RDBMS (the external data source).

a. In BSM, access the CI TypeManager and create a new CI Type. For details, see Create a
CI Type in theModeling Guide.

b. Add the necessary attributes to the CIT, such as last access time, vendor, and so on.

HP Business ServiceManagement (9.20)Page 107 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

These are the attributes that the adapter will retrieve from the external data source and
bring into RTSM views.

3. Create a Relationship
In this step you add a relationship between the BSMCIT and the new CIT that represents the
data from the external data source.

Add appropriate, valid relationships to the new CIT. For details, see Add/Remove Relationship
Dialog Box in theModeling Guide.

Note: At this stage, you cannot yet view the federated data or populate the external data,
as you have not yet defined themethod for bringing in the data.

HP Business ServiceManagement (9.20)Page 108 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Example of Creating a Containment Relationship:

a. In the CIT Manager, select the two CITs:

HP Business ServiceManagement (9.20)Page 109 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

b. Create aContainment relationship between the two CITs:

HP Business ServiceManagement (9.20)Page 110 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Prepare the Adapter Package
In this step, you locate and configure the Generic DB adapter package.

1. Locate the db-adapter.zip package in the
<HP BSM root directory>\
odb\content\adapters folder.

2. Extract the package to a local temporary directory.

3. Edit the adapter XML file:

n Open the discoveryPatterns\db_adapter.xml file in a text editor.

n Locate the adapter id attribute and replace the name:

<pattern id="MyAdapter" displayLabel="My Adapter"

xsi:noNamespaceSchemaLocation="../../Patterns.xsd"

description="Discovery Pattern Description"

schemaVersion="9.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

displayName="UCMDB API Population">

If the adapter supports population, the following capability should be added to the <adapter-
capabilities> element:

 <support-replicatioin-data>

 <source>

 <changes-source>

 </source>

 </support-replicatioin-data>

The display label or ID appears in the list of adapters in the Integration Point pane in BSM.

If the plug-in for FcmdbPluginForSyncGetChangesTopology has not been implemented,
only the following should be added:

<support-replicatioin-data>

<source>

<!--<changes-source>-->

</source>

</support-replicatioin-data>

This will return the full topology and perform auto-delete according to the returned CIs.

For details about populating the RTSMwith data, see "Integration Studio Page " on page 1
of theData Flow Management Guide.

n If the adapter is using themapping engine from version 8.x (meaning that it is not using the
new reconciliationmapping engine), replace the following element:

<default-mapping-engine>

with:

HP Business ServiceManagement (9.20)Page 111 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<default-mapping-

engine>com.hp.ucmdb-

.federation.mappingEngine.AdapterMappingEngine</default-mapping-

engine>

To revert to the new mapping engine, return the element to the following value:

<default-mapping-engine>

n Locate the category definition:

<category>Generic</category>

Change theGeneric category name to the category of your choice.

Note: Adapters whose categories are specified as Generic are not listed in the
Integration Studio when you create a new integration point.

n The connection to the database can be described using a user name (schema), password,
database type, database host machine name, and database name or SID.

For this type of connection, parameters have the following elements in the parameter
section of the adapter's XML file:

<parameters>

<!--The description attribute may be written in simple text

or HTML.-->

<!--The host attribute is treated as a special case by UCMDB-

->

<!--and will automatically select the probe name (if

possible)-->

<!--according to this attribute's value.-->

<!--Display name and description may be overwritten by I18N

values-->

 <parameter name="host" display-name="Hostname/IP"

type="string" description="The host name or IP address of the

remote machine" mandatory="false" order-index="10" />

 <parameter name="port" display-name="Port" type="integer"

description="The remote machine's connection port"

mandatory="false" order-index="11" />

 <parameter name="dbtype" display-name="DB Type"

type="string" description="The type of database" valid-

values="Oracle;SQLServer;MySQL;BO" mandatory="false" order-

index="13">Oracle</parameter>

 <parameter name="dbname" display-name="DB Name/SID"

type="string" description="The name of the database or its SID

(in case of Oracle)" mandatory="false" order-index="13" />

 <parameter name="credentialsId" display-name="Credentials

ID" type="integer" description="The credentials to be used"

mandatory="true" order-index="12" />

</parameters>

HP Business ServiceManagement (9.20)Page 112 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Note: This is the default configuration. Therefore, the db_adapter.xml file, already
contains this definition.

There are situations in which the connection to the database cannot be configured in this way.
For example, connecting to Oracle RAC or connecting using a database driver other than the
one supplied with the RTSM.

For these situations, you can describe the connection using user name (schema), password,
and a connection URL string.

To define this, edit the adapter's XML parameters section as follows:

<parameters>

<!--The description attribute may be written in simple text or

HTML.-->

<!--The host attribute is treated as a special case by

CMDBRTSM-->

<!--and will automatically select the probe name (if possible)

-->

<!--according to this attribute's value.-->

<!--Display name and description may be overwritten by I18N

values-->

 <parameter name="url" display-name="Connection String"

type="string" description="The connection string to connect to the

database" mandatory="true" order-index="10" />

 <parameter name="credentialsId" display-name="Credentials

ID" type="integer" description="The credentials to be used"

mandatory="true" order-index="12" />

</parameters>

An example of a URL that connects to anOracle RAC using the out-of-the- box Data Direct
driver is:
jdbc:mercury:oracle://labm3amdb17:1521;ServiceName=RACQA;AlternateServers=
(labm3amdb18:1521);LoadBalancing=true.

4. In the temporary directory, open the adapterCode folder and renameGenericDBAdapter to
the value of adapter id that was used in the previous step.

This folder contains the adapter's configuration, for example, the adapter name, the queries
and classes in the RTSM, and the fields in the RDBMS that the adapter supports.

5. Configure the adapter as required. For details, see "Configure the Adapter –Minimal Method"
on page 115.

6. Create a *.zip file with the same name as you gave to the adapter id attribute, as described
in the step 3 above.

Note: The descriptor.xml file is a default file that exists in every package.

7. Save the new package that you created in the previous step. The default directory for adapters
is: <HP BSM root directory>\odb\content\adapters.

HP Business ServiceManagement (9.20)Page 113 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Upgrade the Generic DB Adapter from 9.00 or 9.01
to 9.02 and Later

1. Copy your adapter package to a local temporary directory.

2. Extract the files.

3. Remove the following files from the adapterCode\<Your Adapter Name> folder:

n asm.jar

n asm-attrs.jar

n cglib.jar

n db-adapter.jar

n jboss-archive-browsing.jar

n saxon-b.jar

4. Recreate your adapter package.

Note: For any deployedGeneric DB adapters that youmay have, the UCMDB installer
will remove the necessary files from the UCMDB and Probe file system. However, you
still need to fix the package yourself, in order to re-deploy it when necessary.

HP Business ServiceManagement (9.20)Page 114 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Configure the Adapter – Minimal Method
The following procedure describes amethod of mapping the class model in the RTSM to an
RDBMS.

These configuration files are located in the db-adapter.zip package in the <HP BSM root
directory>\odb\content\adapters folder that you extracted in the step "Extract the package to a
local temporary directory." on page 111 in "Prepare the Adapter Package" on page 111.

Note: The orm.xml file that is automatically generated as a result of running this method is a
good example that you can use when working with the advancedmethod.

You would use this minimal method when you need to:

l Federate/populate a single node such as a node attribute.

l Demonstrate the Generic Database Adapter capabilities.

This method:

l supports one-node federation\population only

l supports many-to-one virtual relationships only

This task includes the following steps:

l "Configure the adapter.conf File" below

l "Configure the simplifiedConfiguration.xml File" below

Configure the adapter.conf File
In this step, you change the settings in the adapter.conf file so that the adapter uses the
simplified configurationmethod.

1. Open the adapter.conf file in a text editor.

2. Locate the following line: use.simplified.xml.config=<true/false>.

3. Change it to use.simplified.xml.config=true.

Configure the simplifiedConfiguration.xml File
In this step, you configure the simplifiedConfiguration.xml file by mapping the CIT in the RTSM
to the fields in the RDBMS table.

1. Open the simplifiedConfiguration.xml file in a text editor.

This file includes a template that you use for each entity to bemapped.

Note: Do not edit the simplifiedConfiguration.xml file in any version of Notepad from
Microsoft Corporation. Use Notepad++, UltraEdit, or some other third-party text editor.

2. Make changes to the following attributes:

n The CIT name in BSM (cmdb-class-name) and the corresponding table name in the RDBMS
(default-table-name):

HP Business ServiceManagement (9.20)Page 115 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<cmdb-class cmdb-class-name="node" default-table-name="Device">

The cmdb-class-name attribute is taken from the node CIT:

The default-table-name attribute is taken from the Device table:

n The unique identifier in the RDBMS:

<primary-key column-name="Device_ID" />

n The reconciliation rule (reconciliation-by-two-nodes):

<reconciliation-by-two-nodes connected-node-cmdb-class-name="ip_

address" cmdb-link-type="containment">

n The reconciliation attribute in BSM (cmdb-attribute-name) and in the RDBMS
(column-name):

<connected-node-attribute cmdb-attribute-name="name" column-

name="[column_name]" />

n The name of the CIT (cmdb-class-name) and the name of the corresponding table in the
RDBMS (default-table-name). Also the RTSM relationship (connected-cmdb-
class-name) and the CIT relationship (link-class-name):

<class cmdb-class-name="sw_sub_component" default-table-

name="SWSubComponent" connected-cmdb-class-name="node" link-

class-name="composition">

n The primary key and the foreign key:

HP Business ServiceManagement (9.20)Page 116 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<foreign-primary-key column-name="Device_ID" cmdb-class-primary-

key-column="Device_ID" />

n The unique identifier in the RDBMS:

<primary-key column-name="Device_ID" />

n Themapping between the RTSM attribute (cmdb-attribute-name) and the column
name in the RDBMS (column-name):

<attribute cmdb-attribute-name="last_access_time" column-

name="SWSubComponent_LastAccess TimeStamp" />

3. Save the file.

HP Business ServiceManagement (9.20)Page 117 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Configure the Adapter – Advanced Method
These configuration files are located in the db-adapter.zip package in the <HP BSM root
directory>\odb\content\adapters folder that you extracted in the step "Extract the package to a
local temporary directory." on page 111 in "Prepare the Adapter Package" on page 111.

This task includes the following steps:

l "Configure the orm.xml File" below

l "Configure the reconciliation_types.txt File" on page 121

l "Configure the reconciliation_rules.txt File " on page 121

Configure the orm.xml File
In this step, youmap the CITs and relationships in the RTSM to the tables in the RDBMS.

1. Open the orm.xml file in a text editor.

This file, by default, contains a template that you use tomap as many CITs and relationships
as needed.

Note: Do not edit the orm.xml file in any version of Notepad fromMicrosoft Corporation.
Use Notepad++, UltraEdit, or some other third-party text editor.

2. Make changes to the file according to the data entities to bemapped. For details, see the
following examples.

The following types of relationships may bemapped in the orm.xml file:

n One to one:

The code for this type of relationship is:

<one-to-one name="end1" target-entity="node">

 <join-column name="Device_ID" >

</one-to-one>

<one-to-one name="end2" target-entity="sw_sub_component">

 <join-column name="Device_ID" >

 <join-column name="Version_ID" >

</one-to-one>

HP Business ServiceManagement (9.20)Page 118 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

n Many to one:

The code for this type of relationship is:

<many-to-one name="end1" target-entity="node">

 <join-column name="Device_ID" >

</many-to-one>

<one-to-one name="end2" target-entity="sw_sub_component">

 <join-column name="Device_ID" >

 <join-column name="Version_ID" >

</one-to-one>

n Many tomany:

The code for this type of relationship is:

<many-to-one name="end1" target-entity="node">

 <join-column name="Device_ID" >

</many-to-one>

<many-to-one name="end2" target-entity="sw_sub_component">

HP Business ServiceManagement (9.20)Page 119 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

 <join-column name="Device_ID" >

 <join-column name="Version_ID" >

</many-to-one>

For details about naming conventions, see "Naming Conventions" on page 147.

Example of Entity Mapping Between the Data Model and the RDBMS:

Note: Attributes that do not have to be configured are omitted from the following
examples.

n The class of the RTSMCIT:

<entity class="generic_db_adapter.node">

n The name of the table in the RDBMS:

<table name="Device" />

n The column name of the unique identifier in the RDBMS table:

<column name="Device ID" />

n The name of the attribute in the RTSMCIT:

<basic name="name">

n The name of the table field in the external data source:

<column name="Device_Name" />

n The name of the new CIT you created in "Create a CI Type" on page 107:

<entity class="generic_db_adapter.MyAdapter">

n The name of the corresponding table in the RDBMS:

<table name="SW_License" />

n The unique identity in the RDBMS:

n The attribute name in the RTSMCIT and the name of the corresponding attribute in
the RDBMS:

HP Business ServiceManagement (9.20)Page 120 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Example of Relationship Mapping Between the Data Model and the RDBMS:

n The class of the RTSM relationship:

<entity class="generic_db_adapter.node_containment_

MyAdapter">

n The name of the RDBMS table where the relationship is performed:

<table name="MyAdapter" />

n The unique ID in the RDBMS:

<id name="id1">

 <column updatable="false" insertable="false"

name="Device_ID">

 <generated-value strategy="TABLE" />

</id>

<id name="id2">

 <column updatable="false" insertable="false"

name="Version_ID">

 <generated-value strategy="TABLE" />

</id>

n The relationship type and the RTSMCIT:

<many-to-one target-entity="node" name="end1">

n The primary key and foreign key fields in the RDBMS:

<join-column updatable="false" insertable="false"

referenced-column-name="[column_name]" name="Device_ID" />

Configure the reconciliation_types.txt File
Open the reconciliation_types.txt file in a text editor.

For details, see "The reconciliation_types.txt file" on page 152.

Configure the reconciliation_rules.txt File
In this step you define the rules by which the adapter reconciles the RTSM and the RDBMS (only if
Mapping Engine is used, for backward compatibility with version 8.x):

1. Open META-INF\reconciliation_rules.txt in a text editor.

2. Make changes to the file according to the CIT you aremapping. For example, to map a node
CIT, use the following expression:

multinode[node] ordered expression[^name]

Note:

HP Business ServiceManagement (9.20)Page 121 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

n If the data in the database is case sensitive, do not delete the control character (^).

n Check that each opening square bracket has amatching closing bracket.

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 152.

HP Business ServiceManagement (9.20)Page 122 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Implement a Plugin
This task describes how to implement and deploy aGeneric DB Adapter with plugins.

Note: Before writing a plugin for an adapter, make sure you have completed all the necessary
steps in "Prepare the Adapter Package" on page 111.

1. Copy the following jar files from the UCMDB server installation directory to your development
class path:

n Copy the db-interfaces.jar file and db-interfaces-javadoc.jar file from the tools\adapter-
dev-kit\db-adapter-framework folder.

n Copy the federation-api.jar file and federation-api-javadoc.jar file from the
\tools\adapter-dev-kit\SampleAdapters\production-lib folder.

Note: More information about developing a plugin can be found in the db-interfaces-
javadoc.jar and federation-api-javadoc.jar files and in the online documentation at:

o C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\DBAdapterFramework_JavaAPI\index.html

o C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\Federation_JavaAPI\index.html

2. Write a Java class implementing the plugin's Java interface. The interfaces are defined in the
db-interfaces.jar file. The table below specifies the interface that must be implemented for
each plugin:

Plugin Type Interface Name Method

Synchronize Full
Topology

FcmdbPluginForSyncGetFullTopology getFullTopology

Synchronize
Changes

FcmdbPluginForSyncGetChangesTopology getChangesTopology

Synchronize
Layout

FcmdbPluginForSyncGetLayout getLayout

Retrieve
Supported
Queries

FcmdbPluginForSyncGetSupportedQueries getSupportedQueries

Alter TQL query
definition and
results

FcmdbPluginGetTopologyCmdbFormat getTopologyCmdbFormat

Alter layout
request for CIs

FcmdbPluginGetCIsLayout getCisLayout

HP Business ServiceManagement (9.20)Page 123 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Plugin Type Interface Name Method

Alter layout
request for links

FcmdbPluginGetRelationsLayout getRelationsLayout

The plugin's class must have a public default constructor. Also, all of the interfaces expose a
method called initPlugin. This method is guaranteed to be called before any other method and
is used to initialize the adapter with the containing adapter's environment object.

If FcmdbPluginForSyncGetChangesTopology is implemented, there are two different ways
to report the changes:

n Report the entire root topology at all times. According to this topology, the auto-delete
function finds which CIs should be removed. In this case, the auto-delete function should be
enabled by using the following:

<autoDeleteCITs isEnabled="true">

<CIT>link</CIT>

<CIT>object</CIT>

</autoDeleteCITs>

n Report each CI instance that was removed/updated. In this case the auto-delete
mechanism should be disabled by using the following:

<autoDeleteCITs isEnabled="false">

<CIT>link</CIT>

<CIT>object</CIT>

</autoDeleteCITs>

3. Make sure you have the Federation SDK JAR and theGeneric DB Adapter JARs in your class
path before compiling your Java code. The Federation SDK is the federation_api.jar file,
which can be found in the <HP BSM root directory>\odb\lib directory.

4. Pack your class into a jar file and put it under the adapterCode\<Your Adapter Name> folder in
the adapter package, prior to deploying it.

The plug-ins are configured using the plugins.txt file, located in the \META-INF folder of the
adapter.

The following is an example of the file from the DDMi adapter:

mandatory plugin to sync full topology

[getFullTopology]

com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin

mandatory plugin to sync changes in topology

[getChangesTopology]

com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin

mandatory plugin to sync layout

[getLayout]

com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin

plugin to get supported queries in sync. If not defined return

all tqls names

HP Business ServiceManagement (9.20)Page 124 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

[getSupportedQueries]

internal not mandatory plugin to change tql definition and tql

result

[getTopologyCmdbFormat]

internal not mandatory plugin to change layout request and CIs

result

[getCisLayout]

internal not mandatory plugin to change layout request and

relations result

[getRelationsLayout]

Legend:

- A comment line.

[<Adapter Type>] – Start of the definition section for a specific adapter type.

There can be an empty line under each [<Adapter Type>], meaning that there is no plugin class
associated, or the fully qualified name of your plugin class can be listed.

5. Pack your adapter with the new jar file and the updated plugins.xmlfile. The remainder of the
files in the package should be the same as in any adapter based on theGeneric DB adapter.

HP Business ServiceManagement (9.20)Page 125 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Deploy the Adapter
1. In BSM, access the PackageManager. For details, see "PackageManager Page" in the

RTSM Administration Guide.

2. Click theDeploy Packages to Server (from local disk) icon and browse to your adapter
package. Select the package and click Open, then click Deploy to display the package in the
PackageManager.

3. Select your package in the list and click theView package resources icon to verify that
the package contents are recognized by PackageManager.

HP Business ServiceManagement (9.20)Page 126 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Edit the Adapter
Once you have created and deployed the adapter, you can then edit it within BSM. For details, see
"Adapter Management" in theData Flow Management Guide.

HP Business ServiceManagement (9.20)Page 127 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Create an Integration Point
In this step you check that the federation is working. That is, that the connection is valid and that
the XML file is valid. However, this check does not verify that the XML is mapping to the correct
fields in the RDBMS.

1. In BSM, access the Integration Studio (Admin > RTSM Administration > Data Flow
Management > Integration Studio).

2. Create an integration point. For details, see New Integration Point/Edit Integration Point Dialog
Box in theData Flow Management Guide.

The Federation tab displays all CITs that can be federated using this integration point. For
details, see Federation Tab in theData Flow Management Guide.

HP Business ServiceManagement (9.20)Page 128 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Create a View
In this step you create a view that enables you to view instances of the CIT.

1. In BSM, access theModeling Studio (Admin > RTSM Administration > Modeling >
Modeling Studio).

2. Create a view. For details, see Create a Pattern View in theModeling Guide.

3. You can add conditions to the TQL, for example, the last access time is greater than six
months:

HP Business ServiceManagement (9.20)Page 129 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Calculate the Results
In this step you check the results.

1. In BSM, access theModeling Studio (Admin > RTSM Administration > Modeling >
Modeling Studio).

2. Open a view.

3. Calculate results by clicking theCalculate Query Result Count button .

4. Click thePreview button to view the CIs in the view.

HP Business ServiceManagement (9.20)Page 130 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

View the Results
In this step you view the results and debug problems in the procedure. For example, if nothing is
shown in the view, check the definitions in the orm.xml file; remove the relationship attributes and
reload the adapter.

1. In BSM, access the IT UniverseManager (Admin > RTSM Administration > Modeling >
IT Universe Manager).

2. Select a CI. The Properties tab displays the results of the federation.

HP Business ServiceManagement (9.20)Page 131 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

View Reports
In this step you view Topology reports. For details, see Topology Reports Overview in theModeling
Guide.

HP Business ServiceManagement (9.20)Page 132 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Enable Log Files
To understand the calculation flows, adapter lifecycle, and to view debug information, you can
consult the log files. For details, see "Adapter Log Files" on page 172.

HP Business ServiceManagement (9.20)Page 133 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Use Eclipse to Map Between CIT Attributes and
Database Tables

Caution: This procedure is intended for users with an advanced knowledge of content
development. For any questions, contact HP Software Support.

This task describes how to install and use the JPA plugin, provided with the J2EE edition of
Eclipse, to:

l Enable graphical mapping between RTSM class attributes and database table columns.

l Enablemanual editing of themapping file (orm.xml), while providing correctness. The
correctness check includes a syntax check as well as verification that the class attributes and
mapped database table columns are stated correctly.

l Enable deployment of themapping file to the RTSM server and to view the errors, as a further
correctness check.

l Define a sample query on the RTSM server and run it directly from Eclipse, to test themapping
file.

Version 1.1 of the plugin is compatible with UCMDB version 9.01 or later and Eclipse IDE for Java
EE Developers, version 1.2.2.20100217-2310 or later.

This task includes the following steps:

1. Prerequisites
Install the latest update for Java Runtime Environment (JRE) 6 on themachine where you
will run Eclipse from the following site:
http://java.sun.com/javase/downloads/index.jsp.

2. Installation
a. Download and extract Eclipse IDE for Java EE Developers from

http://www.eclipse.org/downloads to a local folder, for example, C:\Program
Files\eclipse.

b. Copy com.hp.plugin.import_cmdb_model_1.0.jar from
C:\hp\UCMDB\UCMDBServer\tools\db-adapter-eclipse-plugin\bin to
C:\Program Files\Eclipse\plugins.

c. LaunchC:\Program Files\Eclipse\eclipse.exe. If a message is displayed that the Java
virtual machine is not found, launch eclipse.exewith the following command line:

"C:\Program Files\eclipse\eclipse.exe" -vm "<JRE installation

folder>\bin"

3. Prepare the Work Environment
In this step, you set up the workspace, database, connections, and driver properties.

a. Extract the fileworkspaces_gdb.zip from C:\hp\UCMDB\
UCMDBServer\tools\db-adapter-eclipse-plugin\workspace intoC:\Documents and

HP Business ServiceManagement (9.20)Page 134 of 344

http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Settings\All Users.

Note: Youmust use the exact folder path. If you unzip the file to the wrong path or
leave the file unzipped, the procedure will not work.

b. In Eclipse, choose File > Switch Workspace > Other:

If you are working with:

o SQLServer, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_sqlserver.

o MySQL, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_mysql.

o Oracle, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_oracle.

c. Click OK.

d. In Eclipse, display the Project Explorer view and select <Active project> > JPA Content
> persistence.xml > <active project name> > orm.xml.

e. In the Data Source Explorer view (the bottom left pane), right-click the database
connection and select thePropertiesmenu.

f. In theProperties for <Connection name> dialog box, select Common and select the
Connect every time the workbench is started check box. Select Driver Properties and
fill in the connection properties. Click Test Connection and verify that the connection is
working. Click OK.

g. In the Data Source Explorer view, right-click the database connection and click Connect.
A tree containing the database schemas and tables is displayed under the database
connection icon.

4. Create an Adapter
Create an adapter using the guidelines in "Step 1: Create an Adapter" on page 31.

5. Configure the RTSM Plugin
a. In Eclipse, click UCMDB > Settings to open theCMDB Settings dialog box.

b. If not already selected, select the newly created JPA project as the Active project.

c. Enter the RTSM host name, for example, localhost or labm1.itdep1. There is no need to
include the port number or http:// prefix in the address.

d. Fill in the user name and password for accessing the RTSM API, usually admin/admin.

e. Make sure that theC:\hp folder on the RTSM server is mapped as a network drive.

f. Select the base folder of the relevant adapter underC:\hp. The base folder is the one that
contains the dbAdapter.jar file and theMETA-INF subfolder. Its path should be
<HP BSM root directory>\odb\
runtime\fcmdb\CodeBase\<adapter name>. Verify that there is no backslash (\) at the
end.

HP Business ServiceManagement (9.20)Page 135 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

6. Import the BSM Class Model
In this step, you select the CITs to bemapped as JPA entities.

a. Click UCMDB > Import CMDB Class Model to open theCI Types Selection dialog
box.

b. Select the CI types that you intend tomap as JPA entities. Click OK. The CI types are
imported as Java classes. Verify that they appear under the src folder of the active project.

7. Build the ORM File – Map BSM Classes to Database Tables
In this step, youmap the Java classes (that you imported in the previous step) to the database
tables.

a. Make sure the DB connection is connected. Right-click the active project (called
myProject by default) in Project Explorer. Select the JPA view, select theOverride
default schema from connection check box, and select the relevant database schema.
Click OK.

b. Map a CIT: In the JPA Structure view, right-click theEntity Mappings branch and select
Add Class. TheAdd Persistent Class dialog box opens. Do not change theMap as field
(Entity).

c. Click Browse and select the BSM class to bemapped (all BSM classes belong to the
generic_db_adapter package).

d. Click OK in both dialog boxes. The selected class is displayed under theEntity Mappings
branch in the JPA Structure view.

Note: If the entity appears without an attribute tree, right-click the active project in the
Project Explorer view. ChooseClose and thenOpen.

e. In the JPA Details view, select the primary database table to which the BSM class should
bemapped. Leave all other fields unchanged.

8. Map IDs
According to JPA standards, each persistent class must have at least one ID attribute. For
BSM classes, you canmap up to three attributes as IDs. Potential ID attributes are called id1,
id2, and id3. Tomap an ID attribute:

a. Expand the corresponding class under theEntity Mappings branch in the JPA Structure
view, right-click the relevant attribute (for example, id1), and select Add Attribute to XML
and Map....

b. TheAdd Persistent Attribute dialog box opens. Select Id in theMap as field and click
OK.

c. In the JPA Details view, select the database table column to which the ID field should be
mapped.

9. Map Attributes
In this step, youmap attributes to the database columns.

HP Business ServiceManagement (9.20)Page 136 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

a. Expand the corresponding class under theEntity Mappings branch in the JPA Structure
view, right-click the relevant attribute (for example, host_hostname), and select Add
Attribute to XML and Map....

b. TheAdd Persistent Attribute dialog box opens. Select Basic in theMap as field and
click OK.

c. In the JPA Details view, select the database table column to which the attribute field
should bemapped.

10. Map a Valid Link
Perform the steps described above in the step "Build the ORM File –Map BSMClasses to
Database Tables" on previous page for mapping a BSM class denoting a valid link. The name
of each such class takes the following structure: <end1 entity name>_<link name>_<end 2
entity name>. For example, aContains link between a host and a location is denoted by a
Java class whose name is generic_db_adapter.host_contains_location. For details, see
"The reconciliation_rules.txt File (for backwards compatibility)" on page 152.

a. Map the ID attributes of the link class as described in "Map IDs" on previous page. For
each ID attribute, expand theDetails check box group in the JPA Details view and clear
the Insertable andUpdateable check boxes.

b. Map the end1 and end2 attributes of the link class as follows: For each of the end1 and
end2 attributes of the link class:

o Expand the corresponding class under theEntity Mappings branch in the JPA
Structure view, right-click the relevant attribute (for example, end1), and select Add
Attribute to XML and Map....

o In theAdd Persistent Attribute dialog box, selectMany to One orOne to One in the
Map as field.

o SelectMany to One if the specified end1 or end2CI can havemultiple links of this
type. Otherwise, select One to One. For example, for a host_contains_ip link the host
end should bemapped as Many to One, since one host can havemultiple IPs, and the
ip end should bemapped as One to One, since one IP can have only a single host.

o In the JPA Details view, select Target entity, for example, generic_db_adapter.host.

o In the Join Columns section of the JPA Details view, check Override Default. Click
Edit. In theEdit Join Column dialog box, select the foreign key column of the link
database table that points to an entry in the end1/end2 target entity's table. If the
referenced column name in the end1/end2 target entity's table is mapped to its ID
attribute, leave theReferenced Column Name unchanged. Otherwise, select the
name of the column to which the foreign key column points. Clear the Insertable and
Updatable check boxes and click OK.

o If the end1/end2 target entity has more than one ID, click theAdd button to add
additional join columns andmap them in the sameway as described in the previous
step.

11. Build the ORM File – Use Secondary Tables
JPA enables a Java class to bemapped tomore than one database table. For example, Host
can bemapped to theDevice table to enable persistence of most of its attributes and to the

HP Business ServiceManagement (9.20)Page 137 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

NetworkNames table to enable persistence of host_hostName. In this case, Device is the
primary table andNetworkNames is the secondary table. Any number of secondary tables can
be defined. The only condition is that theremust be a one-to-one relationship between the
entries of the primary and secondary tables.

12. Define a Secondary Table
Select the appropriate class in the JPA Structure view. In the JPA Details view, access the
Secondary Tables section and click Add. In theAdd Secondary Table dialog box, select the
appropriate secondary table. Leave the other fields unchanged.

If the primary and the secondary table do not have the same primary keys, configure the join
columns in thePrimary Key Join Columns section of the JPA Details view.

13. Map an Attribute to a Secondary Table
Youmap a class attribute to a field of a secondary table as follows:

a. Map the attribute as described above in "Map Attributes" on page 136.

b. In theColumn section of the JPA Details view, select the secondary table name in the
Table field, to replace the default value.

14. Use an Existing ORM File as a Base
To use an existing orm.xml file as a basis for the one you are developing, perform the following
steps:

a. Verify that all CITs mapped in the existing orm.xml file are imported into the active Eclipse
project.

b. Select and copy all or part of the entity mappings from the existing file.

c. Select theSource tab of the orm.xml file in the Eclipse JPA perspective.

d. Paste all copied entity mappings under the <entity-mappings> tag of the edited orm.xml
file, beneath the <schema> tag. Make sure that the schema tag is configured as described
above in the step "Build the ORM File –Map BSMClasses to Database Tables" on page
136. All pasted entities now appear in the JPA Structure view. From now on, mappings can
be edited both graphically andmanually through the xml code of the orm.xml file.

e. Click Save.

15. Importing an Existing ORM File from an Adapter
If an adapter already exists, the Eclipse Plugin can be used to edit its ORM file graphically.
Import the orm.xml file into Eclipse, edit it using the plugin and then deploy it back to the BSM
machine. To import the ORM file, press the button on the Eclipse toolbar. A confirmation dialog
is displayed. Click OK. TheORM file is copied from the BSMmachine to the active Eclipse
project and all relevant classes are imported from the BSM class model.

If the relevant classes do not appear in the JPA Structure view, right-click the active project in
the Project Explorer view, chooseClose and thenOpen.

From now on, the ORM file can be edited graphically using Eclipse, and then deployed back to
the BSMmachine as described below in "Deploy the ORM File to the RTSM" on next page.

16. Check the Correctness of the orm.xml File – Built-in Correctness

HP Business ServiceManagement (9.20)Page 138 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Check
The Eclipse JPA plugin checks if any errors are present andmarks them in the orm.xml file.
Both syntax (for example, wrong tag name, unclosed tag, missing ID) andmapping errors (for
example, wrong attribute name or database table field name) are checked. If there are errors,
their description appears in theProblems view.

17. Create a New Integration Point
If no integration point exists in the RTSM for this adapter, you can create it in the Integration
Studio. For details, see Integration Studio in theData Flow Management Guide.

Fill in the integration point name in the dialog box that opens. The orm.xml file is copied to the
adapter folder. An integration point is created with all the imported CI types as its supported
classes, except for multinode CITs, if they are configured in the reconciliation_rules.txt file.
For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 152.

18. Deploy the ORM File to the RTSM
Save the orm.xml file and deploy it to the BSM server by clickingUCMDB > Deploy ORM.
The orm.xml file is copied to the adapter folder and the adapter is reloaded. The operation
result is shown in anOperation Result dialog box. If any error occurs during the reload
process, the Java exception stack trace is displayed in the dialog box. If no integration point
has yet been defined using the adapter, nomapping errors are detected upon deployment.

19. Run a Sample TQL Query
a. Define a query (not a view) in theModeling Studio. For details, seeModeling Studio in the

Data Flow Management Guide.

b. Create an integration point using the adapter that you created in the step "Create a New
Integration Point" above. For details, see New Integration Point/Edit Integration Point
Dialog Box in theData Flow Management Guide.

c. During the creation of the adapter, verify that the CI types that should participate in the
query are supported by this integration point.

d. When configuring the RTSM plugin, use this sample query name in the Settings dialog box.
For details, see step 5 above.

e. Click theRun TWL button to run a sample TQL and verify whether it returns the required
results using the newly created orm.xml file.

HP Business ServiceManagement (9.20)Page 139 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Adapter Configuration Files
The files discussed in this section are located in the db-adapter.zip package in the <HP BSM root
directory>\odb\content\adapters folder.

This section includes the following topics:

l "The adapter.conf File" on next page

l "The simplifiedConfiguration.xml File" on page 142

l "The orm.xml File" on page 143

l "The reconciliation_types.txt file" on page 152

l "The reconciliation_rules.txt File (for backwards compatibility)" on page 152

l "The transformations.txt File" on page 154

l "The discriminator.properties File" on page 155

l "The replication_config.txt File" on page 156

l "The fixed_values.txt File" on page 156

l "The persistence.xml File" on page 156

General Configuration
l adapter.conf. The adapter configuration file. For details, see "The adapter.conf File" on next

page.

