

Mercury Virtual User Generator
User’s Guide

Version 8.1

Mercury Virtual User Generator User’s Guide, Version 8.1

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1998 - 2005 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

LRDBUG8.1/01

iii

Table of Contents

Welcome to the Mercury Virtual User Generator xxi
Online Resources ... xxiii
Documentation Sets ...xxiv
Using the LoadRunner Documentation Setxxiv
Documentation Updates ...xxvii
Typographical Conventions.. xxviii

PART I: INTRODUCING VUSER SCRIPTS

Chapter 1: Developing Vuser Scripts ..3
Introducing Vusers ..4
Looking at Vuser Types ...6
The Steps of Creating Vuser Scripts...8
Using this Guide..9

PART II: WORKING WITH VUGEN

Chapter 2: Introducing VuGen..13
About VuGen...13
Starting VuGen..14
Understanding the VuGen Environment Options15
Setting the Environment Options...17
Viewing and Modifying Vuser Scripts...17
Running Vuser Scripts with VuGen ..29
Understanding VuGen Code...30
Using C Vuser Functions...33
Getting Help on Functions..37

Table of Contents

iv

Chapter 3: Using the Workflow Wizard..41
About the Workflow Wizard ...41
Viewing the Task Pane ..42
Recording Steps ...43
Verifying the Script ...44
Enhancing the Script...46
Prepare for Load ..52
Finishing Your Script...52

Chapter 4: Recording with VuGen..53
About Recording with VuGen...54
Vuser Script Sections ...54
Creating New Virtual User Scripts...56
Adding and Removing Protocols ..59
Choosing a Virtual User Category...60
Creating a New Script..61
Opening an Existing Script ...62
Recording Your Application..63
Ending and Saving a Recording Session..67
Viewing the Recording Logs..69
Using Zip Files ...70
Importing Actions ...71
Providing Authentication Information...72
Regenerating a Vuser Script...74

Chapter 5: Setting Script Generation Preferences77
About Setting Script Generation Preferences77
Selecting a Script Language ...78
Applying the Basic Options...78
Understanding the Correlation Options...80
Setting Script Recording Options ..81

Chapter 6: Configuring the Port Mappings83
About Configuring the Port Mappings ...84
Defining Port Mappings ..84
Adding a New Server Entry ...86
Setting the Auto-Detection Options ...88
Setting the Port Mapping Recording Options.....................................90

Table of Contents

v

Chapter 7: Enhancing Vuser Scripts..93
About Enhancing Vuser Scripts...94
Inserting Transactions into a Vuser Script ..96
Inserting Rendezvous Points (LoadRunner and Tuning only)98
Inserting Comments into a Vuser Script...100
Obtaining Vuser Information ...101
Sending Messages to Output ...101
Handling Errors in Vuser Scripts During Execution105
Synchronizing Vuser Scripts..107
Emulating User Think Time ..107
Handling Command Line Arguments...108
Encrypting Text ...109
Encoding Passwords Manually ..110
Adding Files to the Script Folder ...111

Chapter 8: Working with VuGen Parameters113
About VuGen Parameters ..114
Understanding Parameter Limitations..115
Creating Parameters ..116
Understanding Parameter Types ...119
Defining Parameter Properties ..122
Using Existing Parameters ...124
Using the Parameter List ..127
Setting Parameterization Options ...129

Chapter 9: File and Table Type Parameters......................................123
Selecting or Creating Data Files or Data Tables124
Setting Properties for File Type Parameters.......................................130
Setting Properties for Table Type Parameters....................................132
Choosing Assignment Methods for File/Table Type Parameters134

Chapter 10: Setting Parameter Properties123
About Setting Parameter Properties ..123
Setting Properties for Internal Data Parameter Types.......................124
Setting Properties for User-Defined Functions..................................134
Customizing Parameter Formats ...135
Selecting an Update Method ..136

Chapter 11: Correlating Statements...139
About Correlating Statements...139
Using Correlation Functions for C Vusers ..141
Using Correlation Functions for Java Vusers143
Comparing Vuser Scripts using WDiff ..144
Modifying Saved Parameters ...146

Table of Contents

vi

Chapter 12: Configuring Run-Time Settings147
About Run-Time Settings ..148
Configuring Run Logic Run-Time Settings (multi-action)149
Pacing Run-Time Settings..154
Configuring Pacing Run-Time Settings (multi-action)156
Setting Pacing and Run Logic Options (single action)157
Configuring the Log Run-Time Settings ...158
Configuring the Think Time Settings ...163
Configuring Additional Attributes Run-Time Settings165
Configuring Miscellaneous Run-Time Settings.................................166
Setting the VB Run-Time Settings ...172

Chapter 13: Configuring Network Run-Time Settings175
About Network Run-Time Settings ...175
Setting the Network Speed ..176

Chapter 14: Running Vuser Scripts in Standalone Mode177
About Running Vuser Scripts in Standalone Mode178
Running a Vuser Script in VuGen...178
Replaying a Vuser Script..181
Using VuGen’s Debugging Features ..184
Using VuGen’s Debugging Features for Web Vuser Scripts189
Working with VuGen Windows ...191
Running a Vuser Script from a Command Prompt191
Running a Vuser Script from a UNIX Command Line192
Integrating Scripts into Tests...195

Chapter 15: Managing Scripts Using Quality Center199
About Managing Scripts Using Quality Center199
Connecting to and Disconnecting from Quality Center200
Opening Scripts from a Quality Center Project203
Saving Scripts to a Quality Center Project205
Managing Script Versions in VuGen...206

Chapter 16: Managing Scripts with Performance Center215
About Managing Scripts with Performance Center215
Connecting VuGen to Performance Center......................................216
Uploading Vuser Scripts ..218
Downloading Vuser Scripts ...223

Table of Contents

vii

PART III : WORKING WITH JAVA LANGUAGE PROTOCOLS

Chapter 17: Recording Java Language Vuser Scripts229
About Recording Java Language Vuser Scripts..................................230
Getting Started with Recording...230
Understanding Java Language Vuser Scripts.....................................232
Running a Script as Part of a Package ...232
Viewing the Java Methods ..233
Manually Inserting Java Methods ...235
Configuring Script Generation Settings ..237

Chapter 18: Setting Java Recording Options....................................241
About Setting Java Recording Options..242
Java Virtual Machine (JVM) Recording Options243
Setting Classpath Recording Options..245
Recorder Options ..246
Serialization Options ...250
Correlation Options ...251
Debug Options ...253
CORBA Options ..256

Chapter 19: Correlating Java Scripts...259
About Correlating Java Scripts ..260
Standard Correlation ...261
Advanced Correlation ...261
String Correlation..263
Using the Serialization Mechanism ..264

Chapter 20: Configuring Java Run-Time Settings271
About Configuring Java Run-Time Settings......................................271
Specifying the JVM Run-Time Settings ...272
Setting the Run-Time Classpath Options ...273

Table of Contents

viii

PART IV: APPLICATION DEPLOYMENT SOLUTION PROTOCOLS

Chapter 21: Creating Citrix Vuser Scripts...277
About Creating Citrix Vuser Scripts ..278
Getting Started with Citrix Vuser Scripts..279
Setting Up the Client and Server...280
Recording Tips...283
Understanding Citrix Recording Options...285
Setting the Citrix Recording Options..290
Setting the Citrix Display Settings ..291
Setting the Citrix Run-Time Settings ..292
Viewing and Modifying Citrix Vuser Scripts295
Synchronizing Replay..296
Understanding ICA Files ...302
Using Citrix Functions ..303
Tips for Replaying and Troubleshooting Citrix Vuser Scripts307

Chapter 22: Using the LoadRunner Citrix Agent..............................311
About the LoadRunner Citrix Agent ...311
Benefitting From the Citrix Agent ..312
Installation ..317
Effects and Memory Requirements of the Citrix Agent....................318
Sample Script ...318

PART V: CLIENT SERVER PROTOCOLS

Chapter 23: Developing Database Vuser Scripts..............................321
About Developing Database Vuser Scripts ..322
Introducing Database Vusers...323
Understanding Database Vuser Technology.....................................324
Getting Started with Database Vuser Scripts.....................................325
Setting Database Recording Options...326
Database Advanced Recording Options ..328
Using LRD Functions...330
Understanding Database Vuser Scripts ...336
Evaluating Error Codes..341
Handling Errors ...342

Chapter 24: Correlating Database Vuser Scripts345
About Correlating Database Vuser Scripts ..345
Scanning a Script for Correlations ..346
Correlating a Known Value...348
Database Correlation Functions..350

Table of Contents

ix

Chapter 25: Developing DNS Vuser Scripts......................................351
About Developing DNS Vuser Scripts ...351
Working with DNS Functions ...352

Chapter 26: Developing WinSock Vuser Scripts353
About Recording Windows Sockets Vuser Scripts.............................353
Getting Started with Windows Sockets Vuser Scripts354
Setting the WinSock Recording Options...356
Using LRS Functions..359

Chapter 27: Working with Windows Socket Data............................363
About Working with Windows Socket Data364
Viewing Data in the Snapshot Window ...364
Navigating Through the Data ...366
Modifying Buffer Data...369
Modifying Buffer Names ...375
Viewing Windows Socket Data in Script View..................................376
Understanding the Data File Format...378
Viewing Buffer Data in Hexadecimal format380
Setting the Display Format..382
Debugging Tips..385
Manually Correlating WinSock Scripts ..386

PART VI: CUSTOM VUSER SCRIPTS

Chapter 28: Creating Custom Vuser Scripts391
About Creating Custom Vuser Scripts...392
C Vusers ...393
Using the Workflow Wizard for C Vuser Scripts...............................394
Java Vusers...397
VB Vusers...398
VBScript Vusers..399
JavaScript Vusers..400

Chapter 29: Programming Java Scripts...401
About Programming Java Scripts...402
Creating a Java Vuser ..403
Editing a Java Vuser Script ..403
Java Vuser API Functions...406
Working with Java Vuser Functions ...409
Setting your Java Environment ...415
Running Java Vuser Scripts ...416
Compiling and Running a Script as Part of a Package......................417
Programming Tips ...418

Table of Contents

x

PART VII: DISTRIBUTED COMPONENT PROTOCOLS

Chapter 30: Recording COM Vuser Scripts.......................................423
About Recording COM Vuser Scripts ..424
COM Overview..424
Getting Started with COM Vusers...426
Selecting COM Objects to Record ..427
Setting COM Recording Options ..430

Chapter 31: Understanding COM Vuser Scripts...............................439
About COM Vuser Scripts ...439
Understanding VuGen COM Script Structure...................................440
Examining Sample VuGen COM Scripts...442
Scanning a Script for Correlations ..448
Correlating a Known Value...450

Chapter 32: Understanding COM Vuser Functions453
About COM Vuser Functions ..454
Creating Instances ...454
IDispatch Interface Invoke Method ..455
Type Assignment Functions ..455
Variant Types...456
Assignment from Reference to Variant ...457
Parameterization Functions ..458
Extraction from Variants...460
Assignment of Arrays to Variants..460
Array Types and Functions..461
Byte Array Functions ...462
ADO RecordSet Functions ...463
Debug Functions ...463
VB Collection Support...463

Chapter 33: Developing Corba-Java Vuser Scripts465
About Developing Corba-Java Vuser Scripts465
Recording a Corba-Java Vuser ...466
Working with Corba-Java Vuser Scripts..470
Recording on Windows XP and Windows 2000 Servers472
Application Specific Tips ...474

Chapter 34: Developing RMI-Java Vuser Scripts475
About Developing RMI-Java Vuser Scripts ..475
Recording RMI over IIOP ..476
Recording an RMI Vuser..477
Working with RMI Vuser Scripts...480

Table of Contents

xi

PART VIII : E-BUSINESS PROTOCOLS

Chapter 35: Developing FTP Vuser Scripts485
About Developing FTP Vuser Scripts...485
Working with FTP Functions ..486

Chapter 36: Developing LDAP Vuser Scripts489
About Developing LDAP Vuser Scripts..489
Working with LDAP Functions ...490
Defining Distinguished Name Entries...493

Chapter 37: Recording Microsoft .NET Vuser Scripts.......................495
About Recording Microsoft .NET Vuser Scripts.................................496
Getting Started with Microsoft .NET Vusers497
Setting Microsoft .NET Recording Options.......................................498
Viewing Scripts in VuGen and Visual Studio....................................499
Adding .NET References in the Run-Time Settings...........................502
Viewing Data Sets and Grids ...504
Troubleshooting Your Script ...505
Correlating Microsoft .NET Scripts ...509

Chapter 38: Creating Web Vuser Scripts ..511
About Developing Web Vuser Scripts ...511
Introducing Web Vusers..512
Understanding Web Vuser Technology ..513
Getting Started with Web Vuser Scripts..514
Recording a Web Session...516
Converting Web Vuser Scripts into Java...518

Chapter 39: Using Web Vuser Functions ..519
About Web Vuser Functions ...519
Adding and Editing Functions ..520
Web Function List ...522
Improving Performance Using Caching ...529

Chapter 40: Setting Recording Options for Internet Protocols533
About Setting Recording Options for Internet Protocols..................533
Working with Proxy Settings ..534
Setting Advanced Recording Options ...538
Setting a Recording Scheme ..540

Chapter 41: Setting Recording Options for Web Vusers..................547
About Setting Recording Options ...547
Specifying which Browser to Use for Recording548
Selecting a Recording Level ...549

Table of Contents

xii

Chapter 42: Configuring Internet Run-Time Settings565
About Internet Run-Time Settings ..565
Setting Proxy Options ...567
Setting Browser Emulation Properties...572
Setting Internet Preferences ..576
Filtering Web Sites...582
Obtaining Debug Information ..584
Performing HTML Compression ...585

Chapter 43: Checking Web Page Content..587
About Checking Web Page Content ...587
Setting the ContentCheck Run-Time Settings588

Chapter 44: Verifying Web Pages Under Load.................................593
About Verification Under Load...593
Adding a Text Check ...596
Understanding Text Check Functions ..598
Adding an Image Check ...604
Defining Additional Properties ..607

Chapter 45: Modifying Web and Wireless Vuser Scripts..................609
About Modifying Web and Wireless Vuser Scripts610
Adding a Step to a Vuser Script ...611
Deleting Steps from a Vuser Script..612
Modifying Action Steps ...613
Modifying Control Steps ...630
Modifying Service Steps ..633
Modifying Web Checks (Web only)..634

Chapter 46: Setting Correlation Rules for Web Vuser Scripts..........635
About Correlating Statements...636
Understanding the Correlation Methods ...637
Using VuGen’s Correlation Rules..638
Setting Correlation Rules...643
Testing Rules..646
Setting the Correlation Recording Options647

Chapter 47: Correlating Vuser Scripts After Recording649
About Correlating with Snapshots..650
Viewing the Correlation Results Tab ..651
Setting Up VuGen for Correlations...654
Performing a Scan for Correlations...657
Performing Manual Correlation..661
Defining a Dynamic String’s Boundaries ..666

Table of Contents

xiii

Chapter 48: Testing XML Pages..669
About Testing XML Pages..669
Viewing XML as URL Steps ...670
Inserting XML as a Custom Request ...672
Viewing XML Custom Request Steps ..674

Chapter 49: Using Reports to Debug Vuser Scripts..........................677
About Using Reports to Debug Vuser Scripts678
Understanding the Results Summary Report679
Filtering Report Information ..681
Searching Your Results ..682
Managing Execution Results ..682

Chapter 50: Power User Tips for Web Vusers...................................685
Security Issues..685
Handling Cookies ..689
The Run-Time Viewer (Online Browser) ...692
Browsers...693
Configuration and Compatibility Issues...696

Chapter 51: Planning Web Service Tests ..697
About Planning Web Service Tests..698
Implementing a Web Service ..699
Challenges in Web Services Testing..703
Choosing a Web Services Script Type ...704
Performing a Load Test..706
Client Emulation ...707

Chapter 52: Developing Web Services Vusers709
About Web Services ...710
Getting Started with Web Services in VuGen710
Using the Workflow Wizard for Web Services Scripts712
Creating a New Web Services Script..713
Recording a Web Services Script..714
Scanning WSDL Documents ...717
Managing WSDL Documents ..728
Setting WSDL Validation and Comparison Options734
Editing an XML Tree ...738
IDE Integration..739

Table of Contents

xiv

Chapter 53: Running Web Services Vusers.......................................741
About Running Web Services Vusers ..741
Setting Web Service Run-Time Settings ..742
Comparing WSDL Files ...743
Comparing XML Files ...747
Setting Scanned WSDL Properties...749
Viewing Web Services Script Snapshots..749
Using Web Services Functions ..757
Viewing Web Services Reports ..759

Chapter 54: Recording Web/WinSock Vuser Scripts........................763
About Recording Web/WinSock Vuser Scripts..................................764
Getting Started with Web/WinSock Vuser Scripts765
Setting Browser and Proxy Recording Options766
Setting Web Trapping Recording Options ..770
Recording a Web/WinSock Session...772
Recording Palm Applications ..774

PART IX: ENTERPRISE JAVA BEAN PROTOCOLS

Chapter 55: Performing EJB Testing ...779
About EJB Testing..779
Working with the EJB Detector...780
Creating an EJB Testing Vuser...785
Setting EJB Recording Options..789
Understanding EJB Vuser Scripts...790
Running EJB Vuser Scripts...796

PART X: ERP/CRM PROTOCOLS

Chapter 56: Developing Web GUI-Level Scripts...............................803
About Developing Web GUI-Level Scripts ..804
Getting Started with Web GUI-Level Vusers.....................................805
Using GUI-Level Vuser Functions ...806
Understanding GUI-level Vuser Scripts ..809
Tips for Working with the GUI-Level Vusers....................................812

Chapter 57: Setting Web GUI Recording Options............................813
About Setting Web GUI Recording Options813
Configuring Object Identification ..814
Configuring Web Event Recording ...820
Selecting a Recording Level for GUI-Level Vusers833

Table of Contents

xv

Chapter 58: Creating Oracle NCA Vuser Scripts841
About Creating Oracle NCA Vuser Scripts ..842
Getting Started with Oracle NCA Vusers ..843
Recording Guidelines ..844
Enabling the Recording of Objects by Name846
Oracle Applications via the Personal Home Page850
Using Oracle NCA Vuser Functions ..851
Understanding Oracle NCA Vusers ...855
Configuring the Run-Time Settings ..857
Testing Oracle NCA Applications..860
Correlating Oracle NCA Statements for Load Balancing863
Additional Recommended Correlations..864
Recording in Pragma Mode ...867

Chapter 59: Developing SAPGUI Vuser Scripts869
About Developing SAPGUI Vuser Scripts..870
Checking your Environment for SAPGUI Vusers..............................871
Creating a SAPGUI Vuser Script ..882
Recording a SAPGUI Vuser Script..883
Setting the SAPGUI Recording Options ..886
Inserting Steps Interactively into a SAPGUI Script889
Understanding a SAPGUI Vuser Script..891
Enhancing a SAPGUI Vuser Script ..895
Replaying SAPGUI Optional Windows ..899
Setting SAPGUI Run-Time Settings ...899
SAPGUI Functions ...903
Tips for SAPGUI Vuser Scripts ...911
Troubleshooting SAPGUI Vuser Scripts...916
Additional Resources ...918

Chapter 60: Developing SAP-Web Vuser Scripts919
About Developing SAP-Web Vuser Scripts ..920
Creating a SAP-Web Vuser Script ..920
Setting SAP-Web Recording Options...922
Understanding a SAP-Web Vuser Script..923
Replaying a SAP-Web Vuser Script ..925

Chapter 61: Developing Siebel-Web Vuser Scripts...........................927
About Developing Siebel-Web Vuser Scripts.....................................927
Recording a Siebel-Web Session ..928
Correlating Siebel-Web Scripts ..929
Correlating SWECount, ROWID, and SWET Parameters..................936
Troubleshooting Siebel-Web Vuser Scripts938

Table of Contents

xvi

PART XI: LEGACY PROTOCOLS

Chapter 62: Introducing RTE Vuser Scripts945
About Developing RTE Vuser Scripts ..945
Introducing RTE Vusers...946
Understanding RTE Vuser Technology ...947
Getting Started with RTE Vuser Scripts...947
Using TE Functions ...949
Mapping Terminal Keys to PC Keyboard Keys..................................951

Chapter 63: Recording RTE Vuser Scripts ...953
About Recording RTE Vuser Scripts...954
Creating a New RTE Vuser Script ..954
Recording the Terminal Setup and Connection Procedure955
Recording Typical User Actions ..960
Recording the Log Off Procedure ..961
Setting RTE Configuration Options ..962
Setting the RTE Recording Options...963
Typing Input into a Terminal Emulator ...966
Generating Unique Device Names..969
Setting the Field Demarcation Characters ..971

Chapter 64: Configuring RTE Run-Time Settings973
About Terminal Emulator Run-Time Settings...................................974
Modifying Connection Attempts..975
Specifying an Original Device Name ..976
Setting the Typing Delay...976
Configuring the X-System Synchronization.....................................977

Chapter 65: Synchronizing RTE Vuser Scripts979
About Synchronizing Vuser Scripts...979
Synchronizing Block-Mode (IBM) Terminals....................................981
Synchronizing Character-Mode (VT) Terminals984

Chapter 66: Reading Text from the Terminal Screen991
About Reading Text from the Terminal Screen991
Reading Text from the Screen ...992

Table of Contents

xvii

PART XII: MAILING SERVICES PROTOCOLS

Chapter 67: Developing Vuser Scripts for Mailing Services.............997
About Developing Vuser Scripts for Mailing Services997
Getting Started with Mailing Services Vuser Scripts998
Working with IMAP Functions ...1000
Working with MAPI Functions ...1002
Working with POP3 Functions ...1004
Working with SMTP Functions ...1005

PART XIII: MIDDLEWARE PROTOCOLS

Chapter 68: Developing Jacada Vuser Scripts1009
About Jacada Vuser Scripts ..1009
Getting Started with Jacada Vusers ...1010
Recording a Jacada Vuser ..1012
Replaying a Jacada Vuser...1014
Understanding Jacada Vuser Scripts..1015
Working with Jacada Vuser Scripts ...1016

Chapter 69: Developing Tuxedo Vuser Scripts...............................1019
About Tuxedo Vuser Scripts ..1020
Getting Started with Tuxedo Vuser Scripts1021
Using LRT Functions ...1022
Understanding Tuxedo Vuser Scripts..1027
Viewing Tuxedo Buffer Data ...1029
Defining Environment Settings for Tuxedo Vusers1031
Debugging Tuxedo Applications...1032
Correlating Tuxedo Scripts..1032

PART XIV: STREAMING DATA PROTOCOLS

Chapter 70: Developing Streaming Data Vuser Scripts1041
About Recording Streaming Data Virtual User Scripts....................1042
Getting Started with Streaming Data Vuser Scripts1042
Using RealPlayer LREAL Functions ...1044
Using Media Player MMS Functions ...1045

Table of Contents

xviii

PART XV: WIRELESS PROTOCOLS

Chapter 71: Introducing Wireless Vusers1049
About Wireless Vusers ...1049
Understanding the WAP Protocol...1050
Understanding the i-mode System..1052
i-mode versus WAP..1053
Understanding VoiceXML...1054

Chapter 72: Recording Wireless Vuser Scripts................................1057
About Recording Wireless Vuser Scripts ...1057
Getting Started with Wireless Vuser Scripts....................................1058
Using Wireless Vuser Functions ..1060
Troubleshooting Wireless Vuser Scripts..1061

Chapter 73: Working with WAP Vuser Scripts................................1063
About WAP Vusers ..1063
Recording Over a Phone..1064
Bearers Support..1065
RADIUS Support ..1066
Push Support ...1066
VuGen Push Support ...1068

Chapter 74: Setting Wireless Vuser Recording Options.................1071
About Setting Wireless Recording Options.....................................1071
Specifying the Recording Mode (WAP only)1072
Specifying the Information to Record (i-mode and VoiceXML)1073
Specifying a Toolkit...1075

Chapter 75: Configuring WAP Run-Time Settings1079
About WAP Run-Time Settings ...1079
Configuring Gateway Options ..1080
Configuring Bearer Information ...1085
Configuring RADIUS Connection Data ..1087

PART XVI: INFORMATION FOR ADVANCED USERS

Chapter 76: Creating Vuser Scripts in Visual Studio1091
About Creating Vuser Scripts in Visual Studio................................1091
Creating a Vuser Script with Visual C...1092
Creating a Vuser Script with Visual Basic1094
Configuring Runtime Settings and Parameters...............................1096

Table of Contents

xix

Chapter 77: Programming with the XML API1097
About Programming with the XML API..1097
Understanding XML Documents ..1099
Using XML Functions..1100
Specifying XML Function Parameters ...1103
Working with XML Attributes ..1105
Structuring an XML Script...1105
Enhancing a Recorded Session ..1107

Chapter 78: VuGen Debugging Tips...1113
General Debugging Tip ...1114
Using C Functions for Tracing ..1114
Adding Additional C Language Keywords1114
Examining Replay Output...1115
Debugging Database Applications ...1115
Working with Oracle Applications..1117
Solving Common Problems with Oracle 2-Tier Vusers...................1118
Two-tier Database Scripting Tips...1123
Running PeopleSoft-Tuxedo Scripts ..1132

Chapter 79: Advanced Topics ...1133
Files Generated During Recording ..1134
Files Generated During Replay..1136
Running a Vuser from the Unix Command Line1138
Specifying the Vuser Behavior ..1139
Command Line Parameters...1140
Recording OLE Servers...1141
Examining the .dat Files..1143
Adding a New Vuser Type ...1144

Table of Contents

xx

PART XVII: APPENDIXES

Appendix A: Calling External Functions..1153
Loading a DLL—Locally ..1153
Loading a DLL—Globally ..1155

Appendix B: Working with Foreign Languages..............................1157
About Working with Foreign Languages ..1157
Manually Converting String Encoding ...1158
Converting String Encoding In Parameter Files..............................1159
Setting the String Encoding for Web Record and Replay1161
Specifying a Language for the Accept-Language Header1164
Protocol Limitations..1165
Quality Center Integration..1166

Appendix C: Programming Scripts on UNIX Platforms..................1167
About Programming Vuser Scripts to Run on UNIX Platforms......1167
Generating Templates ..1168
Programming Vuser Actions ...1169
Configuring Vuser Run-Time Settings ..1171
Defining Transactions and Rendezvous Points...............................1176
Compiling Scripts..1176

Appendix D: Using Keyboard Shortcuts ...1179

Index..1181

xxi

Welcome to the Mercury Virtual User
Generator

Welcome to the Mercury Virtual User Generator, VuGen, Mercury’s tools for
creating Vuser scripts. You use VuGen to develop a Vuser script by recording
a user performing typical business processes. The scripts let you emulate
real-life situations.

You use the scripts created with VuGen in conjunction with several of
Mercury’s products— LoadRunner, Performance Center, Tuning Module,
and Application Management.

Mercury LoadRunner is the standard performance testing product for
predicting system behavior and performance. LoadRunner's in-depth reports
and graphs provide the information that you need to evaluate the
performance of your application.

Mercury Performance Center implements the capabilities of LoadRunner on an
enterprise level.

Mercury Tuning Module is a proactive solution for identifying, isolating and
resolving infrastructure bottlenecks.

Mercury’s Application Management tools help you optimize the
management and availability of business applications and systems in
production.

This Welcome section will describe the resources for Mercury LoadRunner.

Welcome

xxii

This following sections describe:

➤ Online Resources

➤ Documentation Sets

➤ Using the LoadRunner Documentation Set

➤ Documentation Updates

➤ Typographical Conventions

For more information on integrating the scripts into a LoadRunner scenario,
Performance Center load test, Tuning Module session, or Business Process
Monitor profile, refer to the appropriate guide—LoadRunner Controller,
Performance Center, Tuning Console, or Application Management
documentation.

Welcome

xxiii

Online Resources

VuGen includes the following online tools:

Read Me First provides last-minute news and information about VuGen.

Books Online displays the complete documentation set in PDF format.
Online books can be read and printed using Adobe Acrobat Reader (see
www.adobe.com). Check Mercury’s Customer Support Web site for updates
to the VuGen online book.

Online Function Reference gives you online access to all of LoadRunner API
functions that you can use when creating Vuser scripts, including examples
of how to use them. Check Mercury’s Customer Support Web site for
updates to the online VuGen Function Reference.

LoadRunner Context Sensitive Help provides immediate answers to
questions that arise as you work with VuGen. It describes dialog boxes, and
shows you how to perform standard tasks. To activate this help, click in a
window and press F1. Check Mercury’s Customer Support Web site for
updates to the help files.

Technical Support Online uses your default Web browser to open Mercury’s
Customer Support Web site. This site enables you to browse the knowledge
base and add your own articles, post to and search user discussion forums,
submit support requests, download patches and updated documentation,
and more. The URL for this Web site is http://support.mercury.com.

Support Information presents the locations of Mercury’s Customer Support
Web site and home page, the e-mail address for sending information
requests, and a list of Mercury’s offices around the world.

Mercury Interactive on the Web uses your default Web browser to open
Mercury’s home page (http://www.mercury.com). This site enables you to
browse the knowledge base and add your own articles, post to and search
user discussion forums, submit support requests, download patches and
updated documentation, and more.

http://www.adobe.com" target="_blank
http://www.adobe.com" target="_blank
http://www.adobe.com" target="_blank
http://support.mercury.com" target="_blank
http://support.mercury.com" target="_blank
http://support.mercury.com" target="_blank
http://support.mercury.com" target="_blank
http://www.mercury.com" target="_blank

Welcome

xxiv

Documentation Sets

Your product is supplied with one or more sets of printed documents,
depending on your purchase agreement. The Package Content card that
accompanied the product, lists the documents that are supplied with your
product.

The following section will only discuss the LoadRunner documentation.

LoadRunner is supplied with a set of documentation that describes how to:

➤ install LoadRunner and the Mercury Tuning Module

➤ create Vuser scripts

➤ use the LoadRunner Controller and the Mercury Tuning Console

➤ configure the LoadRunner monitors

➤ use the LoadRunner Analysis

Using the LoadRunner Documentation Set

The LoadRunner documentation set consists of one installation guide, a
Controller user’s guide, a Console user’s guide, a Monitor Reference, an
Analysis user’s guide, and a two-volume guide for creating Virtual User
scripts.

Installation Guide

For instructions on installing LoadRunner, refer to the LoadRunner
Installation Guide. The installation guide explains how to install:

➤ LoadRunner and Mercury Tuning Module—on a Windows-based machine

➤ Virtual User components—for both Windows and UNIX platforms

Welcome

xxv

Controller User’s Guide

The LoadRunner documentation pack includes one Controller user’s guide:

The LoadRunner Controller User’s Guide describes how to create and run
LoadRunner scenarios using the LoadRunner Controller in a Windows
environment. The Vusers can run on UNIX and Windows-based platforms.
The Controller user’s guide presents an overview of the LoadRunner testing
process.

Console User’s Guide

The Mercury Tuning Module documentation pack includes one Console
user’s guide:

The Mercury Tuning Module Console User’s Guide describes how to create and
run tuning sessions using the Mercury Tuning Console in a Windows
environment. The Console user’s guide presents an overview of the Mercury
Tuning Module testing process.

Monitor Reference

The LoadRunner documentation pack includes one Monitor Reference
guide:

The LoadRunner Monitor Reference describes how to set up the server monitor
environment and configure LoadRunner monitors for monitoring data
generated during a scenario or session.

Analysis User’s Guide

The LoadRunner documentation pack includes one Analysis user’s guide:

The LoadRunner Analysis User’s Guide describes how to use the LoadRunner
Analysis graphs and reports after running a scenario or session in order to
analyze system performance.

Welcome

xxvi

Guide for Creating Vuser Scripts

The LoadRunner documentation pack includes one guide for creating
scripts:

The Mercury Virtual User Generator User’s Guide describes how to create scripts
using VuGen. When necessary, supplement this document with the online
VuGen Function Reference and the WinRunner User’s Guide for creating GUI
scripts.

Note: The Mercury Virtual User Generator User’s Guide online version is a
single volume, while the printed version consists of two volumes, Volume I -
Using VuGen and Volume II - Protocols.

For information on Look here...

Installing LoadRunner and the
Mercury Tuning Module

LoadRunner Installation Guide

The LoadRunner testing process LoadRunner Controller User’s Guide

The Mercury Tuning Module
testing process

Mercury Tuning Module Console User’s Guide

Creating Vuser scripts Mercury Virtual User Generator User’s Guide

Creating and running load test
scenarios

LoadRunner Controller User’s Guide

Creating and running tuning
sessions

Mercury Tuning Module Console User’s Guide

Configuring the server monitors LoadRunner Monitor Reference

Analyzing test results LoadRunner Analysis User’s Guide

Welcome

xxvii

Documentation Updates

Mercury is continuously updating its product documentation with new
information. You can download the latest version of this document from
Mercury’s Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Select the product name. Note that if LoadRunner does not appear in the
list, you must add it to your customer profile. Click "My Account" to update
your profile.

 3 Click Retrieve. The Documentation page opens and lists all the
documentation available for the current release and for previous releases. If
a document was recently updated, Updated appears next to the document
name.

 4 Click a document link to download the documentation.

http://support.mercury.com"
http://support.mercury.com"

Welcome

xxviii

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

➤ Bullets indicate options and features.

> The greater than sign separates menu levels (for
example, File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements on which you perform actions (for example,
“Click the Run button.”). It also indicates method or
function arguments, file names or paths.

Bold Bold text indicates method or function names

Italics Italic text indicates book titles.

Arial The Arial font is used for examples and text that is to
be typed literally.

<> Angle brackets enclose a part of a file path or URL
address that may vary from user to user (for example,
<Product installation folder>\bin).

[] Square brackets enclose optional arguments.

{ } Curly brackets indicate that one of the enclosed values
must be assigned to the current argument.

... In a line of syntax, an ellipsis indicates that more items
of the same format may be included.

Part I

Introducing Vuser Scripts

2

3

1
Developing Vuser Scripts

When testing or monitoring an environment, you need to emulate the true
behavior of users on your system. Mercury’s tools emulate an environment
in which users concurrently work on, or access your system.

To do this emulation, the human was replaced with a virtual user, or a Vuser.
The actions that a Vuser performs are described in a Vuser script. The primary
tool for creating Vuser scripts is the Mercury Virtual User Generator, VuGen.

This chapter includes:

➤ Introducing Vusers

➤ Looking at Vuser Types

➤ The Steps of Creating Vuser Scripts

➤ Using this Guide

Note: The Mercury Virtual User Generator guide online version is a single
volume, while the printed version consists of two volumes, Volume I - Using
VuGen and Volume II - Protocols.

Part I • Introducing Vuser Scripts

4

Introducing Vusers

When testing or monitoring an environment, you need to emulate the true
behavior of users on your system. Mercury’s tools emulate an environment
in which users concurrently work on, or access your system.

To accomplish this emulation, the human was replaced with a virtual user,
or a Vuser. Vusers emulate the actions of human users by performing typical
business processes in your application. The actions that a Vuser performs
during the recording session are described in a Vuser script.

Mercury’s tool for creating Vuser scripts is the Virtual User Generator,
VuGen. You use VuGen to develop a Vuser script by recording a user
performing typical business processes on a client application. VuGen records
the actions that you perform during the recording session, recording only
the activity between the client and the server. Instead of having to manually
program the application’s API function calls to the server, VuGen
automatically generates functions that accurately model and emulate real
world situations.

During recording VuGen monitors the client end of the database and traces
all the requests sent by the user and received from the user, to the server.

o

Client running
an application VuGen Server

Chapter 1 • Developing Vuser Scripts

5

During playback, Vuser scripts communicate directly with the server by
executing calls to the server API. When a Vuser communicates directly with
a server, system resources are not required for the client interface. This lets
you run a large number of Vusers simultaneously on a single workstation,
and enables you to use only a few testing machines to emulate large server
loads.

In addition, since Vuser scripts do not rely on client software, you can use
Vusers to check server performance even before the user interface of the
client software has been fully developed.

Using VuGen, you can run scripts as standalone tests. Running scripts from
VuGen is useful for debugging as it enables you to see how a Vuser will
behave and which enhancements need to be made.

ServerVuser running an

a client machine

Part I • Introducing Vuser Scripts

6

VuGen enables you to record a variety of Vuser types, each suited to a
particular load testing environment or topology. When you open a new test,
VuGen displays a complete list of the supported protocols.

While running the Vusers, you gather information about the system’s
response. Afterwards, you can view this information with the Analysis tool.
For example, you can observe how a server behaved when one hundred
Vusers simultaneously withdrew cash from a bank’s ATM.

Looking at Vuser Types

VuGen provides a variety of Vuser technologies that allow you to emulate
your system. Each technology is suited to a particular architecture and
results in a specific type of Vuser script. For example, you use Web Vuser
Scripts to emulate users operating Web browsers. You use FTP Vusers to
emulate an FTP session. The various Vuser technologies can be used alone or
together, to create effective load tests, Tuning Console sessions, or Business
Process Monitor profiles.

Chapter 1 • Developing Vuser Scripts

7

The Vuser types are divided into the following categories:

➤ All Protocols: a list of all supported protocols in alphabetical order

➤ Application Deployment Solution: For the Citrix protocol

➤ Client/Server: For DB2 CLI, DNS, MS SQL, ODBC, Oracle (2-tier), Sybase
Ctlib, Sybase Dblib, and Windows Sockets protocols

➤ Custom: For C templates, Visual Basic templates, Java templates,
Javascript, VB script, VB, and VBNet type scripts

➤ Distributed Components: For COM/DCOM, Corba-Java, and Rmi -Java
protocols

➤ E-business: For FTP, LDAP, Microsoft .NET, Palm, Web (GUI level), Web
(HTTP/HTML), Web Services, and the dual Web/Winsocket protocols

➤ Enterprise Java Beans: For EJB Testing and Rmi-Java protocols

➤ ERP/CRM: For Baan, Oracle NCA, Oracle Web Applications 11i,
Peoplesoft Enterprise, Peoplesoft-Tuxedo, SAP-Web, SAPGUI, dual
SAPGUI/SAP-Web, and Siebel (Siebel-DB2CLI, Siebel-MSSQL, Siebel-
Oracle, and Siebel-Web) protocols

➤ Legacy: For Terminal Emulation (RTE)

➤ Mailing Services: Internet Messaging (IMAP), MS Exchange (MAPI), Post
Office Protocol (POP3), and Simple Mail Protocol (SMTP)

➤ Middleware: Jacada and Tuxedo (6, 7) protocols

➤ Streaming: For MediaPlayer and RealPlayer protocols

➤ Wireless: For i-Mode, VoiceXML, and WAP protocols

To view a list of all supported protocols in alphabetical order, choose File >
New and select All Protocols in the Protocol Type list box.

Note that in order to run the various protocols, you must have either a
global license or licenses for the desired protocols. For more information,
choose Configuration > LoadRunner License in the LoadRunner Launcher
(Start > Programs > Mercury LoadRunner > LoadRunner).

Part I • Introducing Vuser Scripts

8

The Steps of Creating Vuser Scripts

The following diagram outlines the process of developing a Vuser script:

The process of creating a Vuser script is as follows:

 1 Record a basic script using VuGen. If you are testing Windows-based GUI
applications or complex Web environments such as applets and Flash, you
may need to use Mercury’s GUI-based tools such as WinRunner and
QuickTest Professional.

 2 Enhance the basic script by adding control-flow statements and other
Mercury API functions into the script.

 3 Configure the run-time settings. These settings include iteration, log, and
timing information, and define the Vuser behavior during a script run.

Chapter 1 • Developing Vuser Scripts

9

 4 Verify the script’s functionality, run it in standalone mode.

 5 After you verify that the script is functional, you integrate it into your
environment: a LoadRunner scenario, Performance Center load test, Tuning
Module session, or Business Process Monitor profile. For more information,
refer to the LoadRunner Controller User’s Guide, Tuning Console, Performance
Center, or Application Management user guides.

Using this Guide

This guide is divided into several parts:

➤ Part I, “Introducing Vuser Scripts,” is applicable to all Vuser types.

➤ Part II, “Working with VuGen,” is applicable only to those Vuser types
that are recorded and/or run using VuGen. Part II is not applicable when
developing GUI Vuser scripts.

➤ Parts III to XVI apply to specific Vuser types. Refer to the Table of
Contents to locate the part describing your Vuser type.

➤ Part XVII contains information for advanced users. It provides some
general debugging tips, describes the files generated by VuGen, and
explains how to program scripts in Visual C and Visual Basic.

➤ Part XVIII contains several appendixes with technology overviews. It
describes the Calling External Functions, Programming in UNIX,
Working with Foreign Languages, and Keyboard Shortcuts.

Note: GUI Vuser scripts utilize the WinRunner engine—you do not generate
these scripts using VuGen. For more information, see “Developing GUI
Vuser Scripts” in the online book, and refer to the WinRunner User’s Guide.

Part I • Introducing Vuser Scripts

10

Part II

Working with VuGen

12

13

2
Introducing VuGen

The Virtual User Generator, also known as VuGen, enables you to develop
Vuser scripts for a variety of application types and communication
protocols.

This chapter describes:

➤ About VuGen

➤ Starting VuGen

➤ Understanding the VuGen Environment Options

➤ Setting the Environment Options

➤ Viewing and Modifying Vuser Scripts

➤ Running Vuser Scripts with VuGen

➤ Understanding VuGen Code

➤ Using C Vuser Functions

➤ Getting Help on Functions

The following information applies to all types of Vuser scripts except for
GUI.

About VuGen

The Virtual User Generator, also known as VuGen, is the primary tool for
developing Vuser scripts.

VuGen not only records Vuser scripts, but also runs them. Running scripts
from VuGen is useful for debugging. It enables you to emulate how a Vuser
script will run when executed as part of a larger test.

Part II • Working with VuGen

14

Note: VuGen records sessions on Windows platforms only. However, a
recorded Vuser script can run on both Windows and UNIX platform.

When you record a Vuser script, VuGen generates various functions that
define the actions that you perform during the recording session. VuGen
inserts these functions into the VuGen editor to create a basic Vuser script.

Starting VuGen

To start VuGen, choose Start > Programs > Mercury App_Name >
Applications > Virtual User Generator from the Start menu.

The Virtual User Generator Start Page opens.

To open a recent script, click on it in the Recently used scripts list.

Chapter 2 • Introducing VuGen

15

To open an existing script, not in the recent list, click Open Existing Script.

To create a new script using a recent protocol, click the protocol in the
Recently used protocols list.

To create a new script in a protocol that is not listed, click New Vuser Script.

Choose File > Zip Operations > Import From Zip File … to open an existing
script from a zip archive.

To access Help topics for each dialog box, press F1 while clicking within the
dialog box.

Understanding the VuGen Environment Options

You can set up your VuGen working environment in order to customize the
auto recovery settings, the VuGen editor, and the startup preferences. You
set these options from the General Options Environment tab.

Auto Recovery

The auto recovery options, allow you to restore your script’s settings in the
event of a crash or power outage. To allow auto recovery, select the Save
AutoRecover Information check box and specify the time between the saves
in minutes.

Part II • Working with VuGen

16

Editor

You can set the editor options to select a font and enable VuGen’s
Intellisense capabilities which automatically fill in words and function
syntax.

Auto show function syntax: When you type the opening parenthesis of a
function, VuGen shows the syntax of the function with its arguments and
prototypes. To enable the showing of the syntax globally, select the check
box adjacent to this option. To disable this feature, clear the check box
adjacent to the Auto show function syntax option. If you disable Show
Function Syntax globally, you can still bring up the syntax by pressing
Ctrl+Shift+Space or choosing Edit > Show Function Syntax after typing the
opening parenthesis in the editor.

Auto complete word: When you type the first underscore of a function,
VuGen opens a list of functions allowing you to choose the exact function
without having to manually type in the entire function. To enable word
completion globally, select the check box adjacent to this option. To disable
this feature, clear the check box adjacent to the Auto complete word option.
If you disable this option globally, you can still bring up the function list
box by pressing Ctrl+Space or choosing Edit > Complete Word while typing
in the editor.

Select Font: To set the editor font, click Select Font. The Font dialog box
opens. Select the desired font, style, and size and click OK. Note that only
fixed size fonts (Courier, Lucida Console, FixedSys, and so on) are available.

Startup Dialog

The Show Startup Dialog option opens the Startup dialog box when you
open VuGen. The Startup dialog has quick links to create a new script, open
an existing script, or view a recent script. If you disable this option, VuGen
opens with an empty screen.

Default Environment Settings

By default, Show Function Syntax and Auto complete word are enabled
globally. Auto Recovery is set to 10 seconds. VuGen opens with the Startup
dialog box.

Chapter 2 • Introducing VuGen

17

Setting the Environment Options

To set the environment-related options:

 1 Select Tools > General Options and click the Environment tab.

 2 To save the current script information for auto recovery, select the Save
AutoRecover Information option and specify the time in minutes between
the saves.

 3 To set the editor font, click Select Font. The Font dialog box opens. Select
the desired font, style, and size and click OK. Note that only fixed size fonts
(Courier, Lucida Console, FixedSys, and so on) are available.

 4 To instruct VuGen to display the Startup Dialog box whenever it opens,
select Show Startup dialog in the Startup Dialog section.

 5 Click OK to accept the settings and close the General Options dialog box.

Viewing and Modifying Vuser Scripts

VuGen provides several views for examining the contents of your script: a
text-based Script view, an icon-based Tree view with snapshots, or a icon-
based Thumbnail view.

The Script view is available for all Vuser types, but the Tree and Thumbnail
views are not. For example, Thumbnail view is only available for Web,
Citrix, and SAPGUI Vusers.

Viewing the Code in Script View

The Script view lets you view the actual API functions that were recorded or
inserted into the script. This view is for advanced users who want to
program within the script by adding “C” or Vuser API functions as well as
control flow statements.

Part II • Working with VuGen

18

To display the script view:

From the VuGen main menu, select View > Script View, or click the View
script as text icon. The script is displayed in the text-based Script view. If
you are already in the Script view, the menu item is disabled.

You can expand and collapse the functions by clicking the minus or plus
sign in the margin to the left of the script. This make the script neater and
easier to read.

When working in Script view, you can add steps to the script using the
Insert > New Step command. Alternatively, you can manually enter
functions using the Complete Word and Show Function Syntax features. For
more information, see “Getting Help on Functions” on page 37.

Note: If you make changes to a Vuser script while in the Script view, VuGen
makes the corresponding changes in the Tree view of the Vuser script. If
VuGen is unable to interpret the text-based changes that were made, it will
not convert the Script view into Tree or Thumbnail view.

Chapter 2 • Introducing VuGen

19

Viewing a Script in Tree View

VuGen’s Tree view shows the Vuser script in an icon-based format, with each
step represented by a different icon.

To display the Tree view:

From VuGen’s main menu, select View > Tree View, or click the View script
as tree icon.

The Actions section of the Vuser script is displayed in the icon-based Tree
view. To display a different section, choose that section in the drop-down
list, above the tree.

If you are already in Tree view, the menu item is disabled.

Within the Tree view, you can manipulate steps by dragging them to the
desired location. You can also add additional steps between existing steps in
the tree hierarchy.

To insert a step in Tree view:

 1 Click on a step.

 2 Choose Insert Before or Insert After from the right-click menu. The Add
Step dialog box opens.

 3 Choose a step and click OK. The Properties dialog box opens.

 4 Specify the properties and click OK. VuGen inserts the step before or after
the current step.

Part II • Working with VuGen

20

Understanding Snapshots

A snapshot is a graphical representation of the current step. When working
in Tree view, VuGen displays the snapshot of the selected step in the right
pane. The snapshot shows the client window after the step was executed.

VuGen captures a base snapshot during recording and another one during
replay. You compare the Record and Replay snapshots to determine the
dynamic values that need to be correlated in order to run the script. For
more information, see Chapter 47, “Correlating Vuser Scripts After
Recording.”

The following toolbar buttons let you show or hide the various snapshot
windows.

Show a full window of the recorded snapshot

Show a split window of the recorded and replayed snapshot

Show a full window of the replayed snapshot

Chapter 2 • Introducing VuGen

21

To view or hide snapshots:

 1 Make sure you are in Tree view. If not, then switch to Tree view (View > Tree
View).

 2 Choose View > Snapshot > View Snapshot. VuGen shows the snapshot of
the client window. If the snapshot is already visible, VuGen hides it.

 3 Use the expanded menu of View > Snapshot to view the recorded and/or
replayed snapshots. You can also use the shortcut toolbar buttons to display
the desired view:

Each time you replay the script, VuGen saves another Replay snapshot to
the script’s result directory: Iteration1, Iteration2, and so forth.

By default, VuGen compares the recording snapshot to the first replay
snapshot. You may, however, choose a different snapshot for comparison.
To select a specific replay snapshot, choose the expanded menu of View >
Snapshot > Select Iteration. Select a set of results and click OK.

Troubleshooting Snapshots

If you encounter a step without a snapshot, follow these guidelines to
determine why it is not available. Note that not all steps are associated with
snapshots—only steps with screen operations or for Web, showing browser
window content, have snapshots.

Several protocols, such as Citrix and SAPGUI, allow you to disable the
capturing of snapshots during recording using the Recording options.

If there is no Record snapshot displayed for the selected step, it may be due
to one of the following reasons:

➤ The script was recorded with a VuGen version 6.02 or earlier.

➤ Snapshots are not generated for certain types of steps.

➤ The imported actions do not contain snapshots.

If there is no Replay snapshot displayed for the selected step, it may be due
to one of the following reasons:

➤ The script was recorded with VuGen version 6.02 or earlier.

➤ The imported actions do not contain snapshots.

Part II • Working with VuGen

22

➤ The Vuser files are stored in a read-only directory, and VuGen could not
save the replay snapshots.

➤ The step represents navigation to a resource.

➤ The following option was turned off to disable snapshot generation:

Tools > General options > Correlation tab > Save correlation information
during replay.

Snapshot Files

Each time you replay the script, VuGen saves the snapshots in the script
directory with an .inf extension. The replay snapshots are located in the
script’s result directory: Iteration1, Iteration2, and so forth, for each set of
results.

To determine the name of the snapshot file for a Web Vuser, switch to Script
view (View > Script View). In the following example, the snapshot
information is represented by t1.inf.

For Citrix Vuser scripts, VuGen saves snapshots as bitmap files in the script’s
data\snapshots directory. To determine the name of the snapshot file, check
the function’s arguments in Script view.

 web_url("MercuryWebTours",
"URL=http://localhost/MercuryWebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);

ctrx_sync_on_window("ICA Administrator Toolbar", ACTIVATE, 768, 0, 33,
573, "snapshot12", CTRX_LAST);

Chapter 2 • Introducing VuGen

23

Web Vuser Snapshot Tabs

In the Snapshot window for Web Vusers, the following tabs are available:

Page View: Display the snapshot in HTML as it would appear in a browser.
This button is available for both the recording and replay snapshots. Use
this view to make sure you are viewing the correct snapshot. In this view,
however, you do not see the values that need to be correlated.

Server Response: Displays the server response HTML code of the snapshot.
This button is available for both the recorded and replayed snapshots. The
HTML view also shows a tree hierarchy of the script in the left pane, with a
breakdown of the document’s components: Header and Body with the title,
links, forms, and so forth.

Part II • Working with VuGen

24

Client Request: Displays the client request HTML code of the snapshot. This
button is available for both the recorded and replayed snapshots. The HTML
view also shows a tree hierarchy of the script in the left pane, with a
breakdown of the document’s components: Header and Body and their sub-
components.

Viewing Script Thumbnails

For several Vuser types such as Web, SAPGUI and Citrix, you can view
thumbnail representations of the snapshots. You can view thumbnails in
either Tree view or through the Transaction Editor.

Viewing Thumbnails in Tree View

In Tree view, the Thumbnail tab appears at the bottom of the Tree view
window.

By default, the thumbnail view only shows primary steps in your script. To
show all thumbnails, choose View > Show All Thumbnails. VuGen shows the
thumbnails for all of the steps in the script.

Note: For multiple iterations, the VuGen shows the replay thumbnails for
the last iteration. To show the thumbnails of a specific iteration, choose
View > Snapshot > Select Iteration and select the desired iteration.

Chapter 2 • Introducing VuGen

25

To view the thumbnails from Tree View:

 1 Click the Thumbnail tab at the bottom of the left pane.

 2 Click the desired thumbnail image to open the thumbnail‘s snapshot in the
right pane.

 3 Double-click on a thumbnail image to view a larger image. A separate
window opens showing a larger view of the snapshot.

Part II • Working with VuGen

26

Viewing Thumbnails in the Workflow Wizard

You can view the snapshots through the Transaction Editor. This view sorts
the thumbnails by actions and provides you with an flat thumbnail view of
all of the script’s steps.

To view thumbnails in the Transaction Editor:

 1 Click the Tasks button on the toolbar to open the task list pane.

 2 Click the Enhancements > Transactions link. The Transaction Editor opens
in the middle and right panes.

For a more encompassing view, click Tasks to hide the Task list.

 3 In the right pane, select the action that you want to view. VuGen displays
the action that you selected.

Chapter 2 • Introducing VuGen

27

In the following example, Action2 was selected.

Working with Thumbnails

VuGen lets you work with thumbnails by renaming them, annotating them,
and viewing them in a larger size.

To view a thumbnail as a larger image

 1 Choose View Larger Image from the right-click menu or press Alt+F6. A
separate window opens showing a larger view of the snapshot.

To rename a snapshot:

 1 Select the snapshot and choose Rename from the right-click menu or press
F2.

 2 Type in the desired text.

Part II • Working with VuGen

28

To annotate a snapshot:

 1 Select a snapshot and choose Annotate from the right-click menu or press
Alt+F2. The Thumbnail Annotation dialog box opens.

 2 Type text into the right pane of the Thumbnail Annotation dialog box.

 3 Click OK to save the annotation and close the dialog box.

To leave the Annotation box open in order to add more text or work with
other snapshots, choose Keep Visible from the upper right corner. The OK
button changes to Apply.

Chapter 2 • Introducing VuGen

29

After you insert an annotation for a snapshot, VuGen places a red mark in
the bottom right corner of the thumbnail to indicate that an annotation
exists. If you move your mouse over the thumbnail, VuGen shows a popup
of the annotation text.

Running Vuser Scripts with VuGen

In order to perform testing or monitor an application with your Vuser script,
you need to incorporate it into a LoadRunner scenario, Business Process
Monitor profile, or Tuning Console session step. Before doing this, you
check the script’s functionality by running it from VuGen. For more
information, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

If the script replay is successful, you can then integrate it into your
environment: a LoadRunner scenario, Performance Center load test, Tuning
Module session, or Business Process Monitor profile. For more information,
refer to the LoadRunner Controller User’s Guide, Tuning Console, Performance
Center, or Application Management documentation.

Before you run a Vuser script, you can modify its run-time settings. These
settings include the number of iterations that the Vuser performs, and the
pacing and the think time that will be applied to the Vuser when the script
is run. For more information on configuring run-time settings, see
Chapter 12, “Configuring Run-Time Settings.”

Part II • Working with VuGen

30

When you run a Vuser script, it is processed by an interpreter and then
executed. You do not need to compile the script. If you modify a script, any
syntax errors introduced into the script are noted by the interpreter. You can
also call external functions from your script that can be recognized and
executed by the interpreter. For more information, see Appendix A, “Calling
External Functions.”

Advanced users can compile a recorded script to create an executable
program. For more information, see Chapter 7, “Enhancing Vuser Scripts.”

Understanding VuGen Code

When you record a Vuser script, VuGen generates Vuser functions and
inserts them into the script. There are two types of Vuser functions:

➤ General Vuser Functions

➤ Protocol-Specific Vuser Functions

The general Vuser functions and the protocol-specific functions together form
the Mercury VuGen API. This API enables Vusers to communicate directly
with a server. VuGen displays a list of all of the supported protocols when
you create a new script. For syntax information about all of the Vuser
functions, refer to the Online Function Reference (Help > Function Reference).

General Vuser Functions

The general Vuser functions are also called LR functions because each LR
function has an lr prefix. The LR functions can be used in any type of Vuser
script. The LR functions enable you to:

➤ Get run-time information about a Vuser, its Vuser Group, and its host.

➤ Add transactions and synchronization points to a Vuser script. For
example, the lr_start_transaction (lr.start_transaction in Java) function
marks the beginning of a transaction, and the lr_end_transaction
(lr.end_transaction in Java) function marks the end of a transaction. See
Chapter 7, “Enhancing Vuser Scripts” for more information.

➤ Send messages to the output, indicating an error or a warning.

Chapter 2 • Introducing VuGen

31

See “Using C Vuser Functions” on page 33 for a list of LR functions, and for
details refer to the Online Function Reference (Help > Function Reference).

Protocol-Specific Vuser Functions

In addition to the general Vuser functions, VuGen also generates and inserts
protocol-specific functions into the Vuser script while you record.

The protocol-specific functions are particular to the type of Vuser that you
are recording. For example, VuGen inserts LRD functions into a database
script, LRT functions into a Tuxedo script, and LRS functions into a
Windows Sockets script.

By default, VuGen’s automatic script generator creates Vuser scripts in C for
most protocols, and Java for Corba-Java/Rmi-Java Vusers. You can instruct
VuGen to generate code in Visual Basic or Javascript. For more information,
see Chapter 5, “Setting Script Generation Preferences.”

All standard conventions apply to the scripts, including control flow and
syntax. You can add comments and conditional statements to the script just
as you do in other programming languages.

Part II • Working with VuGen

32

The following segment from a Web Vuser script shows several functions that
VuGen recorded and generated in a script:

For more information about using C functions in your Vuser scripts, see
Chapter 7, “Enhancing Vuser Scripts.” For more information about
modifying a Java script, seeChapter 29, “Programming Java Scripts.”

Note: The C Interpreter used for running Vuser scripts only supports the
ANSI C language. It does not support any Microsoft extensions to ANSI C.

#include "as_web.h"

Action1()
{

web_add_cookie("nav=140; DOMAIN=dogbert");

web_url("dogbert",
"URL=http://dogbert/",
"RecContentType=text/html",
LAST);

web_image("Library",
"Alt=Library",
LAST);

web_link("1 Book Search:",
"Text=1 Book Search:",
LAST);

lr_start_transaction("Purchase_Order");
…

Chapter 2 • Introducing VuGen

33

Using C Vuser Functions

You can add C Vuser functions to any Vuser script in order to enhance the
script. VuGen generates only a few of the general Vuser functions while you
record. If required, the remaining functions can be manually programmed
into a script. For details on the general Vuser functions, see Chapter 7,
“Enhancing Vuser Scripts.”

The following list shows the general API functions for ANSI C scripts. This
includes all protocols except for Java, VB, and GUI. For a list of the Java
functions, seeChapter 29, “Programming Java Scripts.” For a list of the VB
functions, see the Online Function Reference, (Help > Function Reference).

Transaction Functions:

lr_end_sub_transaction Marks the end of a sub-transaction
for performance analysis.

lr_end_transaction Marks the end of a transaction.

lr_end_transaction_instance Marks the end of a transaction
instance for performance analysis.

lr_fail_trans_with_error Sets the status of open transactions
to LR_FAIL and sends an error
message.

lr_get_trans_instance_duration Gets the duration of a transaction
instance specified by its handle.

lr_get_trans_instance_wasted_time Gets the wasted time of a transaction
instance by its handle.

lr_get_transaction_duration Gets the duration of a transaction by
its name.

lr_get_transaction_think_time Gets the think time of a transaction
by its name.

lr_get_transaction_wasted_time Gets the wasted time of a transaction
by its name.

lr_resume_transaction Resumes collecting transaction data
for performance analysis.

Part II • Working with VuGen

34

Command Line Parsing Functions

lr_resume_transaction_instance Resumes collecting transaction
instance data for performance
analysis.

lr_set_transaction_instance_status Sets the status of a transaction
instance.

lr_set_transaction_status Sets the status of open transactions.

lr_set_transaction_status_by_name Sets the status of a transaction.

lr_start_sub_transaction Marks the beginning of a sub-
transaction.

lr_start_transaction Marks the beginning of a
transaction.

lr_start_transaction_instance Starts a nested transaction specified
by its parent’s handle.

lr_stop_transaction Stops the collection of transaction
data.

lr_stop_transaction_instance Stops collecting data for a
transaction specified by its handle.

lr_wasted_time Removes wasted time from all open
transactions.

lr_get_attrib_double Retrieves a double type variable used on the
script command line.

lr_get_attrib_long Retrieves a long type variable used on the
script command line.

lr_get_attrib_string Retrieves a string used on the script
command line.

Chapter 2 • Introducing VuGen

35

Informational Functions

String Functions

lr_user_data_point Records a user-defined data sample.

lr_whoami Returns information about a Vuser to the
Vuser script. Not applicable for Application
Management.

lr_get_host_name Returns the name of the host executing the
Vuser script.

lr_get_master_host_name Returns the name of the machine running
the LoadRunner Controller or Tuning
Console. Not applicable for Application
Management.

lr_eval_string Replaces a parameter with its current value.

lr_save_string Saves a null-terminated string to a parameter.

lr_save_var Saves a variable length string to a parameter.

lr_save_datetime Saves the current date and time to a
parameter.

lr _advance_param Advances to the next available parameter.

lr _decrypt Decrypts an encoded string.

lr_eval_string_ext Retrieves a pointer to a buffer containing
parameter data.

lr_eval_string_ext_free Frees the pointer allocated by
lr_eval_string_ext.

lr_save_searched_string Searches for an occurrence of string in a
buffer and saves a portion of the buffer,
relative to the string occurrence, to a
parameter.

Part II • Working with VuGen

36

Message Functions

Run-Time Functions

lr_debug_message Sends a debug message to the Output window
or the Business Process Monitor log files.

lr_error_message Sends an error message to the Output
window or the Business Process Monitor log
files.

lr_get_debug_message Retrieves the current message class.

lr_log_message Sends a message to a log file.

lr_output_message Sends a message to the Output window or the
Business Process Monitor log files.

lr_set_debug_message Sets a debug message class.

lr_vuser_status_message Generates and prints formatted output to the
Controller or Console Vuser status area. Not
applicable for Application Management.

lr_message Sends a message to the Vuser log and Output
window or the Business Process Monitor log
files.

lr_load_dll Loads an external DLL.

lr_peek_events Indicates where a Vuser script can be paused.

lr_think_time Pauses script execution to emulate think
time—the time a real user pauses to think
between actions.

lr_continue_on_error Specifies an error handling method.

lr_rendezvous Sets a rendezvous point in a Vuser script. Not
applicable for Application Management.

Chapter 2 • Introducing VuGen

37

Getting Help on Functions

You can get help for VuGen’s API functions in several ways:

➤ Online Function Reference

➤ Word Completion

➤ Show Function Syntax

➤ Header File

Online Function Reference

The Online Function Reference contains detailed syntax information about all
of the VuGen functions. It also provides examples for the functions. You can
search for a function by its name, or find it through a categorical or
alphabetical listing.

To open the Online Function Reference, choose Help > Function Reference
from the VuGen interface. Then choose a protocol and select the desired
category.

To obtain information about a specific function that is already in your
script, place your cursor on the function in the VuGen editor, and press the
F1 key.

Part II • Working with VuGen

38

Word Completion

As part of the IntelliSense enhancements, the VuGen editor incorporates the
Word Completion feature. When you begin typing a function, after you type
the first underscore, VuGen opens a list box displaying all available matches
to the function prefix, along with the function’s syntax and description.

To use one of the displayed functions, select it, or scroll to the desired item
and then select it. VuGen inserts the function at the location of the cursor.
To close the list box, press the Esc key.

By default, VuGen uses word completion globally. To disable word
completion, choose Tools > General Options and select the Environment
tab. Clear the check box adjacent to the Auto complete word option. If you
disable word completion globally, you can still bring up the list box of
functions by pressing Ctrl+Space or choosing Edit > Complete Word while
typing in the editor.

Chapter 2 • Introducing VuGen

39

Show Function Syntax

An additional feature of VuGen’s Intellisense, is Show Function Syntax.
When you type the opening parenthesis of a function, VuGen shows the
syntax of the function with its arguments and prototypes and a brief
description.

By default, Show Function Syntax is enabled globally. To disable this feature,
choose Tools > General Options and select the Environment tab. Clear the
check box adjacent to the Auto show function syntax option.

If you disable Show Function Syntax globally, you can still bring up the
syntax by pressing Ctrl+Shift+Space or choosing Edit > Show Function
Syntax after typing the opening parenthesis in the editor.

Header File

All of the function prototypes are listed in the library header files. The
header files are located within the include directory of the Mercury product
installation. They include detailed syntax information and return values.
They also include definitions of constants, availability, and other advanced
information that may not have been included in the Function Reference.

In most cases, the name of the header file corresponds to the prefix of the
protocol. For example, Database functions that begin with an lrd prefix, are
listed in the lrd.h file.

Part II • Working with VuGen

40

The following table shows the header files that are associated with the most
commonly used protocols:

Protocol File

Citrix ctrxfuncs.h

COM/DCOM lrc.h

Database lrd.h

FTP mic_ftp.h

General C function lrun.h

IMAP mic_imap.h

LDAP mic_mldap.h

MAPI mic_mapi.h

Oracle NCA orafuncs.h

POP3 mic_pop3.h

RealPlayer lreal.h

SAPGUI as_sapgui.h

Siebel lrdsiebel.h

SMTP mic_smtp.h

Terminal Emulator lrrte.h

Tuxedo lrt.h

WAP as_wap.h

Web as_web.h

Web Services wssoap.h

Windows Sockets lrs.h

41

3
Using the Workflow Wizard

VuGen’s Workflow Wizard enables helps you develop a Vuser script that can
be used for load testing or monitoring.

This chapter describes:

➤ About the Workflow Wizard

➤ Viewing the Task Pane

➤ Recording Steps

➤ Verifying the Script

➤ Enhancing the Script

➤ Prepare for Load

➤ Finishing Your Script

The following information applies to all types of Vuser scripts.

About the Workflow Wizard

VuGen’s workflow wizard walks you through the different steps of creating a
script. First, you create a basic script, and then you adapt it for your test or
production environment.

By default, after installation VuGen opens with the Workflow Wizard view.
You can also work in the Tree view or Script view. The next time you start
VuGen and open a script, it opens to the view that you had open when you
exited VuGen. You can switch back to the wizard view by clicking on any
task in the Task Pane.

Part II • Working with VuGen

42

Viewing the Task Pane

VuGen’s left pane shows a list of the tasks required in order to create a
functional script. Click on any task within the list to open that step in the
wizard. VuGen indicates the current task with an arrow.

Note that the initial tasks differ slightly between Web, Web Services and
non-recordable protocols, such as Custom C Vusers.

The list of tasks is divided into five parts: Recording (Script Creation in C
and Web Services Vusers), Verification, Enhancements, Prepare for Load,
and Finish.

Chapter 3 • Using the Workflow Wizard

43

Many of the tasks have sub-tasks. The following table lists them.

Recording Steps

The Recording Section (excluding Web Services, C, and non-recordable
protocols) has two steps: Recording Application and Recording Summary.

Recording Application

This wizard step provides an introduction to the recording process and
contains the following sections.

➤ Before you Start

➤ About Recording

➤ Recording Process

➤ Recording Options

➤ Actions

Task Sub Tasks

Recording Record Application, Recording Summary (recordable
protocols)

Script Creation Create Script, Creation Summary (for Web Services, C))

Verification Verify Replay

Enhancements Introduction, Transactions, Parameterization, Content
Checks (for Web Vusers)

Prepare for Load Introduction, Iterations, Concurrent Users

Part II • Working with VuGen

44

Recording Summary

This wizard step provides a summary of the recording including the
protocol information and the actions into which the session was recorded.

This step also provides thumbnails of the recorded snapshots.

Verifying the Script

The Verification section contains the Verify Replay step. Note that once you
replay the script, you can view a Replay summary at any time by clicking
Replay Summary in the General section, below the Finish step.

Verify Replay

This wizard step provides an introduction to verification and contains the
following sections.

➤ About Replay

➤ Run-Time Settings

➤ Before Replay (what to look for during replay)

Chapter 3 • Using the Workflow Wizard

45

Replay Summary

This wizard step provides a summary of the replay. It list the errors and
provides a link to the error in the replay log.

The Replay summary also shows thumbnails of the Recording and Replay
snapshots. You can visually compare the snapshots and look for
discrepancies.

Note: For multiple iterations, the Replay Summary window shows the replay
thumbnails for the last iteration. To show the thumbnails of a specific
iteration, choose View > Tree View to switch to Tree view. Then choose View
> Snapshot > Select Iteration and select the desired iteration.

Part II • Working with VuGen

46

Enhancing the Script

The Enhancement Section has three primary steps: Transactions,
Parameterization, and Content Check.

Transactions

VuGen uses the Transaction Editor to allow you to add and manage
transactions directly from a thumbnail view of the script.

By default, VuGen only shows thumbnails for the primary steps in your
script. To show thumbnails for all of the steps in your script, choose View >
Show All Thumbnails.

In the following example, Trans2 measures the time for the three steps:
Select Flight, Enter Credit Card, and Flight Summary.

Chapter 3 • Using the Workflow Wizard

47

Working with the Transactions List

The transaction list, in the right pane of the Transaction editor, shows a list
of the transactions in the script. You can view a complete list of the
transactions in the script, or only those in a specific action.

Part II • Working with VuGen

48

To view all transactions, select All in the Action box. To view the
transactions in a specific action, select the action name in the Action box.

To show and hide the Transaction list, click the Hide or Show Transaction
List button in the upper right corner of the VuGen window.

By default, the transaction list only shows transactions without errors that
measure the server response for primary steps in the script. It does not show:

➤ Non-primary steps

➤ Client side transactions

➤ Transactions with errors

Therefore, you might see the following caption above the transaction list:
Transactions (2 of 4).

To show the hidden transactions—the non-primary and client side
transactions—click the button adjacent to Show hidden transactions at the
bottom of the transaction list. VuGen lists the hidden transactions in gray.
To hide them, click the button again.

Chapter 3 • Using the Workflow Wizard

49

Transactions with errors are those that do not measure any server steps, or
those with illegal names. To show the transactions with errors, click the
Show transactions with errors button. VuGen lists the transactions with
errors in red. To hide them, click the button again.

To show the transactions for non-primary steps, you need to display all of
the thumbnails. Choose View > Show All Thumbnails. The Transaction
Editor shows the thumbnails of all the steps in the script and their
transactions.

Defining Transactions in the Transaction Editor

You define a transaction in the Transaction Editor by marking the start and
ending thumbnails.

To define a transaction:

 1 Click Transactions in the Task list to open the Transaction Editor.

 2 In the thumbnail area (middle pane), scroll down to the steps that you want
to mark as a a transaction.

Tip: To see more thumbnails per page, click the toolbar’s Tasks button to
hide the Tasks list.

 3 To mark a single step as a transaction, click on a thumbnail and choose New
Single-Step Transaction from the right-click menu. VuGen prompts you to
provide a name for the new transaction. If you want to expand the
transactions at a later time, you can drag the transaction brackets to include
additional steps.

 4 To mark multiple steps as a transaction, click in the thumbnail area and
choose New Transaction from the right-click menu or click the New
Transaction button in the right pane.

 5 VuGen shows instructions in the status area above the thumbnails:

Step 1 of 3: Select a starting point for the new transaction.

Click the thumbnail of the transaction’s first step.

Part II • Working with VuGen

50

Step 2 of 3: Select where the new transaction should end.

Click the thumbnail of the transaction’s last step.

Step 3 of 3: Specify a name for the new transaction.

Type in a transaction name in the bracket directly above the transaction’s
first step.

To complete the transaction, press the Enter key.

To exit a transaction during the above sequence, press the Esc key.

 6 To change the starting point of a transaction, drag the transaction opening
bracket to a new location. To change the ending point of a transaction, drag
the transaction closing bracket to a new location.

 7 Repeat the above steps for additional transactions.

 8 To rename a transaction, select its title in the right pane and choose Rename
Transaction from the right-click menu. Type in the new name.

 9 To delete a transaction, select its title in the right pane and choose Delete
Transaction from the right-click menu.

Guidelines for the Transaction Editor

Follow these guidelines when creating and defining transactions in the
Transaction Editor:

➤ Transactions must begin and end within a single action—they may not
extend over multiple actions.

➤ Transaction names must be unique within your script, even between
actions.

➤ To change the starting point of a transaction, drag the transaction opening
bracket to a new location. To change the ending point of a transaction, drag
the transaction closing bracket to a new location.

➤ Use the right-click menu to add, rename, or delete transactions.

➤ You can create transactions within an existing transaction. These are called
nested transactions.

Chapter 3 • Using the Workflow Wizard

51

Note: If you nest transactions, close the second transaction before or at the
same time as you close the first one—otherwise it won’t be analyzed
properly.

Parameterization

The Parameterization screen provides you with an overview of
parameterizing values in your script. It guides you through the steps of
parameterization:

➤ Locate the argument you want to parameterize

➤ Give the parameter a name

➤ Select a parameter type

➤ Define properties for the parameter type

➤ Replace the argument with a parameter

After you parameterize an argument in your script, you can return to the
Enhancements step or replay the script.

Content Check

The Content Check wizard step lets you check your script for specific text or
content.

Using a Text Check, you can search for a text string during replay.

Using Content Checks, you can instruct VuGen to search for server strings
automatically using predefined rules, even if you don’t know the exact text
that will be returned by the server.

Part II • Working with VuGen

52

Prepare for Load

The fourth part of the Workflow Wizard is primarily for running load tests
on your system to check the response and capacity of your machine. This
part has two primary steps:

➤ Iterations

➤ Concurrent Users

Iterations

This wizard step provides an introduction to iterations and allows you to
open the Run-Time settings for setting their values.

To set the number of iterations:

 1 Open the Run-Time settings (F4).

 2 Select the Run Logic node.

 3 Specify the number of iterations.

Concurrent Users

This step guides you through the process of creating a scenario using the
LoadRunner Controller.

In a scenario, you can specify the number of users to run concurrently and
you can observe the behavior of your system with multiple users.

Finishing Your Script

The final step of the Workflow wizard is Finish.

It contains the following sections:

➤ Create a Scenario - to run a load test on your system using the LoadRunner
Controller.

➤ Upload to Performance Center - to run a test through a Performance Center
server installation.

➤ Upload to Quality Center - to add a test to the test repository.

53

4
Recording with VuGen

VuGen creates a Vuser script by recording the communication between a
client application and a server.

This chapter describes:

➤ About Recording with VuGen

➤ Vuser Script Sections

➤ Creating New Virtual User Scripts

➤ Adding and Removing Protocols

➤ Choosing a Virtual User Category

➤ Creating a New Script

➤ Opening an Existing Script

➤ Recording Your Application

➤ Ending and Saving a Recording Session

➤ Viewing the Recording Logs

➤ Using Zip Files

➤ Importing Actions

➤ Providing Authentication Information

➤ Regenerating a Vuser Script

The following information applies to all types of Vuser scripts except for
GUI.

Part II • Working with VuGen

54

About Recording with VuGen

VuGen creates a Vuser script by recording the actions that you perform on a
client application. When you run the recorded script, the resulting Vuser
emulates the user activity between the client and server.

Each Vuser script that you create contains at least three sections: vuser_init,
one or more Actions, and vuser_end. During recording, you can select the
section of the script into which VuGen will insert the recorded functions. In
general, you record a login to a server into the vuser_init section, client
activity into the Actions sections, and the logoff procedure into the vuser_end
section.

After creating a test, you can save it to a zip archive and send it as an email
attachment.

While recording, you can insert transactions, comments, and rendezvous
points into the script. For details, see Chapter 7, “Enhancing Vuser Scripts.”

Vuser Script Sections

Each Vuser script contains at least three sections: vuser_init, one or more
Actions, and vuser_end. Before and during recording, you can select the
section of the script into which VuGen will insert the recorded functions.
The following table shows what to record into each section, and when each
section is executed.

When you run multiple iterations of a Vuser script, only the Actions sections
of the script are repeated—the vuser_init and vuser_end sections are not
repeated. For more information on the iteration settings, see Chapter 12,
“Configuring Run-Time Settings.”

Script Section Used when recording... Is executed when...

vuser_init a login to a server the Vuser is initialized (loaded)

Actions client activity the Vuser is in “Running” status

vuser_end a logoff procedure the Vuser finishes or is stopped

Chapter 4 • Recording with VuGen

55

You use the VuGen script editor to display and edit the contents of each of
the script sections. You can display the contents of only a single section at a
time. To display a section, highlight its name in the left pane.

When working with Vuser scripts that use Java classes, you place all your
code in the Actions class. The Actions class contains three methods: init,
action, and end. These methods correspond to the sections of scripts
developed using other protocols—you insert initialization routines into the
init method, client actions into the action method, and log off procedures in
the end method. For more information, see Chapter 29, “Programming Java
Scripts.”

Note: Transaction Breakdown for Oracle DB is not available for actions
recorded in the vuser_init section.

public class Actions{
public int init() {

return 0;}
public int action() {

return 0;}
public int end() {

return 0;}
}

Part II • Working with VuGen

56

Creating New Virtual User Scripts

VuGen allows you to create new scripts by recording in either single or
multi-protocol mode.

The New Virtual User window opens whenever you click New. This dialog
box provides a shortcut to the following:

New Single Protocol Script: Creates a single protocol Vuser script. This is the
default option when the Startup dialog box opens. To create a single
protocol script, choose a category from the Category list (see “Choosing a
Virtual User Category” on page 60), and select a protocol in the protocol list
under that category.

Chapter 4 • Recording with VuGen

57

New Multiple Protocol Script: Creates a multiple protocol Vuser script.
VuGen displays all of the available protocols and allows you to specify
which protocols to record. To create a multiple protocol script, choose a
protocol and click the right arrow to move it into the Selected Protocols
section.

Part II • Working with VuGen

58

New Script Recent Protocols: Lists the most recent protocols that were used
to create new Vuser scripts and indicates whether they were single or multi
protocol. Select a protocol from the list and click OK to create a new script
for that protocol.

When you record a single protocol, VuGen only records the specified
protocol. When you record in multi-protocol mode, VuGen records the
actions in several protocols. Multi-protocol scripts are supported for the
following protocols: COM, FTP, IMAP, Oracle NCA, POP3, RealPlayer,
Window Sockets (raw), SMTP, and Web. The engine for the Dual protocol
Web/Ws uses a different mechanism and should be treated as a single
protocol—it may not be combined with the other multi-protocol types.

Another variation between Vuser types is multiple-action support. Most
protocols support more than one action section. Currently, the following
protocols support multi-actions: Oracle NCA, Web, RTE, General (C Vusers),
WAP, i-Mode, and VoiceXML.

Chapter 4 • Recording with VuGen

59

For most Vuser types, you create a new Vuser script each time you record—
you cannot record into an existing script. However, when recording a Java,
CORBA-Java, RMI-Java, Web, WAP, i-mode, Voice XML, Oracle NCA, or RTE
Vuser script, you can also record within an existing script.

Since VuGen supports a large variety of protocols, some of the recording
steps that follow apply only to specific protocols.

For all Java language Vusers (CORBA, RMI, Jacada, and EJB) see Chapter 17,
“Recording Java Language Vuser Scripts” for details about recording, or the
chapter discussing the specific protocol.

Adding and Removing Protocols

Before recording a multi-protocol session, VuGen lets you modify the
protocol list for which to generate code during the recording session. If you
specified certain protocols when you created the script, you can enable or
disable them using the Protocol Recording options.

To open the recording options, choose Tools > Recording Options or press
Ctrl+F7. Select the General:Protocols node.

Select the check boxes adjacent to the protocols you want to record in the
next recording session. Clear the check boxes adjacent to the protocols you
do not want to record in the next recording session.

Part II • Working with VuGen

60

Choosing a Virtual User Category

The Vuser types are divided into the following categories:

➤ All Protocols: a list of all supported protocols in alphabetical order

➤ Application Deployment Solution: For the Citrix protocol

➤ Client/Server: For MS SQL, ODBC, Oracle 2-Tier, DB2 CLI, Sybase Ctlib,
Sybase Dblib, Windows Sockets, and DNS protocols

➤ Custom: For C Templates, Visual Basic templates, Java templates,
Javascript and VBscript type scripts

➤ Distributed Components: For COM/DCOM, Corba-Java, and Rmi-Java
protocols

➤ E-business: For FTP, LDAP, Palm, Microsoft .NET, Web (HTTP/HTML),
Web Services, and the dual Web/Winsocket protocols

➤ Enterprise Java Beans: For EJB Testing and Rmi-Java protocols

➤ ERP/CRM: For Oracle NCA, Oracle Web Applications 11i, Peoplesoft
Enterprise, Peoplesoft-Tuxedo, SAP-Web, SAPGUI, SAPGUI/SAP-Web
dual, and Siebel (Siebel-DB2 CLI, Siebel-MSSQL, Siebel-Web, and Siebel-
Oracle) protocols

➤ Legacy: For Terminal Emulation (RTE)

➤ Mailing Services: Internet Messaging (IMAP), MS Exchange (MAPI),
POP3, and SMTP

➤ Middleware: Jacada and Tuxedo (6, 7) protocols

➤ Streaming: For Real and Media Player (MMS) protocols

➤ Wireless: For i-Mode, VoiceXML, and WAP protocols

Chapter 4 • Recording with VuGen

61

Creating a New Script

This section explains how to invoke VuGen and create a new script.

To create a new Vuser script:

 1 Select Start > Programs > Mercury application_name > Applications >
Virtual User Generator to start VuGen. The startup screen opens (unless you
disabled it when you last opened VuGen).

 2 To create a single protocol script, make a selection from the Category list
and select one of the protocols.

 3 To create a multi-protocol script, allowing you to record two or more
protocols in a single recording session, click the New Multiple Protocol
Script button in the left pane to enable the Protocol Selection window.

Select the desired protocol from the Available Protocols list. Click the right-
facing arrow to move the selection into the Selected Protocols list. Repeat
this step for all of the desired protocols.

Note: When recording certain Oracle NCA applications, you only need to
choose Oracle NCA—not Web Protocol. For details, see Chapter 58,
“Creating Oracle NCA Vuser Scripts.”

 4 To bypass this startup window the next time you open VuGen, select the
Don’t show the startup dialog in the future option. To enable it again,
choose Tools > General Options, and select Show Startup Dialog on the
Environment tab.

 5 Click OK to close the dialog box and begin generating the Vuser script.

Part II • Working with VuGen

62

Opening an Existing Script

If you already have a script on the local machine or network, you can
modify it and record additional actions.

To open an existing script:

 1 To open a script stored on your local machine or a network drive, choose
File > Open.

 2 To open a file from a Quality Center repository (LoadRunner only), see
“Opening Scripts from a Quality Center Project” on page 203.

 3 To open a script stored in a compressed zip file, choose File > Zip Operations
> Import from Zip File. After you choose a zip file, VuGen prompts you for a
location at which to store the unzipped files.

 4 To work from a zip file, while not expanding or saving the script files,
choose File > Zip Operations > Work from Zip File. When you modify the
script and save it, the changes are stored directly in the zip file.

Chapter 4 • Recording with VuGen

63

Recording Your Application

For most Vuser script types, VuGen automatically opens the Start Recording
dialog box when you create the new script.

To begin recording:

 1 If the Start Recording dialog box was not opened, click the Start Recording
button. The Start Recording dialog box opens. This dialog box differs
slightly for each protocol.

 2 For most Client/Server protocols, the following dialog box opens:

Enter the program to record, the working directory, (optional) and the
Action. If applicable, click Options to set the recording options.

 3 For non-Internet applications, choose the application type: Win32
Applications or Internet Applications. For example, Web and Oracle NCA
scripts record Internet Applications, while Windows Socket Vusers records a
Win32 application. For Citrix ICA Vusers, VuGen automatically records the
Citrix client—you only need to specify the action in Record into Action.

Part II • Working with VuGen

64

 4 For Internet Applications, fill in the relevant information:

Program to record: Select the browser or Internet application to record.

URL Address: Specify the starting URL address.

Working Directory: For applications that require you to specify a working
directory, specify it here. The required information differs, depending on
the type of Vuser script.

 5 For Win32 Applications, fill in the relevant information:

Program to record: Enter the Win 32 application to record.

Program Arguments: Specify command line arguments for the executable
specified above. For example, if you specify plus32.exe with the command
line options peter@neptune, it connects the user Peter to the server Neptune
when starting plus32.exe.

Chapter 4 • Recording with VuGen

65

Working Directory: For applications that require you to specify a working
directory, specify it here.

 6 In the Record into Action box, select the section into which you want to
record. Initially, the available sections are vuser_init, Action1, and vuser_end.
For single-protocol Vuser scripts that support multiple actions (Oracle NCA,
Web, RTE, C Vusers, WAP, i-Mode, and VoiceXML), you can add a new
section by selecting Actions > Create New Action and specify a new action
name.

 7 To record the application startup, select Record the application startup (not
applicable to Java type Vuser script). To instruct VuGen not to record the
application startup, clear the check box. In the following instances, it may
not be advisable to record the startup:

➤ If you are recording multiple actions, in which case you only need to
perform the startup in one action.

➤ In cases where you want to navigate to a specific point in the application
before starting to record.

➤ If you are recording into an existing script.

 8 Click Options or the Recording Options button to open the Recording
options dialog box and set the recording options. The available options may
vary, depending on the recorded protocol. For more information, see their
respective chapters.

 9 To choose a language for code generation and to set the scripting options,
click the Script tab. For details, see Chapter 5, “Setting Script Generation
Preferences.”

 10 To specify port information, click the Port Mapping tab. This is useful when
recording SSL applications on a non-standard port. Review the list of ports.
If the port you are using is not on the list, you can specify the information
using the Port Mapping options. For more information, see Chapter 6,
“Configuring the Port Mappings.”

Part II • Working with VuGen

66

 11 For a multi-protocol recording: To modify the list of protocols that you want
to record, click the Protocol tab. Expand the node and select the desired
protocols.

You are now ready to begin recording.

 12 Click OK to close the dialog box and begin recording.

 13 If you cleared the Record the application startup check box, the Recording
Suspended dialog box appears. When you reach the point at which you
want to start recording, click Record. If you decide not to record, click
Abort.

 14 VuGen starts your application and the Recording toolbar opens.

Perform typical actions within your application. VuGen simultaneously fills
in the selected action section of the Vuser script. Use the floating toolbar to
switch between sections during recording.

If your application or server requires authentication, VuGen will prompt
you to enter a user name and password. For more information about
authentication, see the appropriate section.

Chapter 4 • Recording with VuGen

67

Ending and Saving a Recording Session

After you record a typical business process, you complete the recording
session by performing the closing steps of your business process and saving
the Vuser script.

To complete the recording:

 1 Switch to the vuser_end section in the floating toolbar, and perform the log
off or cleanup procedure.

 2 Click the Stop Recording button on the Recording toolbar. The VuGen
editor displays all the recorded steps, (or the recorded functions if you began
in script view).

 3 Click Save to save the recorded session. The Save Test dialog box opens (for
new Vuser scripts only). Specify a script name. Note: Do not name the script
init, run or end, since these names are used by VuGen.

Part II • Working with VuGen

68

 4 To save the entire script directory as a zip file, choose File > Zip Operations >
Export to Zip File.

Specify which files to save. To save only runtime files, select Runtime files in
the Files to zip section. By default, VuGen saves all files to the archive.

Choose a compression ratio: maximum, normal, fast, super fast, or none.
The greater the compression ratio, the longer VuGen will take to create the
archive.

Click OK.

 5 To create a zip file and send it as an email attachment, choose File > Zip
Operations > Zip and Email.

Click OK. An email compose form opens.

Enter an email address and send your email.

 6 For Performance Center users, you can upload your files to the repository on
the server. To upload the files, choose File > Upload to Performance Center
server. A dialog box opens.

➤ Enter the URL of the Performance Center server in the URL box.

➤ Choose a project name in the Project box.

➤ Enter your user name and password for logging on to the server.

➤ Click OK to accept the settings and close the dialog box.

Chapter 4 • Recording with VuGen

69

Viewing the Recording Logs

After recording, you can view the contents of the vuser_init, Actions, and
vuser_end sections in the VuGen script editor. To display an action, select the
action name in the left pane.

While you record, VuGen creates a series of configuration, data, and source
code files. These files contain Vuser run-time and setup information. VuGen
saves these files together with the script.

You can view information about the recording and the script generation by
viewing the logs in the bottom window. To open the Output window,
choose View > Output Window and select the Recording Log or Generation
Log tabs.

Recording Log

To view a log of the messages that were issued during recording, click the
Recording Log tab. You can set the level of detail for this log in the
Advanced tab of the Recording options.

Part II • Working with VuGen

70

Generation Log

To view a summary of the script’s settings used for generating the code,
select the Generation Log tab. This view shows the recorder version, the
recording option values, and other additional information.

Using Zip Files

VuGen allows you to work with zip file in several ways. The advantages of
working with zip files is that you conserve disk space, and it allows your
scripts to be portable. Instead of copying many files from machine to
machine, you only need to copy one zip file.

Importing from a Zip file

To open a script stored in a compressed zip file, choose File > Zip Operations
> Import from Zip File. After you choose a zip file, VuGen prompts you for a
location at which to store the unzipped files.

Working from a Zip file

To work from a zip file, while not expanding or saving the script files,
choose File > Zip Operations > Work from Zip File. When you modify the
script and save it, the changes are stored directly in the zip file.

Exporting to a Zip File

To save the entire script directory as a zip file, choose File > Zip Operations >
Export to Zip File.

Chapter 4 • Recording with VuGen

71

You can indicate whether to save all files of only runtime. By default, VuGen
saves all files to the archive. To save only runtime files, select the Runtime
files option.

You can also choose a compression ratio: Maximum, Normal, Fast, Super
fast, or None. The greater the compression ratio, the longer VuGen takes to
create the archive. The Maximum compression option, therefore, is the
slowest.

Zip and Email

To create a zip file and send it as an email attachment, choose File > Zip
Operations > Zip and Email. When you click OK in the Zip To File dialog
box, VuGen compresses the file according to your settings and opens an
email compose form with the zip file as an attachment.

Importing Actions

For Vuser types that support multiple actions, you can import actions into
your script from another Vuser script. You can only import actions from
Vusers of the same type. Note that any parameters associated with the
imported action, will be merged with the script. The available options are:

Import From Vuser: Enter or Browse for the Vuser script from which you
want to import.

Action to Import: Select the Action you want to import.

Part II • Working with VuGen

72

To import actions into the current script:

 1 Select Actions > Import Action into Vuser. The Import Action dialog box
opens.

 2 Click Browse to select a Vuser script. A list of the script’s actions appears in
the Actions to Import section.

 3 Highlight an action and click OK. The action appears in your script.

 4 To rearrange the order of actions, you must first enable action reordering.
Right-click on any action and select Enable Action Reorder. Then drag the
actions to the desired order. Note that when you reorder actions in the left
pane of VuGen, it does not affect the order in which they are executed. To
change the order of execution, use the Pacing node of the Run-Time settings
as described in Chapter 12, “Configuring Run-Time Settings.”

Providing Authentication Information

The following section only applies to multi-protocol recording.

When recording a Web session that uses NTLM authentication, your server
may require you to enter details such as a user name and password.

Initially, IE (Internet Explorer) tries to use the NT authentication
information of the current user:

Chapter 4 • Recording with VuGen

73

➤ If IE succeeds in logging in using this information and you record a script —
then, at the end of the recording VuGen prompts you to enter a password.
VuGen retrieves the user name and domain information automatically. If
necessary, you can also edit the user name in the Mercury Web Recorder
NTLM Authentication dialog box.

➤ If IE is unable to log in with the current user’s information, it prompts you
to enter a user name and password using the standard browser
authentication dialog box.

Part II • Working with VuGen

74

Generating a web_set_user function

When performing NTLM authentication, VuGen adds a web_set_user
function to the script.

➤ If the authentication succeeds, VuGen generates a web_set_user function
with your user name, encrypted password, and host.

web_set_user("domain1\\dashwood",
lr_decrypt("4042e3e7c8bbbcfde0f737f91f"),

"sussex:8080");

➤ If you cancel the Mercury Web Recorder NTLM Authentication dialog box
without entering information, VuGen generates a web_set_user function for
you to edit manually.

web_set_user("domain1\\dashwood,
"Enter NTLM Password Here",
"sussex:8080");

Note: If you enter a password manually, it will appear in the script as is,
presenting a security issue. To encrypt the password, select it and choose
Encrypt string from the right-click menu. VuGen encrypts the string and
generates an lr_decrypt function, used to decode the password during
replay. For more information about encrypting strings, see “Encrypting
Text” on page 109.

Regenerating a Vuser Script

After recording a script, you can enhance it by adding transactions,
rendezvous, messages, or comments. For more information, see Chapter 7,
“Enhancing Vuser Scripts.”

In addition, you can parameterize the script and correlate variables. For
more information, see Chapter 8, “Working with VuGen Parameters.”

Chapter 4 • Recording with VuGen

75

If you need to revert back to your originally recorded script, you can
regenerate it. This feature is ideal for debugging, or fixing a corrupted script.
When you regenerate a script, it removes all of the manually added
enhancements to the recorded actions. Note that if you added parameters to
your script, VuGen restores the original values. The parameter list, however,
is not deleted; you can reinsert parameters that you created earlier. Note that
regeneration, only cleans up the recorded actions, but not those that were
manually added.

The following buttons are available from the Regenerate Script dialog box.

OK: Regenerates the Vuser script from the original Recording log.
Regeneration removes all correlations and parameterizations that you
performed on the script manually.

Options: When working with multi-protocol scripts, you can indicate which
protocols to regenerate. To customize the regeneration, click the Options
button in the Regenerate Vuser dialog box to open the recording options.
Select the Protocols tab and indicate which protocols to regenerate and
which to leave as is. Select the check boxes of the protocols you want to
regenerate. Clear the check boxes of those you do not wish to regenerate.

To regenerate a multi-protocol Vuser script:

 1 Choose Tools > Regenerate Script. VuGen issues a warning indicating that
all manual changes will be overwritten.

 2 Click Options to open the Regenerate Options dialog box.

 3 Select the General:Protocols node. Indicate which protocols to regenerate
and which to leave as is. Select the check boxes of the protocols you want to

Part II • Working with VuGen

76

regenerate. Clear the check boxes of the protocols you want to leave
unchanged.

 4 To change the Script options, select the General:Script node and select or
clear the appropriate check box.

77

5
Setting Script Generation Preferences

Before you record a script with VuGen, you indicate the desired scripting
language: C, Visual Basic, VB Script, or Javascript.

This chapter describes the script language recording options that apply to
many of the supported protocols.

➤ About Setting Script Generation Preferences

➤ Selecting a Script Language

➤ Applying the Basic Options

➤ Understanding the Correlation Options

➤ Setting Script Recording Options

The following information applies to all Vuser scripts that support multi-
protocol recording.

About Setting Script Generation Preferences

Before you record a session, you can set several recording options which
instruct the recorder what to include in the script and how to generate it.

If at least one of the protocols you are recording has multi-protocol
capabilities, the Script options will be available. The only exception is when
you record HTTP or WinSock as a single protocol script. In this case, the
Script options are not available.

Part II • Working with VuGen

78

Selecting a Script Language

When you record a session, by default VuGen creates a script that emulates
your actions. The default script generation language is C. For the FTP,
COM/DCOM, and mail protocols (IMAP, POP3, and SMTP), VuGen can also
generate a script in Visual Basic, VB Script, and Javascript.

C Language - For recording applications that use complex COM constructs
and C++ objects

Visual Basic for Applications - For VB-based applications, using the full
capabilities of VB (unlike VBScript)

Visual Basic Scripting - For VBscript-based applications, such as ASP

Java Scripting - For Javascript-based applications such as js files and dynamic
HTML applications

After the recording session, you can modify the script with regular C, Visual
Basic, VB Script, or Javascript code or control flow statements.

The following sections describe the scripting options. For all scripts, see
“Applying the Basic Options” on page 78. To set the correlation options for
non-C scripts, see “Understanding the Correlation Options” on page 80.

For further instructions, see “Setting Script Recording Options” on page 81.

Applying the Basic Options

The Basic script options apply to all generation languages. These options
allow you to control the level of detail in the generated script.

Close all AUT processes when recording stops: Automatically closes all of
the application under test’s (AUT) processes when VuGen stops recording
(disabled by default).

