

HP ALM Best Practices Series
For ALM Practitioners

Versioning and Baselining
Best Practices

Document Release Date: June 2012

Software Release Date: June 2012

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered trademark of Oracle and/or its affiliates.

 3

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.
— The number before the period identifies the major release number.

— The first number after the period identifies the minor release number.
— The second number after the period represents the minor-minor release number.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition, visit the
following URL:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

http://h20230.www2.hp.com/selfsolve/manuals�
http://h20229.www2.hp.com/passport-registration.html�

4

Support

You can visit the HP Software support web site at:

www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support site to:
— Search for knowledge documents of interest
— Submit and track support cases and enhancement requests

— Download software patches
— Manage support contracts
— Look up HP support contacts
— Review information about available services

— Enter into discussions with other software customers
— Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require an active support contract. To find more information about support access
levels, go to the following URL:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to the following URL:

http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport�
http://h20230.www2.hp.com/new_access_levels.jsp�
http://h20229.www2.hp.com/passport-registration.html�

5

Contents

About Versioning and Baselining .. 7

Audience .. 8

Prerequisites ... 8

Structure ... 9

Feedback.. 9

1 Introduction to Versioning and Baselining 10

Importance of Keeping Track... 10

When to Implement Versioning ... 11

When to Implement Baselining ... 13

2 Making Versioning Work ... 15

How Versioning Works ... 15

Version Control Process ... 15
Preventing Inconsistency ... 16

When to Check In ... 17

Entities with Version Control .. 18

Non-versioned Fields ... 19

3 Making Baselining Work .. 21

4 Estimating Storage ... 24

Understanding Data Growth ... 24

Factors Affecting Growth... 25
Version Control .. 25
Baseline .. 26

Examples ... 27

6

Version Control .. 27
Baseline Capture .. 27

How SmartRepository Decreases the Storage .. 28

Useful Recommendations ... 29

5 Conclusions .. 31

7

Welcome To This Guide
Welcome to the HP Versioning and Baselining Best Practices guide.

This guide provides concepts, guidelines, and practical examples for the best
implementation of version control and for the creation and maintenance of
baselines in various organizations.

This guide applies to HP ALM 11.00 and later.

About Versioning and Baselining

As organizations look to reduce costs across a wide range of operational
disciplines, IT comes under more and more pressure. The impact of project
slippage, poor quality delivery and inadequate solutions is not tolerated
anymore. This may prove a pain-point for many organizations who have
traditionally failed in these critical areas. Application software plays a
dominant role in today’s business, regardless of the vertical market or core
competency. Every organization must be able to guarantee high quality,
working software to properly position and deliver its products to the market.
Now, more than ever, software is a critical component for winning the
competition.

The HP ALM suite successfully serves various organizations in their quest to
deliver quality software that drives the business. HP’s unified management
and automation capabilities offer customers modern solutions for modern
delivery. The result is improved predictability, repeatability, quality, and
change readiness across the application lifecycle.

One of the characteristics that should be addressed when supporting
application life cycle, is the ability to keep multiple versions of the main
entities participating in Software Development Life Cycle (SDLC), such as
requirements and test cases. Since many industries are heavily regulated
and must pass a variety of compliance-based tests such as Sarbanes-Oxley
and HIPAA, every step in the process must be audited and presented to the
authorities. Even if your project is not regulated, it is important to keep
previous versions for mission-critical assets. Enabling the version control
feature of HP ALM helps achieve this goal.

8

Coupled with baselining, the ability to take a snapshot of current project
activities at important milestones, versioning enables the tracking of mission
critical business projects, the ability to compare saved entities with their
current state, the retrieval of older versions, and more.

The purpose of this document is to assist HP ALM customers to assess their
current testing practices and successfully build and maintain testing
methodology using advanced features provided by HP ALM. All aspects of
this process have been researched using best practice data and expertise from
various sources, including HP’s operating system administrators, HP’s
professional services organization, technical documentation, books from
industry experts and the personal experience of many customer testing
organizations. These guidelines help reduce the initial creation time and
achieve maximum value in operating HP ALM.

Audience

This guide is intended for:

• Business Analysts

• Testing CoE Managers

• Testing Automation Engineers

• Development Managers

• HP ALM Administrators

Prerequisites

To use this book, you should have a good acquaintance with major phases of
Software Development Life Cycle (SDLC). You should also be familiar with
the business processes in actual IT organizations.

