
HP OpenView Operations for UNIX White Paper

Software version: A.08.12

Getting started with XML/Perl Programming
for the OVO Service Engine
Written by Vesna Soraic

Abstract ... 2
Background.. 2
Preparation .. 3
Query all services with status .. 4
Register and listen for status changes ... 7
Create additional labels on services... 9
Remote access .. 10
Summary.. 11
Appendix... 12
For more information ... 15
Call to action.. 15

Copyright 2005 Page 2 of 15

Abstract
HP OpenView Service Navigator is an add-on component of the HP OpenView Operations
Java-based operator GUI. It enables you to manage your IT environment while focusing on the
IT services you provide.
The HP OpenView Service Navigator service engine (opcsvcm) is the backend for the Service
Navigator. It maintains the server model and calculates the status of services. To provide
programmatic access to the service engine, HP OpenView Operations contains an XML data
interface that allows you to write or get service configuration directly into or from the service
engine.
This paper discusses how you can use XML and Perl to programmatically access the service
engine so that you can enhance or automate Service Navigator task. We will use the following
examples:

• List services and their status
• Register for statues changes
• Add labels to services

Background
opcsvcterm(1M) is the interface to HP OpenView Service Engine which inputs XML into stdin
and outputs XML to stdout. The XML Data Interface servers uses cases such as:

• Allows you to write the service configuration directly into the service engine. The
configuration syntax follows the XML rules defined in the document type definition (DTD)
operations.dtd.

• Allows you to get the current service configuration and service status directly from the
service engine. The output syntax follows the XML rules defined in the DTD
results.dtd.

The format of the operations and results files is based on the World Wide Web Consortium
Extended Markup Language (XML). The DTDs for the Service Navigator XML syntax are printed
in this section and are also available on the OVO management server at the following
location:

/etc/opt/OV/share/conf/OpC/mgmt_sv/dtds/services.dtd
/etc/opt/OV/share/conf/OpC/mgmt_sv/dtds/operations.dtd
/etc/opt/OV/share/conf/OpC/mgmt_sv/dtds/loggings.dtd
/etc/opt/OV/share/conf/OpC/mgmt_sv/dtds/results.dtd

All DTDs are also available in the XML Schema Definition (XSD) format in the same directory.
This alternative format is based on XML and therefore easier to read with XML editors.

Copyright 2005 Page 3 of 15

Preparation
For running the examples described in this paper you need an OVOU server where the service
engine (opcsvcm) is installed and running. No additional software is required.

In case you do not have any services defined yet, you may add some example services. Add
the email example using following command:

opcservice -add /opt/OV/OpC/examples/services/email.xml

Since we want to verify our XML and Perl with the Service Navigator, we have to assign the
email service to an user. Enter the command:

opcservice -assign opc_adm email

To see what kind of top level services are in the service
engine, enter the command:

opcservice –list

This command returns:
...
Service: email
...

When you open the Service Navigator, the email
service tree like it is displayed as illustrated here:

Note, the following example makes use of opcsvcterm(1m). If you have installed the
Service Navigator value Pack, opcsvcterm(1m) will not work, and you must use the
cadmsnd(1M) command instead.

Copyright 2005 Page 4 of 15

Query all services with status
With this 1st example we are going to access the service engine using XML and
opcsvcterm(1m). We will see how you can programmatically retrieve the status of services.

First, let us have a look at the XML tags we need to list services. Following XML sequence
instructs the service engine to list all services:

<Operations>
<List>

<All/>
</List>

</Operations>

Do this manually with opcsvcterm(1m). In a shell, enter the command:

opcsvcterm

opcsvcterm(1m) connects to the service engine and returns:

<?xml version='1.0' ?>

Now instruct the engine to list all services. Enter the following commands:

<Operations>
<List><All/></List>

Note, the service engine responses with a <Results> tag to the <Operations> instruction.
The output of the list command takes the following form:

<Services>
<Service>
<Name>node3_cpu</Name>
<Status><Normal/></Status>
...
...

</Services>
</Results>

We shall gracefully end the connection to the service engine by submitting the
</Operations> end tag as follows:

</Operations>
</Results>
#

Now we will do the same listing of all services, but programmatically within a Perl script. We
will first walk trough a couple of code extracts to see how we can talk to the service engine
using Perl. We do not use any XML libraries or modules so that the examples are as simple as
possible.

Copyright 2005 Page 5 of 15

Connect to the service engine using Perl.