Explicit variant declaration - Declare variant types explicitly in order to
handle ByRef variants (Visual Basic for Applications only, disabled by
default).

Chapter 5 • Setting Script Generation Preferences

79

Generate fixed think time after end transaction: Add a fixed think time, in
seconds, after the end of each transaction. When you enable this option,
you can specify a value for the think time. The default is 3 seconds (disabled
by default).

Generate recorded events log: Generate a log of all events that took place
during recording (disabled by default).

Generate think time greater than threshold: Use a threshold value for think
time. If the recorded think time is less than the threshold, VuGen does not
generate a think time statement. You also specify the threshold value. The
default values is 3—if the think time is less than 3 seconds, VuGen does not
generate think time statements. If you disable this option, VuGen will not
generate any think times (enabled by default).

Maximum number of lines in action file - Create a new file if the number of
lines in the action exceeds the specified threshold. The default threshold is
60000 lines (C Language only).

Insert post-invocation info - Insert informative logging messages after each
message invocation (non-C only, enabled by default).

Insert pre-invocation info - Insert informative logging messages before each
message invocation (non-C only, enabled by default).

Replace long strings with parameter - Save strings exceeding the maximum
length to a parameter. This option has an initial maximum length of 100
characters. The parameters and the complete strings are stored in the
lr_strings.h file in the script’s folder in the following format:

const char <paramName_uniqueID> =”string”.

This option allows you to have a more readable script. It does not effect the
performance of the script (enabled by default).

Track processes created as COM local servers: Track the activity of the
recorded application if one of its sub-processes was created as a COM local
server (enabled by default).

Use helpers for arrays - Use helper functions to extract components in
variant arrays (Java and VB Scripting only, disabled by default).

Part II • Working with VuGen

80

Use helpers for objects - Use helper functions to extract object references
from variants when passed as function arguments (Java and VB Scripting
only, disabled by default).

For further instructions, see “Setting Script Recording Options” on page 81.

Understanding the Correlation Options

Correlation allows you to save dynamic values during test execution. These
settings let you configure the extent of automatic correlation performed by
VuGen while recording. All of correlation options are disabled by default.
The Correlation options only apply to the VBScript and JScript languages.

Correlate small numbers - Correlate short data types such as bytes,
characters, and short integers (disabled by default).

Correlate large numbers - Correlate long data types such as integers, long
integers, 64-bit characters, float, and double (disabled by default).

Correlate simple strings - Correlate simple, non-array strings and phrases
(enabled by default).

Correlate arrays - Track and correlate arrays of all data types, such as string,
structures, numbers, and so on (disabled by default).

Correlate structures - Track and correlate complex structures (disabled by
default).

For further instructions, see “Setting Script Recording Options” on page 81.

Chapter 5 • Setting Script Generation Preferences

81

Setting Script Recording Options

You set the Recording Options before your script related initial recording.
The number of available options depends on the script generation language.

To set the script recording options:

 1 Open the Recording Options. Choose Tools > Recording Options from the
main menu or click Options... in the Start Recording dialog box. The
Recording Options dialog box opens.

 2 Select the General:Script node.

 3 In the Select Script Language box, select a mode of code generation — C
Language or Visual Basic for Applications. Use C to record applications that
use complex constructs and C++ code. Use Visual Basic to record script-
based applications.

 4 In the Scripting Options section, enable the desired options by selecting the
check box adjacent to it. The options are explained in the previous sections.

 5 Click OK to save your settings and close the dialog box.

Part II • Working with VuGen

82

83

6
Configuring the Port Mappings

When working with protocols that record network traffic on a socket level,
you can indicate the port to which you want to map the traffic.

This chapter describes:

➤ About Configuring the Port Mappings

➤ Defining Port Mappings

➤ Adding a New Server Entry

➤ Setting the Auto-Detection Options

➤ Setting the Port Mapping Recording Options

The following information applies to all Vuser scripts that record on a
socket level: HTTP, SMTP, POP3, IMAP, Oracle NCA, and WinSocket.

Part II • Working with VuGen

84

About Configuring the Port Mappings

When recording Vuser scripts that record network traffic on a socket level
(HTTP, SMTP, POP3, FTP, IMAP, Oracle NCA and WinSocket), you can set the
Port Mapping options. Using these options, you can map the traffic from a
specific server:port combination to the desired communication protocol.

The available communication protocols to which you can map are FTP,
HTTP, IMAP, NCA, POP3, SMTP, and SOCKET. You create a mapping by
specifying a server name, port number, or a complete server:port
combination. For example, you can indicate that all traffic from the server
twilight on port 25, should be handled as SMTP. You can also specify that all
traffic from the server called viper, should be mapped to the FTP protocol,
regardless of the port. Additionally, you can map all traffic on port 23 to
SMTP, regardless of the server name.

When recording in multi-protocol mode, If at least one of the protocols
records on a socket level, the Port Mapping options will be available. The
only exception is when you record HTTP or WinSock as a single protocol
script. In this case, the Port Mapping options are not available.

Defining Port Mappings

VuGen uses the Port Mapping settings to direct traffic via a specific
server:port combination to the desired communication protocol.

Network-level server address mappings for: Specifies the mappings per
protocol. For example, to show only the FTP mappings, choose FTP.

New Entry: Opens the Server Entry dialog box, allowing you to add a new
mapping. See “Adding a New Server Entry” on page 86.

Edit Entry: Opens the Server Entry dialog box, allowing you to edit the
selected entry.

Delete Entry: Deletes the selected entry.

Options: Opens the Advanced Settings dialog box to enable auto-detection
of the communication protocol and SSL level. See “Setting the Auto-
Detection Options” on page 88.

Chapter 6 • Configuring the Port Mappings

85

If you do not specify all of the port and server names, VuGen uses the
following priorities in assigning data to a service:

A map entry with a high priority does not get overridden by an entry with a
lower priority. For example, if you specify that traffic on server twilight using
port 25 be handled as SMTP and then you specify that all servers on port 25
be handled as HTTP, the data will be treated as SMTP.

In addition, the following guidelines apply:

➤ Port 0: Port number 0 indicates any port.

➤ Forced mapping: If you specify a mapping for a port number, server name,
or combination server:port, VuGen forces the network traffic to use that
service. For example, if you were to specify <Any> server on port 80 to use
FTP, VuGen uses the FTP protocol to record that communication, even
though the actual communication may be HTTP. In this instance, the Vuser
script might be empty.

After you define a port mapping, it appears in the list of Port Mappings. You
can temporarily disable any entry by clearing the check box adjacent to it.
When you disable an entry, VuGen ignores all traffic to that server:port
combination. You should disable the port entry when the data is irrelevant
or if the protocol is not supported.

For further instructions, see “Setting the Port Mapping Recording Options”
on page 90.

Priority Port Server

1 specified specified

2 not specified <All> specified

3 specified not specified <All>

4 not specified <All> not specified <All>

Part II • Working with VuGen

86

Adding a New Server Entry

You use the Server Entry dialog box to create a new entry in the list of port
mappings.

Socket Service

Target Server: The IP address or host name of the target server for which
this entry applies. The default is All Servers.

Port: The port of the target server for which this entry applies. Port 0 implies
all ports.

Service ID: A protocol or service name used by the recorder to identify the
type of connection (i.e. HTTP, FTP, and so on). You can also specify a new
name. The name may not exceed 8 characters.

Chapter 6 • Configuring the Port Mappings

87

Service Type: The type of service, currently set to TCP.

Connection Type: The security level of the connection: Plain (non-secure),
SSL, or Auto. If you select Auto, the recorder checks the first 4 bytes for an
SSL signature. If it detects the SSL signature, it assumes that SSL is being
used.

SSL Configuration

If you selected SSL or auto as the connection type, configure the relevant
SSL settings in the section. These settings only apply to the new entry. You
should only specify them if you have explicit information about your
application’s SSL encoding. Otherwise, accept the defaults.

SSL Version: The preferred SSL version to use when communicating with the
client application and the server. By default is SSL 2/3 is used. However some
services require SSL 3.0 only or SSL 2.0 only. Some new wireless applications
require TLS 1.0—a different security algorithm.

SSL Cipher: The preferred SSL cipher to use when connecting with a remote
secure server.

Use specified client-side certificate: The default client-side certificate to use
when connecting to a remote server. Specify or browse for a certificate file in
txt, crt, or pem format, and supply a password.

Use specified proxy-server certificate: The default server certificate to
present to client applications that request a server certificate. Specify or
browse for a certificate file in txt, crt, or pem format, and supply a password.
Click Test SSL to check the authentication information against the server.

Traffic Forwarding

Allow forwarding to target server from local port: This option forwards all
traffic from a specific port to another server. This is particularly useful in
cases where VuGen cannot run properly on the client, such as unique UNIX
machines, or instances where it is impossible to launch the application
server through VuGen. We configure VuGen to intercept the traffic from the
problematic client machine, and pass it on to the server. In this way, VuGen
can process the data and generate code for the actions.

Part II • Working with VuGen

88

For example, if you were working on a UNIX client called host1, which
communicated with a server, server1, over port 8080, you would create a Port
Mapping entry for server1, port 8080. In the Traffic Forwarding section of
the Server Entry dialog box, you enable traffic forwarding by selecting the
Allow forwarding to target server from local port check box. You specify the
port from which you want to forward the traffic, in our example 8080.

You then connect the client, host1, to the machine running VuGen, instead
of server1. VuGen receives the communication from the client machine and
forwards it via the local port 8080, to the server. Since the traffic passes
through VuGen, it can analyze it and generate the appropriate code.

For further instructions, see “Setting the Port Mapping Recording Options”
on page 90.

Setting the Auto-Detection Options

By default, no mappings are defined and VuGen employs auto-detection.
VuGen’s auto-detection analyzes the data that is sent to the server. It checks
the data for a signature, a pattern in the data’s content, that identifies the
protocol. For the purpose of detecting a signature, all of the send buffers
until the first receive buffer, are combined. All send buffers that were sent
until a receive buffer is returned, are considered a single data transition. In
some protocols, VuGen determines the type in a single transition, (such as
HTTP). Other network protocols require several transitions before
determining the type. For this purpose, VuGen creates a temporary buffer,
per server-port combination. If VuGen cannot determine the protocol type
by reading the first transition buffers, it stores the data in a temporary
buffer. It continues to read the incoming buffers until it detects a signature
of a specific protocol.

By default, VuGen allows 4 transitions and uses a temporary buffer of 2048
bytes in order to detect a protocol signature. If VuGen has not yet
determined the type after reaching the maximum number of transitions, or
after reaching the maximum buffer size, it assigns the data to the WinSock
protocol. If you did not instruct VuGen to record the WinSock protocol (in
the multi-protocol selection), VuGen discards the data.

Chapter 6 • Configuring the Port Mappings

89

You can change the maximum number of buffers you want VuGen to read
in order to detect the protocol type. You can also specify the size of the
temporary buffer. In instances where the amount of data in the first send
buffers, is greater than the size of the temporary buffer, VuGen cannot auto-
detect the protocol type. In this case, you should increase the size of the
temporary buffer.

Enable auto SSL detection: Automatically detects SSL communication.
Specify the version and default cipher that you want to detect. Note that
this only applies to port mappings that were defined as auto in the
Connection type box, or not defined at all. If a server, port, or server:port
combination was defined as either Plain or SSL, then auto SSL detection
does not apply.

Enable auto detection of SOCKET based communication: Automatically
detects the type of communication. If required, raise the maximum number
of transitions, one at a time until VuGen succeeds in detecting the protocol.
You can also gradually increase the maximum buffer size by 1024 bytes (1
KB) at a time until VuGen succeeds in detecting the protocol. This allows
VuGen to review a larger amount of data in order to find a signature.

Update: Accepts the auto-detection options and closes the dialog box.

When working with the above network level protocols, it is recommended
that you allow VuGen to use auto-detection to determine the protocol type.
In most cases, VuGen’s recorder is able to recognize the signatures of these
protocols. It then automatically processes them according to the protocol
specifications. In certain instances, however, VuGen may be unable to
recognize the protocol. For example:

➤ The protocol signature closely resembles an existing protocol, resulting
in erroneous processing.

➤ There is no unique signature for the protocol.

➤ The protocol uses SSL encryption, and therefore cannot be recognized on
a WinSock level.

Part II • Working with VuGen

90

In all of the above cases, you can supply information to uniquely identify
the server and port hosting the protocol.

For further instructions, see “Setting the Port Mapping Recording Options”
on page 90.

Setting the Port Mapping Recording Options

Note that you can open the Recording Options dialog box in several ways:

➤ The toolbar button:

➤ The keyboard shortcut: Ctrl+F7

➤ The Tools menu: choose Tools > Recording Options

To set the port mapping recording options:

 1 Open the Recording Options and select the Network:Port Mapping node.

Chapter 6 • Configuring the Port Mappings

91

 2 To create a new server:port mapping, click New Entry. The Server Entry
dialog box opens.

 3 Enter the Service ID, Service Type, Target Server, Target Port, and
Connection Type in the Socket Service section:

 4 If you selected SSL or auto as the connection type, configure the relevant
SSL settings in the SSL Configuration section. These settings only apply to
the new entry. You should only specify them if you have explicit
information about your application’s SSL encoding. Otherwise, accept the
defaults.

Specify the SSL Version, SSL Cipher. To use a certificate, select Use specified
client-side certificate or Use specified proxy-server certificate and specify
the user information.

Click Test SSL to check the authentication information against the server.

Part II • Working with VuGen

92

 5 To allow traffic forwarding, select Allow forwarding to target server from
local port, and specify a port number. Note that this option is only enabled
when the Target Server and Target Port are unique (not <Any>).

 6 Click Update to save the mapping and close the Server Entry dialog box.

 7 To set automatic detection capabilities, click Options. The Advanced Port
Mapping Setting dialog box opens.

To automatically detect SSL communication, select Enable auto SSL
detection and specify the version and cipher information.

To automatically detect the type of communication, select Enable auto
detection of SOCKET based communication. If required, raise the maximum
number of transitions.

Click Update to accept the auto-detection options and close the dialog box.

 8 To view all of the entries, select All IDs in the Network-level server address
mappings box.

 9 To modify an existing entry, select it and click Edit Entry. Note that you
cannot change the server name or port number of an entry. You can only
change the connection type and security settings.

 10 To permanently delete a mapping, select the entry from the list and click
Delete Entry. To temporarily disable the mapping settings for a specific
entry, clear the check box adjacent to that item. To enable the mapping,
select the check box.

 11 Click OK.

93

7
Enhancing Vuser Scripts

You can enhance a Vuser script—either during or after recording—by adding
General Vuser functions, Protocol-Specific Vuser functions, and Standard
ANSI C functions.

This chapter describes:

➤ About Enhancing Vuser Scripts

➤ Inserting Transactions into a Vuser Script

➤ Inserting Rendezvous Points (LoadRunner and Tuning only)

➤ Inserting Comments into a Vuser Script

➤ Obtaining Vuser Information

➤ Sending Messages to Output

➤ Handling Errors in Vuser Scripts During Execution

➤ Synchronizing Vuser Scripts

➤ Emulating User Think Time

➤ Handling Command Line Arguments

➤ Encrypting Text

➤ Encoding Passwords Manually

➤ Adding Files to the Script Folder

The following information applies to all types of Vuser scripts except for
GUI and Java.

Part II • Working with VuGen

94

About Enhancing Vuser Scripts

While you are recording a Vuser script, or after you record it, you can
enhance its capabilities by manually adding a step, also known as a
function.

To add a new step to your script.

 1 Place the cursor at the desired location.

 2 Choose Insert > New Step. The Add Step dialog box opens with the relevant
steps for the current protocol.

 3 Select a step and click OK. VuGen inserts the step (or function in Script
view) at the location of the cursor.

The following types of functions are available from the Add Steps dialog
box:

➤ General Vuser Functions

➤ Protocol-Specific Vuser Functions

➤ Standard ANSI C Functions

Chapter 7 • Enhancing Vuser Scripts

95

General Vuser Functions

General Vuser functions greatly enhance the functionality of any Vuser
script. For example, you can use General Vuser functions to measure server
performance, control server load, add debugging code, or retrieve run-time
information about the Vusers participating in the test.

You can use General Vuser functions in any type of Vuser script. All General
Vuser functions have an LR prefix. VuGen generates some General Vuser
functions and inserts them into a Vuser script during recording. To use
additional functions that were not automatically generated, choose Insert >
New Step from VuGen’s main window and select the desired function.

This chapter discusses the use of only the most common General Vuser
functions. For additional information about Vuser functions, refer to the
Online Function Reference (Help > Function Reference).

Protocol-Specific Vuser Functions

There are several libraries of functions that you can use to enhance a Vuser
script. Each library is specific to a type of Vuser. For example, you use the
LRS functions in a Windows Sockets Vuser script and LRT functions in a
Tuxedo Vuser script. For details on the protocol-specific Vuser functions,
refer to the Online Function Reference (Help > Function Reference).

Part II • Working with VuGen

96

Standard ANSI C Functions

You can enhance your Vuser scripts by adding standard ANSI C functions.
ANSI C functions allow you to add comments, control flow statements,
conditional statements, and so forth to your Vuser scripts. You can add
standard ANSI C functions to any type of Vuser script. For details, see
“Guidelines for Using C Functions” on page 395.

Inserting Transactions into a Vuser Script

You define transactions to measure the performance of the server. Each
transaction measures the time it takes for the server to respond to specified
Vuser requests. These requests can be simple tasks such as waiting for a
response for a single query, or complex tasks, such as submitting several
queries and generating a report.

To measure a transaction, you insert Vuser functions to mark the beginning
and the end of a task. Within a script, you can mark an unlimited number of
transactions, each transaction with a different name.

For LoadRunner and the Tuning Module, the Controller or Console
measures the time that it takes to perform each transaction. After the test
run, you analyze the server’s performance per transaction using the
Analysis’ graphs and reports.

You can create transactions either during or after recording. To add
transactions after recording, use the Transaction editor to graphically mark
the steps of a transaction, as described in “Transactions” on page 46.
Alternatively, use the Insert menu to add Start Transaction and End
Transaction markers.

The following sections describe how to create a transaction during
recording.

Chapter 7 • Enhancing Vuser Scripts

97

Marking the Beginning of a Transaction

Before creating a script, you should determine which business processes you
want to measure. You then mark each business process or sub-process as a
transaction.

To mark the start of a transaction:

 1 While recording a Vuser script, click the Start Transaction button on the
Recording toolbar. The Start Transaction dialog box opens.

 2 Type a transaction name in the Transaction Name box. Transaction names
must begin with a letter or number and may contain letters, numbers, or the
following characters !, $, %, &, ', -, [, ^, _, `, <, >, {, }, |, or ~. Do not use the
period (.) character.

Click OK to accept the transaction name. VuGen inserts an
lr_start_transaction statement into the Vuser script. For example, the
following function indicates the start of the trans1 transaction:

lr_start_transaction("trans1");

Part II • Working with VuGen

98

Marking the End of a Transaction

You mark the end of a business process with an end transaction statement.

To mark the end of a transaction:

 1 While recording a script, click the End Transaction button on the Recording
toolbar. The End Transaction dialog box opens.

 2 Click the arrow for a list of open transactions. Select the transaction to close.

Click OK to accept the transaction name. VuGen inserts an
lr_end_transaction statement into the Vuser script. For example, the
following function indicates the end of the trans1 transaction:

Note: You can create nested transactions—transactions within transactions.
If you nest transactions, close the inner transactions before closing the outer
ones—otherwise the transactions won’t be analyzed properly.

Inserting Rendezvous Points (LoadRunner and Tuning only)

This section only applies to LoadRunner and Tuning Module.

lr_end_transaction("trans1", LR_AUTO);

Chapter 7 • Enhancing Vuser Scripts

99

When performing load testing, you need to emulate heavy user load on
your system. To accomplish this, you synchronize Vusers to perform a task
at exactly the same moment. You configure multiple Vusers to act
simultaneously by creating a rendezvous point. When a Vuser arrives at the
rendezvous point, it waits until all Vusers participating in the rendezvous
arrive. When the designated number of Vusers arrive, the Vusers are
released.

You designate the meeting place by inserting a rendezvous point into your
Vuser script. When a Vuser executes a script and encounters the rendezvous
point, script execution is paused and the Vuser waits for permission from
the Controller or Console to continue. After the Vuser is released from the
rendezvous, it performs the next task in the script.

Note: Rendezvous points are only effective in Action section(s)—not init or
end.

To insert a rendezvous point:

 1 While recording a Vuser script, click the Rendezvous button on the
Recording toolbar. The Rendezvous dialog box opens.

 2 Type a name for the rendezvous point in the Rendezvous Name box.

Click OK. VuGen inserts lr_rendezvous into the Vuser script. For example,
the following function defines a rendezvous point named rendezvous1:

 3 To insert rendezvous points into your script after the recording session,
select Insert > Rendezvous from the VuGen toolbar.

lr_rendezvous("rendezvous1");

Part II • Working with VuGen

100

Inserting Comments into a Vuser Script

VuGen allows you to insert comments between Vuser activities. You can
insert a comment to describe an activity or to provide information about a
specific operation. For example, if you are recording database actions, you
could insert a comment to mark the first query, such as “This is the first
query.”

To insert a comment:

 1 While recording a script, click the Comment button on the Recording tool
bar. The Insert Comment dialog box opens.

 2 Type the comment into the text box.

 3 Click OK to insert the comment and close the dialog box. The text is placed
at the current point in the script, enclosed by comment markers. The
following script segment shows how a comment appears in a Vuser script:

Note: You can insert comments into your script after you complete a
recording session, by selecting Insert > Comment from the VuGen menu.

/*
* This is the first query
*/

Chapter 7 • Enhancing Vuser Scripts

101

Obtaining Vuser Information

You can add the following functions to your Vuser scripts to retrieve Vuser
information:

In the following example, the lr_get_host_name function retrieves the
name of the computer on which the Vuser is running.

For more information about the above functions, refer to the Online Function
Reference (Help > Function Reference).

Sending Messages to Output

Using the Message type functions in your Vuser script, you can send
customized error and notification messages to the output and log files. For
example, you could insert a message that displays the current state of the
client application. The LoadRunner Controller and Tuning Console display
these messages in the Output window. You can also save these messages to a
file.

When working with Application Management, you can use Message type
functions to send error and notification messages to the Web site or Business
Process Monitor log files. For example, you could insert a message that
displays the current state of the Web-based application.

lr_get_attrib_string Returns a command line parameter string.

lr_get_host_name Returns the name of the machine running
the Vuser script.

lr_get_master_host_name Returns the name of the machine running
the Controller or Tuning Console. Not
applicable for Administration Console.

lr_whoami Returns the name of a Vuser executing the
script. Not applicable for Administration
Console.

my_host = lr_get_host_name();

Part II • Working with VuGen

102

Note: Do not send messages from within a transaction as this may lengthen
the transaction execution time and skew the transaction results.

You can use the following message functions in your Vuser scripts:

Note: The behavior of the lr_message, lr_output_message, and
lr_log_message functions are not affected by the script’s debugging level in
the Log run-time settings—they will always send messages.

lr_debug_message Sends a debug message to the Output window
or the Business Process Monitor log file.

lr_error_message Sends an error message to the Output
window or the Business Process Monitor log
files.

lr_get_debug_message Retrieves the current message class.

lr_log_message Sends an output message directly to the log
file, output.txt, located in the Vuser script
directory. This function is useful in
preventing output messages from interfering
with TCP/IP traffic.

lr_output_message Sends a message to the Output window or the
Business Process Monitor log files.

lr_set_debug_message Sets a message class for output messages.

lr_vuser_status_message Sends a message to the Vuser status area in
the Controller or Tuning Console. Not
applicable for Administration Console.

lr_message Sends a message to the Vuser log and Output
window or the Business Process Monitor log
files.

Chapter 7 • Enhancing Vuser Scripts

103

Log Messages

You can use VuGen to generate and insert lr_log_message functions into a
Vuser script. For example, if you are recording database actions, you could
insert a message to indicate the first query, “This is the first query.”

To insert an lr_log_message function:

 1 Select Insert > Log Message. The Log Message dialog box opens.

 2 Type the message into the Message Text box.

 3 Click OK to insert the message and close the dialog box. An lr_log_message
function is inserted at the current point in the script.

Debug Messages

You can add a debug or error message using VuGen’s user interface. For
debug messages you can indicate the level of the text message—the message
is only issued when your specified level matches the message class. You set
the message class using lr_set_debug_message.

Part II • Working with VuGen

104

To insert a debug function:

 1 Select Insert > New Step. The Add Step dialog box opens.

 2 Select the Debug Message step and click OK. The Debug Message dialog box
opens.

 3 Select a message level, Brief or Extended Log. If you choose Extended Log,
indicate the type of information to log: Parameter Substitution, Result Data,
or Full Trace.

 4 Type the message into the Message Text box.

 5 Click OK to insert the message and close the dialog box. An
lr_debug_message function is inserted at the current point in the script.

Error and Output Messages

For protocols with a Tree view representation of the script, such as Web,
Winsock, and Oracle NCA, you can add an error or output message using
the user interface. A common usage of this function is to insert a
conditional statement, and issue a message if the error condition is detected.

Chapter 7 • Enhancing Vuser Scripts

105

To insert an error or output message function:

 1 Select Insert > New Step. The Add Step dialog box opens.

 2 Select the Error Message or Output Message step and click OK. The Error
Message or Output Message dialog box opens.

 3 Type the message into the Message Text box.

 4 Click OK to insert the message and close the dialog box. An
lr_error_message or lr_output_message function is inserted at the current
point in the script.

For more information about the message functions, refer to the Online
Function Reference (Help > Function Reference).

Handling Errors in Vuser Scripts During Execution

You can specify how a Vuser handles errors during script execution. By
default, when a Vuser detects an error, the Vuser stops executing the script.
You can instruct a Vuser to continue with the next iteration when an error
occurs using one of the following methods:

➤ Using run-time settings. You can specify the Continue on Error run-time
setting. The Continue on Error run-time setting applies to the entire
Vuser script. You can use the lr_continue_on_error function to override
the Continue on Error run-time setting for a portion of a script. For
details, see “Error Handling” on page 167.

➤ Using the lr_continue_on_error function. The lr_continue_on_error
function enables you to control error handling for a specific segment of a
Vuser script. To mark the segment, enclose it with
lr_continue_on_error(1); and lr_continue_on_error(0); statements. The

Part II • Working with VuGen

106

new error settings apply to the enclosed Vuser script segment. See the
paragraphs below for details.

For example, if you enable the Continue on Error run-time setting and a
Vuser encounters an error during replay of the following script segment, the
Vuser continues executing the script.

To instruct the Vuser to continue on error for a specific segment of the
script, enclose the segment with the appropriate lr_continue_on_error
statements:

web_link("EBOOKS",
"Text=EBOOKS",
"Snapshot=t2.inf",
LAST);

web_link("Find Rocket eBooks",
"Text=Find Rocket eBooks",
"Snapshot=t3.inf",
LAST);

lr_continue_on_error(1);
web_link("EBOOKS",

"Text=EBOOKS",
"Snapshot=t2.inf",
LAST);

web_link("Find Rocket eBooks",
"Text=Find Rocket eBooks",
"Snapshot=t3.inf",
LAST);

lr_continue_on_error(0);

Chapter 7 • Enhancing Vuser Scripts

107

Synchronizing Vuser Scripts

You can add synchronization functions to synchronize the execution of the
Vuser script with the output from your application. Synchronization applies
to RTE Vuser scripts only.

The following is a list of the available synchronization functions:

For details on using synchronization functions in RTE Vuser scripts, see
Chapter 65, “Synchronizing RTE Vuser Scripts.”

Emulating User Think Time

The time that a user waits between performing successive actions is known
as the think time. Vusers use the lr_think_time function to emulate user
think time. When your record a Vuser script, VuGen records the actual think
times and inserts appropriate lr_think_time statements into the Vuser
script. You can edit the recorded lr_think_time statements, and manually
add more lr_think_time statements to a Vuser script.

To manually add a think time statement:

 1 Place the cursor at the desired location.

 2 Choose Insert > Add Step. The Add Step dialog box opens.

TE_wait_cursor Waits for the cursor to appear at a specified
location in the terminal window.

TE_wait_silent Waits for the client application to be silent
for a specified number of seconds.

TE_wait_sync Waits for the system to return from X-
SYSTEM or Input Inhibited mode.

TE_wait_text Waits for a string to appear in a designated
location.

TE_wait_sync_transaction Records the time that the system remained in
the most recent X SYSTEM mode.

Part II • Working with VuGen

108

 3 Select Think Time and click OK. The Think Time dialog box opens.

 4 Specify the desired think time in seconds and click OK.

Note: When you record a Java Vuser script, lr_think_time statements are
not generated in the Vuser script.

You can use the think time settings to influence how the lr_think_time
statements operate when you execute a Vuser script. To access the think
time settings, select Vuser > Run-time Settings from the VuGen main menu,
and then click the Think Time tab. For more information, refer to the Online
Function Reference (Help > Function Reference).

Handling Command Line Arguments

You can pass values to a Vuser script at run-time by specifying command
line arguments when you run the script. When using the Tuning Console,
you can specify the command line arguments within the Run-Time settings
dialog box. For more information, see “Configuring Additional Attributes
Run-Time Settings” on page 165.

There are three functions that allow you to read the command line
arguments, and then to pass the values to a Vuser script:

lr_get_attrib_double Retrieves double precision floating point type
arguments

lr_get_attrib_long Retrieves long integer type arguments

lr_get_attrib_string Retrieves character strings

Chapter 7 • Enhancing Vuser Scripts

109

Your command line should have one of the following two formats where
the arguments and their values are listed in pairs, after the script name:

The following example shows the command line string used to repeat script1
five times on the load generator pc4:

For more information on the command line parsing functions, or for details
on including arguments on a command line, refer to the Online Function
Reference (Help > Function Reference).

Encrypting Text

You can encrypt text within your script to protect your passwords and other
confidential text strings. You can perform encryption both automatically,
from the user interface, and manually, through programming. When you
encrypt a string, it appears in the script as a coded string. Note that VuGen
uses 32-bit encryption.

In order for the script to use the encrypted string, it must be decrypted with
lr_decrypt.

lr_start_transaction(lr_decrypt("3c29f4486a595750"));

You can restore the string at any time, to determine its original value.

To encrypt a string:

 1 For protocols that have tree views, view the script in script view. Choose
View > Script View.

 2 Select the text you want to encrypt.

 3 Select Encrypt string (string) from the right-click menu.

script_name -argument argument_value -argument argument_value

script_name /argument argument_value /argument argument_value

script1 -host pc4 -loop 5

Part II • Working with VuGen

110

To restore an encrypted string:

 1 For protocols that have tree views, view the script in script view. Choose
View > Script View.

 2 Select the string you want to restore.

 3 Select Restore encrypted string (string) from the right-click menu.

For more information on the lr_decrypt function, refer to the Online
Function Reference (Help > Function Reference).

Encoding Passwords Manually

You can encode passwords in order to use the resulting strings as arguments
in your script or parameter values. For example, your Web site may include a
form in which the user must supply a password. You may want to test how
your site responds to different passwords, but you also want to ensure the
integrity of the passwords. The Password Encoder enables you to encode
your passwords and place secure values into the table.

To encode a password:

 1 From the Windows menu, select Start > Programs > Mercury LoadRunner >
Tools > Password Encoder. The Password Encoder dialog box opens.

 2 Enter the password in the Password box.

 3 Click Generate. The Password Encoder encrypts the password and displays it
in the Encoded String box.

 4 Use the Copy button to copy and paste the encoded value into the Data
Table.

Chapter 7 • Enhancing Vuser Scripts

111

 5 Repeat the process for each password you want to encode.

 6 Click Close to close the Password Encoder.

Adding Files to the Script Folder

You can add files to your script directory to make them available when
running the script.

To add a file:

 1 Choose File > Add Files to Script… while viewing the script.

 2 Browse for the files and click Open. VuGen adds the selected files.

Part II • Working with VuGen

112

113

8
Working with VuGen Parameters

When you record a business process, VuGen generates a script that contains
the actual values used during recording. Suppose you want to perform the
script’s actions (query, submit, and so forth) using different values from
those recorded. To do this, you replace the recorded values with parameters.
This is known as parameterizing the script.

This chapter describes:

➤ About VuGen Parameters

➤ Understanding Parameter Limitations

➤ Creating Parameters

➤ Understanding Parameter Types

➤ Defining Parameter Properties

➤ Using Existing Parameters

➤ Using the Parameter List

➤ Setting Parameterization Options

The following information applies to all types of Vuser scripts except for
GUI.

Part II • Working with VuGen

114

About VuGen Parameters

When you record a business process, VuGen generates a Vuser script
composed of functions. The values of the arguments in the functions are the
actual values used during the recording session.

For example, assume that you recorded a Vuser script while operating a Web
application. VuGen generated the following statement that searches a
library’s database for the title “UNIX”:

When you replay the script using multiple Vusers and iterations, you do not
want to repeatedly use the same value, UNIX. Instead, you replace the
constant value with a parameter:

 web_submit_form("db2net.exe",
ITEMDATA,
"name=library.TITLE",
"value=UNIX",
ENDITEM,
"name=library.AUTHOR",
"value=",
ENDITEM,
"name=library.SUBJECT",
"value=",
ENDITEM,
LAST);

;

web_submit_form("db2net.exe",
ITEMDATA,
"name=library.TITLE",
"value={Book_Title}",
ENDITEM,
"name=library.AUTHOR",
"value=",
ENDITEM,
"name=library.SUBJECT",
"value=",
ENDITEM,
LAST);

Chapter 8 • Working with VuGen Parameters

115

The resulting Vusers then substitute the parameter with values from a data
source that you specify. The data source can be either a file, or internally
generated variables. For more information about data sources, see
“Understanding Parameter Types” on page 119.

Parameterizing a Vuser script has two advantages:

➤ It reduces the size of the script.

➤ It provides the ability to test your script with different values. For example,
if you want to search a library’s database for several titles, you only need to
write the submit function once. Instead of instructing your Vuser to search
for a specific item, use a parameter. During replay, VuGen substitutes
different values for the parameter.

Parameterization involves the following two tasks:

➤ Replacing the constant values in the Vuser script with parameters

➤ Setting the properties and data source for the parameters

Understanding Parameter Limitations

You can use parameterization only for the arguments within a function. You
cannot parameterize text strings that are not function arguments. In
addition, not all function arguments can be parameterized. For details on
which arguments you can parameterize, refer to the Online Function Reference
(Help > Function Reference).

For example, consider the lrd_stmt function. The function has the
following syntax:

The Online Function Reference indicates that you can parameterize only the
mpcText argument.

lrd_stmt (LRD_CURSOR FAR *mptCursor, char FAR *mpcText, long mli-
TextLen, LRDOS_INT4 mjOpt1, LRDOS_INT4 mjOpt2, int miDBErrorSe-
verity);

Part II • Working with VuGen

116

A recorded lrd_stmt function could look like this:

You could parameterize the recorded function to look like this:

Note: You can use the lr_eval_string function to “parameterize” a function
argument that you cannot parameterize by using standard parameterization.
In addition, you can use the lr_eval_string function to “parameterize” any
string in a Vuser script.

For VB, COM, and Microsoft .NET protocols, you must use the lr.eval string
function to define a parameter. For example,
lr.eval_string("{Custom_param}").

For more information on the lr_eval_string function, refer to the Online
Function Reference.

Creating Parameters

You create a parameter by giving it a name, and specifying its type and
properties. There is no limit to the number of parameters you can create in a
Vuser script.

Step 1: Select the argument that you want to parameterize.

If you are in Script view:

Select the argument that you want to parameterize, and select Replace with
a Parameter from the right-click menu.

lrd_stmt(Csr4, "select name from sysobjects where name =\"Kim\" ", -1,
148, -99999, 0);

lrd_stmt(Csr4, "select name from sysobjects where name =\"<name>\" ", -
1, 148, -99999, 0);

Chapter 8 • Working with VuGen Parameters

117

Note: When parameterizing CORBA or General-Java Vuser scripts, you must
parameterize complete strings, not parts of a string.

If you are in Tree view:

 1 Right-click the step you want to parameterize, and select Properties from
the menu. The appropriate Step Properties dialog box opens.

 2 Click the ABC icon next to the argument that you want to parameterize.

The Select or Create Parameter dialog box opens.

Step 2: Give the parameter a name.

Type a name for the parameter in the Parameter name box. The parameter
name is displayed in the script in place of the original argument.

The parameter name should be suitable to the type of information that will
replace the parameter during a script run.

For example, if you typically enter a username, then name the parameter
Username.

Note: Do not name a parameter unique, since this name is used by VuGen.

Step 3: Select a parameter type.

When you create a parameter, you specify the source of the parameter data.
This determines the parameter type.

Part II • Working with VuGen

118

Data can be generated internally - such as the date and time, or can be
returned as a result of a user-defined function.

Another, very common method for using parameters, is instructing Vusers
to take values from an data table or an external file which contains values
that the user has defined. These parameters are called File and Table type
parameters.

From the Parameter type list, select File.

For more detailed information about the different parameter types, see
“Understanding Parameter Types” on page 119.

Step 4: Define properties for the parameter type.

 1 Click Properties. The Parameter Properties dialog box opens.

 2 Click Create Table. A message box opens. Click OK.

VuGen creates a table with one cell containing the argument’s original
value.

 3 To add another value to the table, click Add Row, and enter the value.

Repeat this step to add more values to the table.

 4 Click Close to close the Parameter Properties dialog box.

For more information, see “Defining Parameter Properties” on page 122.

Step 5: Replace the argument with the parameter.

Click OK to close the Select or Create Parameter dialog box.

VuGen replaces the selected string in your script with the name of the
parameter, surrounded by curly or round brackets.

Chapter 8 • Working with VuGen Parameters

119

Note: The default parameter braces are either curly or angle brackets,
depending on the protocol type. You can change the parameter braces from
the Parameterization tab in the General Options dialog box (select
Tools > General Options). For more information, see “Setting
Parameterization Options” on page 129.

In Tree view, VuGen replaces the ABC icon with the table icon.

In the following example, the original username value was jojo. It has been
replaced with the parameter {UserName}.

Understanding Parameter Types

When you create a parameter, you specify the source for the parameter data.
You can specify any one of the following data source types:

➤ File or Table Parameter Types

➤ Internal Data Parameter Types

➤ User-Defined Function Parameters

File or Table Parameter Types

Data that is contained in a file—either an existing file or one that you create
with VuGen or MS Query. A very common method for using parameters, is
instructing Vusers to take values from an external file or a data table.

Parameter name Table icon

Part II • Working with VuGen

120

Data Files

Data files hold data that a Vuser accesses during script execution. Data files
can be local or global. You can specify an existing ASCII file, use VuGen to
create a new one, or import a database file. Data files are useful if you have
many known values for your parameter.

The data in a data file is stored in the form of a table. One file can contain
values for many parameters. Each column holds the data for one parameter.
Column breaks are marked by a delimiter, for example, a comma.

In the following example, the data file contains ID numbers and first names:

Note: When working with languages other than English, save the parameter
file as a UTF-8 file. In the Parameter Properties window, click Edit with
Notepad. In Notepad, save the file as a text file with UTF-8 type encoding.

Data Tables

The Table parameter type is meant for applications that you want to test by
filling in table cell values. Whereas the file type uses one cell value for each
parameter occurrence, the table type uses several rows and columns as
parameter values, similar to an array of values. Using the table type, you can
fill in an entire table with a single command. This is common in SAPGUI
Vusers where the sapgui_fill_data function fills the table cells.

For information about defining data file or data table parameter properties,
see Chapter 9, “File and Table Type Parameters.”

id,first_name
120,John
121,Bill
122,Tom

Chapter 8 • Working with VuGen Parameters

121

Internal Data Parameter Types

Internal data is generated automatically while a Vuser runs, such as
Date/Time, Group Name, Iteration Number, Load Generator Name, Random
Number, Unique Number, and Vuser ID.

For information about defining Internal Data parameter properties see
“Setting Properties for Internal Data Parameter Types” on page 124.

User-Defined Function Parameters

Data that is generated using a function from an external DLL. A user-defined
function replaces the parameter with a value returned from a function
located in an external DLL.

Before you assign a user-defined function as a parameter, you create the
external library (DLL) with the function. The function should have the
following format:

The arguments sent to this function are both NULL.

When you create the library, it is recommended that you use the default
dynamic library path. That way, you do not have to enter a full path name
for the library, but rather, just the library name. The Mercury Virtual User
Generator bin directory is on the default dynamic library path. You can add
your library to this directory.

The following are examples of user-defined functions:

For information about defining User-Defined Function properties, see
“Setting Properties for User-Defined Functions” on page 134.

__declspec(dllexport) char *<functionName>(char *, char *)

__declspec(dllexport) char *UF_GetVersion(char *x1, char *x2) {return
"Ver2.0";}

__declspec(dllexport) char *UF_GetCurrentTime(char *x1, char *x2) {
time_t x = tunefully); static char t[35]; strcpy(t, ctime(&x)); t[24] = '\0';
return t;}

Part II • Working with VuGen

122

Defining Parameter Properties

You can define a parameter’s properties in the Parameter Properties dialog
box or in the Parameter List dialog box.

To define parameter properties in the Parameter Properties dialog box:

 1 Open the Parameter Properties dialog box.

You open the Parameter Properties dialog box in one of the following ways:

➤ When you create a new Parameter as described in “Creating Parameters”
on page 116, you click Properties in the Select or Create Parameter dialog
box to open the Parameter Properties dialog box.

➤ In Script view, select the parameter, and choose Parameter Properties
from the right-click menu.

➤ In Tree view, right-click the step containing the parameter whose
properties you want to define, and select Properties. The Step Properties
dialog box for the selected step opens.

Click the table icon beside the parameter whose properties you want to
define, and select Parameter Properties from the pop-up menu.

Chapter 8 • Working with VuGen Parameters

123

In the following example, the properties of a file type parameter are
displayed:

 2 Define the parameter properties.

➤ To define properties for File and Table type parameters, see Chapter 9,
“File and Table Type Parameters.”

➤ To define properties for internal data parameter types, see “Setting
Properties for Internal Data Parameter Types” on page 124.

➤ To define properties for user-defined functions, see “User-Defined
Function Parameters” on page 121.

 3 Close the Parameter Properties dialog box.

Click Close to close the Parameter Properties dialog box.

Part II • Working with VuGen

124

To define parameter properties in the Parameter List dialog box:

Click the Parameter List button, or select Vuser > Parameter List. Select a
parameter to show its properties.

For more information, see “Using the Parameter List” on page 127.

Using Existing Parameters

When you create a parameter, VuGen stores it in a parameter list. You can
use an existing parameter to replace an argument, or to replace multiple
occurrences of an argument.

Replacing Strings Using Pre-defined Parameters

You can assign a pre-defined parameter to an argument.

To replace a string with a pre-defined parameter:

 1 Enter Script view.

 2 Right-click on the argument that you want to parameterize, and select Use
existing parameters. A submenu opens.

 3 Use one of the following options to select a parameter:

➤ Select a parameter from the submenu list.

➤ Choose Select from Parameter List to open the Parameter List dialog box,
and select a parameter from the left pane.

Using the Parameter List is convenient when you want to replace an
argument with a previously defined parameter and, at the same time,
view or modify that parameter’s properties. For details on using the
Parameter List, see “Using the Parameter List” on page 127.

Chapter 8 • Working with VuGen Parameters

125

Replacing Multiple Occurrences

When you create a parameter, the system remembers the original value of
the argument. You can use the Search and Replace function to replace
selected or all occurrences of the same argument with the same parameter or
another existing parameter.

To replace multiple occurrences of an argument with a specific parameter:

 1 Right-click a parameter and choose Replace more occurrences from the
menu.

The Search and Replace dialog box opens. The Find What box displays the
value or argument you want to replace. The Replace With box displays the
parameter name in brackets.

 2 Select the appropriate check boxes for matching whole words or case. To
search with regular expressions (., !, ?, +, and so forth.) select the Regular
Expressions check box.

 3 Click Replace or Replace All.

In the above example, all arguments of value 15 are replaced with the
parameter, {NewParam}.

Note: Use caution when using Replace All, especially when replacing
number strings. VuGen changes all occurrences of the string.

Part II • Working with VuGen

126

Restoring Original Strings

VuGen lets you undo the parameterization and restore the originally
recorded argument.

To restore a parameter to its original value:

➤ In Script view, right-click on the parameter and select Restore original value.

➤ In Tree view:

➤ Right-click on the step that contains the parameter and click Properties.

➤ Click the table icon next to the parameter that you want to restore to its
original value, and select Undo Parameter.

The original argument is restored.

Chapter 8 • Working with VuGen Parameters

127

Using the Parameter List

You use the Parameter List to examine all of the parameters, create new
parameters, delete parameters, or modify a parameter properties.

To view the Parameter List and view a parameter’s properties:

Click the Parameter List button, or select Vuser > Parameter List. Select a
parameter to show its properties.

In the following example, the properties of a Date/Time type parameter are
displayed:

To modify a parameter’s properties:

Select the parameter from the parameter tree on the left, and edit the
parameter’s type and properties in the right pane.

For more information on setting parameter properties, see Chapter 10,
“Setting Parameter Properties,” and Chapter 9, “File and Table Type
Parameters.”

Part II • Working with VuGen

128

To create a new parameter:

 1 In the Parameter List dialog box, click New. The new parameter appears in
the parameter tree with a temporary name.

 2 Type a name for the new parameter, and press Enter.

Note: Do not name a parameter unique, since this name is used by VuGen.

 3 Set the parameter’s type and properties.

 4 Click Close to close the Parameter List dialog box.

Note: VuGen creates a new parameter, but does not automatically replace
any selected string in the script.

To delete an existing parameter:

 1 Select the parameter from the parameter tree, and click Delete. The Delete
Parameter dialog box opens.

 2 If you want to delete the parameter file from the disk, select Delete
parameter data file from disk.

 3 Click Yes.

 4 If you selected Delete parameter data file from disk, VuGen send a warning
message. Click Yes to confirm your action.

Chapter 8 • Working with VuGen Parameters

129

Setting Parameterization Options

You set the parameterization options in the Parameterization tab of VuGen’s
General Options window.

To set the Parametrization options:

 1 From the Tools menu, select General Options.

 2 Click the Parameterization tab.

 3 Set the style for the parameter braces as described below.

 4 Set the global directory as described on page 130.

 5 Click OK to close to the General Options window.

Parameter Braces

When you insert a parameter into a Vuser script, VuGen places parameter
braces on either side of the parameter name. The default braces for a Web or
WAP script are curly brackets, for example:

web_submit_form("db2net.exe",
ITEMDATA,
"name=library.TITLE",
"value={Book_Title}",
ENDITEM,
"name=library.AUTHOR",
"value=",
ENDITEM,
"name=library.SUBJECT",
"value=",
ENDITEM,
LAST);

Part II • Working with VuGen

130

You can change the style of parameter braces by specifying a string of one or
more characters. All characters are valid with the exception of spaces.

Note: The default parameter braces are angle or curly brackets, depending
on the protocol type.

To change the parameter brace style:

 1 Select Tools > General Options in VuGen. The General Options dialog box
opens.

 2 Select the Parameterization tab and enter the desired brace.

 3 Click OK to accept the settings and close the dialog box.

Global Directory

This option is provided only for backward compatibility with earlier
versions of VuGen. In earlier versions, (4.51 and below), when you created a
new data table, you specified local or global. A local table is saved in the
current Vuser script directory and is only available to Vusers running that
script. A global table is available to all Vuser scripts. The global directory can
be on a local or network drive. Make sure that the global directory is
available to all machines running the script. Using the General Options
dialog box, you can change the location of the global tables at any time.

Chapter 8 • Working with VuGen Parameters

131

In newer versions of VuGen, you specify the location of the data table either
in the Parameter Properties dialog box or in the Parameter List dialog box.
VuGen is able to retrieve the data from any location that you specify, be it
the default script directory or another directory on the network. For more
information, see “Data Files” on page 120.

To set the global directory:

 1 Select Tools > General Options. The General Options dialog box opens.

 2 Select the Parameterization tab.

 3 Select the Define global data tables directory check box, and specify the
directory containing your global data tables.

 4 Click OK to accept the settings and close the dialog box.

Part II • Working with VuGen

132

123

9
File and Table Type Parameters

A very common method for using parameters, is instructing Vusers to take
values from an data table or an external file. The data is contained either in
an existing file or in a file that you create with VuGen or MS Query.

This chapter describes:

➤ Selecting or Creating Data Files or Data Tables

➤ Setting Properties for File Type Parameters

➤ Setting Properties for Table Type Parameters

➤ Choosing Data Assignment Methods for File/Table Type Parameters

Part II • Working with VuGen

124

Selecting or Creating Data Files or Data Tables

When you create a File or Table type parameter you have to create a .dat file
to store the data, or open an existing one. Then you define the other
properties for the parameter, such as how the Vuser should assign values to
the parameter.

You can create a new data table or select an existing data source from the
File Path list.

To select a source file or table for your data:

 1 Open the Parameter Properties dialog box or the Parameter List.

For instructions, see “Defining Parameter Properties” on page 122.

 2 Select a table or create a new one.

➤ If there are no tables (.dat files) listed in the file path list, or you want to
create a new table, click Create Table. VuGen creates a new table with
one cell, displaying the original value of the argument in the first
column of the table.

➤ To open an existing data file, type the name of the .dat file in the File
path box or choose a name from the drop-down list.

Chapter 9 • File and Table Type Parameters

125

Alternatively, click Browse to specify the file location of an existing data
file. By default, all new data files are named <parameter_name>.dat and
are stored in the script’s directory.

VuGen opens the data file and displays the first 100 rows. To view all of
the data, click Edit with Notepad and view the data in a text editor.

Note: You can also specify a global directory. Global directories are
provided only for backward compatibility with earlier versions of VuGen.
For more information, see “Global Directory” on page 130.

➤ To import data from an existing database, click Data Wizard and follow
the wizard’s instructions. For more information, see “Importing Data
from an Existing Databases” on page 126.

 3 Add columns and rows to the table.

➤ To add additional columns to the table, choose Add Column. The Add
new column dialog box opens. Enter a column name and click OK.

➤ To add additional rows to the table, choose Add Row.

Part II • Working with VuGen

126

 4 Edit the data file.

➤ Click within any cell to enter a value.

➤ To edit the data file from within Notepad, click Edit with Notepad.
Notepad opens with the parameter’s name in the first row and its original
value in the second row. Enter additional column names and values into
the file using a delimiter such as a comma or a tab to indicate a column
break. Begin a new line for each table row (for each new row of data).

Importing Data from an Existing Databases

VuGen allows you to import data from a database for use with
parameterization. You can import the data in one of two ways:

➤ Creating a New Query

➤ Specifying an SQL Statement

VuGen provides a wizard that guides you through the procedure of
importing data from a database. In the wizard, you specify how to import
the data—create a new query via an MS Query or by specifying an SQL
statement. After you import the data, it is saved as a file with a .dat
extension and stored as a regular parameter file.

Chapter 9 • File and Table Type Parameters

127

To begin the procedure of importing a database, click Data Wizard in the
Parameter List dialog box (Vuser > Parameter List). The Database Query
Wizard opens.

Creating a New Query

You use Microsoft’s Database Query Wizard to create a new query. This
requires the installation of MS Query on your system.

To create a new query:

 1 Select Create query using Microsoft Query. If you need instructions on
Microsoft Query, select Show me how to use Microsoft Query.

 2 Click Finish. If Microsoft Query is not installed on your machine, VuGen
issues a message indicating that it is not available. Install MS Query from
Microsoft Office before proceeding.

 3 Follow the instructions in the wizard, importing the desired tables and
columns.

Part II • Working with VuGen

128

 4 When you finish importing the data, choose Exit and return to Mercury
Virtual User Generator and click Finish. The database records appear in the
Parameter Properties box as a data file.

To edit and view the data in MS Query, choose View data or edit in
Microsoft Query.

 5 Set the data assignment properties. See “Setting Properties for File Type
Parameters” on page 130.

Specifying an SQL Statement

To specify a database connection and SQL statement:

 1 Select Specify SQL Statement. Click Next.

 2 Click Create to specify a new connection string. The Select Data Source
window opens.

 3 Select a data source, or click New to create a new one. The wizard guides you
through the procedure for creating an ODBC data source. When you are
finished, the connection string appears in the Connection String box.

Chapter 9 • File and Table Type Parameters

129

 4 In the SQL box, type or paste an SQL statement.

 5 Click Finish to process the SQL statement and import the data. The database
records appears in the Parameter Properties box as a data file.

 6 Set the data assignment properties. See “Setting Properties for File Type
Parameters” on page 130.

After creating table or file data, you set the assignment properties. The
properties specify the columns and rows to use, and whether to use the data
randomly or sequentially. You set the properties separately for the File and
Table type parameters.

Note: You can also set the properties for a parameter from the Parameter List
dialog box. In the left pane, select the parameter and then specify its
properties in the right pane. See “Using the Parameter List” on page 127.

Part II • Working with VuGen

130

Setting Properties for File Type Parameters

After you select a source of data, you set the assignment properties for your
file. These properties instruct VuGen how to use the data. For example, they
indicate which columns to use, how often to use new values, and what do to
when there are no more unique values.

To set the File type parameter properties:

 1 Specify the column in the table that contains the values for your parameter.
In the Select column section, specify a column number or name.

To specify a column number, select By number and the column number. The
column number is the index of the column containing your data. For
example, if the data for the parameter is in the table’s first column, select 1.

To specify a column name, select By name and choose the column name
from the list. The column header is the first row of each column (row 0). If
column numbers might change, or if there is no header, use the column
name to select a column.

 2 In the Column delimiter box of the File format section, enter the column
delimiter—the character used to separate the columns in the table. You can
specify a comma, tab, or space.

 3 In the First data line box of the File format section, select the first line of
data to be used during Vuser script execution. The header is line 0. To begin
with the first line after the header, specify 1. If there is no header, specify 0.

Chapter 9 • File and Table Type Parameters

131

 4 Select a Data Assignment method from the Select next row list to instruct
the Vuser how to select the file data during Vuser script execution. The
options are: Sequential, Random, or Unique. For more information, see
“Choosing Data Assignment Methods for File/Table Type Parameters” on
page 134.

 5 Choose an update option from the Update value on list. The choices are
Each Iteration, Each Occurrence, and Once. For more information, see “Data
Assignment and Update Methods for File/Table Parameters” on page 136.

 6 If you chose Unique as the Data Assignment method (in step 4):

➤ When out of values: Specify what to do when there is no more unique
data: Abort the Vuser, Continue in a cyclic manner, or Continue with last
value.

➤ Allocate Vuser values in the Controller (for LoadRunner users only):
Indicate whether you want to manually allocate data blocks for the
Vusers. You can allow the Controller to automatically allocate a block
size or you can specify the desired number of values. Choose
Automatically allocate block size or Allocate x values for each Vuser. For
the second option, specify the number of values to allocate.

To track this occurrence, enable the Extended Log > Parameter
Substitution option in the Log Run-Time settings. When there is not
enough data, VuGen writes a warning message to the Vuser log "No more
unique values for this parameter in table <table_name>".

Part II • Working with VuGen

132

Setting Properties for Table Type Parameters

After you select a table of data, you set its assignment properties. These
properties instruct VuGen how to use the table data. For example, they
indicate which columns and rows to use, how often to use them, and what
to do when there are no more unique values.

To set the Table type parameter properties:

 1 Specify the columns in the table that contains the values for your parameter.
In the Columns section, specify which columns you want to use.

To choose all columns, select Select all columns.

To specify one or more columns by their number, select Columns by number
and enter the column numbers separated by a comma or a dash. The
column number is the index of the column containing your data. For
example, if the data for the parameter is in the table’s first column, select 1.

 2 In the Column delimiter box, select a column delimiter—the character used
to separate the columns in the table. The available delimiters are: comma,
tab, space.

Chapter 9 • File and Table Type Parameters

133

 3 In the Rows section, specify how many rows to use per iteration in the Rows
per iteration box.

Note: This only relevant when the Update value on field is set to Each
iteration. If Update value on is set to Once, then the same rows will be used
for all iterations. See step 8.

 4 In the First line of data box, select the first line of data to be used during
script execution. To begin with the first line after the header, enter 1. To
display information about the table, including how many rows of data are
available, click Table information.

 5 Specify a row delimiter for your data presentation in the Rows delimiter for
log display box. This delimiter is used to differentiate between rows in the
output logs. If you enable parameter substitution logging, VuGen sends the
substituted values to the Replay log. The row delimiter character in the
Replay log indicates a new row.

 6 In the When not enough rows box, specify a handling method when there
are not enough rows in the table for the iteration. For example, assume that
the table you want to fill has 3 rows, but your data only has two rows.
Choose Parameter will get less rows than required to fill in only two rows.
Choose Use behavior of “Select Next Row” to loop around and get the next
row according the method specified in the Select next row box—Random or
Sequential.

 7 Select a Data Assignment method from the Select next row list to instruct
the Vuser how to select the table data during Vuser script execution. The
options are: Sequential, Random, or Unique. For more information, see
“Choosing Data Assignment Methods for File/Table Type Parameters” on
page 134.

 8 Choose an Update method from the Update value on list. The options are
Each Iteration or Once. For more information, see “Data Assignment and
Update Methods for File/Table Parameters” on page 136.

Part II • Working with VuGen

134

 9 If you chose to assign data using the Unique method (in step 7):

➤ When out of values: Specify how to proceed when there is no more
unique data: Abort the Vuser, Continue in a cyclic manner, or Continue
with last value.

➤ Allocate Vuser values in the Controller (for LoadRunner users only):
Indicate whether you want to manually allocate data blocks for the
Vusers. You can allow the Controller to automatically allocate a block
size or you can specify the desired number of values. Choose
Automatically allocate block size or Allocate x values for each Vuser. For
the second option, specify the number of values to allocate.

To track this occurrence, enable the Extended Log > Parameter
Substitution option in the Log Run-Time settings. When there is not
enough data, VuGen writes a warning message to the Vuser log "No more
unique values for this parameter in table <table_name>".

Choosing Data Assignment Methods for File/Table Type
Parameters

When using values from a file, VuGen lets you specify the way in which you
assign data from the source to the parameters. The following methods are
available:

➤ Sequential

➤ Random

➤ Unique

Sequential

The Sequential method assigns data to a Vuser sequentially. As a running
Vuser accesses the data table, it takes the next available row of data.

If there are not enough values in the data table, VuGen returns to the first
value in the table, continuing in a loop until the end of the test.

Chapter 9 • File and Table Type Parameters

135

Random

The Random method assigns a random value from the data table to each
Vuser at the start of the test run.

When running a scenario, session step, or Business Process Monitor profile,
you can specify a seed number for random sequencing. Each seed value
represents one sequence of random values used for test execution.
Whenever you use this seed value, the same sequence of values is assigned
to the Vusers in the scenario or session step. You enable this option if you
discover a problem in the test execution and want to repeat the test using
the same sequence of random values.

For more information refer to the LoadRunner Controller User’s Guide, Tuning
Console, Performance Center, and Application Management documentation.

Unique

The Unique method assigns a unique sequential value to the parameter for
each Vuser.

In this case you must make sure there is enough data in the table for all the
Vusers and their iterations. If you have 20 Vusers and you want to perform 5
iterations, your table must contain at least 100 unique values.

If there are not enough values in the data table, you can instruct VuGen
how to proceed. For more details, see “Setting Properties for File Type
Parameters” on page 130, or “Setting Properties for Table Type Parameters”
on page 132.

Part II • Working with VuGen

136

Data Assignment and Update Methods for File/Table
Parameters

For File and Table type parameters, the Data Assignment method that you
select, together with your choice of Update method, affect the values that
the Vusers use to substitute parameters during the scenario or session step
run.

The following table summarizes the values that Vusers use depending on
which Data Assignment and Update properties you selected:

Update Method
Data Assignment Method

Sequential Random Unique

Each iteration The Vuser takes
the next value
from the data
table for each
iteration.

The Vuser takes a
new random value
from the data
table for each
iteration.

The Vuser takes
the next unique
value from the
data table for
each iteration.

Each occurrence
(Data Files only)

The Vuser takes
the next value
from the data
table for each
occurrence of the
parameter, even
if it is within the
same iteration.

The Vuser takes a
new random value
from the data
table for each
occurrence of the
parameter, even
if it is within the
same iteration.

The Vuser takes a
new unique value
from the data
table for each
occurrence of the
parameter, even
if it is within the
same iteration.

Once The value
assigned in the
first iteration is
used for all
subsequent
iterations for
each Vuser.

The random
value assigned in
the first iteration
is used for all
iterations of that
Vuser.

The unique value
assigned in the
first iteration is
used for all
subsequent
iterations of the
Vuser.

Chapter 9 • File and Table Type Parameters

137

Examples

Assume that your table/file has the following values:

Kim; David; Michael; Jane; Ron; Alice; Ken; Julie; Fred

➤ If you chose to assign data using the Sequential method, then:

➤ If you choose to update on Each iteration, all the Vusers use Kim in the
first iteration, David in the second iteration, Michael in the third
iteration, and so on.

➤ If you choose to update on Each occurrence, all the Vusers use Kim in the
first occurrence, David in the second occurrence, Michael in the third
occurrence, and so on.

➤ If you choose to update Once, all Vusers take Kim for all iterations.

If there are not enough values in the data table, VuGen returns to the first
value in the table, continuing in a loop until the end of the test.

➤ If you chose to assign data using the Random method, then:

➤ If you choose to update on Each iteration, the Vusers use random values
from the table for each iteration.

➤ If you choose to update on Each occurrence, the Vusers use random
values for each occurrence of the parameter.

➤ If you choose to update Once, all Vusers take the first randomly assigned
value for all the iterations.

➤ If you chose to assign data using the Unique method, then:

➤ If you choose to update on Each iteration, for a test run of 3 iterations,
the first Vuser takes Kim in the first iteration, David in the second, and
Michael in the third. The second Vuser takes Jane, Ron, and Alice. The
third Vuser, Ken, Julie, and Fred.

➤ If you choose to update on Each occurrence, then the Vuser uses a
unique value from the list for each occurrence of the parameter.

➤ If you choose to update Once, the first Vuser takes Kim for all iterations,
the second Vuser takes David for all iterations, and so on.

Part II • Working with VuGen

138

Vuser Behavior in the Controller (LoadRunner Only)

When you set up a scenario to run a parameterized script, you can instruct
the Vusers how to act when there are not enough values. The following
table summarizes the results of a scenario using the following parameter
settings:

➤ Select next row = Unique

➤ Update Value on = Each iteration

➤ When out of values = Continue with last value

Situation Duration Resulting Action

More iterations
than values

Run until
completion

When the unique values are finished, each
Vuser continues with the last value, but a
warning message is sent to the log indicating
that the values are no longer unique.

More Vusers
than values

Run
indefinitely
or Run for …

Vusers take all of the unique values until they
are finished. Then the test issues an error
message Error: Insufficient records for param
<param_name> in table to provide the Vuser
with unique data. To avoid this, change the
When out of values option in the Parameter
properties or the Select next row method in
the Parameter properties.

One of two
parameters are
out of values

Run
indefinitely
or Run for …

The parameter that ran out of values,
continues in a cyclic manner until the values
of the second parameter are no longer unique.

123

10
Setting Parameter Properties

A parameter is defined according to the type of information it replaces.

This chapter describes:

➤ About Setting Parameter Properties

➤ Setting Properties for Internal Data Parameter Types

➤ Setting Properties for User-Defined Functions

➤ Customizing Parameter Formats

➤ Selecting an Update Method

About Setting Parameter Properties

When you define a parameter’s properties, you specify the source for the
parameter data. You define properties for any one of the following data
source types:

Internal Data Parameter
Types

Data that is generated internally by the Vuser:
Date/Time, Group Name, Iteration Number,
Load Generator Name, Random Number,
Unique Number, and Vuser ID.

User-Defined Functions Data that is generated using a function from an
external DLL.

Data Files and Data Tables Data that is contained in a file—either an
existing file or one that you create with VuGen
or MS Query.

Part II • Working with VuGen

124

This chapter describes how to assign properties to Internal Data and User-
Defined Function parameters.

For information on defining properties for Table or File type parameters, see
Chapter 9, “File and Table Type Parameters.”

Setting Properties for Internal Data Parameter Types

This section discusses setting the properties for data that is generated
internally by the Vuser. Internal data includes data such as:

➤ Date/Time

➤ Group Name

➤ Iteration Number

➤ Load Generator Name

➤ Random Number

➤ Unique Number

➤ Vuser ID

Chapter 10 • Setting Parameter Properties

125

Date/Time

Date/Time replaces the parameter with the current date and/or time. To
specify a date/time format, you can select a format from the format list or
specify your own format. The format should correspond to the date/time
format recorded in your script.

VuGen lets you set an offset for the date/time parameter. For example, if you
want to test a date next month, you set the date offset to 30 days. If you
want to test your application for a future time, you specify a time offset. You
can specify a forward, future offset (default) or a backward offset, a date or
time that already passed. In addition, you can instruct VuGen to use date
values for work days only, excluding Saturdays and Sundays.

Part II • Working with VuGen

126

The following table describes the date/time symbols:

To set the properties for Date/Time parameters:

 1 Select one of the existing date/time formats or create a new format. You can
view a sample of how VuGen will display the value, in the Sample (Current
time) box. For information on customizing parameter formats, see
“Customizing Parameter Formats” on page 135.

 2 To set a date and time offsets, select Offset Parameter by and specify the
desired offset for the date and time values.

To instruct VuGen to use working day dates only, excluding weekends, select
Working days only. To indicate a negative offset to test a date prior to the
current, select Prior to current date.

 3 Select an update method, instructing the Vuser when to update parameter
values—Each occurrence, Each iteration, or Once. For more information, see
“Selecting an Update Method” on page 136.

 4 Click Close to accept the settings and close the Parameter Properties dialog
box.

Symbol Description

c complete date and time in digits

#c complete date as a string and time

H hours (24 hour clock)

I hours (12 hour clock)

M minutes

S seconds

p AM or PM

d day

m month in digits (01-12)

b month as a string - short format (e.g. Dec)

B month as a string - long format (e.g. December)

y year in short format (e.g. 03)

Y year in long format (e.g. 2003)

Chapter 10 • Setting Parameter Properties

127

Group Name

Group Name replaces the parameter with the name of the Vuser Group. You
specify the name of the Vuser Group when you create a scenario or session
step. When you run a script from VuGen, the Group name is always None.

To set properties for the Group Name parameter type:

 1 Select one of the available formats or create a new one. You select a format
to specify the length of the parameter string. For details, see “Customizing
Parameter Formats” on page 135.

 2 Click Close to accept the settings and close the Parameter Properties dialog
box.

Part II • Working with VuGen

128

Iteration Number

Iteration Number replaces the parameter with the current iteration number.

To set the properties for the Iteration Number parameter type:

 1 Select one of the available formats or create a new one. You select a format
to specify the length of the parameter string. For details, see “Customizing
Parameter Formats” on page 135.

 2 Click Close to save the settings and close the Parameter Properties dialog
box.

Chapter 10 • Setting Parameter Properties

129

Load Generator Name

Load Generator Name replaces the parameter with the name of the Vuser
script’s load generator. The load generator is the computer on which the
Vuser is running.

To set the properties for the Load Generator Name parameter type:

 1 Select one of the available formats or create a new one. You select a format
to specify the length of the parameter string. For details, see “Customizing
Parameter Formats” on page 135.

 2 Click Close to save the settings and close the Parameter Properties dialog
box.

Part II • Working with VuGen

130

Random Number

Random Number replaces the parameter with a random number. You set a
range of numbers by specifying minimum and maximum values.

You can use the Random Number parameter type to sample your system’s
behavior within a possible range of values. For example, to run a query for
50 employees, where employee ID numbers range from 1 through 1000,
create 50 Vusers and set the minimum to 1 and maximum to 1000. Each
Vuser receives a random number, from within the range of 1 to 1000.

To set the properties for the Random Number parameter type:

 1 Enter a range defining the set of possible parameter values. You specify
minimum and maximum values for the range of random numbers.

 2 Select a Number format, indicating the length of the random number.
Specify %01lu (or %lu) for one digit, %02lu for two digits, and so on. You
can view a sample of how VuGen will display the value, in the Sample value
box.

 3 Select an update method, instructing the Vuser when to update parameter
values—Each occurrence, Each iteration, or Once. For more information, see
“Selecting an Update Method” on page 136.

 4 Click Close to accept the settings and close the Parameter Properties dialog
box.

Chapter 10 • Setting Parameter Properties

131

Unique Number

Unique Number replaces the parameter with a unique number.

When you create a Unique Number type parameter, you specify a start
number and a block size. The block size indicates the size of the block of
numbers assigned to each Vuser. Each Vuser begins at the bottom of its
range and increments the parameter value for each iteration. For example, if
you set the Start number at 1 with a block of 500, the first Vuser uses the
value 1 and the next Vuser uses the value 501, in their first iterations.

The number of digits in the unique number string together with the block
size determine the number of iterations and Vusers. For example, if you are
limited to five digits using a block size of 500, only 100,000 numbers (0-
99,999) are available. It is therefore possible to run only 200 Vusers, with
each Vuser running 500 iterations.

You can also indicate what action to take when there are no more unique
numbers in the block: Abort Vuser, Continue in a cyclic manner, or Continue
with last value (default).

You can use the Unique Number parameter type to check your system’s
behavior for all possible values of the parameter. For example, to perform a
query for all employees, whose ID numbers range from 100 through 199,
create 100 Vusers and set the start number to 100 and block size to 100.
Each Vuser receives a unique number, beginning with 100 and ending with
199.

Part II • Working with VuGen

132

Note: VuGen creates only one instance of Unique Number type parameters.
If you define multiple parameters and assign them the Unique Number
Parameter type, the values will not overlap. For example, if you define two
parameters with blocks of 100 for 5 iterations, the Vusers in the first group
use 1, 101, 201, 301, and 401. The Vusers in the second group use 501, 601,
701, 801, and 901.

To set the properties for the Unique Number parameter type:

 1 Enter a start number and the desired block size. For example, if you want
500 numbers beginning with 1, specify 1 in the Start box, and 500 in the
Block size per Vuser box.

 2 Select a Number format, indicating the length of the unique number.
Specify %01d (or %d) for one digit, %02d for two digits, and so on. You can
view a sample of how VuGen will display the value, in the Sample value
box.

 3 Select an update method, instructing the Vuser when to update parameter
values—Each occurrence, Each iteration, or Once. For more information, see
“Selecting an Update Method” on page 136.

 4 Indicate what to do when there are no more unique values, in the When out
of values box: Abort Vuser, Continue in cyclic manner, or Continue with last
value.

Note: (For LoadRunner users!)

When scheduling a scenario in the Controller, the When out of values
option only applies to the Run for HH:MM:SS option in the Schedule
Builder’s Duration tab. It is ignored for the Run until completion option.

 5 Click Close to accept the settings and close the Parameter Properties dialog
box.

Chapter 10 • Setting Parameter Properties

133

Vuser ID

Note: This parameter type applies primarily to LoadRunner users.

Vuser ID replaces the parameter with the ID number assigned to the Vuser
by the Controller during a scenario run, or the Console during a session step
run. When you run a script from VuGen, the Vuser ID is always -1.

Note: This is not the ID number that appears in the Vuser window—it is a
unique ID number generated at runtime.

To set the properties for the Vuser ID parameter type:

 1 Select one of the available formats or create a new one. You select a format
to specify the length and structure of the parameter string. For details, see
“Customizing Parameter Formats” on page 135.

 2 Click Close to accept the settings and close the Parameter Properties dialog
box.

Part II • Working with VuGen

134

Setting Properties for User-Defined Functions

In the Parameter Properties dialog box, select User Defined Function from
the Parameter type list.

To set the properties for user-defined functions:

 1 Specify the function name in the Function Name box. Use the name of the
function as it appears in the DLL file.

 2 In the Library Names section, specify a library in the relevant Library box. If
necessary, locate the file using the Browse command.

 3 Select an update method for the values. For more information on update
methods for user-defined functions, see “Selecting an Update Method” on
page 136.

Chapter 10 • Setting Parameter Properties

135

Customizing Parameter Formats

For most data types, you can customize a format for a parameter by selecting
an existing format or specifying a new one.

Note: The parameter format should match the recorded values. If the format
of the parameter differs from the format of the original recorded value, the
script may not run correctly.

The format specifies the length and structure of the resulting parameter
string. The resulting parameter string is the actual parameter value together
with any text that accompanies the parameter. For example, if you specify a
format of “%05s,” a Vuser ID of 5 is displayed as “00005,” padding the single
digit with four zeros. To pad the number with blank spaces, specify the
number of spaces without a “0.” For example, %4s adds blank spaces before
the Vuser ID so that the resulting parameter string is 4 characters long.

You can specify a text string before and after the actual parameter value.

For example, if you specify a format of “Vuser No: %03s,” then a Vuser ID of
1 is displayed as “Vuser No: 001.”

You can add and delete formats for the following parameter types:
Date/Time; Group Name; Iteration Number; Load Generator Name; Vuser
ID.

To add a format to a parameter type:

 1 In the Parameter Properties dialog box, select the parameter type that you
want to format.

 2 Enter the format symbols in the editable box and click Add Format.

Note: When you add a format to the list, VuGen saves it with the Vuser,
making it available for future use.

Part II • Working with VuGen

136

To delete a format:

In the Parameter Properties dialog box, select an existing format from the
list, and click Delete format.

To restore the original formats:

Click Reset formats.

Selecting an Update Method

When using several of the parameter types, VuGen lets you specify how to
update the values for the parameters. To set an Update method, select a
method from the Update value on list. The available update methods are:

➤ Each Occurrence

➤ Each Iteration

➤ Once

Each Occurrence

The Each occurrence method instructs the Vuser to use a new value for each
occurrence of the parameter. This is useful when the statements using a
parameter are unrelated. For example, for random data, it may be useful to
use a new value for each occurrence of the parameter.

Each Iteration

The Each iteration method instructs the Vuser to use a new value for each
script iteration. If a parameter appears in a script several times, the Vuser
uses the same value for all occurrences of the parameter, for the entire
iteration. This is useful when the statements using a parameter are related.

Note: If you create an action block with parameters using its own iteration
count—if you instruct VuGen to update their values each iteration, it refers
to the global iteration and not the block iteration. For more information
about action blocks, see “Creating Action Blocks” on page 151.

Chapter 10 • Setting Parameter Properties

137

Once

The Once method instructs the Vuser to update the parameter value only
once during the scenario or session step run. The Vuser uses the same
parameter value for all occurrences and all iterations of the parameter. This
type may be useful when working with dates and times.

Part II • Working with VuGen

138

139

11
Correlating Statements

You can optimize Vuser scripts by correlating statements. VuGen’s
Correlated Query feature allows you to link statements by using the results
of one statement as input for another.

This chapter describes:

➤ About Correlating Statements

➤ Using Correlation Functions for C Vusers

➤ Using Correlation Functions for Java Vusers

➤ Comparing Vuser Scripts using WDiff

➤ Modifying Saved Parameters

The following information applies to all types of Vuser scripts except for
GUI.

About Correlating Statements

The primary reasons for correlating statements are:

➤ to simplify or optimize your code

For example, if you perform a series of dependent queries one after another,
your code may become very long. To reduce the size of the code, you can
nest the queries, but then you lose precision and the code becomes complex
and difficult to understand. Correlating the statements enables you to link
queries without nesting.

Part II • Working with VuGen

140

➤ to generate dynamic data

Many applications and Web sites identify a session by the current date and
time. If you try to replay a script, it will fail because the current time is
different than the recorded time. Correlating the data enables you to save
the dynamic data and use it throughout the scenario or session step run.

➤ to accommodate unique data records

Certain applications (for example databases) require the use of unique
values. A value that was unique during recording is no longer unique for
script execution. For example, suppose you record the process of opening a
new bank account. Each new account is assigned a unique number which is
unknown to the user. This account number is inserted into a table with a
unique key constraint during recording. If you try to run the script as
recorded, it tries to create an account with the recorded number, rather than
a new unique number. An error will result because the account number
already exists.

If you encounter an error when running your script, examine the script at
the point where the error occurred. In many cases, a correlated query will
solve the problem by enabling you to use the results of one statement as
input to another.

The main steps in correlating a script are:

 1 Determine which value to correlate.

For most protocols, you can view the problematic statements in the
Execution log. You double-click an error message and jump directly to its
location.

Alternatively, you can use the WDiff utility distributed with VuGen to
determine the inconsistencies within your script. For more information, see
“Comparing Vuser Scripts using WDiff” on page 144.

Chapter 11 • Correlating Statements

141

 2 Save the results.

You save the value of a query to a variable using the appropriate function.
The correlating functions are protocol-specific. Correlation function names
usually contain the string save_param, such as web_reg_save_param and
lrs_save_param. Refer to the specific protocol chapters for an explanation
on how to perform correlation. In several protocols, such as database and
Web, VuGen automatically inserts the functions into your script.

 3 Reference the saved values.

Replace the constants in the query or statement with the saved variables.

Several protocols have built-in automatic or partially automated correlation:

➤ For Java language Vusers, see Chapter 19, “Correlating Java Scripts.”

➤ For Database Vusers, see Chapter 24, “Correlating Database Vuser Scripts.”

➤ For Web Vusers, see Chapter 46, “Setting Correlation Rules for Web Vuser
Scripts.”

➤ For COM Vusers, see Chapter 31, “Understanding COM Vuser Scripts.”

Using Correlation Functions for C Vusers

To correlate statements for protocols that do not have specific functions,
you can use the C Vuser correlation functions. These functions can be used
for all C-type Vusers, to save a string to a parameter and retrieve it when
required. For similar functions for Java, Corba-Java, or RMI-Java Vusers, see
“Using Correlation Functions for Java Vusers” on page 143.

For additional information about the syntax of these functions, refer to the
Online Function Reference.

lr_eval_string Replaces all occurrences of a parameter with
its current value.

lr_save_string Saves a null-terminated string to a parameter.

lr_save_var Saves a variable length string to a parameter.

Part II • Working with VuGen

142

Using lr_eval_string

In the following example, lr_eval_string replaces the parameter row_cnt
with its current value. This value is sent to the Output window using
lr_output_message.

Using lr_save_string

To save a NULL terminated string to a parameter, use lr_save_string. To save
a variable length string, use lr_save_var and specify the length of the string
to save.

In the following example, lr_save_string assigns 777 to a parameter emp_id.
This parameter is then used in another query or for further processing.

lrd_stmt(Csr1, "select count(*) from employee", -1, 1 /*Deferred*/, …);
lrd_bind_col(Csr1, 1, &COUNT_D1, 0, 0);
lrd_exec(Csr1, 0, 0, 0, 0, 0);
lrd_save_col(Csr1, 1, 1, 0, "row_cnt");
lrd_fetch(Csr1, 1, 1, 0, PrintRow2, 0);
lr_output_message("value: %s", lr_eval_string("The row count is:

<row_cnt>"));

lrd_stmt(Csr1, "select id from employees where name='John'",…);
lrd_bind_col(Csr1,1,&ID_D1,...);
lrd_exec(Csr1, ...);
lrd_fetch(Csr1, 1, ...);
/* GRID showing returned value "777" */
lr_save_string("777", "emp_id");

Chapter 11 • Correlating Statements

143

Using Correlation Functions for Java Vusers

To correlate statements for Java, CORBA-Java, and RMI-Java Vusers, you can
use the Java Vuser correlation functions. These functions may be used for all
Java type Vusers, to save a string to a parameter and retrieve it when
required.

When recording a CORBA-Java or RMI-Java script, VuGen performs
correlation internally. For more information, see Chapter 19, “Correlating
Java Scripts.”

Using the Java String Functions

When programming Java Vuser scripts, you can use the Java Vuser string
functions to correlate your scripts.

In the following example, lr.eval_int substitutes the variable ID_num with
its value, defined at an earlier point in the script.

In the following example, lr.save_string assigns John Doe to the parameter
Student. This parameter is then used in an output message.

lr.eval_string Replaces a parameter with its current value.

lr.eval_data Replaces a parameter with a byte value.

lr.eval_int Replaces a parameter with an integer value.

lr.eval_string Replaces a parameter with a string.

lr.save_data Saves a byte as a parameter.

lr.save_int Saves an integer as a parameter.

lr.save_string Saves a null-terminated string to a parameter.

lr.message(" Track Stock: " + lr.eval_int(ID_num));

lr.save_string("John Doe", "Student");
// ...
lr.message("Get report card for " + lr.eval_string("<Student>"));
classroom.getReportCard

Part II • Working with VuGen

144

Comparing Vuser Scripts using WDiff

A useful tool in determining which values to correlate is WDiff. This utility
lets you compare recorded scripts and results to determine which values
need to be correlated.

If you are working with other protocols, you can view the Execution log to
determine where the script failed and then use the WDiff utility to assist you
in locating the values that need to be correlated.

To use WDiff effectively, you record the identical operation twice, and
compare the scripts (or data files for Tuxedo, WinSock, and Jolt). WDiff
displays differences in yellow. Note that not all differences indicate a value
to correlate. For example, certain receive buffers that indicate the time of
execution do not require correlation.

To search for correlations using WDiff:

 1 Record a script and save it.

 2 Create a new script and record the identical operations. Save the script.

 3 Select the section you want to compare (Actions, data.ws, and so forth).

 4 Select Tools > Compare with Vuser. The Open Test box opens.

 5 Specify a Vuser script for comparison (other than the one in the current
VuGen window) and click OK. WDiff opens and the differences between the
Vuser scripts are highlighted in yellow.

Chapter 11 • Correlating Statements

145

 6 To display the differences only, double-click in the WDiff window.

 7 Determine which values need to be correlated.

Note that in the above example, WDiff is comparing the data.ws from two
Winsock Vuser scripts. In this instance, the value to be correlated is the PID
for the clock processes, which differs between the two recordings.

To continue with correlation, refer to the appropriate section:

➤ For Java language Vusers, see Chapter 19, “Correlating Java Scripts.”

➤ For Database Vusers, see Chapter 24, “Correlating Database Vuser
Scripts.”

➤ For Web Vusers, see Chapter 46, “Setting Correlation Rules for Web
Vuser Scripts.”

➤ For COM Vusers, see Chapter 31, “Understanding COM Vuser Scripts.”

➤ For Tuxedo Vusers, see Chapter 69, “Developing Tuxedo Vuser Scripts.”

➤ For WinSock Vusers, see Chapter 27, “Working with Windows Socket
Data.”

PID 1

PID 2

Part II • Working with VuGen

146

Modifying Saved Parameters

After you save a value to a parameter, you may need to modify it before
using it in your script. If you need to perform arithmetical operations on a
parameter, you must change it from a string to an integer using the atoi or
atol C functions. After you modify the value as an integer, you must convert
it back to a string to use the new variable in your script.

In the following WinSock example, the data at offset 67 was saved to the
parameter, param1. Using atol, VuGen converted the string to a long integer.
After increasing the value of param1 by one, VuGen converted it back to a
string using sprintf and saved it as a new string, new_param1. The value of
the parameter is displayed using lr_output_message. This new value may be
used at a later point in the script.

lrs_receive("socket2", "buf47", LrsLastArg);lrs_save_param("socket2",
NULL, "param1", 67, 5);

lr_output_message ("param1: %s", lr_eval_string("<param1>"));
sprintf(new_param1, "value=%ld", atol(lr_eval_string("<param1>")) + 1);
lr_output_message("ID Number:"%s" lr_eval_string("new_param1"));

147

12
Configuring Run-Time Settings

After you record a Vuser script, you configure the run-time settings for the
script. These settings specify how the script behaves when it runs.

This chapter describes:

➤ About Run-Time Settings

➤ Configuring Run Logic Run-Time Settings (multi-action)

➤ Pacing Run-Time Settings

➤ Configuring Pacing Run-Time Settings (multi-action)

➤ Setting Pacing and Run Logic Options (single action)

➤ Configuring the Log Run-Time Settings

➤ Configuring the Think Time Settings

➤ Configuring Additional Attributes Run-Time Settings

➤ Configuring Miscellaneous Run-Time Settings

➤ Setting the VB Run-Time Settings

The following information applies to all types of Vuser scripts except for
GUI.

Part II • Working with VuGen

148

About Run-Time Settings

After you record a Vuser script, you can configure its run-time settings. The
run-time settings define the way that the script runs. These settings are
stored in the file default.cfg, located in the Vuser script directory. Run-time
settings are applied to Vusers when you run a script using VuGen, the
Controller, Tuning Console, or Administration Console.

Configuring run-time settings allows you to emulate different kinds of user
activity. For example, you could emulate a user who responds immediately
to output from the server, or a user who stops and thinks before each
response. You can also configure the run-time settings to specify how many
times the Vuser should repeat its set of actions.

You use the Run-Time Settings dialog box to display and configure the run-
time settings tree. You can open these settings in one of the following ways:

➤ Click the Run-Time Settings button on the VuGen toolbar.

➤ Press the keyboard shortcut key F4.

➤ Choose Vuser > Run-Time Settings.

You can also modify the run-time settings from the LoadRunner Controller
or the Tuning Module. For more information, refer to the product’s
documentation.

Note: For LoadRunner, the default run-time setting support the debugging
environment of VuGen and the load testing environment of the Controller.
The default settings are:

Think Time: Off in VuGen and Replay as Recorded in the Controller.

Log: Standard in VuGen and off in the Controller.

Download non-HTML resources: Enabled in VuGen and the Controller.

Chapter 12 • Configuring Run-Time Settings

149

The General run-time settings described in this chapter, apply to all types of
Vuser scripts. They include:

➤ Run Logic (Iterations)

➤ Pacing

➤ Log

➤ Think Time

➤ Miscellaneous

➤ Additional Attributes (Tuning Module only)

For protocols that do NOT support multiple actions, such as WinSocket and
Database (Oracle 2-tier, Sybase, MSSQL, and so on), the Iteration and Pacing
options are both handled from the Pacing tab. Many protocols have
additional run-time settings. For information about the specific run-time
settings for these protocols, see the appropriate sections.

Configuring Run Logic Run-Time Settings (multi-action)

Note: The following section only applies to protocols that work with
multiple actions. If the Run Logic node exists under the run-time settings, it
is a multiple action protocol. For single action protocols, see “Setting Pacing
and Run Logic Options (single action)” on page 157.

Every Vuser script contains three sections: vuser_init, Run (Actions), and
vuser_end. You can instruct a Vuser to repeat the Run section when you run
the script. Each repetition is known as an iteration.

The vuser_init and vuser_end sections of a Vuser script are not repeated when
you run multiple iterations.

Part II • Working with VuGen

150

Open the Run-Time Settings and select the General:Run Logic node.

Number of Iterations: The number of iterations. The Vusers repeat all of the
Actions the specified number of times.

Note: For the LoadRunner Controller and Tuning Module: If you specify a
scenario or session step duration in the Scheduling settings, they override
the Vuser iteration settings. This means that if the duration is set to five
minutes (the default setting), the Vusers will continue to run as many
iterations as required for five minutes, even if the run-time settings specify
only one iteration.

When you run scripts with multiple actions, you can indicate how to
execute the actions, and how the Vuser executes them:

Action Blocks: Action blocks are groups of actions within your script. You
can set the properties of each block independently—its sequence, iterations,
and weighting.

Sequence: You can set the order of actions within your script. You can also
indicate whether to perform actions sequentially or randomly.

Chapter 12 • Configuring Run-Time Settings

151

Iterations: In addition to setting the number of iterations for the entire Run
section, you can set iterations for individual actions or action blocks. This is
useful, for example, in emulating a commercial site where you perform
many queries to locate a product, but only one purchase.

Weighting: For action blocks running their actions randomly, you can set
the weight or percentage of each action within a block.

Creating Action Blocks

Action blocks are groups of actions within the Vuser script. You can create
separate action blocks for groups of actions, adding the same action to
several blocks. You can instruct VuGen to execute action blocks or
individual actions sequentially or randomly. In the default sequential mode,
the Vuser executes the blocks or actions in the order in which they appear in
the iteration tree view.

In the following example, Block0 performs a deposit, Block1 performs a
transfer, and Block2 submits a balance request. The Login and Logout actions
are common to the three blocks.

You configure each block independently—its sequence and iterations.

Part II • Working with VuGen

152

To configure actions and action blocks:

 1 Create all of the desired actions through recording or programming.

 2 Open the Run-Time setting. Select the General:Run Logic node.

 3 Add a new action block. Click Insert Block. VuGen inserts a new Action
block at the insertion point with the next available index (Block0, Block1,
Block2).

 4 Add actions to the block. Click Insert Action. The Select Actions list opens.

 5 Select an action to add to the block and click OK. VuGen inserts a new
action into the current block or section.

 6 Repeat step 3 for each action you want to add to the block.

 7 To remove an action or an action block, select it and click Delete.

 8 Click Move Up or Move Down to modify an item’s position.

 9 Click Properties to set the number of iterations and run logic of the actions.
The Run Properties dialog opens.

Chapter 12 • Configuring Run-Time Settings

153

 10 Select Sequential or Random from the Run Logic list, indicating to VuGen
whether to run the actions sequentially or randomly.

 11 Specify the number of iterations in the Iterations box. Note that if you
define parameters within the action block, and you instruct VuGen to
update their values each iteration, it refers to the global iteration—not the
individual block iteration.

 12 Click OK.

 13 For blocks with Random run logic, set the weighting of each action. Right-
click an action and choose Properties. The Action Properties dialog opens.

Specify the desired percent for the selected block or action. In the Random
Percents box, specify a percentage for the current action. The sum of all
percentages must equal 100.

 14 Repeat the above steps for each element whose properties you want to set.

Part II • Working with VuGen

154

Pacing Run-Time Settings

Note: The following section only applies to protocols that work with
multiple actions. If the Run Logic node exists under the run-time settings, it
is a multiple action protocol. For single action protocols, see “Setting Pacing
and Run Logic Options (single action)” on page 157.

The Pacing Run-Time settings let you control the time between iterations.
The pace tells the Vuser how long to wait between iterations of your actions.
You instruct the Vusers to start each iteration using one of the following
methods:

➤ As soon as the previous iteration ends.

➤ After the previous iteration ends with a fixed/random delay of …

➤ At fixed/random intervals, every …/ to … seconds.

As soon as the previous iteration ends: The new iteration begins as soon as
possible after the previous iteration ends.

After the previous iteration ends with a fixed or random delay of …: Starts
each new iteration a specified amount of time after the end of the previous
iteration. Specify either an exact number of seconds or a range of time. For
example, you can specify to begin a new iteration at any time between 60
and 90 seconds after the previous iteration ends.

When you run the script, VuGen shows the time the Vuser waited between
the end of one iteration and the start of the next one, in the Execution Log.

At fixed or random intervals, every … [to …] seconds: You specify the time
between iteration—either a fixed number of seconds or a range of seconds
from the beginning of the previous iteration. For example, you can specify
to begin a new iteration every 30 seconds, or at a random rate ranging from
30 to 45 seconds from the beginning of the previous iteration. Each
scheduled iterations will only begin when the previous iteration is
complete.

Chapter 12 • Configuring Run-Time Settings

155

Each scheduled iteration will only begin when the previous iteration is
complete. When you run the script, VuGen shows the time the Vuser waited
between the end of one iteration and the start of the next one, in the
Execution Log.

For example, assume that you specify to start a new iteration every four
seconds:

➤ If the first iteration takes three seconds, the Vuser waits one second.

➤ If the first iteration takes two seconds to complete, the Vuser waits two
seconds.

➤ If the first iteration takes 8 seconds to complete, the second iteration will
start 8 seconds after the first iteration began. VuGen displays a message
in the Execution Log to indicate that the iteration pacing could not be
achieved.

For further instruction about setting the Pacing options, see “Configuring
Pacing Run-Time Settings (multi-action)” on page 156.

Part II • Working with VuGen

156

Configuring Pacing Run-Time Settings (multi-action)

You use the Pacing options to pace your actions by setting the time intervals
between iterations.

To set the pacing between iterations:

 1 Open the Run-Time Settings and select the General:Pacing node.

 2 In the Start New Iteration section, select one of the following options:

➤ As soon as the previous iteration ends

➤ After the previous iteration ends

➤ At fixed or random intervals

 3 For the After the previous iteration ends option:

➤ Select a delay type: fixed or random.

➤ Specify a value for fixed, or a range of values for the random delay.

 4 For the At … intervals option:

➤ Select a interval type: fixed or random.

➤ Specify a value for fixed, or a range of values for the random interval.

 5 Click OK.

Chapter 12 • Configuring Run-Time Settings

157

Setting Pacing and Run Logic Options (single action)

Note: The following section only applies to protocols that work with single
actions—not multiple actions. If there is a Pacing node and not a Run Logic
node under the General run-time settings, it is a single action protocol.

You can instruct a Vuser to repeat the Action section when you run the
script. Each repetition is known as an iteration. The vuser_init and vuser_end
sections of a Vuser script are not repeated when you run multiple iterations.

To set the iteration and pacing preferences:

 1 Click the Run-Time Settings button on the VuGen toolbar or select Vuser >
Run-Time Settings. Click the Pacing node to display the iteration and
pacing options.

 2 Specify the number of iterations in the Iteration Count box. The Vuser
repeats all of the Actions the specified number of times.

Part II • Working with VuGen

158

 3 In the Start New Iteration section, select one of the following options:

➤ As soon as the previous iteration ends

➤ After the previous iteration ends

➤ At fixed or random intervals

 4 For the After the previous iteration ends option:

➤ Select a delay type: fixed or random.

➤ Specify a value for fixed, or a range of values for the random delay.

 5 For the At … intervals option:

➤ Select a interval type: fixed or random.

➤ Specify a value for fixed, or a range of values for the random interval.

 6 Click OK.

For an overview of the pacing options, see “Pacing Run-Time Settings” on
page 154.

Configuring the Log Run-Time Settings

During execution, Vusers log information about themselves and their
communication with the server. In a Windows environment, this
information is stored in a file called output.txt in the script directory. In
UNIX environments, the information is directed to the standard output.
The log information is useful for debugging purposes.

The Log run-time settings let you determine how much information is
logged to the output. You can select Standard or Extended log, or you can
disable logging completely. Disabling the log is useful when working with
many Vusers. If you have tens or hundreds of Vusers logging their run-time
information to disk, the system may work slower than normal. During
development, enable logging so that you will have information about the
replay. You should only disable logging after verifying that the script is
functional.

Chapter 12 • Configuring Run-Time Settings

159

Note: You can program a Vuser script to send messages to an output log by
using the lr_error_message and lr_output_message functions.

Click the Run-Time Settings button on select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Select the General:Log node to
display the log options.

Enable Logging

This option enables automatic logging during replay—VuGen writes log
messages that you can view in the Execution log. This option only affects
automatic logging and log messages issued through lr_log_message.
Messages sent manually, using lr_message, lr_output_message, and
lr_error_message, are still issued.

Part II • Working with VuGen

160

Log Options

The Log run-time settings allows you to adjust the logging level depending
on your development stage.

You can indicate when to send log messages to the log: Send messages only
when an error occurs or Always send messages. During development, you
can enable all logging. Once you debug your script and verify that it is
functional, you can enable logging for errors only.

If you choose to send messages only when errors occur, also known as JIT,
(Just in Time) messaging, you can set an advanced option, indicating the
size of the log cache. See “Setting the Log Cache Size” on page 161.

Setting the Log Detail Level

You can specify the type of information that is logged, or you can disable
logging altogether.

Note: If you set Error Handling to “Continue on error” in the General Run-
Time Settings folder, error messages are still sent to the Output window.

If you modify the script’s Log Detail Level, the behavior of the lr_message,
lr_output_message, and lr_log_message functions will not change—they
will continue to send messages.

Standard Log: Creates a standard log of functions and messages sent during
script execution to use for debugging. Disable this option for large load
testing scenarios, tuning sessions, or profiles.

If the logging level is set to Standard, the logging mode is automatically set
to JIT logging when adding it to a scenario, session step, or profile. If,
however, the logging mode was disabled or set to Extended, then adding the
script to a scenario, session step, or profile will not affect its logging settings.

Extended Log: Creates an extended log, including warnings and other
messages. Disable this option for large load testing scenarios, tuning
sessions, or profiles.