Operational knowledge and administrative privileges of HP ALM are
essential in implementing these best practices.

Note: all features discussed in this document are available only in HP
Quality Center Enterprise Edition and Application Lifecycle Management
Edition. In HP Quality Center Starter Edition these features are limited.

9

Structure
This guide is organized as follows:

• Introduction to Versioning and Baselining

• Making Versioning Work

• Error! Reference source not found.

• Error! Reference source not found.

• Conclusions

Feedback

If you have questions, comments, or valuable best practice information you
want to share, send a message to the following email address:

alm_cust_feedback@hp.com

mailto:alm_cust_feedback@hp.com�

10

1 Introduction to Versioning and
Baselining

Importance of Keeping Track
For quite some time, it has been an IT industry motto to be “aligned with the
business”. This notion implies that IT serves an important but secondary role
in the life of the company and therefore coordinating its activities with the
broader business agenda is sufficient to make operations go smoothly. Lately,
however, there are voices saying we need to take this paradigm one step up to
become “IT is the business”. This is mainly due to the fact that many
companies work in the information industry, where ideas, technology and
data are the products of trade. Another reason is that the data accumulated
by the firms has immense business value, helps to better serve customers,
predict their needs, and communicate with them, and produces added value.

Having piles of data presents challenges to the companies. Not only can it
affect performance, day-to-day operation, and backup and restore procedures,
but it also tests their abilities to keep track of information.

Many organizations, especially those in the finance, healthcare, and
government sectors, are required to comply with specific government
regulations, such as HIPAA, Sarbanes-Oxley, and US Section 508. It is
therefore obligatory for their IT divisions to demonstrate adherence to the
highest level of regulatory compliance. The following steps are usually
required by these regulations:

— Sign-off of certain processes and documents after passing necessary
reviews and approvals. In a regulated environment, businesses must
provide proof and reasoning when they make decisions that may
potentially affect compliance with the law and standards.

— Generation of reports in predefined formats that provide sufficient
proof that the organization meets the required level of compliance
with specific government or industry regulations and requirements.

— Auditing of changes that impact regulatory requirements throughout
the application lifecycle to show application consistency.

11

In many cases, companies want to follow the changes being made by various
persons working on the same entity. They want to instill revision control,
especially in complex and mission-critical projects.

The growing push for automated testing puts pressure on the testing
resources. With agile proliferation and its quest for continuous delivery, it is
not an easy task to navigate a web of test components, some of them shared,
that are in use in multiple projects. We have to be able to monitor
modifications made in the automated tools to react to environment changes,
user mistakes and so on.

HP ALM Version Control answers these challenges and enables you to keep
track of changes made to entities in your project, including requirements,
tests, test assets, and business components. You can “check out” an entity to
make changes, and “check in” the entity to store the changes, making a new
version of the entity available to other users. You can view and compare
previous versions of an entity, or “check out” a previous version.

When there is a need to oversee changes over time, HP ALM Baselining
provides the ability to take snapshots of a library, a set of entities in the
project and the relationships between them, at a specific point in time and
compare these snapshots at all stages of the application development
lifecycle. You can use a baseline to mark significant milestones in the
application development lifecycle, such as the signoff of a functional
specification between the business and IT. Baselines enable you to monitor
changes made to your project over time by creating detailed comparisons of
any two baselines in a library. You can also compare a baseline’s entities to
their current state in the library. For example, if you create a baseline at the
start of a new release and changes are made to the requirements over time,
you can compare the requirements in the initial baseline to the current
requirements and determine whether the project is proceeding as planned.

Versioning and Baselining can be implemented independently according to
the business needs of the company.

When to Implement Versioning

Versioning enables organizations to maintain control over changing business
assets by storing a history of entities that can be viewed, compared, and
restored. In a version control enabled project, you can create and manage HP
ALM entities while maintaining previous versions of these entities. This
includes requirements, tests, test resources, business process models, and
business components.

12

However, implementing versioning requires a different methodology to be
applied in your day-to-day operations, as it adds some steps to both ALM
users and administrators.

So when is it worthwhile to implement versioning? HP recommends checking
numerous aspects that can affect the decision to implement versioning.

One of the first checks must be the mission criticality of the project to the
business. To check if your project is mission critical:

— Verify whether this project is expected to be up and running 24x7.

— Understand the nature of the applications maintained in the project.
Frameworks and business applications like billing and ERP are
examples of core projects.