Simple Configuration
l simplifiedConfiguration.xml. Configuration file that replaces orm.xml, transformations.txt,

and reconciliation_rules.txtwith less capabilities. For details, see "The
simplifiedConfiguration.xml File" on page 142.

Advanced Configuration
l orm.xml. The object-relational mapping file in which youmap between RTSMCITs and

database tables. For details, see "The orm.xml File" on page 143.

l reconciliation_types.txt. Contains the rules that are used to configure the reconciliation types.
For details, see "The reconciliation_types.txt file" on page 152.

l reconciliation_rules.txt. Contains the reconciliation rules. For details, see "The reconciliation_
rules.txt File (for backwards compatibility)" on page 152.

l transformations.txt. Transformations file in which you specify the converters to apply to
convert from the RTSM value to the database value, and vice versa. For details, see "The
transformations.txt File" on page 154.

l Discriminator.properties. This file maps each supported CI type to a comma-separated list of
possible corresponding values. For details, see "The discriminator.properties File" on page 155.

l Replication_config.txt. This file contains a comma-separated list of CI and relationship types
whose property conditions are supported by the replication plugin. For details, see "The
replication_config.txt File" on page 156.

HP Business ServiceManagement (9.20)Page 140 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

l Fixed_values.txt. This file enables you to configure fixed values for specific attributes of certain
CITs. For details, see "The fixed_values.txt File" on page 156.

Hibernate Configuration
l persistence.xml. Used to override out-of-the-box Hibernate configurations. For details, see

"The persistence.xml File" on page 156.

The adapter.conf File
This file contains the following settings:

l use.simplified.xml.config=false.true: uses simplifiedConfiguration.xml.

Note: Using this file means that orm.xml, transformations.txt, and
reconciliation_rules.txt are replaced with fewer capabilities.

l dal.ids.chunk.size=300. Do not change this value.

l dal.use.persistence.xml=false. true: the adapter reads the Hibernate configuration from
persistence.xml.

Note: It is not recommended to override the Hibernate configuration.

l performance.memory.id.filtering=true. When theGDBA executes TQLS, in some cases a
large number of IDs may be retrieved and sent back to the database using SQL. To avoid this
excessive work and improve performance, the GDBA attempts to read the entire view/table and
filters the results in-memory.

l id.reconciliation.cmdb.id.type=string/bytes. Whenmapping the Generic DB adapter using
ID Reconciliation (for information, see the step "Configure the reconciliation_types.txt File (for
the BSM 9.0x default mapping engine) " in "Implement theMapping Engine" on page 206, you
can either map the cmdb_id to a string or bytes/raw column type by changing theMETA-INF/
adapter.conf property.

l performance.enable.single.sql=true. This is an optional parameter. If it does not appear in the
file, its default value is true. When true, the Generic Database Adapter tries to generate a single
SQL statement for each query being executed (either for population or a federated query). Using
a single SQL statement improves the performance andmemory consumption of the Generic
Database Adapter. When false, the Generic Database Adapter generates multiple SQL
statements, whichmay take longer and consumemorememory than a single one. Even when
this attribute is set to true, the adapter does not generate a single SQL statement in the following
scenarios:

n The database the adapter connects to is not on anOracle or SQL Server.

n The TQL being executed contains a cardinality condition other than 0..* and 1..* (for example,
if there is a cardinality condition like 2..* or 0..2).

HP Business ServiceManagement (9.20)Page 141 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

The simplifiedConfiguration.xml File
This file is used for simplemapping of BSM classes to database tables. To access the template for
editing the file, navigate toAdmin > RTSM Administration > Adapter Management > db-
adapter > Configuration files.

This section includes the following topics:

l "The simplifiedConfiguration.xml File Template" below

l "Limitations" on next page

The simplifiedConfiguration.xml File Template
TheCMDB-class-name property is themultinode type (the node to which federated CITs connect
in the TQL):

<?xml version="1.0" encoding="UTF-8"?>

<generic-DB-adapter-config

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../META-

CONF/simplifiedConfiguration.xsd">

 <CMDB-class CMDB-class-name="node" default-table-name="[table_

name]">

 <primary-key column-name="[column_name]" />

reconciliation-by-two-nodes. Reconciliation can be done using one node or two nodes. In this
case example, reconciliation uses two nodes.

connected-node-CMDB-class-name. The second class type needed in the reconciliation TQL.

CMDB-link-type. The relationship type needed in the reconciliation TQL.

link-direction. The direction of the relationship in the reconciliation TQL (from node to ip_
address or from ip_address to node):

 <reconciliation-by-two-nodes connected-node-CMDB-class-

name="ip_address" CMDB-link-type="containment" link-direction="main-

to-connected">

The reconciliation expression is in the form of ORs and eachOR includes ANDs.

is-ordered. Determines if reconciliation is done in order form or by a regular OR comparison.

 <or is-ordered="true">

If the reconciliation property is retrieved from themain class (themultinode), use the attribute tag,
otherwise use the connected-node-attribute tag.

ignore-case.true: when data in the BSM class model is compared with data in the RDBMS, case
does not matter:

 <attribute CMDB-attribute-name="name" column-name="

[column_name]" ignore-case="true" />

The column name is the name of the foreign key column (the columnwith values that point to the
multinode primary key column).

HP Business ServiceManagement (9.20)Page 142 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

If themultinode primary key column is composed of several columns, there needs to be several
foreign key columns, one for each primary key column.

 <foreign-primary-key column-name="[column_name]" CMDB-class-

primary-key-column="[column_name]" />

If there are few primary key columns, duplicate this column.

 <primary-key column-name="[column_name]" />

The from-CMDB-converter and to-CMDB-converter properties are Java classes that implement
the following interfaces:

l com.me-
rcury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTransformerFromExternalDB

l com.me-
rcury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTransformerToExternalDB

Use these converters if the value in the RTSM and in the database are not the same.

In this example, GenericEnumTransformer is used to convert the enumerator according to the
XML file that is written inside the parenthesis (generic-enum-transformer-example.xml):

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-

name="[column_name]" from-CMDB-

con-

verter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.

GenericEnumTransformer(generic-enum-transformer-example.xml)" to-CMDB-

con-

verter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.

GenericEnumTransformer(generic-enum-transformer-example.xml)" />

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-

name="[column_name]" />

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-

name="[column_name]" />

</class>

</generic-DB-adapter-config>

Limitations
l Can be used tomap only TQL queries containing one node (in the database source). For

example, you can run a node > ticket and a ticket TQL query. To bring the hierarchy of
nodes from the database, youmust use the advanced orm.xml file.

l Only one-to-many relations are supported. For example, you can bring one or more tickets on
each node. You cannot bring tickets that belong tomore than one node.

l You cannot connect the same class to different types of RTSM CITs. For example, if you define
that ticket is connected to node, it cannot be connected to application as well.

The orm.xml File
This file is used for mapping RTSMCITs to database tables.

HP Business ServiceManagement (9.20)Page 143 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

A template to use for creating a new file is located in the
<HP BSM root directory>\odb\runtime\fcmdb\CodeBase\GenericDBAdapter\META-INF
directory.

To edit the XML file for a deployed adapter, navigate toAdmin > RTSM Administration >
Adapter Management > db-adapter > Configuration files.

This section includes the following topics:

l "The orm.xml File Template" below

l "Multiple ORM files" on page 147

l "Naming Conventions" on page 147

l "The orm.xml File" on previous page

l "The orm.xml Schema" on page 147

The orm.xml File Template
<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd">

 <description>Generic DB adapter orm</description>

Do not change the package name.

 <package>generic_db_adapter</package>

entity. The RTSMCIT name. This is themultinode entity.

Make sure that class includes a generic_db_adapter. prefix.

 <entity class="generic_db_adapter.node">

 <table name="[table_name]" />

Use a secondary table if the entity is mapped tomore than one table.

 <secondary-table name="" />

 <attributes>

For a single table inheritance with discriminator, use the following code:

 <inheritance strategy="SINGLE_TABLE" />

 <discriminator-value>node</discriminator-value>

 <discriminator-column name="[column_name]" />

Attributes with tag id are the primary key columns. Make sure that the naming convention for these
primary key columns are idX (id1, id2, and so on) whereX is the column index in the primary key.

 <id name="id1">

Change only the column name of the primary key.

 <column updatable="false" insertable="false" name="

[column_name]" />

HP Business ServiceManagement (9.20)Page 144 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

 <generated-value strategy="TABLE" />

 </id>

basic. Used to declare the RTSM attributes. Make sure to edit only name and column_name
properties.

 <basic name="name">

 <column updatable="false" insertable="false" name="

[column_name]" />

 </basic>

For a single table inheritance with discriminator, map the extending classes as follows:

 <entity name="[cmdb_class_name]" class="generic_db_adapter.nt"

name="nt">

 <discriminator-value>nt</discriminator-value>

 <attributes>

 </entity>

 <entity class="generic_db_adapter.unix" name="unix">

 <discriminator-value>unix</discriminator-value>

 <attributes>

 </entity>

 <entity name="[CMDB_class_name]" class="generic_db_adapter.[CMDB

[cmdb_class_name]">

 <table name="[default_table_name]" />

 <secondary-table name="" />

 <attributes>

 <id name="id1">

 <column updatable="false" insertable="false" name="

[column_name]" />

 <generated-value strategy="TABLE" />

 </id>

 <id name="id2">

 <column updatable="false" insertable="false" name="

[column_name]" />

 <generated-value strategy="TABLE" />

 </id>

 <id name="id3">

 <column updatable="false" insertable="false" name="

[column_name]" />

 <generated-value strategy="TABLE" />

 </id>

The following example shows a RTSM attribute namewith no prefix:

 <basic name="[CMDB_attribute_name]">

 <column updatable="false" insertable="false" name="

[column_name]" />

 </basic>

 <basic name="[CMDB_attribute_name]">

 <column updatable="false" insertable="false" name="

[column_name]" />

HP Business ServiceManagement (9.20)Page 145 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

 </basic>

 <basic name="[CMDB_attribute_name]">

 <column updatable="false" insertable="false" name="

[column_name]" />

 </basic>

 </attributes>

 </entity>

This is a relationship entity. The naming convention is end1Type_linkType_end2Type. In this
example end1Type is node and the linkType is composition.

 <entity name="node_composition_[CMDB_class_name]" class="generic_

db_adapter.node_composition_[CMDB_class_name]">

 <table name="[default_table_name]" />

 <attributes>

 <id name="id1">

 <column updatable="false" insertable="false" name="

[column_name]" />

 <generated-value strategy="TABLE" />

 </id>

The target entity is the entity that this property is pointing to. In this example, end1 is mapped to
node entity.

many-to-one. Many relationships can be connected to one node.

join-column. The column that contains end1 IDs (the target entity IDs).

referenced-column-name. The column name in the target entity (node) that contain the IDs that
are used in the join column.

 <many-to-one target-entity="node" name="end1">

 <join-column updatable="false" insertable="false"

referenced-column-name="[column_name]" name="[column_name]" />

 </many-to-one>

one-to-one. One relationship can be connected to one [CMDB_class_name].

 <one-to-one target-entity="[CMDB_class_name]" name="end2">

 <join-column updatable="false" insertable="false"

referenced-column-name="" name="[column_name]" />

 </one-to-one>

 </attributes>

 </entity>

</entity-mappings>

node attribute. This is an example of how to add a node attribute.

<entity class="generic_db_adapter.host_node">

<discriminator-value>host_node</discriminator-value>

<attributes/>

</entity>

<entity class="generic_db_adapter.nt">

HP Business ServiceManagement (9.20)Page 146 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<discriminator-value>nt</discriminator-value>

<attributes>

<basic name="nt_servicepack">

<column updatable="false" insertable="false" name="specific_type_

value"/>

</basic>

</attributes>

</entity>

Multiple ORM files
Multiple mapping files are supported. Eachmapping file name should end with orm.xml. All
mapping files should be placed under theMETA-INF folder of the adapter.

Naming Conventions
l In each entity, the class property must match the name property with the prefix of generic_

db_adapter.

l Primary key columns must take names of the form idX whereX = 1, 2, ..., according to the
number of primary keys in the table.

l Attribute names must match class attribute names even as regards case.

l The relationship name takes the form end1Type_linkType_end2Type.

l RTSMCITs, which are also reserved words in Java, should be prefixed by gdba_. For example,
for the RTSMCIT goto, the ORM entity should be named gdba_goto.

Using Inline SQL Statements Instead of Table Names
You canmap entities to inline select clauses instead of to database tables. This is equivalent to
defining a view in the database andmapping an entity to this view. For example:

 <entity class="generic_db_adapter.node">

 <table name="(select d.id as id1, d.name as name , d.os as

host_os from

Device d)" />

In this example, the node attributes should bemapped to columns id1, name, and host_os, rather
than id, name, and os.

The following limitations apply:

l The inline SQL statement is available only when using Hibernate as the JPA provider.

l Round brackets around the inline SQL select clause aremandatory.

l The <schema> element should not be present in the orm.xml file. In the case of Microsoft SQL
Server 2005, this means that all table names should be prefixed with dbo., rather than defining
them globally by <schema>dbo</schema>.

The orm.xml Schema
The following table explains the common elements of the orm.xml file. The complete schema can

HP Business ServiceManagement (9.20)Page 147 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

be found at http://java.sun.com/xml/ns/persistence/orm_1_0.xsd. The list is not complete, and it
mainly explains the specific behavior of the standard Java Persistence API for the Generic
Database Adapter.

Element Name
and Path Description Attributes

entity-mappings The root element for the entity
mapping document. This
element should be exactly the
same as the one given in the
GDBA sample files.

description
(entity-mappings)

A free text description of the
entity mapping document.
(Optional)

package (entity-
mappings)

The name of the Java package
that will contain themapping
classes. Should always contain
the text generic_db_
adapter.

1. Name: name
Description: The name of the
UCMDB CI type to which this entity
is mapped. If this is entity is mapped
to a link in the CMDB, the name of
the entity should be in the format
<end_1>_<link_name>_<end_

2>. For example, node_
composition_cpu defines an
entity that will bemapped to the
composition link between a node and
a CPU. If the name of the CI type is
the same as the name of the Java
class without the package prefix, this
field can be omitted.
Is required?:Optional
Type:String

2. Name: class
Description: The fully qualified
name of the Java class that will be
created for this DB entity. The name
of the Java class' package should be
the same as the name given in the
package element. Youmay not use
Java reserved words, such as
interface or switch, as the class
name. Instead, add the prefix gdba_
to the name (so interface will be
generic_db_adapter.gdba_

interface.
Is required?:Required
Type:String

HP Business ServiceManagement (9.20)Page 148 of 344

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name
and Path Description Attributes

table

(entity-
mappings>entity)

This element defines the primary
table of the DB entity. Can only
appear once. Required.

Name: name
Description: The name of the primary
table. If the name of the table does not
contain the schema to which it belongs,
the table will be searched only in the
schema of the user that was used to
create the integration point. This can also
be any a valid SELECT statement. If this
is a SELECT statement, it must be
encapsulated with parentheses.
Is required?:Required
Type:String

secondary-table

(entity-mappings
> entity)

This element may be used to
define a secondary table for the
DB entity. This table must be
connected to the primary table
with a 1-to-1 relationship. You
may definemore than one
secondary table. Optional.

Name: name
Description: The name of the secondary
table. If the name of the table does not
contain the schema to which it belongs,
the table will be searched only in the
schema of the user that was used to
create the integration point. This can also
be any a valid SELECT statement. If this
is a SELECT statement, it must be
encapsulated with parentheses.
Is required?:Required
Type:String

primary-key-join-
column

(entity-mappings
> entity >
secondary-table)

If the secondary table and
primary table are not connected
using fields with the same name,
this element defines the name of
the primary key field in the
secondary table that needs to be
connected to the primary key
field of the primary table.

Name: name
Description: The name of the primary
key field in the secondary table. If this
element does not exist, it is assumed that
the primary key field has the same name
as the primary key field of the primary
table.
Is required?:Optional
Type:String

HP Business ServiceManagement (9.20)Page 149 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name
and Path Description Attributes

inheritance

(entity-mappings
> entity)

If the current entity is the parent
entity for a family of DB entities,
then use this element to mark it
as such. Optional.

Name: strategy
Description:Defines the way the
inheritance is implemented in your DB.
Is required?:Required
Type:One of the following values:

l SINGLE_TABLE: This entity and all
child entities exist in the same table.

l JOINED: The child entities are in
joined tables.

l TABLE_PER_CLASS: Each entity is
completely defined by a separate
table.

discriminator-
column

(entity-mappings
> entity)

If the inheritance is of type
SINGLE_TABLE, this element
is used to define the name of the
field used to determine the type
of entity for each row.

Name: name
Description: The name of the
discriminator column.
Is required?:Required
Type:String

discriminator-
value

(entity-mappings
> entity)

This element defines the type of
the specific entity in the
inheritance tree. This name
needs to be the same as the
name defined in the
discriminator.properties file
for the value group of this
specific entity type.

attributes

(entity-mappings
> entity)

The root element for all of the
attributemappings for an entity.

id

(entity-mappings
> entity
attributes)

This element defines the key
field for the entity. Theremust be
at least one id field defined. If
more than one id element exists,
its fields create a compound key
for the entity. You should try and
avoid compound keys for CI
entities (not for links).

Name: name
Description:A string of type idX, where
X is a number between 1 and 9. The first
id should bemarked as id1, the second as
id2 and so on. This is NOT the name of
the key attribute in UCMDB.
Is required?:Required
Type:String

HP Business ServiceManagement (9.20)Page 150 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name
and Path Description Attributes

basic

(entity-mappings
> entity
attributes)

This element defines amapping
between a field in the table,
which is not part of the table's
primary key, and a UCMDB
attribute.

Name: name
Description: The name of the UCMDB
attribute to which the field is mapped.
This attributemust exist in the UCMDB
CI type to which the current entity is
mapped.
Is required?:Required
Type:String

column

(entity-mappings
> entity >
attributes >id

-OR-

(entity-mappings
> entity >
attributes >
basic)

Defines the name of the column
in the table for basic mapping or
an id field.

1. Name: name
Description: The name of the field.
Is required?:Required
Type:String

2. Name: table
Description: The name of the table
to which the field belongs. This must
be either the primary table or one of
the secondary tables defined for the
entity. If this attribute is omitted, it is
assumed that the field belongs to the
primary table.
Is required:Optional
Type:String

one-to-one

(entity-mappings
> entity >
attributes)

Defines a columnwhose value
is in another table, and the two
tables are connected using a
one-to-one relationship. This
element is only supported for link
entity mappings and not for other
CI types. This is the only way to
define amapping between a
table and a UCMDB link.

1. Name: name
Description:Which of the two ends
this field represents.
Is required?:Required
Type:Either end1 or end2

2. Name: target-entity
Description: The name of the entity
to which the end refers.
Is required?:Required
Type:One of the entity names
defined in the entity mapping
document.

HP Business ServiceManagement (9.20)Page 151 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name
and Path Description Attributes

join-column

(entity-mappings
> entity attributes
> one-to-one)

Defines the way to join the
target-entity defined in the parent
one-to-one element and the
current entity.

1. Name: name
Description: The name of the field in
the current table that will be used to
perform the one-to-one join.
Is required?:Required
Type:String

2. Name: name
Description: The name of a field in
the joint entity by which to perform
the join. If this attribute is omitted, it
is assumes that the joint table has a
columnwith the same name as the
field defined in the name attribute.
Is required?:Optional
Type:String

The reconciliation_types.txt file
This file is used to configure the reconciliation types.

Each row in the file represents a RTSMCIT that is connected to a federated database CIT in the
TQL query.

The reconciliation_rules.txt File (for backwards
compatibility)

This file is used to configure the reconciliation rules if you want to perform reconciliation when the
DBMappingEngine is configured in the adapter. If you do not use the DBMappingEngine, the
generic RTSM reconciliationmechanism is used and there is no need to configure this file.

Each row in the file represents a rule. For example:

multinode[node] expression[^node.name OR ip_address.name] end1_type

[node]

end2_type[ip_address] link_type[containment]

Themultinode is filled with themultinode name (the RTSMCIT that is connected to the federated
database CIT in the TQL query).

This expression includes the logic that decides whether twomultinodes are equal (onemultinode in
the RTSM and the other in the database source).

The expression is composed of ORs or ANDs.

The convention regarding attribute names in the expression part is [className].
[attributeName]. For example, attributeName in the ip_address class is written ip_
address.name.

HP Business ServiceManagement (9.20)Page 152 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

For an orderedmatch (if the first OR sub-expression returns an answer that themultinodes are not
equal, the secondOR sub-expression is not compared), then use ordered expression instead
of expression.

To ignore case during a comparison, use the control (^) sign.

The parameters end1_type, end2_type and link_type are used only if the reconciliation TQL
query contains two nodes and not just amultinode. In this case, the reconciliation TQL query is
end1_type > (link_type) > end2_type.

There is no need to add the relevant layout as it is taken from the expression.

Types of Reconciliation Rules
Reconciliation rules take the form of OR and AND conditions. You can define these rules on
several different nodes (for example, node is identified by name from nodeAND/ORname from

ip_address).

The following options find amatch:

l Ordered match. The reconciliation expression is read from left to right. Two OR sub-
expressions are considered equal if they have values and they are equal. Two OR sub-
expressions are considered not equal if both have values and they are not equal. For any other
case there is no decision, and the next OR sub-expression is tested for equality.

name from node OR from ip_address. If both the RTSM and the data source include name
and they are equal, the nodes are considered as equal. If both have name but they are not equal,
the nodes are considered not equal without testing the name of ip_address. If either the
RTSM or the data source is missing name of node, the name of ip_address is checked.

l Regular match. If there is equality in one of the OR sub-expressions, the RTSM and the data
source are considered equal.

name from node OR from ip_address. If there is nomatch on name of node, name of

ip_address is checked for equality.

For complex reconciliations, where the reconciliation entity is modeled in the class model as
several CITs with relationships (such as node), themapping of a superset node includes all
relevant attributes from all modeled CITs.

Note: As a result, there is a limitation that all reconciliation attributes in the data source should
reside in tables that share the same primary key.

Another limitation states that the reconciliation TQL query should have nomore than two nodes. For
example, the node > ticket TQL query has a node in the RTSM and a ticket in the data source.

To reconcile the results, namemust be retrieved from the node and/or ip_address.

If the name in the RTSM is in the format of *.m.com, a converter can be used from RTSM to the
federated database, and vice versa, to convert these values.

The node_id column in the database ticket table is used to connect between the entities (the
defined association can also bemade in a node table):

HP Business ServiceManagement (9.20)Page 153 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Note: The three tables must be part of the federated RDBMS source and not the RTSM
database.

The transformations.txt File
This file contains all the converter definitions.

The format is that each line contains a new definition.

The transformations.txt File Template
entity[[CMDB_class_name]] attribute[[CMDB_attribute_name]] to_DB_class

[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.

transform.impl.GenericEnumTransformer(generic-enum-transformer-

example.xml)]

from_DB_class

[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.

GenericEnumTransformer(generic-enum-transformer-example.xml)]

entity. The entity name as it appears in the orm.xml file.

attribute. The attribute name as it appears in the orm.xml file.

to_DB_class. The full, qualified name of a class that implements the interface
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTransformerTo
ExternalDB. The elements in the parenthesis are given to this class constructor. Use this
converter to transform RTSM values to database values, for example, to append the suffix of .com
to each node name.

from_DB_class. The full, qualified name of a class that implements the
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.
FcmdbDalTransformerFromExternalDB interface. The elements in the parenthesis are given to
this class constructor. Use this converter to transform database values to RTSM values, for
example, to append the suffix of .com to each node name.

For details, see "Out-of-the-Box Converters" on page 158.

HP Business ServiceManagement (9.20)Page 154 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

The discriminator.properties File
This file maps each supported CI type (that is also used as a discriminator value in orm.xml) to a
comma-separated list of possible corresponding values of the discriminator column, or a condition
tomatch possible values of the discriminator column.

If a condition is used, use the syntax: like(condition), where condition is a string that can
contain the following wildcards:

l % (percent sign) - allows you tomatch any string of any length (including a zero length string)

l _ (underscore) - allows you tomatch a single character

For example, like(%unix%) will match unix, linux, unix-aix, and so on. Like conditions may only
be applied to string columns.

You can also have a single discriminator valuemapped to any value that does not belong to another
discriminator by stating 'all-other'.

If the adapter you are creating uses discriminator capabilities, youmust define all the discriminator
values in the discriminator.properties file.

Example of Discriminator Mapping:

For example, the adapter supports the CI types node, nt, and unix, and the database contains a
single table named t_nodes that contains a column called type. If the type is 10001, the row
represents a node; if the type is 10004, it represents a unix machine, and so on. The
discriminator.properties file might look like this:

node=10001, 10005

nt=10002,10003

unix=2%

mainframe=all-other

The orm.xml file includes the following code:

 <entity class="generic_db_adapter.node" >

 <table name="t_nodes" />

 ...

 <inheritance strategy="SINGLE_TABLE" />

 <discriminator-value>node</discriminator-value>

 <discriminator-column name="type" />

 ...

 </entity>

 <entity class="generic_db_adapter.nt" name="nt">

 <discriminator-value>nt</discriminator-value>

 <attributes>

 </entity>

 <entity class="generic_db_adapter.unix" name="unix">

 <discriminator-value>unix</discriminator-value>

 <attributes>

 </entity>

The discriminator_column attribute is then calculated as follows:

HP Business ServiceManagement (9.20)Page 155 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

l If type contains 10002 or 10003 for a certain entry, the entry is mapped to the ntCIT.

l If type contains 10001 or 10005 for a certain entry, the entry is mapped to the nodeCIT.

l If type starts with 2 for a certain entry, the entry is mapped to the unixCIT.

l Any other value in the type column is mapped to themainframeCIT.

Note: The nodeCIT is also the parent of nt and unix.

The replication_config.txt File
This file contains a comma-separated list of CI and relationship types whose property conditions
are supported by the replication plugin. For details, see "Plugins" on page 162.

The fixed_values.txt File
This file enables you to configure fixed values for specific attributes of certain CITs. In this way,
each of these attributes can be assigned a fixed value that is not stored in the database.

The file should contain zero or more entries of the following format:

entity[<entityName>] attribute[<attributeName>] value[<value>]

For example:

entity[ip_address] attribute[ip_domain] value[DefaultDomain]

The file also supports a list of constants. To define a constants list, use the following syntax:

entity[<entityName>] attribute[<attributeName>] value[{<Val1>, <Val2>,

<Val3>, ... }]

The persistence.xml File
This file is used to override the default Hibernate settings and to add support for database types that
are not out of the box (OOB database types are Oracle Server, Microsoft SQL Server, andMySQL).

If you need to support a new database type, make sure that you supply a connection pool provider
(the default is c3p0) and a JDBC driver for your database (put the *.jar files in the adapter folder).

To see all available Hibernate values that can be changed, check the
org.hibernate.cfg.Environment class (for details, refer to http://www.hibernate.org.)

Example of the persistence.xml File:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=

"http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

version="1.0">

 <!-- Don't change this value -->

 <persistence-unit name="GenericDBAdapter">

 <properties>

HP Business ServiceManagement (9.20)Page 156 of 344

http://www.hibernate.org/

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

 <!-- Don't change this value -->

 <property name="hibernate.archive.autodetection"

value="class,

hbm" />

 <!--The driver class name"/-->

 <property name="hibernate.connection.driver_class"

value="com.mercury.

jdbc.MercOracleDriver" />

 <!--The connection url"/-->

 <property name="hibernate.connection.url"

value="jdbc:mercury:oracle:

//artist:1521;sid=cmdb2" />

 <!--DB login credentials"/-->

 <property name="hibernate.connection.username"

value="CMDB" />

 <property name="hibernate.connection.password"

value="CMDB" />

 <!--connection pool properties"/-->

 <property name="hibernate.c3p0.min_size" value="5" />

 <property name="hibernate.c3p0.max_size" value="20" />

 <property name="hibernate.c3p0.timeout" value="300" />

 <property name="hibernate.c3p0.max_statements" value="50"

/>

 <property name="hibernate.c3p0.idle_test_period"

value="3000" />

 <!--The dialect to use-->

 <property name="hibernate.dialect"

value="org.hibernate.dialect.

OracleDialect" />

 </properties>

 </persistence-unit>

</persistence>

HP Business ServiceManagement (9.20)Page 157 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Out-of-the-Box Converters
You can use the following converters (transformers) to convert federated queries and replication
jobs to and from database data.

This section includes the following topics:

l "Out-of-the-Box Converters" above

l "The SuffixTransformer Converter" on page 160

l "The PrefixTransformer Converter" on page 161

l "The BytesToStringTransformer Converter" on page 161

l "The StringDelimitedListTransformer Converter" on page 161

The enum-transformer Converter
This converter uses an XML file that is given as an input parameter.

The XML file maps between hard-coded RTSM values and database values (enums). If one of the
values does not exist, you can choose to return the same value, return null, or throw an exception.

The transformer performs a comparison between two strings using a case sensitive, or a case
insensitivemethod. The default behavior is case sensitive. To define it as case insensitive use:
case-sensitive="false" in the enum-transformer element.

Use one XMLmapping file for each entity attribute.

Note: This converter can be used for both the to_DB_class and from_DB_class fields in
the transformations.txt file.

Input File XSD:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="enum-transformer">

<xs:complexType>

<xs:sequence>

<xs:element ref="value" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="db-type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="integer"/>

<xs:enumeration value="long"/>

<xs:enumeration value="float"/>

HP Business ServiceManagement (9.20)Page 158 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<xs:enumeration value="double"/>

<xs:enumeration value="boolean"/>

<xs:enumeration value="string"/>

<xs:enumeration value="date"/>

<xs:enumeration value="xml"/>

<xs:enumeration value="bytes"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="cmdb-type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="integer"/>

<xs:enumeration value="long"/>

<xs:enumeration value="float"/>

<xs:enumeration value="double"/>

<xs:enumeration value="boolean"/>

<xs:enumeration value="string"/>

<xs:enumeration value="date"/>

<xs:enumeration value="xml"/>

<xs:enumeration value="bytes"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="non-existing-value-action"

use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="return-null"/>

<xs:enumeration value="return-original"/>

<xs:enumeration value="throw-exception"/>

</xs:restriction>

</xs:simpleType>

HP Business ServiceManagement (9.20)Page 159 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

</xs:attribute>

<xs:attribute name="case-sensitive" use="optional">

<xs:simpleType>

<xs:restriction base="xs:boolean">

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="value">

<xs:complexType>

<xs:attribute name="cmdb-value" type="xs:string"

use="required"/>

<xs:attribute name="external-db-value" type="xs:string"

use="required"/>

<xs:attribute name="is-cmdb-value-null" type="xs:boolean"

use="optional"/>

<xs:attribute name="is-db-value-null" type="xs:boolean"

use="optional"/>

</xs:complexType>

</xs:element>

</xs:schema>

Example of Converting 'sys' Value to 'System' Value:

In this example, sys value in the RTSM is transformed into System value in the federated
database, and System value in the federated database is transformed into sys value in the
RTSM.

If the value does not exist in the XML file (for example, the string demo), the converter returns the
same input value it receives.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-

value-action="return-original"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../META-CONF/generic-enum-

transformer.xsd">

 <value CMDB-value="sys" external-DB-value="System" />

</enum-transformer>

The SuffixTransformer Converter
This converter is used to add or remove suffixes from the RTSM or federated database source
value.

HP Business ServiceManagement (9.20)Page 160 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

There are two implementations:

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
AddSuffixTransformer. Adds the suffix (given as input) when converting from federated
database value to RTSM value and removes the suffix when converting from RTSM value to
federated database value.

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
RemoveSuffixTransformer. Removes the suffix (given as input) when converting from
federated database value to RTSM value and adds the suffix when converting from RTSM value
to federated database value.

The PrefixTransformer Converter
This converter is used to add or remove a prefix from the RTSM or federated database value.

There are two implementations:

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
AddPrefixTransformer. Adds the prefix (given as input) when converting from federated
database value to RTSM value and removes the prefix when converting from RTSM value to
federated database value.

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
RemovePrefixTransformer. Removes the prefix (given as input) when converting from
federated database value to RTSM value and adds the prefix when converting from RTSM value
to federated database value.

The BytesToStringTransformer Converter
This converter is used to convert byte arrays in the RTSM to their string representation in the
federated database source.

The converter is:
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.CmdbToAdapterBytes
ToStringTransformer.

The StringDelimitedListTransformer Converter
This converter is used to transform a single string list to an integer/string list in the RTSM.

The converter is: com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
StringDelimitedListTransformer.

HP Business ServiceManagement (9.20)Page 161 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Plugins
The generic database adapter supports the following plugins:

l An optional plugin for full topology synchronization.

l An optional plug-in for synchronizing changes in topology. If no plug-in for synchronizing
changes is implemented, it is possible to perform a differential synchronization, but that
synchronization will actually be a full one.

l An optional plugin for synchronizing layout.

l An optional plugin to retrieve supported queries for synchronization. If this plugin is not defined,
all TQL names are returned.

l An internal, optional plugin to change the TQL definition and TQL result.

l An internal, optional plugin to change a layout request and CIs result.

l An internal, optional plugin to change a layout request and relationships result.

For details about implementing and deploying plugins, see "Implement a Plugin" on page 123.

HP Business ServiceManagement (9.20)Page 162 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Configuration Examples
This section gives examples of configurations.

This section includes the following topics:

l "Use Case" below

l "Single Node Reconciliation" below

l "TwoNode Reconciliation" on page 166

l "Using a Primary Key that Contains More ThanOneColumn" on page 168

l "Using Transformations" on page 170

Use Case
Use case. A TQL query is:

node > (composition) > card

where:

l node is the RTSM entity

l card is the federated database source entity

l composition is the relationship between them

The example is run against the ED database. ED nodes are stored in the Device table and card
is stored in the hwCards table. In the following examples, card is always mapped in the same
manner.

Single Node Reconciliation
In this example the reconciliation is run against the name property.

Simplified Definition
The reconciliation is done by node and it is emphasized by the special tagCMDB-class.