Chapter 12 • Configuring Run-Time Settings

161

You can specify which additional information should be added to the
extended log using the Extended log options:

➤ Parameter substitution: Select this option to log all parameters assigned
to the script along with their values. For more information on
parameters, see Chapter 8, “Working with VuGen Parameters.”

➤ Data returned by server: Select this option to log all of the data returned
by the server.

➤ Advanced trace: Select this option to log all of the functions and
messages sent by the Vuser during the session. This option is useful when
you debug a Vuser script.

The degree to which VuGen logs events (Standard, Parameter substitution,
and so forth) is also known as the message class. There are five message
classes: Brief, Extended, Parameters, Result Data, and Full Trace.

You can manually set the message class within your script using the
lr_set_debug_message function. This is useful if you to want to receive
debug information about a small section of the script only.

For example, suppose you set Log run-time settings to Standard log and you
want to get an Extended log for a specific section of the script. You would
then use the lr_set_debug_message function to set the Extended message
class at the desired point in your script. You must call the function again to
specify what type of extended mode (Parameter, Result Data, or Full Trace).
Return to the Standard log mode by calling lr_set_debug_message,
specifying Brief mode. For more information about setting the message
class, refer to the Online Function Reference (Help > Function Reference).

Setting the Log Cache Size

The Advanced options for the Log Run-Time settings, let you indicate the
size of the log cache. The log cache stores raw data about the test execution,
to make it available should an error occur. When the contents of the cache
exceed the specified size, it deletes the oldest items. The default size is 1KB.

Part II • Working with VuGen

162

The following is the sequence of the logging:

 1 You indicate to VuGen to log messages only when an error occurs, by
selecting Send messages only when an error occurs.

 2 VuGen stores information about the test execution in the log cache without
writing it to a file. If this information exceeds 1 KB, it overwrites the oldest
data. The Execution Log tab also remains empty, since it is a dump of the log
file’s contents.

 3 When an error occurs (either an internal error or a programmed error using
lr_error_message), VuGen places the contents of the cache into the log file
and Execution Log tab. This allows you to see the events that led up to the
error.

When an error occurs and VuGen dumps its stored cache into the log file,
the actual file size will be greater than the cache size. For example, if your
cache size is 1KB, the log file size may be 50 KB. This is normal and only
reflects the overhead required for formatting the raw data into meaningful
sentences.

Note that in JIT mode, the output of lr_message and lr_log_message, are
only sent to the Output window or log file, if their output was in the log
cache at the time of the error. Check the Execution Log for the specified
message strings.

Logging CtLib Server Messages

When you run a CtLib Vuser script, (Sybase CtLib, under the Client Server
type protocols), all messages generated by the CtLib client are logged in the
standard log and in the output file. By default, server messages are not
logged. To enable logging of server messages (for debugging purposes), insert
the following line into your Vuser script:

VuGen logs all server messages in the Standard log.

LRD_CTLIB_DB_SERVER_MSG_LOG;

Chapter 12 • Configuring Run-Time Settings

163

To send the server messages to the output (in addition to the Standard log),
type:

To return to the default mode of not logging server errors, type the
following line into your script:

Note: Activate server message logging for only a specific block of code
within your script, since the generated server messages are long and the
logging can slow down your system.

Configuring the Think Time Settings

Vuser think time emulates the time that a real user waits between actions. For
example, when a user receives data from a server, the user may wait several
seconds to review the data before responding. This delay is known as the
think time. VuGen uses lr_think_time functions to record think time values
into your Vuser scripts. The following recorded function indicates that the
user waited 8 seconds before performing the next action:

lr_think_time(8);

When you run the Vuser script and the Vuser encounters the above
lr_think_time statement, by default, the Vuser waits 8 seconds before
performing the next action. You can use the Think Time run-time settings to
influence how the Vuser uses the recorded think time when you run the
script.

For more information about the lr_think_time function and how to modify
it manually, refer to the Online Function Reference (Help > Function
Reference).

LRD_CTLIB_DB_SERVER_MSG_ERR;

LRD_CTLIB_DB_SERVER_MSG_NONE;

Part II • Working with VuGen

164

Click the Run-Time Settings button on the VuGen toolbar or select Vuser >
Run-Time Settings. Select the General:Think Time node to display the Think
Time options:

Think Time Options

By default, when you run a Vuser script, the Vuser uses the think time values
that were recorded into the script during the recording session. VuGen
allows you to use the recorded think time, ignore it, or use a value related to
the recorded time:

Ignore think time: Ignore the recorded think time—replay the script
ignoring all lr_think_time functions.

Replay the think time: The second set of think times options let you use the
recorded think time:

➤ As recorded: During replay, use the argument that appears in the
lr_think_time function. For example, lr_think_time(10) waits ten seconds.

Chapter 12 • Configuring Run-Time Settings

165

➤ Multiply recorded think time by: During replay, use a multiple of the
recorded think time. This can increase or decrease the think time applied
during playback. For example, if a think time of four seconds was
recorded, you can instruct your Vuser to multiply that value by two, for a
total of eight seconds. To reduce the think time to two seconds, multiply
the recorded time by 0.5.

➤ Use random percentage of the recorded think time: Use a random
percentage of the recorded think time. You set a range for the think time
value by specifying a range for the think time. For example, if the think
time argument is 4, and you specify a minimum of 50% and a maximum
of 150%, the lowest think time can be two (50%) and the highest value
six (150%).

➤ Limit think time to: Limit the think time’s maximum value.

Configuring Additional Attributes Run-Time Settings

For the Mercury Tuning Module, you can use the Additional Attributes node
to provide additional arguments for a Vuser script. The Additional Attributes
settings apply to all Vuser script types.

You specify command line arguments that you can retrieve at a later point
during the test run, using lr_get_attrib_string. Using this node, you can
pass parameters to prepared scripts, enabling you to test and monitor your
servers with different client parameters.

Part II • Working with VuGen

166

To set additional attributes:

 1 Click the Run-Time Settings button or select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Select the General:Additional
Attributes node from the tree in the left pane.

 2 Click Add to add a new command line argument entry. Enter the argument
name and its value.

 3 Click Remove to remove the selected argument.

Configuring Miscellaneous Run-Time Settings

You can set the following Miscellaneous run-time options for a Vuser script:
Note that the Multithreading and Automatic Transaction options are not
applicable to the Application Management tools.

➤ Error Handling

➤ Multithreading

➤ Automatic Transactions

Chapter 12 • Configuring Run-Time Settings

167

Click the Run-Time Settings button or select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Select the General:Miscellaneous
node from the tree in the left pane.

The Miscellaneous settings apply to all Vuser script types.

Error Handling

Continue on Error: This setting instructs Vusers to continue script execution
when an error occurs. This option is turned off by default, indicating that
the Vuser will exit if an error occurs.

Fail open transactions on lr_error_message: This option instructs VuGen to
mark all transactions in which an lr_error_message function was issued, as
Failed. The lr_error_message function is issued through a programmed If
statement, when a certain condition is met.

Generate Snapshot on Error: This option generates a snapshot when an
error occurs. You can see the snapshot by viewing the Vuser Log and double-
clicking on the line at which the error occurred.

Part II • Working with VuGen

168

It is not recommended to enable both the Continue on Error and Generate
Snapshot on Error options in a load test environment. This configuration
may adversely affect the Vusers’ performance.

Error Handling for Database Vusers

When working with database protocols (LRD), you can control error
handling for a specific segment of a script. To mark a segment, enclose it
with LRD_ON_ERROR_CONTINUE and LRD_ON_ERROR_EXIT statements.
The Vuser applies the new error setting to the whole segment. If you specify
Continue on Error, VuGen issues a messages indicating that it encountered
an error and is ignoring it.

For example, if you enable the Continue on Error feature and the Vuser
encounters an error during replay of the following script segment, it
continues executing the script.

To instruct the Vuser to continue on error for the entire script except for a
specific segment, select the Continue on Error option and enclose the
segment with LRD_ON_ERROR_EXIT and LRD_ON_ERROR_CONTINUE
statements:

In addition to the LRD_ON_ERROR statements, you can control error
handling using severity levels. LRD_ON_ERROR statements detect all types of
errors—database related, invalid parameters, and so on. If you want the
Vuser to terminate only when a database operation error occurs (Error Code
2009), you can set a function’s severity level. All functions that perform a
database operation use severity levels, indicated by the function's final
parameter, miDBErrorSeverity.

lrd_stmt(Csr1, "select…"…);
lrd_exec(…);

LRD_ON_ERROR_EXIT;
lrd_stmt(Csr1, "select…"…);
lrd_exec(…);
LRD_ON_ERROR_CONTINUE;

Chapter 12 • Configuring Run-Time Settings

169

VuGen supports the following severity levels:

For example, if the following database statement fails (e.g. the table does not
exist), the script execution terminates.

To instruct VuGen to continue script execution, even when a database
operation error occurs, change the statement's severity level from 0 to 1.

Note: When you enable Continue on Error, it overrides the “0” severity
level; script execution continues even when database errors occur. However,
if you disable Continue on Error, but you specify a severity level of “1”,
script execution continues when database errors occur.

Error Handling for RTE Vusers

When working with RTE Vusers, you can control error handling for specific
functions. You insert an lr_continue_on_error(0); statement before the
function whose behavior you want to change. The Vuser uses the new
setting until the end of the script execution or until another
lr_continue_on_error statement is issued.

Definition Meaning Value

LRD_DB_ERROR_SEVERITY_ERROR Terminate script execution
upon database access errors.
(default)

0

LRD_DB_ERROR_SEVERITY_WARNING Continue script execution
upon database access errors,
but issue a warning.

1

lrd_stmt(Csr1, "insert into EMP values ('Smith',301)\n", -1, 1, 1, 0);

lrd_stmt(Csr1, "insert into EMP values ('Smith',301)\n", -1, 1, 1, 1);

Part II • Working with VuGen

170

For example, if you enable the Continue on Error feature and the Vuser
encounters an error during replay of the following script segment, it
continues executing the script.

To instruct the Vuser to continue on error for the entire script, except for the
following segment, select the Continue on Error option and enclose the
segment with lr_continue_on_error statements, using 0 to turn off
Continue on Error and 1 to turn it back on:

Multithreading

Vusers support multithread environments. The primary advantage of a
multithread environment is the ability to run more Vusers per load
generator. Only threadsafe protocols should be run as threads. (not
applicable to Application Management tools)

Note: The following protocols are not threadsafe: Sybase-Ctlib, Sybase-
Dblib, Informix, Tuxedo, and PeopleSoft-Tuxedo.

➤ To enable multithreading, click Run Vuser as a thread.

➤ To disable multithreading and run each Vuser as a separate process, click
Run Vuser as a process.

TE_wait_sync();
TE_type(...);

lr_continue_on_error(0);
TE_wait_sync();
lr_continue_on_error(1);
....

Chapter 12 • Configuring Run-Time Settings

171

The Controller and Tuning Console use a driver program (such as mdrv.exe
or r3vuser.exe) to run your Vusers. If you run each Vuser as a process, then
the same driver program is launched (and loaded) into the memory again
and again for every instance of the Vuser. Loading the same driver program
into memory uses up large amounts of RAM (random access memory) and
other system resources. This limits the numbers of Vusers that can be run on
any load generator.

Alternatively, if you run each Vuser as a thread, the Controller or Tuning
Console launches only one instance of the driver program (such as
mdrv.exe), for every 50 Vusers (by default). This driver process/program
launches several Vusers, each Vuser running as a thread. These threaded
Vusers share segments of the memory of the parent driver process. This
eliminates the need for multiple re-loading of the driver program/process
saves much memory space, thereby enabling more Vusers to be run on a
single load generator.

Automatic Transactions

You can instruct LoadRunner or the Tuning Console (not applicable to
Application Management tools) to handle every step or action in a Vuser
script as a transaction. This is called using automatic transactions.
LoadRunner or the Tuning Console assigns the step or action name as the
name of the transaction. By default, automatic transactions per action are
enabled.

➤ To disable automatic transactions per action, clear the Define each action
as a transaction check box. (enabled by default)

➤ To enable automatic transactions per step, check the Define each step as
a transaction check box. (disabled by default)

If you disable automatic transactions, you can still insert transactions
manually during and after recording. For more information on manually
inserting transactions, see Chapter 7, “Enhancing Vuser Scripts.”

Part II • Working with VuGen

172

Note: If you require the Vusers to generate breakdown data for diagnostics
(J2EE) during the scenario run, do not use automatic transactions. Instead,
manually define the beginning and end of each transaction.

Setting the VB Run-Time Settings

Before running your Visual Basic script, you indicate which libraries to
reference during replay. VuGen displays a list of all of the libraries stored on
the machine.

You use the Run-Time Settings dialog box to display and configure the run-
time settings. To display the Run-Time Settings dialog box, click the Run-
Time Settings button on the VuGen toolbar.

To set the VBA Run-Time settings:

 1 Open the Run-Time Settings dialog box and select the VBA:VBA node.

 2 In the VBA References section, select the reference library that you want to
use while running the script. Select a library to display its description and
version in the bottom of the dialog box.

Chapter 12 • Configuring Run-Time Settings

173

 3 Select the appropriate compiler options:

Select Debug script through VBA IDE to enable debugging through the
Visual Basic IDE (Integrated Development Environment).

Select On Error keep VBA IDE visible to keep the Visual Basic IDE visible
during script execution.

 4 Choose OK to apply the run-time settings.

Part II • Working with VuGen

174

175

13
Configuring Network Run-Time Settings

To simulate the speed over a network, you configure the Network run-time
settings.

This chapter describes:

➤ About Network Run-Time Settings

➤ Setting the Network Speed

The following information applies to all Internet Protocol Vuser types,
Citrix ICA, Oracle NCA, and WinSock.

For information about the general run-time settings that apply to all Vusers,
see Chapter 12, “Configuring Run-Time Settings.”

About Network Run-Time Settings

After developing a Internet protocol Vuser script, you set the run-time
settings. These settings let you configure your Internet environment so that
Vusers can accurately emulate real users. You can set Interest run-time
settings for Proxy, Browser, Speed Simulation, and other advanced
preferences.

You set the Internet-related run-time settings from the Run-Time Settings
dialog box. You click the appropriate node to specify the desired settings.

To display the Run-Time Settings dialog box:

➤ Click the Run-Time Settings button on the VuGen toolbar.

➤ Press the keyboard shortcut key F4.

Part II • Working with VuGen

176

➤ Choose Vuser > Run-Time Settings.

Note that you can also modify the run-time settings from the LoadRunner
Controller or the Mercury Tuning Module. For more information, refer to
your product’s documentation.

Setting the Network Speed

You use the Network:Speed Simulation node in the Run-Time Settings tree,
to set the modem emulation for your tuning or testing environment.

Speed Simulation

Using the Speed Simulation settings, you can select a bandwidth that best
emulates the environment under test. The following options are available:

Use maximum bandwidth: By default, bandwidth emulation is disabled and
the Vusers run at the maximum bandwidth that is available over the
network.

Use bandwidth: Indicate a specific bandwidth level for your Vuser to
emulate. You can select a speed ranging from 14.4 to 512 Kbps, emulating
analog modems, ISDN, or DSL.

Use custom bandwidth: Indicate a bandwidth limit for your Vuser to
emulate. Specify the bandwidth in bits, where 1 Kilobit=1024 bits.

177

14
Running Vuser Scripts in Standalone
Mode

After you develop a Vuser script and set its run-time settings, you test the
Vuser script by running it in standalone mode.

This chapter describes:

➤ About Running Vuser Scripts in Standalone Mode

➤ Running a Vuser Script in VuGen

➤ The Replay Log

➤ Using VuGen’s Debugging Features

➤ Using VuGen’s Debugging Features for Web Vuser Scripts

➤ Working with VuGen Windows

➤ Running a Vuser Script from a Command Prompt

➤ Running a Vuser Script from a UNIX Command Line

➤ Integrating Scripts into Tests

The following information applies to all types of Vuser scripts except for
GUI.

Part II • Working with VuGen

178

About Running Vuser Scripts in Standalone Mode

After creating a script, you check its functionality by running it in
standalone mode, directly from the VuGen interface. If the script is UNIX-
based, you run it from a UNIX command line. To run GUI Vusers in
standalone mode, use WinRunner.

When the standalone execution is successful, you integrate it into your
environment: a LoadRunner scenario, Performance Center load test, Tuning
Module session, or Business Process Monitor profile. For more information,
refer to the LoadRunner Controller User’s Guide, Tuning Console, Performance
Center, or Application Management documentation.

Before you run a script in standalone mode, you can:

➤ enhance the script with Vuser functions (see Chapter 7, “Enhancing
Vuser Scripts”)

➤ parameterize the script (see Chapter 8, “Working with VuGen
Parameters”)

➤ correlate queries in the script (see Chapter 11, “Correlating Statements”)

The above steps are optional and may not apply to all scripts.

Running a Vuser Script in VuGen

After developing a Vuser script, run it using VuGen to verify that it executes
correctly. You can set several options for replay.

Note: VuGen runs Vuser scripts on Windows platforms only. To run UNIX-
based Vuser scripts, see “Running a Vuser Script from a UNIX Command
Line” on page 192.

Chapter 14 • Running Vuser Scripts in Standalone Mode

179

Configuring Replay Options

You can run a Vuser script in animated mode or non-animated mode. When
you run in animated mode, VuGen highlights the line of the Vuser script
being executed at the current time. You can set a delay for this mode,
allowing you to better view the effects of each step. When you run in non-
animated mode, VuGen executes the Vuser script, but does not indicate the
line being executed.

Animated run delay: The time delay in milliseconds between commands.
The default delay value is 0.

Only animate functions in Actions sections: Only animates the content of
the Action sections, but not the init or end sections.

Prompt for results directory: Prompts you for a results directory before
running a script from VuGen. If this option is not selected, VuGen
automatically names the directory result1. Subsequent script executions will
automatically overwrite previous ones unless you specify a different result
file. Note that results are stored in a subdirectory of the script.

After replay show: Instructs VuGen how to proceed after the replay:

➤ View before replay: Return to the view you had before replay.

➤ Replay summary: Go directly to the Replay Summary window in the
Workflow Wizard.

➤ Visual Test Results: Open the Test Results Summary. (This is the same as
choosing View > Test Results after replay.)

Part II • Working with VuGen

180

To enable animation and set its properties:

 1 Select View > Animated Run to run in animated mode. VuGen places a check
mark beside the Animated Run menu option to enable animated mode.

 2 To set the delay for the animated run, select Tools > General Options. The
General Options dialog box opens.

 3 Select the Replay tab.

 4 In the Animated run delay box, specify a delay in milliseconds and click OK.

 5 Select Only animate functions in Actions sections to animate only the
content of the Action sections.

 6 Select Prompt for results directory to be prompted for a results directory
before running a script from VuGen. The Select Results Directory dialog box
opens when you click the run command.

 7 Type a directory name for the execution results, or accept the default name
and click OK.

Chapter 14 • Running Vuser Scripts in Standalone Mode

181

Setting the Display Options

If you are running a Web Vuser script, you can set the Display options
(Tools > General Options). These options specify whether to display VuGen’s
run-time viewer, whether to generate a report during script execution, and
so forth.

For more information, see “Using VuGen’s Debugging Features for Web
Vuser Scripts” on page 189.

Replaying a Vuser Script

Before you integrate a script into a test or production environment, you run
it from VuGen to make sure it is functional. VuGen provides several tools
that allow you to monitor the replay and locate any existing and potential
problems. These include:

➤ The Replay Log

➤ The Run-Time Data Tab

➤ The Run Step by Step Command

➤ Breakpoints

➤ Bookmarks

➤ Go To Commands

To replay a script in VuGen:

 1 Select Vuser > Run.

The Output window opens at the bottom of the VuGen main window—or
clears, if already open—and VuGen begins executing the Vuser script. In tree
view, VuGen runs the Vuser script from the first icon in the script. In Script
view, it runs the Vuser script from the first line of the script.

 2 Click the Output window’s Replay Log tab for a log of all of the actions of
the Vuser, along with warnings and errors. For more information, see “The
Replay Log” on page 182.

Part II • Working with VuGen

182

 3 To view a summary of the run-time data and the parameters as they are
being used, see the Output window’s RunTime Data tab. For more
information, see “The Run-Time Data Tab” on page 183.

 4 To hide the Output window during or after a script run, select
View > Output Window. VuGen closes the Output window and removes the
check mark from next to Output Window on the View menu.

 5 To interrupt a Vuser script that is running, select Vuser > Pause, to
temporarily pause the script run, or Vuser > Stop, to end the script run.

The Replay Log

The Output window’s Replay Log displays messages that describe the actions
of the Vuser as it runs. This information tells you how the script will run
when executed in a scenario, session step, or profile.

When script execution is complete, you examine the messages in the Replay
Log to see whether your script ran without errors.

Various colors of text are used in the Replay Log.

➤ Black: Standard output messages

➤ Red: Standard error messages

➤ Green: Literal strings that appear between quotation marks (e.g. URLs)

➤ Blue: Transaction Information (starting, ending, status and duration)

➤ Orange: The beginning and ending of iterations.

If you double-click on a line beginning with the Action name, the cursor
jumps to the step within the script that generated.

For more information on closing and opening the Output window, see
“Replaying a Vuser Script” on page 181.

Chapter 14 • Running Vuser Scripts in Standalone Mode

183

The following example shows Replay Log messages from a Web Vuser script
run.

The Run-Time Data Tab

You can track the script information that becomes updates during replay,
using the Run Time Data tab.

During replay, click the rightmost tab, RunTime Data. The tab contains two
expandable/collapsible sections:

General: The general section shows the current iteration number, the
Action name of the currently replayed step, and the line number within the
script (Script view).

Parameters: The parameters section shows all parameters defined with the
script and their substitution values based on the selected update method
(sequential, unique, etc.). VuGen shows this information even if the
parameter is not used in the script. For more information, see Chapter 8,
“Working with VuGen Parameters.”

Note that the RunTime Data tab is not accessible after the test run, since it
only displays data that changes during replay.

Part II • Working with VuGen

184

Using VuGen’s Debugging Features

VuGen contains two options to help debug Vuser scripts—the
Run Step by Step command and breakpoints. These options are not
available for VBscript and VB Application type Vusers.

VuGen contains additional features to help debug Web Vuser scripts. For
details, see “Using VuGen’s Debugging Features for Web Vuser Scripts” on
page 189.

To view the Debug toolbar:

Right-click the toolbar area and select Debug. The Debug toolbar appears in
the toolbar area.

The Run Step by Step Command

The Run Step by Step Command runs the script one line at a time. This
enables you to follow the script execution.

To run the script step by step:

 1 Select Vuser > Run Step by Step, or click the Step button on the Debug
toolbar.

VuGen executes the first line of the script.

 2 Continue script execution by clicking the Step button until the script run
completes.

Breakpoints

Breakpoints pause execution at specific points in the script. This enables you
to examine the effects of the script on your application at pre-determined
points during execution. To manage the bookmarks, use the “The
Breakpoint Manager” on page 186.

To set breakpoints:

 1 Place the cursor on the line in the script at which you want execution to
stop.

Chapter 14 • Running Vuser Scripts in Standalone Mode

185

 2 Select Insert > Toggle Breakpoint, or click the Breakpoint button in the
Debug toolbar. Alternatively, press F9 on the keyboard. The Breakpoint
symbol () appears in the left margin of the script.

 3 To disable a breakpoint, place the cursor on the line with the breakpoint
symbol, and click the Enable / Disable Breakpoint button on the Debug
toolbar. A white dot appears inside the Breakpoint symbol (). When one
breakpoint is disabled the execution is paused at the following breakpoint.
Click the button again to enable the breakpoint.

To remove the breakpoint, place the cursor on the line with the breakpoint
symbol, and click the Breakpoint button or press F9.

To run the script with breakpoints:

 1 Begin running the script as you normally would.

VuGen pauses script execution when it reaches a breakpoint. You can
examine the effects of the script run up to the breakpoint, make any
necessary changes, and then restart the script from the breakpoint.

 2 To resume execution, select Vuser > Run.

Once restarted, the script continues until the next breakpoint is
encountered or until the script is completed.

Part II • Working with VuGen

186

The Breakpoint Manager

You can view and manage breakpoints using the Breakpoint Manager. From
the Breakpoint Manager you can manipulate al of the breakpoints in your
script.

To open the Breakpoint Manager, select Edit > Breakpoints.

To jump to the breakpoint location in the script:

 1 Select a breakpoint from the list.

 2 Click Highlight in Script. The line in the script becomes highlighted.

Note that you can only highlight one breakpoint at a time.

Managing Breakpoints

From the Breakpoint Manager, you can add, remove, disable, or
conditionalize a breakpoint.

To add a breakpoint:

 1 Click Add. The Add Breakpoint dialog box opens.

Chapter 14 • Running Vuser Scripts in Standalone Mode

187

 2 Select an Action and specify the Line number where you want add the
breakpoint.

 3 Click OK. The Breakpoint is added to the list of breakpoints.

To remove a breakpoint:

 1 To remove a single breakpoint, select the breakpoint and click Remove.

 2 To remove all the breakpoints at once, click Remove All.

To enable/disable a breakpoint:

 1 To enable a breakpoint, in the Action column, select the action’s check box.

 2 To disable a breakpoint, in the Action column, clear the action’s check box.

From the Breakpoint Manager, you can set breakpoints to pause execution
under certain conditions.

To conditionalize a breakpoint:

 1 To pause the script after a specific number of iterations, select Break when
iteration number is and enter the desired number.

 2 To pause the script when parameter X has a specific value, select Break when
Parameter X Value is and enter the desired value. For more information
about parameters, see Chapter 8, “Working with VuGen Parameters.”

Part II • Working with VuGen

188

Bookmarks

When working in Script view, VuGen lets you place bookmarks at various
locations within your script. You can navigate between the bookmarks to
analyze and debug your code.

To create a bookmark:

 1 Place the cursor at the desired location and press Ctrl + F2. VuGen places an
icon in the left margin of the script.

 2 To remove a bookmark, click on the desired bookmark and press Ctrl + F2.
VuGen removes the bookmark icon from the left margin.

 3 To move between bookmarks:

To move to the next bookmark, click F2.

To navigate to the previous bookmark, click Shift + F2.

You can also create and navigate between bookmarks through the Edit >
Bookmarks menu item.

Note: You can only navigate between bookmarks in the current action. To
navigate to a bookmark in another action, select that action in the left pane
and then press F2.

Chapter 14 • Running Vuser Scripts in Standalone Mode

189

Go To Commands

To navigate around the script without using bookmarks, you can use the Go
To command. Choose Edit > Go To Line and specify the line number of the
script. This navigation is also supported in Tree view.

If you want to examine the Replay log messages for a specific step or
function, select the step in VuGen and choose Edit > Go To Step in Replay
Log. VuGen places the cursor at the corresponding step in the Output
window’s Replay Log tab.

Using VuGen’s Debugging Features for Web Vuser Scripts

VuGen provides two additional tools to help you debug Web Vuser scripts—
the run-time viewer (online browser) and the Results Summary report.

➤ You can instruct VuGen to display a run-time viewer when you run a Web
Vuser script. The run-time viewer is developed by Mercury Interactive
specifically for use with VuGen—it is unrelated to the browser that you use
to record your Vuser scripts. The run-time viewer shows each Web page as it
is accessed by the Vuser. This is useful when you debug Web Vuser scripts
because it allows you to check that the Vuser accesses the correct Web
pages.Chapter 50, “Power User Tips for Web Vusers.”

➤ You can specify whether or not a Web Vuser generates a Results Summary
report during script execution. The Results Summary report summarizes the
success or failure of each step in the Web Vuser scripts and allows you to
view the Web page returned by each step. For additional details on working
with the Results Summary report, choose View > Test Results and click F1 to
open the online help.Chapter 49, “Using Reports to Debug Vuser Scripts.”

Part II • Working with VuGen

190

Note: Transaction times may be increased when a Vuser generates a Results
Summary report.

Vusers can generate Results Summary reports only when run from VuGen.
When you run a script from the Controller, Tuning Module, or
Administration Console, Vusers do not generate reports.

To enable the Web Vuser script debugging features:

 1 Select Tools > General Options from the VuGen menu. The General Options
dialog box opens. Select the Display tab.

 2 Select the Show browser during replay check box to enable the run-time
viewer. Select the Auto arrange window check box to minimize the run-time
viewer when script execution is complete.

 3 Select the Generate report during script execution check box in the Test
Results section to instruct a Vuser to generate a Results Summary report. You
can open the report after script execution by selecting View > Test Results.

 4 Click OK to accept the settings and close the General Options dialog box.

Chapter 14 • Running Vuser Scripts in Standalone Mode

191

Working with VuGen Windows

You can show and rearrange VuGen’s windows to view the relevant data for
your script, using the following features:

➤ Show/Hide the Output Window

Select View > Output Window to show and hide the Output window below
the VuGen script editor. The Output window has several tabs, depending on
the protocol. The most common tabs are the Replay Log, Recording Log,
Generation Log, and Correlation Results. For more information, see “The
Replay Log” on page 182.

➤ Display All Thumbnails

Select View > Show All Thumbnails to show all of the script’s steps as
thumbnails. To show thumbnails for primary steps only, clear this option.
For more information, see “Viewing Script Thumbnails” on page 24.

➤ Display Grids

Select View > Enable Data Grids to enable grid display of the data in the
protocols that support data grids (Database, COM, and Microsoft . NET). The
grids appear inside the script.

➤ Window Manipulation

Select Window > Close All to close all of the open scripts. If necessary,
VuGen will prompt you to save the unsaved scripts.

Running a Vuser Script from a Command Prompt

You can test a Vuser script from a Command Prompt or from the Windows
Run dialog box—without the VuGen user interface.

To run a script from a DOS command line or the Run dialog box:

 1 Select Start > Programs > Command Prompt to open a Command Prompt
window, or select Start > Run to open the Run dialog box.

 2 Type the following and press Enter:

<vugen path>/bin/mdrv.exe -usr <script_name> -vugen_win 0

Part II • Working with VuGen

192

script_name is the full path to the .usr script file, for example,
c:\temp\mytest\mytest.usr.

The mdrv program runs a single instance of the script without the user
interface. Check the output files for run-time information.

Running a Vuser Script from a UNIX Command Line

When using VuGen to develop UNIX-based Vusers, you must check that the
recorded script runs on the UNIX platform. To verify that your script runs
correctly, follow these steps:

 1 Test the recorded script from VuGen.

Run the recorded script from VuGen to check that the script runs correctly
on a Windows-based system.

 2 Copy the Vuser script files to a UNIX drive.

Transfer the files to a local UNIX drive.

 3 Check the Vuser setup on the UNIX machine by using verify_generator.

For details, see “The verify_generator Test” on page 192.

 4 Test the script from the UNIX command line.

Run the script in standalone mode from the Vuser script directory, using the
run_db_vuser shell script:

The verify_generator Test

The verify utility checks the local host for its communication parameters
and its compatibility with all types of Vusers.

The utility checks the following items in the Vuser environment:

➤ at least 128 file descriptors

➤ proper .rhost permissions: -rw-r--r--

run_db_vuser.sh script_name.usr

Chapter 14 • Running Vuser Scripts in Standalone Mode

193

➤ the host can be contacted using rsh to the host. If not, checks for the host
name in .rhosts

➤ M_LROOT is defined

➤ .cshrc defines the correct M_LROOT

➤ .cshrc exists in the home directory

➤ the current user is the owner of the .cshrc

➤ a LoadRunner installation exists in $M_LROOT

➤ the executables have executable permissions

➤ PATH contains $M_LROOT/bin, and /usr/bin

➤ the rstatd daemon exists and is running

If you intend to run all of the Vusers on one host, type:

verify_generator either returns ‘OK’ when the setting is correct, or ‘Failed’ and
a suggestion on how to correct the setup.

For detailed information about the verify checks type:

Command Line Options: run_db_vuser Shell Script

The run_db_vuser shell script has the following command line options:

--help
Display the available options. (This option must be preceded by two dashes.)

-cpp_only
Run cpp only (pre-processing) on the script.

-cci_only
Run cci only (pre-compiling) on the script to create a file with a .ci
extension. You can run cci only after a successful cpp.

verify_generator

verify_generator [-v]

Part II • Working with VuGen

194

-driver driver_path
Use a specific driver program. Each database has its own driver program
located in the /bin directory. For example, the driver for CtLib located in the
/bin directory, is mdrv. This option lets you specify an external driver.

-exec_only
Execute the Vuser .ci file. This option is available only when a valid .ci file
exists.

-ci ci_file_name
Execute a specific .ci file.

-out output_path
Place the results in a specific directory.

By default, run_db_vuser.sh runs cpp, cci, and execute in verbose mode. It
uses the driver in the VuGen installation/bin directory, and saves the results
to an output file in the Vuser script directory. You must always specify a .usr
file. If you are not in the script directory, specify the full path of the .usr file.

For example, the following command line executes a Vuser script called
test1, and places the output file in a directory called results1. The results
directory must be an existing directory—it will not be created automatically:

run_db_vuser.sh -out /u/joe/results1 test1.usr

Chapter 14 • Running Vuser Scripts in Standalone Mode

195

Integrating Scripts into Tests

Once you have successfully run a script in standalone mode to verify that it
is functional, you integrate it into your environment: a LoadRunner
scenario, Performance Center load test, Tuning Module session, or Business
Process Monitor profile.

When you integrate a test, you provide information indicating:

➤ which script

➤ Vusers that will run the script

➤ load generator upon which the script will be executed

➤ scheduling

For more information, refer to the LoadRunner Controller User’s Guide, Tuning
Console, Performance Center, or Application Management documentation.

Using VuGen to Create a LoadRunner Scenario

Note: The following section only applies to LoadRunner. For information on
integrating scripts into Business Process profiles, refer to the Application
Management documentation.

Normally, you create a scenario from the LoadRunner Controller. You can
also create a basic scenario from VuGen using the current script.

Part II • Working with VuGen

196

To create a scenario from VuGen:

 1 Choose Tools > Create Controller Scenario. The Create Scenario dialog box
opens.

 2 Choose either a goal oriented or a manual scenario.

In a goal-oriented scenario, LoadRunner automatically builds a scenario
based on the goals you specify, whereas in a manual scenario, you specify
the number of Vusers to run.

 3 For a manual scenario, enter the number of Vusers you want to execute the
script.

 4 Enter the name of the machine upon which you want the Vusers to run, in
the Load Generator box.

 5 For a manual scenario, users with common traits are organized into groups.
Specify a new group name for the Vusers in the Group Name box.

 6 For a goal-oriented scenario, specify a Script Name.

 7 Enter the desired location for the results in the Result Directory box.

 8 If a scenario is currently open in the Controller and you want to add the
script to this scenario, select the Add script to current scenario check box. If
you clear the check box, LoadRunner opens a new scenario with the
specified number of Vusers.

Chapter 14 • Running Vuser Scripts in Standalone Mode

197

 9 Click OK. VuGen opens the Controller in the Vuser view.

 10 If you configured the Controller to save the script on a shared network
drive, you may need to perform path translation.

For more information, refer to the LoadRunner Controller User’s Guide.

Part II • Working with VuGen

198

199

15
Managing Scripts Using Quality Center

VuGen’s integration with Quality Center lets you manage Vuser scripts
using Quality Center.

This chapter describes:

➤ About Managing Scripts Using Quality Center

➤ Connecting to and Disconnecting from Quality Center

➤ Opening Scripts from a Quality Center Project

➤ Saving Scripts to a Quality Center Project

➤ Managing Script Versions in VuGen

About Managing Scripts Using Quality Center

VuGen works together with Quality Center, Mercury Interactive’s Web-based
test management tool. Quality Center provides an efficient method for
storing and retrieving Vuser script, scenario or session steps, and collecting
results. You store scripts in a Quality Center project and organize them into
unique groups.

In order for VuGen to access a Quality Center project, you must connect it
to the Web server on which Quality Center is installed. You can connect to
either a local or remote Web server.

For more information on working with Quality Center, refer to the Quality
Center User’s Guide.

Part II • Working with VuGen

200

Connecting to and Disconnecting from Quality Center

If you are working with both VuGen and Quality Center, VuGen can
communicate with your Quality Center project. You can connect or
disconnect VuGen from a Quality Center project at any time during the
testing process.

Connecting VuGen to Quality Center

The connection process has two stages. First, you connect VuGen to a local
or remote Quality Center Web server. This server handles the connections
between VuGen and the Quality Center project.

Next, you choose the project you want VuGen to access. The project stores
the scripts for the application you are testing or monitoring. Note that
Quality Center projects are password protected, so you must provide a user
name and a password.

To connect VuGen to Quality Center:

 1 In VuGen, choose Tools > Quality Center Connection. The Quality Center
Connection dialog box opens.

Chapter 15 • Managing Scripts Using Quality Center

201

 2 In the Server box, type the URL address of the Web server on which Quality
Center is installed.

Note: You can choose a Web server accessible via a Local Area Network
(LAN) or a Wide Area Network (WAN).

 3 Click Connect. Once the connection to the server is established, the server’s
name is displayed in read-only format in the Server box.

 4 From the Domain box in the Project connection section, select a domain.

 5 From the Project box in the Project connection section, select a Quality
Center project.

 6 In the User Name box, type a user name.

 7 In the Password box, type a password.

 8 Click Connect to connect VuGen to the selected project.

Once the connection to the selected project is established, the project’s
name is displayed in read-only format in the Project box.

 9 To automatically reconnect to the Quality Center server and the selected
project on startup, select the Reconnect on startup check box.

 10 If you select Reconnect on startup, you can save the specified password to
reconnect on startup. Select the Save password for reconnection on startup
check box.

If you do not save your password, you will be prompted to enter it when
VuGen connects to Quality Center on startup.

 11 Click Close to close the Quality Center Connection dialog box.

Part II • Working with VuGen

202

Disconnecting VuGen from Quality Center

You can disconnect VuGen from a selected Quality Center project and Web
server.

To disconnect VuGen from Quality Center:

 1 In VuGen choose Tools > Quality Center Connection. The Quality Center
Connection dialog box opens.

 2 To disconnect VuGen from the selected project, click Disconnect in the
Project Connection section.

 3 To disconnect VuGen from the selected server, click Disconnect in the Server
Connection section.

 4 Click Close to close the Quality Center Connection dialog box.

Chapter 15 • Managing Scripts Using Quality Center

203

Opening Scripts from a Quality Center Project

When VuGen is connected to a Quality Center project, you can open your
scripts from Quality Center. You locate tests according to their position in
the test plan tree, rather than by their actual location in the file system.

To open a script from a Quality Center project:

 1 Connect to the Quality Center server (see “Connecting VuGen to Quality
Center” on page 200).

 2 In VuGen, choose File > Open or click the File Open button. The Open Test
from Quality Center Project dialog box opens and displays the test plan tree.

To open a script directly from the file system, click the File System button.
The Open Test dialog box opens. (From the Open Test dialog box, you may
return to the Open Test from Quality Center Project dialog box by clicking
the Quality Center button.)

Part II • Working with VuGen

204

 3 Click the relevant subject in the test plan tree. To expand the tree and view
sublevels, double-click closed folders. To collapse the tree, double-click open
folders.

Note that when you select a subject, the scripts that belong to the subject
appear in the Test Name list.

 4 Select a script from the Test Name list. The script appears in the read-only
Test Name box.

 5 Click OK to open the script. VuGen loads the script. The name of the script
appears in VuGen’s title bar. The Design tab shows all of the scripts in the
test plan tree.

Note: You can also open scripts from the recent file list in the File menu. If
you select a script located in a Quality Center project, but VuGen is
currently not connected to that project, the Quality Center Connection
dialog box opens. Enter your user name and password to log in to the
project, and click OK.

Opening Tests from the Recent Files List

You can open Vuser scripts from the recent files list in the File menu. If you
select a script located in a Quality Center project, but VuGen is currently not
connected to Quality Center or to the correct project for the script, the
Connect to Quality Center Project dialog box opens and displays the correct
server, project, and the name of the user who most recently opened the
script on this computer.

Log in to the project, and click OK.

Chapter 15 • Managing Scripts Using Quality Center

205

The Connect to Quality Center Project dialog box also opens if you choose
to open a test that was last edited on your computer using a different
Quality Center user name. You can either log in using the displayed name or
you can click Cancel to stay logged in with your current user name.

Saving Scripts to a Quality Center Project

When VuGen is connected to a Quality Center project, you can create new
scripts in VuGen and save them directly to your project. To save a script, you
give it a descriptive name and associate it with the relevant subject in the
test plan tree. This helps you to keep track of the scripts created for each
subject and lets you view the progress of test planning and creation.

To save a script to a Quality Center project:

 1 Connect to the Quality Center server (see “Connecting VuGen to Quality
Center” on page 200).

 2 In VuGen, choose File > Save As. The Save Test to Quality Center Project
dialog box opens and displays the test plan tree.

Part II • Working with VuGen

206

To save a script directly in the file system, click the File System button. The
Save Test dialog box opens. (From the Save Test dialog box, you may return
to the Save Test to Quality Center Project dialog box by clicking the Quality
Center button.)

 3 Select the relevant subject in the test plan tree. To expand the tree and view
a sublevel, double-click a closed folder. To collapse a sublevel, double-click
an open folder.

 4 In the Test Name box, enter a name for the script. Use a descriptive name
that will allow you identify the script easily.

 5 Click OK to save the script and close the dialog box.

The next time you start Quality Center, the new script will appear in Quality
Center’s test plan tree.

Managing Script Versions in VuGen

When VuGen is connected to a Quality Center project with version control
support, you can update and revise your automated scripts while
maintaining old versions. This helps you keep track of the changes made to
each script, see what was modified from one version of a script to another,
or return to a previous version of the script.

You add a script to the version control data base by saving it in a project
with version control support. You manage versions by checking scripts in
and out of the version control database.

The script with the latest version is the script that is located in the Quality
Center repository and is used by Quality Center for all test runs.

Note: The Quality Center Version Control options in the File menu are
available only when you are connected to a Quality Center project database
with version control support.

Chapter 15 • Managing Scripts Using Quality Center

207

Adding Scripts to the Version Control Database

When you use Save As to save a new script in a Quality Center project with
version control support, VuGen automatically saves the script in the project,
checks the script into the version control database with version number
1.1.1 and then checks it out so that you can continue working.

The VuGen status bar indicates each of these operations as they occur. Note,
however, that saving your changes to an existing script does not check them
in. Even if you save and close the script, it remains checked out until you
choose to check it in. For more information, see “Checking Scripts Out of
the Version Control Database” on page 207.

Checking Scripts Out of the Version Control Database

When you choose File > Open to open a script that is currently checked in to
the version control database, it is opened in read-only mode.

Note: The Open Test from Quality Center Project dialog box displays icons
that indicate the version control status of each script in your project. For
more information, see “Opening Scripts from a Quality Center Project” on
page 203.

You can review the checked-in script. You can also run the script and view
the results.

To modify the script, you must check it out. When you check out a script,
Quality Center copies the script to your unique check-out directory
(automatically created the first time you check out a script), and locks the
script in the project database. This prevents other users of the Quality
Center project from overwriting any changes you make to the script.
However, other users can still run the version that was last checked in to the
database.

Part II • Working with VuGen

208

You can save and close the script, but it remains locked until you return the
script to the Quality Center database. You can release the script by either
checking the script in, or undoing the check out operation. For more
information on checking scripts in, see “Checking Scripts into the Version
Control Database” on page 209. For more information on undoing the
check-out, see “Canceling a Check-Out Operation” on page 214.

By default, the check out option accesses the latest version of the script. You
can also check out older versions of the script. For more information, see
“Using the Version History Dialog Box” on page 211.

To check out the latest version of a script:

 1 Open the script you want to check out. For more information, see “Opening
Scripts from a Quality Center Project” on page 203.

Note: Make sure the script you open is currently checked in. If you open a
script that is checked out to you, the Check Out option is disabled. If you
open a script that is checked out to another user, all Quality Center Version
Control options, except the Version History option, are disabled.

 2 Choose File > Quality Center Version Control > Check Out. The Check Out
dialog box opens and displays the script version to be checked out.

 3 You can enter a description of the changes you plan to make in the
Comments box.

 4 Click OK. The read-only script closes and automatically reopens as a writable
script.

Chapter 15 • Managing Scripts Using Quality Center

209

Checking Scripts into the Version Control Database

While a script is checked out, Quality Center users can run the previously
checked-in version of your script. For example, suppose you check out
version 1.2.3 of a script and make a number of changes to it and save the
script. Until you check the script back in to the version control database as
version 1.2.4 (or another number that you assign), Quality Center users can
continue to run version 1.2.3.

When you have finished making changes to a script and you are ready for
Quality Center users to use your new version, you check it in to the version
control database.

Note: If you do not want to check your changes into the Quality Center
database, you can undo the check-out operation. For more information, see
“Canceling a Check-Out Operation” on page 214.

When you check a script back into the version control database, Quality
Center deletes the script copy from your checkout directory and unlocks the
script in the database so that the script version will be available to other
users of the Quality Center project.

To check in the currently open script:

 1 Confirm that the currently open script is checked out to you. For more
information, see “Viewing Version Information For a Script” on page 211.

Note: If the open script is currently checked in, the Check In option is
disabled. If you open a script that is checked out to another user, all Quality
Center Version Control options, except the Version History option, are
disabled.

Part II • Working with VuGen

210

 2 Choose File > Quality Center Version Control > Check In. The Check In
dialog box opens.

 3 Accept the default new version number and proceed to step 7, or click the
browse button to specify a custom version number. If you click the browse
button, The Edit Check In Version Number dialog box opens.

 4 Modify the version number manually or using the up and down arrows next
to each element of the version number. You can enter numbers 1-900 in the
first element. You can enter numbers 1-999 in the second and third
elements. You cannot enter a version number lower than the most recent
version of this script in the version control database.

 5 Click OK to save the version number and close the Edit Check In Version
Number dialog box.

 6 If you entered a description of your change when you checked out the
script, the description is displayed in the Comments box. You can enter or
modify the comments in the box.

 7 Click OK to check in the script. The script closes and automatically reopens
as a read-only script.

Chapter 15 • Managing Scripts Using Quality Center

211

Using the Version History Dialog Box

You can use the Version History dialog box to view version information
about the currently open script and to view or retrieve an older version of
the script.

Viewing Version Information For a Script

You can view version information for any open script that has been stored
in the Quality Center version control database, regardless of its current
status.

To open the Version History dialog box for a script, open the script and
choose File > Quality Center Version Control > Version History.

The Version History dialog box provides the following information:

Test name—The name of the currently open script.

Test status—The status of the script. The script can be:

Part II • Working with VuGen

212

➤ Checked-in—The script is currently checked in to the version control
database. It is currently open in read-only format. You can check out the
script to edit it.

➤ Checked-out—The script is checked out by you. It is currently open in
read-write format.

➤ Checked-out by <another user>—The script is currently checked out by
another user. It is currently open in read-only format. You cannot check
out or edit the script until the specified user checks in the script.

My open version—The script version that is currently open on your VuGen
computer.

Version details—The version details for the script.

➤ Version—A list of all versions of the script.

➤ User—The user who checked in each listed version.

➤ Date and Time—The date and time that each version was checked in.

Version comments—The comments that were entered when the selected
version was checked in.

Working with Previous Script Versions

You can view an old version of a script in read-only mode or you can check
out an old version and then check it in as the latest version of the script.

To view an old version of a script:

 1 Open the Quality Center script. The latest version of the script opens. For
more information, see “Opening Scripts from a Quality Center Project” on
page 203.

 2 Choose File > Quality Center Version Control > Version History. The Version
History dialog box opens.

 3 Select the version you want to view in the Version details list.

 4 Click the Get Version button. VuGen reminds you that the script will open
in read-only mode because it is not checked out.

 5 Click OK to close the VuGen message. The selected version opens in read-
only mode.

Chapter 15 • Managing Scripts Using Quality Center

213

Tips: To confirm the version number that you now have open in VuGen,
look at the My open version value in the Version History dialog box.

After using the Get Version option to open an old version in read-only
mode, you can check-out the open script by choosing File > Quality Center
Version Control > Check Out. This is equivalent to using the Check Out
button in the Version History dialog box.

To check out an old version of a script:

 1 Open the Quality Center script. The latest version of the script opens. For
more information, see “Opening Scripts from a Quality Center Project” on
page 203.

 2 Choose File > Quality Center Version Control > Version History. The Version
History dialog box opens.

 3 Select the version you want to view in the Version details list.

 4 Click the Check Out button. A confirmation message opens.

 5 Confirm that you want to check out an older version of the script. The
Check Out dialog box opens and displays the version to be checked out.

 6 You can enter a description of the changes you plan to make in the
Comments box.

 7 Click OK. The open script closes and the selected version opens as a writable
script.

 8 View or edit the script as necessary.

Part II • Working with VuGen

214

 9 If you want to check in your script as the new, latest version in the Quality
Center database, choose File > Quality Center Version Control > Check In. If
you do not want to upload the modified script to Quality Center, choose File
> Quality Center Version Control > Undo Check out.

For more information on checking scripts in, see “Checking Scripts into the
Version Control Database” on page 209. For more information on undoing
the check-out, see “Canceling a Check-Out Operation” on page 214.

Canceling a Check-Out Operation

If you check out a script and then decide that you do not want to upload the
modified script to Quality Center you should cancel the check-out operation
so that the script will be available for check out by other Quality Center
users.

To cancel a check-out operation:

 1 If it is not already open, open the checked-out script.

 2 Choose File > Quality Center Version Control > Undo Check out.

 3 Click Yes to confirm the cancellation of your check-out operation. The
check-out operation is cancelled. The checked-out script closes and the
previously checked-in version reopens in read-only mode.

215

16
Managing Scripts with Performance
Center

VuGen’s integration with Performance Center lets you upload and
download scripts to and from the Performance Center server.

This chapter describes:

➤ About Managing Scripts with Performance Center

➤ Connecting VuGen to Performance Center

➤ Uploading Vuser Scripts

➤ Downloading Vuser Scripts

About Managing Scripts with Performance Center

VuGen provides integration with Performance Center, Mercury Interactive’s
Web-enabled global load testing tool that allows you to test your system
from different geographical locations.

You can upload and download scripts to and from Performance Center using
VuGen’s user interface. You upload scripts to Performance Center in order to
add them to your Vuser Scripts list and use them in your test. You can also
download scripts to edit them or save them locally.

In order for VuGen to access Performance Center for either uploading or
downloading, you must connect to the server upon which Performance
Center is installed.

For further information about working with Performance Center, refer to
the Performance Center User’s Guide.

Part II • Working with VuGen

216

Connecting VuGen to Performance Center

VuGen works together with Performance Center to provide an efficient
method for uploading and downloading Vuser scripts to and from
Performance Center. In order for VuGen to access a Performance Center
project, you must first connect it to the Web server on which Performance
Center is installed. You can then upload or download Vuser scripts. For more
information, see:

➤ “Uploading Vuser Scripts” on page 218.

➤ “Downloading Vuser Scripts” on page 223.

You connect to Performance Center using the Configure Performance
Center Connection dialog box.

To connect VuGen to Performance Center:

 1 In VuGen, select Tools > Configure Performance Center Connection. The
Configure Performance Center Connection dialog box opens.

 2 In the URL box, type the URL address of the Web server on which
Performance Center is installed. The URL address should be in the format:
http://<server_name>/loadtest

 3 Enter your user name and password. Contact your Performance Center
administrator if you need assistance.

Chapter 16 • Managing Scripts with Performance Center

217

 4 To automate the login process, select Remember User Name and Password.
The specified username and password are saved to the registry, and
displayed each time you open the dialog box.

 5 To automatically open the connection to the Performance Center server
when you start VuGen, select Auto connect when VuGen starts. VuGen
attempts to connect to Performance Center using the configuration
information displayed.

 6 Click OK to connect to Performance Center. The Performance Center
Connection dialog box displays the connection status.

Once the connection is established, all the fields are displayed in read-only
format.

Note: If the connection fails, a dialog box displays the reason for the
connection failure.

You cannot be connected to Performance Center and Quality Center at the
same time.

Part II • Working with VuGen

218

Uploading Vuser Scripts

In order to use Vuser scripts in your Performance Center project, you need
to upload the Vuser scripts to the Performance Center server. The Vuser
Scripts list on the Performance Center server displays all the stored Vuser
scripts that are available for your project.

To open the Vuser Scripts page, select Vuser Scripts from the Projects menu.

If you have already added Vuser scripts to the Vuser Scripts list, Performance
Center displays them on the Vuser Scripts page. This list represents all the
Vuser scripts that are available for use by Vusers during a load test. Scripts
uploaded using VuGen are automatically added to the Vuser Scripts list.

If you do not have Vuser scripts in the Vuser Scripts list and you want to add
a new script, you can add scripts by:

➤ Uploading a Vuser Script from VuGen

➤ Uploading a Vuser Script from Performance Center

Verifying your Version of VuGen

In order to process the upload, your version of VuGen must be properly
configured, and you must connect VuGen to Performance Center.

To check for proper upload configuration in VuGen:

 1 Start VuGen and open a new or existing VuGen script.

 2 Select Tools.

Chapter 16 • Managing Scripts with Performance Center

219

If the menu item Configure Performance Center Connection is available on
the drop-down menu, your version of VuGen is enabled to upload scripts.

If your version of VuGen is not enabled to do uploads or if you do not have
VuGen installed on your machine, you need to install a newer version of
VuGen. It is recommended that you uninstall your older version. To
uninstall VuGen, choose the uninstall option under the Virtual User
Generator from the Start menu.

To install a newer version of VuGen:

 1 From the Miscellaneous menu, select Downloads.

 2 Select Standalone LoadRunner VuGen.

 3 Follow the download instructions.

Once you have a version of VuGen that is enabled, you can upload existing
scripts or record new scripts to upload.

Upload Options

You can upload Vuser scripts from within VuGen to the Performance Center
Web site script repository. Depending on your requirements, you can do a
partial or a complete upload. The upload options are:

➤ Upload run time files: First VuGen deletes all main script files (usr, c, cfg,
and xml files) from the server. It does not delete data files or old recorded
data. Next, VuGen uploads the script files, the run-time settings, and the
parameter files.

Part II • Working with VuGen

220

➤ Upload all files: First VuGen deletes all script and data files from the
server. VuGen then uploads the current script and data files, including
the recording data and the replay result directories.

Uploading the run time files only is quicker since VuGen only uploads the
script files—not all of the recording data and the replay results.

Note: If you previously downloaded script files, VuGen by default uploads
only the files that were downloaded. If you want to upload newly created
files, for example, you replayed the downloaded script to create snapshots,
you must specify that all files are uploaded.

Uploading a Vuser Script from VuGen

Once you are connected to VuGen, you can upload your script files to the
Performance Center server. For more information, see “Connecting VuGen
to Performance Center,” on page 216.

If VuGen is not connected to Performance Center, you can save the Vuser
script files locally to the file system. Later, when VuGen is connected to
Performance Center, open the script in VuGen and upload it to Performance
Center as described below.

Chapter 16 • Managing Scripts with Performance Center

221

To upload a Vuser script to Performance Center from VuGen:

 1 Choose File > Save in VuGen. The Save Script dialog box opens.

 2 Select the project where you want to save the script. Type name for the
script in the File name box.

Note: File names can only consist of English letters, digits, or the underscore
character, and cannot exceed 250 characters.

 3 Click OK. The Upload Script dialog box opens. Select one of the Upload
Options, Upload run time files or Upload all files.

 4 Click OK to upload the files to the Performance Center server.

Part II • Working with VuGen

222

Uploading a Vuser Script from Performance Center

If your installation does not include VuGen, you can still upload scripts
using the Upload Script function in Performance Center’s Vuser Scripts
page.

To upload a Vuser script from Performance Center:

 1 Open the Vuser Scripts page.

 2 Click Upload Script. The Upload a Vuser Script dialog box opens.

 3 Click a Browse button to browse to the zip file containing each Vuser script
you want to upload. Note that the zip file must contain the complete
contents of the Vuser script folder, including the Vuser script file (“.usr” file)
itself and all related data files.

 4 Select the zip file, and click Open.

 5 Check Overwrite existing Scripts if you want to replace a script that already
exists in the Vuser Scripts list.

 6 Click Upload to upload the script and add it to your Vuser Scripts list.

Chapter 16 • Managing Scripts with Performance Center

223

Downloading Vuser Scripts

VuGen works together with Performance Center to provide an efficient
method for downloading Vuser scripts from Performance Center for editing,
and automatically opening them in VuGen. You can choose to download
only the script run time files, or the complete files including the recording
data and replay results.

In order for VuGen to access a Performance Center project, you must first
connect it to the Web server on which Performance Center is installed. You
can then select the script files that you want to download. You connect to
Performance Center from the Configure Performance Center Connection
dialog box. For more information, see “Connecting VuGen to Performance
Center,” on page 216.

Download Options

You can download Vuser scripts from the Performance Center script
repository to VuGen. Depending on your requirements, you can do a partial
or a complete download. The download options are:

➤ Download run time files: VuGen downloads the script files only, allowing
faster downloads. This includes the script file, run-time settings, and
parameter files.

➤ Download all files: VuGen downloads the script and data files, including
the recording data and the replay result directories.

A partial download of run time files only is quicker since VuGen only
downloads the script files. If you download all the script and data files, the
transfer will take more time.

Part II • Working with VuGen

224

Downloading a Vuser Script from VuGen

Once you are connected to the Performance Center server, you can
download your script files to the VuGen.

To download a Vuser script from Performance Center:

 1 Connect to the Performance Center server. For more information, see
“Connecting VuGen to Performance Center” on page 216.

 2 In VuGen, select File > Open. The Select Script dialog box opens.

 3 Select the script that you want to download.

Chapter 16 • Managing Scripts with Performance Center

225

To select a script from a local drive (even if you are connected to
Performance Center), click File System. The Open Test dialog box opens.

Browse to the file that you want to download, and click Open. The
Performance Center Select Script dialog box reopens. Select the script that
you want to download.

 4 Click OK. The Download Script dialog box opens.

 5 Select a download option: Download run time files or Download all files.

 6 Click OK to download the files from Performance Center. When the
download is complete, the dialog box closes and VuGen displays the script.

By default, downloaded files are saved to your temp directory. To save them
to a different directory, click Save and specify a directory.

Part II • Working with VuGen

226

Part III

Working with Java Language Protocols

Working with Java Language Protocols refers to RMI-Java, CORBA-Java, EJB,
and Jacada types. For each of the mentioned protocols, refer to the
appropriate section. This part contains information that applies to all types
of Java Vusers.

228

229

17
Recording Java Language Vuser Scripts

VuGen allows you to record applications or applets written in Java, in
protocols such as CORBA, RMI, EJB, or Jacada. You can also use VuGen’s
navigation tool to add any method to your script.

This chapter describes:

➤ About Recording Java Language Vuser Scripts

➤ Getting Started with Recording

➤ Understanding Java Language Vuser Scripts

➤ Running a Script as Part of a Package

➤ Viewing the Java Methods

➤ Manually Inserting Java Methods

➤ Configuring Script Generation Settings

The following information applies to CORBA-Java, RMI-Java, EJB, and
Jacada Vuser scripts.

Part III • Working with Java Language Protocols

230

About Recording Java Language Vuser Scripts

Using VuGen, you can record a Java application or applet. VuGen creates a
pure Java script enhanced with Vuser API Java-specific functions. After
recording, you can enhance or modify the script with standard Java code
using JDK libraries or custom classes.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it. Once you verify that the script is functional, you incorporate it
into a LoadRunner scenario, Tuning Module session step, or Business Process
Monitor profile.

When you create a script through recording and manual enhancements, all
of the guidelines and limitations associated with Java Vuser scripts apply. In
addition, any specific classes used in the script must be present on the
machine executing the Vusers and indicated by the classpath environment
variable. Refer to Chapter 29, “Programming Java Scripts” for important
information about function syntax and system configuration.

Note that when you load an applet or application from VuGen during
recording, it may take several seconds longer than if you were to load it
independent of VuGen.

VuGen provides a tool that enables you to convert a Vuser script created for
Web, into Java. For more information, see “Converting Web Vuser Scripts
into Java” on page 518.

Getting Started with Recording

The following procedure outlines how to record Java language Vuser scripts.

 1 Ensure that the recording machine is properly configured.

Make sure that your machine is configured properly for Java before you
begin recording. For more information, see Chapter 29, “Programming Java
Scripts” and the Read Me file.

Chapter 17 • Recording Java Language Vuser Scripts

231

 2 Create a new Vuser script.

Select a protocol type (Distributed Components, EJB, or Middleware) and
choose the desired Vuser type.

 3 Set the recording parameters and options for the script.

You specify the parameters for your applet or application such as working
directory and paths. You can also set JVM, serialization, correlation,
recorder, and debug recording options. For more information, see
Chapter 18, “Setting Java Recording Options.”

 4 Record typical user actions.

Begin recording a script. Perform typical actions within your applet or
application. VuGen records your actions and generates a Vuser script.

 5 Enhance the Vuser script.

Add Vuser API specific functions to enhance the Vuser script. For details, see
Chapter 29, “Programming Java Scripts.” You can use the built-in Java
function Navigator. For more information, see “Viewing the Java Methods”
on page 233.

 6 Parameterize the Vuser script.

Replace recorded constants with parameters. You can parameterize complete
strings or parts of a string. Note that you can define more than one
parameter for functions with multiple arguments. For details, see Chapter 8,
“Working with VuGen Parameters.”

 7 Configure the run-time setting for the script.

Configure run-time settings for the Vuser script. The run-time settings
define the run-time aspects of the script execution. For the specific run-time
settings for Java, see Chapter 20, “Configuring Java Run-Time Settings.”

 8 Save and run the Vuser script.

Run the script from VuGen and view the execution log for run-time
information. For details, see Chapter 14, “Running Vuser Scripts in
Standalone Mode.”

For detailed information on the recording procedure, refer to the specific
chapter for your Vuser type.

Part III • Working with Java Language Protocols

232

Understanding Java Language Vuser Scripts

When you record a session, VuGen logs all calls to the server and generates a
script with functions. These functions describe all of your actions within the
application or applet. The script also contains supplementary code required
for proper playback, such as property settings, and naming service
initialization (JNDI).

The recorded script is comprised of three sections:

➤ Imports

➤ Code

➤ Variables

The Imports section is at the beginning of the script. It contains a reference
to all the packages required for compiling the script. The Code section
contains the Actions class and the recorded code within the init, actions,
and end methods. The Variables section, after the end method, contains all
the type declarations for the variables used in the code.

After you finish recording, you can modify the functions in your script, or
add additional Java or Mercury functions to enhance the script. Note that if
you intend to run Java Vusers as threads, the Java code you add to your
script must be thread-safe. For details about function syntax, refer to the
Online Function Reference (Help > Function Reference). In addition, you can
modify your script to enable it to run as part of another package. For more
information, see “Compiling and Running a Script as Part of a Package” on
page 417.

Running a Script as Part of a Package

This section is not relevant for Jacada type scripts.

When creating or recording a Java script, you may need to use methods
from classes in which the method or class is protected. When attempting to
compile such a script, you receive compilation errors indicating that the
methods are not accessible.

Chapter 17 • Recording Java Language Vuser Scripts

233

To use the protected methods, add the Vuser to the package of required
methods. At the beginning of your script, add the following line:

where a.b.c represents a directory hierarchy. VuGen creates the a/b/c
directory hierarchy in the user directory and compiles the Actions.java file
there, thus making it part of the package. Note that the package statement
is not recorded—you need to insert it manually.

Viewing the Java Methods

VuGen provides a navigator that lets you view all of the Java classes and
methods in your application’s packages.

To insert a class or method into your script, you select it and paste it into
your script. For step-by-step instructions, see “Manually Inserting Java
Methods” on page 235.

package a.b.c;

Part III • Working with Java Language Protocols

234

The lower part of the dialog box displays a description of the Java object, its
prototype, return values and path. In the following example, the description
indicates that the deserialize method is a public static method that receives
two parameters—a string and an integer. It returns a java.lang.object and
throws an exception.

The following table describes the icons that represent the various Java
objects:

public static synchronized java.lang.Object deserialize (java.lang.String,
int) throws Exception

Icon Item Example

Package java.util

Class public class Hashtable extends java.util.Dictionary

implements java.lang.Cloneable, java.io.Serializable

Interface
Class
(gray icon)

public interface Enumeration

Method public synchronized java.util.Enumeration keys ()

Static Method
(yellow icon)

public static synchronized java.util.TimeZone
getTimeZone

Constructor
Method

public void Hashtable ()

Chapter 17 • Recording Java Language Vuser Scripts

235

Manually Inserting Java Methods

You use the Java Function navigator to view and add Java functions to your
script. The following section apply to EJB Testing, RMI-Java, and CORBA-
Java Vusers. You can customize the function generation settings by
modifying the configuration file. For more information, see “Configuring
Script Generation Settings” on page 237.

To insert Java functions:

 1 Click within your script at the desired point of insertion. When you paste a
function, VuGen places it at the location of the cursor.

 2 Choose Insert > Insert Java Function. The Insert Java Function dialog box
opens.

Part III • Working with Java Language Protocols

236

 3 Click Locations. The Locations dialog box opens. By default, VuGen lists the
paths defined in the CLASSPATH environment variable.

 4 Click Browse to add another path or archive to the list. To add a path,
choose Browse > Folder. To add an archive (jar or zip), choose Browse > File.
When you select a folder or a file, VuGen inserts it in the Add Location box.

 5 Click Add to add the item to the list.

 6 Repeat steps 4 and 5 for each path or archive you want to add.

 7 Select or clear the check boxes to the left of each item in the list. If an item is
checked, its members will be listed in the Java Class navigator.

 8 Click OK to close the Locations dialog box and view the available packages.

 9 Click the plus and minus signs to the left of each item in the navigator, to
expand or collapse the trees.

 10 Select an object and click Paste. VuGen places the object at the location of
the cursor in the script. To paste all the methods of a class into your script,
select the class and click Paste.

 11 Repeat the previous step for all of the desired methods or classes.

Chapter 17 • Recording Java Language Vuser Scripts

237

 12 Modify the parameters of the methods. If the script generation setting
DefaultValues is set to true, you can use the default values inserted by
VuGen. If DefaultValues is set to false, you must add parameters for all
methods you insert into the script.

In addition, modify any return values. For example, if your script generated
the following statement “(String)=LavaVersion.getVersionId();”, replace
(String) with a string type variable.

 13 Add any necessary statements to your script such as imports or Vuser API
Java functions (described in Chapter 29, “Programming Java Scripts”).

 14 Save the script and run it from VuGen.

Configuring Script Generation Settings

You can customize the way the navigator adds methods to your script in the
following areas:

➤ Class Name Path

➤ Automatic Transactions

➤ Default Parameter Values

➤ Class Pasting

To view the configuration setting, open the jquery.ini file in VuGen’s dat
directory.

[Display]
FullClassName=False

[Insert]
AutoTransaction=False
DefaultValues=True
CleanClassPaste=False

Part III • Working with Java Language Protocols

238

Class Name Path

The FullClassName option displays the complete package and class name in
the Java Function navigator. This option does not affect the way the
functions are added into the script—it only affects the way the classes are
displayed in the navigator. By default, this option is set to false. If your
packages have many classes and you are unable to view the package and
class names at the same time, you should enable this option.

FullClassName enabled FullClassName disabled

Chapter 17 • Recording Java Language Vuser Scripts

239

Automatic Transactions

The AutoTransaction setting creates a Vuser transaction for all methods.
When you enable this option, VuGen automatically encloses all Java
methods with lr.start_transaction and lr.end_transaction functions. This
allows you to individually track the performance of each method. This
option is disabled by default.

Default Parameter Values

The DefaultValues setting includes default values for all methods you paste
into your script. This option is enabled by default and inserts a null for all
objects. If you disable this option, you must manually insert parameter
values for all functions in the script. The following table illustrates the
DefaultValues flag enabled and disabled.

DefaultValues enabled DefaultValues disabled

lr.message((String)"");

lr.think_time((int)0);

lr.enable_redirection((boolean)false);

lr.save_data((byte[])null, (String)"");

lr.message((String));

lr.think_time((int));

lr.enable_redirection((boolean));

lr.save_data((byte[]), (String));

Part III • Working with Java Language Protocols

240

Class Pasting

The CleanClassPaste setting pastes a class so that it will compile cleanly:
with an instance returning from the constructor, with default values as
parameters, and without a need for import statements. Using this option,
you will most likely be able to run your script without any further
modifications. If you disable this option (default), you may need to
manually define parameters and include import statements. Note that this
setting is only effective when you paste an entire class into your script—not
when you paste a single method.

The following segment shows the toString method pasted into the script
with the CleanClassPaste option enabled.

The same method with the CleanClassPaste option disabled is pasted as
follows:

The next segment shows the NumInserter Constructor method pasted into
the script with the CleanClassPaste option enabled.

The same method with the CleanClassPaste option disabled is pasted as:

_class.toString();
// Returns: java.lang.String

(String) = toString();

utils.NumInserter _numinserter = new utils.NumInserter
((java.lang.String)"", (java.lang.String)"", (java.lang.String)""…);

// Returns: void

new utils.NumInserter((String)"", (String)"", (String)"",...);

241

18
Setting Java Recording Options

VuGen allows you to control the way in which you record your CORBA,
RMI, or EJB application. You can use the default recording options, or
customize them for your specific needs.

This chapter describes:

➤ About Setting Java Recording Options

➤ Java Virtual Machine (JVM) Recording Options

➤ Setting Classpath Recording Options

➤ Recorder Options

➤ Serialization Options

➤ Correlation Options

➤ Debug Options

➤ CORBA Options

The following information applies to CORBA-Java, RMI-Java, and EJB
Vuser scripts.

Part III • Working with Java Language Protocols

242

About Setting Java Recording Options

Using VuGen, you record a CORBA (Common Object Request Broker
Architecture) or RMI (Remote Method Invocation) Java application or
applet. For recording an EJB test, see Chapter 55, “Performing EJB Testing.”

Before recording, VuGen lets you set recording options for the Java Virtual
Machine (JVM) and for the code generation stage. Setting the recording
options is not mandatory; if you do not set them, VuGen uses the default
values.

The options described in this chapter were previously handled by modifying
the mercury.properties file.

You can set recording options in the following areas:

➤ Java Virtual Machine (JVM) Recording Options

➤ Setting Classpath Recording Options

➤ Recorder Options

➤ Serialization Options

➤ Correlation Options

➤ Debug Options

Chapter 18 • Setting Java Recording Options

243

Java Virtual Machine (JVM) Recording Options

The Java VM options indicate additional parameters to use when recording
Java applications.

When you record a Vuser, VuGen automatically sets the Xbootclasspath
variable with default parameters. If you use this dialog box to set the
Xbootclasspath with different parameters, it will use those command
parameters—not the default ones.

You can also instruct VuGen to add the Classpath before the Xbootclasspath
(prepend the string) to create a single Classpath string.

By default, VuGen uses the classic VM during recording. You can also
instruct VuGen to use another virtual machine (Sun’s Java Hotspot VM).

Part III • Working with Java Language Protocols

244

To set the Java Virtual Machine recording options:

 1 Click Options in the Start Recording dialog box. Select the Java Environment
Settings:Java VM node in the Recording Options tree.

 2 In the Additional VM Parameters box, list the Java command line
parameters. These parameters may be any Java VM argument. The common
arguments are the debug flag (-verbose) or memory settings (-ms, -mx). For
more information about the Java VM flags, see the JVM documentation. In
additional, you may also pass properties to Java applications in the form of a
-D flag.

VuGen automatically sets the -Xbootclasspath variable (for JDK 1.2 and
higher) with default parameters. When you specify -Xbootclasspath with
parameter values as an additional parameter, VuGen uses this setting instead
of the default one.

 3 To use the same Additional VM parameters in replay, select the Use the
specified Additional VM Parameters during replay check box.

 4 To use the classic VM, select the Use classic Java VM check box (default). To
use another VM (Sun’s Java HotSpot), clear the check box.

 5 To add the Classpath before the Xbootclasspath (prepend the string), select
the Prepend CLASSPATH to -Xbootclasspath parameter check box.

 6 Click OK to close the dialog box and begin recording.

Chapter 18 • Setting Java Recording Options

245

Setting Classpath Recording Options

The Java Environment Settings:Classpath node lets you specify the location
of additional classes that were not included in the system’s classpath
environment variable. You may need these classes to run Java applications
and insure proper recording.

You can browse for the required classes on your computer or network and
disable them for a specific test. You can also manipulate the classpath
entries by changing their order.

To set the Classpath recording options:

 1 Click Options in the Start Recording dialog box. Select the Java Environment
Settings:Classpath node in the Recording Options tree.

 2 To add a classpath to the list:

Click the Add Classpath button. VuGen adds a new line to the classpath list.

Type in the path and name of the jar, zip or other archive file for your class.
Alternatively, click the Browse button to the right of the field, and locate
the desired file. VuGen adds the new location to the classpath list, with an
enabled status.

 3 To permanently remove an entry, select it and click the Delete button.

Part III • Working with Java Language Protocols

246

 4 To disable a classpath entry for a specific test, clear the check box to the left
of the entry.

 5 To move an entry down in the list, select it and click the Down arrow.

 6 To move a classpath entry up within the list, select it and click the Up arrow.

 7 Click OK to close the dialog box and begin recording.

Recorder Options

The Recorder options provide guidelines to VuGen for generating a Vuser
script. You can set options in the following areas:

➤ General Options

➤ Recording Log

➤ Styling Options

➤ Byte Formatting Options

Chapter 18 • Setting Java Recording Options

247

General Options

Record Return Value: Generates a comment in the script indicating the
return value for each invocation (disabled by default).

Record Progress Messages: Records an lr.log_message function before each
invocation to allow you to follow the replay progress (disabled by default).

Record Think Time: Records think times and includes think time function,
lr.think_time, in the script (enabled by default).

Record Exception Handling: When an exception occurs, wrap the
invocation with a try-catch block (enabled by default).

Insert Functional Check: Inserts verification code that compares the return
value received during replay, to the expected return value generated during
recording. This option only applies to primitive return values (disabled by
default).

Use LR API: Includes LR API functions in the script.If you expect to use the
script outside of VuGen, disable this option to remove all LR API functions
such as think time and other constants (enabled by default).

Output Redirection: Redirects the Stdout and Stderr outputs of Java
applications to a file (disabled by default).

Extensions List: A list of all the supported extensions. Each extension has its
own hook file. To specify additional extensions, add them to the list of
default extensions. If you add extensions to the list, make sure its hook file
is available to the Vuser script. The default extensions are JNDI, JMS, and
EJB.

Use _JAVA_OPTION flag: Forces JVM versions 1.2 and higher to use the
_JAVA_OPTION environment variable which contains the desired JVM
parameters (disabled by default).

Recording Log

Generate Recording Log: Generates a recording log displayed in the Output
window’s Recording tab. If you disable this option, your performance may
improve, but no information will be sent to the Output window during
recording (enabled by default).

Part III • Working with Java Language Protocols

248

Generate Variables Info: Writes the inner values of variables to the recording
log. If you enable this option, your performance may decrease (enabled by
default).

Detail Level: The number of array elements to show in the log, when
recording an array type parameter or return value. The default level is 5.

Styling Options

Use Block Semantics: Places each invocation in a separate scope by wrapping
it with curled brackets. If this option is disabled, the entire Action method is
wrapped with curled brackets—not each invocation (disabled by default).

Underscored Variable Names: Precedes all variables generated in the script
with an underscore prefix. This is necessary to prevent conflicts with a
package of the same name (enabled by default).

Max Line Length: The maximum length of a recorded line. If any recorded
line exceeds this value, it is truncated. VuGen applies a smart truncation, in
order not to break any code consistency such as quotes or function
parameters. The default value is 1000 characters. The maximum length is
30000 characters.

Max Action Length: The maximum size of an action method. The default
value is 3000 characters. If an action method exceeds this value, VuGen
breaks it up into smaller action methods.

Comment Lines Containing: Comment out all lines in the script containing
one of the specified strings. To specify multiple strings, separate the entries
with commas. By default, any line with a string containing <undefined>,
will be commented out.

Remove Lines Containing: Remove all lines containing one of the specified
strings from the script. To specify multiple strings, separate the entries with
commas. This feature is useful for customizing the script for a specific
testing or tuning goal.

Chapter 18 • Setting Java Recording Options

249

Byte Formatting Options

Bytes as Characters: Displays readable characters as characters with the
necessary casting—not in byte or hexadecimal form (enabled by default).

Implicit Casting: Instructs VuGen to automatically apply casting to all
invocations. When you enable this option, casting is not added to the
recorded invocations—the compiler handles it implicitly. If you disable this
option, VuGen adds casting to the invocations, resulting in a longer script
(disabled by default).

Unreadable Strings as Bytes: Represents strings containing unreadable
characters as byte arrays. This option applies to strings that are passed as
parameters to invocations (enabled by default).

Byte Array Format: The format of byte arrays in a script: Regular, Unfolded
Serialized Objects, or Folded Serialized Objects. Use one of the serialized
object options when recording very long byte arrays. The default is Regular.

Ignore System Properties: Filters out the specified system properties when
recording the EJB properties.

To set the Java Recorder options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Recorder Options node.

 2 Set the options as desired. For the options with check boxes, select or clear
the check box adjacent to the option. For options that require numbers or
strings, type in the desired value.

 3 To set all options to their default values, click Use Defaults.

 4 Click OK to close the dialog box and begin recording.

Part III • Working with Java Language Protocols

250

Serialization Options

The Serialization options allow you to control how elements are serialized.
For an overview of serialization, see “Using the Serialization Mechanism” on
page 264. The following options are available:

Unfold Serialized Objects: Expands serialized objects in ASCII
representation. This option allows you to view the ASCII values of the
objects in order to perform parameterization (enabled by default).

Limit Object Size (bytes): Limits serializable objects to the specified value.
Objects whose size exceeds this value, will not be given ASCII representation
in the script. The default value is 3072.

Ignore Serialized Objects: Lists the serialized objects not to be unfolded
when encountered in the recorded script. Separate objects with commas.

Serialization Delimiter: Indicates the delimiter separating the elements in
the ASCII representation of objects. VuGen will only parameterize strings
contained within these delimiters. The default delimiter is ‘#’.

Unfold Arrays: Expands array elements of serialized objects in ASCII
representation. If you disable this option and an object contains an array,
the object will not be expanded. By default, this option is enabled—all
deserialized objects are totally unfolded.

Limit Array Entries: Instructs the recorder not to open arrays with more than
the specified number of elements. The default value is 200.

Enable Stub Serialization: Serializes stub objects that were not correlated
which would otherwise be <undefined>. Replaying this code on a new
server context, may require re-recording (disabled by default).

Debug Options

Serialization Debug Messages: Gives debug printouts from serialization
mechanism (disabled by default).

Show Serialization Exceptions: Show all serialization exceptions in the log
(disabled by default).

Chapter 18 • Setting Java Recording Options

251

To set the Serialization options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Serialization Options node.

 2 Set the options as desired. To set all options to their default values, click Use
Defaults.

 3 Click OK to close the dialog box and begin recording.

Correlation Options

The Correlation options let you indicate whether VuGen should perform
automatic correlation, and control its depth. For information about
correlation, see Chapter 19, “Correlating Java Scripts.” The following
options are available:

Correlate Strings: Correlate all strings that require correlation. If this option
is disabled, VuGen prints them in the script wrapped in quotes (disabled by
default).

Part III • Working with Java Language Protocols

252

Correlate String Arrays: Correlate text within string arrays (enabled by
default).

Advanced Correlation: Enables deep correlation in CORBA container
constructs and arrays (enabled by default).

Correlation Level: Indicates the level of deep correlation, the number of
inner containers to be scanned (15 by default).

Correlate Collection Type: Correlates objects from the Collection class for
JDK 1.2 and higher (disabled by default).

Correlation Debug Level: Sends correlation related debug information to the
log. You specify a value from 0 through 5. (0 by default, implying no
correlation debug information.)

To set the correlation options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Correlation Options node.

 2 Enable the desired options, or for options that require values, enter the
desired value. To set all options to their default values, click Use Defaults.

 3 Click OK to close the dialog box and begin recording.

Chapter 18 • Setting Java Recording Options

253

Debug Options

The Debug options let you determine the level of debug information
generated during recording. The following options are available:

General Options

Enable Generic Debug Options: Enables the generic debugging options:
Class Dumping, Hooking Debug Level, Stack Trace, and Trace Support.
When you enable this option, VuGen performs a stack trace, even if the first
Stack Trace option is disabled. Use the Stack Trace option in conjunction
with Class Dumping to determine the context for the hooked parts in the
application. The trace can help you determine where to place additional
hooks (disabled by default).

Stack Trace: Logs all invocations in a stack trace. This setting provides a Java
stack trace for every recorded function. Use this option in conjunction with
Class Dumping, to determine the context for the hooked parts in the
application. This trace can help you solve cases where a parameter is not
correlated and to determine where to place additional hooks. Note that
enabling this option slows down the application (disabled by default).

Stack Trace Limit: The maximum number of calls stored in the stack. When
a stack trace is enabled, and the number of calls exceeds the specified value,
the stack trace is truncated. The default value is 20 calls.

Trace Support: Traces all major support calls and writes them to the
trace.log file in the Vuser directory (disabled by default).

Show Progress Window: Enables the progress window for Mercury products
(enabled by default).

Debug Class Loaders: Give debug printouts for non-system ClassLoader
support (disabled by default).

Synchronize Threads: For multi-threaded applications, instructs VuGen to
synchronize between the different threads (disabled by default).

Digest Calculation: Generate a digest of all recorded objects (disabled by
default).

Part III • Working with Java Language Protocols

254

Exclude from Digest: A list of objects not to be included in the digest
calculation.

Debug Variables: Casts <undefined> variables to their types. Also, each
variable in the variables section which is also an interface, will have a
comment indicating the original type (disabled by default).

Specify Hook: Inserts a string before the invocation of the script indicating
the hook that caused it. This is useful for capturing redundant recordings
(disabled by default).

Specify Thread: Inserts a string before the invocation of the script indicating
the thread that it runs in. This is useful for identifying multi-threaded
application (disabled by default).

Hooking Options

Hooking Debug Level: The level of hooking-debug printouts from within
the recorder. Level 0 indicates that no debug printout will be issued.

Ignore Classes: A list of the classes to ignore. All classes containing the
specified strings will be excluded from the hooking mechanism.

Printout Redirections: Determines where to redirect the printouts from the
hooking mechanism. The options are the Console, a separate file, or the
Debug file. The default is the Console.

Make Methods Public: Make hooked methods public (disabled by default).

Make Class Public: Make hooked class public (enabled by default).

Log Class Hooking: Creates a log file containing a string representation of all
classes before and after hooking. This option should only be used for intense
debugging, as it significantly decreases performance (disabled by default).

Log Specific Class Hooking: A list of the classes for which a hooking log file
should be generated. If no class is specified, all classes are logged.

Chapter 18 • Setting Java Recording Options

255

Class Dumping Options

Class Dumping: Dumps the loaded classes to the Vuser directory (disabled by
default).

Class to Dump: A list of the classes to be dumped after hooking. Any class
containing one of the specified strings will be dumped. If no class is
specified, all classes are dumped.

Dump Suffix: The suffix to append to the dumped class names. The default
suffix is _DUMP.

Class Dump Directory: The directory to which to dump the classes.

Flat Class Dumping: Dump all classes into a single directory and precede
each class with its full package. If this option is disabled, a directory
hierarchy is created (disabled by default).

To set the debug options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Debug Options node.

 2 Enable the desired options, or for options that require values, enter the
desired value.

Part III • Working with Java Language Protocols

256

 3 To set all options to their default values, click Use Defaults.

 4 Click OK to close the dialog box and begin recording.

CORBA Options

The following options are specific to the Corba-Java protocol. These options
let you set the Corba specific recording properties and several callback
options. The following options are available:

Record Properties: Instructs VuGen to record system and custom properties
related to the protocol. By default, this option is enabled.

Show IDL Constructs: Displays the IDL construct that is used when passed as
a parameter to a CORBA invocation. By default, this option is enabled.

Record Dll only: Instructs VuGen to record only on a DLL level. By default,
this option is disabled.

Resolve CORBA Objects: When correlation fails to resolve a CORBA object,
recreate it using its binary data. By default, this option is disabled.

Callback Options

Record CallBack Connection: Instructs VuGen to generate a connect
statement for the connection to the ORB, for each callback object. By
default, this option is disabled.

Debug CallBacks: Allows debugging information to be generated on
callbacks. By default, this option is disabled.

Chapter 18 • Setting Java Recording Options

257

To set the Corba options:

 1 Click Options in the Start Recording dialog box and select the Recording
Properties:Corba Options node.

 2 Enable or disable the options as desired.

 3 To set all options to their default values, click Use Defaults.

 4 Click OK to close the dialog box and begin recording.

Part III • Working with Java Language Protocols

258

259

19
Correlating Java Scripts

VuGen’s correlation allows you to link Java Vuser functions by using the
results of one statement as input to another.

This chapter describes:

➤ About Correlating Java Scripts

➤ Standard Correlation

➤ Advanced Correlation

➤ String Correlation

➤ Using the Serialization Mechanism

The following information only applies to Corba-Java and RMI-Java Vuser
scripts.

Part III • Working with Java Language Protocols

260

About Correlating Java Scripts

Vuser scripts containing Java code often contain dynamic data. When you
record a Corba or RMI Vuser script, the dynamic data is recorded into
scripts, but cannot be re-used during replay. If you encounter an error when
running your Vuser, examine the script at the point where the error
occurred. In many cases, correlation will solve the problem by enabling you
to use the results of one statement as input to another.

VuGen’s Corba recorder attempts to automatically correlate statements in
the generated script. It only performs correlation on Java objects. When it
encounters a Java primitive (byte, character, boolean, integer, float, double,
short, and long) during recording, the argument values appear in the script
without association to variables. VuGen automatically correlates all objects,
arrays of objects, and arrays of primitives. Note that Java arrays and strings
are also considered objects.

VuGen employs several levels of correlation: Standard, Enhanced, Strings.
You enable or disable correlation from the Recording options. An additional
method of Serialization can be used to handle scripts where none of the
former methods can be applied. For more information, see “Using the
Serialization Mechanism” on page 264.

Chapter 19 • Correlating Java Scripts

261

Standard Correlation

Standard correlation refers to the automatic correlation performed during
recording for simple objects, excluding object arrays, vectors, and container
constructs.

When the recorded application invokes a method that returns an object,
VuGen’s correlation mechanism records these objects. When you run the
script, VuGen compares the generated objects to the recorded objects. If the
objects match, the same object is used. The following example shows two
Corba objects my_bank and my_account. The first object, my_bank, is
invoked; the second object, my_account, is correlated and passed as a
parameter in final line of the segment:

Advanced Correlation

Advanced or deep correlation refers to the automatic correlation performed
during recording for complex objects, such as object arrays and Corba
container constructs.

The deep correlation mechanism handles Corba constructs (structures,
unions, sequences, arrays, holders, ‘any’s) as containers. This allows it to
reference inner members of containers, additional objects, or different
containers. Whenever an object is invoked or passed as a parameter, it is also
compared against the inner members of the containers.

public class Actions {

 // Public function: init
 public int init() throws Throwable {

Bank my_bank = bankHelper.bind("bank", "shunra");
Account my_account = accountHelper.bind("account","shunra");

my_bank.remove_account(my_account);
 }
:
}

Part III • Working with Java Language Protocols

262

In the following example, VuGen performs deep correlation by referencing
an element of an array. The remove_account object receives an account
object as a parameter. During recording, the correlation mechanism searches
the returned array my_accounts and determines that its sixth element
should be passed as a parameter.

The following segment further illustrates enhanced correlation. The script
invokes the send_letter object that received an address type argument. The
correlation mechanism retrieves the inner member, address, in the sixth
element of the my_accounts array.

public class Actions {

// Public function: init
public int init() throws Throwable {

my_banks[] = bankHelper.bind("banks", "shunra");
my_accounts[] = accountHelper.bind("accounts","shunra");

my_banks[2].remove_account(my_accounts[6]);
}

:
}

public class Actions {

// Public function: init
public int init() throws Throwable {

my_banks = bankHelper.bind("bank", "shunra");
my_accounts = accountHelper.bind("account", "shunra");

my_banks[2].send_letter(my_accounts[6].address);
}

:
}

Chapter 19 • Correlating Java Scripts

263

String Correlation

String correlation refers to the representation of a recorded value as an
actual string or a variable. When you disable string correlation (the default
setting), the actual recorded value of the string is indicated explicitly within
the script. When you enable string correlation, it creates a variable for each
string, allowing you to use it at a later point in the script.

In the following segment, string correlation is enabled—you store the value
returned from the get_id method in a string type variable for use later on in
the script.

You set the correlation method from the Correlation tab in the recording
options.

Correlate Strings: Correlate strings in script during recording. If you disable
this option, the actual recorded values are included in the script between
quotation marks. If this option is disabled, all other correlation options are
ignored (disabled by default).

Correlate String Arrays: Correlate strings within string arrays during
recording. If you disable this option, strings within arrays are not correlated
and the actual values are placed in the script (enabled by default).

public class Actions {

// Public function: init
public int init() throws Throwable {

my_bank = bankHelper.bind("bank", "shunra");
my_account1 = accountHelper.bind("account1", "shunra");
my_account2 = accountHelper.bind("account2", "shunra");

string = my_account1.get_id();
string2 = my_account2.get_id();
my_bank.transfer_money(string, string2);

}
:
}

Part III • Working with Java Language Protocols

264

Advanced Correlation: Enables correlation on complex objects such as
arrays and Corba container constructs and arrays. This type of correlation is
also known as deep correlation (enabled by default).

Correlation Level: Determines the level of deep correlation—how many
inner containers to search.

Correlate Collection Type: Correlate objects contained in a Collection class
for JDK 1.2 or higher (disabled by default).

Using the Serialization Mechanism

In RMI, and some cases of Corba, the client AUT creates a new instance of a
Java object using the java.io.serializable interface. It passes this instance as
a parameter for a server invocation. In the following segment, the instance p
is created and passed as a parameter.

The automatic correlation mechanism is ineffective here, since the object
did not return from any previous call. In this case, VuGen activates the
serialization mechanism and stores the object being passed as a parameter. It
saves the information to a binary data file under the user directory.
Additional parameters are saved as new binary data files, numbered
sequentially. VuGen generates the following code:

// AUT code:
java.awt.Point p = new java.awt.Point(3,7);
map.set_point(p);
:

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 java.awt.Point p = (java.awt.Point)lr.deserialize(0, false);
 map.set_point(p);
 }
:
}

Chapter 19 • Correlating Java Scripts

265

The integer passed to lr.deserialize represents the number of binary data
files in the Vuser directory.

To parameterize the recorded value, use the public setLocation method (for
information, see the JDK function reference). The following example uses
the setLocation method to set the value of the object, p.

In certain instances the public method of setLocation is not applicable. As
an alternative, you can use the API of your class that incorporate get or set
accessor methods. If you are working with AUT classes that do not have
get/set methods or use private methods, or if you are unfamiliar with the
classes’ API, you can use VuGen’s built-in serialization mechanism. This
mechanism allows you to expand objects in their ASCII representation and
manually parameterize the script. You enable this mechanism in the
Recording Options dialog box (see Chapter 18, “Setting Java Recording
Options”).

VuGen generates an lr.deserialize method that deserializes the data or
displays complex data structures as serial strings. Once the structure is
broken down to its components, it is easier to parameterize. The
lr.deserialize method receives two arguments, a string and an integer. The
string is the parameter’s value that is to be substituted during replay. The
integer is the index number of binary file to load.

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 java.awt.Point p = (java.awt.Point)lr.deserialize(0, false);
 p.setLocation(2,9);
 map.set_point(p);
 }
:
:
}

Part III • Working with Java Language Protocols

266

If you choose not to expand objects in your script by clearing the Unfold
Serialized Objects check box, you can control the serialization mechanism
by passing arguments to the lr.deserialize method. The first argument is an
integer indicating the number of binary files to load. The second integer is a
boolean value:

The following segment shows a generated script in which the serialization
mechanism was enabled.

The string values are placed between delimiters.The default delimiter is "#".
You can change the delimiter in the Serialization tab of the recording
options. Delimiters are used to speed up the parsing of the string during
replay.

When modifying the string, you must maintain the following rules:

➤ Order of lines may not be changed. The parser reads the values one-by-
one—not the member names.

➤ Only values between two delimiters may be modified.

➤ Object references may not be modified. Object references are indicated only
to maintain internal consistency.

true Use VuGen’s serialization mechanism.

false Use the standard Java serialization mechanism.

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 _string = "java.awt.Point __CURRENT_OBJECT = {" +
 "int x = "#5#" +
 "int y = "#8#" +
 "}";
 java.awt.Point p = (java.awt.Point)lr.deserialize(_string,0);
 map.set_point(p);
 }
:
}

Chapter 19 • Correlating Java Scripts

267

➤ "_NULL_" can appear as a value, representing the Java null constant. You can
replace it with string type values only.

➤ Objects may be deserialized anywhere in the script. For example, you can
deserialize all objects in the init method and use the values in the action
method.

➤ Maintain internal consistency for the objects. For example, if a member of a
vector is element count and you add an element, you must modify the
element count.

In the following segment, a vector contains two elements:

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 _string = "java.util.Vector CURRENTOBJECT = {" +
 "int capacityIncrement = "#0#" +
 "int elementCount = #2#" +
 "java/lang/Object elementData[] = {" +
 "elementData[0] = #First Element#" +
 "elementData[1] = #Second Element#" +
 "elementData[2] = _NULL_" +

....
 "elementData[9] = _NULL_" +

 "}" +
 "}";
 _vector = (java.util.Vector)lr.deserialize(_string,0);
 map.set_vector(_vector);
 }
:
}

Part III • Working with Java Language Protocols

268

In the following example, one of the vector’s elements was changed—a
"_NULL_" value was changed to "Third element". In coordination with the
addition of the new element, the "elementCount" member was modified to
"3".

Due to the complexity of the serialization mechanism, which opens up the
objects to ASCII representation, opening large objects while recording may
increase the time required for script generation. To decrease this time, you
can specify flags which will improve the performance of the serialization
mechanism.

When adding lr.deserialize to your script, it is recommended that you add it
to the init method—not the action method. This will improve performance
since VuGen will only deserialize the strings once. If it appears in the action
method, VuGen will deserialize strings for every iteration.

public class Actions {

 // Public function: init
 public int init() throws Throwable {
 _string = "java.util.Vector CURRENTOBJECT = {" +
 "int capacityIncrement = "#0#" +
 "int elementCount = #3#" +
 "java/lang/Object elementData[] = {" +
 "elementData[0] = #First Element#" +
 "elementData[1] = #Second Element#" +
 "elementData[2] = #Third Element#" +

....
 "elementData[9] = _NULL_" +
 "}" +
 "}";
 _vector = (java.util.Vector)lr.deserialize(_string,0);
 map.set_vector(_vector);
 }
:
}

Chapter 19 • Correlating Java Scripts

269

The following list shows the available options which you set in Serialization
tab of the recording options:

➤ Serialization Delimiter

➤ Unfold Serialized Objects

➤ Unfold Arrays

➤ Limit Array Entries

➤ Ignore Serialized Objects

For complete information on the recording options, see Chapter 18,
“Setting Java Recording Options.”

Part III • Working with Java Language Protocols

270

271

20
Configuring Java Run-Time Settings

After you record a Java Vuser script, you configure the run-time settings for
the Java Virtual Machine.

This chapter describes:

➤ About Configuring Java Run-Time Settings

➤ Specifying the JVM Run-Time Settings

➤ Setting the Run-Time Classpath Options

The following information applies to Java, EJB Testing, Corba-Java, and
RMI-Java type Vusers.

About Configuring Java Run-Time Settings

After developing a Java Vuser script, you set the run-time settings for the
Java VM (Virtual Machine). These settings let you set additional paths and
parameters, and determine the run mode.

You set the Java related run-time settings through the Java VM options in
the Run-Time Settings dialog box.

To display the Run-Time Settings dialog box, click the Run-Time Settings
button on the VuGen toolbar.

This chapter only discusses the Run-Time settings for Java type Vusers—Java,
EJB Testing, Corba-Java, and RMI-Java. For information about run-time
settings that apply to all Vusers, see Chapter 12, “Configuring Run-Time
Settings.”