— Calculate the cost of the application or service for which the project
was created. High cost, high revenue, and high visibility applications
demand thorough control over the assets.

If any of the classifications are true then your project is considered mission
critical and is recommended to be versioned.

Another aspect weighing in the decision over versioning of the project is its
longevity. There are sometimes long or virtually endless development projects
containing various product versions, patches, private fixes and so on. Due to
the accumulated number of assets, such projects can be recommended as
candidates for versioning to allow better traceability of the changes.

Another input in the decision making process is the number of users in the
project. If there are many project users accessing and changing the same
entity, this entity can become corrupted or overwritten with wrong data.
Implementing versioning brings some clear benefits to the process:

— Users can access their private version and make changes without
affecting others.

— Users can detect problems early in the cycle by using the compare
function.

— Users can revert to the older version in case of the failure of the new
version.

Such projects should be recommended as candidates for versioning.

Similar logic is applied if the project in question has a large number of
entities and these entities have complex structures, such as multiple tree
levels in requirements or tests.

Last but not least is the impact automated testing can make on the project.
Automated tests run unattended and as such do not require user

13

intervention. However, this also means that no user judgment is applied.
Therefore all test changes influence every user. By implementing versioning,
the test change is kept private and does not affect other users. The modified
test sets are checked and tuned until completed and only then released to
general usage. Furthermore, if a problem occurs and a test fails, it is possible
to trace when the change happened, who initiated it, and what was the
nature of the change in order to fix the problem.

To summarize, HP recommends implementing versioning when your project
has one or more of the following characteristics:

• Mission critical

• Project longevity

• Number of users

• Number of entities

• Complexity of the entities

• Level of test automation

When to Implement Baselining

Baselines enable you to keep track of changes made to your project over time.
A baseline is a snapshot of your library at a specific point in time. A library
represents a set of entities in a project and the relationships between them,
such as coverage and requirements traceability. The entities in a library can
include requirements, tests, test assets, and business components. A baseline
can also include any related entities outside of the library that the tests in
the library need in order to run, such as called tests and test resources.

So when is it worthwhile to implement baselining? If one of the scenarios
below describes the situation in your organization, HP recommends
implementing the baseline feature.

Baselines are indispensable when you prepare the content of the new version
of the application. As the new version is usually a continuation of the existing
application release, business analysts compile a list of requirements that
trigger the development and testing process. These requirements are
normally reviewed and approved by various stakeholders. After approval, the
content of the version can be signed off and a baseline created to hold this
important information for comparison with current application activities at
different points of time.

14

Many times you need to monitor the changes being done to the application
entities during the lifecycle. For example, if during the application
development the product manager discovers that some features are being
implemented differently from the initial intent, the product manager can
compare the current requirements with their agreed upon content in the
baseline taken at the beginning of the release.

Another reason to use baselines is the need to measure the impact of change.
If some requirements have been changed as a result of the review process, it
usually means that underlying tests must be updated to reflect these
changes. To do that, a testing manager can compare the current
requirements with the requirements in the baseline created at the beginning
of the release. When changes that affect tests are identified, you can update
these tests to reflect the changes.

One of the most important drivers for using baselines is the functionality of
pinning a test set to a baseline to associate a test set with the versions of the
tests stored in the baseline you select. When you run the tests in a pinned
test set, the versions of the tests stored in the specified baseline are run. This
allows developing tests in one cycle and running them in the next, while
working on those same tests in parallel without fear of changing the test
results. To avoid confusion when getting status reports from different runs,
you should run pinned tests only in the context of a test cycle. By running
your execution status and coverage reports in the context of a test cycle as
well, you gain a clear picture of your status even when using pinned test sets.
Note that in each run cycle you should run test sets pinned to a single
baseline.

Baselines are also a foundation of the entities sharing between projects.
There are quite a few possible models of sharing based on the project topology
and development process. See the HP ALM Entities Sharing Best
Practices guide for more details on using baselines in sharing.

15

2 Making Versioning Work
This chapter describes the basic steps for the best implementation of
Versioning.

Sometimes customers confuse Versioning and Auditing, not fully
understanding the differences between these two approaches. Versioning is a
more sophisticated means of auditing. The audit mechanism provides
detailed “before and after” data for fields that have changed and that have
been selected for audit. The Versioning mechanism enables a much larger set
of functionality, including checking out entities to a private version, checking
in entities, viewing historic versions of entities, rolling back to previous
versions of entities, comparing two historic versions of entities, and so on.
Versioning also typically covers more fields than Auditing.