<?xml version="1.0" encoding="UTF-8"?>

<generic-DB-adapter-config

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../META-

CONF/simplifiedConfiguration.xsd">

 <CMDB-class CMDB-class-name="node" default-table-name="Device">

 <primary-key column-name="Device_ID" />

 <reconciliation-by-single-node>

 <or>

 <attribute CMDB-attribute-name="name" column-

name="Device_Name" />

 </or>

 </reconciliation-by-single-node>

 </CMDB-class>

HP Business ServiceManagement (9.20)Page 163 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

 <class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="composition">

 <foreign-primary-key column-name="Device_ID" CMDB-class-

primary-key-column="Device_ID

 <primary-key column-name="hwCards_Seq" />

 <attribute CMDB-attribute-name="card_class" column-

name="hwCardClass" />

 <attribute CMDB-attribute-name="card_vendor" column-

name="hwCardVendor" />

 <attribute CMDB-attribute-name="card_name" column-

name="hwCardName" />

 </class>

</generic-DB-adapter-config>

Advanced Definition
The orm.xml File

Pay attention to the addition of the relationship mapping. For details, see the definition section in
"The orm.xml File" on page 143.

Example of the orm.xml File:

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

xmlns:xsi="http://

www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/

persistence/orm http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

version="1.0">

<description>Generic DB adapter orm</description>

<package>generic_db_adapter</package>

<entity class="generic_db_adapter.node" >

<table name="Device"/>

<attributes>

<id name="id1">

<column name="Device_ID" insertable="false"

updatable="false"/>

<generated-value strategy="TABLE"/>

</id>

<basic name="name">

<column name="Device_Name"/>

</basic>

</attributes>

</entity>

<entity class="generic_db_adapter.card" >

<table name="hwCards"/>

<attributes>

<id name="id1">

<column name="hwCards_Seq" insertable="false"

updatable="false"/>

HP Business ServiceManagement (9.20)Page 164 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<generated-value strategy="TABLE"/>

</id>

<basic name="card_class">

<column name="hwCardClass" insertable="false"

updatable="false"/>

</basic>

<basic name="card_vendor">

<column name="hwCardVendor" insertable="false"

updatable="false"/>

</basic>

<basic name="card_name">

<column name="hwCardName" insertable="false"

updatable="false"/>

</basic>

</attributes>

</entity>

<entity class="generic_db_adapter.node_composition_card" >

<table name="hwCards"/>

<attributes>

<id name="id1">

<column name="hwCards_Seq" insertable="false"

updatable="false"/>

<generated-value strategy="TABLE"/>

</id>

<many-to-one name="end1" target-entity="node">

<join-column name="Device_ID" insertable="false"

updatable="false"/>

</many-to-one>

<one-to-one name="end2" target-entity="card"

> <join-column name="hwCards_Seq"

referenced-column-name="hwCards_Seq" insertable=

"false" updatable="false"/>

</one-to-one>

</attributes>

</entity>

</entity-mappings>

The reconciliation_types.txt File

For details, see "The reconciliation_types.txt file" on page 152.

node

The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 152.

multinode[node] expression[node.name]

The transformation.txt File

This file remains empty as no values need to be converted in this example.

HP Business ServiceManagement (9.20)Page 165 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Two Node Reconciliation
In this example, reconciliation is calculated according to the name property of node and of ip_
address with different variations.

The reconciliation TQL query is node > (containment) > ip_address.

Simplified Definition
The reconciliation is by name of node OR of ip_address:

<?xml version="1.0" encoding="UTF-8"?>

<generic-DB-adapter-config

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../META-

CONF/simplifiedConfiguration.xsd">

 <CMDB-class CMDB-class-name="node" default-table-name="Device">

 <primary-key column-name="Device_ID" />

 <reconciliation-by-two-nodes connected-node-CMDB-class-

name="ip_address" CMDB-link-type="containment">

 <or>

 <attribute CMDB-attribute-name="name" column-

name="Device_Name" />

 <connected-node-attribute CMDB-attribute-name="name"

column-name="Device_PreferredIPAddress" />

 </or>

 </reconciliation-by-two-nodes>

 </CMDB-class>

 <class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="containment">

 <foreign-primary-key column-name="Device_ID" CMDB-class-

primary-key-column="Device_ID" />

 <primary-key column-name="hwCards_Seq" />

 <attribute CMDB-attribute-name="card_class" column-

name="hwCardClass" />

 <attribute CMDB-attribute-name="card_vendor" column-

name="hwCardVendor" />

 <attribute CMDB-attribute-name="card_name" column-

name="hwCardName" />

 </class>

</generic-DB-adapter-config>

The reconciliation is name of node AND of ip_address:

<?xml version="1.0" encoding="UTF-8"?>

<generic-DB-adapter-config

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../META-

CONF/simplifiedConfiguration.xsd">

 <CMDB-class CMDB-class-name="node" default-table-name="Device">

 <primary-key column-name="Device_ID" />

 <reconciliation-by-two-nodes connected-node-CMDB-class-

HP Business ServiceManagement (9.20)Page 166 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

name="ip_address" CMDB-link-type="containment">

 <and>

 <attribute CMDB-attribute-name="name" column-

name="Device_Name" />

 <connected-node-attribute CMDB-attribute-name="name"

column-name="Device_PreferredIPAddress" />

 </and>

 </reconciliation-by-two-nodes>

 </CMDB-class>

 <class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="containment">

 <foreign-primary-key column-name="Device_ID" CMDB-class-

primary-key-column="Device_ID" />

 <primary-key column-name="hwCards_Seq" />

 <attribute CMDB-attribute-name="card_class" column-

name="hwCardClass" />

 <attribute CMDB-attribute-name="card_vendor" column-

name="hwCardVendor" />

 <attribute CMDB-attribute-name="card_name" column-

name="hwCardName" />

 </class>

</generic-DB-adapter-config>

The reconciliation is by name of ip_address:

<?xml version="1.0" encoding="UTF-8"?>

<generic-DB-adapter-config

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../META-

CONF/simplifiedConfiguration.xsd">

 <CMDB-class CMDB-class-name="node" default-table-name="Device">

 <primary-key column-name="Device_ID" />

 <reconciliation-by-two-nodes connected-node-CMDB-class-

name="ip_address" CMDB-link-type="containment">

 <or>

 <connected-node-attribute CMDB-attribute-name="name"

column-name="Device_PreferredIPAddress" />

 </or>

 </reconciliation-by-two-nodes>

 </CMDB-class>

 <class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="containment">

 <foreign-primary-key column-name="Device_ID" CMDB-class-

primary-key-column="Device_ID" />

 <primary-key column-name="hwCards_Seq" />

 <attribute CMDB-attribute-name="card_class" column-

name="hwCardClass" />

 <attribute CMDB-attribute-name="card_vendor" column-

name="hwCardVendor" />

 <attribute CMDB-attribute-name="card_name" column-

name="hwCardName" />

HP Business ServiceManagement (9.20)Page 167 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

 </class>

</generic-DB-adapter-config>

Advanced Definition
The orm.xml File

Since the reconciliation expression is not defined in this file, the same version should be used for
any reconciliation expression.

The reconciliation_types.txt File

For details, see "The reconciliation_types.txt file" on page 152.

node

The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 152.

multinode[node] expression[ip_address.name OR node.name] end1_type

[node] end2_type[ip_address] link_type[containment]

multinode[node] expression[ip_address.name AND node.name] end1_type

[node] end2_type[ip_address] link_type[containment]

multinode[node] expression[ip_address.name] end1_type[node] end2_type

[ip_address] link_type[containment]

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Using a Primary Key that Contains More Than One Column
If the primary key is composed of more than one column, the following code is added to the XML
definitions:

Simplified Definition
There is more than one primary key tag and for each column there is a tag.

 <class CMDB-class-name="card" default-table-name="hwCards"

connected-CMDB-class-name="node" link-class-name="containment">

 <foreign-primary-key column-name="Device_ID" CMDB-class-

primary-key-column="Device_ID" />

 <primary-key column-name="Device_ID" />

 <primary-key column-name="hwBusesSupported_Seq" />

 <primary-key column-name="hwCards_Seq" />

 <attribute CMDB-attribute-name="card_class" column-

name="hwCardClass" />

 <attribute CMDB-attribute-name="card_vendor" column-

name="hwCardVendor" />

 <attribute CMDB-attribute-name="card_name" column-

HP Business ServiceManagement (9.20)Page 168 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

name="hwCardName" />

 </class>

Advanced Definition
The orm.xml File

A new id entity is added that maps to the primary key columns. Entities that use this id entity
must add a special tag.

If you use a foreign key (join-column tag) for such a primary key, youmust map between each
column in the foreign key to a column in the primary key.

For details, see "The orm.xml File" on page 143.

Example of the orm.xml File:

<entity class="generic_db_adapter.card" >

 <table name="hwCards" />

 <attributes>

 <id name="id1">

 <column name="Device_ID" insertable="false"

updatable="false" />

 <generated-value strategy="TABLE" />

 </id>

 <id name="id2">

 <column name="hwBusesSupported_Seq" insertable="false"

updatable="false" />

 <generated-value strategy="TABLE" />

 </id>

 <id name="id3">

 <column name="hwCards_Seq" insertable="false"

updatable="false" />

 <generated-value strategy="TABLE" />

 </id>

<entity class="generic_db_adapter.node_containment_card" >

 <table name="hwCards" />

 <attributes>

 <id name="id1">

 <column name="Device_ID" insertable="false"

updatable="false" />

 <generated-value strategy="TABLE" />

 </id>

 <id name="id2">

 <column name="hwBusesSupported_Seq" insertable="false"

updatable="false" />

 <generated-value strategy="TABLE" />

 </id>

 <id name="id3">

 <column name="hwCards_Seq" insertable="false"

updatable="false" />

 <generated-value strategy="TABLE" />

HP Business ServiceManagement (9.20)Page 169 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

 </id>

 <many-to-one name="end1" target-entity="node">

 <join-column name="Device_ID" insertable="false"

updatable="false" />

 </many-to-one>

 <one-to-one name="end2" target-entity="card">

 <join-column name="Device_ID" referenced-column-

name="Device_ID" insertable="false" updatable="false" />

 <join-column name="hwBusesSupported_Seq" referenced-

column-name="hwBusesSupported_Seq" insertable="false"

updatable="false" />

 <join-column name="hwCards_Seq" referenced-column-

name="hwCards_Seq" insertable="false" updatable="false" />

 </one-to-one>

 </attributes>

 </entity>

</entity-mappings>

Using Transformations
In the following example, the generic enum transformer is converted from values 1, 2, 3 to values
a, b, c respectively in the name column.

Themapping file is generic-enum-transformer-example.xml.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-

value-action="return-original"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../META-CONF/generic-enum-

transformer.xsd">

 <value CMDB-value="1" external-DB-value="a" />

 <value CMDB-value="2" external-DB-value="b" />

 <value CMDB-value="3" external-DB-value="c" />

</enum-transformer>

Simplified Definition
 <CMDB-class CMDB-class-name="node" default-table-name="Device">

 <primary-key column-name="Device_ID" />

 <reconciliation-by-two-nodes connected-node-CMDB-class-

name="ip_address"

CMDB-link-type="containment">

 <or>

 <attribute CMDB-attribute-name="name" column-

name="Device_Name"

from-CMDB-

converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.

transform.impl.GenericEnumTransformer(generic-enum-

transformer-example.

xml)" to-CMDB-

converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.

HP Business ServiceManagement (9.20)Page 170 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

transform.impl.GenericEnumTransformer(generic-enum-

transformer-example.

xml)" />

 <connected-node-attribute CMDB-attribute-name="name"

column-name="Device_PreferredIPAddress" />

 </or>

 </reconciliation-by-two-nodes>

 </CMDB-class>

Advanced Definition
There is a change only to the transformation.txt file.

The transformation.txt File

Make sure that the attribute names and entity names are the same as in the orm.xml file.

entity[node] attribute[name]

to_DB_class

[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.

GenericEnumTransformer(generic-enum-transformer-example.xml)] from_DB_

class

[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.

GenericEnumTransformer(generic-enum-transformer-example.xml)]

HP Business ServiceManagement (9.20)Page 171 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Adapter Log Files
To understand the calculation flows and adapter lifecycle, and to view debug information, you can
consult the following log files.

This section includes the following topics:

l "Log Levels" below

l "Log Locations" below

Log Levels
You can configure the log level for each of the logs.

In a text editor, open the
<HP BSM root directory>\odb\conf\log\
fcmdb.gdba.properties file.

The default log level is ERROR:

#loglevel can be any of DEBUG INFO WARN ERROR FATAL

loglevel=ERROR

l To increase the log level for all log files, change loglevel=ERROR to loglevel=DEBUG or
loglevel=INFO.

l To change the log level for a specific file, change the specific log4j category line accordingly.
For example, to change the log level of fcmdb.gdba.dal.sql.log to INFO, change:

log4j.category.fcmdb.gdba.dal.SQL=${loglevel},

fcmdb.gdba.dal.SQL.appender

to:

log4j.category.fcmdb.gdba.dal.SQL=INFO,fcmdb.gdba.dal.SQL.appender

Log Locations
The log files are located in the <HP BSM root directory>\odb\runtime\logdirectory.

l Fcmdb.gdba.log

The adapter lifecycle log. Gives details about when the adapter started or stopped, and which
CITs are supported by this adapter.

Consult for initiation errors (adapter load/unload).

l fcmdb.log

Consult for exceptions.

l cmdb.log

Consult for exceptions.

l Fcmdb.gdba.mapping.engine.log

Themapping engine log. Gives details about the reconciliation TQL query that themapping
engine uses, and the reconciliation topologies that are compared during the connect phase.

HP Business ServiceManagement (9.20)Page 172 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Consult this log when a TQL query gives no results even though you know there are relevant CIs
in the database, or the results are unexpected (check the reconciliation).

l Fcmdb.gdba.TQL.log

The TQL log. Gives details about the TQL queries and their results.

Consult this log when a TQL query does not return results and themapping engine log shows
that there are no results in the federated data source.

l Fcmdb.gdba.dal.log

The DAL lifecycle log. Gives details about CIT generation and database connection details.

Consult this log when you cannot connect to the database or when there are CITs or attributes
that are not supported by the query.

l Fcmdb.gdba.dal.command.log

The DAL operations log. Gives details about internal DAL operations that are called. (This log is
similar to cmdb.dal.command.log).

l Fcmdb.gdba.dal.SQL.log

The DAL SQL queries log. Gives details about called JPAQLs (object oriented SQL queries) and
their results.

Consult this log when you cannot connect to the database or when there are CITs or attributes
that are not supported by the query.

l Fcmdb.gdba.hibrnate.log

The Hibernate log. Gives details about the SQL queries that are run, the parsing of each JPAQL
to SQL, the results of the queries, data regarding Hibernate caching, and so on. For details on
Hibernate, see "Hibernate as JPA Provider" on page 103.

HP Business ServiceManagement (9.20)Page 173 of 344

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

External References
For details on the JavaBeans 3.0 specification, see
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html.

HP Business ServiceManagement (9.20)Page 174 of 344

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

RTSM Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Troubleshooting and Limitations
This section describes troubleshooting and limitations for the generic database adapter.

General Limitations
l SQLServer NTLM authentication is not supported.

l When you update an adapter package, use Notepad++, UltraEdit, or some other third-party text
editor rather than Notepad (any version) fromMicrosoft Corporation to edit the template files.
This prevents the use of special symbols, which cause the deployment of the prepared package
to fail.

JPA Limitations
l All tables must have a primary key column.

l RTSM class attribute names must follow the JavaBeans naming convention (for example,
names must start with lower case letters).

l TwoCIs that are connected with one relationship in the class model must have direct
association in the database (for example, if node is connected to ticket theremust be a
foreign key or linkage table that connects them).

l Several tables that aremapped to the sameCIT must share the same primary key table.

Functional Limitations
l You cannot create amanual relationship between the RTSM and federated CITs. To be able to

define virtual relationships, a special relationship logic must be defined (it can be based on
properties of the federated class).

l Federated CITs cannot be trigger CITs in an impact rule, but they can be included in an impact
analysis TQL query.

l A federated CIT can be part of an enrichment TQL, but cannot be used as the node on which
enrichment is performed (you cannot add, update, or delete the federated CIT).

l Using a class qualifier in a condition is not supported.

l Subgraphs are not supported.

l Compound relationships are not supported.

l The external CI RTSMid is composed from its primary key and not its key attributes.

l A column of type bytes cannot be used as a primary key column inMicrosoft SQL Server.

l TQL query calculation fails if attribute conditions that are defined on a federated node have not
had their names mapped in the orm.xml file.

l TheGeneric DB Adapter does not support Windows Authentication for SQL Server.

HP Business ServiceManagement (9.20)Page 175 of 344

Chapter 6

Developing Java Adapters
This chapter includes:

Federation Framework Overview 177

Adapter andMapping Interaction with the Federation Framework 182

Federation Framework for Federated TQLQueries 183

Interactions between the Federation Framework, Server, Adapter, andMapping Engine 185

Federation Framework Flow for Population 194

Adapter Interfaces 196

Debug Adapter Resources 198

Add an Adapter for a New External Data Source 199

Implement theMapping Engine 206

Create a Sample Adapter 208

XMLConfiguration Tags and Properties 208

HP Business ServiceManagement (9.20)Page 176 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Federation Framework Overview

Note:

l The term relationship is equivalent to the term link.

l The term CI is equivalent to the term object.

l A graph is a collection of nodes and links.

l For a glossary of definitions and terms, seeGlossary in theRTSM Administration Guide.

The Federation Framework functionality uses an API to retrieve information from federated
sources. The Federation Framework provides threemain capabilities:

l Federation on the fly. All queries are run over original data repositories and results are built on
the fly in the RTSM.

l Population. Populates data (topological data and CI properties) to the RTSM from an external
data source.

l Data Push. Pushes data (topological data and CI properties) from the local RTSM to a remote
data source.

All action types require an adapter for each data repository, which can provide the specific
capabilities of the data repository and retrieve and/or update the required data. Every request to the
data repository is made through its adapter.

This section also includes the following topics:

l "Federation on the Fly" below

l "Data Push" on page 179

l "Population" on page 179

Federation on the Fly
Federated TQL queries enables data retrieval from any external data repository without replicating
its data.

A federated TQL query uses adapters that represent external data repositories, to create
appropriate external relationships between CIs from different external data repositories and the
BSMCIs.

Example of Federation-on-the-Fly Flow:

1. The Federation Framework splits a federated TQL query into several subgraphs, where all
nodes in a subgraph refer to the same data repository. Each subgraph is connected to the
other subgraphs by a virtual relationship (but itself contains no virtual relationships).

HP Business ServiceManagement (9.20)Page 177 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

2. After the federated TQL query is split into subgraphs, the Federation Framework
calculates each subgraph's topology and connects two appropriate subgraphs by creating
virtual relationships between the appropriate nodes.

3. After the federated TQL topology is calculated, the Federation Framework retrieves a
layout for the topology result.

HP Business ServiceManagement (9.20)Page 178 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Data Push
You use the data push flow to synchronize data from your current local RTSM to a remote service
or target data repository.

In data push, data repositories are divided into two categories: source (local RTSM) and target.
Data is retrieved from the source data repository and updated to the target data repository. The data
push process is based on query names, meaning that data is synchronized between the source
(local RTSM) and target data repositories, and is retrieved by a TQL query name from the local
RTSM.

The data push process flow includes the following steps:

1. Retrieving the topology result with signatures from the source data repository.

2. Comparing the new results with the previous results.

3. Retrieving a full layout (that is, all CI properties) of CIs and relationships, for changed results
only.

4. Updating the target data repository with the received full layout of CIs and relationships. If any
CIs or relationships are deleted in the source data repository and the query is exclusive, the
replication process removes the CIs or relationships in the target data repository as well.

The RTSM has 2 hidden data sources (hiddenRMIDataSource and
hiddenChangesDataSource), which are always the `source' data source in data push flows. To
implement a new adapter for data push flows, you only have to implement the `target' adapter.

Population
You use the population flow to populate the RTSMwith data from external sources.

The flow always uses one 'source' data source to retrieve the data, and pushes the retrieved data to
the Probe in a similar process to the flow of a discovery job.

HP Business ServiceManagement (9.20)Page 179 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

To implement a new adapter for population flows, you only have to implement the source adapter,
sine the Data Flow Probe acts as the target.

The adapter in the population flow is executed on the Probe. Debugging and logging should be done
on the Probe and not on the RTSM.

The population flow is based on query names, that is, data is synchronized between the source
data repository and the Data Flow Probe, and is retrieved by a query name in the source data
repository. For example, in BSM, the query name is the name of the TQL query. However, in
another data repository the query name can be a code name that returns data. The adapter is
designed to correctly handle the query name.

Each job can be defined as an exclusive job. This means that the CIs and relationships in the job
results are unique in the local RTSM, and no other query can bring them to the target. The adapter of
the source data repository supports specific queries, and can retrieve the data from this data
repository. The adapter of the target data repository enables the update of retrieved data on this
data repository.

SourceDataAdapter Flow
l Retrieves the topology result with signatures from the source data repository.

l Compares the new results with the previous results.

l Retrieves a full layout (that is, all CI properties) of CIs and relationships, for changed results
only.

l Updates the target data repository with the received full layout of CIs and relationships. If any
CIs or relationships are deleted in the source data repository and the query is exclusive, the
replication process removes the CIs or relationships in the target data repository as well.

SourceChangesDataAdapter Flow
l Retrieves the topology result that occurred since the last date given.

l Retrieves a full layout (that is, all CI properties) of CIs and relationships, for changed results
only.

l Updates the target data repository with the received full layout of CIs and relationships. If any
CIs or relationships are deleted in the source data repository and the query is exclusive, the
replication process removes the CIs or relationships in the target data repository as well.

PopulateDataAdapter Flow
l Retrieves the full topology with requested layout result.

l Uses the topology chunk mechanism to retrieve the data in chunks.

l The probe filters out any data that was already brought in earlier runs

l Updates the target data repository with the received layout of CIs and relationships. If any CIs or
relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the CIs or relationships in the target data repository as well.

HP Business ServiceManagement (9.20)Page 180 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

PopulateChangesDataAdapter Flow
l Retrieves the topology with requested layout result that has changes since the last run.

l Uses the topology chunk mechanism to retrieve the data in chunks.

l The probe filters out any data that was already brought in earlier runs (including this flow).

l Updates the target data repository with the received layout of CIs and relationships. If any CIs or
relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the CIs or relationships in the target data repository as well.

HP Business ServiceManagement (9.20)Page 181 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Adapter and Mapping Interaction with the
Federation Framework

An adapter is an entity in BSM that represents external data (data that is not saved in BSM). In
federated flows, all interactions with external data sources are performed through adapters. The
Federation Framework interaction flow and adapter interfaces are different for replication and for
federated TQL queries.

This section also includes the following topics:

l "Adapter Lifecycle" below

l "Adapter assist Methods" below

Adapter Lifecycle
An adapter instance is created for each external data repository. The adapter begins its lifecycle
with the first action applied to it (such as, calculate TQL or retrieve/update data). When
the startmethod is called, the adapter receives environmental information, such as the data
repository configuration, logger, and so on. The adapter lifecycle ends when the data repository is
removed from the configuration, and the shutdownmethod is called. This means that the adapter is
stateful and can contain the connection to the external data repository if it is required.

Adapter assist Methods
The adapter has several assistmethods that can add external data repository configurations.
Thesemethods are not part of the adapter lifecycle and create a new adapter each time they are
called.

l The first method tests the connection to the external data repository for a given configuration.
testConnection can be executed either on the BSM server or the Data Flow Probe, depending on
the type of adapter.

l The secondmethod is relevant only for the source adapter and returns the supported queries for
replication. (This method is executed on the Probe only.)

l The third method is relevant only for federation and population flows, and returns supported
external classes by the external data repository. (This method is executed on the BSM server.)

All thesemethods are used when you create or view integration configurations.

HP Business ServiceManagement (9.20)Page 182 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Federation Framework for Federated TQL Queries
This section includes the following topics:

l "Definitions and Terms" below

l "Mapping Engine" below

l "Federated Adapter" below

See "Interactions between the Federation Framework, Server, Adapter, andMapping Engine" on
page 185 for diagrams illustrating the interactions between the Federation Framework, BSM,
adapter, andMapping Engine.

Definitions and Terms
Reconciliation data. The rule for matching CIs of the specified type that are received from the
RTSM and the external data repository. The reconciliation rule can be of three types:

l ID reconciliation. This can be used only if the external data repository contains the RTSM ID of
reconciliation objects.

l Property reconciliation. This is used when thematching can be done by properties of the
reconciliation CI type only.

l Topology reconciliation. This is used when you need the properties of additional CITs (not
only of the reconciliation CIT) to perform amatch on reconciliation CIs. For example, you can
perform reconciliation of the node type by the name property that belongs to the ip_
address CIT.

Reconciliation object. The object is created by the adapter according to received reconciliation
data. This object should refer to an external CI and is used by theMapping Engine to connect
between the external CIs and the RTSMCIs.

Reconciliation CI type. The type of CIs that represent reconciliation objects. These CIs must be
stored in both the RTSM and in the external data repositories.

Mapping engine. A component that identifies relations between CIs from different data
repositories that have a virtual relationship between them. The identification is performed by
reconciling RTSM reconciliation objects and external CI reconciliation objects.

Mapping Engine
Federation Framework uses theMapping Engine to calculate the federated TQL query. The
Mapping Engine connects between CIs that are received from different data repositories and are
connected by virtual relationships. TheMapping Engine also provides reconciliation data for the
virtual relationship. One end of the virtual relationship must refer to the RTSM. This end is a
reconciliation type. For the calculation of the two subgraphs, a virtual relationship can start
from any end node.

Federated Adapter
The Federated adapter brings two kinds of data from external data repositories: external CI data and
reconciliation objects that belong to external CIs.

l External CI data. The external data that does not exist in the RTSM. It is the target data of the
external data repository.

HP Business ServiceManagement (9.20)Page 183 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

l Reconciliation object data. The auxiliary data that is used by the federation framework to
connect between RTSMCIs and external data. Each reconciliation object should refer to an
External CI. The type of reconciliation object is the type (or subtype) of one of the virtual
relationship ends from which data is retrieved. Reconciliation objects should fit the adapter
received to reconciliation data. The reconciliation object can be one of three types:
IdReconciliationObject, PropertyReconciliationObject, or
TopologyReconciliationObject.

In the DataAdapter-based interfaces (DataAdapter, PopulateDataAdapter, and
PopulateChangesDataAdapter), the reconciliation is requested as part of the query definition.

HP Business ServiceManagement (9.20)Page 184 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Interactions between the Federation Framework,
Server, Adapter, and Mapping Engine

The following diagrams illustrate the interactions between the Federation Framework, BSM Server,
the adapter, and theMapping Engine. The federated TQL query in the example diagrams has only
one virtual relationship, so that only the BSM and one external data repository are involved in the
federated TQL query.

This section includes the following topics:

l "Calculation Starts at the Server End" below

l "Calculation Starts at the External Adapter End" on page 188

l "Example of Federation Framework Flow for Federated TQLQueries" on page 189

In the first diagram the calculation begins in the BSM and in the second diagram in the external
adapter. Each step in the diagram includes references to the appropriate method call of the adapter
or mapping engine interface.

Calculation Starts at the Server End
The following sequence diagram illustrates the interaction between the Federation Framework,
BSM, the adapter, and theMapping Engine. The federated TQL query in the example diagram has
only one virtual relationship, so that only BSM and one external data repository are involved in the
federated TQL query.

HP Business ServiceManagement (9.20)Page 185 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for a federated TQL calculation.

2 The Federation Framework analyzes the adapter, finds the virtual relationship, and
divides the original TQL into two sub-adapters–one for BSM and one for the external
data repository.

3 The Federation Framework requests the topology of the sub-TQL from BSM.

HP Business ServiceManagement (9.20)Page 186 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Number Explanation

4 After receiving the topology results, the Federation Framework calls the appropriate
Mapping Engine for the current virtual relationship and requests reconciliation data.
The reconciliationObject parameter is empty at this stage, that is, no condition
is added to reconciliation data in this call. The returned reconciliation data defines
which data is needed tomatch the reconciliation CIs in BSM to the external data
repository. The reconciliation data can be one of the following types:

l IdReconciliationData. CIs are reconciled according to their ID.

l PropertyReconciliationData. CIs are reconciled according to the properties of
one of the CIs.

l TopologyReconciliationData. CIs are reconciled according to the topology (for
example, to reconcile node CIs, the IP address of IP is required too).

5 The Federation Framework requests reconciliation data for the CIs of the virtual
relationship ends that were received in step "3" on previous page from BSM.

6 The Federation Framework calls theMapping Engine to retrieve the reconciliation
data. In this state (by contrast with step "3" on previous page), theMapping Engine
receives the reconciliation objects from step "5" above as parameters. TheMapping
Engine translates the received reconciliation object to the condition on the
reconciliation data.

7 The Federation Framework requests the topology of the sub-TQL from the external
data repository. The external adapter receives the reconciliation data from step "6"
above as a parameter.

8 The Federation Framework calls theMapping Engine to connect between the received
results. The firstResult parameter is the external topology result received from
BSM in step "5" above and the secondResult parameter is the external topology
result received from the External Adapter in step "7" above. TheMapping Engine
returns amapwhere External CI ID from the first data repository (BSM in this case) is
mapped to the External CI IDs from the second (external) data repository.

9 For eachmapping, the Federation Framework creates a virtual relationship.

10 After the calculation of the federated TQL query results (only at the topology stage),
the Federation Framework retrieves the original TQL layout for the resulting CIs and
relationships from the appropriate data repositories.

HP Business ServiceManagement (9.20)Page 187 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Calculation Starts at the External Adapter End

The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for an federated TQL calculation.

2 The Federation Framework analyzes the adapter, finds the virtual relationship, and
divides the original TQL into two sub-adapters – one for BSM and one for the
external data repository.

3 The Federation Framework requests the topology of the sub-TQL from the External
Adapter. The returned ExternalTopologyResult is not supposed to contain
any reconciliation object, since the reconciliation data is not part of the request.

HP Business ServiceManagement (9.20)Page 188 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Number Explanation

4 After receiving the topology results, the Federation Framework calls the appropriate
Mapping Engine with the current virtual relationship and requests reconciliation
data. The reconciliationObjects parameter is empty at this state, that is, no
condition is added to the reconciliation data in this call. The returned reconciliation
data defines what data is needed tomatch the reconciliation CIs in BSM to the
external data repository. The reconciliation data can be one of three following types:

l IdReconciliationData. CIs are reconciled according to their ID.

l PropertyReconciliationData. CIs are reconciled according to the properties of
one of the CIs.

l TopologyReconciliationData. CIs are reconciled according to the topology (for
example, to reconcile node CIs, the IP address of IP is required too).

5 The Federation Framework requests reconciliation objects for the CIs that were
received in step 3 from the external data repository. The Federation Framework
calls the getTopologyWithReconciliationData()method in the External Adapter,
where the requested topology is a one-node topology with CIs received in step 3 as
the ID condition and reconciliation data from step 4.

6 The Federation Framework calls theMapping Engine to retrieve the reconciliation
data. In this state (by contrast with step 3), theMapping Engine receives the
reconciliation objects from step 5 as parameters. TheMapping Engine translates
the received reconciliation object to the condition on the reconciliation data.

7 The Federation Framework requests the topology of the sub-TQLwith reconciliation
data from step 6 from BSM.

8 The Federation Framework calls theMapping Engine to connect between the
received results. The firstResult parameter is the external topology result
received from the External Adapter at step 5 and the secondResult parameter is
the external topology result received from BSM at step 7. TheMapping Engine
returns amapwhere the External CI ID from the first data repository (the external
data repository in this case) is mapped to the External CI IDs from the second data
repository (BSM).

9 For eachmapping, the Federation Framework creates a virtual relationship.

10 After the calculation of the federated TQL query results (only at the topology stage),
the Federation Framework retrieves the original TQL layout for the resulting CIs and
relationships from the appropriate data repositories.

Example of Federation Framework Flow for Federated TQL Queries
This example explains how to view all open incidents on specific nodes. The ServiceCenter data
repository is the external data repository. The node instances are stored in BSM, and the incident
instances are stored in ServiceCenter. It is assumed that to connect the incident instances to the
appropriate node, the node and ip_address properties of the host and IP are needed. These are
reconciliation properties that identify the nodes from ServiceCenter in BSM.

HP Business ServiceManagement (9.20)Page 189 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Note: For attribute federation, the adapter's getTopologymethod is called. The reconciliation
data is adapted in the user TQL (in this case, the CI element).

1. After analyzing the adapter, the Federation Framework recognizes the virtual relationship
between Node and Incident and splits the federated TQL query into two subgraphs:

2. The Federation Framework runs the BSM subgraph to request the topology, and receives the
following results:

HP Business ServiceManagement (9.20)Page 190 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

3. The Federation Framework requests, from the appropriate Mapping Engine, the reconciliation
data for the first data repository (BSM) that contains the information to connect between
received data from two data repositories. The reconciliation data in this case is:

4. The Federation Framework creates a one-node topology query with the Node and ID conditions
on it from the previous result (node in H1, H2, H3), and runs this query with the required
reconciliation data on BSM. The result includes Node CIs that are relevant to the ID condition
and the appropriate reconciliation object for each CI:

HP Business ServiceManagement (9.20)Page 191 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

5. The reconciliation data for ServiceCenter should contain a condition for node and ip that is
derived from the reconciliation objects received from BSM:

6. The Federation Framework runs the ServiceCenter subgraph with the reconciliation data to
request the topology and appropriate reconciliation objects, and receives the following results:

HP Business ServiceManagement (9.20)Page 192 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

7. The result after connection in Mapping Engine and creating virtual relationships is:

8. The Federation Framework requests the original TQL layout for received instances from BSM
and ServiceCenter.

HP Business ServiceManagement (9.20)Page 193 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Federation Framework Flow for Population
This section includes the following topics:

l "Definitions and Terms" below

l "Flow Diagram" below

Definitions and Terms
Signature. Denotes the state of properties in the CI. If changes aremade to property values in a
CI, the CI signaturemust also be changed. The CI signature helps to detect whether a CI has
changed without retrieving and comparing all CI properties. Both the CI and the CI signature are
provided by the appropriate adapter. The adapter is responsible for changing the CI signature when
the CI properties are altered.