Part III • Working with Java Language Protocols

272

Specifying the JVM Run-Time Settings
In the Java VM section, you provide information about the Java virtual
machine settings.

The following settings are available:

Additional VM Parameters: Enter any optional parameters used by the
virtual machine.

Use Xbootclasspath VM parameter: When you run a Vuser, VuGen
automatically sets the Xbootclasspath variable. You use this dialog box to
specify parameters, in addition to the ones defined in Xbootclasspath. If you
specified additional VM parameters for recording, you can instruct VuGen
to save the parameters and use them during replay.

To set the Java VM run-time settings:

 1 Choose Vuser > Run-Time Settings and select the Java Environment
Settings:Java VM node in the Run-Time Settings tree.

 2 In the Additional VM Parameters box, enter any optional parameters used
by the Load Generator machine.

 3 To replay with the -Xbootclasspath/p option, select the Use -Xbootclasspath
VM parameter option.

Chapter 20 • Configuring Java Run-Time Settings

273

 4 Click OK.

Setting the Run-Time Classpath Options

The ClassPath section lets you specify the location of additional classes that
were not included in the system’s classpath environment variable. You may
need these classes to run Java applications and insure proper replay.

You can browse for the required classes on your computer or network and
disable them for a specific test. You can also manipulate the classpath
entries by changing their order.

To set the Classpath run-time settings:

 1 Open the Run-Time settings (F4). Select the Java Environment
Settings:Classpath node in the Run-Time settings tree.

 2 Add a classpath to the list:

Click the Add Classpath button. VuGen adds a new line to the classpath list.

Type in the path and name of the jar, zip or other archive file for your class.
Alternatively, click the Browse button to the right of the field, and locate
the desired file. VuGen adds the new location to the classpath list, with an
enabled status.

Part III • Working with Java Language Protocols

274

 3 To permanently remove a classpath entry, select it and click the Delete
button.

 4 To disable a classpath entry for a specific test, clear the check box to the left
of the entry.

 5 To move a classpath entry down in the list, select it and click the Down
arrow.

 6 To move a classpath entry up within the list, select it and click the Up arrow.

 7 Click OK to close the dialog box.

Part IV

Application Deployment Solution
Protocols

276

277

21
Creating Citrix Vuser Scripts

VuGen allows you to record the actions of a Citrix client communicating
with its server using the Citrix ICA protocol. The resulting script is called a
Citrix Vuser script.

The optional Mercury Citrix Agent helps you create an intuitive script that
provides built-in synchronization. For more information, see Chapter 22,
“Using the LoadRunner Citrix Agent.” Make sure to refer to “Tips for
Replaying and Troubleshooting Citrix Vuser Scripts” on page 307 for
valuable tips on creating scripts.

This chapter describes:

➤ Getting Started with Citrix Vuser Scripts

➤ Setting Up the Client and Server

➤ Recording Tips

➤ Understanding Citrix Recording Options

➤ Setting the Citrix Recording Options

➤ Setting the Citrix Display Settings

➤ Setting the Citrix Run-Time Settings

➤ Viewing and Modifying Citrix Vuser Scripts

➤ Synchronizing Replay

➤ Understanding ICA Files

➤ Using Citrix Functions

➤ Tips for Replaying and Troubleshooting Citrix Vuser Scripts

➤ Increasing the Numbers of Vusers per Load Generator Machine

Part IV • Application Deployment Solution Protocols

278

About Creating Citrix Vuser Scripts

Citrix Vuser scripts emulate the Citrix ICA protocol communication
between a Citrix client and server. VuGen records all activity during the
communication and creates a Vuser script.

When you perform actions on the remote server, VuGen generates functions
that describe these actions. Each function begins with a ctrx prefix. These
functions emulate the analog movements of the mouse and keyboard. In
addition, the ctrx functions allow you to synchronize the replay of the
actions, by waiting for specific windows to open.

VuGen also allows you to record a Citrix NFUSE session. With Citrix NFuse,
the client is installed, but your interface is a browser instead of a client
interface. To record NFUSE sessions, you must perform a multi-protocol
recording for Citrix and Web Vusers. (See Chapter 4, “Recording with
VuGen.”) In multi-protocol mode VuGen generates functions from both
Citrix and Web protocols during recording.

In the following example, ctrx_mouse_click simulates a mouse click on the
left button.

For more information about the syntax and parameters, refer to the Online
Function Reference (Help > Function Reference).

You can view and edit the recorded script from VuGen’s main window. The
API calls that were recorded during the session are displayed in VuGen,
allowing you to track your actions.

ctrx_mouse_click(44, 318, LEFT_BUTTON, 0);

Chapter 21 • Creating Citrix Vuser Scripts

279

Getting Started with Citrix Vuser Scripts

This section provides an overview of the process of developing Citrix ICA
Vuser scripts using VuGen. In addition, see “Tips for Replaying and
Troubleshooting Citrix Vuser Scripts” on page 307.

To develop a Citrix ICA script:

 1 Make sure that your client and server are configured properly.

For general information about these settings, see “Setting Up the Client and
Server” on page 280.

 2 Record the actions using VuGen.

Invoke VuGen and create a new Vuser script. Be sure to follow the “Setting
Up the Client and Server” on page 280.

For general information about recording, see Chapter 4, “Recording with
VuGen.”

 3 Enhance the Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 4 Define parameters (optional).

Define parameters for the fixed-values recorded into your Vuser script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

 5 Configure the Citrix display options.

Configure the display options for replaying Citrix Vusers. These options let
you show the Citrix client during replay and open a snapshot when an error
occurs. For details, see “Setting the Citrix Display Settings” on page 291.

 6 Configure the Run-Time settings.

The Run-Time settings control Vuser behavior during script execution.
These settings include pacing, logging, think time, and connection
information.

Part IV • Application Deployment Solution Protocols

280

For details about the Citrix specific Run-Time settings, see “Setting the Citrix
Run-Time Settings” on page 292. For information about general Run-Time
settings, see Chapter 12, “Configuring Run-Time Settings.”

 7 Save and run the Vuser script from VuGen.

Save and run the Vuser script from VuGen to verify that it runs correctly.
While you record, VuGen creates a series of configuration, data, and source
code files. These files contain Vuser run-time and setup information. VuGen
saves these files together with the script.

For details about running the Vuser script as a standalone test, see “Tips for
Replaying and Troubleshooting Citrix Vuser Scripts” on page 307 and
Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Setting Up the Client and Server

Before creating a script, make sure you have a supported Citrix client
installed on your machine, and that your server is properly configured. This
section describes:

➤ Client Versions

➤ Server Configuration

Client Versions

In order to run your script, you must install a Citrix client on each Load
Generator machine. If you do not have a client installed, you can download
one from the Citrix Website www.citrix.com under the download section.

VuGen supports all Citrix clients with the exception of versions 8.00,
version 6.30.1060 and earlier, and Citrix Web clients.

http://www.citrix.com
http://www.citrix.com
http://www.citrix.com

Chapter 21 • Creating Citrix Vuser Scripts

281

Server Configuration

To record in VuGen, you need to configure the Citrix server in the following
areas:

MetaFrame: Make sure the MetaFrame server (1.8 or 3) is installed. To check
the version of the server, select Citrix Connection Configuration on the
server’s console toolbar and choose Help > About.

Configure Server to Close Sessions: Configure the Citrix server to
completely close a session. After a Citrix client closes the connection, the
server is configured, by default, to save the session for the next time that
client opens a new connection. Consequently, a new connection by the
same client will face the same workspace from which it disconnected
previously. It is preferable to allow each new test run to use a clean
workspace.

The ensure a clean workspace for each test, you must configure the Citrix
server not to save the previous session. Instead, it should reset the
connection by disconnecting from the client each time the client times-out
or breaks the connection.

➤ MetaFrame 1.8 Server

➤ MetaFrame 3 Server

MetaFrame 1.8 Server

To reset the connection for every session on a MetaFrame Server:

 1 Open the Citrix Connection Configuration dialog box. Choose Start >
Programs > Citrix > MetaFrame > Citrix Connection Configuration.

 2 Double-click on the ica-tcp connection name. The Edit Connection dialog
box opens.

Part IV • Application Deployment Solution Protocols

282

 3 Click the Advanced button. The Advanced Connection Settings dialog box
opens.

 4 In the bottom section of the dialog box, clear the inherit user config check
box adjacent to the On a broken or timed-out connection list box. Change
the entry for this list box to reset.

 5 Click OK.

MetaFrame 3 Server

To reset the connection for every session on a MetaFrame 3 server:

 1 Open the Citrix Connection Configuration dialog box. Choose Programs >
Citrix > Administration Tools > Citrix Connection Configuration Tool.

 2 Select the ica-tcp connection name and choose Connection > Edit.
Alternatively, double-click on the connection. The Edit Connection dialog
box opens.

Chapter 21 • Creating Citrix Vuser Scripts

283

 3 Click the Advanced button. The Advanced Connection Settings dialog box
opens.

 4 In the bottom section of the dialog box, clear the inherit user config check
box adjacent to the On a broken or timed-out connection list box. Change
the entry for this list box to reset.

 5 Click OK.

Recording Tips

When recording a script, be sure to follow these guidelines in order to create
an effective script.

Single vs. Multi-Protocol Scripts

When creating a new script, you may create a single protocol or multi-
protocol script. If you plan to record a simple Citrix ICA session, use a single
protocol script. When recording an NFUSE session, however, you must
create a multi-protocol script for Citrix ICA and Web(HTML/HTTP), to
enable the recording of both protocols. For more information, see
Chapter 4, “Recording with VuGen.”

Record into Appropriate Sections

Record the connection process into the vuser_init section, and the closing
process into the vuser_end section. This will prevent you from performing
iterations on the connecting and disconnecting. For more information
about recording into sections, see “Vuser Script Sections” on page 54.

Run a Clean Session

When recording a session, make sure to perform the complete business
process, starting with the connection and ending with the cleanup. End
your session at a point from where you could start the entire process from
the beginning. Do not leave any client or application windows open.

Explicit Clicks

When opening expanded menu options, click explicitly on each option—do
not depend on the expanding menu. For example, when choosing Start >
Programs > Microsoft Word, be sure to click on the word Programs.

Part IV • Application Deployment Solution Protocols

284

Don’t Resize Windows

It is recommended that you do not move or resize windows during the
recording session.

Make Sure Resolution Settings are Consistent

To insure successful bitmap synchronization, make sure that the resolution
settings match. On the recording machine, check the settings of the ICA
client, the Recording Options, and the Run Time settings. On the Injector
machines, check the settings of the ICA client, and make sure that they are
consistent between all injector and recording machines.

Use 1024 x 768 Resolution

Supported resolutions (window sizes) are 640 x 480, 800 x 600, and 1024 x
768. A settings of 1024 x 768 is recommended on the recording machine as
it allows the Citrix window, whose default size is 800 x 600, to be displayed
properly. Note that VuGen uses the Desktop’s color settings.

Add Manual Synchronization Points

While waiting for an event during recording, such as HTML page loading, it
is recommended that you add manual synchronization points with the
ctrx_sync_on_bitmap function. For details, see “Synchronizing Replay” on
page 296.

Disable Client Updates

Disable client updates when prompted by the Citrix client. This will prevent
forward compatibility issues between VuGen and newer Citrix clients that
were not yet tested.

Windows Style

Record all windows in the "classic" windows style—not the XP style. This is
relevant for sync_on_bitmap functions.

To change the Windows style to "classic":

 1 Click in the desktop area.

 2 Choose Properties from the right-click menu.

 3 Select the Theme tab.

Chapter 21 • Creating Citrix Vuser Scripts

285

 4 Choose Windows Classic from the Theme drop down list.

 5 Click OK.

Understanding Citrix Recording Options

You can set the Citrix Recording options in the following areas.

➤ Configuration

➤ Recorder

➤ Login (only for single protocol Citrix ICA scripts)

Configuration

In the Citrix:Configuration Recording options, you set the window
properties and encryption settings for the Citrix client during the recording
session.

➤ Encryption Level: The level of encryption for the ICA connection: Basic, 128
bit for login only, 40 bit, 56 bit, 128 bit, or Use Server Default to use the
machine’s default.

➤ Window Size: The size of the client window: 640 x 480, 800 x 600 (default),
1024 x 768, 1280 x 1024, or 1600 x 1200.

Part IV • Application Deployment Solution Protocols

286

Recorder

The Citrix:Recorder Recording options let you specify how to generate
window names where the window titles change during recording. You can
also specify whether to save snapshots of the screens together with the script
files and whether to generate text synchronization functions.

Window Names

In some Citrix sessions, the active window name changes while you are
recording. If you try to replay the script as is, the Vuser uses the original
window name and the replay may fail. Using the recording options, you can
specify a naming convention for the windows in which VuGen uses a
common prefix or common suffix to identify the window.

For example, if the original window’s name is "untitled - Notepad" where the
name changes during application's run to "my_test - Notepad", you can
instruct VuGen to use the common suffix only, "Notepad".

The following options are available for generating window names during
recording.

Use new window name as is: Set the window name as it appears in the
window title. (default)

Use common prefix for new window names: Use the common string from
the beginning of the window titles, as a window name.

Use common suffix for new window names: Use the common string from
the end of the window titles, as a name.

Note: Alternatively, you can modify the window names in the actual script
after recording. In the Script view, locate the window name, and replace the
end of the window name with the wildcard notation, *.
ctrx_sync_on_window (“My Application*”, ACTIVATE, …);

Chapter 21 • Creating Citrix Vuser Scripts

287

Save snapshots: This option instructs VuGen to save a snapshot of the Citrix
client window for each script step, when relevant. It is recommended that
you enable this option to provide you with a better understanding of the
recorded actions. Saving snapshots, however, uses more disk space and slows
down the recording session.

Record text synchronization: This setting instructs VuGen to record text
synchronization before each mouse click (enabled by default).

Login

In the Citrix:Login Recording options, you set the connection and login
information for the recording session. (When working with NFUSE, the
Login options are not available since the login is done through the Web
pages.)

You can provide direct login information or instruct VuGen to use an
existing configuration stored in an ica file.

You must provide the name of the server—otherwise the connection VuGen
generates a ctrx_connect_server function:

ctrx_connect_server(“steel”, “test”, “test”, “testlab”);

Part IV • Application Deployment Solution Protocols

288

If you do not provide login information, you are prompted for the
information when the client locates the specified server.

Defining Connection Parameters

Connection section—enter the connection— information:

➤ the User Name for the Citrix server

➤ the Password for the Citrix server

➤ the Domain of the Citrix server

➤ the Client Name, by which the MetaFrame server identifies the client
(optional).

Logon Information section—enter the login information:

➤ the preferred Network Protocol: TCP/IP or TCP/IP+HTTP. If you intend to
use a browser, choose the TCP/IP+HTTP option. For all other
applications, choose TCP/IP.

Chapter 21 • Creating Citrix Vuser Scripts

289

➤ the Citrix Server name. To add a new server to the list, click Add, and
enter the server name (and its port for TCP/IP + HTTP). Note that
multiple servers apply only when you specify a Published Application. If
you are connecting to the desktop without a specific application, then
list only one server.

➤ the name of the Published Application as it is recognized on Citrix server.
The drop-down menu contains a list of the available applications. If you
do not specify a published application, VuGen uses the server’s desktop.

Note that if you do not specify a published application, Citrix load
balancing will not work. To use load balancing when accessing the
server’s desktop, register the desktop as a published application on the
server machine, and select this name from the Published Application
drop-down list.

Use ICA File for Connection Parameters

If you have an existing .ica file with all of the relevant configuration
information, select Use ICA file for connection parameters. In the following
row, specify the full path of the .ica file.

For information about the format of an ICA file, see “Understanding ICA
Files” on page 302.

Part IV • Application Deployment Solution Protocols

290

Setting the Citrix Recording Options

Before recording, you set the desired recording options.

To set the Citrix recording options:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options
or click the Options button in the Start Recording dialog box. The keyboard
shortcut key is CTRL+F7.

 2 Select the Citrix:Login node. (only for single protocol Citrix ICA scripts)

➤ If you have an existing ica file with all of the relevant configuration
information, select Use ICA file for connection parameters. Specify the
full path of the ica file, or click the Browse button and locate the file on
the local disk or network.

➤ If you do not have an ica file, select Define connection parameters. This
is the default setting. Enter the Connection and Identification
information.

 3 Select the Citrix:Configuration node. Choose an encryption level and a
window size.

 4 Select the Citrix:Recorder node. Specify how to generate window names for
windows whose titles change during the recording session.

 5 To prevent VuGen from saving a snapshot for each step, clear Save
snapshots.

 6 When recording an NFUSE session, set the Web recording mode to URL-
based. Choose the Internet Protocol:Recording recording option and select
URL-based script.

 7 Click OK to accept the setting and close the dialog box.

Chapter 21 • Creating Citrix Vuser Scripts

291

Setting the Citrix Display Settings

Before running your Citrix Vuser script, you can set several display options
to be used during replay. Although these options increase the load upon the
server, they are useful for debugging and analyzing your session.

To set the Citrix display options:

 1 Open the General Options dialog box. Choose Tools > General Options in
the main VuGen window.

 2 Select the Citrix Display tab.

 3 Select Show client during replay to display the Citrix client when replaying
the Vuser script.

 4 Select Show Bitmap Selection popup to issue a popup message when you
begin to work interactively within a snapshot. VuGen issues this message
when you choose the right-click menu option Insert Sync Bitmap or Insert
Get Text, before you select the bitmap or text.

 5 Click OK.

Part IV • Application Deployment Solution Protocols

292

Setting the Citrix Run-Time Settings

After creating a Citrix Vuser script, you set the run-time settings. These
settings let you control the behavior of the Vuser when running the script.
Your Citrix run-time settings in the Configuration node should correspond
to the properties of your Citrix client. These settings will influence the load
on the server. To view the connection properties, select the icon
representing the ICA connection in the Citrix Program Neighborhood, and
choose Properties from the right-click menu. Select the Default Options tab.

Note: Citrix Vusers do not support IP spoofing.

To set the General Run-time settings, see Chapter 12, “Configuring Run-
Time Settings.” To set the Speed Emulation properties, see Chapter 13,
“Configuring Network Run-Time Settings.”

You can set the Citrix-specific run-time settings in the following areas:

➤ Citrix Configuration Run-Time Settings

➤ Citrix Timing Run-Time Settings

Citrix Configuration Run-Time Settings

The configuration settings relate to the screen latency, data compression,
disk cache, and queuing of mouse movements.

To set the Configuration Run-Time Settings:

 1 Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.

Chapter 21 • Creating Citrix Vuser Scripts

293

 2 Select the Citrix:Configuration node. Specify the General properties:

➤ SpeedScreen Latency Reduction: The mechanism used to enhance user
interaction when the network speed is slow. You can turn this
mechanism on or off, depending on the network speed. The auto option
turns it on or off based on the current network speed. If you do not know
the network speed, set this option to Use Server Default to use the
machine’s default.

 3 Set the Use data compression option. This option instructs the Vuser to
compress the transferred data. To enable this option, select the check box to
the left of the option; to disable it, clear the check box. You should enable
data compression if you have a limited bandwidth (enabled by default).

 4 Set the Use disk cache for bitmaps option. This option instructs the Vuser to
use a local cache to store bitmaps and commonly-used graphical objects. To
enable this option, select the check box to the left of the option; to disable
it, clear the check box. You should enable this option if you have a limited
bandwidth (disabled by default).

 5 Set the Queue mouse movements and keystrokes option. This option
instructs the Vuser to create a queue of mouse movements and keystrokes,
and send them as packets to the server less frequently. This serves to reduce
network traffic with slow connections. Enabling this option makes the
session less responsive to keyboard and mouse movements. To enable this
option, select the check box to the left of the option; to disable it, clear the
check box (disabled by default).

Part IV • Application Deployment Solution Protocols

294

 6 Select one of the options for Sound quality from the list: Use server default,
Sound off, High sound quality, Medium sound quality, or Low sound quality.
If the client machine does not have a 16-bit Sound Blaster-compatible sound
card, select Sound Off. With sound support enabled, you will be able to play
sound files from published applications on your client machine.

Citrix Timing Run-Time Settings

The timeout settings relate to the connect and waiting times.

To set the Timing Run-Time Settings:

 1 Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.

 2 Select the Citrix:Timing node.

 3 Indicate the Connect Time, the time in seconds to wait idly at an established
connection before exiting. The default is 180 seconds.

 4 Indicate the Waiting Time, the time in seconds to wait idly at a
synchronization point before exiting. The default is 60 seconds.

 5 Specify a Typing rate, the delay in milliseconds between keystrokes.

 6 Click OK to accept the settings and close the dialog box.

Chapter 21 • Creating Citrix Vuser Scripts

295

Viewing and Modifying Citrix Vuser Scripts

You can view the contents of your Vuser script in VuGen’s Script view or
Tree view. For general information about viewing a script, see Chapter 2,
“Introducing VuGen.”

In Tree view, you can view a Citrix Vuser’s snapshots. The following Citrix
steps have snapshots associated with them:

➤ Obj Mouse Click, Obj Mouse Double Click, and Obj Mouse Down

➤ Sync on Window and Sync on Bitmap

In addition to displaying the client window, the snapshot also highlights
the object upon which the action was performed.

➤ For the Mouse steps, a small pink square indicates where the user clicked.

➤ For Sync on Bitmap, a pink box encloses the bitmap area.

For Sync on Window, a pink box encloses the entire window. In the
following example, the snapshot shows the Sync On Window step.
Notepad’s confirmation box is enclosed by a box indicating the exact
window on which the operation was performed.

Part IV • Application Deployment Solution Protocols

296

Note that VuGen saves snapshots as bitmap files in the script’s
data\snapshots directory. You can determine the name of the snapshot file
by checking the function’s arguments.

After recording, you can manually add steps to the script in either Script
view and Tree View. For information about the various script views, see
“Viewing and Modifying Vuser Scripts” on page 17.

In addition to manually adding new functions, you can add new steps
interactively for Citrix Vusers, directly from the snapshot. Using the right-
click menu, you can add bitmap and text-related steps. Several additional
steps are also available from the right-click menu when the agent is
installed. For more information, see Chapter 22, “Using the LoadRunner
Citrix Agent.”

To insert a function interactively:

 1 Click on a step within Tree view. Make sure that a snapshot is visible.

 2 Click within the snapshot.

 3 Right-click and choose one of the commands. A dialog box opens with the
step’s properties.

 4 Modify the desired properties and click OK. VuGen inserts the step into your
script.

Synchronizing Replay

When running a script, it is often necessary to synchronize the actions to
insure a successful replay. Synchronization refers to the timing of events
within your script, waiting for windows and objects to become available
before executing an action. For example, you may want to check whether a
certain window has opened before attempting to press a button.

VuGen automatically generates functions that synchronize the actions
during replay. In addition, you can add manual synchronization functions.

ctrx_sync_on_window("ICA Administrator Toolbar", ACTIVATE, 768, 0, 33,
573, "snapshot12", CTRX_LAST);

Chapter 21 • Creating Citrix Vuser Scripts

297

Automatic Synchronization

During recording, VuGen automatically generates functions that help
synchronize the Vuser’s replay of the script: ctrx_sync_on_window and
with an agent installation (see Chapter 21, “Creating Citrix Vuser Scripts”)
ctrx_sync_on_text.

Sync on Window

The ctrx_sync_on_window function instructs the Vuser to wait for a
specific event before resuming replay. The available events are CREATE or
ACTIVE. The Create event waits until the window is created. The Active event
waits until the window is created and then activated (in focus). For non-
window objects, such as menus that never become fully activated, VuGen
usually generates a function with the CREATE event. For standard windows,
VuGen generates a function with the ACTIVE event.

For all windows recorded with the ctrx_sync_on_window function, you
can view the snapshot from the script’s Tree view.

Sync on Text

ctrx_sync_on_text is a synchronization function that waits for a specified
string to appear at the specified position before continuing. The function
searches for the text in a radius of forty pixels in all directions around the
specified coordinates.

VuGen records ctrx_sync_on_text before every mouse click or double-click,
when the LoadRunner Citrix Agent is installed.

Part IV • Application Deployment Solution Protocols

298

The following segment shows a ctrx_sync_on_text function that was
recorded during a Citrix recording with the LoadRunner Citrix Agent
installed.

For more information on this function, refer to the Online Function Reference
(Help > Function Reference).

Manual Synchronization

You can also add manual synchronization during recording either through
VuGen’s user interface or by inserting custom synchronization functions
after recording. A common use of this capability is where the actual window
did not change, but an object within the window did change. Since the
window did not change, VuGen did not detect or record a Sync on Window.
For example, if you want the replay to wait for a specific graphic image in a
browser window, you insert manual synchronization. Or, if you are
recording a large window with several tabs, you can insert a synchronization
step to wait for the new tab’s content to open.

Synchronizing During Recording

To add synchronization during recording, you use the floating toolbar’s
marker tool. The marker tool lets you to mark an area within the client
window that needs to be in focus before resuming replay.

ctrx_sync_on_window ("ICA Seamless Host Agent", ACTIVATE, 0,
0,391,224, "snapshot1", CTRX_LAST);

ctrx_sync_on_text (196, 198, "OK", TEXT, "ICA Seamless Host
Agent=snapshot2", CTRX_LAST);

ctrx_obj_mouse_click ("<class=Button text=OK>", 196, 198,
LEFT_BUTTON, 0, "ICA Seamless Host Agent=snapshot2",
CTRX_LAST);

Marker Tool

Chapter 21 • Creating Citrix Vuser Scripts

299

To mark a bitmap area for synchronization:

 1 Click the marker button.

 2 Drag the mouse from the top left of the section of the area to the bottom
right. In Tree view, VuGen generates a Sync on Bitmap step after the current
step. In Script view, VuGen generates a ctrx_sync_on_bitmap function with
the selected coordinates as arguments.

During replay, Vusers look for the bitmap at the specified coordinates, and
wait until it is available before resuming the test.

Synchronizing After Recording

You can also add synchronization after the recording session. To implement
additional types of synchronization, you must manually enter one of the
synchronization steps into your script. To insert a function, choose Insert >
Add Step and choose the desired function. For more information, see
Chapter 7, “Enhancing Vuser Scripts.”

Sync on Bitmap

➤ Sync on Obj Info (agent installations only)

➤ Sync on Text (agent installations only)

During recording, the bitmaps generated for the Sync on Bitmap step are
saved under the script’s data\snapshots directory. If synchronization fails
during replay, VuGen generates a new bitmap that you can examine to
determine why synchronization failed. The bitmap name has the format of
sync_bitmap_<hash_value>.bmp. It is stored in the script’s output directory,
or for a scenario, profile, or tuning session, wherever the output files are
written.

In addition, you can add several other steps that affect the synchronization
indirectly:

➤ Set Waiting Time: Sets a waiting time for the other Citrix synchronization
functions. This setting applies to all functions that follow it within the

ctrx_sync_on_bitmap(93, 227, 78, 52,
“66de3122a58baade89e63698d1c0d5dfa”);

Part IV • Application Deployment Solution Protocols

300

script. For example, if your ctrx_sync_on_window functions are timing
out, you can increase the default timeout of 60 seconds to 180.

➤ Win Exist: Checks if a window is visible in the Citrix client. By adding
control flow statements, you can use this function to check for a window
that does not always open, such as a warning dialog box. In the following
example, ctrx_win_exist checks whether a browser was launched. The
second argument indicates how long to wait for the browser window to
open. If it did not open in the specified time, it double-clicks its icon.

For detailed information about these functions, refer to the Online Function
Reference (Help > Function Reference).

Waiting for a Bitmap Change

In certain cases, you do not know what data or image will be displayed in an
area, but you do expect it to change. To emulate this, you can use the
ctrx_sync_on_bitmap_change function. You specify an area (coordinates
and size), in which VuGen waits for a change. To assist you in deriving the
correct coordinates for the bitmap area, you can record a Sync on Bitmap
step using the marker tool (see above), and manually modify the function
name and remove the fifth argument.

The syntax of the functions is as follows:

ctrx_sync_on_bitmap (x_start, y_start, width, height, hash);
ctrx_sync_on_bitmap_change (x_start, y_start, width, height,

[initial_wait_time,] [timeout,]
[initial_bitmap_value,] CTRX_LAST);

You can add optional arguments to ctrx_sync_on_bitmap_change:

➤ initial wait time value—when to begin checking for a change.

➤ a timeout—the amount of time in seconds to wait for a change to occur
before failing.

if (!ctrx_win_exist(“Welcome to MSN.com- Microsoft Internet Explorer“,6))
ctrx_mouse_double_click(34, 325, LEFT_BUTTON, 0)

Chapter 21 • Creating Citrix Vuser Scripts

301

➤ initial bitmap value—the initial hash value of the bitmap. Vusers wait until
the hash value is different from the specified initial bitmap value.

Note: If you are using Sync on Bitmap, make sure that the Configuration
settings in the Controller/Console, Load Generator machine, and screen are
the same. Otherwise, VuGen may be unable to find the correct bitmaps
during replay. For information on how to configure the client settings, see
“Configuration” on page 285.

/* recorded function */
ctrx_sync_on_bitmap(93, 227, 78, 52,

“66de3122a58baade89e63698d1c0d5dfa”);

/* modified function with an initial wait time of 300 and timeout of 400*/
ctrx_sync_on_bitmap_change(93, 227, 78, 52, 300, 400, CTRX_LAST);

Part IV • Application Deployment Solution Protocols

302

Understanding ICA Files

Citrix ICA client files are text files that contain configuration information
for the applications accessed through the Citrix client. These files must have
an .ica extension and must conform to the following format:

Note: When you load an ICA file using the Recording Options, VuGen saves
the file together with your script, eliminating the need to copy the ICA file
to each injector machine.

[WFClient]
Version=
TcpBrowserAddress=

[ApplicationServers]
AppName1=

[AppName1]
Address=
InitialProgram=#
ClientAudio=
AudioBandwidthLimit=
Compress=
DesiredHRES=
DesiredVRES=
DesiredColor=
TransportDriver=
WinStationDriver=

Username=
Domain=
ClearPassword=

Chapter 21 • Creating Citrix Vuser Scripts

303

The following example shows a sample ICA file for using Microsoft Word on
a remote machine through the Citrix client:

Using Citrix Functions

During a Citrix recording session, VuGen generates functions that emulate
the communication between a client and a remote server. The generated
functions have a ctrx prefix. You can also manually edit any of the
functions into your Vuser script after the recording session. For more
information about the ctrx functions, refer to the Online Function Reference
(Help > Function Reference).

Note that for the functions that specify a window name, you can use the
wildcard symbol, an asterisk (*). You can place the wildcard at the
beginning, middle, or end of the string.

[WFClient]
Version=2
TcpBrowserAddress=235.119.93.56

[ApplicationServers]
Word=

[Word]
Address=Word
InitialProgram=#Word
ClientAudio=On
AudioBandwidthLimit=2
Compress=On
DesiredHRES=800
DesiredVRES=600
DesiredColor=2
TransportDriver=TCP/IP
WinStationDriver=ICA 3.0

Username=test
Domain=user_lab
ClearPassword=test

Part IV • Application Deployment Solution Protocols

304

Connection Functions

Mouse Functions

Object Functions (Agent Only)

ctrx_connect_server Connects to a remote server using the
Citrix client.

ctrx_disconnect_server Closes the connection to a server.

ctrx_nfuse_connect Connects to a Citrix server via an NFUSE
portal.

ctrx_set_connect_opt Sets the connection options.

ctrx_mouse_click Emulates a mouse click.

ctrx_mouse_double_click Emulates a mouse double-click.

ctrx_mouse_down Emulates the pressing of a mouse button.

ctrx_mouse_up Emulates the release of a mouse button.

ctrx_obj_get_info Gets class information about an object.

ctrx_obj_mouse_click Emulates a mouse click for the specified
object.

ctrx_obj_mouse_double_click Emulates a mouse double-click for the
specified object.

ctrx_obj_mouse_down Emulates the pressing of a mouse button
for the specified object.

ctrx_obj_mouse_up Emulates the releasing of a mouse button
for the specified object.

ctrx_sync_on_obj_info Waits for the specified object to be created
or active.

Chapter 21 • Creating Citrix Vuser Scripts

305

Synchronization Functions

Keyboard Functions

ctrx_set_waiting_time Sets the waiting time for all subsequent
timing functions.

ctrx_set_window Waits for the specified window to open.

ctrx_set_window_ex Waits a specific number of seconds for the
specified window to open.

ctrx_sync_on_bitmap Waits until the bitmap specified by the
coordinates is displayed.

ctrx_sync_on_bitmap_change Waits until the area specified by the
coordinates changes.

ctrx_sync_on_obj_info
(with agent only)

Waits for the specified object to be created
or active.

ctrx_sync_on_text
(with agent only)

Waits until certain text is displayed at the
specified position.

ctrx_sync_on_window Waits for a window to be created or active.

ctrx_unset_window Waits for the specified window to close.

ctrx_wait_for_event Waits for the specified event to occur.

ctrx_win_exist Checks whether the specified window
exists.

ctrx_key Emulates the typing of a non-
alphanumeric key.

ctrx_key_down Emulates the pressing of a key on the
keyboard.

ctrx_key_up Emulates the releasing of a keyboard key.

ctrx_type Emulates the typing of an alphanumeric
key.

Part IV • Application Deployment Solution Protocols

306

Information Retrieval Functions

Selection Functions

General Functions

ctrx_button_get_info Retrieves class information about a button.

ctrx_edit_get_info Retrieves class information about an edit
field.

ctrx_get_bitmap_value Gets the hash value of the specified
bitmap.

ctrx_get_text (with agent only) Stores the demarcated text in a buffer.

ctrx_get_window_name Gets the name of the window in focus.

ctrx_get_window_position Gets the position of the specified window,
or of the window in focus.

ctrx_list_get_info
(with agent only)

Retrieves class information about a list.

ctrx_list_select_item
(with agent only)

Selects an item from a list.

ctrx_menu_select_item
(with agent only)

Selects a menu item.

ctrx_obj_get_info
(with agent only)

Gets class information about an object.

ctrx_list_select_item Selects an item from a list.

ctrx_menu_select_item Selects a menu item.

ctrx_save_bitmap Saves the demarcated bitmap in a buffer.

ctrx_set_exception Specifies exception handling.

Chapter 21 • Creating Citrix Vuser Scripts

307

Tips for Replaying and Troubleshooting Citrix Vuser Scripts

The following sections provide guidelines and tips for Citrix Vusers in the
following areas:

➤ Replay Tips

➤ Debugging Tips

For recording tips, see “Recording Tips” on page 283.

Replay Tips

Set Initialization Quota

To prevent overloading by multiple Vusers while connecting, set an
initialization quota of 4 to 10 Vusers (depending on the capacity of the
server) or apply ramp-up initialization using the Scheduler.

Enable Think Time

For best results, do not disable think time in the Run-Time settings. Think
time is especially relevant before the ctrx_sync_on_window and
ctrx_sync_on_bitmap functions, which require time to stabilize.

Set Consistency Between Machines

If you intend to replay the script on another machine, make sure that the
following items are consistent between the record and replay machines:
Window Size (resolution), Window Colors, System Font and the other
Default Options settings for the Citrix client. These settings affect the hash
value of bitmaps, and inconsistencies may cause replay to fail. To view the
Citrix Client settings, select an item from the Citrix program group and
choose Application Set Settings or Custom Connection Settings from the
right-click menu. Select the Default Options tab.

Increasing the Numbers of Vusers per Load Generator Machine

Load Generator machines running Citrix Vusers may be limited in the
number of Vusers that can run, due to the graphic resources available to that
machine, also known as the GDI (Graphics Device Interface). To increase the
number of Vusers per machine, you can open a terminal server session on
the machine which acts as an additional injector machine.

Part IV • Application Deployment Solution Protocols

308

The GDI count is Operating System dependent. The actual GDI (Graphics
Device Interface) count for a heavily loaded machine using LoadRunner is
approximately 7,500. The maximum available GDI on Windows 2000
machines is 16,384.

For more information on creating a terminal server session, see the Terminal
Services topics in the LoadRunner Controller User’s Guide.

Note: By default, sessions on a terminal server use a 256-color set. If you
intend to use a terminal session for load testing, make sure to record on
machines with a 256-color set.

Debugging Tips

Single Client Installation

If you are unsuccessful in recording any actions in your Citrix session, verify
that you have only one Citrix client installed on your machine. To verify
that only one client is installed, open the Add/Remove Programs dialog box
from the Control Panel and make sure that there is only one entry for the
Citrix ICA client.

Add Breakpoints

Add breakpoints to your script in VuGen to help you determine the
problematic lines of code.

Synchronize Your Script

If replay fails, you may need to insert synchronization functions into your
script to allow more time for the desired windows to come into focus.
Although you can manually add a delay using lr_think_time, it is
recommended that you use one of the synchronization functions discussed
in “Synchronizing Replay” on page 296.

Chapter 21 • Creating Citrix Vuser Scripts

309

Extended Log

You can view additional replay information in the Extended log. To do this,
enable Extended logging in the Run-Time settings (F4 Shortcut key) Log tab.
You can view this information in the Execution Log tab or in the output.txt
file in the script’s directory.

Snapshot Bitmap

When an error occurs, VuGen saves a snapshot of the screen to the script’s
output directory. You can view the bitmap to try to determine why the error
occurred.

During recording, the bitmaps generated for the ctrx_sync_on_bitmap
function are saved under the script’s data directory. The bitmap name has
the format of hash_value.bmp. If synchronization fails during replay, the
generated bitmap is written to the script’s output directory, or if you are
running it in a scenario or tuning session, to wherever the output files are
written. You can examine the new bitmap to determine why
synchronization failed.

Show Vusers

To show Vusers during a scenario or tuning session run, enter the following
in the Vuser command line box: -lr_citrix_vuser_view. In the Controller or
Tuning Module Console, open the Vuser Details dialog box and click More
to expand the dialog box. Note that this will affect the scalability of the test,
so this should only be done to examine a problematic Vuser’s behavior.

Part IV • Application Deployment Solution Protocols

310

View Output Window

To see detailed information about the recording, view the recording log in
the Output window. Choose View > Output Window and select the
Recording Log tab. VuGen displays a detailed log of all actions performed by
VuGen.

311

22
Using the LoadRunner Citrix Agent

The LoadRunner Citrix Agent is an optional utility that you can install on
the Citrix server. It provides you with several important benefits:

➤ Intuitive and readable scripts

➤ Built-in synchronization

➤ Detailed Information about all objects

➤ Ability to work interactively within the Client window

This chapter contains the following sections:

➤ About the LoadRunner Citrix Agent

➤ Benefitting From the Citrix Agent

➤ Installation

➤ Effects and Memory Requirements of the Citrix Agent

➤ Sample Script

The following information only applies to the Citrix ICA protocol.

About the LoadRunner Citrix Agent

The LoadRunner Citrix Agent is an optional utility that you can install on
the Citrix server. It is provided on the LoadRunner CD and you can install it
on any Citrix server.

The agent provides Load Generator machines with detailed information
about objects and events in the client window. It also lets you work
interactively within the client screen to add object-specific steps.

Part IV • Application Deployment Solution Protocols

312

Benefitting From the Citrix Agent

The Citrix agent provides enhancements in the following areas:

➤ Object Details: provides detailed information about individual objects in the
Citrix client window.

➤ Active Object Recognition: shows you which objects in the client window
are recognized by VuGen.

➤ Expanded Right-Click Menu: additional right-click menu items that allow
you to add synchronization, verification, and text retrieval steps.

➤ Retrieving Text: capability to insert text searches to your script.

Object Details

When the Citrix agent is installed, VuGen records specific information
about the active object instead of a general information about the action.
For example, VuGen generates Obj Mouse Click and Obj Mouse Double Click
steps instead of Mouse Click and Mouse Double Click that it generates
without the agent.

The following example shows the same mouse-click action recorded with
and without the agent installation. Note that with an agent, VuGen
generates ctrx_obj_xxx functions for all of the mouse actions, such as click,
double-click and release

In the example above, the first argument of the ctrx_obj_mouse_click
function contains the text of the window’s title and the class, Notepad. Note
that although the agent provides additional information about each object,
Vusers only access objects by their window name and its coordinates.

/* WIthout Agent Installation */
ctrx_mouse_click(573, 61, LEFT_BUTTON, 0, test3.txt - Notepad);

/* WIth Agent Installation */
ctrx_obj_mouse_click(“<text=test3.txt - Notepad class=Notepad>” 573,

61, LEFT_BUTTON, 0, test3.txt - Notepad=snapshot21,
CTRX_LAST);

Chapter 22 • Using the LoadRunner Citrix Agent

313

Active Object Recognition

The agent installation lets you see which objects in the client window are
detected by VuGen. This includes all Windows Basic Objects such as edit
boxes, buttons, and item lists in the current window.

To see which objects were detected, you move your mouse through the
snapshot. VuGen highlights the borders of the detected objects as the mouse
passes over them.

In the following example, the Yes button is one of the detected objects.

Part IV • Application Deployment Solution Protocols

314

Expanded Right-Click Menu

When you click within a snapshot, you can insert several functions into the
script using the right-click menu. When no agent is installed, you are
limited to the Insert Mouse Click, Insert Mouse Double Click, and Insert
Sync on Bitmap. Note that the option to add an Insert Sync on Bitmap step
from the right-click menu is not available if you are using a 256-color set.

When an agent is installed, the following additional options are available
within the window in focus, from the right-click menu: Insert Get Text,
Insert Obj Get Info, and Insert Sync on Obj Info. These commands are
interactive—when you insert them into the script, you mark the object or
text area in the snapshot.

The Insert Obj Get Info and Insert Sync on Obj Info steps provide
information about the state of the object: ENABLED, FOCUSED, VISIBLE,
TEXT, CHECKED, and LINES. The Insert Sync on Obj Info step, generated as
a ctrx_sync_on_obj_info function, instructs VuGen to wait for a certain
state before continuing. The Insert Obj Get Info step, generated as a
ctrx_get_obj_info function, retrieves the current state of any object
property. The Insert Get Text step is discussed in the section “Retrieving
Text” on page 315.

In the following example, the ctrx_sync_on_obj_info function provides
synchronization by waiting for the Font dialog box to come into focus.

Utilizing VuGen’s ability to detect objects, you can perform actions on
specific objects interactively, from within the snapshot.

To insert a function interactively using the agent capabilities:

 1 Click at a point within the tree view to insert the new step. Make sure that a
snapshot is visible.

 2 Click within the snapshot.

 3 To mark a bitmap, right-click on it and choose Insert Sync on Bitmap.

VuGen issues a message indicating that you need to mark the desired area by
dragging the cursor. Click OK and drag the cursor diagonally across the
bitmap that you want to select.

ctrx_sync_on_obj_info(“Font”, 31, 59, FOCUSED, “TRUE”, CTRX_LAST);

Chapter 22 • Using the LoadRunner Citrix Agent

315

When you release the mouse, VuGen inserts the step into the script after the
currently selected step.

 4 For all other steps, move your mouse over snapshot objects to determine
which items are active—VuGen highlights the borders of active objects as
the mouse passes over them.

Right-click and choose one of the Insert commands. A dialog box opens
with the step’s properties.

Set the desired properties and click OK. VuGen inserts the step into your
script.

Retrieving Text

With the agent installed, VuGen lets you save standard text to a buffer. Note
that VuGen can only save true text—-not a graphical representation of text
in the form of an image.

You save the text using the Get Text step either during or after recording.
During recording, VuGen displays an additional Get Text toolbar button.

After recording, you insert the Get Text step from the snapshot’s right-click
menu.

Get Text

Part IV • Application Deployment Solution Protocols

316

To retrieve a text string:

 1 During recording: Click the Get Text button.

After recording: Choose Insert Get Text from the snapshot’s right-click
menu. The Bitmap Selection dialog opens, indicating that you are inserting
a synchronization or informational function and that you need to mark an
area.

 2 Click at the corner of the text that you want to capture, drag the mouse
diagonally to mark the text you want to save, and release the mouse button.

VuGen places a Get Text step at the current location and saves the text to a
buffer. VuGen marks the saved text with a pink box. In the following
snapshot, the Get Text step retrieved the text This.

Chapter 22 • Using the LoadRunner Citrix Agent

317

Installation

The installation file for the Citrix Agent is located on the LoadRunner CD
#2, under the Additional Components\CitrixAgent folder. The disk space
required for installing the Citrix agent is 25 MBs.

Note that the agent should only be installed on your Citrix server
machine—not Load Generator machines.

If you are upgrading a Citrix Agent, make sure to uninstall the previous
version before installing the next one (see uninstallation instructions
below).

To install the Citrix Agent:

 1 If your server requires administrator permissions to install software, log in as
an administrator to the server.

 2 Locate the installation file, CitrixAgent.exe, on the LoadRunner CD #2 in
the Additional Components\CitrixAgent folder.

Note: After installation the agent will only be active for LoadRunner
invoked Citrix sessions—it will not be active for users who start a Citrix
session without LoadRunner.

To disable the Citrix Agent, you must uninstall it.

To uninstall the Citrix Agent:

 1 If your server requires administrator privileges to remove software, log in as
an administrator to the server.

 2 Choose Start > LoadRunner Citrix Agent > Uninstall LoadRunner Citrix
Agent and follow the uninstall instructions.

Alternatively, open Add/Remove Programs in the server machine’s Control
Panel. Select LoadRunner Citrix Agent and click Change/Remove.

Part IV • Application Deployment Solution Protocols

318

Effects and Memory Requirements of the Citrix Agent

When you run Citrix Vusers with the agent installed, each Vuser runs its
own process of ctrxagent.exe. This results in a slight reduction in the
number of Vusers that can run on the server machine (about 7%).

The memory requirements per Citrix ICA Vuser (each Vuser runs its own
ctrxagent.exe process) is approximately 4.35 MB. To run 25 Vusers, you
would need 110 MBs of memory.

Sample Script

The following script illustrates a true Citrix ICA session with an agent.

vuser_init ()
{

ctrx_set_connect_opt (NETWORK_PROTOCOL, "TCP/IP + HTTP");
ctrx_connect_server ("Plato", "test", lr_decrypt("428c4445a14409b9"),

"QAlab");
ctrx_wait_for_event ("LOGON");
ctrx_sync_on_window ("ICA Seamless Host Agent", ACTIVATE, 0,

0,391,224, "snapshot1", CTRX_LAST);
ctrx_sync_on_text (196, 198, "OK", TEXT, "ICA Seamless Host

Agent=snapshot2", CTRX_LAST);
ctrx_obj_mouse_click ("<class=Button text=OK>", 196, 198,

LEFT_BUTTON, 0, "ICA Seamless Host Agent=snapshot2",
CTRX_LAST);

lr_think_time (73);
return 0;
}

Part V

Client Server Protocols

320

321

23
Developing Database Vuser Scripts

You use VuGen to record communication between a database client
application and a server. The resulting script is called a Database Vuser
script.

This chapter describes:

➤ About Developing Database Vuser Scripts

➤ Introducing Database Vusers

➤ Understanding Database Vuser Technology

➤ Getting Started with Database Vuser Scripts

➤ Setting Database Recording Options

➤ Database Advanced Recording Options

➤ Using LRD Functions

➤ Understanding Database Vuser Scripts

➤ Evaluating Error Codes

➤ Handling Errors

The following information only applies to Client Server Database (Sybase
CTLib, Sybase DbLib, Informix, MS SQL Server, Oracle 2-Tier, ODBC, and
DB2 CLI) and ERP/CRM Siebel Vuser scripts.

Part V • Client Server Protocols

322

About Developing Database Vuser Scripts

When you record a database application communicating with a server,
VuGen generates a Database Vuser script. VuGen supports the following
database types: CtLib, DbLib, Informix, Oracle, ODBC, and DB2-CLI. The
resulting script contains LRD functions that describe the database activity.
Each LRD function has an lrd prefix and represents one or more database
functions. For example, the lrd_fetch function represents a fetch operation.

When you run a recorded session, the Vuser script communicates directly
with the database server, performing the same operations as the original
user. You can set the Vuser behavior (run-time settings) to indicate the
number of times to repeat the operation and the interval between the
repetitions. For more information, see Chapter 12, “Configuring Run-Time
Settings.”

Using VuGen, you can parameterize a script, replacing recorded constants
with parameters. For more information, see Chapter 8, “Working with
VuGen Parameters.”

In addition, you can correlate queries or other database statements in a
script, linking the results of one query with another. For more information,
see Chapter 11, “Correlating Statements.”

For troubleshooting information and scripting tips, see Chapter 78, “VuGen
Debugging Tips.”

Chapter 23 • Developing Database Vuser Scripts

323

Introducing Database Vusers

Suppose that you have a database of customer information that is accessed
by customer service personnel located throughout the country. You use
Database Vusers to emulate the situation in which the database server
services many requests for information. A Database Vuser could:

➤ connect to the server

➤ submit an SQL query

➤ retrieve and process the information

➤ disconnect from the server

You distribute several hundred Database Vusers among the available load
generators, each Vuser accessing the database by using the server API. This
enables you to measure the performance of your server under the load of
many users.

The program that contains the calls to the server API is called a Database
Vuser script. It emulates the client application and all of the actions
performed by it. The Vusers execute the script and emulate user load on the
client/server system. The Vusers generate performance data which you can
analyze in report and graph format.

Part V • Client Server Protocols

324

Understanding Database Vuser Technology

VuGen creates Database Vuser scripts by recording all the activity between a
database client and a server. VuGen monitors the client end of the database
and traces all the requests sent to and received from the database server.

Like all other Vusers created using VuGen, Database Vusers communicate
with the server without relying on client software. Instead, each Database
Vuser executes a script that executes calls directly to server API functions.

You create Database Vuser scripts in a Windows environment using VuGen.
Once you create a script, you can assign it to Vusers in both Windows and
UNIX environments. For information about recording scripts, see Chapter 4,
“Recording with VuGen.”

Users working in a UNIX only environment can create Database Vuser
scripts through programming using VuGen templates as the basis for a
script. For information about programming Database Vuser scripts on UNIX,
see Appendix C, “Programming Scripts on UNIX Platforms.”

o

Client running
an application VuGen Server

Vuser script Server

Chapter 23 • Developing Database Vuser Scripts

325

Getting Started with Database Vuser Scripts

This section provides an overview of the process of developing Database
Vuser scripts using VuGen.

To develop a Database Vuser script:

 1 Record the basic script using VuGen.

Invoke VuGen and create a new Vuser script. Specify the type of Vuser
(Client Server or ERP protocol types). Choose an application to record and
set the recording options. Record typical operations on your application.

For details, see Chapter 4, “Recording with VuGen.”

 2 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same query
many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

 4 Correlate queries (optional).

Correlating database statements allows you to use the result of a query in a
subsequent one. This feature is useful when working on a database with user
constraints.

For details, see Chapter 11, “Correlating Statements.”

 5 Configure the run-time settings.

The run-time settings control the Vuser script behavior during script
execution. These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.”

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

Part V • Client Server Protocols

326

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Setting Database Recording Options

Before you record a database session, you set the recording options. You can
set basic recording options for automatic function generation, script
options, and think time:

Automatic Transactions: You can instruct VuGen to mark every lrd_exec
and lrd_fetch function as a transaction. When these options are enabled,
VuGen inserts lr_start_transaction and lr_end_transaction around every
lrd_exec or lrd_fetch function. By default, automatic transactions are
disabled.

Chapter 23 • Developing Database Vuser Scripts

327

Script Options: You can instruct VuGen to generate comments into recorded
scripts, describing the lrd_stmt option values. In addition, you can specify
the maximum length of a line in the script. The default length is 80
characters.

Think Time: VuGen automatically records the operator’s think time. You can
set a threshold level, below which the recorded think time will be ignored. If
the recorded think time exceeds the threshold level, VuGen places an
lr_think_time statement before LRD functions. If the recorded think time is
below the threshold level, an lr_think_time statement is not generated. The
default value is five seconds.

To set the Database recording options:

 1 Choose Tools > Recording Options. The Recording Options dialog box
opens.

 2 Select Generate transactions for all lrd_exec functions to enable automatic
transactions for lrd_exec statements.

Select Generate transaction for all lrd_fetch functions to enable automatic
transactions for lrd_fetch statements.

 3 Select Generate script comments to instruct VuGen to insert descriptive
comments within the script.

 4 To change the maximum length of a line in the VuGen editor, specify the
desired value in the Maximum length of script line box.

 5 To change the think-time threshold value from the five second default,
specify the desired value in the Think-time threshold box.

You can also set advanced recording options relating to the trace level, Ctlib
function generation, and the code generation buffer.

Part V • Client Server Protocols

328

Database Advanced Recording Options

In addition to the basic recording options, you can configure advanced
options for the log file detail, CtLib specific functions, buffer size, and the
recording engine.

Recording Log Options: You can set the detail level for the trace and ASCII
log files. The available levels for the trace file are Off, Error Trace, Brief
Trace, or Full Trace. The error trace only logs error messages. The Brief Trace
logs errors and lists the functions generated during recording. The Full Trace
logs all messages, notifications, and warnings.

You can also instruct VuGen to generate ASCII type logs of the recording
session. The available levels are Off, Brief detail, and Full detail. The Brief
detail logs all of the functions, and the Full detail logs all of the generated
functions and messages in ASCII code.

CtLib Function Options: You can instruct VuGen to generate a send data
time stamp or an extended result set statement.

➤ Time Stamp: By default, VuGen generates lrd_send_data statements with
the TotalLen and Log keywords for the mpszReqSpec parameter. The
Advanced Recording Options dialog box lets you instruct VuGen to also
generate the TimeStamp keyword. If you change this setting on an
existing script, you must regenerate the Vuser script by choosing Tools >
Regenerate Script. It is not recommended to generate the Timestamp
keyword by default. The timestamp generated during recording is
different than that generated during replay and script execution will fail.
You should use this option only after a failed attempt in running a script,
where an lrd_result_set following an lrd_send_data fails. The generated
timestamp can now be correlated with a timestamp generated by an
earlier lrd_send_data.

Chapter 23 • Developing Database Vuser Scripts

329

➤ Extended Result Set: By default, VuGen generates an lrd_result_set
function when preparing the result set. This setting instructs VuGen to
generate the extended form of the lrd_result_set function,
lrd_result_set_ext. In addition to preparing a result set, this function
also issues a return code and type from ct_results.

Code Generation Buffer Size: Specify in kilobytes the maximum size of the
code generation buffer. The default value is 128 kilobytes. For long database
sessions, you can specify a larger size.

Recording Engine: You can instruct VuGen to record scripts with the older
LRD recording engine for compatibility with previous versions of VuGen.
This option is only available for single-protocol scripts.

To set advanced recording options:

 1 Click the Advanced button in the Database node of the Recording Options
dialog box. The Advanced Recording Options dialog box opens.

 2 Select a Trace file detail level. To disable the trace file, select Off.

 3 To generate an ASCII log file, select the desired detail level from the ASCII
file detail level box.

Part V • Client Server Protocols

330

 4 For CtLib: To instruct VuGen to generate the TimeStamp keyword for
lrd_send_data functions, select the Generate send data time stamp option.

 5 For CtLib: To instruct VuGen to generate lrd_result_set_ext instead of
lrd_result_set, select the Generate extended result set statement option.

 6 To modify the size of the code generation buffer from the default value of
128 kilobytes, enter the desired value in the Code generation buffer size
box.

 7 To use the old VuGen recording engine to allow backwards compatibility,
select the Record script using old recording engine option.

 8 Click OK to save your settings and close the Advanced Recording Options
dialog box.

Using LRD Functions

The functions developed to emulate communication between a database
client and a server are called LRD Vuser functions. Each LRD Vuser function
has an lrd prefix. VuGen automatically records most of the LRD functions
listed in this section during a database session (CtLib, DbLib, Informix,
Oracle (2-Tier), and ODBC). You can also manually program any of the
functions into your script. For syntax and examples of the LRD functions,
refer to the Online Function Reference (Help > Function Reference).

Access Management Functions

lrd_alloc_connection Allocates a connection structure.

lrd_close_all_cursors Closes all open cursors.

lrd_close_connection Disconnects (logs out) from the database.

lrd_close_context Closes a context.

lrd_close_cursor Closes a database cursor.

lrd_ctlib_cursor Specifies a CtLib cursor command.

lrd_commit Commits the current transaction.

lrd_db_option Sets an option for the current database.

lrd_free_connection Frees a connection structure.

Chapter 23 • Developing Database Vuser Scripts

331

LRD Environment Functions

Retrieval Handling Functions

lrd_rollback Rolls back the current transaction.

lrd_open_connection Connects (logs on) to the database.

lrd_open_context Opens a context.

lrd_open_cursor Opens a database cursor.

lrd_msg Issues an output message.

lrd_option Sets an LRD option.

lrd_end Closes the lrd environment.

lrd_init Initializes the lrd environment.

lrd_col_data Sets a pointer indicating the location of data.

lrd_fetch Fetches the next row in the result set.

lrd_fetchx Fetches the next row in the result set using an
extended fetch. (ODBC only)

lrd_result_set Returns a result set. (CtLib only)

lrd_result_set_ext Returns a CtLib result code and result type
(extended).

lrd_fetch_adv Fetches multiple rows from a result set using
an extended fetch. (ODBC only)

lrd_reset_rows Prepares fetched rows for an Update
operation. (ODBC only)

lrd_row_count Returns the number of the rows affected by
an UPDATE, DELETE or INSERT statement.
(ODBC, DB2)

Part V • Client Server Protocols

332

Statement Handling Functions

Statement Correlating Functions

lrd_bind_col Binds a host variable to an output column.

lrd_bind_cols Binds a host variable array to columns.

lrd_bind_cursor Binds a cursor to a place holder.

lrd_bind_placeholder Binds a host variable or array to a place
holder.

lrd_cancel Cancels the previous statement.

lrd_data_info Gets I/O information. (CtLib only)

lrd_dynamic Specifies a dynamic SQL statement to be
processed. (CtLib only)

lrd_exec Executes the previously specified SQL
statement.

lrd_send_data Sends data to the server.

lrd_stmt Specifies an SQL statement to be processed.

lrd_save_col Saves the value of a table cell to a parameter.

lrd_save_value Saves a place holder descriptor value to a
parameter.

lrd_save_ret_param Saves the value of a return-parameter to a
parameter. (CtLib only)

lrd_save_last_rowid Saves the last rowid to a parameter (Oracle).

Chapter 23 • Developing Database Vuser Scripts

333

Variable Handling Functions

Siebel Functions

Oracle 8 Functions

VuGen provides partial support for Oracle 8.x. All database actions that were
recorded in previous versions of Oracle are recorded. In many instances, the
recorded function is specific for Oracle 8.x. For example for a fetch
operation, instead of lrd_fetch, VuGen records lrd_ora8_fetch.

lrd_assign Assigns a null-terminated string to a variable.

lrd_assign_ext Assigns a storage area to a variable.

lrd_assign_literal Assigns a literal string (containing null-
characters) to a variable.

lrd_assign_bind Assigns a null-terminated string to a variable
and binds it to a place holder.

lrd_assign_bind_ext Assigns a storage area value to a variable and
binds it to a place holder.

lrd_assign_bind_literal Assigns a literal string (containing null-
characters) to a variable and binds it to a
place holder.

lrd_to_printable Converts a variable to a printable string.

lrd_siebel_incr Increments a string by a specified value.

lrd_siebel_str2num Converts a base 36 string to a base 10
number.

SiebelPostSave_x Saves the future values of Siebel parameters.

SiebelPreSave_x Indicates the parameters necessary for
correlation.

lrd_attr_set Sets an attribute for an LRDDBI handle.

lrd_attr_set_from_handle Sets an attribute using an LRDDBI handle
pointer.

Part V • Client Server Protocols

334

lrd_attr_set_literal Sets an LRDDBI handle attribute using a
literal string.

lrd_env_init Allocates and initializes an LRDDBI handle.

lrd_handle_alloc Explicitly allocates and initializes an LRDDBI
handle.

lrd_handle_free Explicitly frees an LRDDBI handle.

lrd_initialize_db Initializes the database process environment.

lrd_logoff Terminates a simple database session.

lrd_logon Begins a simple database session.

lrd_logon_ext Begins a simple database session (extended).

lrd_oci8_to_oci7 Converts and Oracle OCI 8 connection to an
Oracle OCI 7 connection.

lrd_ora8_attr_set Sets an attribute for an LRDDBI handle—
shorthand.

lrd_ora8_attr_set_from_
handle

Sets an attribute using an LRDDBI handle
pointer.

lrd_ora8_attr_set_literal Sets an LRDDBI handle attribute using a
literal string—shorthand.

lrd_ora8_bind_col Binds a host variable to an output column.

lrd_ora8_bind_placeholder Binds a host variable to a placeholder.

lrd_ora8_commit Commits the current transaction for an
Oracle 8.x client.

lrd_ora8_exec Executes an SQL statement in Oracle 8.x.

lrd_ora8_fetch Fetches the next row in the result set.

lrd_ora8_handle_alloc Explicitly allocates and initializes an LRDDBI
handle—shorthand.

lrd_ora8_lob_locator_assign Assigns one large object locator to another.

lrd_ora8_lob_locator_
temporary

Creates a temporary large object.

Chapter 23 • Developing Database Vuser Scripts

335

lrd_ora8_lob_read Reads characters from a large object
descriptor.

lrd_ora8_lob_write Writes characters to a large object descriptor.

lrd_ora8_rollback Rolls back the current transaction for an
Oracle 8.x client.

lrd_ora8_print Prints rows fetched by an Oracle autofetch
operation.

lrd_ora8_save_last_rowid Saves a rowid to a parameter.

lrd_ora8_save_col Saves the value of a table cell to a parameter.

lrd_ora8_stmt Prepares a null-terminated SQL statement for
execution.

lrd_ora8_stmt_ext Prepares an SQL statement with null
characters for execution.

lrd_ora8_stmt_literal Prepares a literal SQL statement string for
execution.

lrd_server_attach Creates an access path to a data source for
database operations.

lrd_server_detach Deletes an access path to a data source for
database operations.

lrd_session_begin Creates and begins a user session for a server.

lrd_session_end Terminates a user session for a server.

Part V • Client Server Protocols

336

Understanding Database Vuser Scripts

After you record a database session, you can view the recorded code in
VuGen’s built-in editor. You can scroll through the script, see the SQL
statements that were generated by your application, and examine the data
returned by the server.

The VuGen window provides you with the following information about the
recorded database session:

➤ the sequence of functions recorded

➤ grids displaying the data returned by database queries

➤ the number of rows fetched during a query

Function Sequence

When you view a Vuser script in the VuGen window, you see the sequence
in which VuGen recorded your activities. For example, the following
sequence of functions is recorded during a typical Oracle database session:

lrd_init Initializes the environment.

lrd_open_connection Connects to the database server.

lrd_open_cursor Opens a database cursor.

lrd_stmt Associates an SQL statement with a cursor.

lrd_bind_col Binds a host variable to a column.

lrd_exec Executes an SQL statement.

lrd_fetch Fetches the next record in the result set.

lr_commit Commits a database transaction.

lr_close_cursor Closes a cursor.

lrd_close_connection Disconnects from the database server.

lrd_end Cleans up the environment.

Chapter 23 • Developing Database Vuser Scripts

337

In the following script, VuGen recorded the actions of an operator who
opened a connection to an Oracle server and then performed a query
requesting the local settings.

lrd_init(&InitInfo, DBTypeVersion);
lrd_open_connection(&Con1, LRD_DBTYPE_ORACLE, "s1", "tiger",
"hp1", "", 0, 0, 0);
lrd_open_cursor(&Csr1, Con1, 0);
lrd_stmt(Csr1, "select parameter, value from v$nls_parameters "

" where (upper(parameter) in ('NLS_SORT','NLS_CURRENCY',"
"'NLS_ISO_CURRENCY', 'NLS_DATE_LANGUAGE',"
"'NLS_TERRITORY'))", -1, 0 /*Non deferred*/, 1 /*Dflt Ora Ver*/, 0);

lrd_bind_col(Csr1, 1, &D1, 0, 0);
lrd_bind_col(Csr1, 2, &D2, 0, 0);
lrd_exec(Csr1, 0, 0, 0, 0, 0);
lrd_fetch(Csr1, 7, 7, 0, PrintRow2, 0);
…
lrd_close_cursor(&Csr1, 0);
lrd_commit(0, Con1, 0);
lrd_close_connection(&Con1, 0, 0);
lrd_end(0);

Part V • Client Server Protocols

338

Grids

The data returned by a database query during a recording session is
displayed in a grid. By viewing the grid you can determine how your
application generates SQL statements and the efficiency of your
client/server system.

The data grid is represented by a GRID statement or GRID8 for Oracle 8.To
open the data grid, click on the icon in the margin adjacent to the GRID
statement.

Grid icon

Chapter 23 • Developing Database Vuser Scripts

339

In the following example, VuGen displays a grid for a query executed on a
flights database. The query retrieves the flight number, airport code,
departure city, day of the week, and other flight-relevant information.

The grid columns are adjustable in width. You can scroll up to 100 rows
using the scroll bar.

To correlate a value or save the data to a file, click in a cell and use the right-
click menu options, Create Correlation or Save To File.

Row Information

VuGen generates an lrd_fetch function for each SQL query.

The second parameter of the function indicates the number of rows fetched.
This number can be positive or negative.

 lrd_fetch(Csr1, -4, 1, 0, PrintRow7, 0);

Part V • Client Server Protocols

340

Positive Row Values

A positive value shows the number of rows fetched during recording, and
indicates that not all rows were fetched. (For example, if the operator
cancelled the query before it was completed.)

In the following example, four rows were retrieved during the database
query, but not all of the data was fetched.

During execution, the script retrieves the number of rows indicated by the
positive value (provided the rows exist).

Negative Row Values

A negative row value indicates that all available rows were fetched during
recording. The absolute value of the negative number is the number of rows
fetched.

In the following example, all four rows of the result set were retrieved:

When you execute an lrd_fetch statement containing a negative row value,
it retrieves all of the available rows in the table at the time of the run—not
necessarily the number at the time of recording. In the above example, all
four rows of the table were retrieved during the recording session. However,
if more rows are available during script execution, they are all retrieved.

For more information about lrd_fetch, refer to the Online Function Reference
(Help > Function Reference).

 lrd_fetch(Csr1, 4, 1, 0, PrintRow7, 0);

 lrd_fetch(Csr1, -4, 1, 0, PrintRow7, 0);

Chapter 23 • Developing Database Vuser Scripts

341

Evaluating Error Codes

When a Vuser executes an LRD function, the function generates a return
code. A return code of 0 indicates that the function succeeded. For example,
a return code of 0 indicates that another row is available from the result set.
If an error occurs, the return code indicates the type of error. For example, a
return code of 2014 indicates that an error occurred in the initialization.

There are four types of return codes, each represented by a numerical range:

For more detailed information on the return codes, refer to the Online
Function Reference (Help > Function Reference).

You can evaluate the return code of an LRD function to determine if the
function succeeded. The following script segment evaluates the return code
of an lrd_fetch function:

Type of Return Code Range

Informational 0 to 999

Warning 1000 to 1999

Error 2000 to 2999

Internal Error 5000 to 5999

static int rc;
rc=lrd_fetch(Csr15, -13, 0, 0, PrintRow4, 0);
if (rc==0)

lr_output_message("The function succeeded");
else

lr_output_message("The function returned an error code:%d",rc);

Part V • Client Server Protocols

342

Handling Errors

You can control how database Vusers handle errors when you run a database
Vuser script. By default, if an error occurs during script execution, the script
execution is terminated. To change the default behavior, you can instruct
the Vuser to continue when an error occurs. You can apply this behavior in
the following ways:

➤ Globally—to the entire script, or to a segment of the script

➤ Locally—to a specific function only

Globally Modifying Error Handling

You can change the way that Vusers handle errors by issuing an
LRD_ON_ERROR_CONTINUE or LRD_ON_ERROR_EXIT statement. By
default, a Vuser aborts the script execution when it encounters any type of
error—database, parameter related, and so on. To change the default
behavior, insert the following line into your script:

From this point on, the Vuser continues script execution, even when an
error occurs.

You can also specify that the Vuser continue script execution when an error
occurs only within a segment of the script. For example, the following code
tells the Vuser to continue script execution even if an error occurs in the
lrd_stmt or lrd_exec functions:

Use the LRD_ON_ERROR_CONTINUE statement with caution, as significant
and severe errors may be missed.

LRD_ON_ERROR_CONTINUE;

LRD_ON_ERROR_CONTINUE;
lrd_stmt(Csr1, "select…"…);
lrd_exec(…);
LRD_ON_ERROR_EXIT;

Chapter 23 • Developing Database Vuser Scripts

343

Locally Modifying Error Handling

You can set error handling for a specific function by modifying the severity
level. Functions such as lrd_stmt and lrd_exec, which perform database
operations, use severity levels. The severity level is indicated by the
function's final parameter, miDBErrorSeverity. This parameter tells the Vuser
whether or not to continue script execution when a database error occurs
(error code 2009). The default, 0, indicates that the Vuser should abort the
script when an error occurs.

For example, if the following database statement fails (e.g., the table does
not exist), then the script execution terminates.

To tell a Vuser to continue script execution, even when a database operation
error occurs for that function, change the statement's severity parameter
from 0 to 1.

When the severity is set to 1 and a database error occurs, a warning is issued.
Note that the severity level set for a particular function applies only to that
function.

CtLib Result Set Errors

In CtLib recording, the application retrieves all of the available result sets
after executing a statement. If the returned result set contains fetchable
data, the application performs bind and fetch operations on the data as
indicated in the following example:

lrd_stmt(Csr1, "insert into EMP values ('Smith',301)\n", -1, 1 /*Deferred*/,
1 /*Dflt Ora Ver*/, 0);

lrd_stmt(Csr1, "insert into EMP values ('Smith',301)\n", -1, 1 /*Deferred*/,
1 /*Dflt Ora Ver*/, 1);

lrd_stmt(Csr15, "select * from all_types", -1, 148, -99999, 0);
lrd_exec(Csr15, 0, 0, 0, 0, 0);
lrd_result_set(Csr15, 1 /*Succeed*/, 4040 /*Row*/, 0);
lrd_bind_col(Csr15, 1, &tinyint_D41, 0, 0);
…
lrd_fetch(Csr15, -9, 0, 0, PrintRow3, 0);

Part V • Client Server Protocols

344

If a result set does not contain fetchable data, bind and fetch operations
cannot be performed.

When you parametrize your script, result data may become unfetchable
(depending on the parameters). Therefore, a CtLib session that recorded
bind and fetch operations for a particular statement, may not be able to run,
if the new data is unfetchable. If you try to execute an lrd_bind_col or an
lrd_fetch operation, an error will occur (LRDRET_E_NO_FETCHABLE_DATA
— error code 2064) and the Vuser will terminate the script execution.

You can override the error by telling the Vuser to continue script execution
when this type of error occurs. Insert the following line into your script:

To return to the default mode of terminating the script execution, type the
following line into your script:

Use this option with caution, as significant and severe errors may be missed.

LRD_ON_FETCHABLE_SET_ERR_CONT;

LRD_ON_FETCHABLE_SET_ERR_EXIT;

345

24
Correlating Database Vuser Scripts

After you record a database session, you may need to correlate one or more
queries within your script—use a value that was retrieved during the
database session, at a later point in the session.

This chapter describes:

➤ About Correlating Database Vuser Scripts

➤ Scanning a Script for Correlations

➤ Correlating a Known Value

➤ Database Correlation FunctionsFor more information about these functions
and their arguments, refer to the Online Function Reference.

The following information only applies to Database (CtLib, DbLib,
Informix, Oracle, and ODBC, DB2-CLI) Vuser scripts.

About Correlating Database Vuser Scripts

If you encounter an error when running your script, examine the script at
the point where the error occurred. In many cases, you can overcome the
problem by correlating the query. Correlating the query means that you
save a run-time value to a parameter. You then use the saved value at a later
point in the same script. In summary, correlation is using the results of one
statement as input to another.

There are many queries whose inputs depend on the result of prior queries.
To emulate this behavior, use VuGen’s correlation capabilities.

Part V • Client Server Protocols

346

Scanning a Script for Correlations

VuGen provides a correlation utility to help you repair your script and allow
a successful replay. It performs the following steps:

➤ Scans for potential correlations

➤ Inserts the appropriate correlation function to save the results to a
parameter

➤ Replaces the statement value with the parameter

You can perform automatic correlation on the entire script, or at a specific
location in your script.

This section describes how to determine the statement which needs to be
correlated. If you already know which value you want to correlate, proceed
to the next section for instructions on correlating a specific value.

To scan and correlate a script detected with automatic correlation:

 1 Open the Output window.

Select View > Output to display the output tabs at the bottom of the
window. Check for errors in the Replay Log tab. Often, these errors can be
corrected by correlation.

 2 Select Vuser > Scan for Correlations.

VuGen scans the entire script and lists all possible values to correlate in the
Correlated Query tab.

Chapter 24 • Correlating Database Vuser Scripts

347

In the following example, in the lrd_ora8_stmt statement, VuGen detected
a value to correlate.

 3 In the Correlated Query tab, double-click on the result you want to
correlate. Click on the words (grid column x, row y) VuGen sends the cursor
to the location of the value in your grid.

 4 Choose Create Correlation from the right-click menu. VuGen prompts you
to enter a parameter name for the result value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrd_save_value, lrd_save_col, or
lrd_save_ret_param, lrd_ora8_save_col) which saves the result to a
parameter.

Part V • Client Server Protocols

348

 6 Click Yes to confirm the correlation.

 7 A message box opens asking if you want to search for all occurrences of the
value in the script.
To replace only the value in the selected statement, click No.
To search and replace additional occurrences, click Yes.

 8 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.

 9 Close the Search and Replace dialog box. VuGen replaces the statement
value with a reference to the parameter. Note that if you choose to cancel
the correlation, VuGen also erases the statement created in the previous
step.

Correlating a Known Value

If you know which value needs to be correlated, perform the following
procedure.

To correlate a specific value:

 1 Locate the statement in your script, with the query containing the value you
want to correlate. This is usually one of the arguments of the lrd_assign,
lrd_assign_bind, or lrd_stmt functions. Select the value without the
quotation marks.

 2 Choose Scan for Correlations (at cursor) from the right-click menu. VuGen
scans the selected value for correlations.

 3 In the Output window’s Correlated Query tab, double-click on the result
you want to correlate. Click on the words (grid column x, row y). VuGen
sends the cursor to the location of the value in your grid.

Chapter 24 • Correlating Database Vuser Scripts

349

 4 In the grid, click on the value you want to correlate and choose Create
Correlation from the right-click menu. VuGen prompts you to enter a
parameter name for the result value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrd_save_value, lrd_save_col, or
lrd_save_ret_param, lrd_ora8_save_col) which saves the result to a
parameter.

 6 Click Yes to confirm the correlation.

 7 A message box opens asking if you want to search for all occurrences of the
value in the script.
To replace only the value in the selected statement, click No.
To search and replace additional occurrences, click Yes.

 8 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.

 9 Close the Search and Replace dialog box. VuGen replaces the statement
value with a reference to the parameter. If you cancel the correlation, VuGen
also erases the statement created in the previous step.

Note: If you are correlating a value from an lrd_stmt function, the following
data types are not supported: date, time, and binary (RAW, VARRAW).

Part V • Client Server Protocols

350

Database Correlation Functions

When working with Database Vuser scripts, (DbLib, CtLib, Oracle, Informix,
and so forth) you can use VuGen’s automated correlation feature to insert
the appropriate functions into your script. The correlating functions are:

➤ lrd_save_col saves a query result appearing in a grid, to a parameter. This
function is placed before fetching the data. It assigns the value retrieved
by the subsequent lrd_fetch to the specified parameter.
(lrd_ora8_save_col for Oracle 8 and higher)

➤ lrd_save_value saves the current value of a placeholder descriptor to a
parameter. It is used with database functions that set output placeholders
(such as certain stored procedures under Oracle).

➤ lrd_save_ret_param saves a stored procedure’s return value to a
parameter. It is used primarily with database procedures stored in DbLib
that generate return values.

Note: VuGen does not apply correlation if the saved value is invalid or
NULL (no rows returned).

For more information about these functions and their arguments, refer to
the Online Function Reference.

351

25
Developing DNS Vuser Scripts

VuGen allows you to emulate network activity by directly accessing a DNS
server.

This chapter describes:

➤ About Developing DNS Vuser Scripts

➤ Working with DNS Functions

The following information applies only to DNS Virtual User scripts.

About Developing DNS Vuser Scripts

The DNS protocol is a low-level protocol that allows you to emulate the
actions of a user working against a DNS server.

The DNS protocol emulates a user accessing a Domain Name Server to
resolve a host name with its IP address. Only replay is supported for this
protocol—you need to manually add the functions to your script.

To create a script for the DNS protocol, choose File > New to open the New
Virtual User dialog box. Choose the Domain Name Resolution (DNS)
protocol type from the Client/Server category. Since recording is not
supported for DNS, you program the script with the appropriate DNS, Vuser
API and C functions. For more information on these functions, refer to the
Online Function Reference (Help > Function Reference).

After you create a Vuser script, you integrate it into a session step or scenario
on either a Windows or UNIX platform. For more information on
integrating Vuser scripts in a session step or scenario, refer to the LoadRunner
Controller User’s Guide or the Tuning Module User’s Guide.

Part V • Client Server Protocols

352

Working with DNS Functions

DNS Vuser script functions record queries to and from a Domain Name
Resolution (DNS) server. Each DNS function begins with a dns prefix. For
detailed syntax information on these functions, refer to the Online Function
Reference (Help > Function Reference).

In the following example, a query is submitted to the DNS server and the
results are printed to the log file.

Function Name Description

ms_dns_query Resolves the IP address of a host.

ms_dns_nextresult Advances to the next IP address in the list
returned by ms_dns_query.

Actions()
{
int rescnt = 0;

char results = NULL;
results = (char *) ms_dns_query("transaction",

"URL=dns://<DnsServer>",
"QueryHost=<Hostname>",
LAST);

// List all the IP addresses of the host names...
while (*results) {

rescnt++;
lr_log_message(lr_eval_string("(%d) IP of<Hostname> is %s"),

rescnt, results);
results = (char *) ms_dns_nextresult(results);

}
return 1;

}

353

26
Developing WinSock Vuser Scripts

You use VuGen to record communication between a client application and a
server that communicate using the Windows Sockets protocol. The resulting
script is called a Windows Sockets Vuser script.

This chapter describes:

➤ About Recording Windows Sockets Vuser Scripts

➤ Getting Started with Windows Sockets Vuser Scripts

➤ Setting the WinSock Recording Options

➤ Using LRS Functions

The following information applies to all protocols recorded on a Windows
Sockets level, including the Web/Winsock Dual Protocol.

About Recording Windows Sockets Vuser Scripts

The Windows Sockets protocol is ideal for analyzing the low level code of an
application. For example, to check your network, you can use a Windows
Sockets (WinSock) script to see the actual data sent and received by the
buffers. The WinSock type can also be used for recording other low level
communication sessions. In addition, you can record and replay
applications that are not supported by any of the other Vuser types.

When you record an application which uses the Windows Sockets protocol,
VuGen generates functions that describe the recorded actions. Each
function begins with an lrs prefix. The LRS functions relate to the sockets,
data buffers, and the Windows Sockets environment. Using VuGen, you
record your application’s API calls to the Winsock.dll or Wsock32.dll.

Part V • Client Server Protocols

354

For example, you could create a script by recording the actions of a telnet
application.

In the following example, lrs_send sends data to a specified socket:

You can view and edit the recorded script from VuGen’s main window. The
Windows Sockets API calls that were recorded during the session are
displayed in the window, allowing you to track your network activities.

VuGen can display a WinSock script in two ways:

➤ As an icon-based representation of the script. This is the default view, and
is known as the Tree view.

➤ As a text-based representation of the script showing the Windows Sockets
API calls. This is known as the Script view.

You use VuGen to view and edit your Vuser script from either the Tree view
or Script view. For more information, see “Viewing and Modifying Vuser
Scripts” on page 17.

After creating a script, you can view the recorded data as a snapshot or as a
raw data file. For details, see Chapter 27, “Working with Windows Socket
Data.”

Getting Started with Windows Sockets Vuser Scripts

This section provides an overview of the process of developing Windows
Sockets Vuser scripts using VuGen.

To develop a Windows Sockets script:

 1 Record the actions using VuGen.

Invoke VuGen and create a new Vuser script, specifying Windows Sockets as
the type. Choose an application to record and set the recording options.
Record typical operations on your application.

For details, see Chapter 4, “Recording with VuGen.”

lrs_send("socket22", "buf44", LrsLastArg);

Chapter 26 • Developing WinSock Vuser Scripts

355

 2 Enhance the Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your Vuser script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

 4 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see Chapter 11, “Correlating Statements.”

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.” and
Chapter 13, “Configuring Network Run-Time Settings.”

 6 Run the Vuser script from VuGen.

Save and run the Vuser script from VuGen to verify that it runs correctly.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Part V • Client Server Protocols

356

Setting the WinSock Recording Options

The following recording options are available for WinSock Vusers:

➤ Configuring the Translation Table

➤ Excluding Sockets

➤ Setting the Think Time Threshold

To open the Recording Options dialog box, choose Tools > Recording
Options or click the Options button in the Start Recording dialog box.
VuGen displays the WinSock options.

Chapter 26 • Developing WinSock Vuser Scripts

357

Configuring the Translation Table

To display data in EBCDIC format, you specify a translation table in the
recording options.

The Translation Table lets you specify the format for recording sessions. This
applies to users running on mainframe machines or AS/400 servers. Both
the server and client machines determine the format of the data from
translation tables installed on your system. Choose a translation option
from the list box.

The first four digits of the listbox item represent the server format. The last
four digits represent the client format. In the above example, the selected
translation table is 002501b5. The server format is 0025 and the client
format is 01b5 indicating a transfer from the server to the client. In a
transmission from the client to the server, you would choose the item that
reverses the formats—01b50025 indicating that the client’s 01b5 format
needs to be translated to the server’s 0025 format.

The translation tables are located in the ebcdic directory under the VuGen’s
installation directory. If your system uses different translation tables, copy
them to the ebcdic directory.

Note: If your data is in ASCII format, it does not require translation. You
must select the None option, the default value. If you do select a translation
table, VuGen will translate the ASCII data.

When working on Solaris machines, you must set the following
environment variables: on all machines running the Vuser scripts.

setenv LRSDRV_SERVER_FORMAT 0025
setenv LRSDRV_CLIENT_FORMAT 04e4

Part V • Client Server Protocols

358

Excluding Sockets

VuGen supports the Exclude Socket feature, allowing you to exclude a
specific socket from your recording session. To exclude all actions on a
socket from your script, you specify the socket address in the Exclude Socket
list. To add a socket to the list, click the plus sign in the upper right corner of
the box and enter the socket address in one of the following formats:

You can exclude multiple hosts and ports by adding them to the list. To
remove a socket from the excluded list, select the socket address and click
the minus sign in the upper right corner of the box. It is recommended that
you exclude hosts and ports that do not influence the server load under test,
such as the local host and the DNS port (53), which are excluded by default.

By default, VuGen does not log the actions of the excluded sockets in the
Excluded Socket List. To instruct VuGen to log the actions of the excluded
socket(s) clear the Do not include excluded sockets in log check box. When
logging is enabled for the excluded sockets, their actions are preceded by
“Exclude” in the log file.

Value Meaning

host:port Exclude only the specified port on the specified host.

host Exclude all ports for the specified host.

:port Exclude the specified port number on the local host.

*:port Exclude the specified port number on all hosts.

Exclude : /* recv(): 15 bytes were received from socket 116 using flags 0 */

Chapter 26 • Developing WinSock Vuser Scripts

359

Setting the Think Time Threshold

During recording, VuGen automatically inserts the operator’s think time.
You can set a threshold level, below which the recorded think time will be
ignored. If the recorded think time exceeds the threshold level, VuGen
places an lr_think_time statement before LRS functions. If the recorded
think time is below the threshold level, an lr_think_time statement is not
generated.

To set the think time threshold, enter the desired value (in seconds) in the
Think Time Threshold box. The default value is five seconds.

Using LRS Functions

The functions developed to emulate communication between a client and a
server by using the Windows Sockets protocol are called LRS Vuser
functions. Each LRS Vuser function has an lrs prefix. VuGen automatically
records most of the LRS functions listed in this section during a Windows
Sockets session. You can also manually program any of the functions into
your Vuser script. For more information about the LRS functions, refer to
the Online Function Reference (Help > Function Reference).

Socket Functions
lrs_accept_connection Accepts a connection on a listening

socket.

lrs_close_socket Closes an open socket.

lrs_create_socket Initializes a socket.

lrs_disable_socket Disables an operation on a socket.

lrs_exclude_socket Excludes a socket during replay.

lrs_get_socket_attrib Gets a socket’s attributes.

lrs_get_socket_handler Gets a socket handler for the specified
socket.

Part V • Client Server Protocols

360

Buffer Functions

lrs_length_receive Receives data from a buffer of a
specified length.

lrs_receive Receives data from a socket.

lrs_receive_ex Receives data of a specific length from
a datagram or stream socket.

lrs_send Sends data on a datagram or to a
stream socket.

lrs_set_receive_option Sets a socket receive option.

lrs_set_socket_handler Sets a socket handler for the specified
socket.

lrs_set_socket_options Sets a socket option.

lrs_free_buffer Frees the memory allocated for the
buffer.

lrs_get_buffer_by_name Gets a buffer and its size from the
data file.

lrs_get_last_received_buffer Gets the last buffer received on the
socket and its size.

lrs_get_last_received_buffer
_size

Gets the size of the last buffer
received on the socket.

lrs_get_received_buffer Gets the last received buffer or a part
of it.

lrs_get_static_buffer Gets a static buffer or a part of it.

lrs_get_user_buffer Gets the contents of the user data
for a socket.

lrs_get_user_buffer_size Gets the size of the user data for a
socket.

lrs_set_send_buffer Specifies a buffer to send on a
socket.

Chapter 26 • Developing WinSock Vuser Scripts

361

Environment Functions

Correlating Statement Functions

Conversion Functions

lrs_cleanup Terminates the use of the Windows Sockets
DLL.

lrs_startup Initializes the Windows Sockets DLL.

lrs_save_param Saves a static or received buffer (or
part of it) to a parameter.

lrs_save_param_ex Saves a user, static, or received
buffer (or part of it) to a parameter.

lrs_save_searched_string Searches for an occurrence of
strings in a static or received buffer
and saves a portion of the buffer,
relative to the string occurrence, to
a parameter.

lrs_ascii_to_ebcdic Converts buffer data from ASCII
format to EBCDIC format.

lrs_decimal_to_hex_string Converts a decimal integer to a
hexadecimal string.

lrs_ebcdic_to_ascii Converts buffer data from EBCDIC
format to ASCII format.

lrs_hex_string_to_int Converts a hexadecimal string to
an integer.

Part V • Client Server Protocols

362

Timeout Functions

After you record a session, VuGen’s built-in editor lets you view the recorded
code. You can scroll through the script, view the functions that were
generated by your application, and examine the transferred data. When you
view the script in the main window, you see the sequence in which VuGen
recorded your activities. The following function sequence is recorded during
a typical session:

VuGen supports record and replay for applications using the Windows
Socket protocol on Windows; on UNIX platforms, only replay is supported.

lrs_set_accept_timeout Sets a timeout for accepting a socket.

lrs_set_connect_timeout Sets a timeout for connecting to a
socket.

lrs_set_recv_timeout Sets a timeout for receiving the initial
expected data on a socket.

lrs_set_recv_timeout2 Sets a timeout for receiving the
expected data on a socket after a
connection was established.

lrs_set_send_timeout Sets a timeout for sending data on a
socket.

lrs_startup Initializes the WinSock DLL.

lrs_create_socket Initializes a socket.

lrs_send Sends data on a datagram or to a stream
socket.

lrs_receive Receives data from a datagram or stream
socket.

lrs_disable_socket Disables an operation on a socket.

lrs_close_socket Closes an open socket.

lrs_cleanup Terminates the use of the WinSock DLL.

363

27
Working with Windows Socket Data

After you record a session in the Windows Socket protocol you can view and
manipulate the data.

This chapter describes:

➤ About Working with Windows Socket Data

➤ Viewing Data in the Snapshot Window

➤ Navigating Through the Data

➤ Modifying Buffer Data

➤ Modifying Buffer Names

➤ Viewing Windows Socket Data in Script View

➤ Understanding the Data File Format

➤ Viewing Buffer Data in Hexadecimal format

➤ Setting the Display Format

➤ Debugging Tips

➤ Manually Correlating WinSock Scripts

The following information applies to all protocols recorded on a Windows
Socket level.

Part V • Client Server Protocols

364

About Working with Windows Socket Data

After you record an application using VuGen, you have multiple data buffers
containing the data.

When you view the WinSocket script in tree view, VuGen provides a
snapshot window which allows you to navigate within the data buffers and
modify the data.

When working in script view, you can view the raw data in the data.ws file.
For more information, see “Viewing Windows Socket Data in Script View”
on page 376.

Viewing Data in the Snapshot Window

When viewing a Windows Socket script in tree view, VuGen provides a
buffer snapshot window which displays the data in an editable window. You
can view a snapshot in either Text view or Binary view.

The text view shows a snapshot of the buffer with the contents represented
as text.

By default, VuGen stores the buffer data as read-only data. If you want to
modify the contents of the buffer, clear the Read only box in the buffer’s
Text View. VuGen issues a warning that bookmarks and parameters may be
affected.

Chapter 27 • Working with Windows Socket Data

365

The binary view shows the data in hexadecimal representation. The left
column shows the offset of the first character in that row.
The middle column displays the hexadecimal values of the data. The right
column shows the data in ASCII format.

The status bar below the buffer snapshot provides information about the
data and buffer:

➤ Buffer number: The buffer number of the selected buffer.

➤ Total bytes: the total number of bytes in the buffer.

➤ Buffer type: the type of buffer—received or sent.

➤ Data: the value of the data at the cursor in decimal and hexadecimal
formats, in Little Endian order (reverse of how it appears in the buffer).

➤ Offset: the offset of the selection (or cursor in text view) from the beginning
of the buffer. If you select multiple bytes, it indicates the range of the
selection.

The status bar also indicates whether or not the original data was modified.

Ascii FormatOffset Hexadecimal format

Buffer Bytes Type Data Offset Range

Modified

Part V • Client Server Protocols

366

Navigating Through the Data

In tree view, VuGen provides several tools that allow you to navigate
through the data in order to identify and analyze a specific value:

➤ Buffer Navigator

➤ Go To Offset

➤ Bookmarks

Buffer Navigator

By default, VuGen displays all the steps and buffers in the left pane. The
Buffer Navigator is a floating window that lets you display only the receive
and send buffers steps (lrs_send, lrs_receive, lrs_receive_ex, and
lrs_length_receive). In addition, you can apply a filter and view either the
send or receive buffers.

When you select a buffer in the navigator, its contents are displayed in the
buffer snapshot window.

If you change a buffer’s name after recording, its contents will not appear in
the snapshot window when you click on the step. To view the renamed
buffer’s data, use the buffer navigator and select the new buffer’s name.
VuGen issues a warning message indicating that parameter creation will be
disabled for the selected buffer.

Chapter 27 • Working with Windows Socket Data

367

To open the Buffer Navigator, choose View > Buffer Navigator. To close the
navigator, click the X in the top right corner of the navigator dialog box.

Note that you can also navigate between buffers by clicking on the buffer
step in the left pane’s tree view. The advantages of the buffer navigator are
that it is a floating window with filtering capabilities.

Go To Offset

You can move around within the data buffer by specifying an offset. You can
indicate the absolute location of the data, or a location relative to the
current position of the cursor within the buffer. This dialog box also lets you
select a range of data, by specifying the starting and end offsets.

To go to an offset:

 1 Click within the snapshot window. Then select Go to offset from the right-
click menu. The Go to offset dialog box opens.

 2 To go to a specific offset within the buffer (absolute), click Go to offset and
specify an offset value.

 3 To jump to a location relative to the cursor, click Advance by and specify the
number of bytes you want to advance. To advance ahead, enter a positive
value. To move backwards within the buffer, use a negative value.

 4 To select a range of data within the buffer, click Select range from and
specify the beginning and end offsets.

Part V • Client Server Protocols

368

Bookmarks

VuGen lets you mark locations within a buffer as bookmarks. You give each
bookmark a descriptive name and click on it to jump directly to its location.
The bookmarks are listed in the Output window’s Bookmarks tab below the
buffer snapshot.

Bookmarks can be used in both the text and binary views. You can locate
the desired data in text view, save the location as a bookmark, and jump
directly to that bookmark in binary view.

The bookmark can mark a single byte or multiple bytes. When you click on
a bookmark in the list, it is indicated in the buffer snapshot window as a
selection. Initially, in the text view the data is highlighted in blue, and in
binary view the bookmark block is marked in red. Also in binary view, when
you place your cursor over a bookmark, a popup text box opens indicating
the name of the bookmark.

You can create both permanent and simple bookmarks. A permanent
bookmark is always marked within the buffer’s binary view—it is enclosed
by a blue box. The bookmark stays selected in blue, even when pointing to
another location in the buffer. The cursor location is marked in red. A
simple bookmark, however, is not permanently marked. When you jump to
a simple bookmark, it is marked in red, but once you move the cursor
within the buffer, the bookmark is no longer selected. By default bookmarks
are permanent.

To work with bookmarks:

 1 To create a bookmark, select one or more bytes in a buffer snapshot (text or
binary view) and select New Bookmark from the right-click menu.

 2 To view the bookmark list, choose View > Output Window and select the
Bookmarks tab.

Chapter 27 • Working with Windows Socket Data

369

 3 To assign a name to a bookmark, click on it in the bookmark list and edit the
title.

 4 To change the location of a bookmark, select the bookmark in the
Bookmarks tab, then select the new data in the buffer snapshot. Click
Modify in the Bookmarks tab.

 5 To change a bookmark form being Permanent to simple (permanent means
that it is always marked, even when you move the cursor to a new location),
select the bookmark, perform a right-click, and clear the check adjacent to
Permanent Bookmark.

 6 To display only permanent bookmarks in the list, select the Show
Permanent Bookmarks only check box in the Bookmarks tab.

 7 To view bookmarks from a specific buffer, select a bookmark from the
desired buffer and choose Selected buffer only in the Filter box.

 8 To delete a bookmark, select it in the Bookmarks tab and click Delete.

Modifying Buffer Data

In tree view, VuGen provides several tools that allow you to modify the data
by deleting, changing or adding to the existing data.

➤ Inserting Data

➤ Editing Data

➤ Parameterizing the Data

Inserting Data

You can insert a numerical value into a data buffer. You can insert it as a
single, double-byte or 4-byte value.

To insert a number into a data buffer:

 1 Click at a location in the buffer.

 2 Open the right-click menu and choose Advanced > Insert Number >
Specify…

 3 Enter the ASCII value that you want to insert into the Value box.

Part V • Client Server Protocols

370

 4 Select the size of the data you want to insert: 1 byte, 2 bytes, or 4 bytes from
the Size box.

 5 Click OK to finish. VuGen inserts the hexadecimal representation of the
data into the buffer.

Editing Data

You can perform all of the standard edit operation on buffer data: copy,
paste, cut, delete, and undo. In the binary view you can specify the actual
data to insert. VuGen allows you to specify the format of the data—single
byte, 2-byte, or 4-byte, and hexadecimal or decimal value. You can copy
binary data and insert it as a number into the buffer. You can see the
decimal or hexadecimal numbers in the right column of the binary view.

In the following example, the word OK was selected.

If you perform simple copy (CTRL+C) and paste (CTRL+V) operations at the
beginning of the next line of data, it inserts the actual text.

If you choose and Advanced Copy as Number > Decimal and then paste the
data, it inserts the decimal value of the ASCII code of the selected characters:

If you choose and Advanced Copy as Number > Hexadecimal and then paste
the data, it inserts the hexadecimal value of the ASCII code of the selected
characters:

Chapter 27 • Working with Windows Socket Data

371

The Undo Buffer retains all of the modifications to the buffer. This
information is saved with the file—if you close the file it will still be
available. If you want to prevent others from undoing your changes, you
can empty the Undo buffer. To empty the Undo buffer, choose Advanced >
Empty Undo Buffer in the right-click menu.