How Versioning Works

Using version control, you can create and manage multiple versions of HP
ALM entities, including those associated with HP Business Process Testing
(BPT) and HP QuickTest Professional (QTP), encompassing requirements,
tests, test assets, and business components.

For quality control, consistency, compliance and other purposes, many
organizations enforce version control when working with testing assets. In
many cases, BPT and QTP tests use reusable components shared by many
different test sets. If a problem occurs during the automatic test execution, it
is difficult to pinpoint the cause. If version control is in place, it is possible to
revert to the last stable version of the test and then analyze the changes
using the version compare feature. This is the best and fastest way to identify
points of failure without breaking the testing process.

Version Control Process

In a version-controlled project, if the user wants to make changes to an
entity, the user must first “check out” that entity. While “checked-out”, the
entity is exclusively locked. This prevents other users from editing it at the
same time and overwriting the changes. The entity can be “checked-out” only

16

by a single user at a time. From this moment, all modifications are visible
only to that user.

When the user has finished making changes, the user “checks in” the entity
and a new version of the entity is now available to all users. This check in
removes the exclusive lock on the entity. Generally speaking, the lock is
removed in two cases:

— The user “checks in” the changes.

— The user undoes the changes, rolling back all the changes the user
has made.

The following example illustrates a technical perspective of the three versions
of the Test entity managed by version control mechanism. The Test entity
(TEST table) itself stores the current “checked in” version of the test case.
The VC_TEST table contains a row for every test that is “checked out” and
the HIST_TEST table has a row for every previous version of every test.

Preventing Inconsistency

In a regular flow a user can be asked to free a certain entity either by
“checking in” the entity or by cancelling the “check out”, thereby undoing the
changes. But what happens when the user who “checked out” the entity is
unavailable for a long period of time (for example, on vacation or leave)? The
project administrator can “undo the check out”, freeing the entity for editing
by other users. In doing so, the pending changes are cancelled.

17

Some customers want to perform a forced “check in” to commit changes done
by the person who is unavailable. For example, there might be testing scripts
“checked out” by several contractors who do not work for the company
anymore. The testing manager wants to retain the changes made by the
departed contractors. If the checkout is cancelled, the changes are lost.

There must be a clear understanding that performing a check in by a user
who is different from the “check out” user, is not the same as undoing a
“check out”. Undoing a “check out” just deletes the changes already made by
a certain user and rolls back to the last version found on the server side.
“Check in” creates a new version containing all changes made by a user that
are found both on the server side (in the database) and on the user’s local
machine. Collecting the client side data in this scenario is impossible. This is
why HP, like other version control tools, does not allow you to perform “check
in” for other users.

When to Check In

The issue of timing in the “check in” process has a profound effect on the
entities lifecycle. If version control is in place, the user is prompted to “check
out” every time the user tries to modify the entity. Ideally, “check in” of the
modified entity should be performed at the end of the logical change cycle.

HP recommends following these guidelines to perform “check in”:

— If the change to the entity is minor and no impact on other entities is
expected, then it is recommended to “check in” the entity as quickly
as possible to free it for other users.

— It is always a good practice to break large changes into smaller
pieces. Once your modification is finished, “check in” to minimize the
disruptions to the team’s work.

— In complex projects with interconnected entities, the project
administrator can define a time interval during which the changes
must be “checked in”. If this is the case, use the technique above to
break large changes into smaller pieces to fit the “check in” windows.

— Regularly review the list of “checked out” entities, such as
Requirements, Test Sets, and Tests, in the module you are working
with. Think of this list as the task list that has to be completed to let
other people see the changes.

18

— Frequently provide comments when “checking in” entities, especially
in regulated environments. The comments help to understand the
possible cause of test failures or other problems and offer a means of
journaling that can be presented to the compliance bodies.

— Prior to executing any maintenance action on the project with version
control, consider performing “check in” on all “checked out” entities. If
some users, who “checked out” assets are not available any more,
then use project administrator’s power to undo their changes (see the
Preventing Inconsistency section). For example, entities that were
“checked-out” by any user remain “checked-out” by that user, even if
that user is not an authorized user for the newly restored or imported
project.