Flow Diagram
The following sequence diagram illustrates the interaction between the Federation Framework and
the source and target adapters in a population flow:

1. The Federation Framework receives the topology for the query result from the source adapter.
The adapter recognizes the query by its name and runs it on the external data repository. The
topology result contains the ID and signature for each CI and relationship in the result. The ID
is the logical ID that defines the CI as unique in the external data repository. The signature
should bemodified if the CI or relationship is modified.

2. The Federation Framework uses signatures to compare the newly received topology query
results with the saved ones, and to determine which CIs have changed.

3. After the Federation Framework finds the CIs and relationships that have changed, it calls the
source adapter with the IDs of the changed CIs and relationships as a parameter to retrieve
their full layout.

4. The Federation Framework sends the update to the target adapter. The target adapter updates

HP Business ServiceManagement (9.20)Page 194 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

the external data source with the received data.

5. After the update, the Federation Framework saves the last query result.

HP Business ServiceManagement (9.20)Page 195 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Adapter Interfaces
This section includes the following topics:

l "Definitions and Terms" below

l "Adapter Interfaces for Federated TQLQueries" below

Definitions and Terms
External Relation. The relation between two external CI types that are supported by the same
adapter.

Adapter Interfaces for Federated TQL Queries
Use the appropriate adapter interface for each adapter, as follows.

l A one Node topology interface is used when the adapter does not support any external
relations; that is, the adapter is never meant to receive a request with more than one external CI.
All OneNode interfaces are created to simplify the workflow; for those cases where you need to
use amore extensive query, use the DataAdapter interface.

l A DataAdapter interface is used to define adapters that support complex federated queries.
The reconciliation request in these adapters is part of the single QueryDefinition parameter.
These adapters may also be used for Population.

l Pattern topology interface (Deprecated as of UCMDB 9.00)

OneNode Interfaces
The following interfaces have different types of reconciliation data:

l OneNodeTopologyIdReconciliationDataAdapter. Use if the adapter supports a single-node
TQL and the reconciliation between data repositories is calculated by the ID.

l OneNodeTopologyPropertyReconciliationDataAdapter. Use if the adapter supports a
single-node TQL and the reconciliation between data repositories is done by the properties of
one CI.

l OneNodeTopologyDataAdapter. Use if the adapter supports a single-node TQL and the
reconciliation between data repositories is done by topology.

Data Adapter Interfaces
l DataAdapter. Use this adapter to support complex federated TQL queries. Allows themost

diversity.

l PopulateDataAdapter. Use this adapter to support complex federated TQL queries and
population flows. In a population flow, this adapter retrieves the entire data set, and lets the
probe filter the difference since the last execution of the job.

l PopulateChangesDataAdapter. Use this adapter to support complex federated TQL queries
and population flows. In a population flow, this adapter supports the retrieval of only the changes
that occurred since the last execution of the job.

HP Business ServiceManagement (9.20)Page 196 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Note:When developing an adapter that may return large data sets of data, its important to
allow chunking by implementing the ChunkGetter Interface. See the Java document of the
specific adapter for more information.

Pattern Topology Interfaces (Deprecated as of UCMDB
9.00)

The following interfaces have different types of reconciliation data:

l PatternTopologyIdReconciliationDataAdapter. Use if the adapter supports a complex TQL
and the reconciliation between data repositories is done by the ID.

l PatternTopologyPropertyReconciliationDataAdapter. Use if the adapter supports a
complex TQL and the reconciliation between data repositories is done by single-node
properties.

l PatternTopologyDataAdapter. Use if the adapter supports a complex TQL and the
reconciliation between data repositories is done by topology.

Additional Interfaces
l SortResultDataAdapter. Use if you can sort the resulting CIs in the external data repository.

l FunctionalLayoutDataAdapter. Use if you can calculate the functional layout in the external
data repository.

Adapter Interfaces for Synchronization
l SourceDataAdapter. Use for source adapters in population flows.

l TargetDataAdapter. Use for target adapters in data push flows.

HP Business ServiceManagement (9.20)Page 197 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Debug Adapter Resources
This task describes how to use the JMX console to create, view, and delete adapter state
resources (any resources created using the resourcemanipulationmethods in the
DataAdapterEnvironment interface, which are saved in the RTSM database or the Probe database)
for debugging and development purposes.

1. Launch theWeb browser and enter the server address, as follows:

n For the RTSM server: http://localhost:8080/jmx-console

n For the Probe: http://localhost:1977

Youmay have to log in with a user name and password (the defaults are sysadmin/sysadmin).

2. To open the JMX MBEAN View page, do one of the following:

n On the RTSM server: click
UCMDB:service=FCMDB Adapter State Resource Services

n On the Probe: click type=AdapterStateResources

3. Enter values in the operations that you want to use, and click Invoke.

HP Business ServiceManagement (9.20)Page 198 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Add an Adapter for a New External Data Source
This task explains how to define an adapter to support a new external data source.

This task includes the following steps:

l "Prerequisites" below

l "Define Valid Relationships for Virtual Relationships" below

l "Define an Adapter Configuration" on next page

l "Define Supported Classes" on page 203

l "Implement the Adapter" on page 204

l "Define Reconciliation Rules or Implement theMapping Engine" on page 204

l "Add Jars Required for Implementation to the Class Path" on page 204

l "Deploy the Adapter" on page 204

l "Update the Adapter" on page 205

1. Prerequisites
Model-supported adapter classes for CIs and relationships in the BSMDataModel. As an
adapter developer, you should:

n have knowledge of the hierarchy of the BSMCI types to understand how external CITs are
related to the BSMCITs

n model the external CITs in the BSM class model

n add the definitions for new CI types and their relationships

n define valid relationships in the BSM class model for the valid relationships between adapter
inner classes. (The CITs can be placed at any level of the BSM class model tree.)

Modeling should be the same regardless of federation type (on the fly or replication). For details
on adding new CIT definitions to the BSM class model, seeWorking with the CI Selector in the
Modeling Guide.

For the adapter to support federated attributes on CITs, add this CIT to the supported classes
with supported attributes and the reconciliation rule for this CIT.

2. Define Valid Relationships for Virtual Relationships

Note: This section is relevant only for federation.

To retrieve federated CITs that are connected to local RTSM CITs, a valid link definitionmust
exist between the two CITs in the RTSM.

a. Create a valid links XML file that contains these links (if they do not already exist).

b. Add the links XML file to the adapter package in the \validlinks folder. For details, see
"PackageManager" in theRTSM Administration Guide.

HP Business ServiceManagement (9.20)Page 199 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Example of Valid Relationship Definition:

In the following example, the relation of type containment between instances of
type node to instances of type myclass1 is a valid relationship definition.

<Valid-Links>

 <Valid-Link>

 <Class-Ref class-name="containment">

 <End1 class-name="node">

 <End2 class-name="myclass1">

 <Valid-Link-Qualifiers>

 </Valid-Link>

</Valid-Links>

3. Define an Adapter Configuration
a. Navigate toAdmin > RTSM Administration > Adapter Management.

b. Click theCreate new resource button.

c. In the New adapter dialog box, select Integration and Java Adapter.

d. Right-click on the adapter that you created and select Edit Adapter Source from the
shortcut menu.

e. Edit the following XML tags:

<pattern xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

id="newAdapterIdName"

xsi:noNamespaceSchemaLocation="../../Patterns.xsd"

description="Adapter Description" schemaVersion="9.0"

displayName="New Adapter Display Name">

<deletable>true</deletable>

<discoveredClasses>

<discoveredClass>link</discoveredClass>

<discoveredClass>object</discoveredClass>

</discoveredClasses>

<taskInfo

className="com.hp.ucmdb.discovery.probe.services.dynamic.core.

AdapterService">

<params

className="com.hp.ucmdb.discovery.probe.services.dynamic.core.

AdapterServiceParams" enableAging="true"

enableDebugging="false" enableRecording=

"false" autoDeleteOnErrors="success" recordResult="false"

maxThreads="1" patternType="java_adapter"

maxThreadRuntime="25200000">

HP Business ServiceManagement (9.20)Page 200 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

<className>com.yourCompany.adapter.MyAdapter.MyAdapterClass

</className>

</params>

<destinationInfo

class-

Name="com.hp.ucmdb.discovery.probe.tasks.BaseDestinationData">

<!-- check -->

<destinationData name="adapterId"

description="">${ADAPTER.adapter_id}</destinationData>

<destinationData name="attributeValues"

description="">${SOURCE.attribute_values}</destinationData>

<destinationData name="credentialsId"

description="">${SOURCE.credentials_id}</destinationData>

<destinationData name="destinationId"

description="">${SOURCE.destination_id}</destinationData>

</destinationInfo>

<resultMechanism isEnabled="true">

<autoDeleteCITs isEnabled="true">

<CIT>link</CIT>

<CIT>object</CIT>

</autoDeleteCITs>

</resultMechanism>

</taskInfo>

<adapterInfo>

<adapter-capabilities>

<support-federated-query>

<!--<supported-classes/> <!—see the section about supported

classes-->

<topology>

<pattern-topology /> <!—or <one-node-topology> -->

</topology>

</support-federated-query>

<!--<support-replicatioin-data>

<source>

<changes-source/>

</source>

HP Business ServiceManagement (9.20)Page 201 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

<target/>

</adapter-capabilities>

<default-mapping-engine />

<queries />

<removedAttributes />

<full-population-days-interval>-1</full-population-days-

interval>

</adapterInfo>

<inputClass>destination_config</inputClass>

<protocols />

<parameters>

<!--The description attribute may be written in simple text or

HTML.-->

<!--The host attribute is treated as a special case by UCMDB-->

<!--and will automatically select the probe name (if possible)--

>

<!--according to this attribute’s value.-->

<parameter name="credentialsId" description="Special type of

property, handled by UCMDB for credentials menu" type="integer"

display-name="Credentials ID" mandatory="true" order-index="12"

/>

<parameter name="host" description="The host name or IP address

of the remote machine" type="string" display-name="Hostname/IP"

mandatory="false" order-index="10" />

<parameter name="port" description="The remote machine's

connection port" type="integer" display-name="Port"

mandatory="false" order-index="11" />

</parameters>

<parameter name="myatt" description="is my att true?"

type="string" display-name="My Att" mandatory="false" order-

index="15" valid-values=”True;False”/>True</parameters>

<collectDiscoveredByInfo>true</collectDiscoveredByInfo>

<integration isEnabled="true">

<category >My Category</category>

</integration>

<overrideDomain>${SOURCE.probe_name}</overrideDomain>

<inputTQL>

HP Business ServiceManagement (9.20)Page 202 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

<resource:XmlResourceWrapper

xmlns:resource="http://www.hp.com/ucmdb/1-0-

0/ResourceDefinition" xmlns:ns4="http://www.hp.com/ucmdb/1-0-

0/ViewDefinition" xmlns:tql="http://www.hp.com/ucmdb/1-0-

0/TopologyQueryLanguage">

<resource xsi:type="tql:Query" group-id="2" priority="low" is-

live="true" owner="Input TQL" name="Input TQL">

<tql:node class="adapter_config" id="-11" name="ADAPTER" />

<tql:node class="destination_config" id="-10" name="SOURCE" />

<tql:link to="ADAPTER" from="SOURCE" class="fcmdb_conf_

aggregation" id="-12" name="fcmdb_conf_aggregation" />

</resource>

</resource:XmlResourceWrapper>

</inputTQL>

<permissions />

</pattern>

For details about the XML tags, see "XMLConfiguration Tags and Properties " on page 208.

4. Define Supported Classes
Define supported classed either the adapter code by implementing the getSupportedClasses()
method, or by using the pattern XML file.

<supported-classes>

 <supported-class name="HistoryChange" is-derived="false" is-

reconciliation-supported="false" federation-not-

supported="false" is-id-reconciliation-supported="false">

 <supported-conditions>

 <attribute-operators attribute-name="change_create_

time">

 <operator>GREATER</operator>

 <operator>LESS</operator>

 <operator>GREATER_OR_EQUAL</operator>

 <operator>LESS_OR_EQUAL</operator>

 <operator>CHANGED_DURING</operator>

 </attribute-operators>

 </supported-conditions>

</supported-class>

name The name of the CI type

is-derived Specifies whether this definition includes all inheriting children

HP Business ServiceManagement (9.20)Page 203 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

is-
reconciliation-
supported

Specifies whether this class is used for reconciliation

is-id-
reconciliation-
supported

Specifies whether this class is used for id-reconciliation

federation-not-
supported

Specifies whether this CIT should not be allowed for federation (blocking
certain CITs, for example, a CIT defined solely for federation)

<supported-
conditions>

Specifies the supported conditions on each attribute

5. Implement the Adapter
Select the correct adapter implementation class according to its defined capabilities. The
adapter implementation class implements the appropriate interfaces according to defined
capabilities.

6. Define Reconciliation Rules or Implement the Mapping Engine
If your adapter supports federated TQL queries, you have three options for defining your
Mapping Engine:

n Use the default RTSM 9.0x default mapping engine, which uses the RTSM's internal
reconciliation rules for mapping. To use it, leave the <default-mapping-engine> XML tag
empty.

For details, see "The reconciliation_types.txt file" on page 152.

n Use the RTSM 8.0x mapping engine. To do this, use the following XML Tag: <default-
mapping-
engine>com.hp.ucmdb.federation.mappingEngine.AdapterMappingEngine</default-
mapping-engine>

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page
152.

n Write your ownmapping engine by implementing themapping engine interface and placing
the JAR with the rest of the adapter code. To do this, use the following XML tag: <default-
mapping-engine>com.yourcompany.map.MyMappingEngine</default-mapping-
engine>

7. Add Jars Required for Implementation to the Class Path
To implement your classes, add the federation_api.jar file to your code editor class path.

8. Deploy the Adapter
Deploy the adapter package. For general details on deploying a package, see "Package
Manager" in theRTSM Administration Guide.

The package should contain the following entities:

HP Business ServiceManagement (9.20)Page 204 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

n New CIT definition (optional):

n Used only if the adapter supports new CI types that do not yet exist in BSM.

n The new CIT definitions are located in the class folder in the package.

n New data type definition (optional):

n Used only if the new CITs require new data types.

n The new data type definitions are located in the typedef folder in the package.

n New valid relationships definition (optional):

n Used only if the adapter supports the federated TQL.

n The new valid relationships definitions are located in the validlinks folder in the
package.

n The pattern configuration XML file should be located in the discoveryPatterns folder in
the package.

n Descriptor. Defines the package definitions.

n Place your compiled classes (normally a jar file) in the package under the
adapterCode\<adapter id> folder.

Note: The adapter id folder name has the same value as in the adapter
configuration.

n If you create your own configuration file, you should place the file in the package under the
adapterCode\<adapter id> folder.

9. Update the Adapter
Changes to any of the adapter's non-binary files may bemade in the Adapter Management
module. Making changes to configuration files in the Adapter management module causes the
adapter to reload with the new configurations.

Updates may also bemade by editing the files in the package (both binary and non-binary
files), and then redeploying the package by using the PackageManager. For details, see
Deploy a Package in theRTSM Administration Guide.

HP Business ServiceManagement (9.20)Page 205 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Implement the Mapping Engine
The configuration of themapping engine depends on whichmapping engine you are using.

This task includes the following steps:

l "Configure the reconciliation_types.txt File (for the BSM 9.0x default mapping engine) " below

l "Configure the reconciliation_rules.txt File (for the BSM 8.0x mapping engine)" below

1. Configure the reconciliation_types.txt File (for the BSM 9.0x default
mapping engine)
The file is used to define which CI types are used for reconciliation in the adapter.

Write each CI types used for reconciliation on a single line, as follows:

node

business_application

Place the file in the adapter package in the adapterCode\<AdapterID>\META-INF\ folder. To
support ID reconciliation (reconciliation based on ID mapping between the RTSM ID in the
RTSM to a value on the remote database), you shouldmap a special RTSM attribute called
cmdb_id to a column in the database of either the string (char, varchar) or byte[] (raw/bytes)
type.

2. Configure the reconciliation_rules.txt File (for the BSM 8.0x mapping
engine)
This file is used to configure the reconciliation rules. Each row in the file represents a rule. For
example:

reconcilition_type[node] expression[^node.name OR ip_address.name]

end1_type[node] end2_type[ip_address] link_type[containment]

The reconcilition_type parameter is filled with the type of CI on which the reconciliation is
performed (the BSM class name that is connected to the federated class in the TQL).

The expression parameter is the logic that decides whether two reconciliation objects are
equal (one reconciliation object from the BSM side and the other from the Federated adapter
side).

The expression is composed of ORs and ANDs.

The convention regarding attributes names in the expression part is [className].
[attributeName]. For example, the attribute ip_address in the ip class is written ip.ip_
address.

You can define orderedmatches. The orderedmatch checks the first OR sub expression. If
two reconciliation objects have the value on the attributes of the sub expression and it returns
that false (the reconciliation objects are not equal) then the secondOR sub expression is not
compared.

For an orderedmatch, use ordered expression instead of expression.

The circumflex sign (^) is used to ignore case during comparisons.

HP Business ServiceManagement (9.20)Page 206 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

The other parameters (end1_type, end2_type, and link_type) are used only if the
reconciliation data contains two nodes and not just the node of the reconciliation type (the
topological reconciliation data). In this case, the reconciliation data is end1_type -(link_type)>
end2_type.

There is no need to add the relevant layout as it is retrieved from the expression.

To perform reconciliation by BSM ID, use cmdb_id as the attribute name in expression.

Place the file in the adapter package in the adapterCode\<AdapterID>\
META-INF\ folder.

Examples:

n You can add a reconciliation rule for a node CIT only. This is because only node CITs have
valid relationships with external CITs. For example, a node CI in the RTSM is matched to a
node CI in ServiceCenter through the node.name attribute or through the ip_
address.name attribute.

n The reconciliation rule in this case is a topology rule and the expression is ordered. The rule
performs the following checks on the CIs under comparison:

o If the node.name attribute is equal, the rule matches the nodes.

o If the node.name attribute is not equal, the rule does not match the nodes.

o If the node.name attribute is null in one of the compared CIs, the rule checks the ip_
address.name attribute. If the ip_address.name attribute is equal, the rule matches
the nodes.

HP Business ServiceManagement (9.20)Page 207 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

Create a Sample Adapter
This example illustrates how to create a sample adapter. This task includes the following steps:

l "Select Adapter Logic" below

l "Load the Project" below

1. Select Adapter Logic
When you implement an adapter, youmust choose how to handle the condition logic in the
implementation (property conditions, ID conditions, reconciliation conditions, and link
conditions).

a. Retrieve the entire data into the adapter memory and let it select or filter the needed CI
Instances.

b. Convert all the conditions into the data source language and let it filter and select the data.
For example:

o Convert the condition into a SQL query.

o Convert the condition into a Java API filter object.

c. Filter some of the data on the remote service, and have the adapter select and filter the
remainder.

In theMyAdapter example, the logic in option a is used.

2. Load the Project
Copy the files from the
<HP BSM root directory\odb\tools\adapter-dev-kit folder and follow the instructions in the
readme files.

Note: If you use an adapter with large data sets, youmay need to use caching and
indexing to improve performance for Federation.

Online javadocs documentation is available at:

C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\DBAdapterFramework_JavaAPI\index.html

XML Configuration Tags and Properties
id="newAdapterIdName" Defines the adapter's real name. Used for logs and

folder lookups

displayName="New Adapter Display
Name"

Defines the adapter's display name, as it appears in
the UI.

<className>...</className> Defines the adapter's interface implementing the
Java class.

HP Business ServiceManagement (9.20)Page 208 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

<category >My Category</category> Defines the adapter's category.

<parameters> Defines the properties for the configuration that are
available in the UI when setting up a new integration
point.

name The name of the property (usedmostly by code)

description The display hint of the property

type String or integer (use valid values with string for
Boolean).

display-name The name of the property in the UI.

mandatory Specifies whether this configuration property is
mandatory for the user.

order-index The placing order of the property (small = up)

valid-values A list of possible valid values separated by `;'
characters (for example, valid-
values="Oracle;SQLServer;MySQL" or valid-
values="True;False").

<adapterInfo> Contains the definition of the adapter's static settings
and capabilities.

<support-federated-
query>

Defines this adapter as capable of federation.

<one-node-topology> The ability to federated queries with one federated
query node.

<pattern-topology> The ability to federate complex queries.

<support-replicatioin-
data>

Defines the capability to run data push and population
flows.

<source> This adapter may be used for population flows.

<changes-source> This adapter may be used for population changes
flows.

<target> This adapter may be used for data push flows.

<default-mapping-
engine>

Allows definition of amapping engine for the adapter
(by default, the adapter uses the default mapping
engine). For any other mapping engine, enter the
implementing class name of themapping engine (for
the BSM 8.0x mapping engine use:
com.hp.ucmdb.federation.mappingEngine.
AdapterMappingEngine)

HP Business ServiceManagement (9.20)Page 209 of 344

RTSM Developer Reference Guide
Chapter 6: Developing Java Adapters

<removedAttributes> Forces the removal of specific attributes from the
result.

<full-population-
days-
interval>

Specifies when to execute a full population job
instead of a differential job (every `x' days). Uses the
agingmechanism together with the changes flow.

HP Business ServiceManagement (9.20)Page 210 of 344

Chapter 7

Developing Push Adapters
This chapter includes:

Developing Push Adapters Overview 212

Differential Synchronization 213

Prepare theMapping Files 214

Write Jython Scripts 217

Support Differential Synchronization 221

Build an Adapter Package 223

Mapping File Schema 225

Mapping Results Schema 237

HP Business ServiceManagement (9.20)Page 211 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Developing Push Adapters Overview
TheGeneric Push Adapter provides a platform that enables rapid development of integrations that
push BSM 9.0x data to external data repositories (databases and third-party applications).
Developing a custom integration based onGeneric Push Adapter requires:

l An XMLmapping file between the BSMCI link types and the external data items.

l A Jython script to push the data items into the external data repository.

HP Business ServiceManagement (9.20)Page 212 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Differential Synchronization
For the Push adapter to support differential synchronization, theDiscoveryMain functionmust
return an object implementing theDataPushResults interface, which contains themappings
between the IDs that the Jython script receives from the XML and the IDs that the Jython script
creates on the remotemachine. The latter IDs are of the typeExternalId.

TheExternalIdUtil.restoreExternal command, which receives the ID of the CI in the CMDB as a
parameter, restores the external ID from the ID of the CI in the CMDB. This command can be used,
for example, while performing differential synchronization, and a link is received where one of its
ends is not in the bulk (it was already synchronized).

If theDiscoveryMainmethod in the Jython script on which the Push adapter is based returns an
empty ObjectStateHolderVector instance, the adapter will not support differential synchronization.
This means that even when a differential synchronization job is run, in actuality, a full
synchronization is being performed. Therefore, no data can be updated or removed on the remote
system, since all data is added to the RTSM during each synchronization.

HP Business ServiceManagement (9.20)Page 213 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Prepare the Mapping Files

Note: You can retrieve all of the CIs and relationships as they are in the CMDB without
mapping by not creating themappings.xml file. This will return all of the CIs and relationships
with all of their attributes.

There are two different ways to preparemapping files:

l You can prepare a single, global mapping file.

All mappings are placed in a single file namedmappings.xml.

l You can prepare a separate file for each push query.

Each eachmapping file is called <query name>.xml.

For details, see "Mapping File Schema" on page 225.

This task includes the following steps:

l "Create theMapping File" below

l "Map CIs" below

l "Map Links " on next page

1. Create the Mapping File
Themapping file structure is created as follows:

<?xml version="1.0" encoding="UTF-8"?>

<integration>

 <info>

 <source name="UCMDB" versions="9.x" vendor="HP" >

 <!-- for example: -->

 <target name="Oracle" versions="11g" vendor="Oracle" >

 </info>

 <targetcis>

 <!--- CI Mappings --->

 </targetcis>

 <targetrelations>

 <!--- Link Mappings --->

 </ targetrelations>

</integration>

2. Map CIs
There are two ways tomapRTSMCI types:

n Map aCI type so that CIs of that type and all inherited types aremapped in the sameway:

<source_ci_type_tree name="node" mode="update_else_insert">

 <apioutputseq>1</apioutputseq>

 <target_ci_type name="host">

 <targetprimarykey>

HP Business ServiceManagement (9.20)Page 214 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

 <pkey>name</pkey>

 </targetprimarykey

 <target_attribute name=" name" datatype="STRING">

 <map type="direct" source_attribute="name" >

 </target_attribute>

 <!-- more target attributes --->

 </target_ci_type>

</source_ci_type_tree>

n Map aCI type so that only CIs of that type will be processed. CIs of inherited types will not
be processed unless their type is alsomapped (in one of the two ways):

<source_ci_type name="node" mode="update_else_insert">

 <apioutputseq>1</apioutputseq>

 <target_ci_type name="host">

 <targetprimarykey>

 <pkey>name</pkey>

 </targetprimarykey

 <target_attribute name=" name" datatype="STRING">

 <map type="direct" source_attribute="name" >

 </target_attribute>

 <!-- more target attributes --->

 </target_ci_type>

</source_ci_type>

A CI type which is mapped indirectly (one of its ancestors is mapped using source_ci_type_
tree), can also override its parent's map by having it appear in its own source_ci_type_tree or
source_ci_type.

It is recommended to use source_ci_type_treewherever possible. Otherwise, resulting CIs of
a CI type that do not appear in themapping files will not be transferred to the Jython script.

3. Map Links
There are two ways tomap links:

n Map a link that will alsomap all of the link types that inherit from that specific link:

<source_link_type_tree name="dependency" target_link_

type="dependency" mode="update_else_insert" source_ci_type_

end1="webservice" source_ci_type_end2="sap_gateway">

 <target_ci_type_end1 name="webservice" >

 <target_ci_type_end2 name="sap_gateway" >

 <target_attribute name="name" datatype="STRING">

 <map type="direct" source_attribute="name" >

 </target_attribute>

</source_link_type_tree>

n Map a link that will alsomap only that specific link type and not the link types which inherit
from it:

<link source_link_type="dependency" target_link_type="dependency"

mode="update_else_insert" source_ci_type_end1="webservice"

source_ci_type_end2="sap_gateway">

 <target_ci_type_end1 name="webservice" >

HP Business ServiceManagement (9.20)Page 215 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

 <target_ci_type_end2 name="sap_gateway" >

 <target_attribute name="name" datatype="STRING">

 <map type="direct" source_attribute="name" >

 </target_attribute>

</link>

HP Business ServiceManagement (9.20)Page 216 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Write Jython Scripts
Themapping script is a regular Jython script, and should follow the rules for Jython scripts. For
details, see "Developing Jython Adapters" on page 51.

The script should contain theDiscoveryMain function, whichmay return either an empty
OSHVResult or aDataPushResults instance upon success.

To report any failure, the script should raise an exception, for example:

raise Exception('Failed to insert to remote UCMDB using

TopologyUpdateService. See log of the remote UCMDB')

In the DiscoveryMain function, the data items to be pushed to or deleted from the external
application can be obtained as follows:

get add/update/delete result objects (in XML format) from the

Framework

addResult = Framework.getTriggerCIData('addResult')

updateResult = Framework.getTriggerCIData('updateResult')

deleteResult = Framework.getTriggerCIData('deleteResult')

The client object to the external application can be obtained as follows:

oracleClient = Framework.createClient()

This client object automatically uses the credentials ID, host name and port number passed by the
adapter through the Framework.

If you need to use the connection parameters that you defined for the adapter (for details, see the
step "Edit the discoveryPatterns\push_adapter.xml file." in "Build an Adapter Package" on page
223), use the following code:

propValue = str(Framework.getDestinationAttribute('<Connection

Property Name'))

For example:

serverName = Framework.getDestinationAttribute('ip_address')

This section also includes:

l "Working with theMapping's Results" below

l "Handling Test Connection in the Script" on page 220

Working with the Mapping's Results
TheGeneric Push Adapter creates XML strings that describe the data to be added, updated, or
deleted from the target system. The Jython script needs to analyze this XML, and then performs the
add, update, or delete operation on the target.

In the XML of the add operation that the Jython script receives, the mamId attribute for the objects
and links is always the BSM identifier of the original object or link before its type, attribute or other
information was changed to the schema of the remote system.

HP Business ServiceManagement (9.20)Page 217 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

In the XML of the update or remove operations, the mamId attribute of each object or link contains
the string representation of the same ExternalId that was returned from the Jython script from
the previous synchronization.

In the XML, the id attribute of a CI holds the cmdbId as an external id or the ExternalId of that
CI if the CI got an ExternalId one when the CI was sent to the script. The end1Id and end2Id
fields of the link hold for each of the link's ends the cmdbId as an external id or the ExternalId of
that link’s end if the CI at the link’s end got an ExternalId when it was sent to the script.

When processing the CIs in the Jython script, the return value of the script is amapping between
the CI's CMDB id and the given id (the id given to each CI in the script). If a CI is pushed for the first
time, the id that is in the XML of that CI is the CMDB id. If a CI is not pushed for the first time, the
CI’s id is the same id that was given to that CI in the script when it was first pushed.

The id is retrieved from the CI XML script as follows:

1. From the CI Element in the XML, retrieve the id from the id attribute. For example: id =

objectElement.getAttributeValue('id').

2. After retrieving the id from the XML, restore the id from the attribute (string). For example:
objectId = CmdbObjectID.Factory.restoreObjectID(id).

3. Check if the objectId received in the previous step is the CMDB id. You can do this by
checking if the objectId has the new id that is given to it by the script. If it does, the returned
id is not the CMDB id. For example:
newId = objectId.getPropertyValue(<the name of the id attribute

which is given by the script>).

If newId is null, then the id that was returned in the XML is a CMDB id.

4. If the id is a CMDB id (that is, newId is null), perform the following (if the id is not a CMDB id,
go to step 5):

a. Create a property for that CI that holds the new id. For example: propArray =

[TypesFactory.createProperty('<the name of the id attribute

which is given by the script>', '<new id>')].

b. Create an externaId to that CI. For example:
cmdbId = extI.getPropertyValue('internal_id')

className = extI.getType()

externalId = ExternalIdFactory.createExternalCiId(className,

propArray)

c. Map the CMDB id to the new created externalId (and in the next step return that mapping to
the adapter). For example: objectMappings.put(cmdbId, externalId)

d. When all of the CIs and links aremapped:
updateResult = DataPushResultsFactory.createDataPushResults

(objectMappings, linkMappings);

return updateResult

5. If the id is the new id (that is, newId is not null), then the externalId is the newId.

Example of the XML result

<root>

HP Business ServiceManagement (9.20)Page 218 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

<data>

<objects>

<Object mode="update_else_insert" name="UCMDB_UNIX"

operation="add" mamId="0c82f591bc3a584121b0b85efd90b174"

id="HiddenRmiDataSource%0Aunix%0A1%0Ainternal_

id%3DSTRING%3D0c82f591bc3a584121b0b85efd90b174%0A">

<field name="NAME" key="false" datatype="char"

length="255">UNIX5</field>

<field name="DATA_NOTE" key="false" datatype="char"

length="255"></field>

</Object>

</objects>

<links>

<link targetRelationshipClass="TALK" targetParent="unix"

targetChild="unix" operation="add" mode="update_else_insert"

mamId="265e985c6ec51a8543f461b30fa58f81"

id="end1id%5BHiddenRmiDataSource%0Aunix%0A1%0Ainternal_

id%3DSTRING%3D41372a1cbcaba27b214b84a2ec9eb535%0A%5D%0Aend2id%

5BHiddenRmiDataSource%0Aunix%0A1%0Ainternal_

id%3DSTRING%3D0c82f591bc3a584121b0b85efd90b174%0A%5D%0AHiddenRmi

DataSource%0Atalk%0A1%0Ainternal_

id%3DSTRING%3D265e985c6ec51a8543f461b30fa58f81%0A">

<field

name="DiscoveryID1">41372a1cbcaba27b214b84a2ec9eb535</field>

<field

name="DiscoveryID2">0c82f591bc3a584121b0b85efd90b174</field>

<field name="end1Id">HiddenRmiDataSource%0Aunix%0A1%0Ainternal_

id%3DSTRING%3D41372a1cbcaba27b214b84a2ec9eb535%0A</field>

<field name="end2Id">HiddenRmiDataSource%0Aunix%0A1%0Ainternal_

id%3DSTRING%3D0c82f591bc3a584121b0b85efd90b174%0A</field>

<field name="NAME" key="false" datatype="char"

length="255">TALK4</field>

<field name="DATA_NOTE" key="false" datatype="char"

length="255"></field>

</link>

</links>

</data>

</root>

HP Business ServiceManagement (9.20)Page 219 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Note: In case datatype="BYTE", the returned result's value is aString that is generated as:
new String([the byte array attribute]). The byte[] object can be
reconstructed by: <the received String>.getBytes(). Theremight be difference in
the default locale between the server and the probe. In this case, the reconstruction is
according to the server's default locale.

Handling Test Connection in the Script
A Jython script can be invoked to test the connection with an external application. In this case, the
testConnection destination attribute will be true. This attribute can be obtained from the
Framework as follows:

testConnection = Framework.getTriggerCIData('testConnection')

When run in test connectionmode, a script should raise an exception if a connection to the external
application cannot be established. Otherwise, if the connection is successful, theDiscoveryMain
function should return an empty OSHVResult.

HP Business ServiceManagement (9.20)Page 220 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Support Differential Synchronization

Important: If you are implementing differential synchronization on an existing adapter that was
created in version 9.00 or 9.01, youmust use the push-adapter.zip file from version 9.02 or later
to recreate your adapter package. For details, see "Build an Adapter Package" on page 223.

This task enables the Push adapter to perform differential synchronization. For details, see
"Differential Synchronization" on page 213.

The Jython script returns theDataPushResults object which contains two Javamaps - one for
object ID mappings (keys and values are ExternalCiId type objects) and one for link IDs (keys and
values are ExternalRelationId type objects).

l Add the following from statements to your Jython script:

from com.hp.ucmdb.federationspi.data.query.types import

ExternalIdFactory

from com.hp.ucmdb.adapters.push import DataPushResults

from com.hp.ucmdb.adapters.push import DataPushResultsFactory

from com.mercury.topaz.cmdb.server.fcmdb.spi.data.query.types import

ExternalIdUtil

l Use theDataPushResultsFactory factory class to obtain theDataPushResults object from
theDiscoveryMain function.