To edit buffer data in the binary view:

 1 To copy buffer data:

➤ As characters, select one or more bytes and press CTRL+C.

➤ As a decimal number, Advanced > Copy As Number > Decimal in the
right-click menu.

➤ As a hexadecimal number, Advanced > Copy As Number > Hexadecimal
in the right-click menu.

 2 To paste the data:

➤ As a single byte (assuming the size of the data on the clipboard is a single
byte), click at the desired location in the buffer and press CTRL+V.

➤ In short format (2-byte), Advanced >Insert Number >Paste Short (2-byte)
in the right-click menu.

➤ In long format (4-byte), Advanced >Insert Number >Paste Long (4-byte)
in the right-click menu.

 3 To delete data, select it in either one of the views and choose Delete from
the right-click menu.

Parameterizing the Data

In tree view, VuGen lets you parameterize the data directly from the buffer
snapshot view. You can specify a range of what to parameterize and you can
specify borders. If you do not specify borders for the parameterized string,
then VuGen inserts an lrs_save_param function into your script. If you
specify borders, VuGen inserts lrs_save_searched_string into your script
since this function allows you to specify boundary arguments.

Part V • Client Server Protocols

372

Note that the lrs_save_param and lrs_save_searched_string functions
correlate the data. This means that it stores the data that is received, for use
in a later point within the test. Since correlation stores the received data, it
only applies to Receive buffers and not to Send buffers. The recommended
procedure is to select a string of dynamic data within the Receive buffer that
you want to parameterize. Use that same parameter in a subsequent Send
buffer.

This type of correlation should not be confused with simple
parameterization. Simple parameterization (Insert > New Parameter) only
applies to data within Send buffers. You set up a parameter and assign it
several values. VuGen uses the different values in each of the test runs or
iterations. For more information, see Chapter 8, “Working with VuGen
Parameters.”

The next sections discuss the correlation of data in Receive buffers.

After you create a parameter, VuGen lists all the locations in which it
replaced the string with a parameter. VuGen also provides information
about the creation of the parameter—the buffer in which it was created and
the offset within the buffer. It lists all occurrences of the parameter in the
Output Window’s Parameters tab, below the snapshot view.

VuGen allows you to manipulate the parameters:

Filtering: You can filter the parameter replacements by the parameter name.

Go to Source: Select a replacement and click Go To Source to jump to the
exact location of the replaced parameter within the buffer.

Chapter 27 • Working with Windows Socket Data

373

Deleting: You can delete any one of the parameters. When you delete a
parameter, VuGen replaces the data with its original value and removes the
parameterization function from the script.

Name: You can provide a name to each replacement.

Undo Replacement: You can also undo one or more replacements displayed
in the list.

To parameterize data from the snapshot window:

 1 Select the data you want to parameterize and choose Create Parameter from
the right-click menu (only available for Receive buffers). A dialog box opens:

 2 Specify a name for the parameter in the Parameter Name box.

 3 Select a range of characters to parameterize. By default, VuGen takes the
range of data that you selected in the buffer. To select a range other than the
one that appears in the dialog box, click Select Range. A small dialog box
opens indicating the selected range.

Choose a range in the buffer snapshot window and then click Done.

Part V • Client Server Protocols

374

 4 If the parameter data is not constant but its borders are consistent, you can
specify a right and left boundary.

To specify boundaries:

➤ Select the Extract Parameter Data Using Boundaries check box. VuGen
changes the function in the Script Statement section from
lrs_save_param to lrs_save_searched_string. Click Done.

➤ Click the browse button adjacent to the Left box in the Boundaries
section. A small dialog box opens, indicating your selection within the
buffer. Select the boundaries within the buffer and click Done. Repeat
this step for the right boundary.

 5 Make the desired modifications to the arguments in the Script Statement
section. For example you can add _ex to the lrs_save_param function to
specify an encoding type. For more information about these functions refer
to the Online Function Reference.

 6 Click OK to create the parameter. VuGen asks you for a confirmation before
replacing the parameter. Click Yes. You can view all the replacements in the
Parameters tab.

 7 To jump to the original location of the parameter within its buffer, select it
and click Go To Source.

 8 To jump to the buffer location of the selected replacement, select it and click
Go To.

 9 To delete an entire parameter, choose the parameter in the Filter box and
click Delete Parameter.

 10 To undo a replacement, select it in the Parameters tab and click Undo. To
undo all replacements of the displayed parameter, select it in the Parameters
tab and click Undo All.

 11 When you undo specific replacements, the label changes from Replaced to
Found. To reapply the parameterization rule to those that were undone,
click Replace or Replace All.

 12 To delete an entire parameter and undo all the replacements, select the
parameter in the Filter box and click Delete Parameters.

 13 Choose Vuser > Parameter List to assign data to the parameters.

Chapter 27 • Working with Windows Socket Data

375

Modifying Buffer Names

You can modify the name of a buffer using the Script view of the data.ws
file. If you modify a buffer name after recording, this will affect the replay of
the Vuser script. You can view the contents of the renamed buffer in the
Script view or in Tree view using the Buffer Navigator.

If you created bookmarks in the buffer and it is not longer available, VuGen
prompts you to delete the bookmarks within the buffer in which they were
defined.

If you created parameters in the buffer and it is not longer available, VuGen
prompts you to delete the parameters from the buffer in which they were
defined. When you delete the parameter, all replacements are undone, even
those in other buffers.

When you view the renamed buffer in the Buffer Navigator, VuGen warns
you that parameter creation will be disabled within that buffer.

Part V • Client Server Protocols

376

Viewing Windows Socket Data in Script View

When you use VuGen to create a Windows Sockets Vuser script, your actions
are recorded into the three sections of the script: vuser_init, Actions, and
vuser_end. In addition to the Vuser script, VuGen also creates a data file,
data.ws that contains the data that was transmitted or received during the
recording session. You can use VuGen to view the contents of the data file
by selecting data.ws in the Data Files box of the main VuGen window.

The option to view a data file is available by default for Windows Sockets
scripts. Note that you can only view the data in script view.

Several LRS functions, such as lrs_receive and lrs_send, handle the actual
data that is transferred between servers and clients. The data that is received
or transmitted is stored in data buffers, which can be very large. In order to
simplify the appearance of the Vuser script, the actual data is stored in
external files—not in the C file. When a data transfer occurs, the data is
copied from the external file into a temporary buffer.

Chapter 27 • Working with Windows Socket Data

377

The external file, data.ws, contains the contents of all the temporary buffers.
The buffers’ contents are stored as sequential records. The records are
marked by identifiers indicating whether the data was sent or received, and
the buffer descriptor. The LRS functions use the buffer descriptors to access
the data.

The descriptors have one of the following formats:

recv bufindex number of bytes received
send bufindex

The buffer index begins with 0 (zero), and all subsequent buffers are
numbered sequentially (1,2,3 etc.) regardless of whether they are send or
receive buffers.

In the following example, an lrs_receive function was recorded during a
Vuser session:

In this example, lrs_receive handled data that was received on socket1. The
data was stored in the fifth receive record(buf4)—note that the index
number is zero-based. The corresponding section of the data.ws file shows
the buffer and its contents.

lrs_receive("socket1", "buf4", LrsLastArg)

recv buf4 39
"\xff\xfb\x01\xff\xfb\x03\xff\xfd\x01"
"\r\n"
"\r\n"
"SunOS UNIX (sunny)\r\n"
"\r"
"\x0"
"\r\n"
"\r"
"\x0"

Part V • Client Server Protocols

378

Understanding the Data File Format

The data.ws data file has the following format:

➤ File header

➤ A list of buffers and their contents

The file header includes an internal version number of the data file format.
The current version is 2. If you try to access data from a data file with format
version 1, an error is issued.

An identifier precedes each record, indicating whether the data was received
or sent, followed by the buffer descriptor, and the number of bytes received
(for lrs_receive only). The buffer descriptor contains a number identifying
the buffer.

For example,

indicates that the buffer contains data that was received. The record number
is 5, indicating that this receive operation was the sixth data transfer (the
index is zero based), and twenty-five bytes of data were received.

If your data is in ASCII format, the descriptor is followed by the actual ASCII
data that was transferred by the sockets.

;WSRData 2 1

recv buf5 25

Chapter 27 • Working with Windows Socket Data

379

If your data is in EBCDIC format, it must be translated through a look-up
table. For information on setting the translation table, see “Setting the
WinSock Recording Options” on page 356. The EBCDIC whose ASCII value
(after translation) is printable, is displayed as an ASCII character. If the ASCII
value corresponds to a non-printable character, then VuGen displays the
original EBCDIC value.

The following segment shows the header, descriptors, and data in a typical
data file:

recv buf6 39
"\xff\xfb\x01\xff\xfb\x03\xff\xfd\x01"
"\r\n"
"SunOS UNIX (sunny)\r\n"

;WSRData 2 1

send buf0
"\xff\xfd\x01\xff\xfd\x03\xff\xfb\x03\xff\xfb\x18"

recv buf1 15
"\xff\xfd\x18\xff\xfd\x1f\xff\xfd"
"#"
"\xff\xfd"
"'"
"\xff\xfd"
"$"

send buf2
"\xff\xfb\x18"

Part V • Client Server Protocols

380

Viewing Buffer Data in Hexadecimal format

VuGen contains a utility allowing you to view a segment of data, displaying
it in hexadecimal and ASCII format, while indicating the offset of the data.

To display the data in the viewer window, select the data and press F7. If the
selected text is less than four characters, VuGen displays the data in short
format, showing the hexadecimal, decimal and octal representations.

You can customize the short format in the conv_frm.dat file as described in
“Setting the Display Format” on page 382.

If the selected text is more than four characters, VuGen displays the data in
several columns in long format. You can customize the long format by
modifying the conv_frm.dat file, as described in “Setting the Display
Format” on page 382.

In the default format, the first column displays the character offsets from
the beginning of the marked section. The second column displays the
hexadecimal representation of the data. The third column shows the data in
ASCII format. When displaying EBCDIC data, all non-printable ASCII
characters (such as /n), are represented by dots.

Offset Decimal representation ASCII format

Chapter 27 • Working with Windows Socket Data

381

The F7 viewer utility is especially useful for parameterization. It allows you
to determine the offset of the data that you want to save to a parameter.

To determine the offset of a specific character:

 1 View data.ws and select the data from the beginning of the buffer.

 2 Press F7 to display the data and the character offsets. Since more than four
characters were selected, the data is displayed in long format.

 3 Locate the value you want to correlate in the ASCII data. In this example, we
will correlate the number 13546 (a process ID during a UNIX session) which
begins at the 31st character—the last character in the second line.

Part V • Client Server Protocols

382

 4 Use the offset value in the lrs_save_param_ex function in order to correlate
the value of the process ID. For more information, see Chapter 11,
“Correlating Statements.”

Setting the Display Format

You can specify how VuGen will display the buffer data in the viewer (F7)
window. The conv_frm.dat file in the lrun/dat directory contains the
following display parameters:

LongBufferFormat: The format used to display five or more characters. Use
nn for offset, XX for the hex data, and aa for ASCII data.

LongBufferHeader: A header to precede each buffer in Long buffer format.

LongBufferFooter: A footer to follow each buffer in Long buffer format.

ShortBufferFormat: The format used to display four characters or less. You
can use standard escape sequences and conversion characters.

The supported escape sequence characters are:

\a Bell (alert)
\b Backspace
\f Formfeed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\' Single quotation mark
\" Double quotation mark
\\ Backslash
\? Literal question mark
\ooo ASCII character -octal

Chapter 27 • Working with Windows Socket Data

383

The supported conversion characters are:

%a ASCII representation
%BX Big Endian (Network Order) Hex
%BO Big Endian (Network Order) Octal
%BD Big Endian (Network Order) Decimal
%LX Little Endian Hex
%LO Little Endian Octal
%LD Little Endian Decimal

AnyBufferHeader: A header to precede each buffer.

AnyBufferFooter: A footer to follow each buffer.

NonPrintableChar: The character with which to represent non-printable
ASCII characters.

PrintAllAscii: Set to 1 to force the printing of non-printable ASCII characters.

In the default settings, long and short formats are set, and a dot is specified
for non-printable characters.

[BufferFormats]
LongBufferFormat=nnnnnnnn XX XX XX XX XX XX XX XX XX XX XX
XX XX XX XX XX aaaaaaaaaaaaaaaa\r\n
LongBufferHeader=
LongBufferFooter=
ShortBufferFormat=ASCII:\t\t\t%a\r\n\t\tNetwork Order\t\tLittle
Endian\r\n\t\t (Big Edian)\r\nHex:\t\t%BX\t\t%LX\r\nOc-
tal:\t\t%BO\t\t%LO\r\nDecimal:\t%BD\t\t%LD\r\n
AnyBufferHeader=
AnyBufferFooter=--\r\n
NonPrintableChar=.
PrintAllAscii=0

Part V • Client Server Protocols

384

The default LongBufferFormat is displayed as:

The default ShortBufferFormat is displayed as:

Offset Hexadecimal representation ASCII format

Chapter 27 • Working with Windows Socket Data

385

Debugging Tips

VuGen offers several means which allow you to debug your script. You can
view the various output logs and windows for detailed messages issued
during execution.

Specifically for Windows Sockets Vuser scripts, VuGen provides additional
information about buffer mismatches. A buffer mismatch indicates a
variation in the received buffer size (generated during replay) and the
expected buffer (generated during record). However, if the received and
expected buffer are the same size, even though the contents are different, a
mismatch message is not issued. This information can help you locate a
problem within your system, or with your Vuser script.

You can view the buffer mismatch information in the Execution log. Choose
View > Output to display the Execution log if it is not visible.

Note that a buffer mismatch may not always indicate a problem. For
example, if a buffer contains insignificant data such as previous login times,
this type of mismatch can be ignored.

However, if there is a very large discrepancy between the size of the
Expected and Received buffers, this could indicate a problem with your
system. Check the data in the corresponding buffer for discrepancies.

In order for you to determine whether or not the mismatch is significant,
you must thoroughly understand your application.

Mismatch (expected 54 bytes, 58 bytes actually received)
The expected buffer is:
=================
\r\n Last login: Wed Sep 2 10:30:18 from acme.mercury.c\r\n
=================
The received buffer is:
=================
\r\n Last login: Thu Sep 10 11:19:50 from dolphin.mercury.c\r\n

Part V • Client Server Protocols

386

Manually Correlating WinSock Scripts

VuGen provides a user interface for correlating Vuser scripts. Correlation is
required when working with dynamic data. A common issue with WinSock
Vuser scripts is dynamic ports—ports whose numbers are assigned
dynamically. While certain applications always use the same port, others use
the next available port. If you try to replay a script and the recorded port is
no longer available, your test will fail. To overcome this issue, you must
perform correlation—save the actual run-time values and use them within
the script.

You can manually correlate a Vuser script using the correlation functions
that save the dynamic values to a parameter. The lrs_save_param and
lrs_save_param_ex functions let you save data to a parameter based on the
offset of the data in the received buffer. An advanced correlation function
lrs_save_searched_string lets you designate the data by specifying its
boundaries and indicating which occurrence of the matched pattern to save
to a parameter. The following example describes correlation using
lrs_save_param_ex. For information about using other correlation
functions, refer to the Online Function Reference.

To correlate the WinSock Vuser statements:

 1 Insert the lrs_save_param_ex statement into your script at the point where
you want to save the buffer contents. You can save user, static, or received
type buffers.

lrs_save_param_ex (socket, type, buffer, offset, length, encoding, parameter);

 2 Reference the parameter.

View the buffer contents by selecting the data.ws file in the Data Files box
of the main VuGen window. Locate the data that you want to replace with
the contents of the saved buffer. Replace all instances of the value with the
parameter name in angle brackets (< >).

Chapter 27 • Working with Windows Socket Data

387

In the following example, a user performed a telnet session. The user used a
ps command to determine the process ID (PID), and killed an application
based on that PID.

During execution, the PID of the procedure is different (UNIX assigns
unique PIDs for every execution), so killing the recorded PID will be
ineffective. To overcome this problem, use lrs_save_param_ex to save the
current PID to a parameter. Replace the constant with the parameter.

 3 In the data.ws file, determine the buffer in which the data was received,
buf47.

 4 In the Actions section, determine the socket used by buf47. In this example
it is socket1.

frodo:/u/jay>ps
 PID TTY TIME CMD
14602 pts/18 0:00 clock
14569 pts/18 0:03 tcsh

frodo:/u/jay>kill 14602
[3] Exit 1 clock
frodo:/u/jay>

recv buf47 98
"\r"
"\x00"
"\r\n"
" PID TTY TIME CMD\r\n"
" 14602 pts/18 0:00 clock\r\n"
" 14569 pts/18 0:02 tcsh\r\n"
"frodo:/u/jay>"

.

.

.
send buf58

"kill 14602"

lrs_receive("socket1", "buf47", LrsLastArg);

Part V • Client Server Protocols

388

 5 Determine the offset and length of the data string to save. Highlight the
entire buffer and press F7. The offset of the PID is 11 and its length is 5
bytes. For additional information about displaying the data, see
“Understanding the Data File Format” on page 378.

 6 Insert an lrs_save_param_ex function in the Actions section, after the
lrs_receive for the relevant buffer. In this instance, the buffer is buf47. The
PID is saved to a parameter called param1. Print the parameter to the output
using lr_output_message.

 7 In the data file, data.ws, determine the data that needs to be replaced with a
parameter, the PID.

 8 Replace the value with the parameter, enclosed in angle brackets.

lrs_receive("socket1", "buf79", LrsLastArg);
lrs_save_param("socket1", “user”, buf47, 11, 5, ascii, param1);
lr_output_message ("param1: %s", lr_eval_string("<param1>"));
lr_think_time(10);
lrs_send("socket1", "buf80", LrsLastArg);

send buf58
"kill 14602"

send buf58
"kill <param1>"

offset of first
character in
line

Part VI

Custom Vuser Scripts

390

391

28
Creating Custom Vuser Scripts

In addition to recording a session, you can create a custom Vuser script. You
can use both Vuser API functions and standard C, Java, VB, VBScript, or
Javascript code.

This chapter describes:

➤ About Creating Custom Vuser Scripts

➤ C Vusers

➤ Using the Workflow Wizard for C Vuser Scripts

➤ Java Vusers

➤ VB Vusers

➤ VBScript Vusers

➤ JavaScript Vusers

The following information applies to all custom Vuser scripts: C,
JavaScript, Java, VB and VBScript.

Part VI • Custom Vuser Scripts

392

About Creating Custom Vuser Scripts

VuGen allows you to program your own functions into the script, instead of
recording an actual session. You can use the Vuser API or standard
programming functions. Vuser API functions allow you to gather
information about Vusers. For example, you can use Vuser functions to
measure server performance, control server load, add debugging code, or
retrieve run-time information about the Vusers participating in the test or
monitoring.

This chapter describes how to program a Vuser script from within the
VuGen editor, incorporating your application’s libraries or classes.

You can also develop a Vuser script through programming within the Visual
C and Visual Basic environments. In these environments, you develop your
Vuser script within your development application, while importing the
Vuser API function libraries. For more information, see Chapter 76,
“Creating Vuser Scripts in Visual Studio.”

To create a customized script, you first create a skeleton script. The skeleton
script contains the three primary sections of a script: init, actions, and end.
These sections are empty and you manually insert functions into them.

You can create empty scripts for the following programming languages:

➤ C

➤ Java

➤ Visual Basic

➤ VBScript

➤ JavaScript

Note: When working with JavaScript and VBScript Vusers, the COM objects
that you use within your script must be fully automation compliant. This
makes it possible for one application to manipulate objects in another
application, or to expose objects so that they may be manipulated.

Chapter 28 • Creating Custom Vuser Scripts

393

C Vusers

In C Vuser Scripts, you can place any C code that conforms with the
standard ANSI conventions. To create an empty C Vuser script, choose C
Vuser from the Custom category, in the New Virtual User dialog box. VuGen
creates an empty script:

You can use C Vuser functions in all of Vuser script types that use C
functions.

You can also refer to the Online Function Reference (Help > Function
Reference) for a C reference with syntax and examples of commonly used C
functions.

Action1()
{

return 0;
}

Part VI • Custom Vuser Scripts

394

Using the Workflow Wizard for C Vuser Scripts

The Workflow Wizard guides you through the steps of creating a script. By
clicking on a link in the Tasks pane, you can read about the steps in creating
a script, and view information about your replay. Use the Back and Next
buttons to navigate between screens.

If you do not see the Workflow Wizard, make sure that the Tasks pane is
open. (You show and hide the Task pane using the Tasks button on the
toolbar). Then click the first link, Introduction.

For more information about the wizard, see Chapter 3, “Using the Workflow
Wizard.”

Chapter 28 • Creating Custom Vuser Scripts

395

Create the Script

The Create Script window contains several guidelines for creating a Web
Services script.

➤ Adding Functions- describes how and where to enter the functions.

➤ Verifying Your Script- describes how to verify your script after adding
functions.

Guidelines for Using C Functions

All standard ANSI-C conventions apply to C Vuser scripts, including control
flow and syntax. You can add comments and conditional statements to the
script just as you do in other C programs. You declare and define variables
using ANSI C conventions.

The C interpreter that is used to run Vuser scripts accepts the standard ANSI
C language. It does not support any Microsoft extensions to ANSI C.

Before you add any C functions to a Vuser script, note the following
limitations:

➤ A Vuser script cannot pass the address of one of its functions as a callback
to a library function.

➤ The stdargs, longjmp, and alloca functions are not supported in Vuser
scripts.

➤ Vuser scripts do not support structure arguments or return types. Pointers
to structures are supported.

➤ In Vuser scripts, string literals are read-only. Any attempt to write to a
string literal generates an access violation.

➤ C Functions that do not return int, must be casted. For example,
extern char * strtok();

Calling libc Functions

In a Vuser script, you can call libc functions. However, since the interpreter
that is used to run Vuser scripts does not support any Microsoft extensions
to ANSI C, you cannot use Microsoft's include files. You can either write
your own prototypes, or ask Mercury Interactive Customer Support to send
you ANSI-compatible include files containing prototypes for libc functions.

Part VI • Custom Vuser Scripts

396

Linking Mode

The C interpreter that is used to run Vuser scripts uses a "lazy" linking mode
in the sense that a function need not be defined at the start of a run, as long
as the function is defined before it is used. For example:

lr_load_dll("mydll.dll");
myfun(); /* defined in mydll.dll -- can be called directly,

immediately after myfun.dll is loaded. */

Chapter 28 • Creating Custom Vuser Scripts

397

Java Vusers

In Java Vuser scripts, you can place any standard Java code. To create an
empty Java Vuser script, choose Java Vuser from the Custom category, in the
New Virtual User dialog box. VuGen creates an empty Java script:

Note that for Java type Vusers, you can only edit the Actions class. Within
the Actions class, there are three methods: init, action, and end. Place
initialization code in the init method, business processes in the action
method, and cleanup code in the end method.

You can also use Java Vuser functions in Corba-Java and RMI-Java Vuser
scripts.

import lrapi.lr;

public class Actions
{

public int init() {
return 0;

}

public int action() {
return 0;

}

public int end() {
return 0;

}
}

Part VI • Custom Vuser Scripts

398

VB Vusers

You can create an empty Visual Basic Vuser script, in which you can place
Visual Basic code. This script type lets you incorporate your Visual Basic
application into VuGen. To create an empty VB Vuser script, choose VB
Vuser from the Custom category, in the New Virtual User dialog box. VuGen
creates an empty VB script:

VuGen creates three sections, vuser_init, action, and vuser_end. Each of
these sections contain a VB function—Init, Actions, and Terminate
respectively. You place your code within these functions, as indicated by the
TO DO comment.

An additional section that is viewable from VuGen, is the global.vba file,
which contains the object and variable global declarations for Vusers and
the VB application.

Public Function Actions() As Long

‘"TO DO: Place your action code here

Actions = lr.PASS
End Function

Chapter 28 • Creating Custom Vuser Scripts

399

VBScript Vusers

You can create an empty VBScript Vuser script, in which you can place
VBScript code. This script type lets you incorporate your VBScript
application into VuGen. To create an empty VBScript Vuser script, choose
VB Script Vuser from the Custom category, in the New Virtual User dialog
box. VuGen creates an empty VBScript Vuser script:

VuGen creates three sections, vuser_init, action, and vuser_end. Each of
these sections contain a VBScript function—Init, Actions, and Terminate
respectively. You place your code within these functions, as indicated by the
TO DO comment.

An additional section that is viewable from VuGen, is the global.vbs file,
which creates the objects for the Vuser API functions and VB Script. For
example, for LoadRunner, the following code creates the standard object, lr:

Set lr = CreateObject("LoadRunner.LrApi")

Public Function Actions()

‘"TO DO: Place your action code here

Actions = lr.PASS
End Function

Part VI • Custom Vuser Scripts

400

JavaScript Vusers

You can create an empty JavaScript Vuser script, in which to place JavaScript
code. This script type lets you incorporate your existing javascript
application into VuGen. To create an empty JavaScript Vuser script, choose
JavaScript Vuser from the Custom category, in the New Virtual User dialog
box.

VuGen creates three sections, vuser_init, action, and vuser_end. Each of
these sections contain a JavaScript function—Init, Actions, and Terminate
respectively. You place your code within these functions, as indicated by the
TO DO comment.

An additional section that is viewable from VuGen, is the global.js file,
which creates the objects for the Vuser API functions and the Javascript. For
example, for LoadRunner, the following code creates the standard object, lr:

var lr = new ActiveXObject("LoadRunner.LrApi")

function Actions()
{

//"TO DO: Place your business process/action code here

return(lr.PASS);
}

401

29
Programming Java Scripts

VuGen supports Java type users on a protocol level. This chapter explains
how to create a Java Vuser script by programming. For information on
creating a Java Vuser script through recording, see the chapters describing
Corba-Java, RMI-Java, EJB, or Jacada type protocols.

This chapter describes how to work with a Java Vuser to program a Vuser
script in Java:

➤ About Programming Java Scripts

➤ Creating a Java Vuser

➤ Editing a Java Vuser Script

➤ Java Vuser API Functions

➤ Working with Java Vuser Functions

➤ Setting your Java Environment

➤ Running Java Vuser Scripts

➤ Compiling and Running a Script as Part of a Package

➤ Programming Tips

The following information applies to Java, EJB Testing, Corba-Java, RMI-
Java, and Jacada Vuser scripts.

Part VI • Custom Vuser Scripts

402

About Programming Java Scripts

To prepare Vuser scripts using Java code, use the Java, Corba-Java, or RMI-
Java type Vusers. These Vuser types support Java on a protocol level. The
Vuser script is compiled by a Java compiler and supports all of the standard
Java conventions. For example, you can insert a comment by preceding the
text with two forward slashes “//”.

The chapters on Corba, RMI, EJB, and Jacada Vusers explain how to create a
script through recording. To prepare a Java coded script through
programming, see the following sections.

The first step in creating a Java compatible Vuser script, is to create a new
Vuser script template of the type Java Vuser. Then, you program or paste the
desired Java code into the script template. You can add Java Vuser functions
to enhance the script and parameterize the arguments to use different values
during iterations.

The Java Vuser script runs as a scalable multi-threaded application. If you
include a custom class in your script, ensure that the code is thread-safe.
Code that is not thread-safe may cause inaccurate results. For code that is
not thread-safe, run the Java Vusers as processes. This creates a separate Java
Virtual Machine for each process, resulting in a script that is less scalable.

After you prepare a script, run it as a standalone test from VuGen. A Java
compiler (Sun’s javac), checks it for errors and compiles the script.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Chapter 29 • Programming Java Scripts

403

Creating a Java Vuser

The first step in creating a Java-compatible Vuser script is creating a Java
Vuser template.

To create a Java Vuser script:

 1 Open VuGen.

 2 Choose File > New or click the New button. The New Virtual User dialog box
opens.

 3 Select Custom > Java Vuser from the Select Vuser type list, and click OK.
VuGen displays a blank Java Vuser script.

 4 Click the Actions section in the left frame to display the Actions class.

Editing a Java Vuser Script

After generating an empty template, you can insert the desired Java code.
When working with this type of Vuser script, you place all your code in the
Actions class. To view the Actions class, click Actions in the left pane. VuGen
displays its contents in the right pane.

import lrapi.*;
public class Actions
{

public int init() {
return 0;

}

public int action() {
return 0;

}

public int end() {
return 0;

}
}

Part VI • Custom Vuser Scripts

404

The Actions class contains three methods: init, action, and end. The
following table shows what to include in each method and when each
method is executed.

Init Method

Place all the login procedures and one-time configuration settings in the init
method. The init method is only executed once—when the Vuser begins
running the script. The following sample init method initializes an applet.

Script method Used to emulate... Is executed when...

init a login to a server the Vuser is initialized (loaded)

action client activity the Vuser is in "Running" status

end a log off procedure the Vuser finishes or is stopped

import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import lrapi.lr;

// Public function: init
 public int init() throws Throwable {

// Initialize Orb instance...
MApplet mapplet = new MApplet("http://chaos/classes/", null);
orb = org.omg.CORBA.ORB.init(mapplet, null);

...

Chapter 29 • Programming Java Scripts

405

Action Method

Place all Vuser actions in the action method. The action method is executed
according to the number of iterations you set in the runtime settings. For
more information on the iteration settings, see Chapter 12, “Configuring
Run-Time Settings.” The following sample action method retrieves and
prints the Vuser ID.

End Method

In the end method, place the code you want the Vuser to execute at the end
of the script, such as logging off from a server, cleaning up the environment,
and so forth.

The end method is only executed once—when the Vuser finishes running
the script. In the following example, the end method closes and prints the
end message to the execution log.

 public int action() {
lr.message("vuser: " + lr.get_vuser_id() + " xxx");
 return 0;

 }

 public int end() {
 lr.message("End");
 return 0;
 }

Part VI • Custom Vuser Scripts

406

Java Vuser API Functions

VuGen provides a specific Java API for Java Vuser scripts. These functions are
all static methods of the lrapi.lr class. For further information about each of
these functions, refer to the Online Function Reference (Help > Function
Reference). Note that when you create a new Java Vuser script, the import
lrapi.* is already inserted into the script.

Transaction Functions

Command Line Parsing Functions

Informational Functions

lr.declare_transaction Declares a transaction.

lr.start_transaction Marks the beginning of a transaction.

lr.end_transaction Marks the end of a transaction.

lr.get_attrib_double Retrieves a double type variable used on the
script command line.

lr.get_attrib_long Retrieves a long type variable used on the
script command line.

lr.get_attrib_string Retrieves a string used on the script
command line.

lr.value_check Checks the value of a parameter.

lr.user_data_point Records a user-defined data sample.

lr.get_group_name Returns the name of the Vuser’s group.

lr.get_host_name Returns the name of the load generator
executing the Vuser script.

lr.get_master_host_name Returns the name of the machine running
the LoadRunner Controller, or
Administration Console.

lr.get_object Captures a Java object and dumps it to a data
file. (Corba-Java only)

Chapter 29 • Programming Java Scripts

407

String Functions

Message Functions

lr.get_scenario_id Returns the ID of the current scenario or
session step.

lr.get_vuser_id Returns the ID of the current Vuser.

lr.deserialize Expands an object to represent its ASCII
components.

lr.eval_string Replaces a parameter with its current value.

lr.eval_data Replaces a parameter with a byte value.

lr.eval_int Replaces a parameter with an integer value.

lr.eval_string Replaces a parameter with a string.

lr.next_row Indicates to use the next row of data for the
specified parameter.

lr.save_data Saves a byte as a parameter.

lr.save_int Saves an integer as a parameter.

lr.save_string Saves a null-terminated string to a parameter.

lr.debug_message Sends a debug message to the Output
window.

lr.enable_redirection Enables the redirection of standard messages
and errors to a log file, as standard output
and standard error.

lr.error_message Sends an error message to the Vuser log file
and Output window with location details.

lr.get_debug_message Retrieves the current message class.

lr.log_message Sends a message to the Vuser log file.

lr.message Sends a message to a the Output window.

lr.output_message Sends a message to the log file and Output
window with location information.

Part VI • Custom Vuser Scripts

408

Run-Time Functions

To use additional Java classes, import them at the beginning of the script as
shown below.

Remember to add the classes directory or relevant jar file to the classpath.
Make sure that the additional classes are thread-safe and scalable.

lr.redirect Redirects a string to a file.

lr.set_debug_message Sets a debug message class.

lr.vuser_status_message Sends a message to the Vuser Status area in
the Controller/Console window.
(LoadRunner only)

lr.declare_rendezvous Declares a rendezvous in a Vuser script.

lr.peek_events Indicates where a Vuser script can be paused.

lr.rendezvous Sets a rendezvous point in a Vuser script.

lr.think_time Pauses script execution to emulate the time a
real user pauses to think between actions.

import java.io.*;
import lrapi.*;

public class Actions
{
...
}

Chapter 29 • Programming Java Scripts

409

Working with Java Vuser Functions

You can use Java Vuser functions to enhance your scripts by:

➤ Inserting Transactions

➤ Inserting Rendezvous Points

➤ Obtaining Vuser Information

➤ Issuing Output Messages

➤ Emulating User Think Time

➤ Handling Command Line Arguments

Inserting Transactions

You define transactions to measure the performance of the server. Each
transaction measures the time it takes for the server to respond to specified
requests. These requests can be short or complex tasks. When working with
LoadRunner, you can analyze the performance per transaction during and
after the scenario run, using online monitor and graphs.

You can also specify a transaction status: lr.PASS or lr.FAIL. You can let the
Vuser automatically determine if the transaction was successful, or you can
incorporate it into a conditional loop. For example, in your code you can
check for a specific return code. If the code is correct, you issue a lr.PASS
status. If the code is wrong, you issue an lr.FAIL status.

To mark a transaction:

 1 Insert lr.start_transaction into the script, at the point where you want to
begin measuring the timing of a task.

 2 Insert lr.end_transaction into the script, at the point where you want to
stop measuring the task. Use the transaction name as it appears in the
lr.start_transaction function.

Part VI • Custom Vuser Scripts

410

 3 Specify the desired status for the transaction: lr.PASS or lr.FAIL.

Inserting Rendezvous Points

The following section does not apply to Application Management.

To emulate heavy user load on your client/server system, you synchronize
Vusers to perform a task at exactly the same moment by creating a
rendezvous point. When a Vuser arrives at the rendezvous point, it is held by
the Controller until all Vusers participating in the rendezvous arrive.

You designate the meeting place by inserting a rendezvous function into
your Vuser script.

To insert a rendezvous point:

➤ Insert an lr.rendezvous function into the script, at the point where you
want the Vusers to perform a rendezvous.

public int action() {

for(int i=0;i<10;i++)
{

lr.message("action()"+i);
lr.start_transaction("trans1");
lr.think_time(2);
lr.end_transaction("trans1",lr.PASS);

}
return 0;

}

public int action() {

for(int i=0;i<10;i++)
{

lr.rendezvous("rendz1");
lr.message("action()"+i);
lr.think_time(2);

}
return 0;

}

Chapter 29 • Programming Java Scripts

411

Obtaining Vuser Information

You can add the following functions to your Vuser scripts to retrieve Vuser
information:

In the following example, the lr.get_host_name function retrieves the
name of the computer on which the Vuser is running.

For more information about the above functions, refer to the Online Function
Reference (Help > Function Reference).

Issuing Output Messages

When you run a scenario or session step, the Controller/Console’s Output
window displays information about script execution. You can include
statements in a Vuser script to send error and notification messages to the
Controller/Console. The Controller/Console displays these messages in the
Output window. For example, you could insert a message that displays the
current state of the client application. You can also save these messages to a
file.

lr.get_attrib_string Returns a string containing command line
argument values or runtime information
such as the Vuser ID or the load generator
name.

lr.get_group_name Returns the name of the Vuser’s group.

lr.get_host_name Returns the name of the load generator
executing the Vuser script.

lr.get_master_host_name Returns the name of the machine running
the LoadRunner Controller, Administration
Console, or Tuning Module Console.

lr.get_scenario_id Returns the ID of the current scenario or
session step. (LoadRunner only)

lr.get_vuser_id Returns the ID of the current Vuser.
(LoadRunner only)

String my_host = lr.get_host_name();

Part VI • Custom Vuser Scripts

412

Note: Do not send messages from within a transaction. Doing so lengthens
the transaction execution time and may skew the actual transaction results.

You can use the following message functions in your Vuser script:

In the following example, lr.message sends a message to the output
indicating the loop number:

For more information about the message functions, see “Message Functions”
on page 407, or refer to the Online Function Reference (Help > Function
Reference).

lr.debug_message Sends a debug message to the Output
window.

lr.log_message Sends a message to the Vuser log file.

lr.message Sends a message to a the Output window.

lr.output_message Sends a message to the log file and Output
window with location information.

for(int i=0;i<10;i++)
{

lr.message("action()"+i);
lr.think_time(2);

}

Chapter 29 • Programming Java Scripts

413

You can instruct the Vusers to redirect the Java standard output and
standard error streams to VuGen’s Execution log. This is especially helpful
when you need to paste existing Java code or use ready-made classes
containing System.out and System.err calls in your Vuser scripts. In the
execution log, standard output messages are colored blue, while standard
errors are shown in red.

The following example shows how to redirect specific messages to the
standard output and standard error using lr.enable_redirection:

Note: When you set lr.enable_redirection to true, it overrides all previous
redirections. To restore the former redirections, set this function to false.

For additional information about this function, refer to the Online Function
Reference (Help > Function Reference).

lr.enable_redirection(true);

System.out.println("This is an informatory message…"); // Redirected
System.err.println("This is an error message…"); // Redirected

lr.enable_redirection(false);

System.out.println("This is an informatory message…"); // Not redirected
System.err.println("This is an error message…"); // Not redirected

Part VI • Custom Vuser Scripts

414

Emulating User Think Time

The time that a user waits between performing successive actions is known
as the think time. Vusers use the lr.think_time function to emulate user
think time. In the following example, the Vuser waits two seconds between
loops:

You can use the think time settings as they appear in the script, or a factor of
these values. To configure how Vusers handle think time functions, open
the runtime settings dialog box. For more information, see Chapter 12,
“Configuring Run-Time Settings.”

For more information about the lr.think_time function, refer to the Online
Function Reference (Help > Function Reference).

Handling Command Line Arguments

You can pass values to a Vuser script at runtime by specifying command line
arguments when you run the script. You insert command line options after
the script path and filename in the Controller, Tuning Module or
Administration Console. There are three functions that allow you to read
the command line arguments, and then to pass the values to a Vuser script:

for(int i=0;i<10;i++)
{

lr.message("action()"+i);
lr.think_time(2);

}

lr.get_attrib_double Retrieves double precision floating point type
arguments

lr.get_attrib_long Retrieves long integer type arguments

lr.get_attrib_string Retrieves character strings

Chapter 29 • Programming Java Scripts

415

Your command line should have one of the following two formats where
the arguments and their values are listed in pairs, after the script name:

The following example shows the command line string used to repeat
script1 five times on the machine pc4:

For more information on the command line parsing functions, refer to the
Online Function Reference (Help > Function Reference). For more information
on how to insert the command line options, refer to the LoadRunner
Controller, Tuning Module Console, Performance Center, or Application
Management documentation.

Setting your Java Environment

Before running your Java Vuser script, ensure that the environment
variables, PATH and CLASSPATH, are properly set on all machines running
Vusers:

➤ To compile and replay the scripts, you must have complete JDK
installation, either version 1.1 or 1.2, or 1.3. The installation of the JRE
alone is not sufficient. It is preferable not to have more than one JDK or
JRE installation on a machine. If possible, uninstall all unnecessary
versions.

➤ The PATH environment variable must contain an entry for JDK/bin.

➤ For JDK 1.1.x, the CLASSPATH environment variable must include the
classes.zip path, (JDK/lib subdirectory) and all of the Mercury classes
(classes subdirectory).

script_name -argument argument_value -argument argument_value

script_name /argument argument_value /argument argument_value

script1 -host pc4 -loop 5

Part VI • Custom Vuser Scripts

416

➤ All classes used by the Java Vuser must be in the classpath—either set in
the machine’s CLASSPATH environment variable or in the Classpath Entries
list in the Classpath node of the Run-Time settings.

Running Java Vuser Scripts

Java Vuser scripts differ from C Vuser scripts in that they are first compiled
and then executed; C Vuser scripts are interpreted. VuGen locates the javac
compiler from within the JDK installation and compiles the Java code inside
the script. This stage is indicated by the Compiling… status message in the
bottom of the VuGen window. If errors occur during compilation, they are
listed in the execution log. To go to the code in your script that caused the
error, double-click on the error message containing the line number of the
error. Fix the error and run the script again.

If the compilation succeeds, the status message Compiling… changes to
Running… and VuGen begins to execute the script. When you run the script
again, VuGen runs the script without recompiling it, provided that no
changes were made to the script. To debug your script further, you can use
breakpoints and animated run type execution using the step option.

Note: If you are making calls to JNDI extensions within your script, you may
encounter problems trying to run your Vusers as threads. This happens
because JNDI requires each thread to have its own context class loader. In
order to run as threads, instruct each Vuser to run with its own context class
loader, by adding the following line to the beginning of the init section:

DummyClassLoader.setContextClassLoader();

Chapter 29 • Programming Java Scripts

417

Compiling and Running a Script as Part of a Package

When creating a Java Vuser script, you may need to use methods in other
classes in which the class or method is protected. If you try to compile this
type of script, you will receive errors in the compilation stage indicating that
the methods are inaccessible. To make sure that your script can access these
methods, insert the package name containing these methods at the top of
the script, just as you would do in a standard Java program—
<package_name>. In the following example, the script defines the just.do.it
package which consists of a path:

In the above example, VuGen automatically creates the just/do/it directory
hierarchy under the Vuser directory, and copies the Actions.java file to
just/do/it/Actions.java, allowing it to compile with the relevant package.
Note that the package statement must be the first line in the script, similar
to Java (excluding comments).

package just.do.it;

import lrapi.*;
public class Actions
{
 :
}

Part VI • Custom Vuser Scripts

418

Programming Tips

When programming a Java Vuser script, you can paste ready-made code
segments into scripts or import ready-made classes in order to invoke their
methods. If Vusers need to run as threads under the Controller/Console (for
scalability reasons), you need to make sure that all of the imported code is
thread-safe.

Thread-safety is often difficult to detect. A Java Vuser may run flawlessly
under VuGen and under the Controller/Console with a limited number of
Vusers. Problems occur with a large number of users. Code that is not
thread-safe is usually the result of static class member usage as shown in the
following example:

When you run one Vuser, the iteration_counter member accurately
determines the number of iterations that were executed. When multiple
Vusers run together as threads on a single virtual machine, the static class
member iteration_counter is shared by all threads, resulting in an incorrect
counting. The total number of all Vusers iterations is counted.

import lrapi.*;
public class Actions
{

private static int iteration_counter = 0;

public int init() {
return 0;

}

public int action() {
iteration_counter++;
return 0;

}

public int end() {
lr.message("Number of Vuser iterations: "+iteration_counter);
return 0;

}
}

Chapter 29 • Programming Java Scripts

419

If code is known to be non thread-safe and you still want to import it into
your script, you can run the Vusers as processes. For more information on
running Vusers as threads or processes, see Chapter 12, “Configuring Run-
Time Settings.”

When you run a basic Java Vuser script, it usually consists of a single
thread—the main thread. Only the main thread can access the Java Vuser
API. If a Java Vuser spawns secondary worker threads, using the Java API
may cause unpredictable results. Therefore, it is recommended to use the
Java Vuser API only in the main thread. Note that this limitation also affects
the lr.enable_redirection function.

The following example illustrates where the LR API may and may not be
used. The first log message in the execution log indicates that the value of
flag is false. The virtual machine then spawns a new thread set_thread. This
thread runs and sets flag to true, but will not issue a message to the log, even
though the call to lr.message exists. The final log message indicates that the
code inside the thread was executed and that flag was set to true.

boolean flag = false;

public int action() {
lr.message("Flag value: "+flag);
Thread set_thread = new Thread(new Runnable();{

public void run() {
lr.message("LR-API NOT working!");
try {Thread.sleep(1000);} catch(Exception e) {}
flag = true;

}
});
set_thread.start();
try {Thread.sleep(3000);} catch(Exception e) {}
lr.message("Flag value: "+flag);
return 0;

}

Part VI • Custom Vuser Scripts

420

Part VII

Distributed Component Protocols

422

423

30
Recording COM Vuser Scripts

Many Windows applications use COM-based functions either directly, or
through library calls. You can use VuGen to record a script that emulates a
COM-based client accessing a COM server. The resulting script is called a
COM Vuser script. You can also create COM Vuser scripts by using a Visual
Basic add-in. For more information about the Visual Basic add-in, see
Chapter 76, “Creating Vuser Scripts in Visual Studio.”

Chapter 31, “Understanding COM Vuser Scripts,” explains how VuGen
COM scripts work and provides a brief function reference.

This chapter describes:

➤ About Recording COM Vuser Scripts

➤ COM Overview

➤ Getting Started with COM Vusers

➤ Selecting COM Objects to Record

➤ Setting COM Recording Options

The following information applies only to COM Vuser scripts.

Part VII • Distributed Component Protocols

424

About Recording COM Vuser Scripts

When you record COM client applications, VuGen generates functions that
describe COM client-server activity. The recorded script contains interface
declarations, API calls and instance calls to methods. Each COM function
begins with an lrc prefix.

You can view and edit the recorded script from the VuGen’s main window.
The COM API/method calls that were recorded during the session are
displayed in the window, allowing you to visually track application
COM/DCOM calls.

You can indicate the programming language in which to create a Vuser
script—either C or Visual Basic scripting. For more information, see
Chapter 5, “Setting Script Generation Preferences.”

COM Overview

This section provides an outline of COM technology. This should be enough
to get you started with COM Vuser scripts. Refer to Microsoft Developer’s
Network (MSDN) and other documentation for further details.

COM (Component Object Model) is a technology for developing reusable
software components ("plug-ins"). DCOM (Distributed COM) allows use of
COM components on remote computers. Microsoft transaction servers
(MTS), Visual Basic and Explorer all use COM/DCOM technology. Thus, the
application you are testing may use COM technology indirectly, even
though you don’t know it. You will probably have to include some, but
certainly not all, of the COM calls made by your application in the Vuser
script.

Chapter 30 • Recording COM Vuser Scripts

425

Objects, Interfaces and Type Libraries

COM objects are binary code modules. Each COM object implements one or
more interfaces that allow client programs to communicate with it. You
need to know about these interfaces in order to follow the COM calls in the
Vuser scripts. Type libraries, used as a reference for accessing COM interface
methods and parameters, contain descriptions of COM objects and
interfaces. Each COM class, interface, and type library is identified by a
Global Unique Identifier (GUID).

COM Interfaces

A COM interface provides a grouped collection of related methods. For
example, a Clock object may have Clock, Alarm and Timer interfaces. Each
interface has one or more methods. For example the Alarm interface may
have AlarmOn and AlarmOff methods.

An interface may also have one or more properties. Sometimes, the same
function may be performed by calling a method or by setting or getting the
value of a property. For example, you can set the Alarm Status property to
On or call the AlarmOn method.

A COM object may support many interfaces. The IUnknown interface is
implemented by all components and is used to find out about other
interfaces. Many components also implement the IDispatch interface,
which exposes all other interfaces and methods of the object, allowing
implementation of COM automation in scripting languages.

COM Class Context and Location Transparency

COM objects can run on the same machine as the client application, or on a
remote server. COM objects that an application creates may be in a local
library, a local process or a remote machine (“Remote Object Proxy”). The
location of the COM object, known as the “Context,” can be transparent to
the application. Most users apply the Vusers to check the load on remote
servers. Therefore, objects accessed by Remote Object Proxy are usually the
most relevant for these tests.

Part VII • Distributed Component Protocols

426

COM Data Types

COM also provides several special data types, including safe arrays, BSTR
strings and variants. You may need to use these data types for debugging,
parameterization and similar tasks.

Getting Started with COM Vusers

This section describes the process of developing COM Vuser scripts.

To develop a COM Vuser script:

 1 Record the basic script using VuGen.

Start VuGen and create a new Vuser script. Specify COM as the type of Vuser.
Choose an application to record and set the recording options. To set the
script related recording options, see Chapter 5, “Setting Script Generation
Preferences.” To set the COM specific options and filters, see the “Setting
COM Recording Options” on page 430. Record typical operations using your
application.

For details about recording, see Chapter 4, “Recording with VuGen.”

 2 Refine the Object Filter.

Use the log file that was generated to refine your choice of objects to be
recorded in the filter. See the following section, “Selecting COM objects to
Record,” for details.

 3 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 4 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

Chapter 30 • Recording COM Vuser Scripts

427

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.”

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Selecting COM Objects to Record

The application you are testing may use a great many COM objects. Only a
few may actually create load and may be important for the load test. Thus,
before you record a COM application, you should select the objects you
want to record for the load test. VuGen allows you to browse for objects
from type libraries that it can read on the local machine and on other
computers in the network.

Deciding Which Objects to Use

There are several ways to decide which COM objects should be included in
the test. Try to determine which remote objects are used by the software. If
you are unsure which objects to choose, try using the default filter. The
Environments branch of the filter includes calls to three sets of objects
(ADO, RDS and Remote) that are likely to generate load on remote servers.

Part VII • Distributed Component Protocols

428

You can also check the actual calls to refine the filter. After you have
recorded the test, you can save the file and look in the data directory that
VuGen creates for a file named lrc_debug_list_<nnn>.log", where nnn is the
process number. This log file contains a listing of each COM object that was
called by the recorded application, regardless of whether or not the
recording filter included that object. Only calls that generate load on the
server should be included for recording.

For example, the following is a local COM of the Visual Basic library:

It should not be added since it does not generate load on the server.

Likewise, since the OLE DB and Microsoft Windows Common Controls are
local objects, the following are examples of classes and libraries that are not
going to place any load on the server and should not be recorded:

However, for example, a listing such as the following indicates a class that
should be recorded since it does generate load on the server:

Calls to classes of the FRS library, used for instance in the flight_sample that
is installed with VuGen, use server capacity and should be recorded.

Class JetES {039EA4C0-E696-11D0-878A-00A0C91EC756}
was loaded from type library "JET Expression Service Type Library"
({2358C810-62BA-11D1-B3DB-00600832C573} ver 4.0)

Class DataLinks {2206CDB2-19C1-11D1-89E0-00C04FD7A829}
was loaded from type library "Microsoft OLE DB Service Component 1.0
Type Library"
({2206CEB0-19C1-11D1-89E0-00C04FD7A829} ver 1.0)

Class DataObject {2334D2B2-713E-11CF-8AE5-00AA00C00905}
was loaded from type library "Microsoft Windows Common Controls 6.0
(SP3)"
({831FDD16-0C5C-11D2-A9FC-0000F8754DA1} ver 2.0)

Class Order {B4CC7A90-1067-11D4-9939-00105ACECF9A}
was loaded from type library "FRS"
({B4CC7A8C-1067-11D4-9939-00105ACECF9A} ver 1.0)

Chapter 30 • Recording COM Vuser Scripts

429

If a COM object itself calls other COM objects, all the calls will be listed in
the type information log file. For example, every time the application calls
an FRS class function, the FRS library calls the ActiveX Data Object (ADO)
library. If several functions in such a chain are listed in a filter, VuGen
records only the first call that initiates the chain. If you selected both FRS
and ADO calls, only the FRS calls will be recorded.

On the other hand, if you select only the ADO library in the filter, then calls
to the ADO library will be recorded. It is often easier to record the call to the
first remote object in the chain. In some cases, however, an application may
use methods from several different COM objects. If all of them use a single
object that puts a load on the server, you could only record the final
common object.

Which Objects Can Be Selected

VuGen can only record objects if it can read their type libraries. If the type
libraries were not installed in the system or VuGen cannot find them, the
COM objects will not be listed in the Recording Options dialog box. If they
are used by your application, VuGen will not be able to identify these
objects and will identify them as INoTypeInfo in the files.

Which Interfaces Can Be Excluded

For each object, the Recording Options dialog box will show you all
interfaces that are listed in the Type Library, and allow you to specify
inclusion or exclusion of each one. However, ADO, RDS and Remote
Objects can be included in the filter as a group. The filter will not show the
individual objects of those environments or their interfaces. Objects that
you included from type libraries may also have interfaces that are not listed
in the type library and therefore not shown in the Recording Options
dialog. After generating a VuGen script, you can identify these interfaces in
the script and get their GUID numbers from the interfaces.h file that VuGen
generates. Using this information, you can exclude the interfaces as
explained below.

Part VII • Distributed Component Protocols

430

Setting COM Recording Options

Use the COM Recording Options dialog box to set the filtering and COM
scripting options. You use the online browser to locate type libraries in the
registry, file system, or the Microsoft Transaction Server (MTS).

For more information, see:

➤ Filtering Objects

➤ Setting the Filter

➤ Setting COM Scripting Options

Filtering Objects

The Filter options let you indicate which COM objects should be recorded
by VuGen. You can select objects from within environments and libraries.

The Filter options set a default filter or create alternate filters. You can filter a
recording session by environment and type libraries.

Chapter 30 • Recording COM Vuser Scripts

431

DCOM Profile

➤ Default Filter: The filter to be used as the default when recording a COM
Vuser script.

➤ New Filter: A clean filter based on the default environment settings.
Note that you must specify a name for this filter before you can record
with its settings.

DCOM Listener Settings

The DCOM Listener Settings display a tree hierarchy of type libraries. You
can expand the tree to show all of the available classes in the type library.
You can expand the class tree to show all of the interfaces supported by that
class.

To exclude a type library, clear the check box next to the library name. This
excludes all of its classes in that type library. By expanding the tree, you can
exclude individual classes or interfaces by clearing the check box next to the
item.

An interface can be implemented differently by various classes. When you
exclude an interface that is implemented by other classes that have not been
excluded, a dialog box opens asking you if you also want to exclude the
interface in all classes that implement it this interface.

Note that when you clear the check box adjacent to an interface, it is
equivalent to selecting it in the Excluded Interfaces dialog box.

➤ Environment: The environments to record: ADO objects, RDS Objects,
and Remote Objects. Clear the objects you do not want to record.

➤ Type Libraries: A type library .tlb or .dll file, that represents the COM
object to record. All COM objects have a type library that represents
them. You can choose a type library from the Registry, Microsoft
Transaction Server, or file system.

Part VII • Distributed Component Protocols

432

Type Libraries: In the lower section of the dialog box, VuGen displays the
following information for each type library.

➤ TypLib: The name of the type library (tlb file).

➤ Path: The path of the type library.

➤ Guid: The Global Unique Identifier of the type library.

Setting the Filter

This section describes how to set the filters.

To select which COM objects to record:

 1 Choose Tools > Recording Options from the main menu or click Options in
the Start Recording dialog box. A dialog box opens displaying the Recording
Options tree. Select the COM/DCOM:Filter node.

Expand the Environments sub-tree, to display the ADO, RDS and Remote
objects listings. The Filter also includes a Type Libraries tree that is initially
empty. You can add Type Libraries as described in the steps below.

By default, all Environments are selected and calls to any of their objects are
included in the filter. Clear the check box adjacent to ADO, RDS or Remote
objects to exclude them from the filter.

 2 Click Add to add another COM type library, and select a source to browse:
registry, file system, or MTS, as described below.

Chapter 30 • Recording COM Vuser Scripts

433

 3 Select Browse Registry to display a list of type libraries found in the registry
of the local computer.

Select the check box next to the desired library or libraries and click OK.

 4 To add a type library from the file system, click Add and select Browse file
system.

Select the desired file and click OK.

 5 Once the type library appears in the list of Type Libraries, you can expand
the tree to show all of the available classes in the type library. You can
expand the class tree to show all of the interfaces supported by that class.

To exclude a type library, clear the check box next to the library name. This
excludes all of its classes in that type library. By expanding the tree, you can
exclude individual classes or interfaces by clearing the check box next to the
item.

Part VII • Distributed Component Protocols

434

Note that when you clear a check box adjacent to an interface, it is
equivalent to selecting it in the Excluded Interfaces dialog box.

 6 An interface can be implemented differently by various classes. When you
exclude an interface that is implemented by other classes that have not been
excluded, VuGen displays the following warning:

If you check Don’t ask me again and close the dialog box, then the status of
all instances of the interface in all other classes will be changed
automatically for this filter, whenever you change the status of the interface
in one object. Click Yes to all to change the status of all instances of this
interface for all other classes, click No to all to leave the status of all other
instances unchanged. Click Next Instance to view the next class that uses
this interface.

Type library

Class
Interface

Chapter 30 • Recording COM Vuser Scripts

435

 7 To add a component from a Microsoft Transaction Server, click Add and
select Browse MTS. The MTS Components dialog box prompts you to enter
the name of the MTS server.

Type the name of the MTS server and click Connect. Remember that to
record MTS components you need an MTS client installed on your machine.

Select one or more packages of MTS components from the list of available
packages and click Add. Once the package appears in the list of Type
Libraries, you can select specific components from the package.

Part VII • Distributed Component Protocols

436

 8 In addition to disabling and enabling recording of interfaces in the tree
display, you can also click Exclude in the Recording Options dialog to
include or exclude interfaces in the filter, whatever their origin.

Note that you can also exclude classes and interfaces by clearing the check
box adjacent to the item, inside the type library tree hierarchy.

The checked interface listings are the ones that are excluded. You can also
add interfaces that are not listed. Click Add Interface... in the Excluded
Interfaces dialog box and enter the GUID number (interface ID) and name
of the interface. You can copy the GUID from the interfaces.h file created by
VuGen and listed in the selection tree in the left-hand column of the VuGen
screen. Use the Add Interface… feature to exclude interfaces that are called
needlessly by the script, but are not listed anywhere in the filter.

 9 When you have finished modifying your filter, click OK to save it and close
the dialog box. Click Save As to save a New filter, or to save an existing filter
under a new name. You can select saved filters in subsequent recordings.
Default settings are given initially in the Default filter.

Chapter 30 • Recording COM Vuser Scripts

437

Setting COM Scripting Options

You can set additional options for your COM recording session, relating to
the handling of objects, generation of logs, and VARIANT definitions.

The DCOM scripting options apply to all programming languages. These
settings let you configure the scripting options for DCOM methods and
interface handling.

ADO Recordset filtering: Condense multiple recordset operations into a
single-line fetch statement (enabled by default).

Declare Temporary VARIANTs as Globals: Define temporary VARIANT types
as Globals, not as local variables (enabled by default).

Fill array in separate scopes: Fill in each array in a separate scope (enabled
by default).

Fill structure in separate scopes: Fill in each structure in a separate scope
(enabled by default).

Generate COM exceptions: Generate COM functions and methods that
raised exceptions during recording (disabled by default).

Part VII • Distributed Component Protocols

438

Generate COM statistics: Generate recording time performance statistics
and summary information (disabled by default).

Limit size of SafeArray log: Limit the number of elements printed in the
safearray log per COM call, to 16 (enabled by default).

Release COM Objects: Record the releasing of COM objects when they are
no longer in use (enabled by default).

Save Recordset content: Stores Recordset content as grids, to allow viewing
of recordset in VuGen (enabled by default).

Trap binded moniker objects: Trap all of the bound moniker objects
(disabled by default).

To set COM/DCOM options:

 1 Choose Tools > Recording Options from the main menu or click Options...
in the Start Recording dialog box. VuGen opens the Recording Options tree.
Select the COM/DCOM:Options node.

 2 Enable the desired options by clicking the check boxes adjacent to them.

 3 Click OK to save your settings and exit.

439

31
Understanding COM Vuser Scripts

This chapter provides details about the scripts VuGen generates for COM
client communications, including an explanation of the function calls and
examples. For basic information about getting started with COM Vuser
scripts, see Chapter 30, “Recording COM Vuser Scripts.”

This chapter describes:

➤ About COM Vuser Scripts

➤ Understanding VuGen COM Script Structure

➤ Examining Sample VuGen COM Scripts

➤ Scanning a Script for Correlations

➤ Correlating a Known Value

The following information applies only to COM Vuser scripts.

About COM Vuser Scripts

When you record COM client communications, VuGen creates a script with
calls to COM API functions and interface methods. In addition, you can
program COM type conversion functions. Each function call has an lrc
prefix, such as lrc_CoCreateInstance or lrc_long. This chapter provides an
overview of COM API and type conversion calls. Refer to the Online Function
Reference (Help > Function Reference) for syntax and examples of each
function.

Part VII • Distributed Component Protocols

440

For each COM Vuser script, VuGen creates the following:

➤ Interface pointer and other variable declarations in file interfaces.h

➤ Function calls that you can record in the vuser_init, actions or vuser_end
sections.

➤ A user.h file containing the translation of the Vuser script into low level calls

After you record the script, you can view any of these files by selecting them
from the tree on the left-hand side of the VuGen screen.

Understanding VuGen COM Script Structure

VuGen COM scripts are structured in a special way to meet the needs of
COM interfaces.

Interface Methods

Calls to interface methods have the following names and syntax
conventions:

lrc_<interface name>_<method name>(instance,...);

Note that the instance is always the first parameter passed.

The vendors of the respective COM components usually supply
documentation for the interface functions.

Interface Pointers

The interface header file defines the interface pointers, as well as other
variables, that can be used in the script. Each interface has an Interface ID
(IID) which uniquely identifies the interface.

The format of the interface definition is:

<interface type>*<interface name> = 0; //”{<IID of the interface type>}”

Chapter 31 • Understanding COM Vuser Scripts

441

In the following example, the interface type is IDispatch, the name of the
interface instance is IDispatch_0, and the IID of IDispatch type is the long
number string:

Vuser Script Statements

The COM Vuser script consist of code that creates object instances, retrieves
interface pointers and calls the interface methods. Each user action may
generate one or more COM calls. Each COM call is coded by VuGen as a
group of statements. Each such group is contained in a separate scope
enclosed in braces. Several different statements prepare for the main call by
assigning values and performing type conversions. For example, the group
of calls needed to create an object may look like this:

Error Checking

Each COM method or API call returns an error value. VuGen will set a flag to
check or not to check errors during replay, depending upon whether the call
succeeded during the original recording. The flag appears as the last
argument of the function call and has these values:

IDispatch* IDispatch_0= 0;//"{00020400-0000-0000-C000-
000000000046}"

{
GUID pClsid = lrc_GUID("student.student.1");
IUnknown * pUnkOuter = (IUnknown*)NULL;
unsigned long dwClsContext = lrc_ulong("7");
GUID riid = IID_IUnknown;
lrc_CoCreateInstance(&pClsid, pUnkOuter, dwClsContext, &riid,
(void**)&IUnknown_0, CHECK_HRES);
}

CHECK_HRES This value is inserted if the function passed
during recording and errors should be
checked during replay.

DONT_CHECK_HRES This value is inserted if the function failed
during recording and errors should not be
checked during replay.

Part VII • Distributed Component Protocols

442

Examining Sample VuGen COM Scripts

This section shows examples of how VuGen emulates a COM client
application.

Basic COM Script Operations

The basic operations are:

➤ Instantiation of the object

➤ Retrieving interface pointers

➤ Calling interface methods

Each type of operation is done within a separate scope.

Instantiation of the Object

To use a COM object, the application must first instantiate it and get a
pointer to an interface of that object.

VuGen does the following to instantiate an object:

 1 VuGen calls lrc_GUID to get a unique ProgID for the object, to be stored in
pClsid:

pClsid is the unique global CLSID of the object, which was converted from
the ProgID student.student.1

 2 If the unknown interface pointer is a pointer to an aggregated object, VuGen
retrieves the pointer to that object, or else it sets it to NULL:

GUID pClsid = lrc_GUID("student.student.1");

IUnknown * pUnkOuter = (IUnknown*)NULL;

Chapter 31 • Understanding COM Vuser Scripts

443

 3 VuGen sets the contexts of the object to be created:

dwClsContext contains the context of the object (in process, local, remote
or combinations of these.)

 4 VuGen sets a variable to hold the requested interface ID, which is
IUnknown in this case:

riid contains the interface ID of the IUnknown interface.

 5 After the input parameters are prepared, a call to lrc_CoCreateInstance
creates an object using the parameters defined in the preceding statements.
A pointer to the IUnknown interface is assigned to output parameter
IUnknown_0. This pointer is needed for subsequent calls:

The input parameters were prepared and explained above. Since the call
succeeded, VuGen sets error checking on during the user simulation by
inserting the CHECK_HRES value. The call returns a pointer to the
IUnknown interface in IUnknown_0, that can be used in subsequent calls.

Retrieving an Interface

After creating an object, VuGen has access only to the IUnknown interface.
VuGen will use the IUnknown interface for communicating with the
object. This is done using the QueryInterface method of the IUnknown
standard interface. The first parameter in a VuGen method call is the
interface instance. In this case it is the IUnknown_0 pointer set previously
by CoCreateInstance. The QueryInterface call requires as input the ID of
the interface to be retrieved, and returns a pointer to the interface
designated by that ID.

unsigned long dwClsContext = lrc_ulong("7");

GUID riid = IID_IUnknown;

lrc_CoCreateInstance(&pClsid, pUnkOuter, dwClsContext, &riid,
(void**)&IUnknown_0, CHECK_HRES);

Part VII • Distributed Component Protocols

444

To get the interface:

 1 First, VuGen sets a parameter, riid, equal to the ID of the Istudent interface:

 2 A call to QueryInterface assigns a pointer to the Istudent interface to
output parameter Istudent_0 if the Istudent object has such an interface:

Using an Interface to Set Data

Here is an example of using the methods of the interface to set data.
Suppose that in the application, the user is supposed to input a name. This
activates a method for setting the name. VuGen records this in two
statements. One statement is used for setting up the name string and the
second one sets the name property.

To set up the entire function call:

 1 First, VuGen sets a variable (Prop Value) equal to the string. The parameter
is of type BSTR, a string type used in COM files:

In subsequent stages, you will probably parameterize this call, replacing
“John Smith” with a parameter, so that different names are used each time
the Vuser script is run.

 2 Next, VuGen calls the Put_Name method of the Istudent interface to enter
the name:

GUID riid = IID_Istudent;

lrc_IUnknown_QueryInterface(IUnknown_0, &riid, (void**)&Istudent_0,
CHECK_HRES);

BSTR PropValue = lrc_BSTR("John Smith");

lrc_Istudent_put_name(Istudent_0, PropValue, CHECK_HRES);

Chapter 31 • Understanding COM Vuser Scripts

445

Using an Interface to Return Data

Returning data from an application is different than entering the data,
because you might want to store these values and use them as inputs in
subsequent calls for parameterization.

This is an example of what VuGen may do when the application retrieves
data:

 1 Create a variable of the appropriate type (in this case a BSTR) that will
contain the value of the property:

 2 Get the value of the property, in this case a name, into the pVal variable
created above, using the get_name method of the Istudent interface in this
example:

 3 VuGen then generates a statement for saving the values:

The statement is commented out. You can remove the comments and
change <param-name> to a variable with a meaningful name to be used for
storing this value. VuGen will use the variable to save the value of pVal
returned by the previous call. You can then use the variable as a
parameterized input in subsequent calls to other methods.

BSTR pVal;

lrc_Istudent_get_name(Istudent_0, &pVal, CHECK_HRES);

//lrc_save_BSTR("param-name",pVal);

Part VII • Distributed Component Protocols

446

The IDispatch Interface

Most COM objects have specific interfaces. Many of them also implement a
general-purpose interface called IDispatch, which VuGen translates in a
special way. IDispatch is a “superinterface” that exposes all of the other
interfaces and methods of a COM object. Calls to the IDispatch:Invoke
method from VuGen scripts are implemented using lrc_Disp functions.
These calls are constructed somewhat differently from calls to other
interfaces.

The IDispatch interface Invoke method can execute a method, it can get a
property value, or it can set a value or reference value for a property. In the
standard IDispatch:Invoke method these different uses are signalled in a
wflags parameter. In the VuGen implementation they are implemented in
different procedure calls that invoke a method or put or get a property.

For example, a call to IDispatch to activate the GetAgentsArray method may
look like this:

The parameters in the above call are:

retValue = lrc_DispMethod1((IDispatch*)IDispatch_0, "GetAgentsArray",
/*locale*/1033, LAST_ARG, CHECK_HRES);

IDispatch_0 This is the pointer to the IDispatch interface returned
by a previous call to the IUnknown:Queryinterface
method.

GetAgentsArray This is the name of the method to invoke. Behind the
scenes, VuGen will get the ID of the method from the
name.

1033 This is the language locale.

LAST_ARG This is a flag to tell the IDispatch interface that there
are no more arguments.

CHECK_HRES This flag turns on checking of HRES, since the call
succeeded when it was recorded.

Chapter 31 • Understanding COM Vuser Scripts

447

In addition, there might be another parameter, OPTIONAL_ARGS. This
signals that in addition to any standard parameters, VuGen is sending some
optional arguments. Each optional argument consists of a pair giving the ID
or name of the argument and its value. For example, the following call to
lrc_DispMethod passes optional arguments “#3” and “var3”:

The different lrc_Disp methods that use the IDispatch interface are detailed
in Chapter 32, “Understanding COM Vuser Functions”.

Type Conversions and Data Extraction

As shown in the above example, many COM parameters are defined as
variants. To extract these values, VuGen uses a number of conversion
functions, derived from the equivalent COM functions. The full list is given
in Chapter 32, “Understanding COM Vuser Functions.” Previously, we
showed how the lrc_DispMethod1 call was used to retrieve an array of
name strings:

The following example now shows how VuGen gets the strings out of
retValue, which is a variant that will be read as an array of strings.

{
GUID riid = IID_IDispatch;
lrc_IOptional_QueryInterface(IOptional_0, &riid,

(void**)&IOptional_0, CHECK_HRES);
}
{

VARIANT P1 = lrc_variant_short("47");
VARIANT P2 = lrc_variant_short("37");
VARIANT P3 = lrc_variant_date("3/19/1901");
VARIANT var3 = lrc_variant_scode("4");
lrc_DispMethod((IDispatch*)IOptional_0, "in_out_optional_args",

/*locale*/1024, &P1, &P2, OPTIONAL_ARGS, "#3", &P3, "var3", &var3,
LAST_ARG, CHECK_HRES);

VARIANT retValue = lrc_variant_empty();
retValue = lrc_DispMethod1((IDispatch*)IDispatch_0, "GetAgentsArray",
/*locale*/1033, LAST_ARG, CHECK_HRES);

Part VII • Distributed Component Protocols

448

First, VuGen extracts the BSTR array from the variant:

With all the values in array0, VuGen provides you with code that you can
use to extract the elements from the array for later use in parameterization,
as in the example below:

VuGen has numerous type conversion functions and functions for
extracting conventional types from variants. These are detailed in
Chapter 32, “Understanding COM Vuser Functions”, or refer to the Online
Function Reference.

Scanning a Script for Correlations

VuGen provides a correlation utility to help you repair your script and assist
you in getting a successful replay. It performs the following steps:

➤ scans for potential correlations

➤ insert the appropriate correlation function to save the results to a
parameter

➤ replace the statement value with the parameter

You can perform automatic correlation on the entire script, or at a specific
location in your script.

This section describes how to determine the statement which needs to be
correlated. If you already know which value you want to correlate, proceed
to the next section for instructions on correlating a specific value.

BstrArray array0 = 0;
array0 = lrc_GetBstrArrayFromVariant(&retValue);

//GetElementFrom1DBstrArray(array0, 0); // value: Alex
//GetElementFrom1DBstrArray(array0, 1); // value: Amanda
....

Chapter 31 • Understanding COM Vuser Scripts

449

To scan and correlate a script detected with automatic correlation:

 1 Select View > Output to display the output tabs at the bottom of the
window. Check for errors in the Replay Log tab. Often, these errors can be
corrected by correlation.

 2 Select Vuser > Scan for Correlations. VuGen scans the entire script and lists
all possible values to correlate in the Correlated Query tab.

 3 Correlate the value. In the Correlated Query tab, double-click on the result
you want to correlate. This is located on the third line of the message where
it says
grid column x, row x.
VuGen sends the cursor to the grid location of the value in your script.

 4 In the grid, choose Create Correlation from the right-click menu. VuGen
prompts you to enter a parameter name for the result value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrc_save_<type>) which saves the
result to a parameter.

 6 Click Yes to confirm the correlation.

 7 A message box opens asking if you want to search for all occurrences of the
value in the script.
Click No to replace only the value in the selected statement.
To search and replace additional occurrences click Yes.

 8 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.

 9 Close the Search and Replace dialog box. VuGen replaces the statement
value with a reference to the parameter. Note that if you choose to cancel
the correlation, VuGen also erases the statement created in the previous
step.

Part VII • Distributed Component Protocols

450

Correlating a Known Value

If you know which value needs to be correlated, perform the following
procedure:

To correlate a specific value:

 1 Locate the argument you want to correlate (usually in an lrc_variant_
statement) and select the value without the quotation marks.

 2 Choose Vuser > Scan for Correlations (at cursor).

VuGen scans the value and lists all results within the script that match this
value. The correlation values are listed in the Correlated Query tab.

 3 In the Correlated Query tab, double-click on the result you want to
correlate. This is located on the third line of the message where it says
grid column x, row x.
VuGen sends the cursor to the grid location of the value in your script.

 4 In the grid, select the value you want to correlate and choose Vuser > Create
Correlation. VuGen prompts you to enter a parameter name for the result
value.

 5 Specify a name, or accept the default. Click OK to continue. VuGen inserts
the appropriate correlation statement (lrc_save_<type>) which saves the
result to a parameter.

 6 Click Yes to confirm the correlation.

 7 A message box opens asking if you want to search for all occurrences of the
value in the script.

lrc_save_rs_param (Recordset20_0, 1, 1, 0, “Saved_AGENT_NAME”);

Chapter 31 • Understanding COM Vuser Scripts

451

Click No to replace only the value in the selected statement.
To search and replace additional occurrences click Yes.

 8 A Search and Replace dialog box opens. Confirm any replacements,
including your original statement.

Part VII • Distributed Component Protocols

452

453

32
Understanding COM Vuser Functions

The COM Vuser functions emulate the actions of a user running a COM
application.

This chapter describes:

➤ About COM Vuser Functions

➤ Creating Instances

➤ IDispatch Interface Invoke Method

➤ Type Assignment Functions

➤ Variant Types

➤ Assignment from Reference to Variant

➤ Parameterization Functions

➤ Extraction from Variants

➤ Assignment of Arrays to Variants

➤ Array Types and Functions

➤ Byte Array Functions

➤ ADO RecordSet Functions

➤ Debug Functions

➤ VB Collection Support

The following information applies only to COM Vuser scripts.

Part VII • Distributed Component Protocols

454

About COM Vuser Functions

Each VuGen COM function has an lrc prefix. VuGen records the COM API
and method calls listed in this section. You can also manually program lrc
type conversion calls. For syntax and examples of the lrc functions, refer to
the Online Function Reference (Help > Function Reference).

You can indicate the programming language in which to create a Vuser
script—either C or Visual Basic scripting. For more information, see
Chapter 5, “Setting Script Generation Preferences.” The following sections
describe the functions that are generated for C language type Virtual User
scripts.

Creating Instances

There are several functions for creating and releasing objects, derived from
the corresponding COM functions:

lrc_CoCreateInstance Creates an instance of an object and returns
the unknown interface.

lrc_CreateInstanceEx Creates an instance of an object on a remote
machine and can return multiple interfaces.

lrc_CoGetClassObject Fetches the class factory for the specified
class. The class factory can then be used to
create multiple objects of that class.

lrc_Release_Object Releases a COM object no longer in use.

Chapter 32 • Understanding COM Vuser Functions

455

IDispatch Interface Invoke Method

The following calls invoke the IDispatch interface using the Invoke
method, setting different flag values in the wflags parameter of Invoke:

Type Assignment Functions

To supplement the functions that VuGen automatically records, you can
manually program type-assignment functions into your script. The type
conversion functions assign string data to the specified type. The function
names are:

lrc_<Type-Name>

where <Type-Name> can be one of the following data types:

lrc_DispMethod Invokes a method of an interface using the
IDispatch:Invoke method.

lrc_DispMethod1 Invokes a method and gets a property of the
same name using the IDispatch interface.

lrc_DispPropertyGet Gets a property using the IDispatch interface.

lrc_DispPropertyPut Sets a property using the IDispatch interface.

lrc_DispPropertyPutRef Sets a property by reference using the
IDispatch interface.

ascii_BSTR ascii BSTR

bool boolean

BSTR BSTR

BYTE byte

char character variable

currency currency

date a date

double double

Part VII • Distributed Component Protocols

456

Variant Types

A variant can contain any type of information. For example, a variant may
be an array of strings or a double word. A variant can also be an array of
variants. VuGen can convert string data to various variant types. The
functions are named:

lrc_variant_<Type-Name>

where <Type-Name> can be any of the following:

dword double word

float floating point number

GUID Returns the GUID of a named object.

hyper hyper integer

int integer

long long integer

short short integer

uint unsigned integer

ulong unsigned long integer

uhyper unsigned 64-bit hyper integer

ushort unsigned short integer

ascii BSTR ascii BSTR variant

bool boolean variant

BSTR BSTR variant

BYTE unsigned char (BYTE) variant

char character

CoObject an IUnknown interface pointer

currency currency variant

Chapter 32 • Understanding COM Vuser Functions

457

In addition to the variant type conversion functions, there are three
functions that create new variants:

Assignment from Reference to Variant

VuGen can assign variables to a reference stored inside a variant. The
functions are named:

lrc_variant_<Type-Name>_by_ref

where <Type-Name> can be any of the following:

date date variant

DispObject an IDispatch interface pointer

float floating point number variant

int integer variant

long long integer variant

scode error code variant

short short integer variant

uint unsigned integer variant

ulong unsigned long variant

ushort unsigned short variant

lrc_variant_empty Creates an empty variant.

lrc_variant_null Creates a null variant.

lrc_variant_variant
_by_ref

Creates a new variant containing an existing variant.

ascii BSTR ascii BSTR variant

bool boolean variant

BSTR BSTR variant

Part VII • Distributed Component Protocols

458

Parameterization Functions

Parameterization functions save a value of the specified type to a character
string parameter. The syntaxes of parameterization functions are the
following:

lrc_save_<Type-Name>

lrc_save_VARIANT_<Type-Name>

Saves a variable of the given <Type-Name> as a variant.

lrc_save_VARIANT_<Type-Name>_by_ref

Saves a variant of the given <Type-Name> as a reference within a variant.

BYTE BYTE variant

char char variant

CoObject an IUnknown interface pointer

currency currency variant

date date variant

DispObject an IDispatch interface pointer

float floating point number variant

int integer variant

long long integer variant

scode scode variant

short short integer variant

uint unsigned integer variant

ulong unsigned long variant

ushort unsigned short variant

from_variant retrieves a variant from within a variant.

Chapter 32 • Understanding COM Vuser Functions

459

The value is converted from the <type-name> to a character string. It is
stored in a parameter. The statements are commented out by VuGen. To use
them, change the name of the parameter to something meaningful and
remove the statement’s comments. You can then use the parameter as an
input to subsequent calls. The <type-name> can be one of the following:

VuGen also adds a save statement for parameterization of COM scripts if
you ask for correlation in a grid.

ascii_BSTR ascii BSTR

bool boolean

BSTR BSTR

BYTE byte

char char type

currency currency

date a date

double double

dword double word

float floating point number

hyper hyper integer

int integer

long long integer

uint unsigned integer

ulong unsigned long integer

short short integer

uhyper unsigned hyper integer

ushort unsigned short integer

VARIANT variant

Part VII • Distributed Component Protocols

460

Extraction from Variants

Several functions allow extraction of data from variants:

Assignment of Arrays to Variants

These functions convert arrays to variants:

lrc_CoObject_from_variant Extracts a pointer to an IUnknown
interface from a variant.

lrc_CoObject_by_ref_from_variant Extracts a pointer to an IUnknown
interface from a reference within a
variant.

lrc_DispObject_from_variant Extracts a pointer to an IDispatch
interface from a variant.

lrc_DispObject_by_ref_from_variant Extracts a pointer to an IDispatch
interface from reference within a
variant.

lrc_variant_<Type-Name>Array Assigns an array of type
<Type-Name> to a variant.

lrc_variant_<Type-Name>Array_by_ref Assigns an array of type
<Type-Name> to a variant,
where the array is passed by
reference.

Chapter 32 • Understanding COM Vuser Functions

461

Array Types and Functions

VuGen COM supports the functions for safe arrays:

In the above functions, <Type-Name> can be one of the following data
types:

Create<n>D<Type-Name>Array Create an array of n
dimensions of the type
specified in Type-Name.

Destroy<Type-Name>Array Destroy an array of the type
indicated in Type-Name.

GetElementFrom<n>D<Type-Name>Array Retrieves an element of the
specified type from a
SafeArray.

PutElementIn<n>D<Type-Name>Array Stores an element in an array
of the appropriate type.

lrc_Get<Type-Name>ArrayFromVariant Extracts an array of Type-
Name from a variant.

lrc_Get<Type-Name>Array_by_refFromVariant

Extracts an array of Type-
Name from a pointer
reference in a variant.

Fill<n>DbyteArray Fills the last dimension of a
byte array with a buffer
beginning at the specified n-1
indices.

Bstr BSTR

Byte a byte (unsigned char)

Char a character array

CoObject an IUnknown interface

Currency Currency (CY)

Part VII • Distributed Component Protocols

462

Byte Array Functions

Two sets of functions allow filling and retrieving of data from byte arrays
only.

The lrc_CreateVBCollection call provides special support for a Visual Basic
collection, which is a safearray of variants. VuGen treats this collection as if
it were an interface. The first time it is encountered, VB creates an
“interface” using lrc_CreateVBCollection. Thereafter, it can refer to the
data at the interface address.

Date a Date variable

DispObject an IDispatch interface

Double double

Dword double word

Error an scode error

Float floating point number

Int integer

Long long integer

Short short integer

UInt unsigned integer

ULong unsigned long integer

UShort unsigned short integer

Variant a variant type

Fill<n>DByteArray Fills the last dimension of a byte
array with a buffer beginning at the
specified n-1 indices.

GetBufferFrom<n>DByteArray Gets a buffer at the specified n-1
indices from the last dimension of
an n-dimensional byte array.

Chapter 32 • Understanding COM Vuser Functions

463

ADO RecordSet Functions

The following are ADO recordset functions

Debug Functions

The lrc_print_variant function prints the contents of a variant.

VB Collection Support

The lrc_CreateVBCollection function creates a Visual Basic Collection
object.

lrc_FetchRecordset Moves a pointer through a
recordset.

lrc_FetchRecordsetUntillEOF Fetches records until the end of the
recordset.

lrc_RecordsetWrite Updates a field in an ADO recordset.

lrc_RecordsetAddColumn Adds a new column to a recordset.

lrc_RecordsetDeleteColumn Deletes a column from a recordset.

Part VII • Distributed Component Protocols

464

465

33
Developing Corba-Java Vuser Scripts

VuGen allows you to record applications or applets written in Java that use
Corba. You can run the recorded script or enhance it using standard Java
library functions and Vuser API Java-specific functions.

This chapter describes:

➤ About Developing Corba-Java Vuser Scripts

➤ Recording a Corba-Java Vuser

➤ Working with Corba-Java Vuser Scripts

➤ Recording on Windows XP and Windows 2000 Servers

➤ Application Specific Tips

The following information applies to Corba-Java Vuser scripts.

About Developing Corba-Java Vuser Scripts

Using VuGen, you can record a CORBA (Common Object Request Broker
Architecture) Java application or applet. VuGen creates a pure Java script
enhanced with Vuser API functions. After recording, you can enhance or
modify the script with standard Java code using JDK libraries or custom
classes.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it.

Part VII • Distributed Component Protocols

466

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

When you create a script through recording and manual enhancements, all
of the guidelines and limitations associated with Java Vuser scripts apply. In
addition, any specific classes used in the script (for example,
org.omg.CORBA.ORB) must be present on the machine executing the scripts
and indicated by the classpath environment variable. See Chapter 29,
“Programming Java Scripts” for important information about function
syntax and system configuration. When recording on Windows XP and
2000 Server, follow the guidelines in “Recording on Windows XP and
Windows 2000 Servers” on page 472.

The next few chapters discuss the Java recording options, run-time settings,
and correlation.

Recording a Corba-Java Vuser

Before recording a Corba Vuser, verify that your application or applet
functions properly on the recording machine.

Ensure that you have properly installed a JDK version from Sun on the
machine running VuGen—JRE alone is insufficient. You must complete this
installation before recording a script. Verify that the classpath and path
environment variables are set according to the JDK installation instructions.

For more information on the required environment settings, see Chapter 29,
“Programming Java Scripts.”

Chapter 33 • Developing Corba-Java Vuser Scripts

467

To begin recording:

 1 Choose File > New and select Corba-Java from the Distributed Components
group. The Start Recording dialog box opens.

 2 Select a Corba vendor from the Vendor’s list.

 3 In the Application Type box, select the appropriate value.

Java Applet to record a Java applet through Sun’s appletviewer.

Java Application to record a Java application.

Netscape or IExplore to record an applet within a browser.

Executable/Batch to record an applet or application that is launched from
within a batch file.

Listener to instruct VuGen to wait for the batch file that initializes the
configuration and runs an application before recording. This mode requires
you to define the system variable _JAVA_OPTIONS as --Xrunjdkhook using
jdk1.2.x and higher. (For jdk 1.1.x, define the environment variable
_classload_hook=JDKhook.)

 4 In the Vendor Classes box, select Network if the Corba classes are
downloaded from the network. Otherwise, when Corba classes are loaded
locally, (such as JDK 1.2 and higher), only Local is supported.

Part VII • Distributed Component Protocols

468

 5 Specify additional parameters according for the following chart:

Note that a Working Directory is necessary only if your application must
know the location of the working directory (for example, reading property
files or writing log files).

 6 To set recording options, such as command line parameters for the JVM,
click Options. For information about setting recording options, see
Chapter 18, “Setting Java Recording Options.”

 7 In the Record into Action box, select the section corresponding to the
method into which you want to record. The Actions class contains three
methods: init, action, and end, corresponding to the vuser_init, Actions,
and vuser_end sections. The following table shows what to include into
each method, and when each method is executed.

Note: Make sure to import the org.omg.CORBA.ORB function in the
vuser_init section, so that it will not be repeated for each iteration.

Application Type Fields to Set

Java Applet Applet Path, Working Directory

Java Application App. Main Class, Working Directory, App. parameters

IExplore IExplore Path, URL

Netscape Netscape Path, URL

Executable/Batch Executable/Batch, Working Directory

Listener N/A

method within
Actions class

Record into
action

Used to emulate... Executed during...

init vuser_init a login to a server Initialization

action Actions client activity Running

end vuser_end a log off procedure Finish or Stopped

Chapter 33 • Developing Corba-Java Vuser Scripts

469

 8 Click OK to begin recording. VuGen starts your application, minimizes itself
and opens a progress bar and the floating recording toolbar. The progress
toolbar displays the names of classes as they load. This indicates that the
Java recording support is active.

 9 Perform typical actions within your application. Use the floating toolbar to
switch methods during recording.

 10 After recording the typical user actions, select the vuser_end method from
the floating toolbar.

Perform the log off procedure. VuGen records the procedure into the
vuser_end method of the script.

 11 Click Stop Recording on the Recording toolbar. The VuGen script editor
displays all the recorded statements.

 12 Click Save to save the script. The Save Test dialog box opens (for new Vuser
scripts only). Specify a script name.

Part VII • Distributed Component Protocols

470

Working with Corba-Java Vuser Scripts

Corba-specific scripts usually have a well-defined pattern. The first section
contains the ORB initialization and configuration. The next section
indicates the location of the Corba objects. The following section consists of
the server invocations on the Corba objects. The final section includes a
shutdown procedure which closes the ORB. Note that pattern is not
mandatory and that each one of these sections may appear multiple times
within a script.

In the following segment, the script initializes an ORB instance and
performs a bind operation to obtain a Corba object. Note how VuGen
imports all of the necessary classes.

The org.omg.CORBA.ORB function makes the connection to ORB. Therefore,
it should only be called once. When running multiple iterations, place this
function in the init section.

import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import lrapi.lr;

public class Actions {

// Public function: init
public int init() throws Throwable {

// Initialize Orb instance...
MApplet mapplet = new MApplet("http://chaos/classes/", null);
orb = org.omg.CORBA.ORB.init(mapplet, null);

// Bind to server...
grid = grid_dsi.gridHelper.bind("gridDSI", "chaos");
return lr.PASS;

}

Chapter 33 • Developing Corba-Java Vuser Scripts

471

In the following section, VuGen recorded the actions performed upon a grid
Corba object.

At the end of the session, VuGen recorded the shutdown of the ORB. The
variables used through out the entire recorded code appear after the end
method and before the Actions class closing curly bracket.

Note that the ORB shutdown statement was customized for this product.
This customization prevents a single Vuser’s shutdown from shutting down
all other Vusers.

// Public function: action
public int action() throws Throwable {

grid.width();
grid.height();
grid.set(2, 4, 10);
grid.get(2, 4);

return lr.PASS;
}

// Public function: end
 public int end() throws Throwable {

 if (lr.get_vuser_id() == -1)
 orb.shutdown();

 return lr.PASS;
}

// Variable section
 org.omg.CORBA.ORB orb;
 grid_dsi.grid grid;
}

Part VII • Distributed Component Protocols

472

Recording on Windows XP and Windows 2000 Servers

When recording on Windows XP and Windows 2000 servers, the Java plug-
in may be incompatible with VuGen’s recorder. To insure proper
functionality, perform the following procedure after the installation of the
java plug-in, before recording a script.

To configure your machine for a Corba-Java or Rmi-Java recording:

 1 Open the Java Plug-in from the Control Panel. Choose Start > Settings >
Control Panel and open the Java Plug-in component. The Basic tab opens.

 2 Clear the Enable Java Plug-In check box and click Apply. Then, reselect the
Enable Java Plug-In check box and click Apply.

Chapter 33 • Developing Corba-Java Vuser Scripts

473

 3 Open the Browser tab.

 4 Clear the Microsoft Internet Explorer check box and click Apply. Then,
reselect the Microsoft Internet Explorer check box and click Apply.

Part VII • Distributed Component Protocols

474

Application Specific Tips

Running Corba applications with JDK1.2 or later, might load the JDK
internal Corba classes instead of the specific vendor Corba classes. To force
the virtual machine to use the vendor classes, specify the following java.exe
command-line parameters:

Visigenic 3.4
-Dorg.omg.CORBA.ORBClass=com.visigenic.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.visigenic.vbroker.orb.

ORBSingleton

Visigenic 4.0
-Dorg.omg.CORBA.ORBClass=com.inprise.vbroker.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=com.inprise.vbroker.orb.ORBSingleton

OrbixWeb 3.x
-Dorg.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB
-Dorg.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.

singletonORB

OrbixWeb 2000
-Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl
-Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.

ORBSingleton

475

34
Developing RMI-Java Vuser Scripts

VuGen allows you to record applications or applets written in Java that use
RMI. You can run the recorded script or enhance it using standard Java
library functions and Vuser API Java-specific functions.

This chapter describes:

➤ About Developing RMI-Java Vuser Scripts

➤ Recording RMI over IIOP

➤ Recording an RMI Vuser

➤ Working with RMI Vuser Scripts

The following information applies to RMI-Java Vuser scripts.

About Developing RMI-Java Vuser Scripts

Using VuGen, you can record an RMI (Remote Method Invocation) Java
application or applet. VuGen creates a pure Java script enhanced with Vuser
API functions. After recording, you can enhance or modify the script with
standard Java code using JDK libraries or custom classes.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Part VII • Distributed Component Protocols

476

When you create a script through recording and manual enhancements, all
of the guidelines and limitations associated with Java Vuser scripts apply. In
addition, any specific classes used in the script must be present on the
machine executing the Vusers and indicated by the classpath environment
variable. See Chapter 29, “Programming Java Scripts” for important
information about function syntax and system configuration.

When recording on Windows XP and 2000 Server, follow the guidelines
indicated in “Recording on Windows XP and Windows 2000 Servers” on
page 472.

Recording RMI over IIOP

The Internet Inter-ORB Protocol (IIOP) technology was developed to allow
implementation of CORBA solutions over the World Wide Web. IIOP lets
browsers and servers exchange complex objects such as arrays, unlike HTTP,
which only supports transmission of text.

RMI over IIOP technology makes it possible for a single client to access
services which were only accessible from either RMI or CORBA clients in the
past. This technology is a hybrid of the JRMP protocol used with RMI and
IIOP used with CORBA. RMI over IIOP allows CORBA clients to access new
technologies such as Enterprise Java Beans (EJB) among other J2EE
standards.

VuGen provides full support for recording and replaying Vusers using the
RMI over IIOP protocol. Depending on what you are recording, you can
utilize VuGen’s RMI recorder to create a script that will optimally emulate a
real user:

➤ Pure RMI client: recording a client that uses native JRMP protocol for
remote invocations

➤ RMI over IIOP client: recording a client application that was compiled
using the IIOP protocol instead of JRMP (for compatibility with CORBA
servers).

Chapter 34 • Developing RMI-Java Vuser Scripts

477

Recording an RMI Vuser

Before recording an RMI Vuser, verify that your application or applet
functions properly on the recording machine.

Ensure that you have properly installed a JDK version from Sun on the
machine running the script—JRE alone is insufficient. You must complete
this installation before recording a Vuser script. Verify that the classpath and
path environment variables are set according to the JDK installation
instructions.

Before you record, verify that your environment is configured properly.
Make sure that the required classes are in the classpath and that you have a
full installation of JDK. For more information on the required environment
settings, see Chapter 29, “Programming Java Scripts.”

Note that when you load an applet or application from VuGen during
recording, it may take several seconds longer than if you were to load it
independent of VuGen.

 1 To begin recording, choose File > New and select Rmi-Java from the
Distributed Components group. The Start Recording dialog box opens.

Part VII • Distributed Component Protocols

478

 2 In the Application Type box, select the appropriate value.

Java Applet to record a Java applet through Sun’s appletviewer.

Java Application to record a Java application.

Netscape or IExplore to record an applet within a browser.

Executable/Batch to record an applet or application that is launched from
within a batch file.

Listener mode instructs VuGen to wait for the batch file that initializes the
configuration and runs an application before recording. This mode requires
you to define the system variable _JAVA_OPTIONS as --Xrunjdkhook using
jdk1.2.x and higher. (For jdk 1.1.x, define the environment variable
_classload_hook=JDKhook.)

 3 In the Vendor Classes box select Network or Local.

 4 Specify additional parameters according for the following chart:

Note that a working directory is only necessary if your application must
know the location of the working directory (for example, reading property
files or writing log files).

 5 To set recording options, such as command line parameters for the JVM,
click Options. For information about setting recording options, see
Chapter 18, “Setting Java Recording Options.”

Application Type Fields to Set

Java Applet Applet Path, Working Directory

Java Application App. Main Class, Working Directory, App. parameters

IExplore IExplore Path, URL

Netscape Netscape Path, URL

Executable/Batch Executable/Batch, Working Directory

Listener N/A

Chapter 34 • Developing RMI-Java Vuser Scripts

479

 6 In the Record into Action box, select the section corresponding to the
method into which you want to record. The Actions class contains three
methods: init, action, and end, corresponding to the vuser_init, Actions,
and vuser_end sections. The following table shows what to include into
each method, and when each method is executed.

 7 Click OK to begin recording. VuGen starts your application, minimizes itself
and opens a progress bar and the floating recording toolbar. The progress
toolbar displays the names of classes as they load. This indicates that the
Java recording support is active.

 8 Perform typical actions within your application. Use the floating toolbar to
switch methods during recording.

 9 After recording the typical user actions, select the vuser_end section from
the floating toolbar.

Perform the log off procedure. VuGen records the procedure into the end
method of the script.

method within
Actions class

Record into
action

Used to emulate... Executed during...

init vuser_init a login to a server Initialization

action Actions client activity Running

end vuser_end a log off procedure Finish or Stopped

Part VII • Distributed Component Protocols

480

 10 Click Stop Recording on the Recording toolbar. The VuGen script editor
displays all the recorded statements.

 11 Click Save to save the script. The Save Test dialog box opens (for new Vuser
scripts only). Specify a script name.

Working with RMI Vuser Scripts

This section describes the elements of the Java Vuser script that are specific to
RMI Vusers. RMI does not have constructs (as in CORBA)—instead it uses
Serializable Java objects. The first section performs a Naming Registry
initialization and configuration. The next section is generated when Java
objects (both Remote and Serializable) are located and casted. The following
section consists of the server invocations on the Java objects. In RMI there is
no specific shutdown section (unlike CORBA). Note that objects might
appear multiple times within the script.