— Before you run a test set, make sure all its tests were “checked in”. By
not doing this, you risk working with a version of the test that is not
completely finished. The results of the test run can be inaccurate or
un-reproducible.

— Sometimes there is a need for a massive update of the entity. This
can be done by either selecting multiple entities in the user interface
or performing a bulk “find & replace” operation. If the field is marked
as a “non-versioned field” in the customization module, you can
change its value in one shot instead of executing “check in” and
“check out” for every entity. See details in the Non-versioned Fields
section.

— If you are about to create a baseline, remember to “check in” all
entities. Otherwise, all the changes you made in any “checked out”
entities are not included in the baseline.

Entities with Version Control

The majority of modules in HP ALM participate in versioning if it is enabled.
The list of the modules includes:

— Requirements

— Business Models

— Test Plan

— Test Resources

— Business Components

19

To maintain usability and data integrity, HP ALM stores previous versions of
an entity without most data related to the relationships between entities. The
following data is not stored for previous versions:

— Requirements and tests coverage

— Requirements traceability

— Defect linkage

In addition, risk data is also not stored for previous versions of an entity.

For example, when “checking out” an old version of a test, its coverage data
remains the same as the current version, and only its content is rolled back
(the link between entities is not stored in the version data, only in the entity
itself).

In addition to that, there are some fields that are not stored under version
control:

— Requirements

– Reviewed

– Direct Cover Status

– Target Release

– Target Cycle

– All Risk Based Quality Management (RBQM) fields

— Tests

– Execution Status

Non-versioned Fields

While the system fields above are purposely absent from the version control
process, there are cases when marking some additional fields as non-
versioned proves to be beneficial. For example, a project administrator may
want to assign a category, such as Web 2.0 or DB, to a large portion of the
tests. This user-defined field does not need to participate in version control as
it holds no business criticality and its value change does not need to be
recorded. Another reason for declaring a field as non-versioned in a version
controlled entity is to ease the overhead imposed on the user who is required
to perform the “check out” and ”check in” procedures even if the field itself
does not affect the main business processes. This allows for refined usability
as well as the ability to perform massive updates.

20

When working with non-versioned fields, their special behavior should be
taken into the consideration:

— When undoing a checkout, any changes you made to a non-versioned
field while the entity was “checked out” are lost and only the new
value remains.

— When you “check out” a previous version, the value of a non-versioned
field is the value in the currently “checked in” version.

— When you update a single entity’s non-versioned field, the regular
“check out” dialog still appears, even though no version of the entity
is created. When you update a set of entities, the update of the non-
versioned field does not trigger the “check out” dialog appearance.

— During comparison with the previous version, non-versioned fields
are displayed with the value Non-versioned Field, indicating that
they do not participate in the comparison.

21

3 Making Baselining Work
This chapter describes the best practices for capturing baselines in HP ALM.

Baseline is a physical copy of the entities in a library at a moment in time.
Once you create a baseline you cannot change the contents, like taking a
picture and printing it. Viewing and comparing baseline histories enables you
to track changes made to individual entities in your library over time. As
development continues, you can view and compare all states of an entity that
are stored in a baseline.

As opposed to versioning, baselines capture both the data for the actual
entities, such as requirements, tests, test assets, and business components,
and the links between those entities, such as coverage, traceability, and so
on. Baselines can be captured in projects not using Version Control, because
baselines and all associated features are available even if the version control
capabilities are not turned on for the project. However, “checked-out” versions
of entities are not captured as part of the baseline - the baseline captures the
last “checked-in” version of each entity.

The example below shows the progress of the release accompanied by
baselines. The baseline captured on August, 1st stores the latest “checked in”
version of the entity, which in this example is version 1 for both Test 1 and
Test 2. On September, 15th, when another baseline is captured, Test 1 is now
up to version 3, which is the version that will be stored with Baseline 2. The
last baseline again shows both Test 1 and Test 2 in their even more advanced
“checked in” versions as well as a new Test 3.

22

HP recommends synchronizing the baseline creation time with a major step
in the development process, such as the end of a cycle, iteration, or release.
Ideally, the new baseline should include the date of the change in the title
and some relevant comment. If a source code control system is in place, even
if not automatically connected to HP ALM, we recommend that every time a
baseline is created a notation of the source code tool baseline label or
numbering pattern is written in the baseline comments. For example, the
baseline comments in ALM can contain "Subversion Release 4.3 beta" or at
least "Checkpoint 1.7". This allows for an easy correlation of the two related
entities. Also consider using a naming convention or custom attributes for
baselines to enable the correct identification of their type, such as after
synchronization, after reconciliation, before synchronization, and so on. It is
possible to enforce naming conventions by using workflow code.