Create the UpdateResult object

updateResult = DataPushResultsFactory.createDataPushResults

(objectMappings, linkMappings);

l Use the following commands to create Javamaps for theDataPushResults object:

#Prepare the maps to store the mappings if IDs

objectMappings = HashMap()

linkMappings = HashMap()

l Use theExternalIdFactory class to create the following ExternalId IDs:

n ExternalId for objects or links originating in a CMDB (for example, all of the CIs in an add
operation are from the CMDB):

externaCIlId = ExternalIdFactory.createExternalCmdbCiId(ciType,

ciIDAsString)

externalRelationId =

ExternalIdFactory.createExternalCmdbRelationId(linkType,

end1ExternalCIId,

end2ExternalCIId, linkIDAsString)

n ExternalId for objects or links not originating in a CMDB (usually, every update and remove
operation contains such objects):

HP Business ServiceManagement (9.20)Page 221 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

myIDField = TypesFactory.createProperty("systemID", "1")

myExternalId = ExternalIdFactory.createExternalCiId(type,

myIDField)

Note: If the Jython script updated existing information and the ID of the object (or link)
changes, youmust return amapping between the previous external ID and the new one.

l Use the restoreCmdbCiIDString or restoreCmdbRelationIDStringmethods from the
ExternalIdFactory class to retrieve the UCMDB ID string from an External ID of an object or
link that originated in the UCMDB.

l Use the restoreExternalCiId and restoreExternalRelationIdmethods from theExternalIdUtil
class to restore theExternalId object from themamId attribute value of the XML of the update or
remove operations.

Note: ExternalId objects are actually an array of properties. This means that you can use
anExternalId object to store any information youmay need that will identify the data on the
remote system.

HP Business ServiceManagement (9.20)Page 222 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Build an Adapter Package
1. Extract the content of

<HP BSM root directory\odb\
content\adapters\push-adapter.zipinto a temporary folder. In the adapter package, the sql_
queries file located in adapterCode > PushAdapter > sqlTablesCreation, contains the
queries needed to create tables in a new schema in Oracle for testing the adapter. The tables
correspond to the adapterCode\<adapter ID>\mappings\mappings.xml file.

Note: The sql_queries file is not needed for the adapter. It is only an example.

2. Edit the discoveryPatterns\push_adapter.xml file.

a. Modify the <pattern> tag with a new id and display label. Replace:

<pattern id="PushAdapter"

xsi:noNamespaceSchemaLocation="../../Patterns.xsd"

description="Discovery Pattern Description" schemaVersion="9.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

with:

<pattern id="MyPushAdapter" displayLabel="My Push Adapter"

xsi:noNamespaceSchemaLocation="../../Patterns.xsd"

description="Discovery Pattern Description" schemaVersion="9.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

b. Update the parameter list, so that the list of parameters reflects the required connection
attributes. Do not remove the probeName attribute.

3. Rename the adapterCode\PushAdapter folder with the adapter ID used in the previous step
(for example, adapterCode\MyPushAdapter).

4. In the discoveryScript file, there is a script pushScript.py script which inserts the CIs and
links to an external Oracle database. Replace discoveryScripts\pushScript.pywith the
script you wrote (for details, see "Write Jython Scripts " on page 217). If you rename the script,
the jythonScript.name property in adapterCode\<adapter ID>\
push.properties should be updated accordingly.

5. The adapterCode\<adapter ID>\mappings\mappings.xml file, located in
adapterCode\<adapter ID>\mappings, is a samplemapping file which contains amapping of
the:

n NodeCI type with all the CI types that inherit from it

n UNIX CI type without the CI types that inherit from it

n Dependency link with all of the link types that inherit from it

n Talk link type without the inherited link types that inherit from it

This mapping example corresponds to the example of the tables created in ORACLE in the
sql_queries file (see step 1).

Replace the adapterCode\<adapter ID>\mappings\mappings.xml file with themapping
files you prepared (for details, see "Prepare theMapping Files" on page 214.

HP Business ServiceManagement (9.20)Page 223 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

If you want to use amapping file for each TQLmethod, assign the name of the corresponding
TQL to each XML file, followed by .xml. In this case, themappings.xml file will be used as a
default, if no specific mapping file is found for the current TQL name. The name of the default
mapping file can bemodified by changing the mappingFile.default property in
adapterCode\<adapter ID>\push.properties.

HP Business ServiceManagement (9.20)Page 224 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Mapping File Schema
Element Name and
Path Description Attributes

integration Defines themapping
contents of the file.
Must be the outermost
block in the file except
for the beginning line
and any comments.

info

(integration)

Defines information
about the data
repositories being
integrated.

source

(integration > info)

Defines information
about the source data
repository.

1. Name: type
Description:Name of the source data
repository.
Is required?:Required
Type:String

2. Name: versions
Description:Version(s) of the source
data repositories.
Is required?:Required
Type:String

3. Name: vendor
Description:Vendor of the source data
repository.
Is required?:Required
Type:String

HP Business ServiceManagement (9.20)Page 225 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

target

(integration > info)

Defines information
about the target data
repository.

1. Name: type
Description:Name of the source data
repository.
Is required?:Required
Type:String

2. Name: versions
Description:Version(s) of the source
data repository.
Is required?:Required
Type:String

3. Name: vendor
Description:Vendor of the source data
repository.
Is required?:Required
Type:String

targetcis

(integration)

Container element for
all CIT mappings.

source_ci_type_tree

(integration >
targetcis)

Defines a source CIT
and all of the CI types
which inherit from it.

1. Name: name
Description:Name of the source CIT.
Is required?:Required
Type:String

2. Name:mode
Description: The type of update required
for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert:Use this only if the CI does not
already exist.
b. update:Use this only if the CI is
known to exist.
c. update_else_insert: If the CI exists,
update it; otherwise, create a new CI.
d. ignore:Do nothing with this CI type.

HP Business ServiceManagement (9.20)Page 226 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

source_ci_type

(integration >
targetcis)

Defines a source CIT
without the CI types
which inherit from it.

1. Name: name
Description:Name of the source CIT.
Is required?:Required
Type:String

2. Name:mode
Description: The type of update required
for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert:Use this only if the CI does not
already exist.
b. update:Use this only if the CI is
known to exist.
c. update_else_insert: If the CI exists,
update it; otherwise, create a new CI.
d. ignore:Do nothing with this CI type.

target_ci_type

(integration > targetcis
>
source_ci_type

-OR-

integration > targetcis
> source_ci_type_
tree)

Defines a target CIT. 1. Name: name
Description: Target CI type name.
Is required?:Required
Type:String

2. Name: schema
Description: The name of the schema
that will be used to store this CI type at
the target.
Is required?:Not Required
Type:String

3. Name: namespace
Description: Indicates the namespace
of this CI type on the target.
Is required?:Not Required
Type:String

HP Business ServiceManagement (9.20)Page 227 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

targetprimarykey

(integration > targetcis
> source_ci_type)

-OR-

(integration > targetcis
> source_ci_type_tree

-OR-

(integration >
targetrelations > link)

-OR-

(integration >
targetrelations >
source_link_type_tree)

Identifies target CIT
primary key attributes.

pkey

(integration > targetcis
> source_ci_type >
targetprimarykey

-OR-

integration > targetcis
> source_ci_type_tree
> targetprimarykey

-OR-

(integration >
targetrelations > link >
targetprimarykey)

-OR-

integration >
targetrelations >
source_link_type_tree
> targetprimarykey)

Identifies one primary
key attribute.

Required only if mode
is update or
insert_else_update.

HP Business ServiceManagement (9.20)Page 228 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

target_attribute

(integration > targetcis
> source_ci_type

-OR-

integration > targetcis
>
source_ci_type_tree

-OR-

integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Defines the target
CIT's attribute.

1. Name: name
Description:Name of the target CIT's
attribute.
Is required?:Required
Type:String

2. Name: datatype
Description:Data type of the target
CIT's attribute.
Is required?:Required
Type:String

3. Name: length
Description: For string/char data types,
integer size of target attribute.
Is required?:Not Required
Type. Integer

4. Name. option
Description. The conversion function to
be applied to the value.
Is required. False
Type. One of the following strings:
a. uppercase – Convert to uppercase
b. lowercase – Convert to lowercase

If this attribute is empty, no conversion
function will be applied.

HP Business ServiceManagement (9.20)Page 229 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

map

(integration >
targetcis > source_ci_
type >
target_attribute

 -OR-

integration >
targetcis >
source_ci_type_tree >
target_attribute)

 -OR-

(integration >
targetrelations > link >
target_attribute

 -OR-

integration >
targetrelations >
source_link_type_tree
>
target_attribute)

Specifies how to obtain
the source CIT's
attribute value.

1. Name. type
Description. The type of mapping
between the source and target values.
Is required. Required
Type. One of the following strings:
a. direct – Specifies a 1-to-1mapping
from source attribute's value to target
attribute's value.
b. compoundstring –Sub-elements are
joined into a single string and the target
attribute value is set.
c. childattr – Sub-elements are one or
more child CIT's attributes. Child CITs
are defined as those with composition
or containment relationship.
d. constant – Static string

2. Name. value
Description. Constant string for
type=constant
Is required. Only required when
type=constant
Type. String

3. Name. attr
Description. Source attribute name for
type=direct
Is required. Only required when
type=direct
Type. String

HP Business ServiceManagement (9.20)Page 230 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

aggregation

(integration >
targetcis >
source_ci_type >
target_attribute > map

 -OR-

integration >
targetcis > source_ci_
type_tree > target_
attribute > map

 -OR-

(integration >
targetrelations >
link > target_attribute
>
map

 -OR-

integration >
targetrelations >
source_link_type_tree
> target_attribute >
map)

Only valid when the
map's type is childattr

Specifies how the
source CI's child CI
attribute values are
combined into a single
value tomap to the
target CI attribute.
Optional.

Name: type
Description. The type of aggregation
function
Is required?:Required
Type. One of the following strings:

l csv – Concatenates all included values
into a comma-separated list (numeric or
string/character).

l count – Returns a numeric count of all
included values.

l sum –Returns a numeric count of all
included values.

l average – Returns a numeric average of
all included values.

l min – Returns the lowest
numeric/character included value.

l max – Returns the highest
numeric/character included value.

HP Business ServiceManagement (9.20)Page 231 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

source_child_ci_type

(integration > targetcis
> source_ci_type >
target_attribute > map

-OR-

integration > targetcis
> source_ci_type_tree
> target_attribute >
map

-OR-

(integration >
targetrelations > link >
target_attribute > map

-OR-

integration >
targetrelations >
source_link_type_tree
> target_attribute >
map)

Only valid when the
map’s type is
childattr.

Specifies from which
connected CI the child
attribute is taken.

1. Name. name
Description. The type of the child CI
Is required. Required
Type. String

2. Name. source_attribute
Description. The attribute of the child CI
that is mapped.
Is required. Required only if the
childAttr aggregation type (which is on
the same path) is not =count.
Type. String

HP Business ServiceManagement (9.20)Page 232 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

validation

(integration >
targetcis >
source_ci_type >
target_attribute > map

 -OR-

integration >
targetcis >
source_ci_type_tree >
target_attribute > map

 -OR-

(integration >
targetrelations > link >
target_attribute > map

 -OR-

integration >
targetrelations >
source_link_type_tree
>
target_attribute > map)

Only valid when the
map's type is childatt

Allows exclusion
filtering of the source
CI's child CIs based on
attribute values. Used
with the aggregation
sub-element to achieve
granularity of exactly
which children
attributes aremapped
to the target CIT's
attribute value.
Optional.

1. Name.minlength
Description. Excludes strings shorter
than the given value.
Is Required?:Not required
Type. Integer

2. Name.maxlength
Description. Excludes strings longer
than the given value.
Is Required?:Not required
Type. Integer

3. Name.minvalue
Description. Excludes numbers smaller
than the specified value.
Is Required?:Not required
Type. Numeric

4. Name.maxvalue
Description. Excludes numbers greater
than the specified value.
Is Required?:Not required
Type. Numeric

targetrelations

(integration)

Container element for
all relationship
mappings. Optional.

HP Business ServiceManagement (9.20)Page 233 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

source_link_type_tree

(integration >
targetrelations)

Maps a source
Relationship type
without the types
which inherit from it to
a target Relationship.
Mandatory only if
targetrelation is
present.

1. Name: name
Description. Source relationship name.
Is required?:Required
Type. String

2. Name: target_link_type
Description. Target relationship name
Is required?:Required
Type. String

3. Name: nameSpace
Description: The namespace for the link
that will be created on the target.
Is required?:Not required
Type:String

4. Name:mode
Description: The type of update required
for the current link.
Is required?:Required
Type:One of the following strings:

n insert – Use this only if the CI does
not already exist.

n update – Use this only if the CI is
known to exist.

n update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

n ignore – Do nothing with this CI type.

5. Name: source_ci_type_end1
Description:Source relationship's End1
CI type.
Is required?:Required
Type:String

6. Name: source_ci_type_end2
Description:Source relationship's End2
CI type.
Is required?:Required
Type:String

HP Business ServiceManagement (9.20)Page 234 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

link

(integration >
targetrelations)

Maps a source
Relationship to a target
Relationship.
Mandatory only if
targetrelation is
present.

1. Name: source_link_type
Description:Source relationship name.
Is Required?:Required
Type:String

2. Name: target_link_type
Description: Target relationship name.
Is required?:Required
Type:String

3. Name: nameSpace
Description: The namespace for the link
that will be created on the target.
Is required?:Not required
Type:String

4. Name:mode
Description: The type of update required
for the current link.
Is required?:Required
Type:On the following strings:

n insert – Use this only if the CI does not
already exist.

n update – Use this only if the CI is
known to exist.

n update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

n ignore – Do nothing with this CI type.

5. Name: source_ci_type_end1
Description:Source relationship's End1
CI type
Is required?:Required
Type:String

6. Name: source_ci_type_end2
Description:Source relationship's End2
CI type
Is required?:Required
Type:String

HP Business ServiceManagement (9.20)Page 235 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

target_ci_type_end1

(integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Target relationship’s
End1 CI type.

1. Name: name
Description:Name of the target
relationship’s End1 CI type.
Is required?:Required
Type:String

2. Name: superclass
Description:Name of the End1 CI
type’s super-class.
Is required?:Not required
Type:String

target_ci_type_end2

(integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Target relationship’s
End2 CI type.

1. Name: name
Description:Name of the target
relationship’s End2 CI type.
Is required?:Required
Type:String

2. Name: superclass
Description:Name of the End2 CI
type’s super-class.
Is required?:Not required
Type:String

HP Business ServiceManagement (9.20)Page 236 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Mapping Results Schema
Element Name and
Path Description Attributes

root The root of the result
document.

data (root) The root of the data
itself.

objects (root > data) The root element for the
objects to update.

Object
(root > data > objects)

Describes the update
operation for a single
object and all of its
attributes.

1. Name: name
Description:Name of the CI type
Is required?:Required
Type:String

2. Name:mode
Description: The type of update required
for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert – Use this only if the CI does
not already exist.
b. update – Use this only if the CI is
known to exist.
c. update_else_insert – If the CI exists,
update it; otherwise, create a new CI.
d. ignore – Do nothing with this CI type.

3. Name: operation
Description: The operation to perform
with this CI.
Is required:Required
Type:One of the following strings:
a. add – The CI should be added
b. update – The CI should be updated
c. delete – The CI should be deleted
If no value is set, then the default value
of add is used.

4. Name:mamId
Description: The ID of the object on the
source RTSM.
Is required?:Required
Type:String

HP Business ServiceManagement (9.20)Page 237 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

field
(root > data > objects
> Object

-OR-

root > data > links >
link)

Describes the value of a
single field for an
object. The field’s text is
the new value in the
field, and if the field
contains a link, the
value is the ID of one of
the ends. Each end ID
appears as an object
(under <objects>).

1. Name: name
Description:Name of the field.
Is required?:Required
Type:String

2. Name: key
Description:Specifies whether this field
is a key for the object.
Is required?:Required
Type:Boolean

3. Name: datatype
Description: The type of the field.
Is required?:Required
Type:String

4. Name: length
Description: For string/character data
types, this is the integer size of the target
attribute.
Is required?:Not Required
Type: Integer

HP Business ServiceManagement (9.20)Page 238 of 344

RTSM Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

links (root > data) The root element for the
links to update.

1. Name: targetRelationshipClass
Description: The name of the
relationship (link) in the target system.
Is required?:Required
Type:String

2. Name: targetParent
Description: The type of first end of the
link (parent).
Is required?:Required
Type:String

3. Name: targetChild
Description: The type of the second end
of the link (child).
Is required?:Required
Type:String

4. Name:mode
Description: The type of update required
for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert – Use this only if the CI does
not already exist.
b. update – Use this only if the CI is
known to exist.
c. update_else_insert – If the CI exists,
update it; otherwise, create a new CI.
d. ignore – Do nothing with this CI type.

5. Name: operation
Description: The operation to perform
with this CI.
Is required?:Required
Type:One of the following strings:
a. add – The CI should be added
b. update – The CI should be updated
c. delete – The CI should be deleted
If no value is set, then the default value
of add is used.

6. Name:mamId
Description: The ID of the object on the
source RTSM.
Is required?:Required
Type:String

HP Business ServiceManagement (9.20)Page 239 of 344

Chapter 8

Viewing KPIs in External Applications
This chapter includes:

Set Up an Adapter to View KPIs in an External Application 241

HP Business ServiceManagement (9.20)Page 240 of 344

RTSM Developer Reference Guide
Chapter 8: Viewing KPIs in External Applications

Set Up an Adapter to View KPIs in an External
Application

This chapter explains how to retrieve the status and value of BSM KPIs when working in an
external application. You can view the results in your application, or you can use the results in
calculations, statistics, and so on.

This task describes how to set up the BACKPIsAdapter.

This task includes the following steps:

l "Create an Adapter Instance" below

l "View the Attributes in the CIT Manager" below

l "Define a TQL" on next page

l "Consume KPIs in External Application" on next page

1. Create an Adapter Instance
In BSM, in the integration point, create an adapter instance namedBACKPIsAdapter. Use the
following definitions:

n Adapter. EnterBACKPIsAdapter.

n Is Integration Activated. This checkbox should be selected.

n Host name and IP. Enter details of the BSMGateway Server.

n Port. Enter 80.

n Customer ID. Enter 1.

n Is CMS External. Select true if you are working with an external CMS; select false if you
are working with the RTSM.

In the second stage, choose theKpi and KpiObjective CITs.

For details, see "Integration Point Pane " in the Data Flow Management Guide.

2. View the Attributes in the CIT Manager
The following attributes are used by theKpi CIT:

n KpiName. The name of the KPI, for example, Availability, Performance.

n Origin. The origin of the KPIs, for example, BSM.

The following attributes are used by theKpiObjectiveCIT:

n Origin. The origin of the KPIs, for example, BSM.

n KpiValue. The numeric value of the KPI as calculated by the KPI business logic rule, for
example, 0, 100, 3.2. (This value is optional.)

n KpiStatus. The status of the KPI as calculated by the business logic rule (can be one of the
following values: ok, warning, minor, major, critical, none).

n KpiUnitOfMeasure. Themeasurement unit of the NumericValue field, for example, %, $.

HP Business ServiceManagement (9.20)Page 241 of 344

RTSM Developer Reference Guide
Chapter 8: Viewing KPIs in External Applications

(This value is optional.)

n LastModifiedTime. The date when the status last changed.

n KpiComparisonOperator. This attribute contains enum operators: na, =, >, <, <=, >=.

n KpiThresholdOk. The range of values that defines the OK KPI status.

n KpiThresholdWarning. The range of values that defines the WARNING KPI status.

n KpiThresholdMinor. The range of values that defines the MINOR KPI status.

n KpiThresholdMajor. The range of values that defines MAJOR KPI status.

n KpiThresholdCritical. The range of values that defines the CRITICAL KPI status.

For details on working with the CIT Manager, see CI TypeManager and CI Type Attributes in
theModeling Guide.

For details on KPI rules, see "Business Rule Repository" inUsing Service Health.

3. Define a TQL
Define a TQL using theKpi and KpiObjective CITs. For details, see "Define a TQLQuery" in
the HP Universal CMDB Modeling Guide.

4. Consume KPIs in External Application
Using the API of your external application, send a query to run the relevant TQL in BSM, to
retrieve the status and value of the federated KPIs.

HP Business ServiceManagement (9.20)Page 242 of 344

Part 2

Using APIs

HP Business ServiceManagement (9.20)Page 243 of 344

Chapter 9

Introduction to APIs
This chapter includes:

APIs Overview 245

HP Business ServiceManagement (9.20)Page 244 of 344

RTSM Developer Reference Guide
Chapter 9: Introduction to APIs

APIs Overview
The following APIs are included with BSM:

l UCMDB Web Service API. Enables writing configuration item definitions and topological
relations to the BSMRun-time ServiceModel (RTSM), and querying the information with TQL
and ad hoc queries. For details, see "RTSM (HP Universal CMDB)Web Service API" on page
258.

l UCMDB Java API. Explains how third-party or custom tools can use the Java API to extract
data and calculations and to write data to the BSMRun-time ServiceModel (RTSM). For details,
see "HP Universal CMDB API" on page 246.

l Data Flow Management Web Service API. Enables managing probes, jobs, triggers and
credentials for Data Flow Management. For details, see "Data Flow Management API" on page
327.

Note: To gain the full value of the API documentation, it is recommended to access the online
documentation. The PDF version does not have the links into the API documentation that is
generated in html format.

HP Business ServiceManagement (9.20)Page 245 of 344

Chapter 10

HP Universal CMDB API
This chapter includes:

Conventions 247

Using the HP Universal CMDB API 248

General Structure of an Application 249

Put the API Jar File in the Classpath 251

Create an Integration User 252

HP Universal CMDB API Reference 254

Use Cases 255

Examples 257

HP Business ServiceManagement (9.20)Page 246 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

Conventions

Note: The HP Universal CMDBWeb Service API can be used with the BSM Run-time
ServiceModel (RTSM). References in this section to HP Universal CMDB (UCMDB) refer to
the RTSM in the BSM context.

This chapter uses the following conventions:

l UCMDB refers to the Universal ConfigurationManagement database itself. In the BSM context,
it refers to the Run-time ServiceModel (RTSM). HP Universal CMDB refers to the application.

l UCMDB elements andmethod arguments are spelled in the case in which they are specified in
the interfaces.

For full documentation on the available APIs, refer to the HP UCMDB API Reference.

These files are located in the following folder:

\\<BSM Gateway Server root directory>\AppServer\
webapps\site.war\amdocs\eng\APIs\UCMDB_JavaAPI \index.html

HP Business ServiceManagement (9.20)Page 247 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

Using the HP Universal CMDB API

Note: Use this chapter in conjunction with the API Javadoc, available in the online
Documentation Library.

The HP Universal CMDB API is used to integrate applications with the Run-time ServiceModel
(RTSM). The API provides methods to:

l add, remove, and update CIs and relations in the RTSM

l retrieve information about the class model

l retrieve information from the UCMDB history

l run what-if scenarios

l retrieve information about configuration items and relationships

Methods for retrieving information about configuration items and relationships generally use the
Topology Query Language (TQL). For details, see Topology Query Language in theModeling Guide.

Users of the HP Universal CMDB API should be familiar with:

l The Java programming language

l HP Universal CMDB

This section includes the following topics:

l "Uses of the API" below

l "Permissions" below

Uses of the API
The API is used to fulfill a number of business requirements. For example, a third-party system can
query the class model for information about available configuration items (CIs). For more use
cases, see "Use Cases" on page 255.

Permissions
The administrator provides login credentials for connecting with the API. The API client needs the
user name and password of an integration user defined in the RTSM. These users do not represent
human users of the RTSM, but rather applications that connect to the RTSM.

Caution: The API client can also work with regular users as long as they have API
authentication permission. However, this option is not recommended.

For details, see "Create an Integration User" on page 252.

HP Business ServiceManagement (9.20)Page 248 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

General Structure of an Application
There is only one static factory, the UcmdbServiceFactory. This factory is the entry point for an
application. The UcmdbServiceFactory exposes getServiceProvider methods. Thesemethods
return an instance of theUcmdbServiceProvider interface.

The client creates other objects using interfacemethods. For example, to create a new query
definition, the client:

1. Gets the query service from themain RTSM service object

2. Gets a query factory object from the service object

3. Gets a new query definition from the factory

UcmdbServiceProvider provider =

 UcmdbServiceFactory.getServiceProvider(HOST_NAME, PORT);

UcmdbService ucmdbService =

 provider.connect(provider.createCredentials(USERNAME,

 PASSWORD), provider.createClientContext("Test"));

TopologyQueryService queryService =

ucmdbService.getTopologyQueryService();

TopologyQueryFactory factory = queryService.getFactory();

QueryDefinition queryDefinition = factory.createQueryDefinition

("Test Query");

queryDefinition.addNode("Node").ofType("host");

Topology topology = queryService.executeQuery(queryDefinition);

System.out.println("There are " + topology.getAllCIs().size() +

" hosts in uCMDB");

The services available from UcmdbService are:

Service Methods Use

getClassModelService Information about types of CIs and relations

getConfigurationService Infrastructure settings management, for server
configuration

getDDMConfigurationService Configure the Data Flow Management system

getDDMManagementService Analyze and view the progress, results, and errors of
the Data Flow Management system

getHistoryService Information about history of monitored CIs (chages,
removals, and so on)

getImpactAnalysisService Run impact analysis scenario (also known as
correlation).

HP Business ServiceManagement (9.20)Page 249 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

Service Methods Use

getQueryManagementService Manage access to queries - save, delete, list
existing. Also provides query validation and queries
dependencies discovery.

getResourceBundleManagementService Resource tagging ("bundling" services. Allows
explicit creation of new tags and removal of tags from
all tagged resources.

getStateService Provide services for managing states (list, add,
remove, and so on)

getSoftwareSignatureService Define software items to be discovered by the
Discovery and Dependency Management system

getSnapshotService Provide services for managing snapshots (get, save,
compare, and so on)

getTopologyQueryService Get information about the IT universe

getTopologyUpdateService Change information in the IT universe

getViewService View execution service (execute definition, execute
saved) andmanagement service (save, delete, list
existing). Also provides view validation and
dependencies discovery.

getViewArchiveService View result archiving services. Allows saving the
current view result and retrieving previously saved
results.

SystemHealthService Provide system health services (basic system
performance indicators, capacity and availability
metrics)

The client communicates with the server over HTTP.

HP Business ServiceManagement (9.20)Page 250 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

Put the API Jar File in the Classpath
The use of this API set requires the file ucmdb-api.jar. Get the jar from the <HP BSM root
directory>\lib\ folder.

Put the jar file in the classpath before compiling or running your application.

Note: Usage of the UCMDB Java API Jar requires you to have JRE version 6 or later installed.

HP Business ServiceManagement (9.20)Page 251 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

Create an Integration User
You can create a dedicated user for integrations between other products and BSM. This user
enables a product that uses the BSM client SDK to be authenticated in the server SDK and execute
the APIs. Applications written with this API set must log on with integration user credentials.

Caution: It is also possible to connect with a regular UCMDB user, (for instance, admin);
however, this option is not recommended. To connect with a UCMDB user, youmust grant it
API authentication permission.

To create an integration user:

1. Launch theWeb browser and enter the server address, as follows.

http://localhost.<domain_name>:21212/jmx-console.

Youmay have to log in with a user name and password.

2. Under UCMDB, click service=UCMDB Security Services.

3. Locate theCreateIntegrationUser operation. This method accepts the following parameters:

n customerId. The customer ID.

n username. The integration user's name.

n password. The integration user's password.

n dataStoreOrigin. The name of the product that is going to use this integration user.

The following operations are useful for integration user management:

n DeleteIntegrationUser. Deletes the given integration user.

n ExportIntegrationUser. Exports the integration user to an XML file in the given path (on the
server machine).

n getIntegrationUser. Displays the integration user information.

n changeIntegrationUserPassword. Changes the integration user's password.

n canUserAuthenticate. isIntegrationUser is true: can the integration user authenticate
with the given credentials?

4. Click Invoke.

Either createmore users, or close the JMX console.

5. Log on to BSM as an administator.

6. From theAdministration tab, runPackage Manager.

7. Click theNew icon.

8. Enter a name for the new package, and click Next.

9. In the Resource Selection tab, underAdministration, click Integration Users.

10. Select a user or users that you created using the JMX console.

HP Business ServiceManagement (9.20)Page 252 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

11. Click Next and then Finish. Your new package appears in the Package Name list in Package
Manager.

12. Deploy the package to the users who will run the API applications.

For details, see Deploy a Package in theRTSM Administration Guide.

Note:

The integration user is per customer. To create a stronger integration user for cross-
customer usage, use a systemUserwith the isSuperIntegrationUser flag set to true. Use
the systemUsermethods (createSystemUser, removeSystemUser,
showAllSystemUsers, changeSystemUserPassword,
canSuperIntegrationUserAuthenticate, and so on).

There are two out-of-the-box system users; it is recommended to change their passwords
after installation using the changeSystemUserPasswordmethod.

n sysadmin/sysadmin

n UISysadmin/UISysadmin (This user is also the Super Integration User
SuperIntegrationUser).

If you change the UISysadmin password using changeSystemUserPassword, you
must execute the followingmethod: in the JMX Console, locate theUCMDB-
UI:name=UCMDB Integration service. Run setCMDBSuperIntegrationUserwith the
user name and new password of the integration user.

HP Business ServiceManagement (9.20)Page 253 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

HP Universal CMDB API Reference
These files are located in the following folder:

\\<BSM Gateway Server root directory>\AppServer\
webapps\site.war\amdocs\eng\APIs\UCMDB_JavaAPI \index.html

HP Business ServiceManagement (9.20)Page 254 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

Use Cases
The following use cases assume two systems:

l HP Universal CMDB server

l A third-party system that contains a repository of configuration items

This section includes the following topics:

l "Populating the RTSM" below

l "Querying the RTSM" below

l "Querying the Class Model" below

l "Analyzing Change Impact " below

Populating the RTSM
Use cases:

l A third-party asset management updates the RTSMwith information available only in asset
management

l A number of third-party systems populate the RTSM to create a central CMDB that can track
changes and perform impact analysis

l A third-party system creates Configuration Items and Relations according to third-party
business logic, to leverage the RTSM query capabilities

Querying the RTSM
Use cases:

l A third-party system gets the Configuration Items and Relations that represent the SAP system
by retrieving the results of the SAP TQL

l A third-party system gets the list of Oracle servers that have been added or changed in the last
five hours

l A third-party system gets the list of servers whose host name contains the lab substring

l A third-party system finds the elements related to a given CI by getting its neighbors

Querying the Class Model
Use cases:

l A third-party system enables users to specify the set of data to be retrieved from the RTSM. A
user interface can be built over the class model to show users the possible properties and
prompt them for required data. The user can then choose the information to be retrieved.

l A third-party system explores the class model when the user cannot access the BSM user
interface.

Analyzing Change Impact
Use case:

HP Business ServiceManagement (9.20)Page 255 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

A third-party system outputs a list of the business services that could be impacted by a change on a
specified host.

HP Business ServiceManagement (9.20)Page 256 of 344

RTSM Developer Reference Guide
Chapter 10: HP Universal CMDB API

Examples
See the following code samples:

l Create a Connection

l Create and Execute an Ad-Hoc Query

l Create and Execute a View

l Add and Delete Data

l Execute an Impact Analysis

l Query the Class Model

l Query a History Sample

These files are located in the following directory:

\\<BSM Gateway Server root directory>\AppServer\
webapps\site.war\amdocs\eng\APIs\JavaSDK_Samples\

HP Business ServiceManagement (9.20)Page 257 of 344

Chapter 11

RTSM (HP Universal CMDB) Web Service API
This chapter includes:

Conventions 259

RTSM (HP Universal CMDB)Web Service API Overview 260

RTSM (HP Universal CMDB)Web Service API Reference 262

Call theWeb Service 263

Query the RTSM 264

Update the RTSM 267

Query the BSMClass Model 269

Query for Impact Analysis 271

UCMDB General Parameters 272

UCMDB Output Parameters 275

UCMDB Query Methods 277

UCMDB UpdateMethods 288

UCMDB Impact Analysis Methods 291

Use Cases 293

Examples 295

HP Business ServiceManagement (9.20)Page 258 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Conventions

Note: The HP Universal CMDBWeb Service API can be used with the BSMRun-time Service
Model (RTSM). References in this section to HP Universal CMDB (UCMDB) refer to the
RTSM in the BSM context.

This chapter uses the following conventions:

l UCMDB refers to the Universal ConfigurationManagement database itself. In the BSM context,
it refers to the Run-time ServiceModel (RTSM). HP Universal CMDB refers to the application.

l BSM elements andmethod arguments are spelled in the case in which they are specified in the
schema. An element or argument to amethod is not capitalized. For example, a relation is an
element of type Relation passed to amethod.

For full documentation on the request and response structures, refer to the HP UCMDBWeb
Service API Reference. These files are located in the following folder:

\\<BSM root directory>\AppServer\
webapps\site.war\amdocs\eng\APIs\CMDB_Schema
\webframe.html

HP Business ServiceManagement (9.20)Page 259 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

RTSM (HP Universal CMDB) Web Service API
Overview

Note to HP Software-as-a-Service customers: For details on how to use the UCMDBWeb
Service API in an HP Software-as-a-Service environment, contact HP Software-as-a-Service
Support.

Note: Use this chapter in conjunction with the UCMDB schema documentation, available in
the online Documentation Library.

The HP Universal CMDBWeb Service API is used to integrate applications with the BSMRun-time
ServiceModel (RTSM). The API provides methods to:

l add, remove, and update CIs and relations in the RTSM

l retrieve information about the class model

l retrieve impact analyses

l retrieve information about configuration items and relationships

l manage credentials: view, add, update, and remove

l manage jobs: view status, activate, and deactivate

l manage Probe ranges: view, add, and update

l manage triggers: add or remove a trigger CI, and add, remove, or disable a trigger TQL

l view general data on domains and Probes

Methods for retrieving information about configuration items and relationships generally use the
Topology Query Language (TQL). For details, see Topology Query Language in theModeling Guide.