Chapter 34 • Developing RMI-Java Vuser Scripts

481

In the following segment, a naming registry is located. This is followed by a
a lookup operation to obtain a specific Java object. You can then work with
the object and perform invocations like set_sum, increment and get_sum.
The following segment also shows how VuGen imports all of the necessary
RMI classes.

When recording RMI Vusers, your script may contain several calls to
lr.deserialize, which deserializes all of the relevant objects. The
lr.deserialize calls are generated because the object being passed to the next
invocation could not be correlated to a return value from any of the
previous calls. VuGen therefore records its state and uses lr.deserialize call
to represent these values during replay. The deserialization is done before
VuGen passes the objects as parameters to invocations. For more
information, see “Using the Serialization Mechanism” on page 264.

Import java.rmi.*;
Import java.rmi.registry.*;

:
:

// Public function: action
public int action() throws Throwable {

_registry = LocateRegistry.getRegistry(“localhost”,1099);

counter = (Counter)_registry.lookup(“Counter1”);

counter.set_sum(0);
counter.increment();
counter.increment();
counter.get_sum();

return lr.PASS;
}

:

Part VII • Distributed Component Protocols

482

Part VIII

E-Business Protocols

484

485

35
Developing FTP Vuser Scripts

VuGen allows you to emulate network activity by directly accessing an FTP
server.

This chapter describes:

➤ About Developing FTP Vuser Scripts

➤ Working with FTP Functions

The following information applies only to FTP Vuser scripts.

About Developing FTP Vuser Scripts

The FTP protocol is a low-level protocol that allows you to emulate the
actions of a user working against an FTP server.

For FTP, you emulate users logging into to an FTP server, transferring files,
and logging out. To create a script, you can record an FTP session or
manually enter FTP functions.

When you record an FTP session, VuGen generates functions that emulate
the mail client’s actions. If the communication is performed through
multiple protocols such as FTP, HTTP, and a mail protocol, you can record all
of them. For instructions on specifying multiple protocols, see Chapter 4,
“Recording with VuGen.”

To create a script for the FTP protocol, you choose the FTP protocol type in
the E-Business category. To begin recording, you click the Record button and
perform typical actions against the FTP server. For more information on
creating and recording a script, see Chapter 4, “Recording with VuGen.”

Part VIII • E-Business Protocols

486

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Working with FTP Functions

You can indicate the programming language in which to create a Vuser
script. For more information, see Chapter 5, “Setting Script Generation
Preferences.” The following section describes the functions that are
generated for C language type Virtual User scripts.

FTP Vuser script functions record the File Transfer Protocol (FTP). Each FTP
function begins with an ftp prefix.

Most FTP functions come in pairs—one for global sessions and one where
you can indicate a specific mail session. To apply the action to all sessions,
use the version without the ex suffix. To apply the action to a specific
session, use the version with the session identifier with the ex suffix. For
example, ftp_logon logs on to the FTP server globally, while ftp_logon_ex
logs on to the FTP server for a specific session.

Function Name Description

ftp_delete[_ex] Deletes a file from an FTP server.

ftp_dir[_ex] Runs the dir command on the FTP server.

ftp_get[_ex] Gets a file from an FTP server.

ftp_get_last_error Retrieves the last error received from the FTP server.

ftp_get_last_error_id Retrieves the ID of the last error that was received
from the FTP server.

ftp_logon[_ex] Performs a logon to an FTP server.

ftp_logout[_ex] Performs a logout from an FTP server.

ftp_mkdir[_ex] Creates a directory on the FTP server machine.

ftp_put[_ex] Puts a file on an FTP server.

Chapter 35 • Developing FTP Vuser Scripts

487

For the ftp_get[_ex], ftp_put[_ex], and ftp_dir[_ex] functions, you can set
attributes that allow you to accurately emulate an FTP session:

PATH: The file to upload on the FTP server. (can only be used when
MSOURCE_PATH is NOT specified)

MPATH: Specifies multiple files to upload to the FTP server.(not ftp_dir)

TARGET_PATH (optional): The path and filename in which to place the file
on the server machine. (ftp_put only)

LOCAL_PATH (optional): The path and filename in which to place the file on
the local machine. (ftp_get only)

MODE (optional): Retrieval mode ASCII or BINARY (default).

PASSIVE (optional): Sets the communication with the server to PASSIVE
transmission mode.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

ftp_rendir[_ex] Renames a directory on the FTP server machine.

ftp_rmdir[_ex] Deletes a directory on the FTP server machine.

Part VIII • E-Business Protocols

488

In the following example, the ftp_delete function deletes the test.txt file
from the FTP server.

Actions()
{

ftp_logon("FTP",
"URL=ftp://user:pwd@ftp.merc-int.com",
"LocalAddr=ca_server:21",
LAST);

ftp_delete("Ftp_Delete",
"PATH=/pub/for_jon/test.txt", ENDITEM,
LAST);

ftp_logout();
return 1;

}

489

36
Developing LDAP Vuser Scripts

VuGen allows you to emulate the communication with an LDAP server.

This chapter describes:

➤ About Developing LDAP Vuser Scripts

➤ Working with LDAP Functions

➤ Defining Distinguished Name Entries

The following information applies only to LDAP Vuser scripts.

About Developing LDAP Vuser Scripts

LDAP, the Lightweight Directory Access Protocol, is a protocol used to access
a directory listing. The LDAP directory is composed of many LDAP entries.
Each LDAP entry is a collection of attributes with a name, called a
distinguished name (DN). For more information about DN, see “Defining
Distinguished Name Entries” on page 493.

LDAP directory entries are arranged in a hierarchical structure that reflects
political, geographic, and/or organizational boundaries. Entries representing
countries appear at the top of the tree. Below them are entries representing
states or national organizations. Below them might be entries representing
people, organizational units, printers, documents, or just about anything
else.

VuGen records communication over LDAP servers. It creates a script, with
functions that emulate your actions. This includes logging in and out of the
server, adding and deleting entries, and querying an entry.

Part VIII • E-Business Protocols

490

To create a script for the LDAP protocol, you choose the LDAP protocol type
in the E-Business category. To begin recording, choose Vuser > Start
Recording, and perform typical actions against the LDAP server. For more
information on the recording procedure, see Chapter 4, “Recording with
VuGen.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Working with LDAP Functions

You can indicate the programming language in which to create a Vuser
script. For more information, see Chapter 5, “Setting Script Generation
Preferences.” The following section describes the functions that are
generated for C language type Virtual User scripts.

LDAP Vuser script functions emulate the LDAP protocol. Each LDAP
function begins with an mldap prefix.

All LDAP functions come in pairs—one for global sessions and one where
you can indicate a specific session. To apply the action to all sessions, use
the version without the ex suffix. To apply the action to a specific session,
use the version with the session identifier with the ex suffix. For example,
mldap_logon logs on to the LDAP server globally, while mldap_logon_ex
logs on to the LDAP server for a specific session.

Function Name Description

mldap_add Adds an entry to the LDAP directory.

mldap_add_ex Adds an entry to the LDAP directory for a
specific session.

mldap_delete Deletes an entry or attribute.

mldap_delete_ex Deletes an entry or attribute for a specific
session.

Chapter 36 • Developing LDAP Vuser Scripts

491

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

mldap_get_attrib_name Gets an attribute name.

mldap_get_attrib_name_ex Gets an attribute name a specific session.

mldap_get_attrib_value Gets an attribute value for the current entry.

mldap_get_attrib_value_ex Gets an attribute value for the current entry,
for a specific session.

mldap_get_next_entry Displays the next search result.

mldap_get_next_entry_ex Displays the next search result, for the
specified session.

mldap_logon Performs a logon to an LDAP server.

mldap_logon_ex Performs a logon to an LDAP server for a
specific session.

mldap_logoff Performs a logout from an LDAP server.

mldap_logoff_ex Performs a logout from an LDAP server for a
specific session.

mldap_modify Modifies an entry’s attribute value.

mldap_modify_ex Modifies an entry’s attribute value for a
specific session.

mldap_rename Renames an entry.

mldap_rename_ex Renames an entry for a specific session.

mldap_search Performs a search on an LDAP server.

mldap_search_ex Performs a search on an LDAP server for a
specific session.

Part VIII • E-Business Protocols

492

In the following example, the user logs on to an LDAP server, ldap1. It adds
an entry and then renames the OU attribute from Sales to Marketing.

Action()
{

// Logon to the LDAP server
mldap_logon("Login",

"URL=ldap://johnsmith:tiger@ldap1:80",
LAST);

// Add an entry for Sally R. Jones
mldap_add("LDAP Add",

 "DN=cn=Sally R. Jones,OU=Sales, DC=com",
 "Name=givenName", "Value=Sally", ENDITEM,
 "Name=initials", "Value=R", ENDITEM,
 "Name=sn", "Value=Jones", ENDITEM,
 "Name=objectClass", "Value=contact", ENDITEM,
 LAST);

// Rename Sally’s OU to Marketing
mldap_rename("LDAP Rename",

 "DN=CN=Sally R. Jones,OU=Sales,DC=com",
 "NewDN=OU=Marketing",
 LAST);

// Logout from the LDAP server
mldap_logoff();

return 0;
}

Chapter 36 • Developing LDAP Vuser Scripts

493

Defining Distinguished Name Entries

The LDAP API references objects by its distinguished name (DN). A DN is a
sequence of relative distinguished names (RDN) separated by commas.

An RDN is an attribute with an associated value in the form attribute=value.
The attribute names are not case-sensitive. The following table lists the most
common RDN attribute types.

The following are examples of distinguished names:

DN=CN=John Smith,OU=Accounting,DC=Fabrikam,DC=COM
DN=CN=Tracy White,CN=admin,DC=corp,DC=Fabrikam,DC=COM

String Attribute Type

DC domainComponent

CN commonName

OU organizationalUnitName

O organizationName

STREET streetAddress

L localityName

ST stateOrProvinceName

C countryName

UID userid

Part VIII • E-Business Protocols

494

The following table lists reserved characters that cannot be used in an
attribute value.

To use a reserved character as part of an attribute value, you must precede it
with an escape character, a backslash (\). If an attribute value contains other
reserved characters, such as the equal sign (=) or non-UTF-8 characters, you
must encode it in hexadecimal format—a backslash followed by two hex
digits.

The following are examples of DNs that include escaped characters. The first
example is an organizational unit name with an embedded comma; the
second example is a value containing a carriage return.

DN=CN=Bitwise,OU=Docs\, Support,DC=Fabrikam,DC=COM
DN=CN=Before\0DAfter,OU=Test,DC=North America,DC=Fabrikam,DC=COM

Character Description

space or # character at the beginning of a
string

space character at the end of a string

, comma

+ plus sign

" double quote

\ backslash

< left angle bracket

> right angle bracket

; semicolon

495

37
Recording Microsoft .NET Vuser Scripts

VuGen records applications that were created in the .NET Framework
environment.

This chapter describes:

➤ About Recording Microsoft .NET Vuser Scripts

➤ Getting Started with Microsoft .NET Vusers

➤ Setting Microsoft .NET Recording Options

➤ Viewing Scripts in VuGen and Visual Studio

➤ Adding .NET References in the Run-Time Settings

➤ Viewing Data Sets and Grids

➤ Troubleshooting Your Script

➤ Correlating Microsoft .NET Scripts

The following information only applies to Microsoft .NET Vuser scripts.

Part VIII • E-Business Protocols

496

About Recording Microsoft .NET Vuser Scripts

Microsoft’s .NET Framework provides a a solid foundation for developers to
build various types of applications such as ASP.NET, Windows Forms, Web
Services, distributed applications, or applications that combine several of
these models.

VuGen allows you to create Vuser scripts that emulate users of Microsoft
.NET client applications created in its .NET Framework. VuGen records all of
the clients actions through methods and classes, and creates a script in VB
.NET.

By default, the VuGen environment is configured for ADO .NET
applications. Contact Customer Support for information on how to
configure VuGen to record applications created with other models.

Limitations

The following limitations apply to the VuGen recording of a Microsoft .NET
application:

➤ Recording is only supported for .NET Framework 1.1.

➤ It is recommended that you install .NET Framework 1.1 before installing
VuGen. If you install .NET Framework after VuGen, you must manually
install the MICGenericHook by running installmicgenerichook.msi in the
<LoadRunner root>\bin folder.

➤ Events are not supported.

➤ Microsoft .NET scripts only support single-protocol recording in VuGen.

➤ Direct access to public fields are not supported—you must access fields
through methods.

➤ VuGen does not record static fields in the applications—it only records
methods within classes.

➤ VuGen is only able to detect classes in a DLL file—it is unable to detect them
in an exe file.

➤ Multi-threaded support is dependent on the client application. If the
recorded application supports multi-threading, then the Vuser script will
also support multi-threading.

Chapter 37 • Recording Microsoft .NET Vuser Scripts

497

Getting Started with Microsoft .NET Vusers

This section describes the process of developing Microsoft .NET Vuser
scripts.

To develop a .NET Vuser script:

 1 Record the basic script using VuGen.

Start VuGen and create a new Vuser script. Specify Microsoft .NET as the
type of Vuser. Choose an application to record and set the recording
options. To set the script related recording options, see Chapter 5, “Setting
Script Generation Preferences.”

For details about recording, see Chapter 4, “Recording with VuGen.”

 2 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details about parameterization properties, see Chapter 8, “Working with
VuGen Parameters.”

 4 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see “Viewing Scripts in VuGen and Visual Studio” on page 499

 5 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

Part VIII • E-Business Protocols

498

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Setting Microsoft .NET Recording Options

You can set both General and Microsoft .NET-specific recording options.
This section describes the .Microsoft .NET recording options. For
information on the Script recording options, see Chapter 5, “Setting Script
Generation Preferences.”

To open the .NET Recording Options dialog box, choose Tools > Recording
Options. You can set one of the following options:

➤ Log Level

➤ Serialization Settings

Chapter 37 • Recording Microsoft .NET Vuser Scripts

499

Log Level

The Log Level options let you set the level of detail in the recording log file:
To disable logging, set the level to 0. Level 1 is the basic level of logging. It
creates a code generation log and logs all errors related to the
instrumentation process.

Serialization Settings

The Serialization options allow you to indicate whether or not to issue
serialization warnings and let you set the serialization format.

Serialization warnings: Issue serialization warnings during recording.

Serialization format: The format of the serialization file that VuGen creates
while recording a class that supports serialization: bin (binary), XML, or
both.

Viewing Scripts in VuGen and Visual Studio

After the recording, you can view the script in VuGen Script view. VB
functions represent all of the actions you performed in your application
during the recording session.

VuGen records the events that occurred, wrapping them in lr.log calls.

Part VIII • E-Business Protocols

500

For methods that support serialization, VuGen casts the serialized objects as
shown in the following example:

To run the script directly from VuGen, press F5 or choose Vuser > Run.

When you replay the script, first VuGen compiles it to ensure that all of the
calls are valid and that the syntax is correct. VuGen compiles the VB calls
into a DLL file with the name <script_name>.dll, which it saves in the
script’s dat folder. This single DLL file contains three functions - Init,
Actions, and End.

VuGen also creates a Visual Studio solution file (sln extension) in your
script’s Solution folder.

CultureInfo_1 = DirectCast(Utils.GetSerializedObject("CultureInfo_1.bin"),
System.Globalization.CultureInfo)

lr.log ("Event 20 : DSPubName_1.set_Locale")
DSPubName_1.Locale = CultureInfo_1

Chapter 37 • Recording Microsoft .NET Vuser Scripts

501

You can open the file in Visual Studio .NET and view all of its components
in the Solution Explorer. Click on VuserScript.vb to view the contents of the
script.

To debug the script and run it with breakpoints or step-by-step, run it from
within Visual Studio .NET—breakpoints and step-by-step replay are not
supported in VuGen’s editor window for Microsoft .NET Vusers.

Note that VuGen automatically loads all of the necessary references that
were required during recording. To add additional references for replay, use
the Solution Explorer or VuGen’s Run-Time settings. For more information,
see “Viewing Scripts in VuGen and Visual Studio” on page 499.

Part VIII • E-Business Protocols

502

Note: Before opening a script in Visual Studio .NET, make sure that you
compile the script after saving it. If you resave the script to a new location,
you must recompile it before opening it in Visual Studio.

Adding .NET References in the Run-Time Settings

Before running your Microsoft .NET Vuser script, you can specify the .NET
references to use during compilation from the Run-Time Settings dialog box.

Note that in a normal recording, VuGen automatically includes the
references that are required for the replay of the script. You can find these
references in the list of Component Name selected with check marks.

You can specify additional references in both Assembly and COM, by
selecting the reference in the Component Name list.

To specify .NET resources:

 1 Open the run-time setting—press F4 or choose Vuser > Run-Time Settings.

 2 Click on the .NET References node. in the left pane.

Chapter 37 • Recording Microsoft .NET Vuser Scripts

503

 3 Click the Assembly tab. The screen shows all the Assembly libraries in the
Gac—those that were automatically added to the script and those added
manually by the user.

 4 To add additional Assembly files, click Browse and locate the file.

 5 To use the resource, select the checkbox adjacent to the resource.

 6 Click the COM tab. VuGen shows all of the registered COM classes.

 7 To use the resource, select the checkbox adjacent to the resource.

 8 Click OK to store the settings and close the dialog box.

You can also set general run-time settings for your Microsoft .NET script for
configuring the pacing and iteration options. For more information, see
Chapter 12, “Configuring Run-Time Settings.”

In the Speed Emulation run-time settings, you set the network speed that
you want to emulate. For more information, see Chapter 13, “Configuring
Network Run-Time Settings.”

Part VIII • E-Business Protocols

504

Viewing Data Sets and Grids

When you record a data set, VuGen generates a grid for the data.

To close the grid, click on the “-” in the margin adjacent to the beginning of
the grid. The VuGen editor hides the grid and displays:

The data set is stored in an XML file. You can view this XML file in the
script’s data/datasets folder, using the index number in the script as an
indicator to locate the file. For example, DATASET_XML(20) would be
represented by 20.xml.

By default, VuGen displays the grids in your script. To disable the grid
display and instruct VuGen to show the collapsed version of the grid, select
View > Enable Data Grids to remove the check mark. For more information,
see “Grids” on page 338.

DATASET_XML(20)

Chapter 37 • Recording Microsoft .NET Vuser Scripts

505

Troubleshooting Your Script

The following section provides tips for successfully recording a .NET
application with VuGen.

Security Exceptions

A Security Exception that occurs while recording an application is usually
due to a lack of permissions—the recording machine does not have
sufficient permissions to record the application. This is common where your
application is not local, but on the Intranet or network.

To solve this problem, you need to allow the recording machine to access
the application and the script with Full Trust.

One solution is to copy the application and save your script locally, since by
default, Vusers have Full Trust permissions to all local applications and
folders.

An additional solution is to create new code groups that gives Full Trust to
each application folder, and the script folder.

To grant Full Trust permissions to a specific folder:

 1 Open the .NET Configuration settings. Choose Start > Programs >
Administrative Tools > Microsoft .NET Framework 1.1 Configuration. The
.NET Configuration window opens.

 2 Expand the Runtime Security Policy node to show the Code Groups of the
machine.

Part VIII • E-Business Protocols

506

 3 Select the All_Code node.

 4 Choose Action > New …. The Create New Code Group dialog box opens.

 5 Enter a name for a new Code Group for your application or script. Click
Next.

Chapter 37 • Recording Microsoft .NET Vuser Scripts

507

 6 Select the URL condition type. In the URL box, specify the full path of the
application or script in the format file://… and click Next.

 7 Choose the FullTrust permission set. Click Next.

Part VIII • E-Business Protocols

508

 8 Click Finish in the Completing the Wizard dialog box. The configuration
tool adds your Code Group to the list of existing groups.

 9 Repeat the above procedure for all .NET applications that you plan to
record.

 10 Repeat the above procedure for the Vuser script folder.

Note: Make sure that the script folder has FullTrust permissions on all Load
Generator machines that are participating in the test (LoadRunner only).

Chapter 37 • Recording Microsoft .NET Vuser Scripts

509

Correlating Microsoft .NET Scripts

After you record a session, you may need to correlate one or more values
within your script. Correlating a value means that you capture a value
during the script replay, and save it to a parameter. You can then use this
parameter at a later point in the script.

To correlate a value within your Microsoft .NET Vuser script, you manually
insert a correlation function, lr.save_string, in order to save the desired
value to a parameter.

We will use the following script segment to illustrate correlation. In the
following segment, the SqlDataAdapter_1Fill function retrieves the
CustomersAndOrdersDataSet_2 DataSet from the server which contains the
Customers table/

In the next section, we create a statement that saves the first CustomerID to
a string inside the MyCustomerID variable (defined in globals.vb). This ID
is located in the first row, Row (0), and first column, CustomerID, of the
table.

lr.log ("Event 11 : SqlDataAdapter_1.Fill")
Int32_1 = SqlDataAdapter_1.Fill (CustomersAndOrdersDataSet_2, "Cus-
tomers")

'CustomersAndOrdersDataSet_2.Tables("Customers") :

MyCustomerID = CustomersAndOrdersDataSet_2.Tables("Custom-
ers").Rows(0)(CustomersAndOrdersDataSet_2.Tables("Customers").
Columns("CustomerID")).ToString()

Part VIII • E-Business Protocols

510

Next, we save the string to a Vuser parameter using lr.save_string. This
prepares the string for the Vuser and allows it to be called during replay.

Finally, we use the parameter by calling it at a later point in the script.

For more information about using correlation functions, refer to the Online
Function Reference.

To correlate a value

 1 Declare a variable in the globals.vb section.

 2 Locate the dataset in your script. After the dataset is returned, save the
desired value from the dataset to the defined variable. For example:

 3 Insert the lr.save_string function and define a parameter. For example:

 4 Reference the parameter at a later point in the script.

' Save it as LR parameter
lr.save_string("MyCustomerID", CustomerID_param)

' Use LR parameter for correlation
lr.log(lr.eval_string("{CustomerID_param}"))

Dim MyCustomerID As string

DATASET_XML(0)

' Get the first CustomerID value returned from the DB
MyCustomerID = CustomersAndOrdersDataSet_2.Tables("Custom-
ers").Rows(0)(CustomersAndOrdersDataSet_2.Tables("Customers").Col-
umns("CustomerID")).ToString()

lr.save_string("MyCustomerID", CustomerID_param)

lr.log(lr.eval_string("{CustomerID_param}"))

511

38
Creating Web Vuser Scripts

You use VuGen to develop Web Vuser scripts. VuGen creates Vuser scripts by
recording your actions while you operate a client browser.

This chapter describes:

➤ About Developing Web Vuser Scripts

➤ Introducing Web Vusers

➤ Understanding Web Vuser Technology

➤ Getting Started with Web Vuser Scripts

➤ Recording a Web Session

➤ Converting Web Vuser Scripts into Java

The following information applies to Web (HTML/HTTP) Vuser scripts.

About Developing Web Vuser Scripts

You use VuGen to develop Web Vuser scripts. While you navigate through a
site performing typical user activities, VuGen records your actions and
generates a Vuser script. When you run the script, the resulting Vuser
emulates a user accessing the Internet.

After you create a Vuser script, you run the script in standalone mode using
VuGen. When the execution is successful, you are ready to integrate the
Vuser script into a scenario or session step. For details on how to integrate a
Vuser script into a scenario or session step, refer to the LoadRunner Controller
User’s Guide and the ProTune Console User’s Guide.

Part VIII • E-Business Protocols

512

Introducing Web Vusers

Suppose you have a Web site that displays product information for your
company. The site is accessed by potential customers. You want to ensure
that the response time for any customer query is less than a specified value
(for example, 20 seconds)—even when a large number of users (for example
200) access the site simultaneously. You use Vusers to emulate this case,
where the Web server services simultaneous requests for information. Each
Vuser could do the following:

➤ Load a home page

➤ Navigate to the page containing the product information

➤ Submit a query

➤ Wait for a response from the server

You can distribute several hundred Vusers among the available testing
machines, each Vuser accessing the server by using its API. This enables you
to measure the performance of the server under the load of many users.

The program that contains the calls to the server API is called a Vuser script.
It emulates a browser application and all of the actions performed by the
browser. Using the Console or Controller, you assign the script to multiple
Vusers. The Vusers execute the script and emulate user load on the Web
server.

Chapter 38 • Creating Web Vuser Scripts

513

Understanding Web Vuser Technology

VuGen creates Web Vuser scripts by recording the activity between a
browser and a Web server. VuGen monitors the client (browser) end of the
system and traces all the requests sent to, and received from, the server.

When you run a recorded Vuser script, either in VuGen or from the Tuning
Module Console, the Vuser communicates directly with the server without
relying on client software. Instead, the Vuser script executes calls directly to
the Web server via API functions.

Client runs a
browser application.

VuGen records
script.

Server receives and
sends requests.

o

Web virtual user
executes API calls.

Server receives and
sends requests.

Part VIII • E-Business Protocols

514

Getting Started with Web Vuser Scripts

This section provides an overview of the process of developing Web Vuser
scripts.

To develop a Web Vuser script:

 1 Create a new script using VuGen.

Select File > New or click the New button to create a new Web (HTTP/HTML)
script from the e-business category, in either single or multiple protocol
mode.

For details about creating a new script, see Chapter 4, “Recording with
VuGen.”

 2 Set the recording options.

Set the recording options. For information about setting common Internet
recording options, see Chapter 40, “Setting Recording Options for Internet
Protocols.”

For details about Web specific recording options, see Chapter 41, “Setting
Recording Options for Web Vusers.”

 3 Record a browser session.

Record your actions while you navigate your Web site.

For details about creating a new script, see Chapter 4, “Recording with
VuGen.”

 4 Enhance the recorded Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points,
checks, and service steps.

For details, see Chapter 44, “Verifying Web Pages Under Load”, Chapter 45,
“Modifying Web and Wireless Vuser Scripts”, and Chapter 46, “Setting
Correlation Rules for Web Vuser Scripts.”

 5 Define parameters (optional).

Define parameters for the fixed values recorded into your script. By
substituting fixed values with parameters, you can repeat the same Vuser
action many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

Chapter 38 • Creating Web Vuser Scripts

515

 6 Configure the run-time settings.

The run-time settings control Vuser behavior during script execution. These
settings include general run-time settings (iteration, log, think time, and
general information), and Web-related settings (proxy, network, and HTTP
details).

For details, see Chapter 12, “Configuring Run-Time Settings.”

 7 Perform correlation.

Scan your Vuser script for correlations and use one of VuGen’s mechanisms
to implement them.

For details, see Chapter 46, “Setting Correlation Rules for Web Vuser Scripts”
and Chapter 47, “Correlating Vuser Scripts After Recording.”

 8 Run and debug the Vuser script using VuGen.

Run the Vuser script from VuGen to verify that it runs correctly.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode”
and Chapter 49, “Using Reports to Debug Vuser Scripts.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Part VIII • E-Business Protocols

516

Recording a Web Session

When you record a Web session, VuGen monitors all the actions that you
perform in your Web browser. Your activities can include hyperlink jumps
(both hypertext and hypergraphic) and form submissions. While recording,
VuGen saves the recorded actions in a Web Vuser script.

Each Vuser script that you create contains at least three sections: vuser_init,
one or more Actions, and vuser_end. During recording, you can select the
section of the script into which VuGen will insert the recorded functions.
The vuser_init and vuser_end sections are generally used for recording server
login and logoff procedures, which are not repeated when you run a Vuser
script with multiple iterations.
You should therefore record a Web session into the Actions sections so that
the complete browser session is repeated for each iteration.

Chapter 38 • Creating Web Vuser Scripts

517

VuGen creates a script describing user actions. By default, it generates a
script with functions that correspond directly to the action taken. It creates
URL (web_url), link (web_link), image (web_image), and form submission
(web_submit_form) functions. The resulting script is very intuitive and it
resembles a context sensitive recording.

/* HTML-based mode - a script describing user actions*/
...
web_url("MercuryWebTours",

"URL=http://localhost/MercuryWebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);

web_link("Click Here For Additional Restrictions",
"Text=Click Here For Additional Restrictions",
"Snapshot=t4.inf",
LAST);

web_image("buttonhelp.gif",
"Src=/images/buttonhelp.gif",
"Snapshot=t5.inf",
LAST);

…

Part VIII • E-Business Protocols

518

Converting Web Vuser Scripts into Java

VuGen provides a utility that enables you to convert a script created for a
Web Vuser into a script for Java Vusers. This also allows you to create a
hybrid Vuser script for both Web and Java.

To convert a Web Vuser script into a Java Vuser script:

 1 Create an empty Java Vuser script and save it.

 2 Create an empty Web Vuser script and save it.

 3 Record a web session using standard HTML/HTTP recording.

 4 Replay the Web Vuser script. When it replays correctly, cut and paste the
entire script into a text document and save it as a text .txt file. In the text
file modify any parameter braces from the Web type, “{ }” to the Java type,
“< >”.

 5 Open a DOS command window and go to your product’s dat directory.

 6 Type the following command:

<application_directory>\bin\sed -f web_to_java.sed filename > outputfilename

where filename is the full path and filename of the text file you saved earlier
and outputfilename is the full path and filename of the output file.

 7 Open the output file, and copy its contents into your Java Vuser script
action section at the desired location. If you are pasting the contents into an
empty custom Java template (Java Vuser type), modify the line containing
public int action() as follows:

public int action() throws Throwable

This change is done automatically for recorded Java users (RMI and Corba).

Parameterize and correlate the Vuser script as you would with an ordinary
Java script and run it.

519

39
Using Web Vuser Functions

You use VuGen to develop Web Vuser scripts. VuGen creates Vuser scripts by
recording your actions while you operate a client browser.

This chapter describes:

➤ About Web Vuser Functions

➤ Adding and Editing Functions

➤ Web Function List

➤ Improving Performance Using Caching

The following information applies to Web and Wireless Vuser scripts.

About Web Vuser Functions

The functions developed to emulate Internet communication between a
browser or toolkit and a Web server are called Web Vuser functions. Each
Web Vuser function has a web prefix. Some functions are generated when
you record a script; others you must manually insert into the script.

For detailed information and examples of the Internet Protocol functions,
refer to the Online Function Reference (Help > Function Reference).

VuGen can display a Web or Wireless Vuser script in two ways:

➤ As an icon-based representation of the Vuser script. This is the default
view, and is known as the Tree view (not available for WAP Vusers).

➤ As a text-based representation of the Vuser script. This is known as the
Script view.

Part VIII • E-Business Protocols

520

For more information, see “Viewing and Modifying Vuser Scripts” on
page 17.

Adding and Editing Functions

Many of the Web Vuser functions are recorded during the browser or toolkit
session.

You can manually add general Vuser functions such as transactions,
rendezvous, comments, and log functions during recording. For more
information, see Chapter 7, “Enhancing Vuser Scripts.”

This section describes how to add and edit Web Vuser functions during and
after recording in both Tree view and Script view.

To add a new function to an existing Vuser script:

 1 Choose Insert > New Step. The Add Step dialog box opens.

Chapter 39 • Using Web Vuser Functions

521

 2 Select the desired function and click OK. Most Web Vuser functions are
under the Services category. The Properties dialog box for that function
opens. This dialog box lets you specify the function’s arguments.

 3 Specify the properties and click OK. VuGen inserts the function with its
arguments at the location of the cursor.

You can edit existing steps by opening the Properties dialog box and
modifying the argument values. This is only valid for protocols that support
tree view (not available for WAP).

To edit an existing step:

 1 In the tree view, select Properties from the right-click menu. The Properties
dialog box for that function opens.

 2 Modify the argument values as necessary and click OK.

Part VIII • E-Business Protocols

522

Web Function List

The Web Vuser functions that represent communication over the Internet,
begin with the web prefix. The Web functions are categorized as follows:

➤ Action Functions

➤ Authentication Functions

➤ Cache Function

➤ Check Functions

➤ Connection Definition Functions

➤ Concurrent Group Functions

➤ Cookie Functions

➤ Correlation Functions

➤ Filter Functions

➤ Header Functions

➤ Proxy Server Functions

➤ Miscellaneous Functions

GUI-level Vusers use additional functions to emulate user actions. For more
information, see “Using GUI-Level Vuser Functions” on page 806.

Chapter 39 • Using Web Vuser Functions

523

Action Functions

When you record a Web Vuser script, VuGen generates the following action
functions, and inserts them into the script:

Authentication Functions

web_custom_request Allows you to create a custom HTTP
request with any method supported by
HTTP.

web_image Emulates a mouse click on the defined
image.

web_link Emulates a mouse click on the defined
text link.

web_submit_data Performs an "unconditional" or
"contextless" form submission.

web_submit_form Emulates the submission of a form.

web_url Loads the URL specified by the "URL"
attribute.

web_set_certificate Causes a Vuser to use a specific
certificate that is listed in the Internet
Explorer registry.

web_set_certificate_ex Specifies location and format
information of a certificate and key
file.

web_set_user Specifies a login string and password
for a Web server, for user-
authenticated areas in the Web server.

Part VIII • E-Business Protocols

524

Cache Function

Check Functions

Connection Definition Functions

web_cache_cleanup Clears the contents of the cache
simulator.

web_dump_cache Dumps the resources into the browser
cache.

web_load_cache Loads the contents of the cache.

web_find Searches inside an HTML page for a
specified text string.

web_global_verification Searches for a text string in all
subsequent HTTP requests.

web_image_check Verifies the presence of a specified
image inside an HTML page.

web_reg_find Registers a search for a text string in
an HTML source or raw buffer, in the
subsequent HTTP request.

web_disable_keep_alive Disables keep-alive HTTP connections.

web_enable_keep_alive Enables keep-alive HTTP connections.

web_set_connections
_limit

Sets the maximum number of
simultaneous connections that a
Vuser can open when running a
script.

Chapter 39 • Using Web Vuser Functions

525

Concurrent Group Functions

Cookie Functions

Correlation Functions

web_concurrent_end Marks the end of a concurrent group.

web_concurrent_start Marks the beginning of a concurrent
group.

web_add_cookie Adds a new cookie or modifies an
existing one.

web_cleanup_cookies Removes all the cookies that are
currently stored by the Vuser.

web_remove_cookie Removes the specified cookie.

web_create_html_param Saves dynamic information on
an HTML page to a parameter
(LR 6.5 and earlier).

web_create_html_param_ex Creates a parameter based on
the dynamic information
contained in an HTML page -
uses embedded boundaries. (LR
6.5 and below)

web_reg_save_param Creates a parameter based on
the dynamic information
contained in an HTML page -
does not use embedded
boundaries.

web_set_max_html_param_len Sets the maximum length of
retrieved dynamic HTML
information.

Part VIII • E-Business Protocols

526

Filter Functions

Header Functions

web_add_filter Sets criteria to includes or exclude
URLs when downloading.

web_add_auto_filter Sets criteria to includes or exclude
URLs when downloading.

web_remove_auto_filter Disables filtering of download
content.

web_add_auto_header Adds a customized header to all
subsequent HTTP requests.

web_add_header Adds a customized header to the
next HTTP request.

web_cleanup_auto_headers Stops adding customized headers to
subsequent HTTP requests.

web_remove_auto_header Stops adding a specific header to
subsequent HTTP requests.

web_revert_auto_header Stops adding a specific header to
subsequent HTTP requests, but
generates implicit headers.

web_save_header Saves request and response headers
to a variable.

Chapter 39 • Using Web Vuser Functions

527

Proxy Server Functions

Replay Functions

Miscellaneous Functions

web_set_proxy Specifies that all subsequent HTTP
requests be directed to the specified
proxy server.

web_set_proxy_bypass Specifies the list of servers that
Vusers access directly, that is, not
via the specified proxy server.

web_set_proxy_bypass_local Specifies whether or not Vusers
should bypass the proxy for local
(intranet) addresses.

web_set_secure_proxy Specifies that all subsequent HTTPS
requests be directed to the server.

web_set_max_retries Sets the maximum number of retries
for an Action step.

web_set_timeout Specifies the maximum amount of
time that a Vuser waits to execute a
specified task.

web_convert_param Converts an HTML parameter to a
URL or plain text.

web_get_int_property Returns specific information about
the previous HTTP request.

web_report_data_point Specifies a data point and adds it to
test results.

web_set_option Sets a Web option in the area of
encoding, redirection, and
downloading of non-HTML resources.

web_set_sockets_option Sets an option for sockets.

Part VIII • E-Business Protocols

528

Control Type Functions

In addition to Web Vuser functions, the following control functions may
also appear in your Vuser script:

For more information on adding general Vuser functions to scripts, see
Chapter 7, “Enhancing Vuser Scripts.”

The following step types are supported in VuGen:

lr_start_transaction Marks the beginning of a transaction for
performance analysis or tuning.

lr_end_transaction Marks the end of a transaction for
performance analysis or tuning.

lr_rendezvous Sets a rendezvous point in the Vuser
script.

lr_think_time Pauses execution between commands in a
Vuser script.

Step Type Description

Service A Service step is a function that does not make any changes
in the Web application context. Rather, service steps
perform customization tasks such as setting proxies,
providing authorization information, and issuing
customized headers.

URL A URL icon is added to the Vuser script when you type in a URL
or use a bookmark to access a specific Web page. Each URL icon
represents a web_url function in the Vuser script. The default
label of a URL icon is the last part of the URL of the target page.

Link VuGen adds a Link icon when you click a hypertext link while
recording. Each Link icon represents a web_link function in the
Vuser script. The default label of the icon is the text string of the
hypertext link (only recorded for the HTML-based recording level).

Chapter 39 • Using Web Vuser Functions

529

Improving Performance Using Caching

By utilizing the cache-simulating capabilities of VuGen, you can
substantially improve user performance. The caching option reduces the
CPU usage by approximately 15%.

To implement caching within your script, you manually add the
web_dump_cache and web_load_cache functions.

Dumping Information to the Cache

The first step in implementing caching, is dumping the information to a
cache file. You run the web_dump_cache function to create a cache file in
the location specified in the FileName argument. Note that you only need to
run this function once to generate the cache file.

Image VuGen adds an Image icon to the Vuser script when you click a
hypergraphic link while recording. Each Image icon represents a
web_image function in the Vuser script. If the image in the
HTML code has an ALT attribute, then this attribute is used as the
default label of the icon. If the image in the HTML code does not
have an ALT attribute, then the last part of the SRC attribute is
used as the icon’s label (only recorded for the HTML-based
recording level).

Submit
Form /
Submit
Data

VuGen adds a Submit Form or Submit Data step when you
submit a form while recording. The default label of the step is the
name of the executable program used to process the form (Submit
Form only recorded for the HTML-based recording level).

Custom
Request

VuGen adds a Custom Request step to a Vuser script when you
record an action that VuGen can not recognize as any of the
standard actions (i.e., URL, link, image, or form submission). This
is applicable to non-standard HTTP applications.

Step Type Description

Part VIII • E-Business Protocols

530

In the following example, the web_dump_cache function creates a cache
file in C:\temp for each VuserName parameter running the script.

web_dump_cache("paycheckcache","FileName=c:\\temp\\{VuserName}paychec
k", "Replace=yes", LAST)

If you run a single Vuser user ten times, VuGen creates ten cache files in the
following format, where the prefix is the VuserName value:

Ku001paycheck.cache
Ku002paycheck.cache
Ku003paycheck.cache
…

You can modify the first and second arguments (in this example
paycheckcache and paycheck) to reflect the current transaction name. Place
this function at the end of your script, after you have loaded all of the
resources.

Loading Information from the Cache

The final step in implementing caching, is loading the information stored in
the cache file. The web_load_cache function loads a cache file whose
location is specified in the FileName argument. Note that the
web_load_cache function requires the cache file to exist. Therefore, you
can only run this function after running web_dump_cache.

In the following example, the web_load_cache function loads the paycheck
cache files from C:\temp.

web_load_cache("ActionLoad","FileName=c:\\temp\\{VuserName}paycheck",LA
ST)

Inserting the Caching Functions

To implement caching in your script, you must first store the information to
a cache file. During replay, each Vuser calls this information.

To use the caching functions:

 1 Insert the web_dump_cache function at the beginning of your script.

 2 Run the script at least once.

Chapter 39 • Using Web Vuser Functions

531

 3 Insert the web_load_cache function into your script, before the Vuser
actions.

 4 Comment out the web_dump_cache function.

 5 Run and save the script.

Caching Example

The following example illustrates a PeopleSoft Enterprise Vuser viewing the
details of his paycheck.

Action()
{
// web_add_cookie("storedCookieCheck=true; domain=pbntas05;
path=/");

web_load_cache("ActionLoad","FileName=c:\\temp\\{VuserName}pay-
check",LAST);

web_browser("signon.html",
DESCRIPTION,
ACTION,
"Navigate=http://pbntas05:8200/ps/signon.html",
LAST);

lr_think_time(35);

web_edit_field("userid",
"Snapshot=t1.inf",
DESCRIPTION,
"Type=text",
"Name=userid",
ACTION,
"SetValue={VuserName}",
LAST);

Part VIII • E-Business Protocols

532

web_edit_field("pwd",
"Snapshot=t2.inf",
DESCRIPTION,
"Type=password",
"Name=pwd",
ACTION,
"SetValue=HCRUSA_KU0007",
LAST);

lr_start_transaction("login");
web_button("Sign In",

"Snapshot=t3.inf",
DESCRIPTION,
"Type=submit",
"Tag=INPUT",
"Value=Sign In",
LAST);

lr_end_transaction("login", LR_AUTO);

web_image_link("CO_EMPLOYEE_SELF_SERVICE",
"Snapshot=t4.inf",
DESCRIPTION,
"Alt=",
"Name=CO_EMPLOYEE_SELF_SERVICE",
"Ordinal=1",
LAST); …

web_text_link("Sign out",
"Snapshot=t7.inf",
DESCRIPTION,
"Text=Sign out",
"FrameName=UniversalHeader",
LAST);

web_dump_cache("paycheck","FileName=c:\\{VuserName}paycheck",
"Replace=yes", LAST);

return 0;
}

533

40
Setting Recording Options for Internet
Protocols

For protocols that work over the Internet, you can customize the Internet
related recording options.

This chapter describes:

➤ About Setting Recording Options for Internet Protocols

➤ Working with Proxy Settings

➤ Setting Advanced Recording Options

➤ Setting a Recording Scheme

The following information only applies to Web, Wireless, and Oracle NCA
protocols.

About Setting Recording Options for Internet Protocols

VuGen creates Vuser scripts that emulate a true Internet environment.

Before recording, you can configure VuGen’s recording options relating to
the proxy and script generation preferences. You can also set protocol
specific recording options for Web Vuser scripts.

For more information, see the Recording Options chapter for your protocol.
You can open the Recording Options dialog box in several ways:

➤ The toolbar button:

➤ The keyboard shortcut: Ctrl+F7

➤ The Tools menu: choose Tools > Recording Options.

Part VIII • E-Business Protocols

534

Working with Proxy Settings

A proxy server is a server that resides between a client (such as a Web
browser) and a Web server. It intercepts all requests sent to the server and
attempts to fulfill these requests. Proxy servers are used for two primary
reasons—to improve performance and filter requests. To improve
performance, it stores Web pages accessed by one user and makes them
available to another user without accessing the server a second time. A
proxy server also lets an administrator filter the content that can be viewed
in browsers.

To use a proxy server, you specify its name or IP address in your browser’s
preferences. In typical cases, Internet Service Providers recommend that
their users connect through a proxy server, and companies require their
employees to access the Internet through a proxy server.

By default, VuGen uses the proxy settings from the recording browser.
VuGen also lets you customize the proxy settings for the recording session.
If you know in advance that your users access the Internet directly without
going through a proxy server, or that users will be using a specific proxy
server, other than your browser’s default, you can customize the proxy
settings.

Chapter 40 • Setting Recording Options for Internet Protocols

535

To customize the settings, select the Internet Protocol:Recording Proxy node
in the Recording Options tree and modify the recording proxy settings.

You can choose one of the following proxy options:

➤ No proxy (direct connection to the Internet): Always use a direct
connection to the Internet. This means that a direct connection is made
without using a proxy server. This usually corresponds with the Internet
Explorer setting of Automatically Detect Settings.

➤ Obtain the proxy settings from the recording browser: Use the proxy
settings from the recording browser. This is the default option. This
option is not available for Web/WinSock Vusers.

Part VIII • E-Business Protocols

536

➤ Use custom proxy. Use the specified proxy server during recording. You
can specify a proxy server for all non-secure HTTP sites and another
proxy server for all secure (HTTPS) sites. This section is only enabled
when the two above options are cleared.

If the HTTP and HTTPS proxy servers are the same, specify only the HTTP
address and port, and select the Use the same proxy server for all
protocols option.

Some proxy servers require authentication with a user name and password.
If you are recording a session through a proxy that requires authentication,
click the Authentication button and supply the relevant User name and
Password in the Proxy Authentication dialog box.

To specify host names or IP addresses that you want VuGen to access directly
(that is, without using a proxy server), click the No proxy for button. The
Proxy Exceptions dialog box opens.

Type the addresses that you want VuGen to access directly. Separate each
address with a semicolon.

Chapter 40 • Setting Recording Options for Internet Protocols

537

To specify that VuGen should not use the proxy server when it accesses local
(intranet) addresses, select the Do not use proxy server for local (intranet)
addresses option.

Restoring Proxy Settings

If you specify proxy setting for recording that are different from the
machine’s regular browser settings, VuGen restores the original browser
settings. By default, VuGen restores the original proxy settings immediately
after the launched browser reads them. To restore the original proxy settings
only after you stop recording, select the Delay restoring proxy settings until
recording has completed check box. This option only applies to Internet
Explorer.

Optimally, you should restore the proxy settings immediately to insure the
security of your machine. The option to restore the settings after recording
is less secure, but is required when the proxy settings might be read later.
This occurs, for example, when you are recording HTTP actions on applets,
ActiveX controls, and multi-window applications.

Part VIII • E-Business Protocols

538

Setting Advanced Recording Options

Use the Internet Protocol:Advanced settings to set the recording options in
the following areas:

➤ Internet Preferences Recording Options

➤ Selecting a Recording Engine

➤ Setting a Recording Scheme

Internet Preferences Recording Options

The Internet Preference options allow the customization of code generation
settings in the area of think time, resetting contexts, saving snapshots, and
the generation of web_reg_find functions. Note that some of these options
are not available in multi-protocol mode.

Reset context for each action: (Web, Oracle NCA only) This setting, enabled
by default, tells VuGen to reset all HTTP contexts between actions. Resetting
contexts allows the Vuser to more accurately emulate a new user beginning
a browsing session. This option resets the HTML context, so that a
contextless function is always recorded in the beginning of the action. It
also clears the cache and resets the user-names and passwords.

Save snapshot resources locally: This option instructs VuGen to save a local
copy of the snapshot resources during record and replay. This feature lets
VuGen create snapshots more accurately and display them quicker.

Generate web_reg_find functions for page titles: (Web, Oracle NCA only)
This option enables the generation of web_reg_find functions for all HTML
page titles. VuGen adds the string from the page’s title tag and uses it as an
argument for web_reg_find.

➤ Select Generate web_reg_find functions for sub-frames to enable the
generation of web_reg_find functions for page titles in all sub-frames of
the recorded page.

Add comment to script for HTTP errors while recording This option adds a
comment to the script for each HTTP request error. An error request is
defined as one that generated a server response value of 400 or greater
during recording.

Chapter 40 • Setting Recording Options for Internet Protocols

539

Support charset:

➤ UTF-8: This option enables support for UTF-8 encoding. This instructs
VuGen to convert non-ASCII UTF-8 characters to the encoding of your
locale’s machine in order to display them properly in VuGen. You should
enable this option only on non-English UTF-8 encoded pages. The
recorded site's language must match the operating system language. You
cannot record non-English Web pages with different encodings (e.g. UTF-
8 together with ISO-8859-1 or shift_jis) within the same script.

➤ EUC-JP: For users of Japanese Windows, select this option to enable
support for Web sites that use EUC-JP character encoding. This instructs
VuGen to convert EUC-JP strings to the encoding of your locale’s
machine in order to display them properly in VuGen. VuGen converts all
EUC-JP (Japanese UNIX) strings to the SJIS (Japanese Windows) encoding
of your locale’s machine, and adds a web_sjis_to_euc_param function to
the script. (Kanji only)

Selecting a Recording Engine

By default, VuGen uses the multi-protocol recording engine for all
recordings, even if you are only recording a single protocol.

To use the single-protocol recording engine for backward compatibility,
select the Record script using single-protocol recording engine option in
the Advanced Recording Options. If you enable this option, VuGen will use
the single-protocol engine the next time you record a session.

Part VIII • E-Business Protocols

540

Setting a Recording Scheme

You can further customize the recording by specifying a recording scheme in
the following areas:

➤ Recording Custom Headers

➤ Filtering Content Type

➤ Specifying Non-Resource Content Types

Recording Custom Headers

Web Vusers automatically send several standard HTTP headers with every
HTTP request submitted to the server. Click Headers to instruct VuGen to
record additional HTTP headers. You can work in three modes: Do not
Record Headers, Record Headers in list, or Record Headers not in list. When
you work in the first mode, VuGen does not record any headers. In the
second mode, VuGen only records the checked custom headers. If you
specify Record headers not in list, VuGen records all custom headers except
for those that are checked and other risky headers.

The following standard headers are known as risky headers: Authorization,
Connection, Content-Length, Cookie, Host, If-Modified-Since, Proxy-
Authenticate, Proxy-Authorization, Proxy-Connection, Referer, and
WWW-Authenticate. They are not recorded unless selected in the Header
list. The default option is Do not Record Headers.

In the Record Headers in List mode, VuGen inserts a web_add_auto_header
function into your script for each of the checked headers that it detects. This
mode is ideal for recording risky headers that are not recorded unless
explicitly stated.

In the Record Headers not in List mode, VuGen inserts a
web_add_auto_header function into your script for each of the unchecked
headers that it detects during recording.

To determine which custom headers to record, you can perform a recording
session indicating to VuGen to record all headers (see procedure below).
Afterwards, you can decide which headers to record and which to exclude.

Chapter 40 • Setting Recording Options for Internet Protocols

541

In this example, the Content-type header was specified in the Record
Headers in List mode. VuGen detected the header and added the following
statement to the script:

web_add_auto_header("Content-Type","application/x-www-form-urlencoded");

indicating to the server that the Content-type of the application is
x-www-form-urlencode.

To control the recording of custom headers:

 1 In the Recording Options tree, select the Internet Protocol:Advanced node.

 2 Click Headers. The Headers dialog box opens.

 3 Use one of the following methods:

➤ To instruct VuGen not to record any Headers, choose Do not Record
Headers.

➤ To record only specific headers, select Record Headers in list and select
the desired custom headers in the header list. Note that standard headers
(such as Accept), are selected by default.

➤ To record all headers, select Record Headers not in list and do not select
any items in the list.

➤ To exclude only specific headers, select Record Headers not in list and
select the headers you want to exclude.

Part VIII • E-Business Protocols

542

 4 Click Restore List to restore the list to the corresponding default list. The
Record Headers in list and Record Headers not in list each have a
corresponding default list.

 5 Click OK to accept the settings and close the Headers dialog box.

Filtering Content Type

VuGen allows you to filter the content type for your recorded script. You
specify the type of the content you wish to record or exclude from your
script. You can work in three modes: Do not Filter Content Types, Exclude
content types in list, or Exclude content types not in list. When you work in
the first mode, VuGen does not filter any content type. In the second mode,
VuGen only excludes the selected content types. If you specify Exclude
content types not in list, VuGen filters all content type except for the ones
that are checked. By default, no filters are active.

For example, if you are only interested in the text and images on your Web
site, you select Exclude content types not in list and specify the types
text/html, image/gif, and image/jpeg. VuGen will record all HTML pages
and images, and exclude resources such as text/css, application/x-javascript
or other resources that appear on the site.

Chapter 40 • Setting Recording Options for Internet Protocols

543

To filter content during recording:

 1 In the Recording Options tree, select the Internet Protocol:Advanced node.

 2 Click Content Types. The Content Type Filters dialog box opens.

 3 Use one of the following methods:

➤ To instruct VuGen not to filter any content, choose Do not Filter Content
Types.

➤ To exclude only specific content types, select Exclude content types in list
and select the desired content types from the list.

➤ To include only specific content types, select Exclude content types not
in list and select the content types you want to include.

 4 Click Restore List to restore the list to the corresponding default list. The
Exclude content types in list and Exclude content types not in list each have
a corresponding default list.

 5 Click OK to accept the settings and close the Content Type Filters dialog
box.

Part VIII • E-Business Protocols

544

Specifying Non-Resource Content Types

When you record a script, VuGen indicates whether or not it will retrieve
the resource during replay using the Resource attribute in the web_url
function. If the Resource attribute is set to 0, the resource is retrieved during
script execution. If the Resource attribute is set to 1, the Vuser skips the
resource type.

You can exclude specific content types from being handled as resources. For
example, you can indicate to VuGen that gif type resources should not be
handled as a resource and therefore be downloaded unconditionally. When
VuGen encounters a gif type resource, it sets the Resource attribute to 0,
indicating to VuGen to download gifs unconditionally during replay.

web_url("MercuryWebTours",
"URL=http://localhost/MercuryWebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);

Chapter 40 • Setting Recording Options for Internet Protocols

545

To specify which content should not be recorded as resources:

 1 In the Recording Options tree, select the Internet Protocol:Advanced node.

 2 Click Non-Resources to open the dialog box and display the list of content
types which should not be recorded as resources.

 3 Click the “+” sign to add a content type to the list. Click the “-” sign to
remove an existing entry.

 4 Select the check boxes adjacent to the items you want to enable.

 5 Click Restore List to restore the list to the default list.

 6 Click OK to accept the settings and close the Non-Resources list.

Part VIII • E-Business Protocols

546

547

41
Setting Recording Options for Web
Vusers

Before recording a Web session, you can customize the recording options.

This chapter describes:

➤ About Setting Recording Options

➤ Specifying which Browser to Use for Recording

➤ Selecting a Recording Level

The following information applies to Web and PeopleSoft Enterprise Vuser
scripts.

About Setting Recording Options

VuGen enables you to generate Web Vuser scripts by recording typical
processes that users perform on your Web site.

Before recording, you can configure the Recording Options and specify the
information to record, the browser or client with which to record, and
designate the content for your scripts.

You can set the common Internet protocol recording options, such as proxy
settings and other advanced settings. For more information see Chapter 40,
“Setting Recording Options for Internet Protocols.”

You can also set Correlation recording options for Web Vuser scripts. For
more information, see Chapter 46, “Setting Correlation Rules for Web Vuser
Scripts.”

Part VIII • E-Business Protocols

548

Specifying which Browser to Use for Recording

You can specify which browser VuGen uses when you record a Web Vuser
script. You use the Internet Protocol:Browser node in the Recording Options
tree to specify the location of the browser.

The following Browser options are available:

➤ Use default browser, to instruct VuGen to use the default Web browser
on the recording computer.

➤ Manually launch an application, to instruct VuGen not to launch a
browser when you start recording. You must manually launch a browser
or application after you start the recording session.

➤ Specify path to application, to instruct VuGen to use the browser or
application that you specify. Select a path from the list of paths, or click
the Browse button to locate the required application.

Chapter 41 • Setting Recording Options for Web Vusers

549

Selecting a Recording Level

VuGen lets you specify what information to record and which functions to
use when generating a Vuser script or Tuning Module session step by
selecting a recording level. The recording level you select, depends on your
needs and environment. The available levels are HTML-based script, and
URL-based script.

Use the following guidelines to decide which recording level to choose:

➤ For browser applications without JavaScript, use the HTML-based level.

➤ For non-browser applications, use the URL-based level.

For PeopleSoft Enterprise and Oracle Web Applications 11i Vusers, there is
an additional recording level, GUI-based. This option instructs VuGen to
generates intuitive context sensitive functions for all user actions. For
details, see “Selecting a Recording Level for GUI-Level Vusers” on page 833.

Part VIII • E-Business Protocols

550

The HTML-based script level generates a separate step for each HTML user
action. The steps are also intuitive, but they do not reflect true emulation of
the JavaScript code.

/* HTML-based mode - a script describing user actions*/
...
web_url("MercuryWebTours",

"URL=http://localhost/MercuryWebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);

web_link("Click Here For Additional Restrictions",
"Text=Click Here For Additional Restrictions",
"Snapshot=t4.inf",
LAST);

web_image("buttonhelp.gif",
"Src=/images/buttonhelp.gif",
"Snapshot=t5.inf",
LAST);

…

Chapter 41 • Setting Recording Options for Web Vusers

551

The URL-based script mode option instructs VuGen to record all browser
requests and resources from the server that were sent due to the user's
actions. It automatically records every HTTP resource as URL steps (web_url
statements). For normal browser recordings, it is not recommended to use
the URL-based mode since is more prone to correlation related issues. If,
however, you are recording pages such as applets and non-browser
applications, this mode is ideal.

URL-based scripts are not as intuitive as the HTML-based scripts, since all
actions are recorded as web_url steps instead of web_link, web_image, and
so on.

You can switch recording levels and advanced recording options while
recording, provided that you are not recording a multi-protocol script. The
option of mixing recording levels is available for advanced users for
performance tuning.

You can also regenerate a script after recording, using a different method
than the original recording. For example, if your record a script on an
HTML-based level, you can regenerate it on a URL-based level. To regenerate
a script, choose Tools > Regenerate Script and click Options to set the
recording options for the regeneration.

/* URL-based mode - only web_url functions */
…
web_url("spacer.gif",

"URL=http://graphics.mercury.com/images/spacer.gif",
"Resource=1",
"RecContentType=image/gif",
"Referer=",
"Mode=HTTP",
LAST);

web_url("calendar_functions.js",
"URL=http://www.im.mercury.com/travelp/calendar_functions.js",
"Resource=1",
"RecContentType=application/x-javascript",
"Referer=",
"Mode=HTTP",
LAST);

…

Part VIII • E-Business Protocols

552

Setting Advanced HTML-Based Options

The HTML-based option, which is the default recording level, instructs
VuGen to record HTML actions in the context of the current Web page. It
does not record all resources during the recording session, but downloads
them during replay.

VuGen lets you set advanced options for HTML-based level in the following
areas:

➤ Specifying Script Types

➤ Handling Non HTML-Generated Elements

Chapter 41 • Setting Recording Options for Web Vusers

553

Specifying Script Types

In HTML-based level, you can specify the type of script:

➤ A script describing user actions

➤ A script containing explicit URLs only

The first option, a script describing user actions, is the default option. It
generates functions that correspond directly to the action taken. It creates
URL (web_url), link (web_link), image (web_image), and form submission
(web_submit_form) functions. The resulting script is very intuitive and
resembles a context sensitive recording.

/* HTML-based mode - a script describing user actions*//
...
web_url("MercuryWebTours",

"URL=http://localhost/MercuryWebTours/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
LAST);

web_link("Click Here For Additional Restrictions",
"Text=Click Here For Additional Restrictions",
"Snapshot=t4.inf",
LAST);

web_image("buttonhelp.gif",
"Src=/images/buttonhelp.gif",
"Snapshot=t5.inf",
LAST);

…

Part VIII • E-Business Protocols

554

The second option, a script containing explicit URLs only, records all links,
images and URLs as web_url statements, or in the case of forms, as
web_submit_data. It does not generate the web_link, web_image, and
web_submit_form functions. The resulting script is less intuitive. This
mode is useful for instances where many links within your site have the
same link text. If you record the site using the first option, it records an
ordinal (instance) for the link, but if you record using the second option,
each link is listed by its URL. This facilitates parameterization and
correlation for that step.

The following segment illustrates a session recorded with a script containing
explicit URLs only selected:

/* A HTML-based script containing explicit URLs only*//
…
web_url("Click Here For Additional Restrictions",

"URL=http://www.mercury.com/restrictions.html",
"TargetFrame=",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.mercury.com/home?…
"Snapshot=t4.inf",
"Mode=HTML",
LAST);

web_url("buttonhelp.gif",
"URL=http://www.mercury.com/home?com/rstr?BV_EngineID...,
"TargetFrame=main",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.mercury.com/home?…
"Snapshot=t5.inf",
"Mode=HTML",
LAST);

…

Chapter 41 • Setting Recording Options for Web Vusers

555

Handling Non HTML-Generated Elements

Many Web pages contain non-HTML elements, such as applets, XML,
ActiveX elements, or javascript. These non-HTML elements usually contain
or retrieve their own resources. For example, a javascript js file, called from
the recorded web page, may load several images. An applet may load an
external text file. Using the following options, you can control how VuGen
records non HTML-generated elements.

The following options are available:

➤ Record within the current script step (default)

➤ Record in separate steps using concurrent groups

➤ Do not record

The first option, Record within the current script step, does not generate a
new function for each of the non HTML-generated resources. It lists all
resources as arguments of the web_url, web_link, web_submit_data, and
so on. statement that was generated for the page. The resources, arguments
of the web functions, are indicated by the EXTRARES flag. In the following
example, the web_url function lists all of the non HTML-generated
resources loaded on the page:

web_url("index.asp",
"URL=http://www.daisy.com/index.asp",
"TargetFrame=",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t2.inf",
"Mode=HTML",
EXTRARES,
"Url=http://www.daisy.com/ScrollApplet.class", "Referer=", ENDITEM,
"Url=http://www.daisy.com/board.txt", "Referer=", ENDITEM,
"Url=http://www.daisy.com/nav_login1.gif", ENDITEM,
…
LAST);

Part VIII • E-Business Protocols

556

The second option, Record in separate steps using concurrent groups,
creates a new function for each one of the non HTML-generated resources—
it does not include them as items in the page’s functions (such as web_url,
web_link, and so on). All of the web_url functions generated for a resource,
are placed in a concurrent group (surrounded by web_concurrent_start and
web_concurrent_end).

In the following example, the above session was recorded with this option
selected. A web_url function was generated for the applet and text file
loaded with the applet:

The third option, Do not record, instructs VuGen not to record any of the
resources generated by non-HTML elements.

web_url("index.asp",
"URL=http://www.daisy.com/index.asp",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t2.inf",
"Mode=HTML",
LAST);

web_concurrent_start(NULL);
web_url("ScrollApplet.class",

"URL=http://www.daisy.com/ScrollApplet.class",
"Resource=1",
"RecContentType=application/octet-stream",
"Referer=",
LAST);

web_url("board.txt",
"URL=http://www.daisy.com/board.txt",
"Resource=1",
"RecContentType=text/plain",
"Referer=",
LAST);

web_concurrent_end(NULL);

Chapter 41 • Setting Recording Options for Web Vusers

557

Note that when you work in HTML-Based mode, VuGen inserts the
TargetFrame attribute in the web_url statement. VuGen uses this
information to display the Web page correctly in the run-time browser and
Test Result report.

When you record the URL-based mode, VuGen records the content of all
frames on the page and therefore omits the TargetFrame attribute.

web_url("buttonhelp.gif",
"URL=http://www.mercury.com/home?com/rstr?BV_EngineID...,
"TargetFrame=main",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.mercury.com/home?…
"Snapshot=t5.inf",
"Mode=HTML",
LAST);

Part VIII • E-Business Protocols

558

Setting Advanced URL-Based Options

The URL-based mode option instructs VuGen to record all requests and
resources from the server. It automatically records every HTTP resource as
URL steps (web_url statements), or in the case of forms, as
web_submit_data. It does not generate the web_link, web_image, and
web_submit_form functions, nor does it record frames.

VuGen lets you set advanced options for the URL recording mode in the
following area:

➤ Resource Handling

➤ Browser Cache

Resource Handling

In URL-based recording, VuGen captures all resources downloaded as a
result of a browser request. By default, this option is enabled and VuGen
records the resources in a concurrent group (enclosed by
web_concurrent_start and web_concurrent_end statements) after the
URL. Resources include files such as images, and js files. If you disable this
option, the resources are listed as separate web_url steps, but not marked as
a concurrent group.

Chapter 41 • Setting Recording Options for Web Vusers

559

The following segment illustrates a session recorded with the Create
concurrent groups for resources after their source HTML page option
enabled.

Note that the script includes gif, and js files. This mode also includes other
graphic files and imported file such as imp, txt, or cascading style sheet (css)
files.

Browser Cache

A browser cache stores recently viewed pages in the machine’s memory, in
order to reduce the time required to access the Web page. By default, the
Enable cache option is disabled—VuGen retrieves all pages directly from the
server and does not use the browser cache during recording.

Certain applications, however, will not be able to run without cache. To use
the cache and only retrieve the newly-modified pages directly from the
server, select the Enable cache option.

web_concurrent_start (NULL);
…
web_url("Click Here For Additional Restrictions",

"URL=http://www.mercury.com/restrictions.html",
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.mercury.com/home?…
"Snapshot=t4.inf",
"Mode=HTTP",
LAST);

web_url("buttonhelp.gif",
"URL=http://www.mercury.com/home?com/rstr?BV_EngineID...,
"Resource=0",
"RecContentType=text/html",
"Referer=http://www.mercury.com/home?…
"Snapshot=t5.inf",
"Mode=HTTP",
LAST);

…
web_concurrent_end (NULL);

Part VIII • E-Business Protocols

560

The If-Modified-Since HTTP header is a request by which the client checks
whether a cached resource was modified on the server-side since the last
download. If the resource was modified, the client downloads it again to the
cache. Otherwise, the server returns an HTTP status code of 304 —Not
Modified. When cache is disabled, the If-Modified-Since header is
suppressed and VuGen retrieves all pages directly from the server. In this
mode, VuGen removes the If-None-Match request header in addition to the
Last-Modified, Expires and Etag response headers. If the browser does not
receive any of the above response headers, it does not store the image in the
cache.

Note that the Browser Cache options only apply to single-protocol Web
(HTTP/HTML) Vusers—not multi-protocol. Also note that you can manually
control this header using the Advanced Header options. (See “Recording
Custom Headers” on page 540.)

Clearing the Browser Cache

By default, when the browser cache is enabled, VuGen clears the cache
before recording. This means that it makes all of the items in the cache
expired, so the browser must retrieve them directly from the server.

Clearing the cache requires VuGen to access all pages directly from their
Web sites, even if the page had been recently accessed. If you are recording a
Vuser that accesses a site repeatedly, you may choose not to clear the
browser cache before recording.

To instruct VuGen not to clear the browser cache before recording, clear the
Clear cache before recording check box. Note that this option only applies
when recording with Internet Explorer.

Chapter 41 • Setting Recording Options for Web Vusers

561

Generating Custom Requests

When recording non-browser applications, you can instruct VuGen to
record all HTTP requests as custom requests. VuGen generates a
web_custom_request function for all requests, regardless of their content:

Enabling EUC-Encoded Web Pages

(This option is only for Japanese Windows.) When working with non-
Windows standard character sets, you may need to perform a code
conversion. A character set is a mapping from a set of characters to a set of
integers. This mapping forms a unique character-integer combination, for a
given alphabet. Extended UNIX Code (EUC) and Shift Japan Industry
Standard (SJIS) are non-Windows standard character sets used to display
Japanese writings on Web sites.

Windows uses SJIS encoding while UNIX uses EUC encoding. When a Web
server is on a UNIX machine and the client is Windows, the characters in a
Web site are not displayed on the client side properly due to the difference
in the encoding methods. This affects the display of EUC-encoded Japanese
characters in a Vuser script.

During recording, VuGen detects the encoding of a Web page through its
HTTP header. If the information on the character set is not present in the
HTTP header, it checks the HTML meta tag. If the page does not send the
character set information to the HTTP header or meta tag, VuGen does not
detect the EUC encoding.

If you know in advance that a Web page is encoded in EUC, you can instruct
VuGen to use the correct encoding during record. To record a page in EUC-
encoding, enable the EUC option in the Recording Options Recording tab.
(only visible for Japanese Windows)

web_custom_request("www.mercury.com",
"URL=http://www.mercury.com/",
"Method=GET",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTTP",
LAST);

Part VIII • E-Business Protocols

562

Enabling the EUC option, forces VuGen to record a Web page in EUC
encoding, even when it is not EUC- encoded. You should, therefore, only
enable this option when VuGen cannot detect the encoding from the HTTP
header or the HTML meta tag, and when you know in advance that the page
is EUC-encoded.

During recording, VuGen receives an EUC-encoded string from the Web
server and converts it to SJIS. The SJIS string is saved in the script’s Action
function. However, for replay to succeed, the string has to be converted back
to EUC before being sent back to the Web server. Therefore, VuGen adds a
web_sjis_to_euc_param function before the Action function, which
converts the SJIS string back to EUC.

In the following example, the user goes to an EUC-encoded Web page and
clicks on a link. VuGen records the Action function and adds the
web_sjis_to_euc_param function to the script before the Action function.

web_sjis_to_euc_param("param_link","Search");

web_link("LinkStep","Text={param_link}");

Setting the Recording Level

This section describes the procedure for setting the recording levels and
their advanced options. Note that you can switch recording levels and
advanced recording options while recording, provided that you are
recording a single protocol Web (HTTP/HTML) Vuser.

To set the recording options:

 1 Choose Tools > Recording Options to open the Recording Options. Select
the Internet Protocol:Recording node in the Recording Options tree.

 2 Select a recording mode: HTML-based or URL-based.

 3 For HTML-based recording, click HTML Advanced to set additional options
for script types and the handling of non-HTML elements.

Select a script type.

Select a method for handling non-HTML resources. For more information,
see “Setting Advanced HTML-Based Options” on page 552.

Chapter 41 • Setting Recording Options for Web Vusers

563

 4 For URL-based recording, click URL Advanced to set additional script
options for resource handling and cache enabling.

Select Create concurrent groups for resources after their source HTML page
to enable the recording of resources and marking them as a concurrent
group (surrounded by web_concurrent_start and web_concurrent_end).

Select Enable cache to use the browser cache during recording. If you
enable this option, clear the Clear cache before recording check box to
instruct VuGen not to clear the cache and use previously accessed pages.

Select Use web_custom_request only to generate all HTTP requests as
web_custom_request functions.

 5 For more information about these options, see “Setting Advanced URL-
Based Options” on page 558. For users of Japanese Windows, select the EUC
option to instruct VuGen to use EUC encoding. If you are recording a
website whose pages use only the EUC Encoding (Japanese content), select
the EUC option. VuGen converts the EUC string to SJIS and adds a
web_sjis_to_euc_param function. If the server sends this information to
the browser (in an HTTP header or an HTML Meta tag), you do not need to
enable this option.

Part VIII • E-Business Protocols

564

565

42
Configuring Internet Run-Time Settings

After you record an Internet protocol Vuser script, you configure its run-
time settings.

This chapter describes:

➤ About Internet Run-Time Settings

➤ Setting Proxy Options

➤ Setting Browser Emulation Properties

➤ Setting Internet Preferences

➤ Filtering Web Sites

➤ Obtaining Debug Information

➤ Performing HTML Compression

The following information applies to all Internet Protocol Vuser types such
as Web, and Wireless.

About Internet Run-Time Settings

After developing a Internet protocol Vuser script, you set the run-time
settings.

For information about the general run-time settings that apply to all Vusers,
see Chapter 12, “Configuring Run-Time Settings.” For information about
the network speed run-time settings, see Chapter 13, “Configuring Network
Run-Time Settings.”

Part VIII • E-Business Protocols

566

The Internet run-time settings let you configure your Internet environment
so that Vusers can accurately emulate real users. You can set Interest run-
time settings for Proxy, Browser, and other advanced preferences.

You set the Internet-related run-time settings from the Run-Time Settings
dialog box. You click the appropriate node to specify the desired settings.

Note that you can also modify the run-time settings from the LoadRunner
Controller or from the Mercury Tuning Module. For more information, refer
to your product’s documentation.

Note: A run-time setting assigned a value through a Vuser function,
overrides the corresponding setting set via the Run-Time Settings dialog
box. For more information on using Vuser functions, see Chapter 39, “Using
Web Vuser Functions.”

Chapter 42 • Configuring Internet Run-Time Settings

567

Setting Proxy Options

You use the Internet Protocol:Proxy node of the Run-Time Settings tree, to
set the proxy-related settings.

By default, the Vuser uses the proxy settings of the browser used for
recording in the Web recording options. It is recommended that you use the
same settings for record and replay. For information about the Proxy
Recording options, see Chapter 41, “Setting Recording Options for Web
Vusers.”

The following proxy options are available in the Run-Time settings.

➤ No proxy: All Vusers should use direct connections to the Internet. This
means that the connection is made without using a proxy server.

➤ Obtain the proxy settings from the default browser: All Vusers use the
proxy settings of the default browser from the machine upon which they
are running.

Part VIII • E-Business Protocols

568

➤ Use custom proxy: All Vusers use a custom proxy server. You can supply
the actual proxy server details or the path of a proxy automatic
configuration script (.pac file) that enables automatic configuration. (See
“Setting the Automatic Proxy Configuration” on page 569.)

To supply the details of the server, you specify its IP address or name and
port. You can specify one proxy server for all HTTP sites, and another
proxy server for all HTTPS (secure) sites.

After providing the proxy information, you can specify Authentication
information for the proxy server, and indicate Exceptions to the proxy
rules.

Note: To instruct the Vusers to wait for the proxy response during replay,
and not to assume that the proxy supports basic authentication, add the
following statement:
web_set_sockets_option("PROXY_INITIAL_BASIC_AUTH", "0");

Authentication

If the proxy server requires authentication for each Vuser, use this dialog
box to enter the relevant password and user name.

User Name: Enter the user name that Vusers will use to access the proxy
server.

Password: Enter the password required by Vusers to access the proxy server.

Note: To add authentication dynamically during recording, or to add
authentication for multiple proxy servers, use the web_set_user function.
For more information, see the Online Function Reference (Help > Function
Reference).

Chapter 42 • Configuring Internet Run-Time Settings

569

Exceptions

You can specify that all Vusers use a specified proxy server. In such a case, if
there are any URLs that you want Vusers to access directly, that is, without
using the proxy server, enter the list of these URLs in the text box.

Do not use proxy server for addresses beginning with: Enter the addresses
you want to exclude from the proxy server. Use semicolons to separate
entries.

Do not use proxy server for local (Intranet) addresses: Select this check box
to exclude local addresses, such as those from an intranet, from the proxy
server.

Setting the Automatic Proxy Configuration

Automatic Proxy Configuration is a feature supported by most browsers.
This feature allows you to specify a JavaScript file (usually with a .pac
extension) containing proxy assignment information. This script tells the
browser when to access a proxy server and when to connect directly to the
site, depending on the URL. In addition, it can instruct the browser to use a
specific proxy server for certain addresses and another server for other
addresses.

You can instruct VuGen or your Internet Explorer browser to work with a
configuration script. You specify a file for the automatic proxy
configuration, so that when the Vuser runs the test, it uses the rules from
the proxy file.

To specify a configuration script in VuGen:

 1 Choose Vuser > Run-TIme Settings, and select the Internet Protocol:Proxy
node.

 2 Select Use custom proxy and select the Use automatic configuration script
option. Specify the location of the script.

Part VIII • E-Business Protocols

570

To specify a configuration script in Internet Explorer (IE):

 1 Choose Tools > Internet Options, and select the Connections tab.

 2 Click the LAN Settings button. The LAN Settings dialog box opens.

 3 Select the Use automatic configuration script option, and specify the
location of the script.

To track the behavior of the Vusers, generate a log during text execution and
view the Execution Log tab or the mdrv.log file. The log shows the proxy
servers that were used for each URL. In the following example, VuGen used
a direct connection for the URL australia.com, but the proxy server aqua, for
the URL http://www.google.com.

Action1.c(6): t=1141ms: FindProxyForURL returned DIRECT
Action1.c(6): t=1141ms: Resolving australia.com
Action1.c(6): t=1141ms: Connecting to host 199.203.78.255:80
…
Action1.c(6): t=1281ms: Request done "http://australia.com/GetElement-
ByName.htm"

…
Action1.c(6): web_url was successful, 357 body bytes, 226 header bytes
Action1.c(15): web_add_cookie was successful
Action1.c(17): t=1391ms: FindProxyForURL returned PROXY aqua:2080
Action1.c(17): t=1391ms: Auto-proxy configuration selected proxy
aqua:2080
Action1.c(17): t=1391ms: Resolving aqua
Action1.c(17): t=1391ms: Connecting to host 199.203.139.139:2080
…l
Action1.c(17): t=1578ms: 168-byte request headers for "http://www.goo-
gle.com/" (RelFrameId=1)
Action1.c(17): GET http://www.google.com/ HTTP/1.1\r\n

Chapter 42 • Configuring Internet Run-Time Settings

571

Setting Proxy Run-Time Settings

The following section discusses the steps required for configuring the proxy
Run-Time settings.

To set the proxy settings:

 1 Open the Run-Time settings. Click the Run-Time Settings button on the
VuGen toolbar or choose Vuser > Run-Time Settings.

 2 Click the Internet Protocol:Proxy node.

 3 Select the desired proxy option: No proxy, Obtain the proxy settings from
the default browser, or Use custom proxy.

 4 If you specified a custom proxy:

➤ indicate the IP addresses for the HTTP and HTTPS proxy servers

➤ To use a pac or javascript file to indicate the proxy, select the Use
automatic configuration script option and specify the script location.
You can specify either a web location beginning with http:// (for
example, http://hostname/proxy.pac), or a location on the file server, for
example, C:\temp\proxy.pac.

 5 To specify URLs that you want Vusers to access directly, without the proxy
server, click Exceptions and then supply the list of these URLs. In the
Exceptions dialog box, you can also specify direct access to local (intranet)
addresses.

 6 If the proxy server requires authentication, click Authentication, and then
supply the relevant password and user name.

 7 Select the Use the same proxy server for all protocols check box to instruct
the Vusers to use the same proxy server for all Internet protocols (HTTP,
HTTPS) rather than specifying a specific server for secure sites.

Part VIII • E-Business Protocols

572

Setting Browser Emulation Properties

You use the Browser:Browser Emulation node in the Run-Time Settings tree
to set the browser properties of your tuning or testing environment.

Browser Properties

You can set the browser properties in the following areas:

➤ User-Agent (browser to be emulated)

➤ Simulate browser cache

➤ Download non-HTML resources

➤ Simulate a new user each iteration

You can also set advanced options for caching and checking for newer
resources.

Chapter 42 • Configuring Internet Run-Time Settings

573

User-Agent (browser to be emulated)

Whenever a Vuser sends a request to a Web server, the request includes an
HTTP header. The first line of text contains a verb (usually "GET" or "POST"),
the resource name (for example "pclt/default.htm"), and the version of the
protocol (for example "HTTP/1.0"). Subsequent lines contain "header
information" in the form of an attribute name, a colon, and some value. The
request ends with a blank line.

All Internet Vuser headers include a User-Agent header that identifies the
type of browser (or toolkit for Wireless) that is being emulated. For example,

User-Agent: Mozilla/3.01Gold (WinNT; I)

identifies the Browser as Netscape Navigator Gold version 3.01 running
under Windows NT on an Intel machine.

Click Change… from the Browser emulation node, to specify the browser
information to include in the header. You can specify that a Web Vuser
emulate any of the standard browsers. Alternatively, for non-browser HTTP
applications, you can specify the HTTP client to match a specific user’s
application. In this case, you must supply a Custom User Agent string that is
included in all subsequent HTTP headers. By default, the user-agent
emulates the Microsoft Internet Explorer 5.5 browser agent.

Simulate browser cache

This option instructs the Vuser to simulate a browser with a cache. A cache
is used to keep local copies of frequently accessed documents and thereby
reduces the time connected to the network. By default, cache simulation is
enabled. When the cache is disabled, Vusers still download each page image
only once. When running multiple Vusers as in LoadRunner and
Performance Center, every Vuser uses its own cache and retrieves images
from the cache. If you disable this option, all Vusers emulate a browser with
no cache available.

Part VIII • E-Business Protocols

574

You can modify your Run-Time settings to match your browser settings for
Internet Explorer, as follows:

You can also set the following two browser cache options:

Cache URLs requiring content (HTML): This option instructs VuGen to
cache only the URLs that require the HTML content. The content may be
necessary for parsing, verification, or correlation. When you select this
option, HTML content is automatically cached. To define additional content
types whose content you want to cache, click Advanced. (This increases the
memory footprint of the virtual user.) This option is enabled by default. For
more information see “Cache URLs Requiring Content - Advanced” on
page 575. If you enable Simulate browser cache, but disable this option,
VuGen nevertheless stores the graphic files.

Check for newer versions of stored pages every visit to the page: This
setting instructs the browser to check for later versions of the specified URL,
than those stored in the cache. When you enable this option, VuGen adds
the “If-modified-since” attribute to the HTTP header. This option brings up
the most recent version of the page, but also generates more traffic during
the scenario or session execution. By default, browsers do not check for
newer resources, and therefore this option is disabled. Configure this option
to match the settings in the browser that you want to emulate.

Browser Setting Run-Time Setting

Every visit to the page Select Simulate Browser Cache and
enable Check for newer versions of
stored pages every visit to the
page.

Every time you start Internet Explorer Select Simulate Browser Cache only

Automatically Select Simulate Browser Cache only

Never Select Simulate Browser Cache and
disable Check for newer versions of
stored pages every visit to the
page.

Chapter 42 • Configuring Internet Run-Time Settings

575

Download non-HTML resources

This option instructs Vusers to load graphic images when accessing a Web
page during replay. This includes both graphic images that were recorded
with the page, and those which were not explicitly recorded along with the
page. When real users access a Web page, they wait for the images to load.
Therefore, enable this option if you are trying to test the entire system,
including end-user time (enabled by default). To increase performance and
not emulate real users, disable this option.

Note: Disable this option if you experience discrepancies in image checks,
since some images vary each time you access a Web page (for example,
advertiser banners).

Simulate a new user each iteration

Instructs VuGen to reset all HTTP contexts between iterations to their states
at the end of the init section. This setting allows the Vuser to more
accurately emulate a new user beginning a browsing session. It deletes all
cookies, closes all TCP connections (including keep-alive), clears the
emulated browser’s cache, resets the HTML frame hierarchy (frame
numbering will begin from 1) and clears the user-names and passwords. This
option is enabled by default.

Clear cache on each iteration: Clears the browser cache for each iteration in
order to simulate a user visiting a Web page for the first time. Clear the
check box to disable this option and allow Vusers to use the information
stored in the browser’s cache, simulating a user who recently visited the
page.

Cache URLs Requiring Content - Advanced

The Advanced dialog box lets you specify the URL content types that you
want to store in the cache. This dialog box is accessible from the Run-time
Settings - Browser:Browser Emulation node.

Note that changes to the advanced settings for multiple groups
simultaneously, are not supported—edit each group’s settings individually.

Part VIII • E-Business Protocols

576

To add a content type:

 1 Enable the Specify URLs requiring content in addition to HTML page
option.

 2 Click the plus sign to add additional content types, such as text/plain,
text/xml, image/jpeg, and image/gif. Enter the content name in the text box.

 3 To remove a content type from the list, select it and click the minus sign.

Setting Internet Preferences

You use the Internet Protocol:Preferences node in the Run-Time Settings
tree, to set the settings related to the following areas:

➤ Image and Text Checks

➤ Generating Web Performance Graphs

➤ Advanced Web Run-Time Options

Chapter 42 • Configuring Internet Run-Time Settings

577

Image and Text Checks

The Enable image and text checks option allows the Vuser to perform
verification checks during replay by executing the verification functions:
web_find or web_image_check. This option only applies to statements
recorded in HTML-based mode. Vusers running with verification checks use
more memory than Vusers who do not perform checks (disabled by default).

Generating Web Performance Graphs

Instructs a Vuser to collect data used to create Web Performance graphs. You
view the Hits per Second, Pages per Second, and Response Bytes per
Second (Throughput) graphs during test execution using the online
monitors and after test execution using the Analysis. You view the
Component Breakdown graph after test execution using the Analysis. Select
the types of graph data for the Vuser to collect.

Note: If you do not use the Web performance graphs, disable these options
to save memory.

Advanced Web Run-Time Options

WinInet Replay (instead of Sockets): Instructs VuGen to use the WinInet
replay engine. VuGen has two HTTP replay engines: Sockets-based (default)
or WinInet based. The WinInet is the engine used by Internet Explorer and
it supports all of the features incorporated into the IE browser. The
limitations of the WinInet replay engine are that it is not scalable, nor does
it support UNIX. In addition, when working with threads, the WinInet
engine does not accurately emulate the modem speed and number of
connections.

VuGen’s proprietary sockets-based replay is a lighter engine that is scalable
for load testing. It is also accurate when working with threads. The
limitation of the sockets-based engine is that it does not support SOCKS
proxy. If you are recording in that type of environment, use the WinInet
replay engine.

Part VIII • E-Business Protocols

578

File and line in automatic transaction names: Creates unique transaction
names for automatic transactions by adding file name and line number to
the transaction name (enabled by default).

Note: This option places additional information in the log file, and
therefore requires more memory.

Non-critical item errors as warnings: This option returns a warning status
for a function which failed on an item that is not critical for load testing,
such as an image or Java applet that failed to download. This option is
enabled by default. If you want a certain warning to be considered an error
and fail your test, you can disable this option. You can set a content-type to
be critical by adding it to the list of Non-Resources. For more information,
see “Specifying Non-Resource Content Types” on page 544.

Save snapshot resources locally: Instructs VuGen to save the snapshot
resources to files on the local machine. This feature lets the Run-Time viewer
create snapshots more accurately and display them quicker.

Additional Options for Internet Preferences

Click the Options button in the Advanced section of the Preferences node to
set advanced options in the following areas: DNS caching, HTTP version,
Keep-Alive HTTP connections, Accept server-side compression, Accept-
Language headers, HTTP-request connect timeout, HTTP-request receive
timeout, Network buffer size, and Step download timeout. The options that
only apply to GUI-mode recordings, for PeopleSoft Enterprise and Oracle
Applications Vusers, begin with the prefix GUI-Mode.

DNS caching: Instructs the Vuser to save a host’s IP addresses to a cache after
resolving its value from the Domain Name Server. This saves time in
subsequent calls to the same server. In situations where the IP address
changes, as with certain load balancing techniques, be sure to disable this
option to prevent Vuser from using the value in the cache (enabled by
default).

Chapter 42 • Configuring Internet Run-Time Settings

579

HTTP version: Specifies which version HTTP to use: version 1.0 or 1.1. This
information is included in the HTTP request header whenever a Vuser sends
a request to a Web server. The default is HTTP 1.1. HTTP 1.1 supports the
following features:

➤ Persistent Connections—see “Keep-Alive HTTP connections” below.

➤ HTML compression—see “Performing HTML Compression” on page 585.

➤ Virtual Hosting—multiple domain names sharing the same IP address.

Keep-Alive HTTP connections: Keep-alive is a term used for an HTTP
extension that allows persistent or continuous connections. These long-
lived HTTP sessions allow multiple requests to be sent over the same TCP
connection. This improves the performance of the Web server and clients.

The keep-alive option works only with Web servers that support keep-alive
connections. This setting specifies that all Vusers that run the Vuser script
have keep-alive HTTP connections enabled (enabled by default).

Step timeout caused by resources is a warning: Issues a warning instead of
an error when a timeout occurs due to a resource that did not load within
the timeout interval. For non-resources, VuGen issues an error (disabled by
default).

Parse HTML content-type: When expecting HTML, parse the response only
when it is the specified content-type: HTML, text\html, TEXT any text, or
ANY, any content-type. Note that text/xml is not parsed as HTML. The
default is TEXT.

Accept Server-Side Compression: Indicate to the server that the replay can
accept compressed data. The available options are: None (no compression),
gzip (accept gzip compression), gzip, deflate (accept gzip or deflate
compression), and deflate (accept deflate compression). Note that by
accepting compressed data, you may significantly increase the CPU
consumption. The default is to accept gzip, deflate compression.

Accept-Language request header: Provides a comma-separated list of
accepted languages. For example, en-us, fr, and so forth.

HTTP errors as warnings: Issues a warning instead of an error upon failing to
download resources due to an HTTP error.

Part VIII • E-Business Protocols

580

HTTP-request Connect Timeout (seconds): The time, in seconds, that a
Vuser will wait for the connection of a specific HTTP request within a step
before aborting. Timeouts provide an opportunity for the server to stabilize
and respond to the user (default value is 120 seconds). Note that this
timeout also applies to the time the Vuser will wait for a WAP connection,
initiated by the wap_connect function.

HTTP-request Receive Timeout (seconds): The time, in seconds, that a Vuser
will wait to receive the response of a specific HTTP request within a step
before aborting. Timeouts provide an opportunity for the server to stabilize
and respond to the user (default value is 120 seconds).

The timeout settings are primarily for advanced users who have determined
that acceptable timeout values should be different for their environment.
The default settings should be sufficient in most cases. If the server does not
respond in a reasonable amount of time, check for other connection-related
issues, rather than setting a very long timeout which could cause the scripts
to wait unnecessarily.

Step download timeout (seconds): The time that the Vuser will wait before
aborting a step in the script. This option can be used to emulate a user
behavior of not waiting for more than x seconds for a page.

Network buffer size: Sets the maximum size of the buffer used to receive the
HTTP response. If the size of the data is larger than the specified size, the
server will send the data in chunks, increasing the overhead of the system.
When running multiple Vusers from the Console or Controller, every Vuser
uses its own network buffer. This setting is primarily for advanced users who
have determined that the network buffer size may affect their script’s
performance. The default is 12K bytes.

Fixed think time upon authentication retry (seconds): Automatically adds a
think time to the Vuser script for emulating a user entering authentication
information (username and password). This think time will be included in
the transaction time (default is 0).

Max number of error matches issued as ERRORS: Limits the number of error
matches issued as ERRORS for content checks using a LB or RB (left
boundary or right boundary). This applies to matches where a failure occurs
when the string is found (Fail=Found). All subsequent matches are listed as
informational messages. The default is 10 matches.

Chapter 42 • Configuring Internet Run-Time Settings

581

Request Zlib Headers: Sends request data to the server with the zlib
compression library headers. By default, requests sent to the server include
the zlib headers. This option lets you emulate non-browser applications that
do not include zlib headers in their requests. To exclude these headers, set
this option to No (default is Yes).

Enable integrated Authentication: Enable Kerberos-based authentication.
When the server proposes authentication schemes, use Negotiate in
preference to other schemes. The default is No.

KDC Address: The address of a Kerberos KDC (Key Distribution Server)
which will be used to obtain the TGS (Ticket Granting Service).

AS Address: The address of a Kerberos AS (Administration Server) which will
be used to obtain information about the principles.

Maximum number of META Refresh to the same page: The maximum
number of times that a META refresh can be performed per page. The default
is 2.

GUI-Mode default block size for DOM memory allocations: Sets the default
block size for DOM memory allocations. If the value is too small, it may
result in extra calls to malloc, slowing the execution times. Too large a block
size, may result in an unnecessarily big footprint (default is 16384 bytes).

GUI-Mode single setTimeout/setInterval threshold (seconds): Specifies an
upper timeout for the window.setTimeout and window.setInterval methods.
If the delay exceeds this timeout, these methods will not invoke the
functions that are passed to them. This emulates a user waiting a specified
time before clicking on the next element (default is 5 seconds).

GUI-Mode accumulative setTimeout/setInterval threshold (seconds):
Specifies a timeout for the window.setTimeout and window.setInterval
methods. If the delay exceeds this timeout, additional calls to
window.setTimeout and window.setInterval will be ignored. The timeout is
accumulative per step (default is 15 seconds).

GUI-Mode fail on JavaScript error: Fails the Vuser when a Javascript
evaluation error occurs. The default is No, issuing a warning message only
after a Javascript error, but continuing to run the script.

Part VIII • E-Business Protocols

582

GUI-Mode support ActiveX controls: Enables the Vusers to execute ActiveX
controls (default is No).

GUI-Mode history support: Enables support for the window.history object
for the test run. The options are Enabled, Disabled, and Auto. The Auto
option (default) instructs Vusers to support the window.history object only
if it was used in the first iteration. Note that by disabling this option, you
improve performance.

GUI-Mode JavaScript Runtime memory size (KB): Specifies the size of the
JavaScript runtime memory in kilobytes (default is 256 KB).

GUI-Mode JavaScript Stack memory size (KB): Specifies the size of the
JavaScript stack memory in kilobytes (default is 32 KB).

GUI-Mode maximum history size: The maximum number of steps to keep in
the history list (default is 10 steps).

GUI-Mode Home Page URL: The URL of the home page that opens with
your browser (default is about:blank).

GUI-Mode DOM-based snapshots: Instructs VuGen to generate snapshots
from the DOM instead of from the server responses (Yes by default).

Filtering Web Sites

You can specify the Web sites from which Vusers should download resources
during replay. You can indicate either the sites to exclude or the sites to
include. You control the allowed or disallowed sources, by specifying a URL,
host name, or host suffix name.

A URL is the complete URL address of a Web site, beginning with http:// or
https://. Host is the name of the host machine with its domain, such as
www.mercury.com.

Host suffix is the common suffix for several host names, such as
mercury.com. This is useful where you have several Web sites on a common
domain.

Chapter 42 • Configuring Internet Run-Time Settings

583

If you specify the sites to exclude, VuGen downloads resources from all Web
sites except for those specified in the list. If you specify the sites to include,
VuGen filters out resources from all Web sites except for those in the Include
list.

To create a list of filtered Web sites:

 1 Click the Internet Protocol:Download Filters node.

 2 Select the desired option: Include only addresses in list or Exclude addresses
in list.

Part VIII • E-Business Protocols

584

 3 Add entries to the list. To add an entry, click Add. The Add filter dialog box
opens.

Choose a filter type: URL, Host, or Host Suffix, and enter the filter data, such
as a URL. When entering a URL, make sure to enter a complete URL
beginning with http:// or https://. Click OK.

 4 To edit an entry, select it and click Edit.

 5 To delete and entry, select it and click Remove. To delete all entries, click
Remove All.

Obtaining Debug Information

When you run a Vuser script, the execution information is displayed in the
Output window or log file. You control the amount of information sent to
the Output window and log files, using the Log node of the General run-
time settings. For more information, see “Configuring the Log Run-Time
Settings” on page 158.

Debug information includes:

➤ log information

➤ transaction failures

➤ the connection status with the gateway—connecting, disconnecting, and
redirecting. (WAP only)

Chapter 42 • Configuring Internet Run-Time Settings

585

To obtain more information for debugging, edit the default.cfg file. Locate
the WEB section and set the LogFileWrite flag to 1. The resulting trace file
documents all events in the execution of the script.

When performing load testing, make sure to clear the LogFileWrite flag to
prevent the Vusers from wasting resources by creating a large trace file.

Performing HTML Compression

Browsers that support HTTP 1.1 can decompress HTML files. The server
compresses the files for transport, substantially reducing the bandwidth
required for the data transfer. You can enable compression automatically or
manually.

To automatically enable compression in VuGen, use the Internet Protocol >
Preferences node of the Run-Time settings. Click Options to open the
Advanced Options and enable the Accept Server-Side compression option.
Note that this option is enabled by default. For more information, see
“Additional Options for Internet Preferences” on page 578.

To manually add compression, enter the following function at the
beginning of the script:

web_add_auto_header(“Accept-Encoding”, “gzip”);

To verify that the server sent compressed data, search for the string
Content -Encoding: gzip in the section of the server’s responses of the
Execution log. The log also shows the data size before and after
decompression.

Compression has a greater effect on large data transfers—the larger the data,
the greater effect the compression will have. When working with larger data,
you can also increase the network buffer size (see the Network Buffer Size
option) to get the data in single chunks.

Part VIII • E-Business Protocols

586

587

43
Checking Web Page Content

After you record a Web Vuser script, you can configure run-time settings to
check the page content.

This chapter describes:

➤ About Checking Web Page Content

➤ Setting the ContentCheck Run-Time Settings

The following information only applies to Web Vuser types.

About Checking Web Page Content

VuGen’s Content Check mechanism allows you to check the contents of a
page for a specific string. This is useful for detecting non-standard errors. In
normal operations, when your application server fails, the browser displays
a generic HTTP error page indicating the nature of the error. The standard
error pages are recognized by VuGen and treated as errors, causing the script
to fail. Some application servers, however, issue their own error pages that
are not detected by VuGen as error pages. The page is sent by the server and
it contains a formatted text string, stating that an error occurred.