The code fragment below uses the open2 of the IPC::Open2 module to create a connection
to the service engine. Additionally, is parses the response by reading one line from <$IN> and
verifies that the engine responded with <?xml version='1.0' ?>.

#!/opt/OV/bin/Perl/bin/perl

use IPC::Open2;

Connect to service engine, open streams
OUT: write to the service engine
IN: read from the service engine

open2($IN, $OUT, "opcsvcterm");

$line = <$IN>;

if ($line =~ /xml/)
{
print "connected\n";

}
else
{
die "Cannot connect to service engine";

}

The program will stop if no connection to the service engine could be established.

Write operations into the service engine

Now we are ready to write commands into the service engine. As in the manual example
above, we will write <List><All/></List>, but first we have to send the <Operations>
tag.

Send query to service engine
print $OUT "<Operations>\n";
print $OUT "<List><All/></List>\n";

Read responses from the service engine

The next code fragment describes how you could read results from the engine and parse the
output to find certain XML tags. We are searching for the following XML text to get the service
name and status from all service objects:

<Service>
<Name>service_name</Name>
<Status><service_status/></Status>

Copyright 2005 Page 6 of 15

Here we loop through the results until the service engine returns the </Services> end tag.
The program concatenates incoming lines until it finds a </Service> end. Then it pattern
matches to find the service name and status.

$service = "";

while ($line = <$IN>)
{
chomp $line;
last if ($line =~ /\/Services/) ;

$service = $service . $line;

if ($service =~ /<\/Service>/)
{
$service =~ \

/<Service>\s*<Name>(.*)<\/Name>\s*<Status><(\w*)\/><\/Status>/;

print "Service:$1 - Status:$2\n";

$service = "";
}

}

print $OUT "</Operations>\n";

Run the example program

The example we discussed above is listed in the appendix of this document. Copy the 1st

example from the appendix and run it.

./example1.pl
connected
Service:email - Status:Normal
Service:america - Status:Normal
Service:email_node1 - Status:Normal
Service:node1_disk - Status:Normal
Service:node1_cpu - Status:Normal
Service:email_node2 - Status:Normal
Service:node2_disk - Status:Normal
Service:node2_cpu - Status:Normal
Service:europe - Status:Normal
Service:email_node3 - Status:Normal
Service:node3_disk - Status:Normal
Service:node3_cpu - Status:Normal

Copyright 2005 Page 7 of 15

Register and listen for status changes
In the 2nd example we are going to register and listen for status changes at the service engine
using XML and opcsvcterm(1m). You will see how you can get status change notifications
programmatically.

First, let us have a look at the XML tags we need for this scenario. With following XML
sequence we can register our program at the service engine so that the engine sends us status
change notifications:

<Registration>
<RegCondition>

<ServiceRef>service_name</ServiceRef>
</RegCondition>

</Registration>

Do this manually with opcsvcterm(1m). In a shell, enter the following command:

opcsvcterm

opcsvcterm(1m) connects to the service engine and returns:

<?xml version='1.0' ?>

Now register for changes of the email_node1 and email_node2 services. Enter the tags
listed in bold. Italic tags are responses.

<Operations>
<Results>
<Registration>
<RegCondition><ServiceRef>email_node1</ServiceRef></RegCondition>
<RegCondition><ServiceRef>email_node2</ServiceRef></RegCondition>
</Registration>
<OK/>

Now in another shell submit a major message for the email_node1 service as follows:

opcmsg a=a o=o msg_t=hello severity=major service_id=email_node1

You will see that your opcsvcterm(1m) session received following XML document:

<StatusChanges>
<ElementStatusChange>
<ServiceRef>email_node1</ServiceRef>
<Status><Minor/></Status>
<OldStatus><Normal/></OldStatus>

</ElementStatusChange>
</StatusChanges>

Copyright 2005 Page 8 of 15

Now let us wrap this example in some Perl code so that we can receive such status changes
programmatically.
The connection to the service engine will be done the same way as in the 1st example and is
not listed here. The code below shows how to register all services that are defined as command
line options in @ARGV.

print $OUT "<Operations>\n";
print $OUT "<Registration>\n ";

foreach my $service (@ARGV)
{
print "Register for $service\n";
print $OUT"<RegCondition><ServiceRef>$service</ServiceRef></RegCondition>";
}
print $OUT "</Registration>\n";

The next code extract describes how you read the status changes from the engine and parse
the output to find the service name, and the new and old statuses. We are searching for the
following XML text:

<ServiceRef>service_name</ServiceRef>
 <Status><current_status/></Status>
 <OldStatus><old_status/></OldStatus>

Here it loops through the results and concatenates incoming lines until it finds a
</OldStatus> tag. Then it pattern matches to find the service name and the statuses.