Users of the HP Universal CMDBWeb Service API should be familiar with:

l The SOAP specification

l An object-oriented programming language such as C++, C# or Java

l HP Universal CMDB

l Data Flow Management

This section includes the following topics:

l "Uses of the API" below

l "Permissions" on next page

Uses of the API
The API is used to fulfill a number of business requirements. For example:

l A third-party system can query the class model for information about available configuration
items (CIs).

HP Business ServiceManagement (9.20)Page 260 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

l A third-party asset management tool can update the RTSMwith information available only to
that tool, thereby unifying its data with data collected by HP applications.

l A number of third-party systems can populate the RTSM to create a central RTSM that can
track changes and perform impact analysis.

l A third-party system can create entities and relations according to its business logic, and then
write the data to the RTSM to take advantage of the RTSM query capabilities.

l Other systems, such as the Release Control (CCM) system, can use the Impact Analysis
methods for change analysis.

Permissions
The administrator provides login credentials for connecting with theWeb Service. The required
credentials depend on whether you are using HP Universal CMDB as a standalone application or
from within BSM:

l HP Universal CMDB standalone. Log in using the credentials of a BSM user who has been
granted permissions on the discovery and integration resources.

For details, see "Security Manager Page" in theHP Universal CMDB Administration Guide.

l HP Universal CMDB embedded in BSM. Log in using the credentials of a BSM user. The user
must have been granted the relevant permissions on the HP Universal CMDB resource in BSM.

When permissions are assigned through HP Universal CMDB, the permission levels are View,
Update, and Execute. When they are assigned using BSM, the levels are View and Update, where
Update also includes Execution. To view the permissions required for each operation, see each
operation's request documentation.

HP Business ServiceManagement (9.20)Page 261 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

RTSM (HP Universal CMDB) Web Service API
Reference

For full documentation on the request and response structures, refer to the HP UCMDBWeb
Service API Reference. These files are located in the following folder:

\\<BSM root directory>\AppServer\
webapps\site.war\amdocs\eng\APIs\CMDB_Schema\webframe.html

HP Business ServiceManagement (9.20)Page 262 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Call the Web Service
You use standard SOAP programming techniques in the HP Universal CMDBWeb Service to
enable calling server-sidemethods. If the statement cannot be parsed or if there is a problem
invoking themethod, the API methods throw a SoapFault exception. When a SoapFault
exception is thrown, BSM populates one or more of the error message, error code, and exception
message fields. If there is no error, the results of the invocation are returned.

SOAP programmers can access theWSDL at:

http://<server>[:port]/axis2/services/UcmdbService?wsdl

The port specification is only necessary for non-standard installations. Consult your system
administrator for the correct port number.

The URL for calling the service is:

http://<server>[:port]/axis2/services/UcmdbService

For examples of connecting to the RTSM, see "Use Cases" on page 293.

HP Business ServiceManagement (9.20)Page 263 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Query the RTSM
The RTSM is queried using the APIs described in "UCMDB Query Methods" on page 277.

The queries and the returned RTSM elements always contain real BSM IDs.

For examples of the use of the query methods, see "Query Example" on page 296.

This section includes the following topics:

l "Just In TimeResponse Calculation" below

l "Processing Large Responses" below

l "Specifying Properties to Return" on next page

l "Concrete Properties" on next page

l "Derived Properties" on page 266

l "Naming Properties" on page 266

l "Other Property Specification Elements" on page 266

Just In Time Response Calculation
For all query methods, the BSM server calculates the values requested by the query method when
the request is received, and returns results based on the latest data. The result is always calculated
at the time the request is received, even if the TQL query is active and there exists a previously
calculated result. Therefore, the results of running a query returned to the client applicationmay be
different to the results of the same query displayed on the user interface.

Tip: If your application uses the results of a given query more than once and the data is not
expected to change significantly between uses of the result data, you can improve
performance by having the client application store the data rather than repeatedly running the
query.

Processing Large Responses
The response to a query always includes the structures for the data requested by the query method,
even if no actual data is being transmitted. For many methods where the data is a collection or map,
the response also includes the ChunkInfo structure, comprised of chunksKey and
numberOfChunks. The numberOfChunks field indicates the number of chunks containing data
that must be retrieved.

Themaximum transmission size of data is set by the system administrator. If the data returned
from the query is larger than themaximum size, the data structures in the first response contain no
meaningful information, and the value of the numberOfChunks field is 2 or greater. If the data is
not larger than themaximum, the numberOfChunks field is 0 (zero), and the data is transmitted in
the first response. Therefore, in processing a response, check the numberOfChunks value first. If
it is greater than 1, discard the data in the transmission and request the chunks of data. Otherwise,
use the data in the response.

For information on handling chunked data, see "pullTopologyMapChunks" on page 285 and
"releaseChunks" on page 287.

HP Business ServiceManagement (9.20)Page 264 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Specifying Properties to Return
CIs and relations generally havemany properties. Somemethods that return collections or graphs
of these items accept input parameters that specify which property values to return with each item
that matches the query. The RTSM does not return empty properties. Therefore, the response to a
query may have fewer properties than requested in the query.

This section describes the types of sets used to specify the properties to return.

Properties can be referenced in two ways:

l By their names

l By using names of predefined properties rules. Predefined properties rules are used by the
RTSM to create a list of real property names.

When an application references properties by name, it passes a PropertiesList element.

Tip:Whenever possible, use PropertiesList to specify the names of the properties in
which you are interested, rather than a rule-based set. The use of predefined properties rules
nearly always results in returningmore properties than needed, and bears a performance price.

There are two types of predefined properties: qualifier properties and simple properties.

l Qualifier properties. Usewhen the client application should pass a QualifierProperties
element (a list of qualifiers that can be applied to properties). The RTSM converts the list of
qualifiers passed by the client application to the list of the properties to which at least one of the
qualifiers applies. The values of these properties are returned with the CI or Relation
elements.

l Simple properties. To use simple rule-based properties, the client application passes a
SimplePredefinedProperty or SimpleTypedPredefinedProperty element. These
elements contain the name of the rule by which the RTSM generates the list of properties to
return. The rules that can be specified in a SimplePredefinedProperty or
SimpleTypedPredefinedProperty element are CONCRETE, DERIVED, and NAMING.

Concrete Properties
Concrete properties are the set of properties defined for the specified CIT. The properties added by
derived classes are not returned for instances of those derived classes.

A collection of instances returned by amethodmay consist of instances of a CIT specified in the
method invocation and instances of CITs that inherit from that CIT. The derived CITs inherit the
properties of the specified CIT. In addition, the derived CITs extend the parent CIT by adding
properties.

Example of Concrete Properties:

CIT T1 has properties P1 and P2. CIT T11 inherits from T1 and extends T1 with properties
P21 and P22.

The collection of CIs of type T1 includes the instances of T1 and T11. The concrete
propertiesof all instances in this collection are P1 and P2.

HP Business ServiceManagement (9.20)Page 265 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Derived Properties
Derived properties are the set of properties defined for the specified CIT and, for each derived CIT,
the properties added by the derived CIT.

Example of Derived Properties:

Continuing the example from concrete properties, the derived properties of instances of T1 are
P1 and P2. The derived properties of instances of T11 are P1, P2, P21, and P22.

Naming Properties
The naming properties are display_label and data_name.

Other Property Specification Elements
l PredefinedProperties

PredefinedProperties can contain a QualifierProperties element and a
SimplePredefinedProperty element for each of the other possible rules. A
PredefinedProperties set does not necessarily contain all types of lists.

l PredefinedTypedProperties

PredefinedTypedProperties is used to apply a different set of properties to each CIT.
PredefinedTypedProperties can contain a QualifierProperties element and a
SimpleTypedPredefinedProperty element for each of the other applicable rules. Because
PredefinedTypedProperties is applied to each CIT individually, derived properties are not
relevant. A PredefinedProperties set does not necessarily contain all applicable types of
lists.

l CustomProperties

CustomProperties can contain any combination of the basic PropertiesListand the
rule-based property lists. The properties filter is the union of all the properties returned by all the
lists.

l CustomTypedProperties

CustomTypedProperties can contain any combination of the basic PropertiesList
and the applicable rule-based property lists. The properties filter is the union of all the properties
returned by all the lists.

l TypedProperties

TypedProperties is used to pass a different set of properties for each CIT.
TypedProperties is a collection of pairs composed of type names and properties sets of all
types. Each properties set is applied only to the corresponding type.

HP Business ServiceManagement (9.20)Page 266 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Update the RTSM
You update the RTSMwith the update APIs. For details of the API methods, see "UCMDB Update
Methods" on page 288. For examples of the use of the updatemethods, see "Update Example" on
page 308.

This task includes the following steps:

l "Update the RTSM" above

l "Use of ID Types with UpdateMethods" below

UCMDB Update Parameters
This topic describes the parameters used only by the service's updatemethods. For details, see
the schema documentation.

l CIsAndRelationsUpdates

The CIsAndRelationsUpdates type consists of CIsForUpdate,
relationsForUpdate, referencedRelations, and referencedCIs. A
CIsAndRelationsUpdates instance does not necessarily include all three elements.

CIsForUpdate is a CIs collection. relationsForUpdate is a Relations collection. The
CI and relation elements in the collections have a props element. When creating a CI or
relation, properties that have either the required attribute or the key attribute in the CI Type
definitionmust be populated with values. The items in these collections are updated or created
by themethod.

referencedCIs and referencedRelations are collections of CIs that are already
defined in the RTSM. The elements in the collection are identified with a temporary ID in
conjunction with all the key properties. These items are used to resolve the identities of CIs and
relations for update. They are never created or updated by themethod.

Each of the CI and relation elements in these collections has a properties collection. New
items are created with the property values in these collections.

Use of ID Types with Update Methods
The following describes ID CITs, and CIs and relations. When the ID is not a real RTSM ID, the
type and key attributes are required.

l Deleting or Updating Configuration Items

A temporary or empty ID may be used by the client when calling amethod to delete or update an
item. In this case, the CI type and the "Key Attributes" that identify the CI must be set.

l Deleting or Updating Relations

When deleting or updating relations, the relation ID can be empty, temporary, or real.

If a CI's ID is temporary, the CI must be passed in the referencedCIs collection and its key
attributes must be specified. For details, see referencedCIs in "CIsAndRelationsUpdates"
above.

l Inserting New Configuration Items into the RTSM

HP Business ServiceManagement (9.20)Page 267 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

It is possible to use either an empty ID or a temporary ID to insert a new CI. However, if the ID is
empty, the server cannot return the real RTSM ID in the structure createIDsMap because
there is no clientID. For details, see "addCIsAndRelations" on page 288 and "UCMDB Query
Methods" on page 277.

l Inserting New Relations into the RTSM

The relation ID can be either temporary or empty. However, if the relation is new but the
configuration items on either end of the relation are already defined in the RTSM, then those CIs
that already exist must be identified by a real RTSM ID or be specified in a referencedCIs
collection.

HP Business ServiceManagement (9.20)Page 268 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Query the BSM Class Model
The class model methods return information about CITs and relations. The class model is
configured using the CI TypeManager. For details, see CI TypeManager in theModeling Guide.

For examples of the use of the class model methods, see "Class Model Example" on page 312.

This section provides information on the followingmethods that return information about CITs and
relations:

l "getClassAncestors" below

l "getAllClassesHierarchy" below

l "getCmdbClassDefinition" on next page

getClassAncestors
The getClassAncestorsmethod retrieves the path between the given CIT and its root, including
the root.

.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

className The type name. For details, see "Type Name" on page 273.

Output

Parameter Comment

classHierarchy A collection of pairs of class names and parent class name.

comments For internal use only.

getAllClassesHierarchy
The getAllClassesHierarchymethod retrieves the entire class model tree.

.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

HP Business ServiceManagement (9.20)Page 269 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Output

Parameter Comment

classesHierarchy A collection of pairs of class name and parent class name.

comments For internal use only.

getCmdbClassDefinition
The getCmdbClassDefinitionmethod retrieves information about the specified class.

If you use getCmdbClassDefinition to retrieve the key attributes, youmust also query the parent
classes up to the base class. getCmdbClassDefinition identifies as key attributes only those
attributes with the ID_ATTRIBUTE set in the class definition specified by className. Inherited
key attributes are not recognized as key attributes of the specified class. Therefore, the complete
list of key attributes for the specified class is the union of all the keys of the class and of all its
parents, up to the root.

.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

className The type name. For details, see "UCMDB General Parameters" on page 272.

Output

Parameter Comment

cmdbClass The class definition, consisting of name, classType, displayLabel,
description, parentName, qualifiers, and attributes.

comments For internal use only.

HP Business ServiceManagement (9.20)Page 270 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Query for Impact Analysis
TheIdentifier in the impact analysis methods points to the service's response data. It is unique
for the current response and is discarded from the server's memory cache after 10minutes of non-
use.

For examples of the use of the impact analysis methods, see "Impact Analysis Example" on page
314.

HP Business ServiceManagement (9.20)Page 271 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

UCMDB General Parameters
This section describes themost common parameters of the service's methods. For details, refer to
the schema documentation.

This section includes the following topics:

l "CmdbContext" below

l "ID" below

l "Key Attributes" below

l "ID Types" below

l "CIProperties" on next page

l "Type Name" on next page

l "Configuration Item (CI)" on next page

l "Relation" on next page

CmdbContext
All UCMDBWeb Service API service invocations require a CmdbContext argument.
CmdbContext is a callerApplication string that identifies the application that invokes the
service. CmdbContext is used for logging and troubleshooting.

ID
Every CI and Relation has an ID field. It consists of a case-sensitive ID string and an optional
temp flag, indicating whether the ID is temporary.

Key Attributes
For identifying a CI or Relation in some contexts, key attributes can be used in place of a RTSM
ID. Key attributes are those attributes with the ID_ATTRIBUTE set in the class definition.

In the user interface, the key attributes have a key icon next to them in the list of Configuration Item
Type attributes in the user interface. For details, see Add/Edit Attribute Dialog Box in theModeling
Guide. For information about identifying the key attributes from within the API client application, see
"getCmdbClassDefinition" on page 270.

ID Types
An ID element can contain a real ID, or a temporary ID.

A real ID is a string assigned by the RTSM that identifies an entity in the database. A temporary ID
can be any string that is unique in the current request.

A temporary ID can be assigned by the client and often represents the ID of the CI as stored by the
client. It does not necessarily represent an entity already created in the RTSM. When a temporary
ID is passed by the client, if the RTSM can identify an existing data configuration item using the CI
key properties, that CI is used as appropriate for the context as though it had been identified with a
real ID.

HP Business ServiceManagement (9.20)Page 272 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

CIProperties
A CIProperties element is composed of collections, each containing a sequence of name-value
elements that specify properties of the type indicated by the collection name. None of the
collections are required, so the CIProperties element can contain any combination of
collections.

CIProperties are used by CI and Relation elements. For details, see "Configuration Item
(CI)" below and "Relation" below.

The properties collections are:

l dateProps - collection of DateProp elements

l doubleProps - collection of DoubleProp elements

l floatProps - collection of FloatProp elements

l intListProps - collection of intListProp elements

l intProps - collection of IntProp elements

l strProps - collection of StrProp elements

l strListProps - collection of StrListProp elements

l longProps - collection of LongProp elements

l bytesProps - collection of BytesProp elements

l xmlProps - collection of XmlProp elements

Type Name
The type name is the class name of a configuration item type or relation type. The type name is
used in code to refer to the class. It should not be confused with the display name, which is seen on
the user interface where the class is mentioned, but which is meaningless in code.

Configuration Item (CI)
A CI element is composed of an ID, a type, and a props collection.

When using "UCMDB UpdateMethods" to update a CI, the ID element can contain a real RTSM
ID or a client-assigned temporary ID. If a temporary ID is used, set the temp flag to true. When
deleting an item, the ID can be empty. "UCMDB Query Methods" take real IDs as input
parameters and return real IDs in the query results.

The type can be any type name defined in the CI TypeManager. For details, see CI TypeManager
in theModeling Guide.

The props element is a CIProperties collection. For details, see "UCMDB General Parameters" on
previous page.

Relation
A Relation is an entity that links two configuration items. A Relation element is composed of
an ID, a type, the identifiers of the two items being linked (end1ID and end2ID), and a
props collection.

HP Business ServiceManagement (9.20)Page 273 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

When using "UCMDB UpdateMethods" to update a Relation, the value of the Relation's ID
can be a real RTSM ID or a temporary ID. When deleting an item, the ID can be empty. "UCMDB
Query Methods" take real IDs as input parameters and return real IDs in the query results.

The relation type is the Type Name of the BSM class from which the relation is instantiated. The
type can be any of the relation types defined in the RTSM. For further information on classes or
types, see "Query the BSMClass Model" on page 269.

For details, see CI TypeManager in theModeling Guide.

The two relation end IDs must not be empty IDs because they are used to create the ID of the
current relation. However, they both can have temporary IDs assigned to them by the client.

The props element is a CIProperties collection. For details, see "CIProperties" on previous page.

HP Business ServiceManagement (9.20)Page 274 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

UCMDB Output Parameters
This section describes themost common output parameters of the servicemethods. For details,
refer to the schema documentation.

This section includes the following topics:

l "CIs" below

l "ShallowRelation" below

l "Topology" below

l "CINode" below

l "RelationNode" below

l "TopologyMap" below

l "ChunkInfo" on next page

CIs
CIs is a collection of CI elements.

ShallowRelation
A ShallowRelation is an entity that links two configuration items, composed of an ID, a type,
and the identifiers of the two items being linked (end1ID and end2ID). The relation type is the
Type Name of the RTSM class from which the relation is instantiated. The type can be any of the
relation types defined in the RTSM.

Topology
Topology is a graph of CI elements and relations. A Topology consists of a CIs collection and a
Relations collection containing one or more Relation elements.

CINode
CINode is composed of a CIs collection with a label. The label in the CINode is the label
defined in the node of the TQL used in the query.

RelationNode
RelationNode is a set of Relationscollections with a label. The label in the
RelationNode is the label defined in the node of the TQL used in the query.

TopologyMap
TopologyMap is the output of a query calculation that matches a TQL query. The labels in the
TopologyMap are the node labels defined in the TQL used in the query.

The data of TopologyMap is returned in the following form:

l CINodes. This is one or more CINode (see "CINode" above).

l relationNodes. This is one or more RelationNode (see "RelationNode" above).

The labels in these two structures order the lists of configuration items and relations.

HP Business ServiceManagement (9.20)Page 275 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

ChunkInfo
When a query returns a large amount of data, the server stores the data, divided into segments
called chunks. The information the client uses to retrieve the chunked data is located in the
ChunkInfo structure returned by the query. ChunkInfo is composed of the numberOfChunks
that must be retrieved and the chunksKey. The chunksKey is a unique identifier of the data on the
server for this specific query invocation.

For more information, see "Processing Large Responses" on page 264.

HP Business ServiceManagement (9.20)Page 276 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

UCMDB Query Methods
This section provides information on the followingmethods:

l "executeTopologyQueryByNameWithParameters" below

l "executeTopologyQueryWithParameters " on next page

l "getChangedCIs" on page 279

l "getCINeighbours" on page 279

l "getCIsByID" on page 280

l "getCIsByType" on page 280

l "getFilteredCIsByType " on page 281

l "getQueryNameOfView" on page 284

l "getTopologyQueryExistingResultByName" on page 284

l "getTopologyQueryResultCountByName" on page 285

l "pullTopologyMapChunks" on page 285

l "releaseChunks" on page 287

executeTopologyQueryByNameWithParameters
The executeTopologyQueryByNameWithParametersmethod retrieves a topologyMap
element that matches the specified parameterized query.

The values for the query parameters are passed in the parameterizedNodes argument. The
specified TQLmust have unique labels defined for each CINode and each relationNode or the
method invocation fails.

.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

queryName The name of the parameterized TQL in the RTSM for which to get the
map.

parameterizedNodes The conditions each nodemust meet to be included in the query results.

queryTypedProperties A collection of sets of properties to retrieve to items of a specific
Configuration Item Type.

HP Business ServiceManagement (9.20)Page 277 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Output

Parameter Comment

topologyMap For details, see "TopologyMap" on page 275.

chunkInfo For details, see: "ChunkInfo" on page 276 and "Processing Large Responses" on
page 264.

executeTopologyQueryWithParameters
The executeTopologyQueryWithParametersmethod retrieves a topologyMap element
that matches the parameterized query.

The query is passed in the queryXML argument. The values for the query parameters are passed in
the parameterizedNodes argument. The TQLmust have unique labels defined for each CINode
and each relationNode.

The executeTopologyQueryWithParametersmethod is used to pass ad-hoc queries, rather
than accessing a query defined in the RTSM. You can use this method when you do not have
access to the BSM user interface to define a query, or when you do not want to save the query to
the database.

To use an exported TQL as the input to this method, do the following:

1. Launch theWeb browser and enter the following address:
http://localhost:8080/jmx-console.

Youmay have to log in with a user name and password. The default is sysadmin/sysadmin

2. Click UCMDB:service=TQL Services.

3. Locate the exportTql operation.

n In the customerId parameter box, enter 1 (the default).

n In the patternName parameter box, enter a valid TQL name.

4. Click Invoke.

.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

queryXML An XML string representing a TQLwithout resource tags.

parameterizedNodes The conditions each nodemust meet to be included in the query results.

HP Business ServiceManagement (9.20)Page 278 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Output

Parameter Comment

topologyMap For details, see "TopologyMap" on page 275.

chunkInfo For details, see "ChunkInfo" on page 276 and "Processing Large Responses" on
page 264.

getChangedCIs
The getChangedCIsmethod returns the change data for all CIs related to the specified CIs.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

ids The list of the IDs of the root CIs whose related CIs are checked for changes.

Only real RTSM IDs are valid in this collection.

fromDate The beginning of the period in which to check if CIs changed.

toDate The end of the period in which to check if CIs changed.

Output

Parameter Comment

changeDataInfo Zero or more collections of ChangedDataInfo elements.

getCINeighbours
The getCINeighboursmethod returns the immediate neighbors of the specified CI.

For example, if the query is on the neighbors of CI A, and CI A contains CI B which uses CI C, CI B
is returned, but CI C is not. That is, only neighbors of the specified type are returned.

.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

ID The ID of the CI with which to retrieve the neighbors. This must be a real
RTSM ID.

HP Business ServiceManagement (9.20)Page 279 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Parameter Comment

neighbourType The CIT name of the neighbors to retrieve. Neighbors of the specified type
and of types derived from that type are returned. For details, see "Type
Name" on page 273.

CIProperties The data to be returned on each configuration item, called the Query Layout
in the user interface. For details, see "TypedProperties" on page 266.

relationProperties The data to be returned on each relation (called the Query Layout in the user
interface). For details, see "TypedProperties" on page 266

Output

Parameter Comment

topology For details, see "Topology" on page 275.

comments For internal use only.

getCIsByID
The getCIsByIDmethod retrieves configuration items by their RTSM IDs.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

CIsTypedProperties A typed properties collection. For details, see "Other Property
Specification Elements" on page 266.

IDs Only real RTSM IDs are valid in this collection.

Output

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see: "ChunkInfo" on page 276 and "Processing Large Responses" on
page 264.

getCIsByType
The getCIsByTypemethod returns the collection of configuration items of the specified type and
of all types that inherit from the specified type.

HP Business ServiceManagement (9.20)Page 280 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

type The class name. For details, see "Type Name" on page 273.

properties The data to be returned on each configuration item. For details, see
"CustomProperties" on page 266.

Output

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see: "ChunkInfo" on page 276 and "Processing Large Responses" on
page 264.

getFilteredCIsByType
The getFilteredCIsByTypemethod retrieves the CIs of the specified type that meet the
conditions used by themethod. A condition is comprised of:

l a name field containing the name of a property

l an operator field containing a comparison operator

l an optional value field containing a value or list of values

Together, they form a Boolean expression:
<item>.property.value [operator] <condition>.value

For example, if the condition name is root_actualdeletionperiod, the condition value is 40
and the operator is Equal, the Boolean statement is:

<item>.root_actualdeletionperiod.value = = 40

The query returns all items whose root_actualdeletionperiodis 40, assuming there are no
other conditions.

If the conditionsLogicalOperator argument is AND, the query returns the items that meet all
conditions in the conditions collection. If conditionsLogicalOperator is OR, the query
returns the items that meet at least one of the conditions in the conditions collection.

The following table lists the comparison operators:

HP Business ServiceManagement (9.20)Page 281 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Operator Type of Condition/Comments

ChangedDuring Date

This is a range check. The condition value is specified in hours. If the value
of the date property lies in the range of the time themethod is invoked plus or
minus the condition value, the condition is true.

For example, if the condition value is 24, the condition is true if the value of
the date property is between yesterday at this time and tomorrow at this
time.

Note: The name ChangedDuring is kept to preserve backward
compatibility. In previous versions, the operator was used only with create
andmodify time properties.

Equal String and numerical

EqualIgnoreCase String

Greater Numerical

GreaterEqual Numerical

In String, numerical, and list

The condition's value is a list. The condition is true if the value of the
property is one of the values in the list.

InList List

The condition's value and the property's value are lists.

The condition is true if all the values in the condition's list also appear in the
item's property list. There can bemore property values than specified in the
condition without affecting the truth of the condition.

IsNull String, numerical, and list

The item's property has no value. When operator IsNull is used, the value
of the condition is ignored, and in some cases can be nil.

Less Numerical

LessEqual Numerical

Like String

The condition's value is a substring of the value of the property's value. The
condition's valuemust be bracketed with percentage signs (%). For example,
%Bi%matches Bismark and Bay of Biscay, but not biscuit.

LikeIgnoreCase String

Use the LikeIgnoreCase operator as you use the Like operator. The
match, however is not case-sensitive. Therefore, %Bi%matches biscuit.

HP Business ServiceManagement (9.20)Page 282 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Operator Type of Condition/Comments

NotEqual String and numerical

UnchangedDuring Date

This is a range check. The condition value is specified in hours. If the value
of the date property is in the range of the time themethod is invoked plus or
minus the condition value, the condition is false. If it lies outside that range,
the condition is true.

For example, if the condition value is 24, the condition is true if the value of
the date property is before yesterday at this time or after tomorrow at this
time.

Note: The name UnchangedDuring is kept to preserve backward
compatibility. In previous versions, the operator was used only with create
andmodify time properties.

Example of Setting Up a Condition:

FloatCondition fc = new FloatCondition();

FloatProp fp = new FloatProp();

fp.setName("attr_name");

fp.setValue(11);

fc.setCondition(fp);

fc.setFloatOperator(FloatCondition.floatOperatorEnum.Equal);

Example of Querying for Inherited Properties:

The target CI is sample which has two attributes, name and size. sampleII extends the CI
with two attributes, level and grade. This example sets up a query for the properties of
sampleII that were inherited from sample by specifying them by name.

GetFilteredCIsByType request = new GetFilteredCIsByType()

request.setCmdbContext(cmdbContext)

request.setType("sampleII")

CustomProperties customProperties = new CustomProperties();

PropertiesList propertiesList = new PropertiesList();

propertiesList.addPropertyName("name");

propertiesList.addPropertyName("size");

customProperties.setPropertiesList(propertiesList);

request.setProperties(customProperties)

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

HP Business ServiceManagement (9.20)Page 283 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Parameter Comment

type The class name. For details, see "Type Name" on page 273. The
type can be any of the types defined using the CI TypeManager. For
details, see CI TypeManager in theModeling Guide.

properties The data to be returned on each CI (called the Query Layout in the
user interface). For details, see "CustomProperties" on page 266.

conditions A collection of name-value pairs and the operators that relate one to
the other. For example, host_hostname like QA.

conditionsLogicalOperator l AND. All the conditions must bemet.

l OR. At least one of the conditions must bemet.

Output

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see "ChunkInfo" on page 276 and "Processing Large Responses" on
page 264.

getQueryNameOfView
The getQueryNameOfViewmethod retrieves the name of the TQL on which the specified view is
based.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

viewName The name of a view, that is, a sub-set of the class model in the RTSM.

Output

Parameter Comment

queryName The name of the TQL in the RTSM onwhich the view is based.

getTopologyQueryExistingResultByName
The getTopologyQueryExistingResultByNamemethod retrieves themost recent result of
running the specified TQL. The call does not run the TQL. If there are no results from a previous run,
nothing is returned.

HP Business ServiceManagement (9.20)Page 284 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

queryName The name of a TQL.

queryTypedProperties A collection of sets of properties to retrieve for items of a specific
Configuration Item Type.

Output

Parameter Comment

queryName The name of the TQL in the RTSM onwhich the view is based.

getTopologyQueryResultCountByName
The getTopologyQueryResultCountByNamemethod retrieves the number of instances of
each node that matches the specified query.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

queryName The name of a TQL.

countInvisible If true, the output includes CIs defined as invisible in the query.

Output

Parameter Comment

queryName The name of the TQL in the RTSM onwhich the view is based.

pullTopologyMapChunks
The pullTopologyMapChunksmethod retrieves one of the chunks that contain the response to
amethod.

Each chunk contains a topologyMap element that is part of the response. The first chunk is
numbered 1, so the retrieval loop counter iterates from 1 to <response object>.getChunkInfo
().getNumberOfChunks().

For details, see "ChunkInfo" on page 276 and "Query the RTSM" on page 264.

The client applicationmust be able to handle the partial maps. See the following example of
handling a CI collection and the example of merging chunks to amap in "Query Example" on page
296.

HP Business ServiceManagement (9.20)Page 285 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

ChunkRequest The number of the chunk to retrieve and the ChunkInfo that is returned by the
query method.

Output

Parameter Comment

topologyMap For details, see "TopologyMap" on page 275.

comments For internal use only.

Example of Handling Chunks:

GetCIsByType request =

 new GetCIsByType(cmdbContext, typeName, customProperties);

GetCIsByTypeResponse response =

 ucmdbService.getCIsByType(request);

ChunkRequest chunkRequest = new ChunkRequest();

chunkRequest.setChunkInfo(response.getChunkInfo());

for(int j=1; j<=response.getChunkInfo().getNumberOfChunks(); j++){

 chunkRequest.setChunkNumber(j);

 PullTopologyMapChunks req =new

PullTopologyMapChunks(cmdbContext,chunkRequest);

 PullTopologyMapChunksResponse res =

 ucmdbService.pullTopologyMapChunks(req);

 for(int m=0 ;

 m < res.getTopologyMap().getCINodes().sizeCINodeList()

;

 m++) {

 CIs cis =

 res.getTopologyMap().getCINodes().getCINode(m).getCIs

();

 for(int i=0 ; i < cis.sizeCIList() ; i++) {

 // your code to process the CIs

 }

 }

}

GetCIsByType request =

 new GetCIsByType(cmdbContext, typeName, customProperties);

GetCIsByTypeResponse response =

 ucmdbService.getCIsByType(request);

ChunkRequest chunkRequest = new ChunkRequest();

chunkRequest.setChunkInfo(response.getChunkInfo());

for(int j=1 ; j <= response.getChunkInfo().getNumberOfChunks() ;

HP Business ServiceManagement (9.20)Page 286 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

j++) {

 chunkRequest.setChunkNumber(j);

 PullTopologyMapChunks req = new PullTopologyMapChunks

(cmdbContext, chunkRequest);

 PullTopologyMapChunksResponse res =

 ucmdbService.pullTopologyMapChunks(req);

 for(int m=0 ;

 m < res.getTopologyMap().getCINodes().sizeCINodeList()

;

 m++) {

 CIs cis =

 res.getTopologyMap().getCINodes().getCINode(m).getCIs

();

 for(int i=0 ; i < cis.sizeCIList() ; i++) {

 // your code to process the CIs

 }

 }

}

releaseChunks
The releaseChunksmethod frees thememory of the chunks that contain the data from the
query.

Tip: The server discards the data after tenminutes. Calling this method to discard the data as
soon as it has been read conserves server resources.

Input

Parameter Comment

cmdbContext For details, see"CmdbContext" on page 272.

chunksKey The identifier of the data on the server that was chunked. The key is an element
of ChunkInfo.

HP Business ServiceManagement (9.20)Page 287 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

UCMDB Update Methods
This section provides information on the followingmethods:

l "addCIsAndRelations" below

l "addCustomer" on next page

l "deleteCIsAndRelations" on next page

l "removeCustomer" on next page

l "updateCIsAndRelations" on next page

addCIsAndRelations
The addCIsAndRelationsmethod adds or updates CIs and relations.

If the CIs or relations do not exist in the RTSM, they are added and their properties are set
according to the contents of the CIsAndRelationsUpdates argument.

If the CIs or relations do exist in the RTSM, they are updated with the new data, if
updateExisting is true.

If updateExisting is false, CIsAndRelationsUpdates cannot reference existing
configuration items or relations. Any attempt to reference existing items when updateExisting
is false results in an exception.

If updateExisting is true, the add or update operation is performed without validating the CIs,
regardless of the value of ignoreValidation.

If updateExisiting is false and ignoreValidation is true, the add operation is performed
without validating the CIs.

If updateExisiting is false and ignoreValidation is false, the CIs are validated before the
add operation.

Relations are never validated.

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that connects the client's
temporary IDs with the corresponding real RTSM IDs.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

updateExisting Set to true to update items that already exist in the RTSM. Set to
false to throw an exception if any item already exists.

CIsAndRelationsUpdates The items to update or create. For details, see
"CIsAndRelationsUpdates" on page 267.

ignoreValidation If true, no check is performed before updating the RTSM.

HP Business ServiceManagement (9.20)Page 288 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Output

Parameter Comment

CreatedIDsMap Themap of client IDs to RTSM IDs. For details, see the description above.

comments For internal use only.

addCustomer
The addCustomermethod adds a customer.

Input

Parameter Comment

CustomerID The numeric ID of the customer.

deleteCIsAndRelations
The deleteCIsAndRelationsmethod removes the specified configuration items and relations
from the RTSM.

When a CI is deleted and the CI is one end of one or more Relation items, those Relation
items are also deleted.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

CIsAndRelationsUpdates The items to delete. For details, see "CIsAndRelationsUpdates" on
page 267

removeCustomer
The removeCustomermethod deletes a customer record.

Input

Parameter Comment

CustomerID The numeric ID of the customer.

updateCIsAndRelations
The updateCIsAndRelationsmethod updates the specified CIs and relations.