HP also recommends examining the granularity of the libraries before
creating them. As libraries are only collections of pointers to actual entities,
they can result in actual baselines ranging from small to large.

Smaller libraries give greater flexibility in assembling multiple combinations
of assets for sharing. On the other hand, too many libraries can cause
management overhead and confusion. When creating libraries, you can use
filters to select only the relevant informational resources instead of selecting
generic roots. This model gives the user more control over library content,
and helps to define libraries that are not based solely on the hierarchical
structure of the project.

Another approach is to define “initial roots” for the libraries and let HP ALM
automatically gather all the relevant entities based on predefined links (for
example, coverage and requirement traceability). Be aware that this option
can result in a large population of linked entities even if you selected a small
number of records.

To avoid performance problems, the number of entities recommended for a
single library is calculated based on two site configuration parameters:

— REQUIREMENTS_LIBRARY_FUSE, with default value of 3500

– The maximum number of requirements in a library must not
exceed this parameter value.

— LIBRARY_FUSE, with default value of 2500

– The maximum number of tests in a library must not exceed this
parameter value.

– There is a ratio of 1:4 between tests and resources. Therefore, the
maximum number of resources must not exceed one quarter of
LIBRARY_FUSE (625 entities).

23

– The ratio of 1:4 is also true for business components. Therefore,
the maximum number of business components must not exceed
one quarter of LIBRARY_FUSE (625 entities).

HP strongly recommends limiting the number of entities in a library to the
sum of the various records according to the above rules.

24

4 Estimating Storage
In addition to their functional effects, both Versioning and Baselining have
an impact on storage allocation. As an HP ALM project is composed of a
database schema and a file system repository, this impact is seen on both
sides in different ways. As HP ALM projects tend to grow over time, the site
administrator must take into consideration the additional storage
requirements of these two features to ensure adequate storage space.

Understanding Data Growth

The storage consumption of the Versioning and Baselines features is
attributed to their method of operation:

• Each new version of an entity creates a copy of that entity in the HP ALM
database and file repository.

• Each baseline creates a copy of all entities in the library.

Note: The “Enable versioning” action by itself has no effect on storage consumption. The data is

duplicated only when an entity is changed.

However, enabling versioning and/or baselining does not duplicate all HP
ALM data over and over again:

— Not all modules are covered by these features, but rather specific ones
such as Requirements, Tests, QTP Resources and BPT Components
(see more details in the Entities with Version Control section).

— All other HP ALM entities do not support these features by design.
This means that only the storage space used by the covered entities is
expected to grow. The majority of storage used by a Quality Center
project is used by other entities (defects, test runs, and so on), and it
is not expected to change.

— Only a relatively small percentage of the entities are duplicated, and
a duplication rate relates to usage patterns.

— Since introduction of SmartRepository in HP ALM 11, the data stored
in the repository is no longer duplicated when a new version is
created. The actual attachment, script or resource file location is
registered in the database but no operating system file copy is

25

executed. Hence the file is physically kept once unless it has been
changed. See an expanded explanation in the How SmartRepository
Decreases the Storage section.

While these features’ impact on storage is less significant than previously
thought, a larger database and repository affect the overall application
performance. Therefore the storage issues need to be evaluated and a remedy
provided for the problem.

Factors Affecting Growth

What are the parameters to be taken into account when estimating the
storage? Following is the list of factors affecting storage allocation:

Version Control

• Current Storage Size Used By Versioned Entities

The percentage of the database and file repository used by versioned
entities. The Test entity is the most substantial out of all versioned
entities. The percentage of storage it uses out of the total project size
determines the impact of Versioning and Baselines growth.

Note: Automatic tests, such as HP QTP Tests and HP Performance Center/LoadRunner
Tests usually use a lot of the file repository for storing their results. However, baselines and
version control do not copy those test results. Only the test scripts are logically
duplicated but this has no effect on SmartRepository and only adds one record per test in
the database. Sites with custom test types can also configure Baselines and Versioning not
to copy their result files. See the HP ALM Custom Test Type guide for further
details.

To calculate the database portion of this value, use database specific
queries on the data dictionary. File repository size can be obtained by
connecting to SmartRepository via an FTP client and using its system
commands.