$service = "";

while ($line = <$IN>)
{
chomp $line;

print "#line:$line\n";
$one_change = $one_change . $line; #concat lines until OldStatus

if ($one_change =~ /\/OldStatus/)
{
 $srf="<ServiceRef>(.*)<\/ServiceRef>";
$stat="<Status><(.*)\/><\/Status>";
$ostat="<OldStatus><(.*)\/><\/OldStatus>";

 $one_change =~ /$srf\s*$stat\s*$ostat/;

print "Severity of $1 service changed from $3 to $2\n";
$one_change = "";

}
} # end while

Copyright 2005 Page 9 of 15

The program just prints the changes, but you can imagine that this example could be used for
many other purposes like sending email notifications or submitting new messages via opcmsg
that contain information about critical status changes of business services.

Run the example program

The example we discussed above is listed in the appendix of this document. Copy the 2nd
example from the appendix and run it. First acknowledge all messages which you sent to the
service email_node1 previously.

./example2.pl email_node1 email_node2
connected
Register for email_node1
Register for email_node2

Now, in another shell submit a major message for the email_node1 service:

opcmsg a=a o=o msg_t=hello severity=major service_id=email_node1

The program ./example2.pl writes the status change of the email_node1 service:

Severity of email_node1 service changed from Normal to Major

Create additional labels on services
In the 3rd example we are going to create additional labels on services on the fly using XML
and opcsvcterm(1m). We will see how you can modify the content of the service engine
dynamically. The example is rather simple, but can be extended to change more complex
content like calculation rules to cover advance use cases.

First let us have a look at the XML tags we need for this scenario. With following XML sequence
we can set a new label on a service:

<SetAttributes>
<ServiceRef>service_name</ServiceRef>
<Attribute>

<Name>ov_label1</Name>
<Value>label_text</Value>

</Attribute>
</SetAttributes>

Run the example program

An example Perl program for changing labels is listed in the appendix of this document. Copy
the 3rd example from the appendix and run it.

Copyright 2005 Page 10 of 15

./example3.pl email_node1 hallo
connected
OK. Set label hallo at service email_node1
#

A new label is added as it is shown in the picture below.

Remote access
It is also possible to access the service engine remotely. Your Perl program, which integrates
with the service engine, can run on a different system than the OVO management server
system. Before doing so, you need to enable the opcsvcterm port on your OVO
management server system.

Edit /etc/services file and add:
opcsvcterm 7278/tcp # Service engine remote access

Edit /etc/inetd.conf file and add:
opcsvcterm stream tcp nowait root /opt/OV/bin/OpC/opcsvcterm opcsvcterm

Restart the inet deamon:
/etc/inetd –c

You can test the connection to the remote opcsvcterm with a telnet command. You should see
the following response:
telnet ovoserver.demo.com 7278
Trying...
Connected to ovoserver.demo.com.
Escape character is '^]'.
<?xml version='1.0' ?>

Following code fragment shows how you can connect to a remote service engine using Perl:

use IPC::Open2;
use IO::Socket;

Copyright 2005 Page 11 of 15

$server = "ovoserver.demo.com",
$port = 7278;

if ($server eq "")
{

print "Connect Local \n";
open2($IN, $OUT, "opcsvcterm");

}
else
{
 print "Connect remote: \n";
$remote = IO::Socket::INET->new(Proto => "tcp",

 PeerAddr => $server,
PeerPort => $port) or \

 die "cannot connect to port $port at host $server";

in & out stream is socket;
$IN= $OUT = $remote;

}

Summary

In this tutorial you can learn how to programmatically retrieve the service status and get status
change notification and how to modify the content of the service engine dynamically. The
appendix provides three simple programs that can be extended to cover more advanced use
cases.