Update uses the property values from the CIsAndRelationsUpdates argument. If any of the
CIs or relations do not exist in the RTSM, an exception is thrown.

HP Business ServiceManagement (9.20)Page 289 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that connects the client's
temporary IDs with the corresponding real RTSM IDs.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

CIsAndRelationsUpdates The items to update. For details, see "CIsAndRelationsUpdates" on
page 267.

ignoreValidation If true, no check is performed before updating the RTSM.

Output

Parameter Comment

CreatedIDsMap Themap of client IDs to RTSM IDs. For details, see "addCIsAndRelations" on
page 288.

HP Business ServiceManagement (9.20)Page 290 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

UCMDB Impact Analysis Methods
This section provides information on the followingmethods:

l "calculateImpact" below

l "getImpactPath" below

l "getImpactRulesByNamePrefix" on next page

calculateImpact
The calculateImpactmethod calculates which CIs are affected by a given CI according to the
rules defined in the RTSM.

This shows the effect of an event triggering of the rule. The identifier output of
calculateImpact is used as input for "getImpactPath" below.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

impactCategory The type of event that would trigger the rule being simulated.

IDs A collection of ID elements.

impactRulesNames A collection of ImpactRuleName elements.

severity The severity of the triggering event.

Output

Parameter Comment

impactTopology For details, see "Topology" on page 275.

identifier The key to the server response.

getImpactPath
The getImpactPathmethod retrieves the topology graph of the path between the affected CI and
the CI that affects it.

The identifier output of "calculateImpact" above is used as the identifier input argument
of getImpactPath.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

HP Business ServiceManagement (9.20)Page 291 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Parameter Comment

identifier The key to the server response that was returned by calculateImpact.

relation A Relation based on one of the "ShallowRelation"s returned by calculateImpact
in the impactTopology element.

Output

Parameter Comment

impactPathTopology A CIs collection and an ImpactRelations collection.

comments For internal use only.

An ImpactRelations element consists of an ID, type, end1ID, end2ID, a rule, and an
action.

getImpactRulesByNamePrefix
The getImpactRulesByNamePrefixmethod retrieves rules using a prefix filter.

This method applies to impact rules that are namedwith a prefix that indicates the context to which
they apply, for example, SAP_myrule, ORA_myrule, and so on. This method filters all impact rule
names for those beginning with the prefix specified by the ruleNamePrefixFilter argument.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

ruleNamePrefixFilter A string containing the first letters of the rule names tomatch.

Output

Parameter Comment

impactRules impactRules is composed of zero or more impactRule. An impactRule,
which specifies the effect of a change, is composed of ruleName,
description, queryName, and isActive.

HP Business ServiceManagement (9.20)Page 292 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Use Cases
The following use cases assume two systems:

l BSM server

l A third-party system that contains a repository of configuration items

This section includes the following topics:

l "Populating the RTSM" below

l "Querying the RTSM " below

l "Querying the Class Model" below

l "Analyzing Change Impact " below

Populating the RTSM
Use cases:

l A third-party asset management updates the RTSMwith information available only in asset
management

l A number of third-party systems populate the RTSM to create a central RTSM that can track
changes and perform impact analysis

l A third-party system creates Configuration Items and Relations according to third-party
business logic to leverage the RTSM query capabilities

Querying the RTSM
Use cases:

l A third-party system gets the Configuration Items and Relations that represent the SAP system
by getting the results of the SAP TQL

l A third-party system gets the list of Oracle servers that have been added or changed in the last
five hours

l A third-party system gets the list of servers whose host name contains the substring lab

l A third-party system finds the elements related to a given CI by getting its neighbors

Querying the Class Model
Use cases:

l A third-party system enables users to specify the set of data to be retrieved from the RTSM. A
user interface can be built over the class model to show users the possible properties and
prompt them for required data. The user can then choose the information to be retrieved.

l A third-party system explores the class model when the user cannot access the BSM user
interface.

Analyzing Change Impact
Use case:

HP Business ServiceManagement (9.20)Page 293 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

A third-party system outputs a list of the business services that could be impacted by a change on a
specified host.

HP Business ServiceManagement (9.20)Page 294 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Examples
This section includes the following topics:

l "The Example Base Class" below

l "Query Example" on next page

l "Update Example" on page 308

l "Class Model Example" on page 312

l "Impact Analysis Example" on page 314

l "Adding Credentials Example" on page 316

The Example Base Class
package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.services.UcmdbService;

import com.hp.ucmdb.generated.services.UcmdbServiceStub;

import com.hp.ucmdb.generated.types.CmdbContext;

import org.apache.axis2.AxisFault;

import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;

import java.net.MalformedURLException;

import java.net.URL;

/**

* User: hbarkai

* Date: Jul 12, 2007

*/

abstract class Demo {

UcmdbService stub;

CmdbContext context;

public void initDemo() {

 try {

 setStub(createUcmdbService("admin", "admin"));

 setContext();

 } catch (Exception e) {

 //handle exception

 }

}

public UcmdbService getStub() {

 return stub;

}

public void setStub(UcmdbService stub) {

 this.stub = stub;

}

HP Business ServiceManagement (9.20)Page 295 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

public CmdbContext getContext() {

 return context;

}

public void setContext() {

 CmdbContext context = new CmdbContext();

 context.setCallerApplication("demo");

 this.context = context;

}

//connection to service - for axis2/jibx client

private static final String PROTOCOL = "http";

private static final String HOST_NAME = "host_name";

private static final int PORT = 21212;

private static final String FILE = "/axis2/services/UcmdbService";

protected UcmdbService createUcmdbService

(String username, String password) throws Exception{

 URL url;

 UcmdbServiceStub serviceStub;

 try {

url = new URL

(Demo.PROTOCOL, Demo.HOST_NAME,

 Demo.PORT, Demo.FILE);

serviceStub = new UcmdbServiceStub(url.toString());

HttpTransportProperties.Authenticator auth =

 new HttpTransportProperties.Authenticator();

auth.setUsername(username);

auth.setPassword(password);

serviceStub._getServiceClient().getOptions().setProperty

(HTTPConstants.AUTHENTICATE,auth);

 } catch (AxisFault axisFault) {

 throw new Exception

("Failed to create SOAP adapter for "

 + Demo.HOST_NAME , axisFault);

 } catch (MalformedURLException e) {

 throw new Exception

("Failed to create SOAP adapter for "

 + Demo.HOST_NAME, e);

 }

 return serviceStub;

}

}

Query Example
package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.query.*;

import com.hp.ucmdb.generated.services.UcmdbFaultException;

import com.hp.ucmdb.generated.services.UcmdbService;

HP Business ServiceManagement (9.20)Page 296 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

import com.hp.ucmdb.generated.types.*;

import com.hp.ucmdb.generated.types.props.*;

import java.rmi.RemoteException;

public class QueryDemo extends Demo{

 UcmdbService stub;

 CmdbContext context;

 public void getCIsByTypeDemo() {

 GetCIsByType request = new GetCIsByType();

 //set cmdbcontext

 CmdbContext cmdbContext = getContext();

 request.setCmdbContext(cmdbContext);

 //set CIs type

 request.setType("anyType");

 //set CIs propeties to be retrieved

 CustomProperties customProperties = new CustomProperties();

 PredefinedProperties predefinedProperties =

 new PredefinedProperties();

 SimplePredefinedProperty simplePredefinedProperty =

 new SimplePredefinedProperty();

 simplePredefinedProperty.setName

(SimplePredefinedProperty.nameEnum.DERIVED);

 SimplePredefinedPropertyCollection

 simplePredefinedPropertyCollection =

 new SimplePredefinedPropertyCollection();

 simplePredefinedPropertyCollection.addSimplePredefinedProperty

(simplePredefinedProperty);

 predefinedProperties.setSimplePredefinedProperties

(simplePredefinedPropertyCollection);

 customProperties.setPredefinedProperties

(predefinedProperties);

 request.setProperties(customProperties);

 try {

 GetCIsByTypeResponse response =

 getStub().getCIsByType(request);

 TopologyMap map =

 getTopologyMapResultFromCIs

(response.getCIs(), response.getChunkInfo());

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 public void getCIsByIdDemo() {

 GetCIsById request = new GetCIsById();

 CmdbContext cmdbContext = getContext();

HP Business ServiceManagement (9.20)Page 297 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 //set cmdbcontext

 request.setCmdbContext(cmdbContext);

 //set ids

 ID id1 = new ID();

 id1.setBase("cmdbobjectidCIT1");

 ID id2 = new ID();

 id2.setBase("cmdbobjectidCIT2");

 IDs ids = new IDs();

 ids.addID(id1);

 ids.addID(id2);

 request.setIDs(ids);

 //set CIs properties to be retrieved

 TypedPropertiesCollection properties =

 new TypedPropertiesCollection();

 TypedProperties typedProperties1 =

 new TypedProperties();

 typedProperties1.setType("CIT1");

 CustomTypedProperties customProperties1 =

 new CustomTypedProperties();

 PredefinedTypedProperties predefinedProperties1 =

 new PredefinedTypedProperties();

 SimpleTypedPredefinedProperty simplePredefinedProperty1 =

 new SimpleTypedPredefinedProperty();

 simplePredefinedProperty1.setName

(SimpleTypedPredefinedProperty.nameEnum.CONCRETE);

 SimpleTypedPredefinedPropertyCollection

 simplePredefinedPropertyCollection1 =

 new SimpleTypedPredefinedPropertyCollection();

 simplePredefinedPropertyCollection1

 .addSimpleTypedPredefinedProperty

(simplePredefinedProperty1);

predefinedProperties1.

 setSimpleTypedPredefinedProperties

(simplePredefinedPropertyCollection1);

 customProperties1.

 setPredefinedTypedProperties

(predefinedProperties1);

 typedProperties1.setProperties(customProperties1);

 properties.addTypedProperties(typedProperties1);

 TypedProperties typedProperties2 =

 new TypedProperties();

 typedProperties2.setType("CIT2");

 CustomTypedProperties customProperties2 =

 new CustomTypedProperties();

 PredefinedTypedProperties predefinedProperties2 =

 new PredefinedTypedProperties();

 SimpleTypedPredefinedProperty simplePredefinedProperty2 =

 new SimpleTypedPredefinedProperty();

HP Business ServiceManagement (9.20)Page 298 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.nameEnum.NAMING);

 SimpleTypedPredefinedPropertyCollection

 simplePredefinedPropertyCollection2 =

 new SimpleTypedPredefinedPropertyCollection();

 simplePredefinedPropertyCollection2.

 addSimpleTypedPredefinedProperty

(simplePredefinedProperty2);

 predefinedProperties2.setSimpleTypedPredefinedProperties

(simplePredefinedPropertyCollection2);

 customProperties2.setPredefinedTypedProperties

(predefinedProperties2);

 typedProperties2.setProperties(customProperties2);

 properties.addTypedProperties(typedProperties2);

 request.setCIsTypedProperties(properties);

 try {

 GetCIsByIdResponse response =

 getStub().getCIsById(request);

 CIs cis = response.getCIs();

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 public void getFilteredCIsByTypeDemo() {

 GetFilteredCIsByType request = new GetFilteredCIsByType();

 CmdbContext cmdbContext = getContext();

 //set cmdbcontext

 request.setCmdbContext(cmdbContext);

 //set CIs type

 request.setType("anyType");

 //sets Filter conditions

 Conditions conditions = new Conditions();

 IntConditions intConditions = new IntConditions();

 IntCondition intCondition = new IntCondition();

 IntProp intProp = new IntProp();

 intProp.setName("int_attr1");

 intProp.setValue(100);

 intCondition.setCondition(intProp);

 intCondition.setIntOperator

(IntCondition.intOperatorEnum.Greater);

 intConditions.addIntCondition(intCondition);

 conditions.setIntConditions(intConditions);

 request.setConditions(conditions);

 //set logical operator for conditions

HP Business ServiceManagement (9.20)Page 299 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 request.setConditionsLogicalOperator

(GetFilteredCIsByType.conditionsLogicalOperatorEnum.AND);

 //set CIs properties to be retrieved

 CustomProperties customProperties =

 new CustomProperties();

 PredefinedProperties predefinedProperties =

 new PredefinedProperties();

 SimplePredefinedProperty simplePredefinedProperty =

 new SimplePredefinedProperty();

 simplePredefinedProperty.setName

(SimplePredefinedProperty.nameEnum.NAMING);

 SimplePredefinedPropertyCollection

 simplePredefinedPropertyCollection =

 new SimplePredefinedPropertyCollection();

 simplePredefinedPropertyCollection.

 addSimplePredefinedProperty

(simplePredefinedProperty);

 predefinedProperties.setSimplePredefinedProperties

(simplePredefinedPropertyCollection);

 customProperties.setPredefinedProperties

(predefinedProperties);

 request.setProperties(customProperties);

 try {

 GetFilteredCIsByTypeResponse response =

 getStub().getFilteredCIsByType(request);

 TopologyMap map =

 getTopologyMapResultFromCIs

(response.getCIs(), response.getChunkInfo());

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 public void executeTopologyQueryByNameDemo() {

 ExecuteTopologyQueryByName request = new

ExecuteTopologyQueryByName();

 CmdbContext cmdbContext = getContext();

 //set cmdbcontext

 request.setCmdbContext(cmdbContext);

 //set query name

 request.setQueryName("queryName");

 try {

 ExecuteTopologyQueryByNameResponse response =

 getStub().executeTopologyQueryByName(request);

 TopologyMap map =

HP Business ServiceManagement (9.20)Page 300 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 getTopologyMapResult

(response.getTopologyMap(), response.getChunkInfo

());

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 // assume the follow query was defined at UCMDB

 // Query Name: exampleQuery

 // Query sketch:

 // Host

 // / \

 // ip Disk

 // Query Parameters:

 // Host-

 // host_os (like)

 // Disk-

 // disk_failures (equal)

 public void executeTopologyQueryByNameWithParametersDemo() {

 ExecuteTopologyQueryByNameWithParameters request =

 new ExecuteTopologyQueryByNameWithParameters();

 CmdbContext cmdbContext = getContext();

 //set cmdbcontext

 request.setCmdbContext(cmdbContext);

 //set query name

 request.setQueryName("queryName");

 //set parameters

 ParameterizedNode hostParametrizedNode =

 new ParameterizedNode();

 hostParametrizedNode.setNodeLabel("Host");

 CIProperties parameters = new CIProperties();

 StrProps strProps = new StrProps();

 StrProp strProp = new StrProp();

 strProp.setName("host_os");

 strProp.setValue("%2000%");

 strProps.addStrProp(strProp);

 parameters.setStrProps(strProps);

 hostParametrizedNode.setParameters(parameters);

 request.addParameterizedNodes(hostParametrizedNode);

 ParameterizedNode diskParametrizedNode =

 new ParameterizedNode();

 diskParametrizedNode.setNodeLabel("Disk");

 CIProperties parameters1 = new CIProperties();

 IntProps intProps = new IntProps();

HP Business ServiceManagement (9.20)Page 301 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 IntProp intProp = new IntProp();

 intProp.setName("disk_failures");

 intProp.setValue(30);

 intProps.addIntProp(intProp);

 parameters1.setIntProps(intProps);

 diskParametrizedNode.setParameters(parameters1);

 request.addParameterizedNodes(diskParametrizedNode);

 try {

 ExecuteTopologyQueryByNameWithParametersResponse

 response =

 getStub().executeTopologyQueryByNameWithParameters

(request);

 TopologyMap map =

 getTopologyMapResult

(response.getTopologyMap(), response.getChunkInfo

());

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

/ // assume the follow query was defined at UCMDB

 // Query Name: exampleQuery

 // Query sketch:

 // Host

 // / \

 // ip Disk

 // Query Parameters:

 // Host-

 // host_os (like)

 // Disk-

 // disk_failures (equal)

 public void executeTopologyQueryWithParametersDemo() {

 ExecuteTopologyQueryWithParameters request =

 new ExecuteTopologyQueryWithParameters();

 CmdbContext cmdbContext = getContext();

 //set cmdbcontext

 request.setCmdbContext(cmdbContext);

 //set query definition

 String queryXml = "<xml that represents the query above>";

 request.setQueryXml(queryXml);

 //set parameters

 ParameterizedNode hostParametrizedNode =

 new ParameterizedNode();

HP Business ServiceManagement (9.20)Page 302 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 hostParametrizedNode.setNodeLabel("Host");

 CIProperties parameters = new CIProperties();

 StrProps strProps = new StrProps();

 StrProp strProp = new StrProp();

 strProp.setName("host_os");

 strProp.setValue("%2000%");

 strProps.addStrProp(strProp);

 parameters.setStrProps(strProps);

 hostParametrizedNode.setParameters(parameters);

 request.addParameterizedNodes(hostParametrizedNode);

 ParameterizedNode diskParametrizedNode =

 new ParameterizedNode();

 diskParametrizedNode.setNodeLabel("Disk");

 CIProperties parameters1 = new CIProperties();

 IntProps intProps = new IntProps();

 IntProp intProp = new IntProp();

 intProp.setName("disk_failures");

 intProp.setValue(30);

 intProps.addIntProp(intProp);

 parameters1.setIntProps(intProps);

 diskParametrizedNode.setParameters(parameters1);

 request.addParameterizedNodes(diskParametrizedNode);

 try {

 ExecuteTopologyQueryWithParametersResponse

 response = getStub().executeTopologyQueryWithParameters

(request);

 TopologyMap map =

 getTopologyMapResult

(response.getTopologyMap(), response.getChunkInfo

());

} catch (RemoteException e) {

//handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 public void getCINeighboursDemo() {

 GetCINeighbours request = new GetCINeighbours();

 //set cmdbcontext

 CmdbContext cmdbContext = getContext();

 request.setCmdbContext(cmdbContext);

 // set CI id

 ID id = new ID();

 id.setBase("cmdbobjectidCIT1");

 request.setID(id);

 //set neighbour type

 request.setNeighbourType("neighbourType");

HP Business ServiceManagement (9.20)Page 303 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 //set Neighbours CIs propeties to be retrieved

 TypedPropertiesCollection properties =

 new TypedPropertiesCollection();

 TypedProperties typedProperties1 = new TypedProperties();

 typedProperties1.setType("neighbourType");

 CustomTypedProperties customProperties1 =

 new CustomTypedProperties();

 PredefinedTypedProperties predefinedProperties1 =

 new PredefinedTypedProperties();

 QualifierProperties qualifierProperties =

 new QualifierProperties();

 qualifierProperties.addQualifierName("ID_ATTRIBUTE");

 predefinedProperties1.setQualifierProperties

(qualifierProperties);

 customProperties1.setPredefinedTypedProperties

(predefinedProperties1);

 typedProperties1.setProperties(customProperties1);

 properties.addTypedProperties(typedProperties1);

 request.setCIProperties(properties);

 TypedPropertiesCollection relationsProperties =

 new TypedPropertiesCollection();

 TypedProperties typedProperties2 = new TypedProperties();

 typedProperties2.setType("relationType");

 CustomTypedProperties customProperties2 =

 new CustomTypedProperties();

 PredefinedTypedProperties predefinedProperties2 =

 new PredefinedTypedProperties();

 SimpleTypedPredefinedProperty simplePredefinedProperty2 =

 new SimpleTypedPredefinedProperty();

 simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.nameEnum.CONCRETE);

 SimpleTypedPredefinedPropertyCollection

 simplePredefinedPropertyCollection2 =

 new SimpleTypedPredefinedPropertyCollection();

 simplePredefinedPropertyCollection2.

 addSimpleTypedPredefinedProperty

(simplePredefinedProperty2);

 predefinedProperties2.

 setSimpleTypedPredefinedProperties

(simplePredefinedPropertyCollection2);

 customProperties2.setPredefinedTypedProperties

(predefinedProperties2);

 typedProperties2.setProperties(customProperties2);

 relationsProperties.addTypedProperties(typedProperties2);

 request.setRelationProperties(relationsProperties);

 try {

 GetCINeighboursResponse response =

HP Business ServiceManagement (9.20)Page 304 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 getStub().getCINeighbours(request);

 Topology topology = response.getTopology();

} catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

//handle exception

 }

 }

//get Topology Map for chunked/non-chunked result

 private TopologyMap getTopologyMapResult(TopologyMap topologyMap,

ChunkInfo chunkInfo) {

 if(chunkInfo.getNumberOfChunks() == 0) {

 return topologyMap;

 } else {

 topologyMap = new TopologyMap();

 for(int i=1 ; i <= chunkInfo.getNumberOfChunks() ; i++) {

 ChunkRequest chunkRequest = new ChunkRequest();

 chunkRequest.setChunkInfo(chunkInfo);

 chunkRequest.setChunkNumber(i);

 PullTopologyMapChunks req =

 new PullTopologyMapChunks();

 req.setChunkRequest(chunkRequest);

 req.setCmdbContext(getContext());

 PullTopologyMapChunksResponse res = null;

 try {

 res = getStub().pullTopologyMapChunks(req);

 TopologyMap map = res.getTopologyMap();

 topologyMap = mergeMaps(topologyMap, map);

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 }

 return topologyMap;

 }

 private TopologyMap getTopologyMapResultFromCIs(CIs cis, ChunkInfo

chunkInfo) {

 TopologyMap topologyMap = new TopologyMap();

 if(chunkInfo.getNumberOfChunks() == 0) {

 CINode ciNode = new CINode();

 ciNode.setLabel("");

 ciNode.setCIs(cis);

 CINodes ciNodes = new CINodes();

 ciNodes.addCINode(ciNode);

HP Business ServiceManagement (9.20)Page 305 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 topologyMap.setCINodes(ciNodes);

 } else {

 for(int i=1 ; i <= chunkInfo.getNumberOfChunks() ; i++) {

 ChunkRequest chunkRequest =

 new ChunkRequest();

 chunkRequest.setChunkInfo(chunkInfo);

 chunkRequest.setChunkNumber(i);

 PullTopologyMapChunks req =

 new PullTopologyMapChunks();

 req.setChunkRequest(chunkRequest);

 req.setCmdbContext(getContext());

 PullTopologyMapChunksResponse res = null;

 try {

 res = getStub().pullTopologyMapChunks(req);

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 TopologyMap map = res.getTopologyMap();

 topologyMap = mergeMaps(topologyMap, map);

 }

 //release chunks

 ReleaseChunks req = new ReleaseChunks();

 req.setChunksKey(chunkInfo.getChunksKey());

 req.setCmdbContext(getContext());

 try {

 getStub().releaseChunks(req);

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 return topologyMap;

 }

//===

/* WARNING merge will be correct only if a each node is given

 a unique name. This applies to both CI and Relation nodes .*/

//===

 private TopologyMap mergeMaps(TopologyMap topologyMap, TopologyMap

newMap) {

 for(int i=0 ; i < newMap.getCINodes().sizeCINodeList() ; i++)

{

 CINode ciNode = newMap.getCINodes().getCINode(i);

 boolean alreadyExist = false;

 if(topologyMap.getCINodes() == null) {

HP Business ServiceManagement (9.20)Page 306 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 topologyMap.setCINodes(new CINodes());

 }

 for(int j=0 ; j < topologyMap.getCINodes().sizeCINodeList

() ; j++) {

 CINode ciNode2 = topologyMap.getCINodes().getCINode

(j);

 if(ciNode2.getLabel().equals(ciNode.getLabel())){

 CIs cisTOAdd = ciNode.getCIs();

 CIs cis =

 mergeCIsGroups

(topologyMap.getCINodes().getCINode(j).getCIs

(),

 cisTOAdd);

 topologyMap.getCINodes().getCINode(j).setCIs(cis);

 alreadyExist = true;

 }

 }

 if(!alreadyExist) {

 topologyMap.getCINodes().addCINode(ciNode);

 }

 }

 for(int i=0 ; i < newMap.getRelationNodes

().sizeRelationNodeList() ; i++) {

 RelationNode relationNode =

 newMap.getRelationNodes().getRelationNode(i);

 boolean alreadyExist = false;

 if(topologyMap.getRelationNodes() == null) {

 topologyMap.setRelationNodes(new RelationNodes());

 }

 for(int j=0 ;

 j < topologyMap.getRelationNodes

().sizeRelationNodeList() ;

 j++) {

 RelationNode relationNode2 =

 topologyMap.getRelationNodes().getRelationNode(j);

 if(relationNode2.getLabel().equals

(relationNode.getLabel())){

 Relations relationsTOAdd =

relationNode.getRelations();

 Relations relations =

 mergeRelationsGroups

(topologyMap.getRelationNodes().

 getRelationNode(j).getRelations(),

 relationsTOAdd);

 topologyMap.getRelationNodes().

 getRelationNode(j).setRelations(relations);

 alreadyExist = true;

HP Business ServiceManagement (9.20)Page 307 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 }

 }

 if(!alreadyExist) {

 topologyMap.getRelationNodes().addRelationNode

(relationNode);

 }

 }

 return topologyMap;

 }

 private Relations mergeRelationsGroups(Relations relations1,

Relations relations2) {

 for(int i=0 ; i < relations2.sizeRelationList() ; i++) {

 relations1.addRelation(relations2.getRelation(i));

 }

 return relations1;

 }

 private CIs mergeCIsGroups(CIs cis1, CIs cis2) {

 for(int i=0 ; i < cis2.sizeCIList() ; i++) {

 cis1.addCI(cis2.getCI(i));

 }

 return cis1;

 }

}

Update Example
import com.hp.ucmdb.generated.params.update.AddCIsAndRelations;

import

com.hp.ucmdb.generated.params.update.AddCIsAndRelationsResponse;

import com.hp.ucmdb.generated.params.update.UpdateCIsAndRelations;

import com.hp.ucmdb.generated.params.update.DeleteCIsAndRelations;

import com.hp.ucmdb.generated.services.UcmdbFault;

import com.hp.ucmdb.generated.types.*;

import com.hp.ucmdb.generated.types.update.CIsAndRelationsUpdates;

import com.hp.ucmdb.generated.types.update.ClientIDToCmdbID;

import java.rmi.RemoteException;

import java.util.ArrayList;

import java.util.List;

public class UpdateDemo extends Demo{

public void getAddCIsAndRelationsDemo() {

AddCIsAndRelations request = new AddCIsAndRelations();

request.setCmdbContext(getContext());

HP Business ServiceManagement (9.20)Page 308 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

request.setUpdateExisting(true);

CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates();

CIs cis = new CIs();

List<CI> listCI = new ArrayList<CI>();

CI ci = new CI();

ID id = new ID();

id.setString("temp1");

id.setTemp(true);

ci.setID(id);

ci.setType("host");

CIProperties props = new CIProperties();

StrProps strProps = new StrProps();

StrProp strProp = new StrProp();

strProp.setName("host_key");

String value = "blabla";

strProp.setValue(value);

strProps.getStrProps().add(strProp);

props.setStrProps(strProps);

ci.setProps(props);

listCI.add(ci);

cis.setCIs(listCI);

updates.setCIsForUpdate(cis);

request.setCIsAndRelationsUpdates(updates);

try {

AddCIsAndRelationsResponse response = getStub().addCIsAndRelations

(request);

for(int i = 0 ; i < response.getCreatedIDsMaps().size() ; i++) {

ClientIDToCmdbID idsMap = response.getCreatedIDsMaps().get(i);

//do something

}

} catch (RemoteException e) {

//handle exception

} catch (UcmdbFault e) {

//handle exception

HP Business ServiceManagement (9.20)Page 309 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

}

}

public void getUpdateCIsAndRelationsDemo() {

UpdateCIsAndRelations request = new UpdateCIsAndRelations();

request.setCmdbContext(getContext());

CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates();

CIs cis = new CIs();

List<CI> listCI = new ArrayList<CI>();

CI ci = new CI();

ID id = new ID();

id.setString("temp1");

id.setTemp(true);

ci.setID(id);

ci.setType("host");

CIProperties props = new CIProperties();

StrProps strProps = new StrProps();

StrProp hostKeyProp = new StrProp();

hostKeyProp.setName("host_key");

String hostKeyValue = "blabla";

hostKeyProp.setValue(hostKeyValue);

strProps.getStrProps().add(hostKeyProp);

StrProp hostOSProp = new StrProp();

hostOSProp.setName("host_os");

String hostOSValue = "winXP";

hostOSProp.setValue(hostOSValue);

strProps.getStrProps().add(hostOSProp);

StrProp hostDNSProp = new StrProp();

hostDNSProp.setName("host_dnsname");

String hostDNSValue = "dnsname";

hostDNSProp.setValue(hostDNSValue);

strProps.getStrProps().add(hostDNSProp);

props.setStrProps(strProps);

ci.setProps(props);

HP Business ServiceManagement (9.20)Page 310 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

listCI.add(ci);

cis.setCIs(listCI);

updates.setCIsForUpdate(cis);

request.setCIsAndRelationsUpdates(updates);

try {

getStub().updateCIsAndRelations(request);

} catch (RemoteException e) {

//handle exception

} catch (UcmdbFault e) {

//handle exception

}

}

public void getDeleteCIsAndRelationsDemo() {

DeleteCIsAndRelations request = new DeleteCIsAndRelations();

request.setCmdbContext(getContext());

CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates();

CIs cis = new CIs();

List<CI> listCI = new ArrayList<CI>();

CI ci = new CI();

ID id = new ID();

id.setString("stam");

id.setTemp(true);

ci.setID(id);

ci.setType("host");

CIProperties props = new CIProperties();

StrProps strProps = new StrProps();

StrProp strProp1 = new StrProp();

strProp1.setName("host_key");

String value1 = "for_delete";

strProp1.setValue(value1);

strProps.getStrProps().add(strProp1);

props.setStrProps(strProps);

ci.setProps(props);

HP Business ServiceManagement (9.20)Page 311 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

listCI.add(ci);

cis.setCIs(listCI);

updates.setCIsForUpdate(cis);

request.setCIsAndRelationsUpdates(updates);

try {

getStub().deleteCIsAndRelations(request);

} catch (RemoteException e) {

//handle exception

} catch (UcmdbFault e) {

//handle exception

}

}

public static void main(String[] args) {

try{

UpdateDemo demo = new UpdateDemo();

demo.initDemo();

demo.getAddCIsAndRelationsDemo();

} catch(Exception e){

System.out.println(e.getMessage());

e.printStackTrace();

}

}

}

Class Model Example
package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.classmodel.*;

import com.hp.ucmdb.generated.services.UcmdbFaultException;

import

com.hp.ucmdb.generated.types.classmodel.UcmdbClassModelHierarchy;

import com.hp.ucmdb.generated.types.classmodel.UcmdbClass;

import java.rmi.RemoteException;

public class ClassmodelDemo extends Demo{

 public void getClassAncestorsDemo() {

HP Business ServiceManagement (9.20)Page 312 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 GetClassAncestors request =

 new GetClassAncestors();

 request.setCmdbContext(getContext());

 request.setClassName("className");

 try {

 GetClassAncestorsResponse response =

 getStub().getClassAncestors(request);

 UcmdbClassModelHierarchy hierarchy =

 response.getClassHierarchy();

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 public void getAllClassesHierarchyDemo() {

 GetAllClassesHierarchy request =

 new GetAllClassesHierarchy();

 request.setCmdbContext(getContext());

 try {

 GetAllClassesHierarchyResponse response =

 getStub().getAllClassesHierarchy(request);

 UcmdbClassModelHierarchy hierarchy =

 response.getClassesHierarchy();

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

 public void getCmdbClassDefinitionDemo() {

 GetCmdbClassDefinition request =

 new GetCmdbClassDefinition();

 request.setCmdbContext(getContext());

 request.setClassName("className");

 try {

 GetCmdbClassDefinitionResponse response =

 getStub().getCmdbClassDefinition(request);

 UcmdbClass ucmdbClass = response.getUcmdbClass();

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 }

}

HP Business ServiceManagement (9.20)Page 313 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

Impact Analysis Example
package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.impact.*;

import com.hp.ucmdb.generated.services.UcmdbFaultException;

import com.hp.ucmdb.generated.types.*;

import com.hp.ucmdb.generated.types.impact.*;

import java.rmi.RemoteException;

/**

 * Date: Jul 17, 2007

 */

public class ImpactDemo extends Demo{

//Impact Rule Name : impactExample

//Impact Query:

// Network

// |

// Host

// |

// IP

//Impact Action: network affect on ip ;severity 100% ; category:

change

//

public void calculateImpactAndGetImpactPathDemo() {

 CalculateImpact request = new CalculateImpact();

 request.setCmdbContext(getContext());

 //set root cause ids

 IDs ids = new IDs();

 ID id = new ID();

 id.setBase("rootCauseCmdbID");

 ids.addID(id);

 request.setIDs(ids);

 //set impact category

 request.setImpactCategory("change");

 //set rule Names

 ImpactRuleNames impactRuleNames = new ImpactRuleNames();

 ImpactRuleName impactRuleName = new ImpactRuleName();

 impactRuleName.setBase("impactExample");

 impactRuleNames.addImpactRuleName(impactRuleName);

 request.setImpactRuleNames(impactRuleNames);

 //set severity

 request.setSeverity(100);

 CalculateImpactResponse response =

 new CalculateImpactResponse();

 request.setIDs(ids);

 //set impact category

 request.setImpactCategory("change");

 //set rule Names

HP Business ServiceManagement (9.20)Page 314 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 ImpactRuleNames impactRuleNames = new ImpactRuleNames();

 ImpactRuleName impactRuleName = new ImpactRuleName();

 impactRuleName.setBase("impactExample");

 impactRuleNames.addImpactRuleName(impactRuleName);

 request.setImpactRuleNames(impactRuleNames);

 //set severity

 request.setSeverity(100);

 CalculateImpactResponse response =

 new CalculateImpactResponse();

 try {

 response = getStub().calculateImpact(request);

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

 Identifier identifier= response.getIdentifier();

 Topology topology = response.getImpactTopology();

 Relation relation = topology.getRelations().getRelation(0);

 GetImpactPath request2 = new GetImpactPath();

 //set cmdb context

 request2.setCmdbContext(getContext());

 //set impact identifier

 request2.setIdentifier(identifier);

 //set shallowRelation

 ShallowRelation shallowRelation = new ShallowRelation();

 shallowRelation.setID(relation.getID());

 shallowRelation.setEnd1ID(relation.getEnd1ID());

 shallowRelation.setEnd2ID(relation.getEnd2ID());

 shallowRelation.setType(relation.getType());

 request2.setRelation(shallowRelation);

 try {

 GetImpactPathResponse response2 =

 getStub().getImpactPath(request2);