• Normal Growth Rate

HP ALM projects tend to grow over time, as new entities are constantly
being added. When measuring the impact of Versioning and Baselines, it
is important to consider this parameter.

As we are mostly interested in Test entity growth, issue a database
specific query against the TS_CREATION_DATE column to get this
measurement.

26

• Average Change Rate

Sometimes also called Additional Growth Rate in a Versioned Project, its
meaning can be explained as the average number of times an entity is
modified by users per year. This is the main parameter affecting
Versioning storage growth, as in versioned projects the user must “check
out” the entity in order to edit it. When editing is complete, the changes
are committed by “checking in” the entity, thus creating a new version.

To get this measurement, issue a database specific query against the
AUDIT_LOG table.

The formula that calculates the impact of versioning is:

Versioning impact = (the current storage size used by version-controlled
entities) * (average change rate)

Baseline

• Live Data Percent

Known also as Baseline Content, this parameter tells the percentage of
entities actually accessed in the last year. This is a good estimate for
what percentage of entities are included in libraries, as they normally
consist of only live, recently accessed data. The customer data shows that
a constant number of entities is used every year, while older entities are
not used at all as time passes by. This data would later be included in
baselines. Therefore, it is also the main parameter affecting baseline
storage growth.

Issue a database specific query against the VER_STAMP column to get
the value of this metric.

• Baseline Creation Frequency Policy

The organization’s policy on how often the HP ALM project administrator
should create a baseline of the libraries definitely affects overall storage
estimates of the entire project. See the baseline timing recommendations
discussed in the previous chapter.

The formula that calculates the impact of baselining is:

Baselining impact = (the current storage size used by version-controlled
entities) * (live data percent) * (baseline creation frequency as times/year)

27

Examples

Let’s evaluate the impact of the parameters above on the real life projects in
HP Software R&D lab. Each example calculates storage impact separately as
each of the features can be used independently. To get the overall impact
when both Versioning and Baselining are in place, simply combine the
results below.

Version Control

Let’s take a typical HP ALM project that uses 20 GB of storage size (database
and file repository):

— It counts 30,000 tests, with an average storage size of 20 KB per test
in the HP ALM database and file repository. In this case, the current
storage size used by test entities is 30,000*20KB = 0.6GB

— By executing SQL queries, it has been determined that each year
5,000 additional new tests are created, bringing the project’s normal
growth rate to 5,000 * 20KB = 0.1GB

— When the project administrator enables version control, it initially
has no impact on storage consumption, as was noted above.

— By analyzing the current project, it was found that the average
change rate stands at 2. That is, each test is changed twice per year
on average.

To plan the storage the following calculations must be performed:

— According to the versioning growth formula, this HP ALM project will
grow each year an additional 30,000 * 20KB * 2~= 1.2GB

— This growth represents 6% of the current 20GB, on top of its normal
growth of 0.1GB (0.5% of 20GB).

Baseline Capture

Let’s assume we want to create a baseline in the same HP ALM project:

— By executing SQL queries, it has been determined that the live data
percent is 50%.

— If the HP ALM project administrator creates a single library that
contains all the live data, it will cover 50% of the tests.

28

— It has already been stated that the project counts 30,000 tests, with
an average storage size of 20 KB per test in the HP ALM database
and file repository. In this case, the current storage size used by test
entities is 30,000*20KB = 0.6GB

— The storage used by tests in the baseline is 50% of the above amount,
or 0.3GB

— The baseline creation frequency policy is to capture a baseline for
each library, once a month.

To plan the storage the following calculations should be performed:

— According to the baselining growth formula, this HP ALM project will
grow each year an additional 30,000 * 20KB * 50% * 12 = 3.6GB

— This growth represents 18% of the current 20GB, on top of its normal
growth of 0.1GB (0.5% of 20GB).

How SmartRepository Decreases the Storage

HP ALM version 11 introduced an exciting feature, SmartRepository, which
has a profound effect on the way Versioning and Baselining use storage,
among other positive results.

While the database schema holds most of the information of the project, the
repository holds different types of files such as attachments, automated test
results, workflow scripts and more. Versioning actions of “check out” and
“check in” on entities that use repository assets, such as attachments and
automated scripts and results, add their heavy footprint. Baselining takes a
lot of space when simply creating a baseline with a considerable number of
entities.