Copyright 2005 Page 12 of 15

Appendix

Example 1: List services and their status
#!/opt/OV/bin/Perl/bin/perl

##
Warranty Information
The information contained in this document is subject to change without notice.
THE AUTHOR PROVIDES THIS MATERIAL "AS IS" AND MAKES NO WARRANTY OF
ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE AUTHOR SHALL NOT BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE OR USE OF THIS MATERIAL WHETHER BASED ON WARRANTY, CONTRACT,
OR OTHER LEGAL THEORY.
##

use IPC::Open2;

Connect to service engine, open streams

open2($IN, $OUT, "opcsvcterm");

$line = <$IN>;

if ($line =~ /xml/)
{
print "connected\n";

}
else
{
die "Cannot connect to service engine"; }

Send query to service engine
print $OUT "<Operations>\n";
print $OUT "<List><All/></List>\n";

$service = "";

while ($line = <$IN>)
{
chomp $line;

last if ($line =~ /\/Services/) ;

$service = $service . $line;

if ($service =~ /<\/Service>/)
{
$service =~

/<Service>\s*<Name>(.*)<\/Name>\s*<Status><(\w*)\/><\/Status>/;

print "Service:$1 - Status:$2\n";

$service = "";

Copyright 2005 Page 13 of 15

}

}

print $OUT "</Operations>\n";

Example 2: Register for statues changes
#!/opt/OV/bin/Perl/bin/perl
##
Warranty Information
The information contained in this document is subject to change without notice.
THE AUTHOR PROVIDES THIS MATERIAL "AS IS" AND MAKES NO WARRANTY OF
ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE AUTHOR SHALL NOT BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE OR USE OF THIS MATERIAL WHETHER BASED ON WARRANTY, CONTRACT,
OR OTHER LEGAL THEORY.
##

use IPC::Open2;

Connect to service engine, open streams
OUT: write registration to
IN: read status changes from

open2($IN, $OUT, "opcsvcterm");

$line = <$IN>;

if ($line =~ /xml/)
{
print "connected\n";

}
else
{
die "Cannot connect to service engine"; }

print $OUT "<Operations>\n";

print $OUT "<Registration>\n ";

foreach my $service (@ARGV)
{
print "Register for $service\n";
print $OUT

"<RegCondition><ServiceRef>$service</ServiceRef></RegCondition>";
}
print $OUT "</Registration>\n";

$service = "";

Copyright 2005 Page 14 of 15

while ($line = <$IN>)
{
chomp $line;

print "#line:$line\n";
$one_change = $one_change . $line; #concat lines until OldStatus

if ($one_change =~ /\/OldStatus/)
{
 $srf="<ServiceRef>(.*)<\/ServiceRef>";
$stat="<Status><(.*)\/><\/Status>";
$ostat="<OldStatus><(.*)\/><\/OldStatus>";

 $one_change =~ /$srf\s*$stat\s*$ostat/;

print "Severity of $1 service changed from $3 to $2\n";
$one_change = "";

}
} # end while

print $OUT "</Operations>\n";

Example 3: Add labels to services
#!/opt/OV/bin/Perl/bin/perl

##
Warranty Information
The information contained in this document is subject to change without notice.
THE AUTHOR PROVIDES THIS MATERIAL "AS IS" AND MAKES NO WARRANTY OF
ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE AUTHOR SHALL NOT BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE OR USE OF THIS MATERIAL WHETHER BASED ON WARRANTY, CONTRACT,
OR OTHER LEGAL THEORY.
##

use IPC::Open2;

my $svc = shift @ARGV;
my $label = shift @ARGV;

Connect to service engine, open streams

open2($IN, $OUT, "opcsvcterm");

$line = <$IN>;

if ($line =~ /xml/) { print "connected\n" } else { die "Cannot
connect to service engine"; }

Copyright 2005 Page 15 of 15

Send XML to service engine
print $OUT "<Operations>\n";
$line = <$IN>; die if !($line =~ /Results/) ;

 print $OUT "<SetAttributes>\n";
print $OUT "<ServiceRef>$svc</ServiceRef>\n";
print $OUT "<Attribute>\n";
print $OUT "<Name>ov_label1</Name>\n";
print $OUT "<Value>$label</Value>\n";
print $OUT "</Attribute>\n";
print $OUT "</SetAttributes>\n";

$line = <$IN>;
if ($line =~ /OK/) { print "OK. Set label $label at service

$svc\n" }
 else { die "Failed to set label $label at service $svc "; }

print $OUT "</Operations>\n";

exit(0);

For more information
For more information on HP OpenView Operations and HP Management Software, access the
HP site at http://www.managementsoftware.hp.com

Call to action
To help us better understand and meet your needs for HP OpenView information, please send
comments about this paper to: vesna.soraic@hp.com.

© 2005 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

OV-ENXXXXXX, 01/2005

© 2005 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

OV-ENXXXXXX, 01/2005