For example, suppose that your application issues a custom page when an
error occurs, containing the text ASP Error. You instruct VuGen to look for
this text on all returned pages. When VuGen detects this string, it fails the
replay. Note that VuGen searches the body of the pages—not the headers.

Part VIII • E-Business Protocols

588

Setting the ContentCheck Run-Time Settings

You use the Internet Protocol:ContentCheck Run-Time setting to specify the
content for which you want to search. You can define content for several
applications with multiple rules. The following sections discuss:

➤ Understanding Content Rules

➤ Defining ContentCheck Rules

Understanding Content Rules

You use the ContentCheck run-time options to check the contents of a page
for a specific string. This is useful for detecting non-standard errors. In
normal operations, when your application server fails, the browser displays
a generic HTTP error page indicating the nature of the error. The standard
error pages are recognized by VuGen and treated as errors, causing the script
to fail. Some application servers, however, issue their own error pages that
are not detected by VuGen as error pages. The page is sent by the server and
it contains a formatted text string, stating that an error occurred.

Chapter 43 • Checking Web Page Content

589

For example, suppose that your application issues a custom page when an
error occurs, containing the text ASP Error. You instruct VuGen to look for
this text on all returned pages. When VuGen detects this string, it fails the
replay. Note that VuGen searches the body of the pages—not the headers.

Note that global changes to ContentCheck settings for multiple groups is
not supported—edit each group’s settings individually.

Enable ContentCheck during replay: Enable content checking during
replay. (enabled by default) Note that even after you define applications,
you can disable it for a specific test run, by disabling this option.

Rule Information

This right pane contains the matching criteria for the text you want to find.
You can specify either the actual text or a prefix and suffix of the text.

Search for Text: The text of the string for which you want to search.

Search by Prefix and Suffix: The prefix and suffix of the string for which
you want to search.

Match case: Perform a case sensitive search.

Search JavaScript alert box text: Only search for text within JavaScript
alert boxes. (PeopleSoft Enterprise and Oracle Web Applications 11i Vusers
only)

Adding and Removing Applications and Rules

New Application: Automatically adds a new application to the list of
applications in the left pane. The default name is Application_index,
beginning with Application_1. After you create a new group, click New Rule
to add the rule to this group. To modify the name of an application, select
the name and click on it.

New Rule: Displays the rule criteria in the right pane, allowing you to enter
a new rule for the currently selected application. The rules are stored with
the script in standard xml files. You can export your rule files and share
them with other users or import them to other machines.

Delete: Deletes the selected rule or application.

Part VIII • E-Business Protocols

590

Importing and Exporting Rules

Import/Export: Imports or exports a rule file. The rule file with an xml
extension, stores the applications and rules. You can export the file to use
on other machines. You can also import other rule files. If you import a rule
and the selected rule conflicts with an existing rule, VuGen issues a warning
indicating that it is a Conflicting Rule. You can then choose to merge the
rules you created on a former script with the one you are importing or
overwrite the current rules. When you click Export, VuGen opens the
Choose Application to Export dialog box.

Setting Rules as Default

Set as Default: There are three types of rules for Content Checks:
Installation, Default, and per script. Installation rules are provided
automatically during installation of the product. Default rules, apply to all
scripts executed on your machine. The per script rules are the ones defined
for the current script. When you modify or add rules, these changes only
apply to the current script. To instruct VuGen to add a rule to the list of
Default rules so that it will apply to all scripts on that machine, click Set as
Default.

When working on multiple scripts, or when performing a product upgrade,
a conflict may arise between the default rules and the script rules. VuGen
asks you if you want to merge the rules. When you merge the rules
(recommended), the rule is added to the list of rules for the application.

This action only effects applications that are enabled in the Application list
(the left pane). If no applications were marked as Enabled in the current
script, no application will be marked as Enabled in the Defaults file. Click
Yes to overwrite the Defaults file. Click No to cancel the operation and
retain the original Defaults file.

The rules are stored in standard xml files. You can export your rule files and
share them with other users or import them to other machines.

Chapter 43 • Checking Web Page Content

591

When you click Set as Defaults (and confirm the overwriting), VuGen
performs the following actions:

 1 Marks all applications in the Defaults File as Disabled.

 2 For applications marked as Enabled in the current script, it performs a merge
or copy, depending on whether the application exists. If the application
exists, it merges the rules of the current script with those of the Defaults file.
If the application did not exist in the Defaults file, then VuGen just copies
the rules to the Defaults file.

 3 Marks the applications that were enabled in the script, as Enabled in the
Defaults file. If no application is marked as Enabled in the current script, no
application will be marked as Enabled in the Defaults file.

Use Defaults

Imports rules from the Defaults file. When you click this button, VuGen
opens a dialog box with a list of the applications and their default settings.
You can choose to import these rules or modify them. If this conflicts with
one of the existing rules, VuGen issues a warning indicating that it is a
Conflicting Rule. You can also merge the rules defined in the Defaults file
with the ones currently defined.

To use the default settings for all of your applications, click Use Defaults
which imports the definitions from the Defaults file. It opens a dialog box
with a list of the applications and their default settings. You can choose to
import these definitions or modify them. If this conflicts with one of the
rules, VuGen issues a warning indicating that it is a Conflicting Rule. You
can merge or overwrite the rules defined in the Defaults file with the active
ones.

Defining ContentCheck Rules

You use the Internet Protocol:ContentCheck node in the Run-Time Setting
tree, to define the rules for checking Web page content.

To define a ContentCheck rule:

 1 Open the Run-Time settings and select the Internet Protocol:ContentCheck
node.

 2 Select the Enable ContentCheck during replay option.

Part VIII • E-Business Protocols

592

 3 Click New Application to add a new entry to the list of applications whose
content to check.

 4 Click New Rule to add rules for existing applications. Each application
server may have one or more rules. Enable or disable the relevant rules by
clearing or selecting the check boxes adjacent to the rule in the left pane.

 5 To search for the actual text string, select Search for Text and specify the text
for which you want to search. It is recommended that you be as specific as
possible. For example, do not use the term Error, rather ASP Error or text
specific to the application.

 6 To search for the text preceding and following your string, select Search by
Prefix and specify the prefix and suffix.

 7 To indicate a case sensitive search, select the Match case check box.

 8 To set a rule as a default, indicating that it should apply to all scripts on that
machine, select the rule or application and click Set as Default.

 9 To export the rule file click Export and specify a save location.

 10 To import a rule file, click Import and locate the file.

 11 To remove an application or rule, select it and click Delete.

 12 To use the default settings for all of your applications, click Use Defaults. A
dialog box opens with a list of the applications and their default settings.
You can choose to overwrite or merge the rules if there are conflicts.

593

44
Verifying Web Pages Under Load

You can add Web checks to your Web Vuser scripts to determine whether or
not the correct Web pages are returned by the server when you run the
Vuser script.

This chapter describes:

➤ About Verification Under Load

➤ Adding a Text Check

➤ Understanding Text Check Functions

➤ Adding an Image Check

➤ Defining Additional Properties

The following information only applies to Web Vuser scripts.

About Verification Under Load

VuGen enables you to add Web checks to your Web Vuser scripts. A Web
check verifies the presence of a specific object on a Web page. The object can
be a text string or an image.

Web checks enable you to determine whether or not your Web site is
functioning correctly while it is being accessed by many Vusers—that is,
does the server return the correct Web pages? This is particularly important
while your site is under the load of many users, when the server is more
likely to return incorrect pages.

Part VIII • E-Business Protocols

594

For example, assume that your Web site displays information on the
temperatures in major cities around the world. You use VuGen to create a
Vuser script that accesses your Web site.

The Vuser accesses the site and executes a text check on this Web page. For
example, if the word Temperature appears on the page, the check passes. If
Temperature does not appear because, for example, the correct page was not
returned by the server, the check fails. Note that the text check step appears
before the URL step. This is because VuGen registers, or prepares in advance,
the search information relevant for the next step. When you run the Vuser
script, VuGen conducts the check on the Web page that follows.

Although the server may display the correct page when you record the script
and when a single Vuser executes the script, it is possible that the correct
page will not be returned when the server is under the load of many Vusers.
The server may be overloaded and may therefore return meaningless or
incorrect HTML code. Alternatively, in some instances when a server is
overloaded, the server may return a 500 Server Error page. In both of these
cases, you can insert a check to determine whether or not the correct page is
returned by the server.

Note: Web checks increase the work of a Vuser, and therefore you may need
to run fewer Vusers per load generator. You should use Web checks only
where experience has shown that the server sometimes returns an incorrect
page.

You can define Web checks during or after recording a Vuser script. It is
generally more convenient to define checks while recording—when the Web
page that you want to check is visible.

Chapter 44 • Verifying Web Pages Under Load

595

VuGen uses several different Web check icons, each one representing a
different check type:

This chapter describes how to use VuGen to add Web checks in the tree
view. For information about adding checks to the script in the text-based
script view, see the Online Function Reference (Help > Function Reference).

Web Check Icon Description

Text A text check, searching for a specific string in the next action
function (web_reg_find) or in the entire business process
(web_global_verification) step.

Text A text check, searching for a specific string in the next action
function using the web_find step. For more information, see
“Understanding Text Check Functions” on page 598.

Image An image check, searching for a specific image on a Web
page. For more information, see “Understanding Text Check
Functions” on page 598.

Part VIII • E-Business Protocols

596

Adding a Text Check

VuGen allows you to add a check that searches for a text string on a Web
page. You can add the text check either during or after recording.

When you create a text check, you define the name of the check, the scope
of the check, the text you want to check for, and the search conditions.

To add a text check during recording:

 1 If the VuGen main window or application is minimized, restore it. In the
application or Web browser window, select the desired text.

 2 Click the Insert Text check button on the recording toolbar. VuGen adds a
web_reg_find function to the script.

To add a text check after recording:

 1 Go to the snapshot of the step whose text you want to check.

 2 In the snapshot, select the text you want to verify.

 3 Choose Add a Text Check (web_reg_find) from the right-click menu. The
Find Text properties dialog box opens.

Note: For certain protocols, VuGen issues a message indicating that you
should add text checks from the Server Response tab—not from the
snapshot. Click the Server Response tab and select the HTML Document tab.
Expand the body node and then continue as described below.

Chapter 44 • Verifying Web Pages Under Load

597

The following attributes are available for web_reg_find:

➤ Text: The text string to search for. This attribute must be a non-empty,
null-terminated character string. The search mechanism is case sensitive;
to ignore the case, add "/IC" after the boundary. Specify "/BIN" (or check
the Binary check box in the step’s properties) after the text to specify
binary data. Use the format "Text=string".

If you do not have a specific string for the Text, you can enter values for the
following two attributes:

➤ TextPfx: The prefix of the text string for which you are searching. To
ignore the case, add "/IC" after the boundary. Specify "/BIN" after the text
to specify binary data. Use the format "TextPfx=string".

➤ TextSfx: The suffix of the text string for which you are searching. To
ignore the case, add "/IC" after the boundary. Specify "/BIN" after the text
to specify binary data. Use the format "TextSfx=string".

Part VIII • E-Business Protocols

598

➤ Search: Where to search for the text. The available values are Headers,
BODY, NORESOUCE, or ALL. The default is BODY. Use the format
"Search=value". (optional)

➤ SaveCount: The number of matches that were found. To use this
attribute, Specify SaveCount=param_name where param_name is the
variable to which a null-terminated ASCII value is stored. (optional)

➤ Fail: The handling method when the string is not found. The available
values are Found, NotFound, and None. Found indicates that a failure
occurs when the text is found (e.g. "Error"). Not Found indicates that a
failure occurs when the text is not found. When the SaveCount attribute
is specified, the default is None-no failure. When the SaveCount attribute
is omitted, the default is NotFound. Note that you cannot explicitly
assign the value None to the Fail attribute.

To view or modify the properties of the text check after it has been created,
click the Tree View tab and double-click on the new Services: Reg Find step.
In the Find Text dialog box, you can view or modify all of the step’s
attributes.

Understanding Text Check Functions

When you add a text check, VuGen adds a web_reg_find function to your
script. This function registers a search for a text string on an HTML page.
Registration means that it does not execute the search immediately—it
performs the check only after executing the next Action function, such as
web_url. Note that if you are working with a concurrent functions group,
the web_reg_find function is only executed at the end of the grouping.

In the following example, web_reg_find function searches for the text
string "Welcome". If the string is not found, the next action function fails
and the script execution stops.

web_reg_find("Text=Welcome", "Fail=Found", LAST);
web_url("Step", "URL=...", LAST);

In addition to the web_reg_find function, you can use other functions to
search for text within an HTML page:

Chapter 44 • Verifying Web Pages Under Load

599

Several additional functions can be used for searching for text:

➤ web_find

➤ web_global_verification

The web_find function, primarily used for backward compatibility, differs
from the web_reg_find function in that web_find is limited to an HTML-
based script (see Recording Options > Recording tab). It also has less
attributes such as instance, allowing you to determine the number of times
the text appeared. When performing a standard text search, web_reg_find is
the preferred function.

The web_global_verification function allows you to search the data of an
entire business process. In contrast to web_reg_find, which only applies to
the next Action function, this function applies to all subsequent Action
functions such web_url. By default, the scope of the search is
NORESOURCE, searching only the HTML body, excluding headers and
resources.

The web_global_verification function is ideal for detecting application
level errors that are not included the HTTP status codes. This function is not
limited to an HTML-Based script (see Recording Options > Recording tab).

Part VIII • E-Business Protocols

600

To add additional functions to your script:

 1 In the VuGen main window, click at the point where you want to add the
text check. Choose Insert > New Step.

 2 For the web_find functions, expand the Web Checks node and select Text
Check. For the web_global_verification function, expand the Services node
and choose the function name. The Properties dialog box opens.

 3 Set the properties for these functions (see description below).

 4 Click OK. VuGen inserts a new function into the script.

Chapter 44 • Verifying Web Pages Under Load

601

Setting web_find Properties

You can set the following properties for the web_find function:

Search for: the string you want to verify. An ABC icon indicates that the
string in the Search for box has not been assigned a parameter. For details
on assigning parameters, see Chapter 8, “Working with VuGen Parameters.”

Right of / Left of: the position of the search string relative to adjacent text.
Type the text in the appropriate field. For example, to verify that the string
“support@mercuryinteractive.com” appears to the right of the word
“e-mail:,” select Right of and then type “e-mail:” in the Right of box.

Step Name: the name of the text check. Click the General tab and type a
name for the text check in the box. Use a name that you can recognize and
identify later on.

Part VIII • E-Business Protocols

602

Note: A Vuser conducts Web checks during script execution only if checks
are enabled, and if the script runs in HTML mode. To enable checks, select
the Enable image and text check option in the Preferences tab in the Run-
Time Settings dialog box. For details, see Chapter 12, “Configuring Run-
Time Settings.”

Setting web_global_verification Properties

You can set the following properties for the web_find function:

Search for specific text: the string whose presence you want to verify. An
ABC icon indicates that the string in the Search for box has not been
assigned a parameter. For details on assigning parameters, see Chapter 8,
“Working with VuGen Parameters.”

Search for Text by Start and End of String: the boundaries, also known as
Start and End strings that surround the text. Select the appropriate options
to indicate if you want to Match case or if you are searching for binary data.

Chapter 44 • Verifying Web Pages Under Load

603

Fail if: Fails the script if the condition is met. You can also indicate the
failure condition: if the text is Found or Not found. Select the desired
behavior in the Fail if box.

Text Flags

When specifying search text using a registered search, web_reg_find, you
can add flags to control the scope of the search:

/IC to ignore the case.

/BIN to specify binary data.

/DIG to interpret the pound sign (#) as a wildcard for a single digit. The DIG
flag does not match a literal pound sign.

/ALNUM<case> to interpret the caret sign (^) as a wildcard for a single US-
ASCII alphanumeric character. There are three syntaxes: ALNUMIC to ignore
case, ALNUMLC to match only lower case, and ALNUMUC to match only
upper case. The ALNUM flag does not match a literal caret.

To use flags, you enter the attribute TEXT, followed by a forward slash and
the flag name. For example, to search for a string ignoring the case, use
"Text/IC=search_text'".

Part VIII • E-Business Protocols

604

Adding an Image Check

VuGen allows you to add a user-defined check that searches for an image on
a Web page. The image can be identified by the ALT attribute, the SRC
attribute, or both.

You can add user-defined image checks either during or after recording.
After recording, you can edit any existing image checks in your script.

To add an image check:

 1 In the VuGen main window, right-click the step corresponding to the Web
page on which you want to perform a check. Select Insert After from the
pop-up menu. The Add Step dialog box opens.

Note: During a Web browser recording session, the VuGen main window
may be minimized. To add an image check during recording, restore the
VuGen main window.

 2 Expand Web Checks in the Step Type tree.

Chapter 44 • Verifying Web Pages Under Load

605

 3 Select Image Check, and click OK. The Image Check Properties dialog box
opens. Ensure that the Specification tab is visible.

 4 Select a method to identify the image:

➤ To identify the image using its ALT attribute, select the Alternative image
name (ALT attribute) check box, and type the ALT attribute. When you
run the script, the Vuser searches for an image that has the specified ALT
attribute.

➤ To identify the image using the SRC attribute, select the Image server file
name (SRC attribute) check box, and type the SRC attribute. When you
run the script, the Vuser searches for an image that has the specified SRC
attribute.

An ABC icon indicates that the ALT or SRC attribute has not been assigned a
parameter. For details on assigning parameters, see Chapter 8, “Working
with VuGen Parameters.”

Part VIII • E-Business Protocols

606

Note: If you select both the ALT attribute and SRC attribute check boxes, the
Vuser searches for an image that has both the specified ALT attribute and the
specified SRC attribute.

 5 To name the image check, click the General tab. In the Step Name box, type
a name for the image check. Use a name that you can recognize later on.

 6 The properties table displays additional properties that define the check.

Clear the View only the active properties check box to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column.

For details on assigning property values, see “Defining Additional
Properties” on page 607.

Chapter 44 • Verifying Web Pages Under Load

607

 7 Click OK to accept the settings. An icon representing the new image check
is added to the associated step in the Vuser script.

Defining Additional Properties

You can specify additional properties for each Web check that you insert
into a Vuser script. You set additional options in the properties table on the
General tab of the check properties dialog boxes. The following is only
relevant for web_find and web_image_check functions—not
web_reg_find.

To set additional properties:

 1 Right-click the Web check whose properties you want to edit, and select
Properties from the pop-up menu. The appropriate check properties dialog
box opens. Ensure that the General tab is visible.

 2 Clear the View only the active properties check box to view all the available
properties.

 3 To enable a property, click the cell to the left of the property name. A red
check mark appears beside the property.

 4 Assign the property a value in the Value column:

➤ Frame: Type the name of the frame where the check object is located.

➤ AssignToParam: Select YES to enable assigning to a parameter. Select NO
to disable this capability. The default value is NO.

➤ MatchCase: Select YES to conduct a case-sensitive search. Select NO to
conduct a non-case-sensitive search. The default value is NO.

I h k

Part VIII • E-Business Protocols

608

➤ OnFailure: Select Abort to abort the entire Vuser script if the check fails.
VuGen aborts the Vuser script regardless of the error-handling method
that has been set in the run-time settings. Select Continue to have the
error-handling method defined in the run-time settings determine
whether or not the script is aborted if the check fails.

The default value is Continue. For details on defining the error handling
method, see Chapter 12, “Configuring Run-Time Settings.”

➤ Expect: Select NotFound to indicate that the check is successful if the
Vuser does not find the specified check object. Select Found to indicate
that the check is successful if the Vuser finds the specified check object.
The default value is Found.

➤ Repeat: Select YES to search for multiple occurrences of the specified
check object. Select NO to end the check as soon as one occurrence of the
specified check object is found. The Vuser script continues with the next
step. This option is useful when searching through a Web page that may
have multiple occurrences of the check object. The default value is YES.

➤ Report: Select Always to always view a detailed description of the check
results in the Execution Log. Select Failure to view detailed check results
only when the check fails. Select Success to view detailed check results
only when the check succeeds. The default value is Always.

An ABC icon indicates that the property value has not been assigned a
parameter. Click the icon to assign a parameter. For more information, see
Chapter 8, “Working with VuGen Parameters.”

609

45
Modifying Web and Wireless Vuser
Scripts

After recording a Web or Wireless Vuser script, you use VuGen to modify the
recorded script. You can add new steps, and edit, rename, and delete
existing steps.

This chapter describes:

➤ About Modifying Web and Wireless Vuser Scripts

➤ Adding a Step to a Vuser Script

➤ Deleting Steps from a Vuser Script

➤ Modifying Action Steps

➤ Modifying Control Steps

➤ Modifying Service Steps

➤ Modifying Web Checks (Web only)

The following information applies to Web and Wireless Vuser scripts.

Part VIII • E-Business Protocols

610

About Modifying Web and Wireless Vuser Scripts

After recording a browser or toolkit session, you can modify the recorded
script in VuGen by editing a step’s properties or adding and deleting steps.

You can do the modifications either in the icon-based tree view or in the
text-based script view. For details on the two viewing modes, see Chapter 38,
“Creating Web Vuser Scripts.”

This chapter describes how to use VuGen to modify the script in the tree
view. For information about modifying the script in the text-based script
view, refer to the Online Function Reference (Help > Function Reference).

Adding Binary Data

To include binary coded data in the body of an HTTP request, use the
following format:

\x[char1][char2]

This represents the hexadecimal value that is represented by [char1][char2].

For example, \x24 is 16*2+4=36, is a $ sign, and \x2B is a + sign.

Do not use single-character hexadecimal sequences. For example, \x2 is not
a valid sequence but \x02 is.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

611

Adding a Step to a Vuser Script

In addition to the steps that VuGen records during the browser or toolkit
recording session, you can add steps to a recorded script.

To add a step to a Vuser script:

 1 In the tree view of the script, select the step before or after which you want
to add the new step.

 2 Select Insert > New Step to insert a step after the selected step, or select
Insert After or Insert Before from the right-click menu. The Add Step dialog
box opens.

 3 Select the type of step you want to add from the Step Type tree or from the
Find Function list.

 4 Click OK. An additional dialog box opens, prompting for information about
the step to add. This dialog box varies, depending on the type of step that
you are adding.

Part VIII • E-Business Protocols

612

For details on using these dialog boxes, see the appropriate section, as listed
below:

Deleting Steps from a Vuser Script

After recording a browser or toolkit session, you can use VuGen to delete
any step from the Vuser script.

To delete a step from a Vuser script:

 1 In the tree view of the Vuser script, right-click the step you want to delete,
and select Delete from the pop-up menu.

 2 Click OK to confirm that you want to delete the step.

The step is deleted from the script.

To add this… See…

Vuser API function Chapter 7, “Enhancing Vuser Scripts”

Service step “Modifying Service Steps” on page 633

Web Check “Modifying Web Checks (Web only)” on page 634

Transaction “Modifying a Transaction” on page 630

Rendezvous point “Modifying a Rendezvous Point” on page 631

Think time step “Modifying Think Time” on page 632

URL step “Modifying a URL Step” on page 613

Link step “Modifying a Hypertext Link Step (Web only)” on
page 615

Image step “Modifying an Image Step (Web only)” on page 617

Submit form step “Modifying a Submit Form Step (Web only)” on
page 619

Submit data step “Modifying a Submit Data Step” on page 623

Custom request step “Modifying a Custom Request Step” on page 627

User-defined step Chapter 7, “Enhancing Vuser Scripts”

Chapter 45 • Modifying Web and Wireless Vuser Scripts

613

Modifying Action Steps

An action step represents a user action during recording, that is, a jump to a
new URL or a change in the Web context.

Action steps, represented in the tree view of the Vuser script by Action icons,
are added to your script automatically during recording. After recording,
you can modify the recorded action steps.

This section includes:

➤ Modifying a URL Step

➤ Modifying a Hypertext Link Step (Web only)

➤ Modifying an Image Step (Web only)

➤ Modifying a Submit Form Step (Web only)

➤ Modifying a Submit Data Step

➤ Modifying a Custom Request Step

Modifying a URL Step

A URL step is added to the Vuser script when you type in a URL or use a
bookmark to access a specific Web page.

The properties that you can modify are the name of the step, the address of
the URL, target frame, and record mode.

By default, VuGen runs the URL step, based on the mode in which it was
recorded: HTML, or HTTP (without resources). For information on the
recording modes, see “Selecting a Recording Level” on page 549.

Part VIII • E-Business Protocols

614

Setting the Replay Mode

In the URL step’s Properties dialog box, you can modify the mode settings to
instruct Vusers to execute the script in a mode other than the recorded
mode. To customize the replay mode, select the Record mode check box.
The available replay modes are:

HTML: Automatically download all resources and images and store the
required HTTP information for the steps that follow. This is ideal for script
with Web links.

HTTP: Do not download any resources for this step during replay. Download
only resources that are explicitly represented by functions.

You can also indicate that a certain step should not be counted as a resource.
For example, if you have a step that represents a specific image that you
want to skip, you can instruct VuGen to exclude that resource type. For
more information, see the “Resource Handling” on page 558.

To modify the properties of a URL step:

 1 In the tree view of the Vuser script, select the URL step you want to edit.
URL steps are shown using the URL icon.

 2 Click the Properties button on the VuGen toolbar. The URL Step Properties
dialog box opens.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

615

 3 To change the step name, type a new name in the Step name box. The
default name during recording is the last part of the URL.

 4 In the URL box, type the Web address (URL) of the Web page that is accessed
by the URL step. An ABC icon indicates that the URL has not been assigned
a parameter. For details on assigning parameters, see Chapter 8, “Working
with VuGen Parameters.”

 5 In the Target frame list, select one of the following values:

_TOP: replaces the whole page

_BLANK: opens a new window

_PARENT: replaces the parent of the last (changed) frame

 6 To customize the replay mode, select the Record mode check box.

Choose the desired mode: HTML or HTTP.

 7 To exclude an item from being downloaded as a resource, clear the Resource
check box.

 8 Click OK to close the URL Step Properties dialog box.

Modifying a Hypertext Link Step (Web only)

A hypertext link step is added to the Web Vuser script when you click a
hypertext link. This step is only recorded when you select the option to
record in HTML based script mode. For more information, see Chapter 41,
“Setting Recording Options for Web Vusers.”

The properties that you can modify are the name of the step, how the
hypertext link is identified, and where it is located.

Part VIII • E-Business Protocols

616

To modify the properties of a hypertext link step:

 1 In the tree view of the Vuser script, select the hypertext link step you want
to edit. Hypertext link steps are shown using the Hypertext Link icon.

 2 Select Properties from the right-click menu. The Link Step Properties dialog
box opens.

 3 To change the step name, type a new name in the Step Name box. The
default name during recording is the text string of the hypertext link.

 4 The properties table displays the properties that identify the link.

Clear the View only the active properties check box to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column:

➤ Text: the exact string of the hypertext link

➤ Frame: the name of the frame where the link is located

Chapter 45 • Modifying Web and Wireless Vuser Scripts

617

➤ TargetFrame: the target frame:

_TOP: replaces the whole page

_BLANK: opens a new window

_PARENT: replaces the parent of the last (changed) frame

➤ Ordinal: a number that uniquely identifies the link when all the other
property attributes are identical to one or more other links on the Web
page. Refer to the Online Function Reference for details.

An ABC icon indicates that the link property value has not been assigned a
parameter. For details on assigning parameters, see Chapter 8, “Working
with VuGen Parameters.”

 5 Click OK to close the Link Step Properties dialog box.

Modifying an Image Step (Web only)

An image step is added to the Vuser script when you click a hypergraphic
link. This step is only recorded when you select the option to record in
HTML (context-sensitive) mode. For more information, see Chapter 41,
“Setting Recording Options for Web Vusers.”

The properties that you can modify are the name of the step, how the
hypergraphic link is identified, and where it is located.

Part VIII • E-Business Protocols

618

To modify the properties of an image step:

 1 In the tree view of the Vuser script, select the image step you want to edit.
Image steps are shown using the Image icon.

 2 Select Properties from the right-click menu. The Image Step Properties
dialog box opens.

 3 To change the step name, type a new name in the Step Name box. The
default name during recording is the image’s ALT attribute. If the image does
not have an ALT attribute, then the last part of the SRC attribute is used as
the default name.

 4 The properties table displays the properties that identify the link.

Clear the View only the active properties check box to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column:

➤ ALT: the ALT attribute of the image

➤ SRC: the SRC attribute of the image

Chapter 45 • Modifying Web and Wireless Vuser Scripts

619

➤ MapName: the name of the map related to the image. Applies to client-
side image maps only.

➤ AreaAlt: the ALT attribute of the area to click. Applies to client-side image
maps only.

➤ AreaOrdinal: the serial number of the area to click. Applies to client-side
image maps only.

➤ Frame: the name of the frame where the image is located.

➤ TargetFrame: the target frame:

_TOP: replaces the whole page

_BLANK: opens a new window

_PARENT: replaces the parent of the last (changed) frame

_SELF: replaces the last (changed) frame

➤ Ordinal: a number that uniquely identifies the image when all other
property attributes are identical to one or more other images on the Web
page. Refer to the Online Function Reference for details.

➤ XCoord, YCoord: the coordinates of the mouse-click on the image.

An ABC icon indicates that the link property value has not been assigned a
parameter. For details on assigning parameters, see Chapter 8, “Working
with VuGen Parameters.”

 5 Click OK to close the Image Step Properties dialog box.

Modifying a Submit Form Step (Web only)

A submit form step is added to the Vuser script when you submit a form.
This step is only recorded when you select the option to record in HTML
(context-sensitive) mode. For more information, see Chapter 41, “Setting
Recording Options for Web Vusers.”

The properties that you can modify are the name of the step, the form
location, how the form submission is identified, the form data, and the
resources for the step.

Part VIII • E-Business Protocols

620

To modify the properties of a submit form step:

 1 In the tree view of the Vuser script, select the submit form step you want to
edit. Submit form steps are shown using the Submit Form icon.

 2 Select Properties from the right-click menu. The Submit Form Step
Properties dialog box opens. Click the Data tab.

➤ The Name column lists all the data arguments on the form.

➤ The Value column displays the corresponding value input for a data
argument.

➤ The type column contains an icon. Initially, all values are constants or
non-parameterized values and have an ABC icon. If you assign a
parameter to the data value, as described in Chapter 8, “Working with
VuGen Parameters,” the ABC icon changes to a table icon.

 3 To edit a data argument, double-click on it to activate the cursor within the
cell and type the new value in the editable box.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

621

 4 To add a new data argument to the form submission, click Add. The Add
Data dialog box opens.

 5 Type a Name and Value for the data argument, and click OK.

 6 To delete an argument, select it and click Delete.

 7 To change the name of the submit form step, click the General tab.

 8 To change the step name, type a new name in the Step Name box. The
default name during recording is the name of the executable program used
to process the form.

 9 The properties table displays the properties that identify the form
submission.

Part VIII • E-Business Protocols

622

Clear the View only the active properties option to view active and non-
active properties. To enable a property, click the cell to the left of the
property name. Assign the property a value in the Value column:

➤ Action: the address to be used to carry out the action of the form

➤ Frame: the name of the frame where the form submission is located

➤ TargetFrame: the target frame:

_TOP: replaces the whole page

_BLANK: opens a new window

_PARENT: replaces the parent of the last (changed) frame

_SELF: replaces the last (changed) frame

➤ Ordinal: a number that uniquely identifies the form when all other
property attributes are identical to one or more other forms on the same
Web page. Refer to the Online Function Reference for details (Help >
Function Reference).

An ABC icon indicates that the submit form step property value has not
been assigned a parameter. For details on assigning parameters, see
Chapter 8, “Working with VuGen Parameters.”

Chapter 45 • Modifying Web and Wireless Vuser Scripts

623

 10 To specify resources for the step, click the Resources tab. Click Add to add a
resource’s URL and Referer page.

 11 Click OK to close the Submit Form Step Properties dialog box.

Modifying a Submit Data Step

A submit data step represents the submission of a form of data to your Web
site for processing. This is different from a Submit Form step because you do
not need to have a form context to execute this request.

The properties that you can modify are the name of the step, the method,
the action, the target frame, and the data items on the form.

To modify the properties of a submit data step:

 1 In the tree view of the Vuser script, select the submit data step you want to
edit. Submit data steps are represented by the Submit Data icon.

Part VIII • E-Business Protocols

624

 2 Select Properties from the right-click menu. The Submit Data Step Properties
dialog box opens. Click the Data tab.

➤ The Name column lists all the data arguments on the form. This includes
all hidden fields.

➤ The Value column displays the corresponding value input for a data
argument.

➤ The type column contains an icon. Initially, all values are constants or
non-parameterized values and have an ABC icon. If you assign a
parameter to the data value, as described in Chapter 8, “Working with
VuGen Parameters,” the ABC icon changes to a table icon.

 3 To edit a data argument, double-click on it to activate the cursor within the
cell. Then type the new value.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

625

 4 To add new data, click Add. The Add Data dialog box opens.

 5 Type a Name and Value for the data argument, and click OK.

 6 To delete an argument, select it and click Delete.

 7 To change the name of the submit data step, click the General tab.

 8 To change the step name, type a new name in the Step name box.

 9 Under Method, click POST or GET. The default method is POST.

Part VIII • E-Business Protocols

626

 10 In the Action box, type the address to be used to carry out the action of the
data submission. An ABC icon indicates that the action has not been
assigned a parameter. For details on assigning parameters, see Chapter 8,
“Working with VuGen Parameters.”

 11 Select a Target frame from the list:

_TOP: replaces the whole page

_BLANK: opens a new window

_PARENT: replaces the parent of the last (changed) frame

_SELF: replaces the last (changed) frame

 12 To customize the replay mode, select the Record mode option. Choose the
desired mode: HTML, or HTTP. For more information, see “Setting the
Replay Mode” on page 614.

 13 To specify an encoding type, such as multipart/www-urlencoded, select the
Encoding type check box and specify the encoding method.

 14 To encode the “@” in the URL, select Encode “at“ sign as ASCII.

 15 Click OK to close the Submit Data Step Properties dialog box.

 16 To specify resources for the step, click the Resources tab. Click Add to add a
resource’s URL and Referer page.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

627

Modifying a Custom Request Step

A custom request represents a custom HTTP request for a URL, with any
method supported by HTTP. A custom request step is contextless.

The properties that you can modify are the name of the step, method, URL,
target frame, and body.

VuGen has a feature that lets you convert a custom request body string to C
format. For example, if you copy an XML tree or a large amount of data into
the Body area of the custom request, you can convert the strings to C format
in order that it may be incorporated into the current function. VuGen
inserts the necessary escape sequence characters and removes the line breaks
in the string.

To modify the properties of a custom request step:

 1 In the tree view of the Vuser script, select the custom request step you want
to edit. Custom request steps are shown using the Custom Request icon.

Part VIII • E-Business Protocols

628

 2 Select Properties from the right-click menu. The Custom Request Properties
dialog box opens.

 3 To change the step name, type a new name in the Step name box. The
default name during recording is the last part of the URL.

 4 In the Method box, type any method supported by HTTP. For example, GET,
POST or HEAD.

 5 In the URL box, type the URL being requested.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

629

 6 Select a Target frame from the list:

_TOP: replaces the whole page

_BLANK: opens a new window

_PARENT: replaces the parent of the last (changed) frame

_SELF: replaces the last (changed) frame

 7 In the Body box, type the body of the request or past in the desired text. If
you select the Binary data check box, the text is treated as binary and not as
ASCII. For details on using binary data, refer to the Online Function Reference
(Help > Function Reference).

 8 For strings that you pasted into the Body box, select the text and choose
Convert to C format from the right-click menu.

 9 To customize the replay mode, select the Record mode option. Choose the
desired mode: HTML or HTTP. For more information, see “Setting the Replay
Mode” on page 614.

 10 To exclude an item from being downloaded as a resource, clear the Resource
option.

 11 To specify an encoding type, such as multipart/www-urlencoded, select
Encoding type and specify the encoding method.

 12 Click OK to close the Custom Request Properties dialog box.

Part VIII • E-Business Protocols

630

Modifying Control Steps

A control step represents a control used during load testing or tuning.
Control steps include transactions, rendezvous points, and think time.

You add control steps, represented in the tree view of the Vuser script by
Control icons, to your script during and after recording.

This section includes:

➤ Modifying a Transaction

➤ Modifying a Rendezvous Point

➤ Modifying Think Time

Modifying a Transaction

A transaction is a task or set of actions whose server response time you want
to measure.

The properties that you can modify are the name of the transaction (start
transaction and end transaction) and its status (end transaction only).

To modify a start transaction control step:

 1 In the tree view of the Vuser script, select the start transaction control step
you want to edit. Start transaction control steps are shown using the Start
Transaction icon.

 2 Select Properties from the right-click menu. The Start Transaction dialog
box opens.

 3 To change the transaction name, type a new name in the Transaction Name
box, and click OK.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

631

To modify an end transaction control step:

 1 In the tree view of the Vuser script, select the end transaction control step
you want to edit. End transaction control steps are shown using the End
Transaction icon.

 2 Select Properties from the right-click menu. The End Transaction dialog box
opens.

 3 Select the name of the transaction you want to end from the Transaction
Name list.

 4 Select a transaction status from the Transaction Status list:

LR_PASS: returns a "succeed" return code

LR_FAIL: returns a "fail" return code

LR_STOP: returns a "stop" return code

LR_AUTO: automatically returns the detected status

For more information, refer to the Online Function Reference (Help > Function
Reference).

 5 Click OK to close the End Transaction dialog box.

Modifying a Rendezvous Point

Rendezvous points enable you to synchronize Vusers to perform a task at
exactly the same moment.

The property that you can modify is the name of the rendezvous point.

To modify a rendezvous point:

 1 In the tree view of the Vuser script, select the rendezvous point you want to
edit. Rendezvous points are shown using the Rendezvous icon.

Part VIII • E-Business Protocols

632

 2 Select Properties from the right-click menu. The Rendezvous dialog box
opens.

 3 To change the rendezvous name, type a new name in the Rendezvous Name
box, and click OK.

Modifying Think Time

Think time emulates the time that a real user waits between actions. During
recording, VuGen automatically adds think time to the Vuser script after
each user action—if the time between that action and the subsequent action
exceeds a predefined threshold of about four seconds.

The property that you can modify is the think time, in seconds.

To modify the think time:

 1 In the tree view of the Vuser script, select the think time step you want to
edit. Think time steps are shown using the Think Time icon.

 2 Select Properties from the right-click menu. The Think Time dialog box
opens.

 3 Type a think time in the Time To Think box, and click OK.

Chapter 45 • Modifying Web and Wireless Vuser Scripts

633

Note: When you run a Web Vuser script, you can instruct the Vuser to replay
think time as recorded or ignore the recorded think time. For details, see
Chapter 12, “Configuring Run-Time Settings.”

Modifying Service Steps

A service step is a function that performs customization tasks such as setting
proxies, submitting authorization information, and issuing customized
headers. Service steps do not make any changes to the Web site context.

You add service steps to your script during and after recording.

To modify the properties of a service step:

 1 In the tree view of the Vuser script, select the service step you want to edit.
Service steps are shown using the Service icon.

 2 Select Properties from the right-click menu. The appropriate service step
properties dialog box opens. This dialog box varies, depending on the type
of service step that you are modifying. A description of the service step is
displayed in the title bar of the dialog box.

Note: Some service step functions have no arguments. In these cases, the
Properties menu item is disabled.

 3 Type or select the arguments required for the service step. Refer to the Online
Function Reference for details of each function (Help > Function Reference).

 4 Click OK to close the service step properties dialog box.

Part VIII • E-Business Protocols

634

Modifying Web Checks (Web only)

A Web check is a function that verifies the presence of a specific object on a
Web page. The object can be a text string or an image.

You add Web checks to your script during and after recording.

To modify the properties of a Web check:

 1 In the tree view of the Vuser script, select the Web check you want to edit.
Web checks are shown using Web Check icons.

 2 Select Properties from the right-click menu. The appropriate Web check
properties dialog box opens. This dialog box varies, depending on the type
of check that you are modifying.

 3 Type or select the properties required for the check. For details, see
Chapter 44, “Verifying Web Pages Under Load.”

 4 Click OK to close the check properties dialog box.

Image Check icon

Text Check icon

635

46
Setting Correlation Rules for Web Vuser
Scripts

VuGen’s correlation feature allows you to link Vuser functions by using the
results of one statement as input for another.

This chapter describes how to correlate statements during recording. It
discusses:

➤ About Correlating Statements

➤ Understanding the Correlation Methods

➤ Using VuGen’s Correlation Rules

➤ Setting Correlation Rules

➤ Testing Rules

➤ Setting the Correlation Recording Options

The following information applies to Web and PeopleSoft Enterprise Vuser
scripts.

Part VIII • E-Business Protocols

636

About Correlating Statements

HTML pages often contain dynamic data, which is data that changes each
time you access a site. For example, certain Web servers use links comprised
of the current date and time.

When you record a Web Vuser script, dynamic data may be recorded into
the script. Your script tries to present the recorded variables to the Web
server, but they are no longer valid. The Web server rejects them and issues
an error. These errors are not always obvious, and you may only detect them
by carefully examining Vuser log files.

If you encounter an error when running your Vuser, examine the script at
the point where the error occurred. Often, correlation will solve the problem
by enabling you to use the results of one statement as input for another.

The dynamic data in an HTML page can be in the form of:

➤ a URL that changes each time you access the associated Web page

➤ a field (sometimes hidden) recorded during a form submission

➤ javascript cookies

Case 1

Suppose a Web page contains a hypertext link with text: "Buy me now!"
When you record a script with HTTP data, the URL is recorded by VuGen as:

"http://host//cgi-bin/purchase.cgi?date=170397&ID=1234"

Since the date “170397” and ID “1234” are created dynamically during
recording, each new browser session recreates the date and ID. When you
run the script, the link "Buy me now!" is no longer associated with the same
URL that was recorded—but with a new one. The Web server is therefore
unable to retrieve the URL.

Chapter 46 • Setting Correlation Rules for Web Vuser Scripts

637

Case 2

Consider a case where a user fills in his name and account ID into a form,
and then submits the form.

When the form is submitted, a unique serial number is also sent to the
server together with the user’s data. Although this serial number is
contained in a hidden field in the HTML code, it is recorded by VuGen into
the script. Because the serial number changes with each browser session,
Vusers were unable to successfully replay the recorded script.

You can use correlated statements to resolve the difficulties in both of the
above cases. Replace the dynamic data in the recorded script with one or
more parameters. When the script runs, it assigns values to each of the
parameters.

Understanding the Correlation Methods

This chapter discusses automatic correlation using built-in or user-defined
rules. To manually correlate statements, or to perform correlation for
Wireless Vuser scripts, see “Performing Manual Correlation” on page 661.

When recording a browser session, you should first try recording in HTML
mode. This mode decreases the need for correlation. For more information
about the various recording modes, see “Selecting a Recording Level” on
page 549.

You can instruct VuGen to correlate the statements in your script either
during or after recording. The recording-time solutions described in this
chapter automatically correlate the statements in your script during
recording time. You can also use VuGen’s snapshot correlation to correlate
scripts after recording. For more information on correlating after recording,
see Chapter 47, “Correlating Vuser Scripts After Recording.”

Part VIII • E-Business Protocols

638

Using VuGen’s Correlation Rules

VuGen’s correlation engine allows you to automatically correlate dynamic
data during your recording session using one of the following mechanisms:

➤ Built-in Correlation

➤ User-Defined Rule Correlation

For additional information, see “Adding Match Criteria” on page 642 and
“Advanced Correlation Rules” on page 642.

Built-in Correlation

The Built-in correlation detects and correlates dynamic data for supported
application servers. Most servers have clear syntax rules, or contexts, that
they use when creating links and referrals.

For example, BroadVision servers create session IDs that are always placed
between the same delimiters: ”BV_SessionID=” on the left, and ”&” on the
right.

BV_SessionID=@@@@1303778278.0969956817@@@@&

Chapter 46 • Setting Correlation Rules for Web Vuser Scripts

639

If you are recording a session with a supported application server, you can
use one of the existing rules built into VuGen. An application server may
have more than one rule. You can enable or disable a specific rule by
selecting or clearing the check box adjacent to the rule. VuGen displays the
rule definitions in the right pane.

If you are recording a session on an unsupported application server whose
context is not known, and you cannot determine any correlation rules, you
can use VuGen’s snapshot comparison method. This method guides you
through the correlation procedure after you finish recording. For more
information, see Chapter 47, “Correlating Vuser Scripts After Recording.”

User-Defined Rule Correlation

If your application has unique rules and you are able to determine them
clearly, you can define new rules using the Recording Options.

User-defined rule correlation requires you to define correlation rules before
you record a session. You create the correlation rules in the Recording
Options dialog box. The rules include information such as the boundaries of
the dynamic data you want to correlate and other specifications about the
match such as binary, case matching, and the instance number.

Part VIII • E-Business Protocols

640

You instruct VuGen where to search for the criteria:

➤ All Body Text

➤ Link/Form Actions

➤ Cookie Headers

➤ Form Field Value

➤ Insert Cookie Function

Note that by default, the maximum size of a string that you can save for a
rule is 4096 characters. If necessary, you can modify this value by increasing
the value of the MaxParamLen attribute in the CorrelationSettings.xml file,
located in the Windows Installation directory.

All Body Text

The Search for Parameters in all of the Body Text option instructs the
recorder to search the entire body—not just links, form actions or cookies. It
searches the text for a match using the borders that you specify.

Link/Form Actions

The Search for parameters in links and form actions method instructs
VuGen to search within links and form type actions for the text to
parameterize. This method is for application servers where you know the
context rules. You define a left boundary, a right boundary, an alternate
right boundary, and an instance (occurrence) of the left boundary within
the current link.

For example, suppose you want to replace any text between the second
occurrence of the string “sessionid=” and “@” with a parameter. Specify
sessionid= as a left boundary in the Left Boundary box, and @ as a right
boundary in the Right Boundary box. Since you are looking for the second
occurrence, choose second in the Instance box.

If the right boundary is not consistent, you can specify an alternate right
boundary in the Alternate right boundary box. It uses this value when it
cannot uniquely determine the specified right boundary.

Chapter 46 • Setting Correlation Rules for Web Vuser Scripts

641

For example, suppose the Web page contains links in the following formats:

"SessionID=122@page.htm"
"Page.htm@SessionID=122&test.htm"

Specifying the right boundary alone is not sufficient, since it is not
consistent—sometimes it is "@" and other times it is "&". In this case, you
specify "&" as the alternate right boundary.

The left and right boundaries should uniquely identify the string. Do not
include dynamic data in the boundaries. You can also specify End of String
or Newline Character as a right boundary, available as options in the drop-
down menu.

Note that for this option, the left and right boundaries must appear in the
string that appears in the script—it is not sufficient for the boundaries to be
returned by the server. This limitation does not apply to the other action
types.

Cookie Headers

The Search for Parameters from Cookie Header method is similar to the
previous rule, except that the value is extracted from cookie text (exactly as
it appears in the recording log) instead of from a link or form action.

In addition, the link/form action rule parameterizes only the part of URL
that matches the rule boundaries. The cookie rule looks for the extracted
value in links and action form fields and replaces it with a parameter
automatically, without having to display the boundaries in the script.

Form Field Value

The Parameterize form field value method instructs the recorder to save the
named form field to a parameter. It creates a parameter and places it in the
script before the form’s action step. For this option, you need to specify the
field name.

Insert Cookie Function

The Text to enter a web_reg_add_cookie function by method inserts a
web_reg_add_cookie function if it detects a certain string in the buffer. It
only adds the function for those cookies with the specified prefix. For this
option, you need to specify the search text and the cookie prefix.

Part VIII • E-Business Protocols

642

Adding Match Criteria

In addition to the above rules, you can further define the type of match for
your correlation by specifying the following items for the string:

Parameter Prefix: Uses a prefix in all automatically generated parameters
based on this rule. Prefixes prevent you from overwriting existing user
parameters. In addition, prefixes allow you to recognize the parameter in
your script. For example, in Siebel-Web, one of the built-in rules searches for
Siebel_row_id prefix.

Match Case: Matches the case when looking for boundaries.

Use “#” for any digit: Replaces all digits with a hash sign. The hash signs
serve as wildcard, allowing you to find text strings with any digit. For
example, if you enable this option and specify Mercury### as the left
boundary, Mercury193 and Mercury284 will be valid matches.

Adding Comments

You can instruct VuGen to insert descriptive comments to the correlation
steps within your script. To enable this option, select the Add Comments to
script option.

Advanced Correlation Rules

VuGen lets you specify the following advanced correlation rules:

Always create new parameter: Creates a new parameter for this rule even if
the value replaced by the parameter has not changed from the previous
instance. This option should be set if the Web server assigns a different value
for each page. For example, NetDynamics servers may change the session ID
from page to page to minimize fraud.

Replace with parameter only for exact matches: Replace the recorded value
with a parameter only when the text between the boundaries exactly
matches the found value (from the first snapshot). If there are additional
characters either before or after the string, it will not replace the parameter.

Chapter 46 • Setting Correlation Rules for Web Vuser Scripts

643

For example, in a form submission, VuGen recorded the characters 1234
between the boundaries aaa and bbb, aaa1234bbb. In subsequent
submissions of this form, VuGen only replaces the recorded value with a
parameter if it finds the characters 1234, Name=1234. If another value is
entered, even if it contains the first string, for example, Name=12345,
VuGen will not replace the value with a parameter. Instead, it will use the
value 12345.

Reverse Search: Searches for the left boundary from the end of the string
backwards.

Left boundary Instance: The number of occurrence of the left boundary
within the string (not the body) for it to be considered a match.

Offset: The offset of a sub-string of the found value to save to the parameter.
The default is the beginning of the matched string. Note that you must
specify a non-negative value.

Length: The length from its offset of a sub-string of the matched string to
save to the parameter. If you disable this option, the default saves the string
from the specified offset until the end of the match.

Alternate Right Boundary: An alternative criteria for the right boundary if
the previously specified boundary is not found. You can specify text, End of
String, or Newline Character.

Setting Correlation Rules

You can add, modify, or remove rules using the Correlation Recording
options. Note that you can also edit rules that were created automatically for
application server environments.

In addition to creating rules using the recording options before recording,
you can create rules after recording. After running your script, you scan it
for correlations (CTRL+F8). You select one of the correlation results, and
create a rule based on its properties. For more information, see “Performing
a Scan for Correlations” on page 657.

Part VIII • E-Business Protocols

644

To define correlation rules:

 1 Click on an existing rule or click New Rule in the left pane. The Correlation
Rules are displayed in the right pane.

 2 Select a type of action: link or form action, cookie, all body, form field, or
web_reg_add_cookie.

 3 For the first three types, specify boundaries of the data in the Left Boundary
and Right Boundary boxes.

 4 For form field type actions, specify the field name.

 5 Select the desired options: Match Case and/or Parameter Prefix. Specify a
parameter prefix. To convert all digits to hash signs (#), select Use # for any
digit.

Chapter 46 • Setting Correlation Rules for Web Vuser Scripts

645

 6 To set advanced rules, click Advanced in the Correlation node. The
Advanced Correlation Properties dialog box opens.

➤ Select Always create new parameter to create a new parameter for this
rule even if the value replaced by the parameter has not changed from
the previous instance.

➤ Select Replace with parameter only for exact matches to replace a value
with a parameter only when the text exactly matches the found value.

➤ Select Reverse Search to perform a backward search.

➤ Select the Left Boundary Instance box and specify the desired instance.

➤ Select Offset to specify an offset for the string within the match.

➤ Select Length to specify the length of the matched string to save to the
parameter. This option may be used in conjunction with the Offset
option.

➤ Specify another right boundary in the Alternate right boundary box or
choose End of String or NewLine Character from the drop-down menu.

 7 Click Test Rule to test the rule you just defined. For information, see
“Testing Rules” on page 646.

 8 Click OK to save the rules and close the dialog box.

Part VIII • E-Business Protocols

646

Testing Rules

This section applies to user-defined rules that you created for a server with a
known context. After you define a new rule in the Correlation Rule dialog
box, you can test it before recording your session by applying the rules to a
sample string. You test the rules in the Token Substitution Testpad. To use
the testpad:

 1 Select a rule from the left pane and click Test. The Token Substitution
Testpad dialog box opens.

 2 Enter text in the Source String for Substitution box.

 3 Click Test.

If substitution occurred, you will see the parameterized source text in the
Substitution Result box and a list of rules that were applied to it in the
Applied Rules box.

Chapter 46 • Setting Correlation Rules for Web Vuser Scripts

647

Setting the Correlation Recording Options

To instruct VuGen to correlate your statements during recording, you set the
Correlation recording options. You set these options after opening a Web
Vuser script but before you begin recording the session.

To set the correlation recording options:

 1 After you create a script, but before you begin recording, select Tools >
Recording Options and select the Internet Protocol:Correlation node in the
Recording Options tree.

 2 Select the Enable correlation during recording option.

 3 Indicate the servers to which you want to apply the correlation rules. Select
the check boxes adjacent to the server names to enable the rules for that
server. To enable specific rules within a server group, click the plus sign to
expand the tree and select the desired rules.

 4 To add a new rule to an existing server, select one of the existing entries and
click New Rule. Set the properties for the rule in the right pane. For more
information, see “Setting Correlation Rules” on page 643.

 5 To add a set of rules for a new application, click New Application. Then click
New Rule to create a rule for the application.

Part VIII • E-Business Protocols

648

 6 To modify the properties of an existing rule, select the rule in the left pane
and modify the rules in the right pane.

 7 Indicate what VuGen should do when it detects a value that needs to be
correlated: Issue a popup message or Perform correlation in script. By
default, VuGen issues a popup message.

 8 To delete an application or rule, select it and click Delete. VuGen prompts
you to confirm your choice before deleting the selection.

 9 To export a set of correlation rules, click Export and save the .cor file to the
desired location. To import a set of correlation rules created during an earlier
session, click Import and open the file from its location.

 10 Click OK.

649

47
Correlating Vuser Scripts After Recording

When correlation was not performed during recording, VuGen’s built-in
Web Correlation mechanism allows you to correlate Vuser scripts after a
recording session.

This chapter describes:

➤ About Correlating with Snapshots

➤ Viewing the Correlation Results Tab

➤ Setting Up VuGen for Correlations

➤ Performing a Scan for Correlations

➤ Performing Manual Correlation

➤ Defining a Dynamic String’s Boundaries

The following information applies only to Web, Wireless, SAP-Web, and
Siebel-Web Vuser scripts.

Part VIII • E-Business Protocols

650

About Correlating with Snapshots

VuGen provides several correlation mechanisms for Web Vuser scripts. The
automatic method discussed in Chapter 46, “Setting Correlation Rules for
Web Vuser Scripts” detects dynamic values during recording and allows you
to correlate them right away. If you disabled automatic correlation, or if the
automatic method did not detect all of the differences, you can use VuGen’s
built-in correlation mechanism, described in this chapter, to find differences
and correlate the values. You can also use this mechanism for scripts that
were only partially correlated.

The correlation mechanism uses snapshots to track the results of script
execution. Snapshots are graphical representations of Web pages.
VuGen captures snapshots of the Web pages during record and replay. You
compare the recorded snapshot to any of the replay snapshots to determine
which values you need to correlate to successfully run the script. For more
information about Record and Replay snapshots, see “Understanding
Snapshots” on page 20.

The Web correlation mechanism has a built-in comparison utility that
allows you to view the text or binary differences between the snapshots. You
can then correlate the differences one-by-one or all at once.

If VuGen’s correlation mechanisms are insufficient, or for protocols that do
not support these mechanisms, such as Wireless, use manual correlation. For
more information, see “Performing Manual Correlation” on page 661.

Chapter 47 • Correlating Vuser Scripts After Recording

651

Viewing the Correlation Results Tab

The Correlation Results tab displays the differences between the Record and
Replay snapshots.

When you instruct VuGen to scan the script for correlations, it opens the
Output window and displays the differences between the recording and
replayed snapshots in the Correlation Results tab.

You can display all the differences in the script or only those for the current
step or action, by selecting the desired option from the Show Differences In
list box.

Differences that were correlated are indicated by a check mark in the
Correlated column. The next two columns, Text in Recording, Text in
Replay show the text differences between the snapshots. The next column,
First occurs in, indicates the Action in which the correlation was first
detected.

After you detect the differences between the snapshots, you correlate them
one at a time by selecting the correlation and clicking Correlate. VuGen also
allows you to undo a specific correlation using the Remove Correlation
button. If you expect one of the detected correlations to occur in subsequent
recordings, you can create a new correlation rule. By creating rules, you
enable VuGen to recognize differences during recording and automatically
correlate them. For more information, see “Creating a Rule” on page 652.

Part VIII • E-Business Protocols

652

When you correlate a value using the this mechanism, VuGen inserts a
web_reg_save_param function and a comment into your script indicating
that a correlation was done for the parameter. It also indicates the original
value.

Creating a Rule

You can create a rule directly from the list of Correlated Results. Creating a
rule, enables VuGen to recognize the difference during recording and
automatically correlate it.

// [WCSPARAM WCSParam_Diff1 14 reserveFlights] Parameter
{WCSParam_Diff1} created by Correlation Studio

web_reg_save_param("WCSParam_Diff1", "LB= NAME=\"", "RB=\"",
"Ord=5", "Search=Body", "RelFrameId=1", LAST);

web_submit_form("reservations.pl",
"Snapshot=t4.inf",
ITEMDATA,
"Name=depart", "Value=Denver", ENDITEM,
"Name=departDate", "Value=06/25/2004", ENDITEM,
"Name=arrive", "Value=Los Angeles", ENDITEM,
"Name=returnDate", "Value=06/26/2004", ENDITEM,
"Name=numPassengers", "Value=1", ENDITEM,
"Name=roundtrip", "Value=<OFF>", ENDITEM,
"Name=seatPref", "Value=None", ENDITEM,
"Name=seatType", "Value=Coach", ENDITEM,
"Name=findFlights.x", "Value=44", ENDITEM,
"Name=findFlights.y", "Value=12", ENDITEM,
LAST);

lr_think_time(12);

Chapter 47 • Correlating Vuser Scripts After Recording

653

To create a rule from one of the detected correlations:

Select the correlation and click Create Rule. You can also create a rule by
selecting a correlation and choosing Create Correlation Rule from the right-
click menu.

VuGen adds this rule to the list of Correlation rules. You can view this rule
in the Recording Options Correlation node. In the following example,
VuGen added the rule as CSRule_1.

Part VIII • E-Business Protocols

654

Setting Up VuGen for Correlations

You set the global Correlation setting under the General options. These
options instruct the Vusers to save correlation information during replay, to
be used at a later stage. You can specify the type of comparison to perform
when comparing snapshots: HTML or text. In the Advanced options, you
can indicate which characters should be treated as delimiters.

Enable Scripting and Java applets on Snapshots viewer: Allows VuGen to
run applets and javascript in the snapshot window. This is disabled by
default because it uses a lot of resources.

Download images on Snapshots viewer: Instructs VuGen to display graphics
in the Snapshot view. If you find that the displaying of images in the viewer
is very slow, you can disable this option. This option is enabled by default.

Scan for differences between snapshots using: Choose a comparison
method:

➤ HTML Comparison: Only display the differences in HTML code.

➤ Text Comparison: Display all text, HTML, and binary differences.

Chapter 47 • Correlating Vuser Scripts After Recording

655

Note: In most cases, it is recommended that you work with the default
HTML comparison method. If your script contains non-HTML tags, you can
use the Text comparison method.

Advanced: Opens the Advanced Correlation dialog box.

Advanced Correlation dialog box

This dialog box lets you specify the characters to be treated as delimiters.

Characters that should be treated as delimiters: Specifies one or more non-
standard delimiters.

Additional Delimiters: You can specify standard delimiters such as Carriage
Return, New line and Tab characters. To change this setting, clear the
checkbox next to the delimiter.

Ignore differences shorter than … characters: Allows you to specify a
threshold for performing correlation. When VuGen compares the recorded
script with the executed script during the scanning process, it detects
differences. It will not correlate the differences unless the number of
different characters is greater than or equal to the threshold value. The
default value is 4 characters.

Issue a warning for large correlations: Issues a warning if you try to correlate
a string whose size is 10 KB or larger.

Setting the Correlation Preferences

Before recording a session, you configure the correlation preferences.

To set the correlation preferences:

 1 Choose Options > General and select the Correlation tab.

 2 Select Enable Scripting and Java applets on Snapshots viewer to allow
VuGen to run applets and javascript in the snapshot window.

 3 To instruct VuGen to display graphics in the Snapshot view, select the
Download images on Snapshots viewer option.

Part VIII • E-Business Protocols

656

 4 Choose the comparison method: HTML comparison or Text Comparison (for
non-HTML elements only).

 5 To set the delimiter characters, click Advanced to open the Advanced
Correlation dialog box.

 6 In the Characters that should be treated as delimiters box, specify all
characters that are to be treated as delimiters.

 7 Select the desired options in the Additional delimiters section, to specify one
or more standard delimiters.

 8 Specify a threshold for the correlation in the Ignore differences shorter than
box. When VuGen compares the recorded script with the executed script
during the scanning process, it detects differences. It will not correlate the
differences unless the number of different characters is greater than or equal
to the threshold value.

 9 To issue a warning for large correlations, select the option’s check box.

 10 Click OK to accept the Advanced Correlation settings and close the dialog
box.

 11 Click OK in the General Options dialog box to accept the Correlation setting
and close the dialog box.

Chapter 47 • Correlating Vuser Scripts After Recording

657

Performing a Scan for Correlations

You can use VuGen’s snapshot window to determine which values within
your script are dynamic and require correlation. The following section
describes how to automatically scan the script for differences and use VuGen
to perform the necessary correlations.

To scan your script for correlations:

 1 Open a script and view it in Tree view (View > Tree View). Display the
snapshots (View > Snapshot > View Snapshot).

 2 Select a script step in the Tree view from the left pane. A snapshot opens in
the right pane.

 3 To display both the recording snapshot and the first replay snapshot, click
View > Snapshot > Recorded and Replayed.

Part VIII • E-Business Protocols

658

 4 To use a snapshot other than the first, click View > Snapshot > Select
Iteration. A dialog box opens, displaying the folders that contain snapshot
files. These are usually the result and Iteration folders below the script’s
folder.

 5 To select a snapshot file in a folder other than the one in the subfolders of
the script, click Select Folder. Browse to the desired location, and click OK.

 6 To view the HTML code, click the Server Response tab. Expand the Body
branch.

To return to the page view, click the Page View tab.

Chapter 47 • Correlating Vuser Scripts After Recording

659

 7 Choose Vuser > Scan for Correlations or click the Find Correlations button.
VuGen scans the script for dynamic values that need to be correlated and
displays them in the Correlation Results tab.

 8 View all differences or choose a filter method in the Show Differences In list
box. The options are All Actions, Current Action, or Current Step Only.

Determining the Differences to Correlate

Once you generate a list of differences, you need to determine which ones to
correlate. If you mistakenly correlate a difference that did not require
correlation, your replay may be adversely affected.

The following strings most probably require correlation:

➤ Login string—A login string with dynamic data such as a session ID or a
timestamp.

➤ Date/Time Stamp—Any string using a date or time stamp, or other user
credentials.

➤ Common Prefix—A common prefix, such as SessionID or CustomerID,
followed by a string of characters.

If you are in doubt whether a difference should be correlated, correlate only
that difference and then run your script. Check the Replay log to see if the
issue was resolved.

You should also correlate differences in which some of the recorded and
replayed strings are identical, but others differ. For example, SessionID
strings with identical prefixes and suffixes, but different characters in
between, should be correlated.

Part VIII • E-Business Protocols

660

Once you determine that a difference needs to be correlated, you instruct
VuGen to correlate it.

To correlate the differences:

 1 View the differences in the Correlation tab, and select the one you want to
correlate. It is recommended that you correlate only one difference at a
time.

 2 Click Correlate. VuGen places a green check mark next to differences that
were correlated and inserts a web_reg_save_param function into the script.

Repeat this step for all differences you want to correlate.

 3 To create a rule from one of the detected correlations, select the correlation
and click Create Rule. This is also available from the right-click menu.
VuGen issues a message confirming that your rule was created.

Chapter 47 • Correlating Vuser Scripts After Recording

661

To view this rule, open the Recording Options (CTRL +F7) and select the
Correlation node. Expand the Correlation Studio entry and select your rule.

 4 To undo a correlation, select the difference and click Remove Correlation.

 5 Choose File > Save to save the changes to your script.

Performing Manual Correlation

For Web Vusers, VuGen’s automatic or rule-based correlation usually
correlates the scripts dynamic functions so that you can run the script
successfully. You can also perform correlation after the recording session
using VuGen’s snapshot comparison.

For Wireless Vusers and other Vuser scripts for which automatic correlation
did not apply, VuGen also allows you to manually correlate your scripts. You
manually correlate a script by adding the code correlation functions. The
function that allows you to dynamically save data to a parameter is
web_reg_save_param.

When you run the script, the web_reg_save_param function scans the
subsequent HTML page that is accessed. You specify a left and/or right
boundary and VuGen searches for text between those boundaries. When
VuGen finds the text, it assigns it to a parameter.

Part VIII • E-Business Protocols

662

The function’s syntax is as follows:

int web_reg_save_param (const char *mpszParamName, <List of Attributes>,
LAST);

The following table lists the available attributes. Note that the attribute
value strings (e.g. Search=all) are not case sensitive.

NotFound The handling method when a boundary is not found
and an empty string is generated. "ERROR," the
default, indicates that VuGen should issue an error
when a boundary is not found. When set to "EMPTY,"
no error message is issued and script execution
continues. Note that if Continue on Error is enabled
for the script, then even when NOTFOUND is set to
"ERROR," the script continues when the boundary is
not found, but it writes an error message to the
Extended log file.

LB The left boundary of the parameter or the dynamic
data. This parameter must be a non-empty, null-
terminated character string. Boundary parameters are
case sensitive; to ignore the case, add "/IC" after the
boundary. Specify "/BIN" after the boundary to specify
binary data.

RB The right boundary of the parameter or the dynamic
data. This parameter must be a non-empty, null-
terminated character string. Boundary parameters are
case sensitive; to ignore the case, add "/IC" after the
boundary. Specify "/BIN" after the boundary to specify
binary data.

RelFrameID The hierarchy level of the HTML page relative to the
requested URL. The possible values are ALL or a
number.

Chapter 47 • Correlating Vuser Scripts After Recording

663

To manually correlate your script:

 1 Identify the statement that contains dynamic data and the patterns that
characterize the boundaries of the data. See “Defining a Dynamic String’s
Boundaries” on page 666.

 2 In the script, replace the dynamic data with your own parameter name. See
below for more details.

 3 Add the web_reg_save_param function into the script before the statement
that contains the dynamic data. See “Adding a Correlation Function” on
page 664 or the Online Function Reference (Help > Function Reference).

Search The scope of the search—where to search for the
delimited data. The possible values are Headers (search
only the headers), Body (search only Body data, not
headers), or ALL (search Body and headers). The
default value is ALL.

ORD This optional parameter indicates the ordinal or
occurrence number of the match. The default ordinal
is 1. If you specify "All," it saves the parameter values
in an array.

SaveOffset The offset of a sub-string of the found value, to save to
the parameter. The default is 0. The offset value must
be non-negative.

Savelen The length of a sub-string of the found value, from the
specified offset, to save to the parameter. The default is
-1, indicating until the end of the string.

Convert The conversion method to apply to the data:

HTML_TO_URL: convert HTML-encoded data to a
URL-encoded data format

HTML_TO_TEXT: convert HTML-encoded data to
plain text format

Part VIII • E-Business Protocols

664

Replacing Dynamic Data with a Parameter

Identify the actual dynamic data in the recorded statement, then search the
entire script for the dynamic data and replace it with a parameter. Give the
parameter any name and enclose it with braces: {param_name}. You can
include a maximum of 64 parameters per script.

To replace dynamic data with a parameter:

Select Edit > Replace from the VuGen main window to display the Search
and Replace dialog box. Search the entire script for the dynamic data and
replace it with a parameter.

Adding a Correlation Function

You insert the web_reg_save_param statement to save dynamic data in a
script. This function tells VuGen to create a parameter that saves the run-
time value of the dynamic data during replay.

When you run the script, the web_reg_save_param function scans the
subsequent HTML page that is accessed. It searches for an occurrence of the
left boundary, followed by any string, followed by the right boundary.
When such an occurrence is found, VuGen assigns the string between the
left and right boundaries to the parameter named in the function’s
argument. After finding the specified number of occurrences,
web_reg_save_param does not search any more HTML pages. The Vuser
continues with the next step in the script.

Sample Correlation for Web Vusers

Suppose the script contains a dynamic session ID:

web_url("FirstTimeVisitors",
"URL=/exec/obidos/subst/help/first-time-visitors.html/002-8481703-

4784428>Buy books for a penny ",
"TargetFrame=",
"RecContentType=text/html",
"SupportFrames=0",
LAST);

Chapter 47 • Correlating Vuser Scripts After Recording

665

You insert a web_reg_save_param statement before the above statement:

After implementing correlated statements, the modified script looks like
this, where user_access_number is the name of the parameter representing
the dynamic data.

Note: Each correlation function retrieves dynamic data once, for the
subsequent HTTP request. If another HTTP request at a later point in the
script generates new dynamic data, you must insert another correlation
function.

Sample Correlation for Wireless Vusers

Suppose your script contains a dynamic session ID for a WAP connection:

web_req_save_param ("user_access_number", "NOTFOUND=ERROR",
"LB=first-time-visitors.html/","RB=>Buy books for a penny", "ORD=6",
LAST);

web_url("FirstTImeVisitors",
"URL=/exec/obidos/subst/help/first-time-”
“visitors.html/{user_access_number}Buy books for a penny ",

"TargetFrame=",
"RecContentType=text/html",
"SupportFrames=0",
LAST);

web_url("login.po;sk=IuZSuuRlHUMnpF-wpK8PzEpy(1YOSBSMy)",
"URL=http://room33.com/portal/login.po;sk=IuZSuuRlHUMnpF-

wpK8PzEpy(1YOSBSMy)",
"Resource=0",
"RecContentType=text/vnd.wap.wml",
"Mode=HTML",
LAST);

Part VIII • E-Business Protocols

666

You insert a web_reg_save_param statement before the above statement
and replace the dynamic value with the parameter. In the following
example, the web_reg_save_param functions saves the login ID string to a
variable called SK. It saves binary data, denoted by the RB/BIN attribute, and
sets the left boundary as “sk=”.

Defining a Dynamic String’s Boundaries

Use these guidelines to determine and set the boundaries of the dynamic
data:

➤ Always analyze the location of the dynamic data within the HTML code
itself, and not in the recorded script.

➤ Identify the string that is immediately to the left of the dynamic data. This
string defines the left boundary of the dynamic data.

➤ Identify the string that is immediately to the right of the dynamic data. This
string defines the right boundary of the dynamic data.

web_reg_save_param(
 "SK",

 "LB=sk=",
 "RB/BIN=#login\\x00\\x01\\x03",
 "Ord=1",
 LAST);

web_url("login.po;sk={SK}",
"URL=http://room33.com/portal/login.po;sk={SK}",
"Resource=0",
"RecContentType=text/vnd.wap.wml",
"Mode=HTML",
LAST);

Chapter 47 • Correlating Vuser Scripts After Recording

667

➤ web_reg_save_param looks for the characters between (but not including)
the specified boundaries and saves the information beginning one byte after
the left boundary and ending one byte before the right boundary.
web_reg_save_param does not support embedded boundary characters.
For example, if the input buffer is {a{b{c} and "{" is specified as a left
boundary, and "}" as a right boundary, the first instance is c and there are no
further instances—it found the right and left boundaries but it does not
allow embedded boundaries, so "c" is the only valid match.

By default, the maximum length of any boundary string is 256 characters.
Include a web_set_max_html_param_len function in your script to
increase the maximum permitted length. For example, the following
function increases the maximum length to 1024 characters:

web_set_max_html_param_len(“1024”);

Part VIII • E-Business Protocols

668

669

48
Testing XML Pages

VuGen’s Web Vusers support Web pages containing XML code.

This chapter describes:

➤ About Testing XML Pages

➤ Viewing XML as URL Steps

➤ Inserting XML as a Custom Request

➤ Viewing XML Custom Request Steps

The following information only applies to Web Vuser scripts.

About Testing XML Pages

VuGen supports record and replay for XML code within Web pages.

The XML code can appear in the script as a regular URL step or as a custom
request. VuGen detects the HTML and allows you to view each document
type definition (DTD), its entities, and its attributes. VuGen can interpret
the XML when the MIME type displayed in the RecContentType attribute or
the MIME type returned by the server during replay, ends with xml, such as
application/xml or text/xml. The DTD is color coded, allowing you to
identify each one of the elements. You can also expand and collapse the tree
view of the DTD.

When you expand the DTD, you can parameterize the attribute values. You
can also save the values in order to perform correlation using the standard
correlation functions. For more information about the correlation
functions, refer to the Online Function Reference (Help > Function Reference).

Part VIII • E-Business Protocols

670

Note: VuGen cannot display a DTD with XML islands, segments of XML
embedded inside an HTML page. VuGen only displays pages that are
entirely XML.

Viewing XML as URL Steps

One way to test a page with XML code, is to record it with VuGen. You
record the XML pages as you would record a standard Web page. VuGen
records the DTD and all of the XML elements. It does not create a snapshot
for the XML page. Instead, for each XML step it displays the XML code in
the snapshot frame under the Server Response tab.

Chapter 48 • Testing XML Pages

671

VuGen creates a color-coded expandable hierarchy of the DTD in the
snapshot frame. Click on the "+" to expand an item, and click on the "-" to
collapse it. VuGen displays all XML tags in brown, and values in black.

To replace any of the constant values with a parameter, select a value,
perform a right-click, and select Replace with a Parameter. Follow the
standard procedure for parameterization. For more information, see
Chapter 8, “Working with VuGen Parameters.”

You can also view the Server response and Client request for the XML page
by clicking the appropriate tab. The following example shows the Server
response of an XML page. Note that you can expand and collapse all
branches of the XML tree.

Part VIII • E-Business Protocols

672

The following example shows the Client Request for the header of an XML
page:

Inserting XML as a Custom Request

You can also test your XML pages by inserting the XML code as a custom
request. In this mode, the Custom Request properties box displays the
elements of the DTD in either text or XML format.

To add XML code as a Custom Request:

 1 View the script in tree view mode, place the cursor at the desired location,
and choose Insert > Add Step. The Add Step dialog box opens.

 2 Scroll to the bottom of the list and select Custom Request. Click OK. The
Custom Request Properties dialog box opens.

 3 Enter a step name, method (GET or POST), URL, and target frame (optional).

Chapter 48 • Testing XML Pages

673

 4 Copy the XML code from your browser or editor and paste it into the Body
section of the Custom Request Properties box.

 5 Select the applicable replay options: Record mode, Resource, or Binary data.
For more information, see Chapter 45, “Modifying Web and Wireless Vuser
Scripts.”

 6 Click OK. VuGen places the custom request step into your script.

Part VIII • E-Business Protocols

674

Viewing XML Custom Request Steps

You can view or modify the XML code implemented as a custom request
step, at any time. VuGen provides a viewer that allows you to view the
hierarchy of the DTD, and expand and collapse the elements as needed.

To view the XML code of a custom request step:

 1 View the script in tree view mode, and select the desired step.

 2 Choose Properties from the right-click menu. The Custom Request
Properties dialog box opens.

Chapter 48 • Testing XML Pages

675

The bottom section of the dialog box displays the XML code. If the
RecContentType attribute is set to text/xml, by default VuGen displays the
code in an XML format hierarchy. In this mode, the XML code is not
editable.

If the RecContentType attribute is set to any type other than text/xml,
VuGen displays the code in plain text format. In this mode, the XML code is
editable.

 3 To switch between the text and XML views, choose XML view or Text view
from the right-click menu.

 4 When you are in XML view, you can view the code in a larger window.
Choose Extended view from the right-click menu. To switch back to the
dialog box view, choose Normal view from the right-click menu.

Part VIII • E-Business Protocols

676

677

49
Using Reports to Debug Vuser Scripts

To assist with debugging a Web Vuser script, you can view a report that
summarizes the results of your script run. VuGen generates the report
during the Web Vuser script execution, and you view the report when script
execution is complete. This chapter describes:

➤ About Using Reports to Debug Vuser Scripts

➤ Understanding the Results Summary Report

➤ Filtering Report Information

➤ Searching Your Results

➤ Managing Execution Results

Note: To enable all the VuGen Web report features, it is recommended that
you work with Microsoft Internet Explorer 5.0 or later.

The following information only applies to Web Vuser scripts.

Part VIII • E-Business Protocols

678

About Using Reports to Debug Vuser Scripts

When you debug a Web Vuser script using VuGen, you specify whether or
not to generate a Results Summary report during script execution. The
Results Summary report contains details of all the Web pages that the Vuser
visited as well as any checks that the Vuser performed. Examining this
information is useful when debugging the Web Vuser script. For details on
running Vuser scripts using VuGen, see Chapter 14, “Running Vuser Scripts
in Standalone Mode.”

After you run a Vuser script using VuGen, you view the Results Summary
report.

VuGen generates the results in VuGen report format—with a .qtp
extension—and you view the results in the Virtual User Generator Report
window. This is the recommended option because VuGen’s Report window
provides you with a more sophisticated interface and additional features.

You set the Display options (Tools > General Options) to specify whether or
not VuGen should generate a Results Summary report, and if so, whether
the report opens automatically after script execution. For details on setting
the Display options, see Chapter 14, “Running Vuser Scripts in Standalone
Mode.”

Chapter 49 • Using Reports to Debug Vuser Scripts

679

Understanding the Results Summary Report

After running your Vuser script, you view the Results Summary report. The
report displays a summary of the results of the script execution.

➤ The left pane displays the report tree—a graphical representation of the
results. In the report tree, a green check mark represents a successful step,
and a red X represents a failed step.

➤ The right pane displays the report details—an overall summary of the script
run, as well as additional information for a selected branch of the report
tree.

Report toolbar

Report tree

Report details

Part VIII • E-Business Protocols

680

You select a branch of the report tree to view the information for that
branch.

You can collapse or expand a branch in the report tree in order to change
the level of detail that the tree displays.

➤ To collapse a branch, click the Collapse (-) sign to the left of the branch you
want to collapse. The report tree hides the details of the branch, and the
Collapse sign changes to an Expand (+) sign.

➤ To collapse all the branches in the report tree, select View > Collapse All.

➤ To expand a branch, click the Expand (+) sign to the left of the branch you
want to expand. The report tree displays the details of the branch, and the
Expand sign changes to a Collapse (-) sign.

➤ To expand all the branches in the report tree, select View > Expand All.

Select this branch… To view the following details:

Test Name the overall results summary of the script
execution

Test Iteration the execution summary for a specific iteration

Test Step or Check the Web page for the selected step or check in the
Vuser script

Chapter 49 • Using Reports to Debug Vuser Scripts

681

Filtering Report Information

You can filter the information that is displayed in a VuGen Results Summary
report. The filter can be based either on the iteration number or on the
status of the iteration.

To filter the information contained in your report:

 1 Click the Filter button on the Report toolbar, or select View > Filters. The
Filters dialog box opens.

 2 Set the desired filter options. The default filter options are All, as shown in
the above example.

To limit the report to a specified range of iterations, select Iteration Range in
the Iterations section, and specify a range in the From and To boxes.

To limit the report to iterations that failed, select Fail Only in the Status
section.

 3 Click OK to accept the settings and close the Filters dialog box.

Part VIII • E-Business Protocols

682

Searching Your Results

You can search for result steps within your Test Results, by their final status:
Failed, Passed, Done, or Warning. You can select more than one status for
your search.

To search for a step with a specific status:

 1 Select Tools > Find, or click the Find button on the Report toolbar. The Find
dialog box opens.

 2 Select the status (one or more) of the step that you want to find.

 3 Select a search direction, Up or Down.

 4 Click Find Next. The cursor jumps to the first match.

 5 To repeat the search, click the Find Next button.

Managing Execution Results

You use the commands in the File menu to open, print, and exit Results
Summary reports.

For details on setting Results Summary report options, see “Using VuGen’s
Debugging Features for Web Vuser Scripts” on page 189 of Chapter 14,
“Running Vuser Scripts in Standalone Mode.”

Opening a Results Summary Report

When you run a Web Vuser script, VuGen saves the Results Summary report
files in a results subfolder of the script folder. The report file has the
format: script_name.qtp.

Chapter 49 • Using Reports to Debug Vuser Scripts

683

To open a Results Summary report:

 1 Select File > Open, or click the Open button on the Report toolbar. The
Open dialog box opens.

 2 Select the name of the report file that you want to open, and click Open.

 3 To open a recently viewed report, select it from the report history list on the
File menu.

Printing Report Results

You can print a Test Results Summary report.

To print a Test Summary report:

 1 Select File > Print, or click the Print button on the Report toolbar. The Print
dialog box opens.

 2 Select a range from the Print Range box:

All—prints the entire report. This includes the Web page for each step in an
iteration.

Selection—prints the selected branch in the Report tree.

 3 Click OK to print.

 4 To change your printer’s setup options, select File > Print Setup, and change
the settings in the Print Setup dialog box.

Closing a Test Summary Report

To close a Test Summary report, select File > Exit. The Test Results window
closes.

Part VIII • E-Business Protocols

684

685

50
Power User Tips for Web Vusers

This chapter answers some of the questions that are asked most frequently
by advanced users of Web Vusers. The questions and answers are divided
into the following sections:

➤ Security Issues

➤ Handling Cookies

➤ The Run-Time Viewer (Online Browser)

➤ Browsers

➤ Configuration and Compatibility Issues

The following information applies to Web Vuser scripts.

Security Issues

Question 1: Do Web Vusers support both secure (HTTPS) and unsecure
(HTTP) transactions?

Answer: Yes, Web Vusers support both secure (HTTPS) and unsecure (HTTP)
transactions.

Question 2: Do Web Vusers support digital certificates?

Answer: Yes, Web Vusers support client-side digital certificates. A digital
certificate is an attachment to an electronic message used for security
purposes. The most common use of a digital certificate is to verify that a user
sending a message is who he or she claims to be, and to provide the receiver
with the means to encode a reply.

Part VIII • E-Business Protocols

686

VuGen supports client-side certificates with the following limitations:

➤ Recording: The client certificates are taken from the IE database,
regardless of the actual browser used during the recording. Therefore, if
you record using a browser or application other than IE, you must first
export the certificate from the recording browser and import it into IE.
When importing a certificate into IE, be sure to make its private key
exportable:

Recording: In earlier versions of VuGen, prior to VuGen 7.0,
web_set_certificate was generated whenever a client certificate was used.
This function has only one argument: the ordinal number of the
certificate in the certificate list. This function can be only be replayed in
WinInet mode.

In newer versions of VuGen, 7.0 and higher, web_set_certificate_ex is
generated. This function has an additional parameter—the path of the
file containing the certificate. The certificate file is generated
automatically during recording and is saved with the Vuser script.
Whenever using WinInet replay mode, the first parameter is used. For
socket replay (default), the second parameter is used (certificate file).
Note, that if the particular certificate cannot be dumped, for example, if
its private key is not exportable, web_set_certificate_ex is generated
without a file name. In this case, only WinInet replay mode should be
used.

➤ Replay: If web_set_certificate_ex is used and it has filename argument,
it can be used only with socket replay and does not require any custom
configuration on the load machines. If web_set_certificate is used, or
web_set_certificate_ex without file name, it can be used only with
WinInet based replay. In this case, you need to install all the certificates
you have on the recording machine in the same order as they appear in
its certificate list. This is done through export/import.

Chapter 50 • Power User Tips for Web Vusers

687

Question 3: When I record a Vuser script that accesses an SSL-enabled site, a
number of pop-up warning messages appear. Should these messages appear?
If so, what do I do with them?

Answer: In order to be able to record access to SSL-enabled sites, VuGen
provides its own server certificate instead of the original server certificate.
This causes two security violations:

➤ The certificate that is issued is not for the site to which the user is
connecting.

➤ The certificate is issued by an unknown authority.

These security violations cause the recording browser to display the pop-up
warnings messages.

If you are using Netscape 3.0 or higher, or Internet Explorer 4.0 or higher,
then you have the option of ignoring these warnings. You can safely ignore
the messages.

Note: The pop-up messages appear only when you record the script, not
when you execute it.
You can suppress some of the pop-up messages—not all of them.

Question 4: I am using a Web application other than IE and Netscape.
When I access a secure site without a recognized certificate, the application
automatically aborts. Can I record this application?

Answer: When you access a secure site without a recognized certificate, IE
and Netscape issue a warning. Certain browsers and applications do not
issue a warning for unrecognized certificates—they just exit the secure site.
To record these sites you must obtain the pem file(s) of the certificate and
key, and add it to the certs directory under your application’s bin directory.
List the pem files to the index.txt file in a format similar to the existing
entries: a section name with the hostname and port followed by the name
of the pem file(s).

[demoserver:443]
Certfile=xxx.pem
Keyfile=yyy.pem

Part VIII • E-Business Protocols

688

Question 5: Does VuGen support 128-bit encryption?

Answer: In Sockets mode, VuGen supports 128-bit encryption, independent
of the browser version. In WinINet mode, VuGen supports the same
encryption as the browser on the Load Generator machine. Both Netscape
Communicator (4.5 and higher) and Internet Explorer (5.0 and higher)
support 128-bit encryption.

Question 6: Does VuGen support client-side certificates for Internet
Explorer?

Answer: Yes, VuGen supports client-side certificates for Internet Explorer.

Question 7: Does VuGen support client-side certificates for Netscape?

Answer: No, VuGen supports client-side certificates only for Internet
Explorer. If you have only Netscape certificates, first export the required
certificates from Netscape, and then import them into Internet Explorer.
Make sure to export and import the certificates in the same order. You must
repeat this process on every computer that will record or run a Web Vuser
script that requires a certificate.

Question 8: If I look at a Web Vuser script, can I tell whether the Vuser
accesses a regular (HTTP) server or an SSL-enabled (HTTPS) server?

Answer: Sometimes. Web Vuser scripts do not distinguish between secure
requests and non-secure requests: Graphical Vuser scripts use the same icons
for secure requests and non-secure requests; text-based Vuser scripts use the
same functions for secure requests and non-secure requests. However, if a
step in a Vuser script contains a URL, you may be able to distinguish from
the URL whether the step accesses a regular (HTTP) server or an SSL-enabled
(HTTPS) server.

Question 9: What types of authentication do Web Vusers support?

Answer: Web Vusers support Basic authentication and NTLM
authentication (NT challenge response authentication).

Chapter 50 • Power User Tips for Web Vusers

689

Handling Cookies

Question 10: Does VuGen handle cookies when I record a Vuser script?

Answer: VuGen automatically handles all cookies that are set via HTTP
headers. Sometimes, however, VuGen is unable to correctly handle cookies
that are set by JavaScripts or meta tags. See Question 14 for details.

Question 11: When I run a Web Vuser script, does the Vuser reuse the same
cookies that were used when I recorded the Vuser script?

Answer: Yes and No, depending on the type of cookie. Cookies can be
divided into two categories: persistent cookies and session cookies:

persistent cookies Text-only strings that identify you to a Web server, and
are valid for a limited time period. Persistent cookies
are stored on your hard disk.

session cookies Text-only strings that identify you to a Web server only
during your current visit (session). Session cookies are
not stored on your hard disk.

Part VIII • E-Business Protocols

690

When you record a Web Vuser script, VuGen detects all cookies that are sent
to your browser. VuGen distinguishes between persistent cookies and
session cookies as follows:

Question 12: Does each Vuser have its own unique cookie cache?

Answer: Yes, each Vuser has its own unique cookie cache—session cookies
are not shared, even if the Vusers are running on the same load generator.

Question 13: Must I parameterize the cookies in my recorded Vuser script
before I can run the script?

Answer: Sometimes. As described in Question 11, VuGen copies persistent
cookies into the Vuser script when you record the script. When you run the
Vuser script, the Vuser uses the recorded persistent cookies. If each Vuser
requires a unique persistent cookie, then you need to parameterize the
cookies in your Vuser script.

persistent cookies VuGen records the details of persistent cookies directly
into the Vuser script. VuGen uses web_add_cookie to
include a persistent cookie in a Vuser script. When you
run the Vuser script, the Vuser uses these persistent
cookies when required.

session cookies VuGen does not save the session cookies that are used
during the recording session. Instead, the session
cookies are cached while you record, and are then
discarded when you stop recording.

When you run the Vuser script, the Vuser uses new
session cookies that it receives from the Web server.
That is, Vusers do not re-use the same session cookies
that were generated when the script was recorded. The
session cookies are stored in the Vusers cookie cache,
and are then discarded when the Vuser stops. The
Vuser does not save these session cookies.

Chapter 50 • Power User Tips for Web Vusers

691

Question 14: Do Web Vusers handle cookies that are set inside JavaScripts?

Answer: VuGen automatically handles all cookies that are set via HTTP
headers. Sometimes, however, VuGen is unable to correctly handle cookies
that are set by a JavaScript contained in an HTML page. Cookies that are set
via JavaScripts create unique problems during recording and replay:

Question 15: Can a Vuser manipulate cookies during run-time?

Answer: Yes, while a Vuser is running, the Vuser can manipulate the cookies
that are stored in its cookie cache. You can use the following functions in a
Vuser script to manipulate the cookie cache:

➤ web_add_cookie()

➤ web_remove_cookie()

➤ web_cleanup_cookies()

Refer to the Online Function Reference (Help > Function Reference) for details
about the above functions.

Recording VuGen should record persistent cookies—not session
cookies—into a Vuser script (via web_add_cookie
statements). However, due to technological
constraints, all cookies that are set by JavaScripts are
recorded by VuGen as persistent cookies—even if the
cookies are session cookies.

Workaround: After recording a Vuser script, insert
correlation statements to for all web_add_cookie
statements that set session cookies. Do not delete
web_add_cookie calls that set persistent cookies.

Replay Web Vusers do not run JavaScripts that are embedded
inside HTML pages. Therefore any session cookies that
are created by such JavaScripts are not created when
the Vuser runs.

Workaround: After recording a Vuser script, insert
correlation statements into the script to determine the
appropriate cookies. Then insert web_add_cookie
statements into the Vuser script to set the appropriate
cookies.

Part VIII • E-Business Protocols

692

The Run-Time Viewer (Online Browser)

Question 16: How does the run-time viewer display Web pages?

Answer: When you run a Web Vuser script, the Web servers accessed by the
Vuser download information to the Vuser. This information is usually in
HTML format. The Vuser saves this information to the Vuser’s results
directory. Each Web page is saved in HTML format as a separate .htm file.
While the Vuser runs, the run-time viewer loads the .htm files that are saved
in the Vuser results directory, and displays the resulting Web pages.

Question 17: JavaScript errors frequently appear when I use the run-time
viewer. What causes this, and what can I do to prevent it?

Answer: When you use the run-time viewer, make sure that the Enable
Scripting option from the Runtime Browser’s Options menu is not checked.
This instructs the run-time viewer not to run any JavaScripts and stops
JavaScript errors from appearing in your run-time viewer.

As described in the answer to Question 16, when you run a Vuser script,
VuGen saves the information that is returned by the server. The run-time
viewer displays this saved information—not the information that is
returned directly by the server.

Question 18: What types of data can the run-time viewer display?

Answer: The run-time viewer can display HTML pages only. It cannot
display any other information types.

Question 19: Can I display a run-time viewer when I run a Vuser from the
Controller?

Answer: Yes. To display a run-time view from the Controller, begin running
the Vuser, and choose Vuser > Show Vuser.

Question 20: What should I install on my load generator so that I will be
able to display a run-time viewer?

Answer: Since the run-time viewer uses an Internet Explorer ActiveX
control, you must have Microsoft Internet Explorer 4.0 or higher installed in
order to use the run-time viewer.

Chapter 50 • Power User Tips for Web Vusers

693

Question 21: When I run a Vuser script, why does the run-time viewer not
display the data that the Vuser submits to the Web server?

Answer: The run-time viewer shows only the HTML page that is returned by
the server to the Vuser. The run-time viewer does not show any data that the
Vuser submits to the Web server. For further details, see the answer to
Question 16.

Question 22: Does the run-time viewer correctly display multi-window
applications?

Answer: No, the run-time viewer currently does not correctly display multi-
window applications.

Browsers

Question 23: Why is it recommended that I have Internet Explorer 4.0 or
higher installed on my computer—even if I always use Netscape to record
my scripts?

Answer: VuGen relies heavily on WinInet, the Microsoft Internet API. This
applies to both recording and replaying Web Vuser scripts. The WinInet.dll
is the Microsoft infrastructure for Internet connections.

VuGen installs version 3.0 of the WinInet.dll—unless a newer version is
already installed on the computer. Version 3.0 has many limitations.
Version 4.0 is far superior, so we recommend that you install version 4.0 for
best results with Web Vusers. The most straight-forward way to install
WinInet.dll version 4.0 is to install Internet Explorer 4.0 or higher.

Question 24: If I install Internet Explorer 3.0 and not Internet Explorer 4.0
or higher, what features will I not be able to use?

Answer: Internet Explorer includes the WinInet.dll. You require the version
4 of the WinInet.dll file to enable the following features:

➤ SOCKS proxy record/replay

➤ Kerberos authentication

Part VIII • E-Business Protocols

694

Question 25: Must I use a standard browser—such as Netscape or Internet
Explorer—when I record?

Answer: You can use the browser of your choice when you record a Web
Vuser script. You can also use a non-browser application that generates
HTTP(S) requests. The only requirement of the application is that for single
Web protocol scripts, you must be able to set the proxy settings to
localhost:7777 to allow the recording of HTTP(S) requests. This is not
required for multi-protocol scripts.

Question 26: How do I record a non-standard HTTP(S) application?

Answer: For a multi-protocol script, locate the application in the Start
Recording dialog box. Make sure to enter the relevant command line
parameters. For a single protocol Vuser script, perform the following
procedure:

 1 Choose Tools > Recording Options and click the Browser node. Select
Manually launch an application.

 2 Click the Start Recording button. VuGen prompts you for the proxy settings
required for the recorded application. Note the host and port name.

 3 Edit the proxy settings in the application being recorded. Make note of the
original settings in order to restore them after the recording.

 4 Click the Start Recording button and begin recording the session.

 5 Close the application when you are finished recording and restore the
original proxy settings (failure to do so may prevent it from working).

Question 27: Does VuGen ever modify any of the proxy settings in my
recording browser?

Answer: Yes, for single protocol scripts only. When you start to record a
Web Vuser script, VuGen launches the browser that you specified. VuGen
then directs the browser to go through the VuGen proxy server. To do this,
VuGen modifies the proxy settings on the recording browser. VuGen
changes the proxy setting to localhost:7777 immediately, by default. After
recording, VuGen restores the original proxy settings to the recording
browser. You must not change the proxy settings while VuGen is recording.

Chapter 50 • Power User Tips for Web Vusers

695

Question 28: My browser crashed while I was recording. I can now not
access any sites with my browser—even if I do not record. Why not?

Answer: The answer to Question 27 describes how VuGen changes the
proxy settings in your browser during recording. If your browser crashes
while you record, VuGen may not be able to restore your original proxy
settings for your browser. Your browser will then still have the localhost:7777
setting—which prevents it from accessing any sites. You must manually
restore the original proxy settings for your browser. This only applies to
single protocol scripts.

Question 29: Does VuGen support Socks proxies?

Answer: Yes, VuGen does support Socks proxies. To use a Socks proxy you
must use Internet Explorer—not Netscape—as the recording browser. In
addition:

➤ Use Internet Explorer 4.0 or higher to define the Socks proxy.

In Internet Explorer, select View > Internet Options. Click the
Connection tab, and then click Advanced in the Proxy Server group. In
the Proxy Settings dialog box, enter the appropriate Socks proxy server
settings.

This step applies to the computer that you use to record the Vuser scripts,
as well as to all the computers that will run Vusers that access the Socks
proxy server.

➤ Define Internet Explorer as the default browser.