 ImpactTopology impactTopology =

 response2.getImpactPathTopology();

 } catch (RemoteException e) {

 //To change body of catch statement

 // use File | Settings | File Templates.

 e.printStackTrace();

 } catch (UcmdbFaultException e) {

 //To change body of catch statement

 // use File | Settings | File Templates.

 e.printStackTrace();

 }

}

public void getImpactRulesByGroupName() {

HP Business ServiceManagement (9.20)Page 315 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 GetImpactRulesByGroupName request =

 new GetImpactRulesByGroupName();

 //set cmdb context

 request.setCmdbContext(getContext());

 //set group names list

 request.addRuleGroupNameFilter("groupName1");

 request.addRuleGroupNameFilter("groupName2");

 try {

 GetImpactRulesByGroupNameResponse response =

 getStub().getImpactRulesByGroupName(request);

 ImpactRules impactRules = response.getImpactRules();

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

}

public void getImpactRulesByNamePrefix() {

 GetImpactRulesByNamePrefix request =

 new GetImpactRulesByNamePrefix();

 //set cmdb context

 request.setCmdbContext(getContext());

 //set prefixes list

 request.addRuleNamePrefixFilter("prefix1");

 try {

 GetImpactRulesByNamePrefixResponse response =

 getStub().getImpactRulesByNamePrefix(request);

 ImpactRules impactRules = response.getImpactRules();

 } catch (RemoteException e) {

 //handle exception

 } catch (UcmdbFaultException e) {

 //handle exception

 }

}

}

Adding Credentials Example
import java.net.URL;

import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.ucmdb.generated.params.discovery.*;

import com.hp.ucmdb.generated.services.DiscoveryService;

import com.hp.ucmdb.generated.services.DiscoveryServiceStub;

import com.hp.ucmdb.generated.types.BytesProp;

import com.hp.ucmdb.generated.types.BytesProps;

import com.hp.ucmdb.generated.types.CIProperties;

HP Business ServiceManagement (9.20)Page 316 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

import com.hp.ucmdb.generated.types.CmdbContext;

import com.hp.ucmdb.generated.types.StrList;

import com.hp.ucmdb.generated.types.StrProp;

import com.hp.ucmdb.generated.types.StrProps;

public class test {

 static final String HOST_NAME = "hostname";

static final int PORT = 808021212;

 private static final String PROTOCOL = "http";

 private static final String FILE =

"/axis2/services/DiscoveryService";

 private static final String PASSWORD = "admin";

 private static final String USERNAME = "admin";

 private static CmdbContext cmdbContext = new CmdbContext("ws

tests");

 public static void main(String[] args) throws Exception {

 // Get the stub object

 DiscoveryService discoveryService = getDiscoveryService();

 // Activate Job

 discoveryService.activateJob(new ActivateJobRequest("Range IPs

by ICMP", cmdbContext));

 // Get domain & probes info

 getProbesInfo(discoveryService);

 // Add credentilas entry for ntcmd protcol

 addNTCMDCredentialsEntry();

 }

 public static void addNTCMDCredentialsEntry() throws Exception {

 DiscoveryService discoveryService = getDiscoveryService();

 // Get domain name

 StrList domains =

 discoveryService.getDomainsNames(new

GetDomainsNamesRequest(cmdbContext)).getDomainNames();

 if (domains.sizeStrValueList() == 0) {

 System.out.println("No domains were found, can't create

credentials");

 return;

 }

 String domainName = domains.getStrValue(0);

 // Create propeties with one byte param

 CIProperties newCredsProperties = new CIProperties();

 // Add password property - this is of type bytes

 newCredsProperties.setBytesProps(new BytesProps());

 setPasswordProperty(newCredsProperties);

HP Business ServiceManagement (9.20)Page 317 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 // Add user & domain properties - these are of type string

 newCredsProperties.setStrProps(new StrProps());

 setStringProperties("protocol_username", "test user",

newCredsProperties);

 setStringProperties("ntadminprotocol_ntdomain", "test doamin",

newCredsProperties);

 // Add new credentials entry

 discoveryService.addCredentialsEntry(new

AddCredentialsEntryRequest(domainName, "ntadminprotocol",

newCredsProperties, cmdbContext));

 System.out.println("new credentials craeted for domain: " +

domainName + " in ntcmd protocol");

 }

 private static void setPasswordProperty(CIProperties

newCredsProperties) {

 BytesProp bProp = new BytesProp();

 bProp.setName("protocol_password");

 bProp.setValue(new byte[] {101,103,102,104});

 newCredsProperties.getBytesProps().addBytesProp(bProp);

 }

 private static void setStringProperties(String propertyName,

String value, CIProperties newCredsProperties) {

 StrProp strProp = new StrProp();

 strProp.setName(propertyName);

 strProp.setValue(value);

 newCredsProperties.getStrProps().addStrProp(strProp);

 }

 private static void getProbesInfo(DiscoveryService

discoveryService) throws Exception {

 GetDomainsNamesResponse result =

discoveryService.getDomainsNames(new GetDomainsNamesRequest

(cmdbContext));

 // Go over all the domains

 if (result.getDomainNames().sizeStrValueList() > 0) {

 String domainName = result.getDomainNames().getStrValue

(0);

 GetProbesNamesResponse probesResult =

 discoveryService.getProbesNames(new

GetProbesNamesRequest(domainName, cmdbContext));

 // Go over all the probes

 for (int i=0; i<probesResult.getProbesNames

().sizeStrValueList(); i++) {

 String probeName = probesResult.getProbesNames

().getStrValue(i);

 // Check if connected

 IsProbeConnectedResponce connectedRequest =

HP Business ServiceManagement (9.20)Page 318 of 344

RTSM Developer Reference Guide
Chapter 11: RTSM (HP Universal CMDB)Web Service API

 discoveryService.isProbeConnected(new

IsProbeConnectedRequest(domainName, probeName, cmdbContext));

 Boolean isConnected = connectedRequest.getIsConnected

();

 // Do something ...

 System.out.println("probe " + probeName + "

isconnect=" + isConnected);

 }

 }

 }

 private static DiscoveryService getDiscoveryService() throws

Exception {

 DiscoveryService discoveryService = null;

 try {

 // Create service

 URL url = new URL(PROTOCOL,HOST_NAME,PORT, FILE);

 DiscoveryServiceStub serviceStub = new

DiscoveryServiceStub(url.toString());

 // Authenticate info

 HttpTransportProperties.Authenticator auth = new

HttpTransportProperties.Authenticator();

 auth.setUsername(USERNAME);

 auth.setPassword(PASSWORD);

 serviceStub._getServiceClient().getOptions().setProperty

(HTTPConstants.AUTHENTICATE,auth);

 discoveryService = serviceStub;

 } catch (Exception e) {

 throw new Exception("cannot create a connection to service

", e);

 }

 return discoveryService;

 }

} // End class

HP Business ServiceManagement (9.20)Page 319 of 344

Chapter 12

Internal-Global ID Conversion API
This chapter includes:

Using the Internal-Global ID Conversion API 321

How to Convert RTSM Internal IDs to Global IDs 322

How to Convert Global IDs to RTSM Internal IDs 325

HP Business ServiceManagement (9.20)Page 320 of 344

RTSM Developer Reference Guide
Chapter 12: Internal-Global ID Conversion API

Using the Internal-Global ID Conversion API
BSM APIs work with internal CI IDs, while other tools integrated through a UCMDB work with
global CI IDs. To use BSM APIs when you have global CI IDs, youmust first convert them to
internal CI IDs. Likewise, to send input from BSM to external software that integrates through a
UCMDB, the internal CI IDs must first be converted to global CI IDs.

The Internal-Global ID Conversion API contains twomethods, to convert RTSM internal CI IDs to
global CI IDs, and to convert global CI IDs to RTSM internal CI IDs.

The log file for this API is located on theGateway Server, at <HPBSM root
directory>\log\EJBContainer\bsm_sdk_utils.log

HP Business ServiceManagement (9.20)Page 321 of 344

RTSM Developer Reference Guide
Chapter 12: Internal-Global ID Conversion API

How to Convert RTSM Internal IDs to Global IDs
To convert a given internal CI ID to a global CI ID, use the following URL:

http://<bsm.server.example>/topaz/bsmservices/customers/{customerId}
/rtsm/convertRtsmToGlobalIds?ciIds={ciIds}

Parameters

l customerId - customer ID (use 1 for non-SaaS deployment)

l ciIds - comma separated CI IDs

If the CI ID does not exist, it will not appear in the result map.

If no global ID is defined for a CI, 32 '0' characters are retrieved as the global ID mapped to the
internal ID.

Example

HTTP Command

http://bsm.server.example/topaz/bsmservices/customers/1/rtsm/

convertRtsmToGlobalIds?ciIds=35845d64ba6250d4d45d0e75e3e59001,

316e438afc58135f9e87113bd4427d37,175fe30654e9a9dd16ddab66b2237c92,

cb8a27f8ce900aa380c41ac1c74d8153,8066fe1fcb712926fe3793a75b0e733c,

bbbc37f7ce900aa380c41ac1c74d8153

Result map

HP Business ServiceManagement (9.20)Page 322 of 344

RTSM Developer Reference Guide
Chapter 12: Internal-Global ID Conversion API

<map>

 <entry>

 <key>8066fe1fcb712926fe3793a75b0e733c</key>

 <value>00000000000000000000000000000000</value>

 </entry>

 <entry>

 <key>cb8a27f8ce900aa380c41ac1c74d8153</key>

 <value>cb8a27f8ce900aa380c41ac1c74d8153</value>

 </entry>

 <entry>

 <key>175fe30654e9a9dd16ddab66b2237c92</key>

 <value>175fe30654e9a9dd16ddab66b2237c92</value>

 </entry>

 <entry>

 <key>316e438afc58135f9e87113bd4427d37</key>

 <value>316e438afc58135f9e87113bd4427d37</value>

 </entry>

 <entry>

 <key>35845d64ba6250d4d45d0e75e3e59001</key>

 <value>00000000000000000000000000000000</value>

 </entry>

</map>

In this example, there are two CIs that have no global ID and will bemapped to
00000000000000000000000000000000.

Since there is no CI with ID that matches the last passed ID, it does not appear in the result map.

Error handling

Name
Error
Code Reason

BAD_REQUEST 400 Missing CI IDs or wrong input for ciIds parameter.

Number of passed CI IDs reaches the limit, which is
10000.

HP Business ServiceManagement (9.20)Page 323 of 344

RTSM Developer Reference Guide
Chapter 12: Internal-Global ID Conversion API

Name
Error
Code Reason

INTERNAL_SERVER_
ERROR

500 General failure to run query against RTSM

HP Business ServiceManagement (9.20)Page 324 of 344

RTSM Developer Reference Guide
Chapter 12: Internal-Global ID Conversion API

How to Convert Global IDs to RTSM Internal IDs
To convert a given global CI ID to an internal CI ID, use the following URL:

http://<bsm.server.example>/topaz/bsmservices/customers/{customerId}
/rtsm/convertGlobalToRtsmIds?ciIds={ciIds}

Parameters
l customerId - customer ID (use 1 for non-SaaS deployment)

l ciIds - comma separated CI IDs

If no CI with the given global ID appears in the RTSMmodel, no entry will appear in the result map.

Example
HTTP Command

http://bsm.serv-

er.e-

xample/topaz/bsmservices/customers/1/rtsm/convertGlobalToRtsmIds?ciId

s=35845d64ba6250d4d45d0e75e3e59001,316e438afc58135f9e87113bd4427d37,

175fe30654e9a9dd16ddab66b2237c92,cb8a27f8ce900aa380c41ac1c74d8153

Result map

<map>

 <entry>

 <key>316e438afc58135f9e87113bd4427d37</key>

 <value>316e438afc58135f9e87113bd4427d37</value>

 </entry>

 <entry>

 <key>175fe30654e9a9dd16ddab66b2237c92</key>

 <value>175fe30654e9a9dd16ddab66b2237c92</value>

 </entry>

 <entry>

 <key>cb8a27f8ce900aa380c41ac1c74d8153</key>

 <value>cb8a27f8ce900aa380c41ac1c74d8153</value>

 </entry>

</map>

Since there is no CI with a global ID that matches the first ID, it does not appear in the result map.

Error handling

HP Business ServiceManagement (9.20)Page 325 of 344

RTSM Developer Reference Guide
Chapter 12: Internal-Global ID Conversion API

Name
Error
Code Reason

BAD_REQUEST 400 Missing CI IDs or wrong input for ciIds parameter.

Number of passed CI IDs reaches the limit, which is
10000.

INTERNAL_SERVER_
ERROR

500 General failure to run query against RTSM

HP Business ServiceManagement (9.20)Page 326 of 344

Chapter 13

Data Flow Management API
This chapter includes:

Data Flow Management API Overview 328

Conventions 329

Data Flow Management Web Service 330

Call theWeb Service 331

Data Flow Management Methods 332

Code Sample 342

HP Business ServiceManagement (9.20)Page 327 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Data Flow Management API Overview
This chapter explains how third-party or custom tools can use the HP Data Flow Management Web
Service tomanage Data Flow Management.

For full documentation on the available operations, see theHP Discovery and Dependency
Mapping SchemaReference. These files are located in the following folder:

\\<BSM root directory>\AppServer\webapps\site.war\amdocs\eng\API_docs\DDM_Schema
\webframe.html

HP Business ServiceManagement (9.20)Page 328 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Conventions
This chapter uses the following conventions:

l This style Element indicates that an item is an entity in the database or an element defined in
the schema, including structures passed to or returned by methods. Plain text indicates that the
item is being discussed in a general context.

l Data Flow Management elements andmethod arguments are spelled in the case in which they
are specified in the schema. This usually means that a class name or generic reference to an
instance of the class is capitalized. An element or argument to amethod is not capitalized. For
example, a credential is an element of type Credential passed to amethod.

HP Business ServiceManagement (9.20)Page 329 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Data Flow Management Web Service
The HP Data Flow Management Web Service is an API used to integrate applications with
HP Business Availability Center. The API provides methods to:

l Manage credentials. View, add, update, and remove.

l Manage jobs. View status, activate, and deactivate.

l Manage probe ranges. View, add, and update.

l Manage triggers. Add or remove a trigger CI, and add, remove, or disable a trigger TQL.

l View general data. Data on domains and probes.

Users of the HP Data Flow Management Web Service should be familiar with:

l The SOAP specification

l An object-oriented programming language such as C++, C# or Java

l HP Business Availability Center

l Data Flow Management

Permissions
The administrator provides login credentials for connecting with theWeb service. The permission
levels are View, Update, and Execute. To view the permissions required for each operation, see
each operation's request documentation in theHP Discovery and Dependency Mapping Schema
Reference.

HP Business ServiceManagement (9.20)Page 330 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Call the Web Service
The HP Discovery and Dependency MappingWeb Service enables calling server-sidemethods
using standard SOAP programming techniques. If the statement cannot be parsed or if there is a
problem invoking themethod, the API methods throw a SoapFault exception. When a
SoapFault exception is thrown, the service populates one or more of the error message, error
code, and exceptionmessage fields. If there is no error, the results of the invocation are returned.

To call the service, use:

l Protocol: http or https (depending on server configuration)

l URL: <BSM Data Processing>:21212 /axis2/services/DiscoveryService

l Default password: "admin"

l Default username: "admin"

SOAP programmers can access theWSDL at:

l axis2/services/DiscoveryService?wsdl

HP Business ServiceManagement (9.20)Page 331 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Data Flow Management Methods
This section contains a list of theWeb service operations and a brief summary of their use. For full
documentation of the request and response for each operation, see theHP Discovery and
Dependency Mapping SchemaReference.

This section includes the following topics:

l "Data Structures" below

l "Managing Discovery JobMethods" on next page

l "Managing Trigger Methods" on page 334

l "Domain and Probe DataMethods" on page 336

l "Credentials DataMethods" on page 338

l "Data RefreshMethods" on page 340

Data Structures
These are some of the data structures used in the Data Flow Management Web Service API.

CIProperties
CIProperties is a collection of collections. Each collection contains properties of a different data
type. For example, there can be a dateProps collection, a strListProps collection, an
xmlProps collection, and so on.

Each type collection contains individual properties of the given type. The names of these properties
elements is the same as the container, but in singular. For example, dateProps contains
dateProp elements. Each property is a name-value pair.

See CIProperties in theHP Discovery and Dependency Mapping SchemaReference.

IPList
A list of IP elements, each of which contains an IPv4 Address.

See IPList in theHP Discovery and Dependency Mapping SchemaReference.

IPRange
An IPRange has two elements, the Start and the End elements. Each contains an Address
element which is an IPv4 Address.

See IPLRange in theHP Discovery and Dependency Mapping SchemaReference.

Scope
Two IPRanges. Exclude is a collection of IPRanges to exclude from the job. Include is a
collection of IPRanges to include in the job.

See Scope in theHP Discovery and Dependency Mapping SchemaReference

HP Business ServiceManagement (9.20)Page 332 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Managing Discovery Job Methods

activateJob
Activates the specified job.

See "Code Sample" on page 342

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job.

deactivateJob
Deactivates the specified job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job.

dispatchAdHocJob
Dispatches a job on the probe ad-hoc. The jobmust be active and contain the specified trigger CI.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job.

CIID The ID of the trigger CI.

ProbeName The name of the probe.

Timeout In milliseconds

getDiscoveryJobsNames
Returns the list of job names.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

Output

HP Business ServiceManagement (9.20)Page 333 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Parameter Comment

strList The list of job names.

isJobActive
Checks whether the job is active.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job to check.

Output

Parameter Comment

JobState True if the job is active.

Managing Trigger Methods

addTriggerCI
Adds a new trigger CI to the specified job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job.

CIID The ID of the trigger CI.

addTriggerTQL
Adds a new trigger TQL to the specified job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job.

TqlName The name of the TQL to add.

disableTriggerTQL
Prevents the TQL from triggering the job, but does not permanently remove it from the list of queries

HP Business ServiceManagement (9.20)Page 334 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

that trigger the job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job.

removeTriggerCI
Removes the specified CI from the list of CIs that trigger the job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The job name.

CIID The ID of the trigger CI.

removeTriggerTQL
Removes the specified TQL from the list of queries that trigger the job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName Collection of job names to check.

CIID The ID of the TQL to remove.

setTriggerTQLProbesLimit
Restrict the probes in which the TQL is active in the job to the specified list.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

JobName The name of the job.

tqlName The TQL name.

probesLimit The list of probes for which the TQL is active.

HP Business ServiceManagement (9.20)Page 335 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Domain and Probe Data Methods

getDomainType
Returns the domain type.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The name of the domain.

Output

Parameter Comment

domainType The domain type.

getDomainsNames
Returns the names of the current domains.

See "Code Sample" on page 342

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

Output

Parameter Comment

domainNames The list of domain names.

getProbeIPs
Returns the IP addresses of the specified probe.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to check.

probeName The name of the probe used on that domain.

Output

HP Business ServiceManagement (9.20)Page 336 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Parameter Comment

probeIPs The "IPList" of the addresses in the probe.

getProbesNames
Returns the names of the probes in the specified domain.

See "Code Sample" on page 342

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to check.

Output

Parameter Comment

probesName The list of probes on the domain.

getProbeScope
Returns the scope definition of the specified probe.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to check.

probeName The name of the probe.

Output

Parameter Comment

probeScope The "Scope" of the probe.

isProbeConnected
Checks whether the specified probe is connected.

See "Code Sample" on page 342

Input

HP Business ServiceManagement (9.20)Page 337 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to check.

probeName The probe to check

Output

Parameter Comment

isConnected True if the probe is connected.

updateProbeScope
Sets the scope of the specified probe, overriding the existing scope.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain.

probeName The probe to update.

newScope The "Scope" to set for the probe.

Credentials Data Methods

addCredentialsEntry
Adds a credentials entry to the specified protocol for the specified domain.

See "Code Sample" on page 342

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to update.

protocolName The name of the protocol.

credentialsEntryParameters The "CIProperties" collection of the new credentials.

Output

Parameter Comment

credentialsEntryID The CI ID of the new credential entry.

HP Business ServiceManagement (9.20)Page 338 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

getCredentialsEntriesIDs
Returns the IDs of the credentials defined for the specified protocol.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to get the credentials for.

protocolName The name of a protocol used on that domain.

Output

Parameter Comment

credentialsEntryIDs The list of credential IDs for the protocol on the domain.

getCredentialsEntry
Returns the credentials defined for the specified protocol. Encrypted attributes are returned empty.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to get the credentials for.

protocolName A protocol used on that domain.

credentialsEntryID The credential ID to get.

Output

Parameter Comment

credentialsEntryParameters The "CIProperties" collection of the credentials.

removeCredentialsEntry
Removes the specified credentials from the protocol.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain.

protocolName A protocol used on the domain.

credentialsEntryID The ID of the credential to remove.

HP Business ServiceManagement (9.20)Page 339 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

updateCredentialsEntry
Sets new values for properties of the specified credentials entry.

The existing properties are deleted and these properties are set. Any property whose value is not
set in this call is left undefined.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

domainName The domain to update credentials in.

protocolName A protocol used on the domain.

credentialsEntryID The ID of the credentials to update.

credentialsEntryParameters The "CIProperties" collection to set as properties for the
credentials.

Data Refresh Methods

rediscoverCIs
Locates the triggers that discovered the specified CI objects and reruns those triggers.

rediscoverCIs runs asynchronously. Call checkDiscoveryProgress to determine when the
rediscovery is complete.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

CmdbIDs Collection of IDs of the objects to rediscover.

Output

Parameter Comment

isSucceed True if the CIs rediscovery succeeded.

checkDiscoveryProgress
Returns the progress of themost recent rediscoverCIs call on the specified IDs. The response is a
value from 0 to 1. When the response is 1, the rediscoverCIs call has completed.

Input

HP Business ServiceManagement (9.20)Page 340 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

CmdbIDs Collection of IDs of the objects in the rediscover call to track.

Output

Parameter Comment

progress A completed job has a progress of 1. Jobs that have not completed have a fraction
less than 1.

rediscoverViewCIs
Locates the triggers that created the data to populate the specified view, and reruns those triggers.

rediscoverViewCIs runs asynchronously. Call checkViewDiscoveryProgress to determine when
the rediscovery is complete.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

viewName The views to check.

Output

Parameter Comment

isSucceed True if CIs rediscovery succeeded.

checkViewDiscoveryProgress
Returns the progress of themost recent rediscoverViewCIs call on the specified view. The
response is a value from 0 to 1. When the response is 1, the rediscoverCIs call has completed.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 272.

viewName The collection of views to check.

Output

Parameter Comment

progress A completed job has a progress of 1. Jobs that have not completed have a fraction
less than 1.

HP Business ServiceManagement (9.20)Page 341 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

Code Sample
import java.net.URL;

import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.ucmdb.generated.params.discovery.*;

import com.hp.ucmdb.generated.services.*;

import com.hp.ucmdb.generated.types.*;

public class test {

 static final String HOST_NAME = "<my_hostname>";

 static final int PORT = 21212;

 private static final String PROTOCOL = "http";

 private static final String FILE =

"/axis2/services/DiscoveryService";

 private static final String PASSWORD = "<my_password>";

 private static final String USERNAME = "<my_username>";

 private static CmdbContext cmdbContext = new CmdbContext("ws

tests");

 public static void main(String[] args) throws Exception {

 // Get the stub object

 DiscoveryService discoveryService = getDiscoveryService();

 // Activate Job

 discoveryService.activateJob(new ActivateJobRequest(

 "Range IPs by ICMP", cmdbContext));

 // Get domain & probes info

 getProbesInfo(discoveryService);

 // Add credentilas entry for ntcmd protcol

 addNTCMDCredentialsEntry();

 }

 public static void addNTCMDCredentialsEntry() throws Exception {

 DiscoveryService discoveryService = getDiscoveryService();

 // Get domain name

 StrList domains =

 discoveryService.getDomainsNames(

 new GetDomainsNamesRequest(cmdbContext)).

 getDomainNames();

 if (domains.sizeStrValueList() == 0) {

 System.out.println("No domains were found, can't create

credentials");

 return;

 }

HP Business ServiceManagement (9.20)Page 342 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

 String domainName = domains.getStrValue(0);

 // Create propeties with one byte param

 CIProperties newCredsProperties = new CIProperties();

 // Add password property - this is of type bytes

 newCredsProperties.setBytesProps(new BytesProps());

 setPasswordProperty(newCredsProperties);

 // Add user & domain properties - these are of type string

 newCredsProperties.setStrProps(new StrProps());

 setStringProperties("protocol_username", "test user",

newCredsProperties);

 setStringProperties("ntadminprotocol_ntdomain",

 "test doamin", newCredsProperties);

 // Add new credentials entry

 discoveryService.addCredentialsEntry(

 new AddCredentialsEntryRequest(domainName,

 "ntadminprotocol", newCredsProperties, cmdbContext));

 System.out.println("new credentials craeted for domain: " +

domainName + " in ntcmd protocol");

 }

 private static void setPasswordProperty(CIProperties

newCredsProperties) {

 BytesProp bProp = new BytesProp();

 bProp.setName("protocol_password");

 bProp.setValue(new byte[] {101,103,102,104});

 newCredsProperties.getBytesProps().addBytesProp(bProp);

 }

 private static void setStringProperties(String propertyName,

String value, CIProperties newCredsProperties) {

 StrProp strProp = new StrProp();

 strProp.setName(propertyName);

 strProp.setValue(value);

 newCredsProperties.getStrProps().addStrProp(strProp);

 }

 private static void getProbesInfo(DiscoveryService

discoveryService) throws Exception {

 GetDomainsNamesResponse result =

discoveryService.getDomainsNames(new GetDomainsNamesRequest

(cmdbContext));

 // Go over all the domains

 if (result.getDomainNames().sizeStrValueList() > 0) {

 String domainName =

 result.getDomainNames().getStrValue(0);

HP Business ServiceManagement (9.20)Page 343 of 344

RTSM Developer Reference Guide
Chapter 13: Data Flow Management API

 GetProbesNamesResponse probesResult =

 discoveryService.getProbesNames(

 new GetProbesNamesRequest(domainName,

cmdbContext));

 // Go over all the probes

 for (int i=0; i<probesResult.getProbesNames

().sizeStrValueList(); i++) {

 String probeName = probesResult.getProbesNames

().getStrValue(i);

 // Check if connected

 IsProbeConnectedResponce connectedRequest =

 discoveryService.isProbeConnected(

 new IsProbeConnectedRequest(

 domainName, probeName, cmdbContext));

 Boolean isConnected = connectedRequest.getIsConnected

();

 // Do something ...

 System.out.println("probe " + probeName + "

isconnect=" + isConnected);

 }

 }

 }

 private static DiscoveryService getDiscoveryService() throws

Exception {

 DiscoveryService discoveryService = null;

 try {

 // Create service

 URL url = new URL(PROTOCOL,HOST_NAME,PORT, FILE);

 DiscoveryServiceStub serviceStub =

 new DiscoveryServiceStub(url.toString());

 // Authenticate info

 HttpTransportProperties.Authenticator auth =

 new HttpTransportProperties.Authenticator();

 auth.setUsername(USERNAME);

 auth.setPassword(PASSWORD);

 serviceStub._getServiceClient().getOptions().setProperty(

 HTTPConstants.AUTHENTICATE,auth);

 discoveryService = serviceStub;

 } catch (Exception e) {

 throw new Exception("cannot create a connection to service

", e);

 }

 return discoveryService;

 }

}

HP Business ServiceManagement (9.20)Page 344 of 344

	RTSM Developer Reference Guide
	Contents
	Creating Discovery and Integration Adapters
	Adapter Development and Writing
	Adapter Development and Writing Overview
	Content Creation
	The Adapter Development Cycle
	Startup and Preparation of Copy
	Development and Testing
	Cleanup and Document
	Create Package

	Data Flow Management and Integration
	Associating Business Value with Discovery Development
	Researching Integration Requirements

	Developing Integration Content
	Developing Discovery Content
	Discovery Adapters and Related Components
	Separating Adapters

	Implement a Discovery Adapter
	Step 1: Create an Adapter
	Step 2: Assign a Job to the Adapter
	Step 3: Create Jython Code
	Configure Remote Process Execution

	Discovery Content Migration Guidelines
	Discovery Content Migration Guidelines Overview
	Version 9.0x New Infrastructure Features
	Guidelines for Developing Cross-Data Model Scripts
	Implementation Tips
	Package Migration Utility
	Troubleshooting and Limitations

	Developing Jython Adapters
	HP Data Flow Management API Reference
	Create Jython Code
	Use External Java JAR Files within Jython
	Execution of the Code
	Modifying Out-of-the-Box Scripts
	Structure of the Jython File
	Imports
	Main Function – DiscoveryMain
	Functions Definition

	Results Generation by the Jython Script
	The ObjectStateHolder Syntax

	The Framework Instance
	Finding the Correct Credentials (for Connection Adapters)
	Handling Exceptions from Java

	Support Localization in Jython Adapters
	Add Support for a New Language
	Change the Default Language
	Determine the Character Set for Encoding
	Define a New Job to Operate With Localized Data
	Decode Commands Without a Keyword
	Work with Resource Bundles
	API Reference
	Fields
	Arguments

	Work with Discovery Analyzer
	Tasks and Records
	Logs

	Run Discovery Analyzer from Eclipse
	Record DFM Code
	Jython Libraries and Utilities

	Error Messages
	Error Messages Overview
	Error-Writing Conventions
	Error Severity Levels

	Developing Generic Database Adapters
	Generic Database Adapter Overview
	TQL Queries for the Generic Database Adapter
	Reconciliation
	Hibernate as JPA Provider
	Prepare for Adapter Creation
	Prepare the Adapter Package
	Upgrade the Generic DB Adapter from 9.00 or 9.01 to 9.02 and Later
	Configure the Adapter – Minimal Method
	Configure the Adapter – Advanced Method
	Implement a Plugin
	Deploy the Adapter
	Edit the Adapter
	Create an Integration Point
	Create a View
	Calculate the Results
	View the Results
	View Reports
	Enable Log Files
	Use Eclipse to Map Between CIT Attributes and Database Tables
	Adapter Configuration Files
	The adapter.conf File
	The simplifiedConfiguration.xml File
	The orm.xml File
	The reconciliation_types.txt file
	The reconciliation_rules.txt File (for backwards compatibility)
	The transformations.txt File
	The discriminator.properties File
	The replication_config.txt File
	The fixed_values.txt File
	The persistence.xml File

	Out-of-the-Box Converters
	Plugins
	Configuration Examples
	Simplified Definition
	Advanced Definition
	Simplified Definition
	Advanced Definition
	Simplified Definition
	Advanced Definition
	Simplified Definition
	Advanced Definition

	Adapter Log Files
	External References
	Troubleshooting and Limitations

	Developing Java Adapters
	Federation Framework Overview
	SourceDataAdapter Flow
	SourceChangesDataAdapter Flow
	PopulateDataAdapter Flow
	PopulateChangesDataAdapter Flow

	Adapter and Mapping Interaction with the Federation Framework
	Federation Framework for Federated TQL Queries
	Interactions between the Federation Framework, Server, Adapter, and Mapping E...
	Federation Framework Flow for Population
	Adapter Interfaces
	OneNode Interfaces
	Data Adapter Interfaces
	Pattern Topology Interfaces (Deprecated as of UCMDB 9.00)
	Additional Interfaces
	Adapter Interfaces for Synchronization

	Debug Adapter Resources
	Add an Adapter for a New External Data Source
	Implement the Mapping Engine
	Create a Sample Adapter
	XML Configuration Tags and Properties

	Developing Push Adapters
	Developing Push Adapters Overview
	Differential Synchronization
	Prepare the Mapping Files
	Write Jython Scripts
	Support Differential Synchronization
	Build an Adapter Package
	Mapping File Schema
	Mapping Results Schema

	Viewing KPIs in External Applications
	Set Up an Adapter to View KPIs in an External Application

	Using APIs
	Introduction to APIs
	APIs Overview

	HP Universal CMDB API
	Conventions
	Using the HP Universal CMDB API
	General Structure of an Application
	Put the API Jar File in the Classpath
	Create an Integration User
	HP Universal CMDB API Reference
	Use Cases
	Examples

	RTSM (HP Universal CMDB) Web Service API
	Conventions
	RTSM (HP Universal CMDB) Web Service API Overview
	RTSM (HP Universal CMDB) Web Service API Reference
	Call the Web Service
	Query the RTSM
	Update the RTSM
	Query the BSM Class Model
	getClassAncestors
	getAllClassesHierarchy
	getCmdbClassDefinition

	Query for Impact Analysis
	UCMDB General Parameters
	UCMDB Output Parameters
	UCMDB Query Methods
	executeTopologyQueryByNameWithParameters
	executeTopologyQueryWithParameters
	getChangedCIs
	getCINeighbours
	getCIsByID
	getCIsByType
	getFilteredCIsByType
	getQueryNameOfView
	getTopologyQueryExistingResultByName
	getTopologyQueryResultCountByName
	pullTopologyMapChunks
	releaseChunks

	UCMDB Update Methods
	addCIsAndRelations
	addCustomer
	deleteCIsAndRelations
	removeCustomer
	updateCIsAndRelations

	UCMDB Impact Analysis Methods
	calculateImpact
	getImpactPath
	getImpactRulesByNamePrefix

	Use Cases
	Examples
	The Example Base Class
	Query Example
	Update Example
	Class Model Example
	Impact Analysis Example
	Adding Credentials Example

	Internal-Global ID Conversion API
	Using the Internal-Global ID Conversion API
	How to Convert RTSM Internal IDs to Global IDs
	Parameters
	Example

	How to Convert Global IDs to RTSM Internal IDs
	Parameters
	Example

	Data Flow Management API
	Data Flow Management API Overview
	Conventions
	Data Flow Management Web Service
	Call the Web Service
	Data Flow Management Methods
	Data Structures
	Managing Discovery Job Methods
	Managing Trigger Methods
	Domain and Probe Data Methods
	Credentials Data Methods
	Data Refresh Methods

	Code Sample