Until HP ALM 11, when Versioning or Baselining were implemented, entities
were copied ‘as is’, including their repository assets, which caused massive
duplications. This was one of the reasons why the repository was hard to
maintain and back up. Its increased size degraded the performance of many
day-to-day operations in the HP ALM user interface.

SmartRepository is based on an abstraction layer between the logical file
system structure and the physical file system structure that reflects the
actual structure of the files on the disk. This approach allows creating a
balanced tree on the disk as well as saving only a single copy of each file. This
virtually eliminates the endless duplicates on the physical storage device as
every file is only saved once but has multiple references in the logical table.

29

With SmartRepository in place, the physical file system shrinks, both in the
number of nodes as well as in volume on the disk. The reduction ratio can
vary dramatically, and best results are expected on projects with large
numbers of nodes. Also, the database is expected to grow slightly because it
holds occurrences of each physical file and its corresponding entry in the
logical file system.

As this is the default HP ALM behavior since version 11, customers report
significant storage reduction, especially when Versioning and Baselining are
in use. It is safe to estimate that with SmartRepository, the impact of
Versioning and Baselining on the file system is decreased at least 40% on
average. Larger file systems experience even more meaningful gains.

Useful Recommendations

While the impact of Versioning and Baselining on storage is difficult to
calculate without proper testing for a specific site, HP recommends the
following guidelines:

• Before activating Versioning and Baselines features in production, test
common usage scenarios in a staging environment on typical HP ALM
projects with simulated user activity.

Try to emulate daily behavior as similar as possible to the real world in
order to assess the capacity growth needs. Consider using HP automated
testing tools such as QTP and LoadRunner to create such an
environment.

• Perform a gradual implementation of Versioning and Baselines features,
initially using a few projects a month, and monitor the change in storage
requirements.

• Define a clear policy for managing libraries and baselines that best serves
the user needs without overloading the system.

• Instantiate a purging policy to delete baselines that are no longer needed.

However, HP ALM provides limited purging abilities. If the project
administrator decides that data in a certain baseline is obsolete and no
longer needed, the baseline can be deleted. Deleting the baseline releases
all the storage space it uses, both in the database and in the file
repository. Note that this action is irreversible, and must be used with
caution.

30

• Separate file system from other parts of HP ALM

SmartRepository shows some amazing results in storage reduction but is
also I/O intensive. If all parts of a typical HP ALM installation are on the
same machine, its I/O becomes a bottleneck. This is why it is strongly
recommended to designate a separate file system on another server or
network storage device. Best results can be achieved by having all
machines on the same network, with wide bandwidth and low latency.

31

5 Conclusions
The purpose of the IT organization is to enable the business to reach its
strategic objectives. This is accomplished in a variety of ways, such as
providing technical functionality, streamlining processes, and supporting new
requests or initiatives, all while ensuring that what is delivered works. This
sounds deceptively simple, but in actuality is quite difficult considering how
complex the IT environment has become. Many of today’s IT organizations
are struggling with expanding infrastructures, sophisticated emerging
technology, distributed computing, expanding supply chains, increasing
regulatory pressures, and mergers and acquisitions.

HP ALM provides answers to some of the challenges through a business
centric and quality driven suite of tools that focuses on aligning the business
and IT across the lifecycle. Version control and baselining, described in detail
in this document, enable you to manage multiple versions of entities and
creates an audit trail of change history, allowing distributed teams to
collaborate on joint development of requirements and tests without
overriding each other’s changes. Baselining protects data by enabling the
rollback of versioned entities to specific points in the application lifecycle.

We believe that the best practices listed in this document help in the
adoption of HP ALM Versioning and Baselining in your organization.

	HP ALM Versioning and Baselining
 Best Practices Series
	Contents
	Welcome To This Guide
	About Versioning and Baselining
	Audience
	Prerequisites
	Structure
	Feedback

	Introduction to Versioning and Baselining
	Importance of Keeping Track
	When to Implement Versioning
	When to Implement Baselining

	Making Versioning Work
	How Versioning Works
	Version Control Process
	Preventing Inconsistency

	When to Check In
	Entities with Version Control
	Non-versioned Fields

	Making Baselining Work
	Estimating Storage
	Understanding Data Growth
	Factors Affecting Growth
	Version Control
	Baseline

	Examples
	Version Control
	Baseline Capture

	How SmartRepository Decreases the Storage
	Useful Recommendations

	Conclusions