You can do this by associating all files that have an .htm extension with
Internet Explorer.

This step applies to the computer that you use to record the Vuser scripts,
as well as to all the computers that will run Vusers that access the Socks
proxy server.

➤ Instruct VuGen to take the proxy settings from the recording browser
when you record a Vuser scripts.

In VuGen, select Tools > Recording Options. Click the Recording Proxy
node. Select the Obtain the proxy setting from the recording browser
option.

Part VIII • E-Business Protocols

696

This step applies only to the computer that you use to record the Vuser
scripts—not to the computers that will run the Vusers.

➤ Instruct all Vusers that run the script to obtain the proxy setting from the
default browser.

In VuGen, select Vuser > Run Time Settings. Click the Proxy tab, and
select the Obtain the proxy setting from the default browser option. This
setting applies to all Vusers that run the Vuser script.

Question 30: If I have Netscape installed—and not Internet Explorer—can I
display execution reports?

Answer: In order for VuGen to display execution reports, you need Internet
Explorer, Version 4.0 or higher.

Question 31: I noticed that the Number of Concurrent Connections Run-
Time setting is no longer available. Can I still modify this setting?

Answer: Yes. You modify this setting using the web_set_sockets_options
function. To set the maximum number of connections per host, use the
MAX_CONNECTIONS_PER_HOST flag and assign it the desired value. To set
a global number of connections, the maximum number of simultaneous
connections per Vuser, use the MAX_TOTAL_CONNECTIONS flag and set it
to the desired number. The default number of concurrent connections when
using Internet Explorer is four for HTTP 1.0 and two for HTTP 1.1. For more
information, see web_set_sockets_options in the Online Function Reference.

Configuration and Compatibility Issues

Question 32: I performed a snapshot comparison and the results were very
inaccurate.

Answer: Choose Options > General to open the General Options dialog box,
and select the Correlation tab. In the Scan for differences between
snapshots using section, make sure to choose the HTML Comparison
option—not Text. Text comparison only applies to non-HTML snapshots.

Question 33: Can I replay a recorded script on a UNIX system?

Answer: Yes, replay is supported on UNIX platforms.

697

51
Planning Web Service Tests

You use VuGen to create a script by recording a Web Service session or by
importing a WSDL. When you run the script or LoadRunner Tuning Module
session step, Vusers emulate real users communicating with the Web Service.

This chapter describes:

➤ About Planning Web Service Tests

➤ Implementing a Web Service

➤ Challenges in Web Services Testing

➤ Choosing a Web Services Script Type

➤ Performing a Load Test

➤ Client Emulation

Part VIII • E-Business Protocols

698

About Planning Web Service Tests

The term Web Services describes self-contained applications that can run
universally across the Internet. Using Extensible Markup Language (XML)
and Simple Object Access Protocol (SOAP), they serve as building blocks for
the rapid development and deployment of new applications. Since all
communication is in XML, Web Services are not limited to a specific
operating system or programming language. Web Services, therefore, allow
applications from various sources to communicate with each other without
extra coding and without intimate knowledge of each other’s IT systems
behind the firewall.

Unlike traditional client/server models, such as a Web page/Web server
system, Web Services do not provide a user interface. Instead, Web Services
share business logic, data and processes through a programmatic interface
across a network. Developers can integrate a Web Service within an existing
a user interface (such as a browser or an executable program) to offer specific
functionality to users.

Web Services are considered B2B (Business-to-Business) applications, and as
a result, they have strict response requirements. The fact that Web Services
B2B applications communicate without a user interface, causes them to
have better response times than those with user interfaces, such as browser-
based applications. These factors make performance and load testing
indispensable before the launching of Web Service application.

The key to building an effective testing plan, however, depends on your
understanding of your system configuration and requirements. While
VuGen can help you simplify the testing process, you should have an in-
depth understanding of your system’s requirements—its capacity and
scalability. These factors are crucial to planning, designing, and performing
a full-scale load test.

The following sections describe the challenges in Web Service testing and
the ways to overcome them using Mercury tools.

Chapter 51 • Planning Web Service Tests

699

Implementing a Web Service

There are four primary steps in using a Web Service:

➤ Search for an appropriate Web Service

➤ Locate the URL of the Web Service

➤ Determine the Communication Protocol and Syntax

➤ Communicate

Searching for a Web Service

The first step is to find an appropriate Web Service. Large software vendors
have formed a universal directory for Web Services called the Universal
Description, Discovery, and Integration (UDDI) services.

Establishing the Service’s URL

In order to use the desired service, you need to access it through its URL. For
example, http://myservice.com/WebServices/MyService.asmx.

Determining the Means of Communication

After finding the Web Service, you retrieve information about how you want
to communicate with the service. This information is usually stored in a
Web Services Description Language (WSDL) document. The WSDL
document uses XML to define Web Services as collections of network
endpoints, or ports, that characterize the physical network. VuGen allows
you to import WSDL documents, generating readable code within the script.

Communicating

Once you establish the means of communication and the properties of the
network service, you can communicate. To communicate, you use
structured XML documents. Using the Web Services protocol, VuGen
records all of the communication and generates readable functions.

Part VIII • E-Business Protocols

700

Understanding a WSDL document

Each WSDL document defines the following elements for a Web Service:

➤ Types: a container for data type definitions using some type system (such as
XSD).

➤ Message: a definition of the data being communicated.

➤ Operation: a description of an action supported by the service.

➤ Port Type: a set of operations supported by one or more endpoints.

➤ Binding: a protocol and data format specification for a particular port type,
such as SOAP 1.1, HTTP GET/POST, and MIME.

➤ Port: a single endpoint defined as a combination of a binding and a network
address.

➤ Service: a collection of related endpoints.

In the WSDL document, some of the elements are abstract, implying that
they are not specific to a particular network service and may be reused.
Examples of abstract elements are messages and operations.

Other elements are concrete, implying that they have values that are specific
to each communication. An example of a concrete element is port.

WSDL uses the binding element to attach a specific protocol, data format, or
structure to an abstract message, operation, or endpoint. Since they are
abstract definitions, the message, operation and endpoint elements can be
reused for other communications. You define a port by associating a
network address with a binding. A collection of ports define a service.

The following example shows the WSDL definition of a service providing
stock quotes. The service supports a single operation called
GetLastTradePrice, which is deployed using the SOAP 1.1 protocol over
HTTP. The request takes a ticker symbol of type string, and returns the price
as a float.

Chapter 51 • Planning Web Service Tests

701

This example uses a fixed XML format instead of the SOAP encoding.

This section defines the type elements of the data:

<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

Part VIII • E-Business Protocols

702

The following section defines several message elements:

This section defines a portType element, associated with an operation:

The following section defines the binding element The binding attaches the
GetLastTaradePrice operation to the SOAP over HTTP protocol:

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

<message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePort-
Type">
 <soap:binding style="document" transport="http://schemas.xml-
soap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation soapAction="http://example.com/GetLastTrade-
Price"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

Chapter 51 • Planning Web Service Tests

703

The following section defines the final element, service. A service consists of
one or more ports:

Challenges in Web Services Testing

Testing Web Services presents several challenges:

Non-standard UI: One of the biggest challenges in testing complex Web
Services, is testing the client. Web Services do not display a user interface
that can be tested. Often, the Web Services is an application or server—not a
Web browser or thin client application using the traditional client-server
approach. In addition, the client application might be driven by another
application, which also lacks a user interface.

Isolating the business process: It is difficult to isolate the actual business
process from the other Web Services traffic. If you record the client
application, your script may contain unnecessary calls to methods that are
not related to the business process you want to test.

Complex logic: Web Services often use complex logic, with elements whose
values change during each test run. These values must be correlated and
saved to parameters, in order to be used in subsequent calls to the Web
Services methods.

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>

</definitions>

Part VIII • E-Business Protocols

704

Timing and Order: There are instances where the client make asynchronous
calls, not related to the business process. Calls may have been issued
asynchronously by the application or issued by another business process
that was initiated by another application. For example, the Web Service may
initiate a backup procedure every hour, independent of the current business
process. In addition, the order of calls to Web Service methods may change
from run to run.

Performance Analysis: Performance analysis is also a challenging task in
Web Services testing. After you finish running a load scenario, you need to
try to determine where the problem occurred. Since the Web Services system
can involve several servers, possibly on a distributed system, it may be
difficult to pinpoint the problematic component.

You can overcome most of these issues using the Web Services Vuser, adding
think time, and applying correlation. For more information on selecting the
best method for creating a script, see “Choosing a Web Services Script Type”
on page 704.

Using Mercury’s LoadRunner Controller and Analysis tools, you can
overcome the performance analysis issues by setting monitors and
performing transaction breakdown throughout the distributed system.

Choosing a Web Services Script Type

You can create a Web Services Script in one of the following ways:

➤ Recording a Web Services Script

➤ Scanning a WSDL Document

➤ IDE Integration

Recording a Web Services Script

You can record a Web Service application using VuGen’s built-in recorder.

When you record an application, you can record it with or without a WSDL
file. When you import a WSDL into your recording, it allows VuGen to
create hi- level code, by parsing the recorded SOAP traffic and extracting the
calls to the Web Service.

Chapter 51 • Planning Web Service Tests

705

The advantages of recording a client session is it’s simplicity. While
recording, you perform actions to create a script that emulates a specific
business process. You can create transactions and monitor its traffic, its
timing, order of calls, and you can monitor the data that passes between
peers. In addition, the scripts can be used for both functional and load
testing.

A drawback of this technique is the fact that it captures all of the HTTP from
the application, even packets that do not relate to the specific business
process that you are trying to record. Therefore, additional filtering of the
recorded script may be required.

Scanning a WSDL Document

This approach is ideal for systems where the script needs to be independent
and interoperable. VuGen uses client emulation that sends headers (HTTP)
and namespace prefixes (XML) to accurately emulate the toolkit. Another
advantage is that this script can be used for both functional and load
testing.

A drawback of the Scan WSDL method is that the WSDL does not have any
timing information, nor does it know the call order of the methods. To
overcome the timing issues, you can insert think time delays.

Another disadvantage of this approach is the need to manually enter
parameter values. By manually entering argument values, especially for
complex Web Service methods, the likelihood of inserting erroneous data
increases, resulting in faulty test results. Note that you can facilitate this by
exporting the XML file for each method after manually entering the values.
Then, for future tests, you can use the XML which contains the values that
you entered earlier. For more information, see Chapter 52, “Developing Web
Services Vusers.”

IDE Integration

To create a script with IDE integration, you write a script in your primary
development language and then incorporate it into your environment, such
as LoadRunner. You can create a script in your Java or .NET development
environment, that emulates your Web Service.

Part VIII • E-Business Protocols

706

The advantage of this approach is that you can develop a script within your
standard work environment. This method usually handles correlation and
parameterization automatically. If not, you can implement correlation
manually.

Other advantages are that IDE integration also handles advanced and
proprietary technologies, which are not handled by WSDL scanning and the
recording methods. IDE integration provides an emulation of the real
application behavior.

The primary disadvantage of IDE integration is the lack of scalability. If the
tests are written in code that is CPU intensive such as Java or .Net, you are
limited in the number of Vusers that you can run in a load test. In addition,
the IDE integration may require more manpower and development time
from your software and QA engineers.

Performing a Load Test

To successfully test a Web Service, you need to run a load test which checks
the service as part of a complete environment. After running the test, you
check the results and determine the location of the problems.

The initial testing step is defining the business processes that are typical for
your users. You then need to determine how to invoke these processes and
generate the scripts (recording, scanning a WSDL, or IDE Integration).

The next step is to plan how many users to emulate and which business
processes to execute. This should be defined according to your system
requirements. In distributed Web Services configurations, you should also
consider which business processes to run within the same load test.

A final, but indispensable step, is setting monitors throughout the system to
collect the information during the test run. Before configuring the
monitors, you should define the measurements that you want to collect.
Mercury provides monitors for a wide range of environments.

Chapter 51 • Planning Web Service Tests

707

Client Emulation

VuGen supports emulation for several Web Service toolkits, such as .NET
version 1.1, Axis version 1.1, Glue version 4.1.2, and MS SOAP version 3.0.
Each toolkit interprets the Web Service in a slightly different way. To
emulate this unique behavior, VuGen uses several elements as
differentiators, representing how the server creates messages such as
argument type, format, prefix, and headers.

For information on how to select a toolkit emulation, see “Setting Web
Service Run-Time Settings” on page 742.

Part VIII • E-Business Protocols

708

709

52
Developing Web Services Vusers

You use VuGen to create a Web Services script by recording a SOAP session
or scanning a WSDL document. When you run the script, Vusers emulate
real users communicating with the Web Service.

This chapter describes:

➤ Getting Started with Web Services in VuGen

➤ Using the Workflow Wizard for Web Services Scripts

➤ Creating a New Web Services Script

➤ Recording a Web Services Script

➤ Scanning WSDL Documents

➤ Managing WSDL Documents

➤ Setting WSDL Validation and Comparison Options

➤ Editing an XML Tree

➤ IDE Integration

Part VII • E-Business Protocols

710

About Web Services

Web Services are self-contained applications that can run across the Internet
on a variety of platforms. They are built using Extensible Markup Language
(XML) and Simple Object Access Protocol (SOAP). They serve as building
blocks enabling the rapid development and deployment of new
applications.

Getting Started with Web Services in VuGen

This section provides an overview of the process of developing a Web
Services script using VuGen.

To develop a Web Services script:

 1 Create an empty Web Services script.

Use the Workflow Wizard or the standard menus to create a new script,
choosing the Web Services Vuser type.

 2 Generate the script.

Generate a script by running the Web Services wizard to record a Web
Services session or scan a WSDL document. For information on selecting the
most appropriate method, see “Creating a New Web Services Script” on
page 713. For recording, set the recording options (Tools > Recording
Options). When scanning a WSDL file, run the Validation utility. For more
information, see “Managing WSDL Documents” on page 728.

To create a script using IDE integration, see “IDE Integration” on page 739.

 3 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and XML
functions.

For details, see Chapter 7, “Enhancing Vuser Scripts” and Chapter 77,
“Programming with the XML API.”

 4 Configure the Run-Time settings.

The Run-Time settings control the script’s behavior during execution. These
settings include Web Service-specific settings (client emulation) and General
settings—run logic, pacing, logging, and think time.

Chapter 52 • Developing Web Services Vusers

711

For information about the run-time settings, see “Setting Web Service Run-
Time Settings” on page 742 and Chapter 12, “Configuring Run-Time
Settings.”

 5 Save and run the script in VuGen.

Save and run the script in VuGen to verify that it runs correctly. While you
record, VuGen creates a series of configuration, data, and source code files.
These files contain run-time and setup information. VuGen saves these files
along with the script.

For scripts created with WSDL scans, run a WSDL comparison to make sure
nothing has changed in the original file. For more information, see
“Comparing WSDL Files” on page 743.

For details about running the script as a standalone test, see Chapter 14,
“Running Vuser Scripts in Standalone Mode.”

 6 View the test results.

Open the Test Results utility to view a summary of the replay, for each
iteration. For more information, see “Viewing Web Services Reports” on
page 759.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Part VII • E-Business Protocols

712

Using the Workflow Wizard for Web Services Scripts

The Workflow screens guide you through the steps of creating a script. By
clicking on a link in the Tasks pane, you can read about the steps in creating
a script, and view information about your recording and replay. Use the
Back and Next buttons to navigate between screens.

If you do not see the Workflow Wizard, make sure that the Tasks pane is
open. (You show and hide the Task pane using the Tasks button on the
toolbar. Then, click the first link, Introduction.

For more information, see Chapter 3, “Using the Workflow Wizard.”

The wizard screens that are specific to Web Services are Create Script and
Creation Summary.

Chapter 52 • Developing Web Services Vusers

713

Create Script

The Create Script screen describes several guidelines for creating a Web
Services script. It also provides a link for opening the Web Services wizard.

➤ Before You Start - describes What you should know before you begin.

➤ About Script Creation - describes the stages of Script Creation

➤ Actions - describes script sections and why they are important.

Creation Summary

After you create a script, the Creation Summary screen provides information
about the recording or scanning.

It also provides links that allow you to modify the script:

➤ Protocols - lists which protocols were used during the script creation

➤ Actions - describes into which sections actions were recorded or scanned.

➤ Modify Script - describes how to proceed in order to modify the script.

Creating a New Web Services Script

You can create a Web Services Script in one of the following ways:

➤ Recording a Web Services Script

➤ Scanning WSDL Documents

➤ IDE Integration

Recording a client is usually the easiest way to create scripts that emulate
real user behavior for a specific business process.

Scanning a WSDL file allows you import a WSDL file to and create a test that
communicates with your Web Service.

For IDE integration, you use your regular development environment to
write a script. The script, written in a development environment such as VS
.NET, emulates a business process in the application’s native language.

Part VII • E-Business Protocols

714

For more information about choosing the best method for testing, see
“Choosing a Web Services Script Type” on page 704.

Recording a Web Services Script

You can create a Web Services Script by recording a Web Service client.

When you record an application, you can optionally provide a WSDL file
describing the Web Service. This allows VuGen to create high-level code, by
parsing the recorded SOAP traffic and extracting the calls to the Web
Service.

The wizard steps for recording are:

➤ Specify WSDL File for Recording (only if including a WSDL in the script)

➤ WSDL Files Validation Summary (only if including a WSDL in the script)

➤ Specify Application to Record

Specify WSDL File for Recording

In this screen, you specify the WSDL files. When you record an application,
you can record it with or without a WSDL file. Import a WSDL file to create
high-level code that parses the recorded SOAP traffic and extracts the calls to
the Web Service.

Do not use WSDL files during recording: VuGen creates a script with
soap_request functions.

Use the specified WSDL files: Use the Add button to add items to the list.
VuGen creates a script with web_service_call functions.

For more information on recording, see “Recording a Web Services Script”
on page 714.

Chapter 52 • Developing Web Services Vusers

715

Specify Application to Record

In this screen, you specify the application to record. You can record a
browser session, or a client application.

Record Web Browser: Records the traffic of the default Web browser,
beginning with the specified URL.

Record any application: Records the actions of a specific client application.
Specify the full path of the application in the Program to Record box.
Specify any relevant arguments and working directories.

Record into Action: The action in which to generate the code. If there are
startup procedures that you do not need to repeat, place them in the
vuser_init section. During recording you can switch to another section, such
as Action.

Record Application Startup: Records the application startup as part of the
script. If you want to begin recording at a specific point, not including the
startup, clear this option.

For more information on recording, see “Recording a Web Services Script”
on page 714.

Part VII • E-Business Protocols

716

To record a Web Services application:

 1 Choose File > New to create a new script. Choose the Web Services Vuser
type from the E-Business Vuser category. VuGen opens the Workflow
Wizard.

If you do not see the Workflow Wizard, click the Introduction link in the
Tasks pane. (Show and Hide the Task pane using the Tasks button on the
toolbar.)

 2 Click the Create Script link in the Tasks pane. In the right pane, click on the
Web Services Wizard button to begin creating your script.

 3 Select Record Client Application and click Next. The wizard moves to the
next step: Specify WSDL files for recording.

 4 To record the application without WSDL files, select Do not use WSDL files
during recording. Click Next and skip to step 6 to specify an application.

Chapter 52 • Developing Web Services Vusers

717

 5 To record a script with one or more WSDL files, select Use the specified
WSDL files. VuGen displays a historical list of the WSDL files used. To add a
WSDL file to the list:

Click the Add item button. VuGen adds a new line to the list.

Type in the path or URL of the WSDL. Alternatively, click the Browse button
to the right of the field, and locate the desired file. VuGen adds the new
location to the list, with an enabled status.

To permanently remove an entry from the list, select it and click the
Deletebutton. To disable a WSDL entry temporarily, clear the check box to
the left of the entry.

Click Next. VuGen opens the Specifying Application to Record screen.

 6 For Web-based applications, select Record Default Web Browser and specify
a URL to record.

For other Windows applications, select Record any application. Enter or
browse for the complete path of the client application to record. Optionally,
provide program arguments and a working directory.

Choose an action from the Record into Action box, and select Record
application startup to record the invoking of the application.

 7 Click Finish to close the wizard. The recording toolbar opens. VuGen
invokes the client application and begins the recording session.

Scanning WSDL Documents

You can create a Vuser script by scanning a WSDL document. You specify a
path or URL and indicate whether you want to assign values to the methods,
or allow VuGen to assign automatic values. You can also mark which
methods to include in the script—you do not need to use all of the methods
defined in the WSDL.

When scanning a WSDL, VuGen automatically generates web_service_call
functions for each of the methods. VuGen adds a think time of 3 seconds
between each of the method calls.

Part VII • E-Business Protocols

718

While scanning a WSDL file, VuGen validates the XML code and syntax of
the document. If there is an error or warning, VuGen issues a pop-up
message with that information. You can also use the WSDL validation as a
stand-alone utility to check the WSDL before creating a script. For more
information, see “Managing WSDL Documents” on page 728.

The WSDL Scan wizard lets you control the way VuGen creates a Web
Services script. The wizard steps for scanning a WSDL are:

➤ Specify WSDL for Scanning

➤ WSDL Files Validation Summary

➤ Select Methods to Include in Test

➤ Specify Argument Values

➤ Final Wizard Screen

Specify WSDL for Scanning

In this screen, you specify the path or the URL of the WSDL file that you
want to scan. VuGen creates a script calling the methods that are defined in
the WSDL.

URL: A URL of the WSDL file.

File: The complete path of the WSDL file on a local or network drive.

Create Automatic Test: Creates a simple script that calls all of the WSDL’s
methods, assigning automatic values to all the elements. If you want to
exclude certain methods or manually assign values, proceed through the
wizard without creating an Automatic Test.

For more information on scanning, see “Managing WSDL Documents” on
page 728.

WSDL Files Validation Summary

After VuGen successfully scans the WSDL file, the wizard opens the WSDL
Files Validation Summary screen. It indicates whether or not the WSDL file
has errors.

Chapter 52 • Developing Web Services Vusers

719

Open Validation Report: Opens the Validation report. This view lets you
view the text of the WSDL document and any validation errors or warnings.

Note: When VuGen scans a WSDL file, it makes a working copy that is saved
with the script. By default, all validations and modifications are done on the
working copy. If you want to refresh the WSDL file, rescan it using the Scan
WSDL wizard.

Select Methods to Include in Test

In this screen, you specify the methods of the WSDL that you want to test.
VuGen will create web_service_call functions for each one of the methods.

Service Name: The name of the Web Service as defined in the WSDL. Select
the Web Service whose methods you want to test.

Description: A description of the current Web Service.

Available Methods: A list of all of the methods in the selected Web Service.

Selected Methods: A list of the Web Service methods that will be included in
the test. To add methods to this list, double-click on the method or select it
in the left pane and click the right-facing arrow.

For more information, see “Managing WSDL Documents” on page 728.

Specify Argument Values

In this screen, you specify the values of the method’s arguments. The right
pane changes, depending on the level of the tree node you select.

Note that when you modify a value (input, output, or SOAP header), its icon
color changes to blue. In the case of input arguments and headers, this
indicates the actual value that VuGen will send to the server.

If you select… The right pane shows…

A simple input argument The Name of each method and its Value

Part VII • E-Business Protocols

720

To modify Soap Headers, see the next section, “Using Soap Headers” on
page 720.

Using Soap Headers

This view is available when you select SOAP header in the method’s tree
view. The right pane lets you indicate whether or not to use SOAP headers.
To use them, select Use SOAP header. Note that you must individually
specify SOAP headers for each element. You can import XML code for the
SOAP header, or compose your own using the Edit XML option. For more
information, see “Editing an XML Tree” on page 738.

For additional information on scanning a WSDL, see “Scanning WSDL
Documents” on page 717.

A complex input
argument

The following options:

• Include argument in call: Includes the
argument’s values in the web_service_call
functions generated for this argument.

• XML: Enables the Import XML and Edit XML
buttons. By editing the XML, you can manually
insert argument values. See “Editing an XML
Tree” on page 738.

• Generate auto-value for this argument: Inserts
automatic values for all arguments of this
complex type node.

• two additional buttons: Add and Delete. These
buttons allow you to add and delete array
arguments by their index.

An individual argument The following information:

• Value: The value of the argument.

• Generate auto-value for this argument: Insert
automatic values for this node.

Output Arguments The Name of the arguments and the Parameter that
can store the value.

SOAP header An edit box to indicate the value of the SOAP
header for the current element. For more
information, see “Using Soap Headers” on page 720.

Chapter 52 • Developing Web Services Vusers

721

Final Wizard Screen

The final wizard screen informs you that you have provided all of the
necessary information to generate a script through the scanning of a WSDL
document.

Click Finish to generate the script.

If you want to set run-time settings before running the script, click the Run-
Time Settings button. These settings indicate the think time, iterations and
run logic during script execution.

Creating a Script by Importing a WSDL Document

The following procedure explains how to create a script by importing a
WSDL file instead of recording an application.

To create a script by scanning a WSDL document:

 1 Create a new Web Services Vuser Script. Choose the Web Services Vuser type
from the E-Business Vuser category. VuGen opens the main wizard screen.

 2 Select Scan WSDL file and click Next. The wizard moves to the next step—
Specify WSDL for scanning.

If you have already generated a script and you want to scan a new WSDL to
an existing script, choose Vuser > Scan WSDL or click the Scan WSDL
button. The WSDL Scan wizard opens to the Specify WSDL for scanning
step.

Part VII • E-Business Protocols

722

 3 Select URL to specify a URL for the WSDL document file. Select File to
specify or browse for a WSDL on a local or network drive.

 4 To validate the WSDL file during the scanning, select Validate WSDL file. If
you choose not to validate it now, you can use the WSDL Management
window to validate it at a later stage.

Chapter 52 • Developing Web Services Vusers

723

 5 To create a script with input values already assigned, click Create Automatic
Test. The wizard moves to the next step, assigning automatic values to all of
the elements.

If you chose Create Automatic Test, proceed to the next step.

 6 If you want to manually indicate which methods to use, without creating an
automatic test, click Next. If VuGen succeeds in importing the WSDL file,
the WSDL files validation summary step opens.

If VuGen detects a problem with your WSDL, it issues an alert describing the
problem.

Part VII • E-Business Protocols

724

VuGen prompts you to open the Validation report to view the errors or
warnings. Click Yes to open the Validation report.

 7 If the report is not open, click Open Validation Report in the current wizard
screen.

Chapter 52 • Developing Web Services Vusers

725

 8 Click Next in the Scan wizard. It opens the Select methods to include in test
script step and lists all of the available methods for each of the objects.

In the Service Name list, select the desired Web Service.

Select one or more methods from the Available Methods frame and click the
right arrow to move it into the Selected Methods section. Use the standard
Windows combination keys to select multiple methods.

Click the up or down arrows to rearrange the order of the methods. Click
the Delete button, (X) to delete a method.

Click Next. The next step opens—Specify argument values.

 9 Expand the methods whose values you want to set. To set the value of an
individual argument, select it in the left pane, select the Value option in the
right pane, and enter a value.

Part VII • E-Business Protocols

726

If you want VuGen to automatically generate a value for this argument,
select Generate auto-value for this argument.

To create a parameter for the argument, click the ABC icon in the right
corner of the Value box, to open the Select or Create Parameter dialog box.

To exclude an argument from the method call, clear the Include argument
in call option.

To modify complex types and arrays, select the entry and click Edit XML.
Click Import XML to import XML, or Export XML to export the selected
entry to a separate XML file. For more information, see “Editing an XML
Tree” on page 738.

Chapter 52 • Developing Web Services Vusers

727

 10 To work with an array, click on it in the left pane.

To add array elements, either simple or complex, click Add in the Array
Elements section. The Add Array Elements dialog box opens.

Specify a starting index and the number of elements to add.

Part VII • E-Business Protocols

728

To assign values of an existing array element to the new elements, select
Copy values from index and specify the array index of the element whose
value you want to use.

Click OK. VuGen creates the elements in their complete structure.

To set values for individual array elements, select the arguments and insert
the values.

To delete array elements, click Delete and specify the starting index and the
number of elements to remove.

 11 To view all of the values of the arguments in a method, select the method in
the left pane and click View Arguments. The right pane displays a list of all
of the input arguments and their values. The list shows only the simple
argument values—not the complex ones.

 12 Click Next. The wizard informs you that you have provided all of the
information. To run the script immediately, select Run script after
generation. To view or modify the run-time settings, click Run-Time
settings. Note that it is not mandatory to modify these settings.

 13 Click Finish. The wizard places the generated code in VuGen’s editor. It
creates separate method calls for each one of the selected methods.

 14 Save the script.

Managing WSDL Documents

VuGen’s WSDL Management window lets you add WSDL files to VuGen’s
working list. When you add a file to the list, VuGen creates a working copy
that it saves with the script. VuGen provides several management utilities.
You can set options for each of these utilities both before and after creating a
script.

The WSDL Management window, assists you in:

➤ Validating WSDL Files

➤ Comparing WSDL Files

➤ Setting WSDL Validation and Comparison Options

Chapter 52 • Developing Web Services Vusers

729

Validating WSDL Files

You can validate the WSDL while creating a script, or validate it
independently before creating a script. The Validation report lists all errors,
warnings, and notifications relating to the structure or content of the WSDL
files. VuGen checks the following items:

➤ XML form: Is the WSDL code in well-formed XML format?

➤ WSDL Schema: Does the WSDL conform to the WSDL schema—does it
contain the mandatory attributes? Are Namespaces specified when required?
Are the Imports and Include files available?

You can instruct VuGen to do validations on several levels. For more
information, see “Setting WSDL Validation and Comparison Options” on
page 734.

VuGen also lets you test your Web Service for WS-I (Web Services
Interoperability) compliance. You can choose a platform and indicate the
extent of details for the WS-I compliance test. For more information, see
“WS-I Validation Options” on page 736.

To validate a WSDL file independently (not while creating a script):

 1 Open a Web Services Vuser script.

Open a new or existing Web Services type script.

Part VII • E-Business Protocols

730

 2 Manage the WSDL files.

Click the WSDL Management button or choose Vuser > WSDL
Management. The WSDL Management dialog box opens.

 3 Add WSDL files.

Click the Add Item button in the top right corner of the list, to locate and
add WSDL files to the list of files to validate.

Note: When you add a WSDL file to the list, VuGen makes a working copy
and saves it with the script. By default, all validations are done on the
working copy. If you want to refresh the WSDL file, rescan it.

Chapter 52 • Developing Web Services Vusers

731

 4 Set the validation level.

Click the Options button. The WSDL Management Options dialog box
opens.

Select the desired levels in the WSDL Validation section.

Part VII • E-Business Protocols

732

 5 Set the WS-I validation options.

Click the WS-I Validation tab. To enable WS-I validation, select Apply WS-I
Validation. Choose a platform and enter the directory of the WS-I validation
tool. Choose a report type from the Report includes list. Click OK.

 6 Select the WSDL files to validate.

In the WSDL Management window, make sure there are check marks in the
boxes adjacent to each of the WSDL files that you want to validate. To add
or remove check marks, click in the box.

Chapter 52 • Developing Web Services Vusers

733

 7 Validate the files.

Click Validate checked files. The WSDL Validation Report opens.

If there is an error in an WSDL file, VuGen displays its details in the right
pane. Click the error (in the top right pane) to locate it in the XML WSDL
file (in the bottom right pane).

Part VII • E-Business Protocols

734

To open an HTML summary report of the validation, choose File > Export to
HTML. VuGen opens a browser with an HTML report of the Validation
results.

 8 To save the HTML file, choose File > Save As from the browser window.

 9 To close the WSDL Validation Report window, choose File > Exit.

Setting WSDL Validation and Comparison Options

You can set options for WSDL Management in the following areas:

➤ WSDL Validation Options

➤ WSDL Comparison Options

➤ WS-I Validation Options

Chapter 52 • Developing Web Services Vusers

735

To view the options, click Options in the WSDL Management window.
(Vuser > WSDL Management).

WSDL Validation Options

You can validate the WSDL while creating a script, or independently using
the WSDL Management window. This step checks the XML code in the
WSDL document and makes sure that it is valid according to the WSDL
standards.

VuGen offers three levels of validation for WSDL files:

➤ Simple - Validates only the XML code, but none of the imported or included
files. For this level, do not select any of the check boxes.

➤ Validate Referenced Links - Validates the XML code and verifies that the
imported or included files exist and that they are valid.

➤ Apply Recursive Validation - Validates all XML code and imported or
included. It also validates the XML code at the referenced imported or
included files, as well as all items referenced by them.

WSDL Comparison Options

VuGen offers several comparison options when comparing the local and
global copies of the WSDL documents:

Part VII • E-Business Protocols

736

➤ Show only differences - Show only lines with differences. Do not show the
entire document.

➤ Ignore Case - Ignore case differences between the texts.

➤ Ignore Comments- Ignore all comments in the texts.

➤ Ignore Processing Instructions- Ignore all texts with processing instructions.

➤ Ignore namespaces- Ignore all namespace differences.

WS-I Validation Options

WS-I (Web Services Interoperability) is an organization that created
standards for Web Services, to promote compatibility across platforms,
operating systems, and programming languages.

Obtaining the Testing Tool

VuGen lets you check WS-I compliance with tools provided by WS-I. You
can download the tools from WS-I’s Website at http://www.ws-i.org/.

Download the tool that matches your platform: C# with .NET or Sun Java.
Note that there are also several versions of the testing tools, such as version
1.0 or 1.1. After you download the zip file, extract the files to a local drive,
maintaining the original directory structure, wsi-test-tools.

If you define an environment variable called WSI_HOME with a value of the
path of wsi-test-tools, VuGen will recognize the path and automatically
activate WS-I validation for WSDL. If you do not define an environment
variable, you can manually enable WS-I validation and browse to the
location of the WS-I testing tool.

WS-I Validation Reports and Logs

After you validate your Web Service for WSDL, you can view both WSDL
and WSI validation reports

The WSI report is an XML file which contains information about the
WSDL’s compliance with WS-I.

Chapter 52 • Developing Web Services Vusers

737

To enable WS-I validation when generating a validation report, click
Options in the WSDL Management window and click the WS-I Validation
tab. Select the Apply WS-I validation option.

Platform: The platform of your Web Service: Microsoft .NET, which requires
the .NET Framework, or Java (Sun Java).

Tool Directory: The path of the WS-I validation tool, wsi-testing-tool.

Validation Options: Specify which messages to include in the report:

➤ All assertion results: Show all results.

➤ Assertions with the result “Failed”: Show only the assertions with a
“Failed” result status.

➤ Assertions with a Result different than “Passed”: Show the assertions
that did not have a “Passed” result status.

To open the WSI validation report, use the right-click menu from within the
WSDL validation report.

Part VII • E-Business Protocols

738

Editing an XML Tree

You can use VuGen’s XML Editor to view and edit the XML representation of
complex types (structures, objects, etc.) and arrays.

Entering the values for the XML elements is a tedious and error-prone task.
VuGen provides you with an interface that simplifies the task of entering,
saving, and restoring the information. Once you enter the data manually,
you can save it to an XML file using the export option. For subsequent tests,
you can import this file without needing to reenter the values a second
time.

To work with XML strings:

 1 Select a complex type or array in the left pane.

 2 To edit the XML code for that entry, click Edit XML. The XML Editor
window opens.

Chapter 52 • Developing Web Services Vusers

739

 3 To edit the code in text mode, click the Text View tab. Edit the XML code
manually.

 4 To import a previously saved XML file, click Import File and specify the file’s
location. Edit the file in the XML Editor window.

 5 To save your XML data to a file so it can be used for other tests, click Export
XML and specify a location.

IDE Integration

The IDE integration method allows you to use components from your client
application to create the scripts. For example, if your Web Service uses WS
security or another propriety implementation for asynchronous calls,
recording this traffic would not generate a meaningful script. In this case,
you create a script with the actual client application code. You run the client
directly in a load test environment without recording it.

This script creation process requires coordination between the QA and
software developers. The tests that the developers create for testing the APIs
internally, can usually be used for load testing too.

Part VII • E-Business Protocols

740

741

53
Running Web Services Vusers

After you create a Web Services script, you run it to make sure it is
functional. After you run the script, you can view test results to see whether
the script succeeded in communicating with the Web Service.

This chapter describes:

➤ Setting Web Service Run-Time Settings

➤ Comparing WSDL Files

➤ Comparing XML Files

➤ Setting Scanned WSDL Properties

➤ Viewing Web Services Script Snapshots

➤ Using Web Services Functions

➤ Viewing Web Services Reports

About Running Web Services Vusers

When you run the script, Vusers emulate real users communicating with the
Web Service.

Before running the script, there are several things you can do to make your
script more effective and correct:

➤ Run-time settings: You can set run-time settings that help you emulate real
users more accurately.

➤ WSDL Comparison: It is recommended that you check for updates to your
WSDL file before you replay the script. This is especially important for a
script that you created on an earlier date.

Part VII • E-Business Protocols

742

Setting Web Service Run-Time Settings

You can set the run-time settings for Web Services in order to emulate a
client application or a specific toolkit.

For scripts that you created by recording a client application (excluding
those you created by scanning a WSDL file), you can emulate the client
using the styles and attributes in your recorded script. To use this type of
emulation, enable the Use Recorded Traffic option.

For scripts created by scanning a WSDL file, only the second option is
available—Emulate specific toolkit. You can select the type of emulation
required. In addition to the specific toolkits that can be emulated, there is
also a general type of emulation. For more information about the
emulation, see “Client Emulation” on page 707.

To set the Web Services run-time settings:

 1 Open the Run-Time settings dialog box (Vuser > Run-Time Settings or F4)
and select the Web Services:Client Emulation node.

 2 Select the desired emulation or the generic emulation (General).

Chapter 53 • Running Web Services Vusers

743

Comparing WSDL Files

When you scan a WSDL file, VuGen makes a working copy and saves it
along with the script. This saves resources and enables a more scalable
environment.

It is possible, however, that by the time you run the script, the original
WSDL file will have changed. This will lead to inaccurate test results.
Therefore, before replaying a Web Services script that was created at an
earlier date, you should run a comparison test on the WSDL file.

VuGen provides a Comparison tool which compares the local working copy
of the WSDL file with the original file on the file system or Web server.

If the differences are significant, you can update the WSDL from the original
copy using the Refresh option.

VuGen lists the differences between the files in a Comparison report. The
Comparison Report window has two columns— Working Copy and Original
File. The Working Copy is the WSDL stored with the script, while the
Original File is the WSDL at its original location—a network file path or a
URL.

Note that VuGen also has a general utility that allows you to compare any
two XML files. For more information, see “Comparing XML Files” on
page 747.

The Comparison report uses the following legend to mark the differences
between the two files:

Yellow—changes to an existing element (shown in both versions)

Green—a new element added (shown in the original file copy)

Pink—a deleted element (shown in the working copy)

Part VII • E-Business Protocols

744

In the following example, line 24 was deleted from the original copy and
and line 28 was added.

WSDL Comparison Options

VuGen offers the following comparison options when comparing the local
and global copies of the WSDL documents:

➤ Show only differences - Show only lines with differences. Do not show the
entire document.

➤ Ignore Case-Ignore case differences between the texts.

➤ Ignore Comments-Ignore all comments in the texts.

➤ Ignore Processing Instructions-Ignore all texts with processing instructions.

➤ Ignore namespaces-Ignore all namespace differences.

Chapter 53 • Running Web Services Vusers

745

To compare WSDL files:

 1 Open a Web Services Vuser script.

Open an existing script.

 2 Open the WSDL Management window.

Click the WSDL Management button or choose Vuser > WSDL
Management. The WSDL Management dialog box opens.

 3 Add WSDL files.

Click the Add button to locate and add WSDL files to the list of files to
compare.

 4 Select the desired WSDL files to compare.

Make sure that there is a check mark in the box adjacent to each of the
WSDL files that you want to compare.

 5 Set the Comparison Options.

Click the Options button. The WSDL Operations Options dialog box opens.

Select the desired options in the General tab, and click OK.

Part VII • E-Business Protocols

746

 6 Compare the files.

Click Compare checked files with originals. The WSDL Comparison Report
opens.

Scroll down through the file to locate the differences.

 7 Refresh the working copy.

If you find differences between the two files and you want to update
VuGen’s working copy of the WSDL file, click on the WSDL file in the tree in
the left pane. Then select Refresh file from global copy from the right-click
menu. This copies the current version of the WSDL into the script’s WSDL
directory.

 8 To close the WSDL Comparison Report window, choose File > Exit.

Chapter 53 • Running Web Services Vusers

747

Comparing XML Files

VuGen contains a utility that lets you compare two XML files.

You can specify what differences to ignore, such as case or comments. For
additional information about the comparison options, see “WSDL
Comparison Options” on page 744.

To compare two XML files:

 1 Choose Tools > Compare XML Files. The XML File Comparison dialog box
opens.

 2 Click the Browse button to the right of the Base Revision box to locate the
original XML file.

 3 Click the Browse button to the right of the Compared Revision box to locate
the newer XML file.

 4 Click OK. VuGen opens the XML Comparison Report window.

For information about the Comparison report, see below.

Part VII • E-Business Protocols

748

XML Comparison Reports

VuGen lists the differences between the files in a Comparison report. The
Comparison Report window has two columns—the base revision and the
compared revision. The header of each column lists the full path of the XML
files.

The Comparison report uses the following legend:

Yellow—changes to an existing element (shown in both versions)

Green—a new element added (shown in the global version)

Pink—a deleted element (shown in the local version)

Chapter 53 • Running Web Services Vusers

749

Setting Scanned WSDL Properties

After you scan a WSDL file—without recording, VuGen’s Tree view shows
the properties of each element in the right pane.

To view the scanned WSDL in Tree view, choose View > Tree view.

Modify each argument value as necessary. For more information, see
“Specify Argument Values” on page 719.

Viewing Web Services Script Snapshots

You can use VuGen’s snapshot viewer to examine the SOAP requests and
responses that occurred during record and replay. Note that you must replay
the session at least once in order to view a replay snapshot.

Note that when you scan a script instead of recording it, there is no
snapshot. Instead, the right pane shows the method properties. For more
information, see “Setting Scanned WSDL Properties”.

Part VII • E-Business Protocols

750

There are several ways to view the snapshot:

➤ Argument View

➤ Client Request

➤ Server Response

The Argument View displays the arguments and their values. This view
shows you the values that were sent to the server during the Web Services
session.

The Client Request tab displays the arguments and the values that you
assigned to them in an expandable tree hierarchy.

Chapter 53 • Running Web Services Vusers

751

The Show node values in grid option also allows you to view the elements
and their values in a grid. When working in the Server Response view, you
can select a value in the grid and parameterize it using the right-click menu.

The Server Response tab displays all the result elements in an expandable
tree hierarchy.

Using the Client Request or Server Response tabs, you can view the XML
elements and their properties (using the right-click menu) or click the Query
Builder button to perform a query on the XML tree.

Part VII • E-Business Protocols

752

The following sections describe:

➤ Querying an XML Tree

➤ Working With XML Sent By the web_service_call Function

➤ Parameterizing XML Elements

➤ Inserting Verification Functions

Querying an XML Tree

VuGen displays the XML code in an expandable tree. In the case of a SOAP
envelope packet, you can see the various elements of the packet and their
values. You can perform a query on your XML document, and search for a
specific Namespace URI, value, or attribute. Note that all queries are case-
sensitive.

To perform a query:

 1 Click Query Builder in the Snapshot window. The XML Node Query dialog
box opens.

 2 Enable one or more items for searching.

Chapter 53 • Running Web Services Vusers

753

 3 Enable the Name section to search for the name of a node or element.

 4 Enable the Text section to search for the value of the element indicated in
the Name box.

 5 Enable the Namespace URI section to search for a Namespace.

 6 Enable the Attributes section to search for an attribute.

 7 Enter the search text in the appropriate boxes. To add an attribute, click the
Add button. The Attribute Properties box opens. Enter an attribute name
and value. Click OK.

 8 Click OK in the XML Node Query dialog box. VuGen places the text of the
query in the XPath query box.

 9 Click Find Next to begin the search.

Part VII • E-Business Protocols

754

Working With XML Sent By the web_service_call Function

For the web_service_call function, you can view the general properties of a
Web Service method, or modify its input and output arguments.

To view or modify properties:

 1 In the tree view, select a step.

 2 Double-click on the step or click the Properties button at the top of the right
pane to display the Properties dialog box.

Chapter 53 • Running Web Services Vusers

755

Parameterizing XML Elements

The Snapshot viewer and grid let you parameterize name and text value
within the XML document.

To replace a value with a parameter:

 1 Select the tree node of the argument you want to parameterize, or select the
value in the grid.

 2 Select Save value in parameter from the right-click menu. The XML
Parameter Properties dialog box displays the properties of the selected XML
element.

Part VII • E-Business Protocols

756

 3 To parameterize the element, click the ABC icon in the XPath Query box. The
Select or Create Parameter dialog box opens.

 4 Specify a parameter name and type. For more information, refer to the For
details, see Chapter 8, “Working with VuGen Parameters.”

Inserting Verification Functions

When running a script, you may want to verify that a certain text string is
displayed. You perform text verification by selecting the element you want
to check, and inserting an XML check step. VuGen places an lr_xml_find
function as the cursor.

To insert an XML check:

 1 In the grid or tree node, select the element you want to check.

 2 Choose Insert XML Check from the right-click menu. The XML Check
Properties dialog box opens.

Enter the value of the element in the Value box.

Chapter 53 • Running Web Services Vusers

757

 3 Select the desired options:

Use Regular Expressions (corresponds to the UseRegExp option): Allows the
search value to be a regular expression.

Continue on Error (corresponds to the NotFound option): Continue running
the script even if the search value is not found. If cleared, the script fails if
the value is not found.

For more information, refer to lr_xml_find in the Online Function Reference
(Help > Function Reference).

Using Web Services Functions

When you record a Web Service session or scan a WSDL document, VuGen
creates functions that call the Web Service’s methods:

➤ web_service_call - When scanning a WSDL document, or recording a Web
Services session which includes a WSDL file.

➤ soap_request - When recording a Web Services session without specifying a
WSDL.

Part VII • E-Business Protocols

758

The following examples illustrate the difference in the code between the
two functions:

web_service_call

The above code describes the WSDL’s Add method from the calc.wsdl file.
The result parameters are listed between the BEGIN_RESULT and
END_RESULT markers. In this method of code generation, the SOAP Header
is not used.

If you enabled the Include argument in call option in the Scan wizard,
VuGen includes the input arguments between the BEGIN_ARGUMENTS and
END_ARGUMENTS markers.

web_service_call("StepName=Add_101",
"SOAPMethod=Calc.CalcSoapPort.Add",
"ResponseParam=response",
"WSDL=R:/LR_TESTS/wsdl/Calc.wsdl",
"UseWSDLCopy=1",
"Snapshot=t1108909353.inf",
BEGIN_ARGUMENTS,
"A=5",
"B=6",
END_ARGUMENTS,
BEGIN_RESULT,
END_RESULT,
LAST);

Chapter 53 • Running Web Services Vusers

759

soap_request

The above code describes the WSDL’s Add method from the calc.WSDL
document as a SOAP request. All information about the method and its
input arguments are placed within a SOAP envelope.

In addition, you can enhance your script with Web functions, web_<suffix>
or XML functions, lr_xml_<suffix>. For more information, refer to the
Online Function Reference (Help > Function Reference).

Viewing Web Services Reports

After you run a Web Services script, you can view a summary of the test
results using VuGen’s Test Results utility. The Test Results utility shows both
Web Vuser steps and Web Services Vuser steps.

This section describes the Summary report’s Web Services information. For
general information about the Test Results utility and the available views,
see Chapter 49, “Using Reports to Debug Vuser Scripts.”

To open the Summary report, choose View > Test Results.

web_add_header("SOAPAction", "http://tem
puri.org/Calc/action/Calc.Add");

soap_request("URL=http://war/MSSoapSamples30/Calc/Ser
vice/Rpc/IsapiCpp/Calc.WSDL",

"SOAPEnvelope=<?xml version=\"1.0\" encoding=\"UTF-8\" standal
one=\"no\"?><SOAP-ENV:Envelope xmlns:SOAP-ENV=\"http://sche
mas.xmlsoap.org/soap/envelope/\"><SOAP-ENV:Body><AddNs:Add
xmlns:AddNs=\"http://tempuri.org/Calc/mes
sage/\"><A>45</AddNs:Add>"

"</SOAP-ENV:Body></SOAP-ENV:Envelope>",
"Snapshot=t1.inf",
"ResponseParam=result1",
LAST);

Part VII • E-Business Protocols

760

The test results are divided into iterations, actions, and steps.

The Results report marks a successful step with a green check mark and a
failed step with a red X. An iteration is only marked as successful if all of its
steps and actions have succeeded.

Chapter 53 • Running Web Services Vusers

761

For Web Service calls, the bottom pane of the Results window displays the
contents of the SOAP response.

If VuGen cannot parse or interpret the code, the report contains a message
stating Web service failed parsing WSDL.

For more information about working with the Test Results, see Chapter 49,
“Using Reports to Debug Vuser Scripts.”

Part VII • E-Business Protocols

762

763

54
Recording Web/WinSock Vuser Scripts

VuGen lets you create a Web/WinSock dual protocol Vuser script that
emulates applications accessing the Web and Windows Sockets. A popular
use for this protocol is the Palm HotSync process.

This chapter describes:

➤ About Recording Web/WinSock Vuser Scripts

➤ Getting Started with Web/WinSock Vuser Scripts

➤ Setting Browser and Proxy Recording Options

➤ Setting Web Trapping Recording Options

➤ Recording a Web/WinSock Session

➤ Recording Palm Applications

The following information only applies to the Web/Windows Sockets Dual
Protocol, and Palm Vuser scripts.

Part VIII • E-Business Protocols

764

About Recording Web/WinSock Vuser Scripts

VuGen’s Web/WinSock dual protocol type, lets you successfully record non-
HTML Web applications. VuGen records these applications using both Web
and Windows Sockets protocol functions and creates a script that emulates
access to Web pages and socket activity. A common application for this
protocol is the recording of a HotSync process of a handheld organizers
using the Palm OS protocol. VuGen records the transfer of data and
generates the relevant functions. Note that wireless data transfers for the
Palm, are not recorded.

When you run the dual protocol script, the Vuser emulates activity between
a Web browser, the non-HTML application, and the Web Server. The dual
protocol capabilities allow you to record only once for both the Web and
WinSock protocols, thus avoiding any duplicate calls. VuGen synchronizes
the recordings of the two protocols and creates a single script containing
both Web and WinSock Vuser functions.

Preferably, you should record a Web and WinSocket session using a multi-
protocol script, specifying the Web and WinSock protocols. The multi-
protocol mode, however, does not support UDP sockets, so if you need to
record UDP sockets, use the Dual Web/WinSock Vuser discussed in this
chapter.

The WinSock functions represent in low level code the socket activity
during the recorded session. Each WinSock function begins with an lrs
prefix and relates to the sockets, data buffers, and environment. You can
also view the actual data that was sent and received during the session by
selecting data.ws in VuGen’s left pane. Note that recording of UDP types
sockets is not supported in this mode.

The Web functions begins with a web prefix. These functions relate to
standard Web actions such as going to a URL (web_url), submitting data
(web_submit_data), and adding cookies (web_add_cookie).

For more information about the WinSock and Web functions, refer to the
Online Function Reference (Help > Function Reference).

Chapter 54 • Recording Web/WinSock Vuser Scripts

765

After you record the dual protocol script, you can edit it by modifying the
text of the script in the script view. Note that tree view and Snapshot
window, which are available for standard Web Vuser scripts, are not
supported for Web/WinSock scripts.

You correlate values in your Web/WinSock Vuser script just as you would in
a single protocol script. You must, however, correlate Web functions
according to the Web correlation procedure, and the WinSock functions
according to their procedure. For information on correlating Web functions,
see Chapter 46, “Setting Correlation Rules for Web Vuser Scripts.” For details
on correlating WinSock functions, see Chapter 11, “Correlating
Statements.”

Getting Started with Web/WinSock Vuser Scripts

This section provides an overview of the process of developing a dual
protocol Web/WinSock Vuser script using VuGen.

To develop a Web/WinSock Vuser script:

 1 Record the basic script using VuGen.

Invoke VuGen and create a new Vuser script. Specify Web/Winsocket Dual
Protocol as the type of Vuser. Choose an application to record and set the
Web and WinSock recording options. Perform typical operations.

For details, see “Setting Browser and Proxy Recording Options” on page 766.

 2 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 3 Define parameters (optional).

Define parameters for the fixed values recorded into your script. By
substituting fixed values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

Part VIII • E-Business Protocols

766

 4 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see Chapter 46, “Setting Correlation Rules for Web Vuser
Scripts”, and Chapter 11, “Correlating Statements.”

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.”

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Setting Browser and Proxy Recording Options

Before recording a script, you set the Web and WinSock recording options.
You set the Web recording options in the following areas: Browser, Proxy,
Recording Information, and Correlation. You set the WinSock recording
options to exclude sockets, set a think time threshold value and specify a
translation table. This section describes the Browser and Proxy recording
options. For information on other Internet protocol recording options, see
Chapter 40, “Setting Recording Options for Internet Protocols.” For
information on WinSock recording options, see Chapter 26, “Developing
WinSock Vuser Scripts.”

To open the recording options, choose Tools > Recording Options or click
the Options button in the Start Recording dialog box.

Chapter 54 • Recording Web/WinSock Vuser Scripts

767

Setting the Browser Recording Options

The Browser recording options let you specify which browser VuGen uses
when you record a Vuser script.

Select one of the following three options on the Browser tab. Note that
these options are only relevant when Web trapping is disabled (see “Setting
Web Trapping Recording Options” on page 770). If you enable Web
trapping, the application in the Program to Record field is always launched.

➤ Use default browser, to instruct VuGen to use the default Web browser
on the recording computer. The application in the Program to Record
field of the Start Recording dialog box is ignored. You must, however,
enter a value into this field, even though it is not used. Use this option to
record Active-X applications or Java templates.

➤ Manually launch an application, to instruct VuGen not to automatically
launch an application (in this case a browser) when you start recording.
You specify the browser’s path in the Program to Record field of the Start
Recording dialog box. VuGen launches the browser when it begins
recording and prompts you to modify the proxy settings. Use this option
for a standalone application or for an application that invokes a browser.

Part VIII • E-Business Protocols

768

➤ Specify path to application, to instruct VuGen to automatically start a
specific application. Select an application and its path from the list, or
click the Browse button to locate the desired one. The application in the
Program to Record field of the Start Recording dialog box is ignored. You
must, however, enter a value into this field, even though it is not used.
Use this option to use an non-browser application or a browser other
than the default one.

Specifying the Recording Proxy Settings

If you set the recording option to manually launch the browser (see previous
section), and you do not enable Web Trapping, you may need to adjust the
proxy setting. Since you are not automatically invoking a browser, you
cannot instruct VuGen to obtain the proxy settings from the recording
browser.

Instead, select the No proxy option.

Chapter 54 • Recording Web/WinSock Vuser Scripts

769

After you begin recording, VuGen issues a message indicating that you
should change your browser’s proxy settings and what those settings should
be.

If you click OK without modifying your browser’s settings, VuGen will only
record the application and not the browser actions. To set the proxy
settings, abort the recording and set the browser settings.

To modify the proxy settings:

➤ For Netscape, choose Edit > Preferences > Advanced > Proxies > Manual
Proxy Configuration and enter localhost (lower case) for the host name and
the port number provided in the above dialog box.

➤ For Internet Explorer, choose Tools > Internet Options > Connections > LAN
Settings and select Use a Proxy Server. Enter localhost (lower case) for the
host name and the port number provided in the above dialog box.

For information on additional Web recording options, see Chapter 41,
“Setting Recording Options for Web Vusers.” For information on WinSock
recording options, see Chapter 26, “Developing WinSock Vuser Scripts.”

Part VIII • E-Business Protocols

770

Setting Web Trapping Recording Options

When VuGen records a script for a Web/WinSock Vuser, it modifies your
browser’s proxy settings. VuGen directs all HTTP and HTTPS requests
through the reconfigured proxy ports. After directing Web requests through
the proxy ports, it directs them to the ports specified in the Recording Proxy
tab. All requests that are not sent or received via the specified proxy ports,
are recorded as WinSock functions and not HTTP Web requests. After
recording, VuGen restores all of the original proxy settings.

Certain applications issue Web events, but do not support proxy
configuration, such as certain Java applets. VuGen cannot set the required
internal proxy settings for these applications. As a result, these applications
are not recorded as Web events and the events are recorded as WinSock
requests, making them less readable and less intuitive. For information on
how to record the applications and their startups, see “Setting the Browser
Recording Options” on page 767.

The Web Trapping settings allow you to trap or save an event that would
normally be recorded as a WinSock function, as a Web function. When you
enable the trapping option, VuGen waits for events at a specific port, marks
them as Web events, and generates the appropriate Web functions. This
results in a more readable and intuitive script.

You need to specify the port at which VuGen should listen for Web events.
All communications on that port are handled as Web events, represented by
Web Vuser functions. You can use the default ports-80 for HTTP and 443 for
HTTPS, or you can specify any IP:port combination. VuGen supports
wildcard combinations, to include all ports on a particular host.

For example 207.232.15.30:* indicates all ports on the host machine
207.232.15.30. The entry 207.232.*.*:80 indicates standard port 80 on all
machines in the domain of 207.232. Note that you cannot mix digits and
wildcards within the sections of an IP address. For example, 207.2*.32.9 is
an invalid entry.

To determine whether or not to enable Web trapping, first perform a
recording session. View the data file, data.ws. If you see HTTP or HTTPS data
that was recorded as WinSock buffer data, this may indicate that the request
was made over a different port. In this instance, you should enable Web
trapping to allow VuGen to generate Web functions for those requests.

Chapter 54 • Recording Web/WinSock Vuser Scripts

771

This option is especially useful when you manually launch the application
to record, instead of recording through a browser. For information about
manually launching an application, see “Setting the Browser Recording
Options” on page 767.

Note that when you enable Web trapping, all Windows Sockets
communication on the specified ports is ignored.

To set the Web Trapping recording options:

 1 Choose Tools > Recording Options and select the Web Trapping node.

 2 To enable trapping for Web events, select the Enable socket trapping for
Web requests check box.

 3 To trap Web events on the default ports, choose Record requests to default
HTTP/HTTPS ports as Web events.

 4 To trap Web events on ports other than the default, choose Record requests
to the following IP:Port. list as Web Events. Click the “+” sign to add a new
IP:port entry to the list. Click the “-” sign to remove an existing entry. You
can use wildcards as described in the previous section.

 5 Click OK to save the settings and close the dialog box.

Part VIII • E-Business Protocols

772

Recording a Web/WinSock Session

You record a dual protocol session in a similar way as you would record
standalone Web and Windows Sockets Vusers. When you record a dual
protocol session, VuGen monitors all the actions that you perform within
your Web browser or application, and generates the appropriate Web or
WinSocket function.

Each script that you create contains three sections: vuser_init, Actions, and
vuser_end. During recording, you can select the section of the script into
which VuGen will insert the recorded functions. The vuser_init and
vuser_end sections are generally used for recording server login and logoff
procedures, which are not repeated when you run a script with multiple
iterations. You should therefore record in the Actions section, so that the
complete browser session is repeated for each iteration.

To record a Web/WinSock session:

 1 Open the recording browser, and set the home page to the URL you want to
record.

 2 Open the Mercury Virtual User Generator, VuGen, from the Start menu.

 3 Create a new Web/WinSock script. Choose File > New or click the New
button.

 4 Select Web/Winsocket Dual Protocol from the E-Business folder, and click
OK. VuGen opens a skeleton Vuser script and displays the Start Recording
dialog box.

Chapter 54 • Recording Web/WinSock Vuser Scripts

773

 5 Click Options to set the recording options for the socket, browser, proxy, or
other advanced settings. If you are recording with a browser, specify a
browser. If you are recording a non-browser application (such as streaming
data), set the Browser Recording Option to manually launch a browser. For
manual launching, set the proxy option to Always use direct connection to
the Internet Proxy and modify your browser’s proxy setting to localhost. See
“Setting the Browser Recording Options” on page 767 for additional
information on setting these recording options.

 6 Click Browse to select the program to record. Note that this entry is only
used when you specify manually launch a browser in the recording options
(Browser node). Specify the path and name of the non-browser application
in the Program to Record box. If you are recording with a browser, this
entry is ignored; you must, however, enter a value into this box.

 7 From the Record into Action list, select the section into which you want to
begin recording.

 8 Click OK to launch the application and start recording. The floating
recording toolbar appears.

Note: When recording a Web Vuser script, you can only run a single
instance of Netscape Navigator. Therefore, if Netscape Navigator is running
before you begin recording, VuGen prompts you to close the browser. This
enables VuGen to open the Netscape browser itself.

 9 Perform the desired business process. Each link you click adds a web_url
function to the script. Each form you submit adds a web_submit_form
function to the Vuser script. Non-browser application actions are recorded
as socket data.

During recording, you can use the VuGen floating toolbar to insert
transactions, rendezvous points, and instant text checks. For more details,
see below. For details on inserting text or image checks, see Chapter 44,
“Verifying Web Pages Under Load.”

Part VIII • E-Business Protocols

774

 10 After performing all the required user processes, click the Stop recording
button on the floating recording toolbar. VuGen restores the VuGen main
window.

 11 Choose File > Save or click the Save button to save the Vuser script. Specify a
file name and location in the Save Test dialog box, and click Save.

After recording, you can edit the Vuser script by inserting transactions,
rendezvous points, and control-flow structures into the script. For details,
see Chapter 7, “Enhancing Vuser Scripts.”

After modifying a script, you can revert back to the originally recorded
version of the script, using the Regenerate Script utility. This utility only
regenerates the WinSock statements; it does not affect the Web statements.
For more information, see Chapter 4, “Recording with VuGen.”

Recording Palm Applications

Palm-based applications offer two ways to communicate with a remote
server: cradle and wireless. Palm application docked on a cradle
communicate directly with their servers over the Internet through the
HotSync service. VuGen allows you to capture all traffic channeled through
Palm's HotSync service. Since many applications use HTTP as a transport
layer to communicate to their server, the script generated is web-like, and
inherits the same syntax and functionality as Web. In rare occasions, the
traffic is channeled over a proprietary protocol. This proprietary traffic will
also be recorded and represented as WinSock functions in the script.

To record a Palm application:

 1 Create a new script. Choose File > New or click the New button.

 2 Select Palm from the E-Business folder, and click OK. VuGen opens a
skeleton Vuser script and displays the Start Recording dialog box.

Chapter 54 • Recording Web/WinSock Vuser Scripts

775

 3 Specify HotSync.Exe as the application to record, and click OK.

Make sure that HotSync.Exe is not already running prior to launching it
from VuGen.

 4 Set the Palm Pilot on the Cradle, and interact with your applications.

Note that you may need to press the HotSync button on your Palm Pilot to
initiate the communication between the Palm and the server.

 5 After performing all the required user processes, click the Stop recording
button on the floating recording toolbar. VuGen restores the VuGen main
window.

 6 Choose File > Save or click the Save button to save the Vuser script. Specify a
file name and location in the Save Test dialog box, and click Save.

The script is represented as a combination of Web and WinSock protocols.
All Palm traffic that was carried over HTTP is represented in web_url
statements and web_submit_data requests. Proprietary protocols are
represented by calls to WinSock functions.

Part VIII • E-Business Protocols

776

Part IX

Enterprise Java Bean Protocols

778

779

55
Performing EJB Testing

The Enterprise Java Beans (EJB) testing tool generates scripts for testing or
tuning EJB objects.

This chapter describes:

➤ About EJB Testing

➤ Working with the EJB Detector

➤ Creating an EJB Testing Vuser

➤ Setting EJB Recording Options

➤ Understanding EJB Vuser Scripts

➤ Running EJB Vuser Scripts

The following information only applies to EJB Testing Vuser scripts.

About EJB Testing

VuGen provides several tools for developing a script that tests Java
applications. For generating a Vuser script through recording, use the
Jacada, CORBA or RMI Vusers. For creating a script through programming,
use the custom Java Vusers.

EJB Testing Vusers differ from the standard Java Vusers in that VuGen
automatically creates a script to test or tune EJB functionality without
recording or programming. Before you generate a script, you specify the
JNDI properties and other information about your application server.
VuGen’s EJB Detector scans the application server and determines which
EJBs are available. You select the EJB that you want to test or tune, and
VuGen generates a script that emulates each of the EJB’s methods.

Part IX • Enterprise Java Bean Protocols

780

It creates transactions for each method so that you can measure its
performance and locate problems. In addition, each method is wrapped in a
try and catch block for exception handling.

Note that in order to create EJB testing scripts, the EJB Detector must be
installed and active on the application server host. The Detector is described
in the following sections.

VuGen also has a built-in utility for inserting methods into your script.
Using this utility, you display all of the available packages, select the desired
methods, and insert them into your script. For more information, see
“Running EJB Vuser Scripts” on page 796.

Working with the EJB Detector

The EJB Detector is a separate agent that must be installed on each machine
that is being scanned for EJBs. This agent detects the EJBs on the machine.
Before installing the EJB Detector, verify that you have a valid JDK
environment on the machine.

Installing the EJB Detector

The EJB Detector can be installed and invoked on the application server's
machine or alternatively, on the client machine. To run the EJB Detector on
the client machine you must have a mounted drive to the application server
machine.

To install the EJB detector agent:

 1 Create a home directory for the EJB Detector on the application server
machine, or on the client machine (and mount the file systems as
mentioned).

 2 Unzip the <LR_root>\ejbcomponent\ejbdetector.jar file into the EJB
Detector directory.

Chapter 55 • Performing EJB Testing

781

Running the EJB Detector

The EJB Detector must be running before you start the EJB script generation
process in VuGen. You can either run the EJB detector on the application
server or on the client machine (in this case, make sure to mount to the
application server from the EJB Detector (client) machine, specify the
mount directory in the search root directory, and change the generated
script to connect to the mounted machine, instead of the local machine).

The EJB Detector can run from the command-line, or from a batch file.

To run the EJB Detector from the command line:

 1 Before running the EJB Detector from the command line, add the
DETECTOR_HOME\classes and the DETECTOR_HOME\classes\xerces.jar to
the CLASSPATH environment variable.

 2 If you are working with EJB1.0 (Weblogic 4.x, WebSphere 3.x), add the
classes of EJBs that are being tested as well as the following vendor EJB
classes to the CLASSPATH:

For WebLogic 4.x: <WebLogic directory>\lib\weblogicaux.jar

For WebSphere 3.x: <WebSphere directory>\lib\ujc.jar

 3 If your EJBs use additional classes directory or .jar files, add them to the
CLASSPATH.

 4 To run the EJB Detector from the command-line, use the following string:

java EJBDetector [search root dir] [listen port]

Part IX • Enterprise Java Bean Protocols

782

search root dir One or more directories or files in which to search for
EJBs (separated by semicolons). Follow these
guidelines:
BEA WebLogic Servers 4.x and 5.x: Specify the
application server root directory.
BEA WebLogic Servers 6.x: Specify full path of the
domain folder.
WebSphere Servers 3.x: Specify the full path of the
deployed EJBs folder.
WebSphere Servers 4.0: Specify the application server
root directory.
Oracle OC4J: Specify the application server root
directory.
Sun J2EE Server: Specify the full path to the
deployable .ear file or directory containing a number
of .ear files.

If unspecified, the classpath will be searched.

listen port The listening port of the EJB Detector.The default port
is 2001. If you change this port number, you must also
specify it in the Host name box of the Generate EJB
Test dialog box.

For example, if your host is metal, if you are using the
default port, you can specify metal. If you are using a
different port, for example, port 2002, enter
metal:2002.

Chapter 55 • Performing EJB Testing

783

To run the EJB Detector from a batch file:

You can launch the EJB detector using a batch file, EJB_Detector.cmd. This
file resides in the root directory of the EJB Detector installation, after you
unzip ejbdetector.jar.

 1 Open env.cmd in the EJB Detector root directory, and modify the following
variables according to your environment:

 2 Save env.cmd.

 3 If you are working with EJB1.0 (Weblogic 4.x, WebSphere 3.x), add the
classes of EJBs that are being tested, as well as the following vendor EJB
classes, to the CLASSPATH in the env file:

For WebLogic 4.x: <WebLogic directory>\lib\weblogicaux.jar

For WebSphere 3.x: <WebSphere directory>\lib\ujc.jar

JAVA_HOME the root directory of JDK installation

DETECTOR_INS_DIR the root directory of the Detector installation

APP_SERVER_DRIVE the drive hosting the application server installation

APP_SERVER_ROOT Follow these guidelines:
BEA WebLogic Servers 4.x and 5.x: Specify the
application server root directory.
BEA WebLogic Servers 6.x: Specify full path of the
domain folder.
WebSphere Servers 3.x: Specify the full path of the
deployed EJBs folder.
WebSphere Servers 4.0: Specify the application
server root directory.
Oracle OC4J: Specify the application server root
directory.
Sun J2EE Server: Specify the full path to the
deployable .ear file or directory containing a
number of .ear files.

EJB_DIR_LIST
(optional)

list of directories/files, separated by ‘;’ and
containing deployable .ear/.jar files, and any
additional classes directory or .jar files or used by
your EJBs under test.

Part IX • Enterprise Java Bean Protocols

784

 4 Run the EJB_Detector.cmd or EJB_Detector.sh (Unix platforms) batch file to
collect information about the deployable applications containing EJBs, for
example:

C:\>EJB_Detector [listen_port]

where listen_port is an optional argument specifying a port number on
which the EJB Detector will listen for incoming requests (default is 2001).

EJB Detector Output and Log Files

You can examine the output of the EJB Detector to see if it has detected all
the active EJBs. The output log shows the paths being checked for EJBs. At
the end of the scan, it displays a list of the EJBs that were found, their names
and locations.

For Example:

If no EJBs were detected (that is, "Found 0 EJBs"), check that the EJB jar files
are listed in the "Checking EJB Entry:…" lines. If they are not listed, check that
the search root dir path is correct. If they are being inspected but still no
EJBs are detected, check that these EJB jar files are deployable (can be
successfully deployed into an application server). A deployable jar file
should contain the Home Interface, Remote Interface, Bean
implementation, the Deployment Descriptor files (xml files, or .ser files),
and additional vendor-specific files.

Checking EJB Entry: f:/weblogic/myserver/ejb_basic_beanManaged.jar…
Checking EJB Entry: f:/weblogic/myserver/ejb_basic_statefulSession.jar…
Checking EJB Entry: f:/weblogic/myser-
ver/ejb_basic_statelessSession.jar…
------------------------- Found 3 EJBs ---------------------------
** PATH: f:/weblogic/myserver/ejb_basic_beanManaged.jar
- BEAN: examples.ejb.basic.beanManaged.AccountBean
** PATH: f:/weblogic/myserver/ejb_basic_statefulSession.jar
- BEAN: examples.ejb.basic.statefulSession.TraderBean
** PATH: f:/weblogic/myserver/ejb_basic_statelessSession.jar
- BEAN: examples.ejb.basic.statelessSession.TraderBean

Chapter 55 • Performing EJB Testing

785

If you still encounter problems, set the debug properties in the
detector.properties file, located in the DETECTOR_HOME\classes directory,
to retrieve additional debug information.

After the EJBs are detected, the HTTP Server is initialized and waits for
requests from the VuGen EJB-Testing Vuser. If there are problems in this
communication process, enable the property webserver.enableLog in the
webserver.properties file located in the DETECTOR_HOME\classes
directory.

This enables printouts of additional debug information, and other
potentially important error messages in the webserver.log file.

Creating an EJB Testing Vuser

To create an EJB Vuser script:

 1 Choose File > New or click the New button. The New Virtual User dialog box
opens.

Part IX • Enterprise Java Bean Protocols

786

 2 Select EJB Testing from the Enterprise Java Beans category and click OK.
VuGen opens a blank Java Vuser script and opens the Generate EJB Script
dialog box.

 3 Specify a machine on which VuGen’s EJB Detector is installed. Note that the
Detector must be running in order to connect. Click Connect. The JNDI
properties section is enabled.

Chapter 55 • Performing EJB Testing

787

 4 The EJB Detector automatically detects the default JNDI properties. You can
manually modify these properties in the appropriate edit boxes. The
properties you can modify are a string for the Initial Context Factory and the
Provider URL.

If your application server requires authentication, enter the user name in
the Security Principal box and a password in the Security Credentials box.

Here are the default values of the two JNDI mandatory properties:

 5 To set advanced properties for the JNDI, click Advanced to open the JNDI
Advanced Properties dialog box.

Type Initial Context Factory Provider URL

WebLogic weblogic.jndi.WLInitialContextFactory t3://<appserver_host>:7001

WebSphere
3.x

com.ibm.ejs.ns.jndi.CNInitialContextFac-
tory

iiop://<appserver_host>:900

WebSphere
4.x

com.ibm.websphere.naming.WsnInitial
ContextFactory

iiop://<appserver_host>:900

Sun J2EE com.sun.enterprise.naming.
SerialInitContextFactory

N/A

Oracle com.evermind.server.
AppplicationClientInitialContextFactory

ormi://<appserver_host>/
<application_name> (the
app. name of the EJB in
<oc4j>/config/server.xml)

Part IX • Enterprise Java Bean Protocols

788

Specify the desired properties: Object Factory, State Factory, URL Package
Prefixes, Security Protocol, and Security Authentication. Click OK.

 6 In the EJB section of the dialog box, click Select to choose the EJB for which
you want to create a test. A dialog box opens with a list of all the EJBs
currently available to you from the application server.

 7 Highlight the EJB you want to test and click Select.

 8 In the Generate EJB Script dialog box, click Generate. VuGen creates a script
with Java Vuser functions. The script contains code that connects to the
application server and executes the EJB’s methods.

 9 Save the script.

Note that you cannot generate test code for an additional EJB, within an
existing script. To create a test for another EJB, open a new script and repeat
steps 2-9.

Chapter 55 • Performing EJB Testing

789

Setting EJB Recording Options

The recording options that are available for EJB Vusers are in the areas of
Classpath and Code Generation. For information on the Classpath options,
see Chapter 18, “Setting Java Recording Options.”

The EJB Code Generation options allow you to set properties in the area of
automatic transactions and value checks. You can also indicate where to
store the initialization method.

To set the EJB Code Generation recording options:

 1 Click Options in the Start Recording dialog box. Select the EJB Options:Code
Generation Options node in the Recording Options tree to edit the code
generation options.

 2 Enable the Auto Transaction option to automatically mark all EJB methods
as transactions. This encloses all methods with lr.start_transaction and
lr.end_transaction functions. By default, this option is enabled (true).

 3 Enable the Insert Value Check option to automatically insert an
lr.value_check function after each EJB method. This function checks for the
expected return value for primitive values and strings.

 4 Choose an EJB Initialization Method. This is the method to which the
EJB/JNDI initialization properties are written. The available methods are init
(default) and action.

Part IX • Enterprise Java Bean Protocols

790

Understanding EJB Vuser Scripts

VuGen generates a script that tests your EJB, based on the JNDI (Java
Naming and Directory Interface) properties you specified when creating the
Vuser script. JNDI is Sun’s programming interface used for connecting Java
programs to naming and directory services such as DNS and LDAP.

Each EJB Vuser script contains three primary parts:

➤ Locating the EJB Home Using JNDI

➤ Creating an Instance

➤ Invoking the EJB Methods

Locating the EJB Home Using JNDI

The first section of the script contains the code that retrieves the JNDI
properties. Using the specified context factory and provider URL, it connects
to the application server, looks up the specified EJB and locates the EJB
Home.

Chapter 55 • Performing EJB Testing

791

In the following example, the JNDI Context Factory is
weblogic.jndi.WLInitialContextFactory, the URL of the provider is
t3://dod:7001 and the JNDI name of the selected EJB is carmel.CarmelHome.

public class Actions
{

public int init() {
CarmelHome _carmelhome = null;
try {

// get the JNDI Initial Context
java.util.Properties p = new java.util.Properties();
p.put(javax.naming.Con-

text.INITIAL_CONTEXT_FACTORY, "weblogic.jndi.WLInitialContextFactory");
p.put(javax.naming.Context.PROVIDER_URL, "t3://dod:7001");
javax.naming.InitialContext _context = new javax.nam-

ing.InitialContext(p);

// lookup Home Interface in the JNDI context and narrow it
Object homeobj = _context.lookup("carmel.CarmelHome");
_carmelhome = (CarmelHome)javax.rmi.PortableRemo-

teObject.narrow(homeobj, CarmelHome.class);

} catch (javax.naming.NamingException e) {
e.printStackTrace();

}

Part IX • Enterprise Java Bean Protocols

792

Note: If the script is generated with an EJB Detector running on the client
rather than an application server, you must manually modify the URL of the
provider. For example, in the following line, the provider specifies dod as
the EJB detector host name:
p.put(javax.naming.Context.PROVIDER_URL, "t3://dod:7001")
Replace the recorded host name with the application server name, for
example:
p.put(javax.naming.Context.PROVIDER_URL, "t3://bealogic:7001")
You can specify the provider URL before recording, so you don’t have to
modify it manually, in the JDNI Properties section of the Generate EJB Script
dialog.

Creating an Instance

Before executing the EJB methods, the script creates a Bean instance for the
EJB. The creation of the instance is marked as a transaction to allow it to be
analyzed after the script is executed. In addition, the process of creating an
instance is wrapped in a try and catch block providing exception handling.

For Session Beans - use the EJB home 'create' method to get a new EJB
instance.

In the following example, the script creates an instance for the Carmel EJB.

// create Bean instance
Carmel _carmel = null;
try {

lr.start_transaction("create");
_carmel = _carmelhome.create();
lr.end_transaction("create", lr.AUTO);

} catch (Throwable t) {
lr.end_transaction("create", lr.FAIL);
t.printStackTrace();

}

Chapter 55 • Performing EJB Testing

793

For Entity Beans - use the findByPrimaryKey method to locate the EJB
instance in an existing database, and if not found, then use the create
method, to create it there.

In the following example, the script attempts to locate an instance for the
account EJB, and if it fails then creates it.

// find Bean instance
try {

com.ibm.ejs.doc.account.AccountKey _accountkey = new
com.ibm.ejs.doc.account.AccountKey();

_accountkey.accountId = (long)0;

lr.start_transaction("findByPrimaryKey");
_account = _accounthome.findByPrimaryKey(_accountkey);
lr.end_transaction("findByPrimaryKey", lr.AUTO);

} catch (Throwable thr) {

lr.end_transaction("findByPrimaryKey", lr.FAIL);
lr.message("Couldn't locate the EJB object using a primary key.

Attempting to manually create the object... ["+thr+"]");

// create Bean instance
try {

lr.start_transaction("create");
_account = _accounthome.cre-

ate((com.ibm.ejs.doc.account.AccountKey)null);
lr.end_transaction("create", lr.AUTO);

} catch (Throwable t) {
lr.end_transaction("create", lr.FAIL);
t.printStackTrace();

}

}

Part IX • Enterprise Java Bean Protocols

794

You may choose to use other find… methods supplied by your Entity Bean,
to locate the EJB instance. For example:

Invoking the EJB Methods

The final part of the script contains the actual methods of the EJB. Each
method is marked as a transaction to allow it to be analyzed after running
the script. In addition, each method is wrapped in a try and catch block
providing exception handling. When there is an exception, the transaction
is marked as failed, and the script continues with the next method. VuGen
creates a separate block for each of the EJB methods.

VuGen inserts default values for the methods, for example, 0 for an integer,
empty strings ("") for Strings, and NULL for complex Java objects. If
necessary, modify the default values within the generated script.

// get an enumeration list of all Email EJB instances that represents
// the name 'John' in the database.
Enumeration enum = home.findByName("John");

while (enum.hasMoreElements()) {
 Email addr = (Email)enum.nextElement();

...
}

// ------- Methods ------------

int _int1 = 0;
try {

lr.start_transaction("buyTomatoes");
_int1 = _carmel.buyTomatoes((int)0);
//lr.value_check(_int1, 0, lr.EQUALS);
lr.end_transaction("buyTomatoes", lr.AUTO);

} catch (Throwable t) {
lr.end_transaction("buyTomatoes", lr.FAIL);
t.printStackTrace();

}

_int1 = _carmel.buyTomatoes((int)0);

Chapter 55 • Performing EJB Testing

795

The following example shows how to change the default value of a non-
primitive type using parameterization:

For methods that return a primitive, non-complex value or string, VuGen
inserts a commented method lr.value_check. This method allows you to
specify an expected value for the EJB method. To use this verification
method, remove the comment marks (//) and specify the expected value. For
example, the carmel.buyTomatoes method returns an integer.

If you expect the method to return a value of 500, modify the code as
follows:

If you want to check if the method does not return a certain value, modify
the code as follows:

If the expected value is not detected, an exception occurs and the
information is logged in the output window.

EJB Vuser scripts support all of the standard Java conventions. For example,
you can insert a comment by preceding the text with two forward slashes
“//”.

Detail details = new Details(<city>,<street>,<zip>,<phone>);
JobProfile job = new JobProfile(<department>,<position>,<job_type>);
Employee employee=new Employee(<first>,<last>, details, job, <salary>);
_int1 = _empbook.addEmployee((Employee)employee);

_int1 = _carmel.buyTomatoes((int)0);
//lr.value_check(_int1, 0, lr.EQUALS);

_int1 = _carmel.buyTomatoes((int)0);
lr.value_check(_int1, 500, lr.EQUALS);

_int1 = _carmel.buyTomatoes((int)0);
lr.value_check(_int1, 10, lr.NOT_EQUALS);

System.err: java.lang.Exception: lr.value_check failed.[Expected:500 Actual:5000]

Part IX • Enterprise Java Bean Protocols

796

The Java Vuser script runs as a scalable multi-threaded application. If you
include a custom class in your script, ensure that the code is thread-safe.
Code that is not thread-safe may cause inaccurate results. For code that is
not thread-safe, run the Java Vusers as processes. (see Run-Time settings)
This creates a separate Java Virtual Machine for each process, resulting in a
script that is less scalable.

Running EJB Vuser Scripts

After you generate a script for your EJB testing, and make the necessary
modifications, you are ready to run your script. The EJB script allows you to
perform two types of testing: functional and load. The functional testing
verifies that the EJB, functions properly within your environment. The load
testing allows you to evaluate the performance of the EJB when executing
many users at one time.

To run a functional test:

 1 Modify the default values that were automatically generated.

 2 Insert value checks using the lr.value_check method. These methods were
generated as comments in the script (see “Invoking the EJB Methods” on
page 794).

 3 Insert additional methods, and modify their default values. For more
information, refer to the section on inserting Java functions in Chapter 17,
“Recording Java Language Vuser Scripts.”

 4 Set the general run-time settings for the script. For more information, see
Chapter 12, “Configuring Run-Time Settings.”

 5 Set the Java VM run-time settings: Specify all additional classpaths and
additional VM parameters. Make sure to include your application server EJB
classes. The actual classes of the EJB under test are saved in the Vuser
directory and retrieved automatically during replay. For information about
specifying additional classpaths and setting the Java VM run-time settings,
see Chapter 20, “Configuring Java Run-Time Settings.”

Chapter 55 • Performing EJB Testing

797

 6 For Websphere 3.x users:

Using the IBM JDK 1.2 or higher:

➤ Add the <WS>\lib\ujc.jar to the classpath.

Using the Sun JDK 1.2.x:

➤ Remove the file <JDK>\jre\lib\ext\iiimp.jar

➤ Copy the following files from the <WS>\jdk\jre\lib\ext folder to the
<JDK>\jre\lib\ext directory: iioprt.jar, rmiorb.jar.

➤ Copy the 'ujc.jar' from the <WS>\lib folder, to <JDK>\jre\lib\ext.

➤ Copy the file <WS>\jdk\jre\bin\ioser12.dll to the <JDK>\jre\bin folder.

where <WS> is the home folder of the WebSphere installation and <JDK> is
the home folder of the JDK installation.

Clear the Use -Xbootclasspath VM parameter check box to turn off this
option.

 7 For WebSphere 4.0 users:

Make sure that you have valid Java environment on your machine of IBM
JDK1.3. Open the Run-Time Settings dialog box and select the Java VM
node. Add the following entries to the Additional Classpath section:

Where <WS> is the home directory of the WebSphere installation.

Clear the Use -Xbootclasspath VM parameter check box to turn off this
option.

Note: If your application server is installed on a UNIX machine or if you are
using WebSphere 3.0.x, you must install IBM JDK 1.2.x on the client
machine to obtain the required files.

<WS>/lib/webshpere.jar;
<WS>/lib/j2ee.jar;

Part IX • Enterprise Java Bean Protocols

798

 8 For Oracle OC4J users:

Make sure that you have valid Java environment on your machine of JDK1.2
or higher (JDK1.3 preferable). Open the Run-Time Settings dialog box and
select the Java VM node. Add the following entries to the Additional
Classpath section:

where <OC4J> is the home folder of the application server installation.

 9 For Sun J2EE users:

Make sure that you have valid Java environment on your machine of JDK1.2
or higher. Open the Run-Time Settings dialog box and select the Java VM
node. Add the following entries to the Additional Classpath section:

where <J2EE> is the home folder of the application server installation and
<AppClientJar> is the full path to the application client jar file created
automatically by the sdk tools during the deployment process.

 10 For WebLogic 4.x - 5.x Users:

Make sure that you have valid Java environment on your machine (path &
classpath). Open the Run-Time Settings dialog box and select the Java VM
node. Add the following two entries to the Additional Classpath section:

where <WL> is the home folder of the WebLogic installation.

<OC4J>/orion.jar;<OC4J>/ejb.jar;<OC4J>/jndi.jar; ;<OC4J>/xalan.jar;
<OC4J>/crimson.jar

<J2EE>/j2ee.jar;<AppClientJar>

<WL>/classes;<WL>/lib/weblogicaux.jar

Chapter 55 • Performing EJB Testing

799

 11 For WebLogic 6.x and 7.0 users:

Make sure that you have valid Java environment on your machine (path &
classpath). WebLogic 6.1 requires JDK 1.3. Open the Run-Time Settings
dialog box and select the Java VM node. Add the following entry to the
Additional Classpath section:

where <WL> is the home folder of the WebLogic installation.

Clear the Use -Xbootclasspath VM parameter check box to turn off this
option.

 12 Run the script. Click the Run button or choose Vuser > Run. View the
Execution Log node to view any run-time errors. The execution log is stored
in the mdrv.log file in the script’s folder. A Java compiler (Sun’s javac),
checks it for errors and compiles the script.

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

<WL>/lib/weblogic.jar; // Weblogic 6.x
<WL>/server/lib/weblogic.jar // Weblogic 7.x

Part IX • Enterprise Java Bean Protocols

800

Part X

ERP/CRM Protocols

802

803

56
Developing Web GUI-Level Scripts

This section provides information for creating Web GUI-level script for
Oracle Web Applications 11i and PeopleSoft Enterprise users.

This chapter describes:

➤ About Developing Web GUI-Level Scripts

➤ Getting Started with Web GUI-Level Vusers

➤ Using GUI-Level Vuser Functions

➤ Understanding GUI-level Vuser Scripts

➤ Tips for Working with the GUI-Level Vusers

The following information only applies to the Oracle Web Applications 11i
and PeopleSoft Enterprise protocols.

Part X • ERP/CRM Protocols

804

About Developing Web GUI-Level Scripts

VuGen provides a solution for recording sessions on a Web GUI-level,
specifically for Oracle Web Applications 11i and PeopleSoft Enterprise. These
protocols emulate ERP/CRM enterprise tools that enable organizations to
maintain company information and perform business processes from a
single environment.

Oracle Web Applications 11i and PeopleSoft Enterprise provide Web access
to all of the business processes. When you record a session, VuGen records
all of the activity and creates a script. During replay, the script emulates the
HTTP protocol communication between your browser and the server.

Many of the recorded pages contain non-HTML code such as Javascript.
When recording in URL-based or HTML-based mode, VuGen included the
Javascript as a sub-resource of the page’s web_url function. In Web-GUI
mode, VuGen creates an object oriented script that accurately interprets
Javascript in the source code.

VuGen creates a GUI-level script that intuitively represents actions in the
Web interface. For example, it generates a web_button function when you
click a button to submit information, and generates a web_edit_field
function when you enter text into an edit box.

Chapter 56 • Developing Web GUI-Level Scripts

805

Getting Started with Web GUI-Level Vusers

This section provides an overview of the process of developing Oracle Web
Applications 11i or PeopleSoft Enterprise scripts using VuGen. In addition to
these steps, it is recommended that you review “Tips for Working with the
GUI-Level Vusers” on page 812.

To develop an Oracle Applications or PeopleSoft 8 script:

 1 Record the actions using VuGen.

Invoke VuGen and create a new file, multi-protocol or single, specifying
Oracle Web Applications 11i or PeopleSoft Enterprise as the type from the
ERP/CRM category. Record typical operations in your session. For details, see
Chapter 4, “Recording with VuGen.”

 2 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and
control-flow structures. For details, see Chapter 7, “Enhancing Vuser
Scripts.”

 3 Define parameters (optional).

Define parameters for the recorded fixed-values. By substituting fixed-values
with parameters, you can repeat the same business process many times
using different values. For details, see Chapter 8, “Working with VuGen
Parameters.”

 4 Configure the run-time settings.

The run-time settings control the script’s behavior during test execution.
These settings include the pacing, logging, think time, and connection
information. For details, see Chapter 12, “Configuring Run-Time Settings.”

 5 Save and run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see “Tips for Working with the GUI-Level Vusers” on page 812,
and Chapter 14, “Running Vuser Scripts in Standalone Mode.”

Part X • ERP/CRM Protocols

806

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Using GUI-Level Vuser Functions

During an Oracle Web Applications 11i or PeopleSoft 8 recording session,
VuGen generates functions that emulate the communication between your
browser and the server. The generated functions have a web prefix.

Function List

The following is a list of functions that are specific for the GUI-Level
recording. For complete syntax and information about other web functions,
refer to the Online Function Reference (Help > Function Reference).

Function Name Description

web_browser Performs an action on a browser.

web_button Emulates a user clicking on button, submit, or
reset input element.

web_check_box Selects a check box.

web_edit_field Enters data for text and password input types.

web_dump_cache Saves the browser cache to a file.

web_eval_java_script Evaluates a Javascript or DOM object.

web_file Enters a path for file input types.

web_image_link Emulates a user clicking on an image which is
a hypertext link.

web_image_submit Submits an image.

web_list Selects an item from a list.

web_load_cache Restores the browser cache from a file.

Chapter 56 • Developing Web GUI-Level Scripts

807

General API Notes

This section lists general notes about the GUI-level functions. Note that you
can specify a regular expression for any object description, by preceding the
text with “/RE” before the equals sign. For example:

web_map_area Activates an area within a client side map.

web_radio_group Selects one button from a radio button group.

web_reg_dialog Sets data for subsequent call to java script.

web_static_image Emulates a user clicking on a static image.

web_text_area Enters text in an input text area.

web_text_link Emulates a user clicking on a hypertext link.

web_text_link("Manage Assets",
DESCRIPTION,
"Text/RE=Manage Assets",

LAST);

Function Name Description

Part X • ERP/CRM Protocols

808

Ordinals

The above functions use an Ordinal attribute. This attribute is a one-based
index for the occurrence of the function with identical argument values. In
the following example, the recorded web_text_link functions have
identical arguments, except for the ordinal. The ordinal value of 2, indicates
the second occurrence.

Empty Strings

There is a difference between not specifying an argument and specifying it
as an empty string. When you do not specify an argument, VuGen uses the
default value or ignores it. When you list an argument, but assign it an
empty string as a value, VuGen attempts to find a match with an empty
string or no string at all. For example, omitting the id argument instructs
VuGen to ignore the id property of the HTML element. Specifying "ID="
searches for HTML elements with no id property or with an empty ID.

Browser/Frame Identification Arguments

➤ When recording with multiple browsers, you must specify a BrowserTitle or
BrowserOrdinal argument.

➤ When there are multiple frames within the browser, you must specify a
FrameName or FrameHierarchyLevel argument.

➤ Place all browser-related arguments at the end of the function’s
DESCRIPTION section. Place frame-related arguments immediately before
the browser-related arguments, at the end of the DESCRIPTION section.

web_text_link("Manage Assets",
DESCRIPTION,
"Text=Manage Assets",
"FrameName=main",
LAST);

web_text_link("Manage Assets_2",
DESCRIPTION,
"Text=Manage Assets",
"Ordinal=2",
"FrameName=main",
LAST);

Chapter 56 • Developing Web GUI-Level Scripts

809

Understanding GUI-level Vuser Scripts

GUI-level Vuser scripts typically contains several actions which make up a
business process. By viewing the recorded functions, generated on a GUI
level, you can determine the user’s exact actions during the recording
session.

For example, in a PeopleSoft Enterprise recording, the first stage contains
the sign-in process. The browser opens on the PeopleSoft server start page
and a user signs in by submitting a user name and password and clicking
Sign In.

When you enter data in an edit field, VuGen generates a web_edit_field
function. In the example that follows, the user entered VP5 into the userid
text field, and a password into the pwd field which is encrypted.

vuser_init()
{

web_url("about:blank",
"URL=http://psft1/servlets/iclientservlet/peoplesoft8/?cmd=login",
LAST);

web_edit_field("userid",
DESCRIPTION,
"Type=text",
"Name=userid",
ACTION,
"SetValue=VP5",
LAST);

web_edit_field("pwd",
DESCRIPTION,
"Type=password",
"Name=pwd",
ACTION,
"SetEncryptedValue=3e52677bda7f4b",
LAST);

…

Part X • ERP/CRM Protocols

810

When you click a button to submit data, VuGen generates web_button. (If
the button is an image, VuGen generates web_image_submit.) In the
following example, a user clicked the Sign In button.

The next section illustrates a typical action in which the user navigates to
the Asset ExpressAdd process under the Manage Assets branch. The user
navigates by clicking the text links of the desired branches, generating
web_text_link functions.

…
web_button("Sign In",

DESCRIPTION,
"Type=submit",
"Tag=INPUT",
"Value=Sign In",
LAST);

return 0;
}

web_text_link("Manage Assets_2",
DESCRIPTION,
"Text=Manage Assets",
"Ordinal=2",
"FrameName=main",
LAST);

web_text_link("Use",
DESCRIPTION,
"Text=Use",
"FrameName=main",
LAST);

web_text_link("Asset ExpressAdd",
DESCRIPTION,
"Text=Asset ExpressAdd",
"FrameName=main",
LAST);

Chapter 56 • Developing Web GUI-Level Scripts

811

In the following section, the functions emulate typical user actions such as
filling in fields and the selection of a list item.

When you click on an image that is associated with an image map, VuGen
generates a web_map_area function.

web_edit_field("ASSET_DESCR",
DESCRIPTION,
"Type=text",
"Name=ASSET_DESCR",
"FrameName=main",
ACTION,
"SetValue=Car",
LAST);

…
web_list("Year",

DESCRIPTION,
"Name=Year",
"FrameName=CalFrame",
ACTION,
"Select=2000",
LAST);

web_map_area("map2_2",
DESCRIPTION,
"MapName=map2",
"Ordinal=20",
"FrameName=CalFrame",
LAST);

Part X • ERP/CRM Protocols

812

Tips for Working with the GUI-Level Vusers

Recording Tips

During recording, use only GUI objects that are within the browser's pane.
Do not use any browser icons, controls, or menu items, such as Stop,
Refresh, Home. You may, however, use the address bar and the Back and
Forward buttons.

Replay Tips

➤ To prevent overloading by multiple Vusers while connecting, set an
initialization quota of 4 to 10 Vusers (depending on the capacity of the
server) or apply ramp-up initialization using the Scheduler.

➤ To improve Vuser performance, you can utilize VuGen’s cache-simulating
capabilities. For more information, see “Improving Performance Using
Caching” on page 529.

813

57
Setting Web GUI Recording Options

Before recording a script, you can set options to indicate the objects to be
recorded and which properties should be included for each object.

This chapter describes:

➤ About Setting Web GUI Recording Options

➤ Configuring Object Identification

➤ Configuring Web Event Recording

➤ Selecting a Recording Level for GUI-Level Vusers

The following information only applies to the Oracle Web Applications 11i
and PeopleSoft Enterprise protocols.

About Setting Web GUI Recording Options

You can set common recording options in the following areas: General,
Internet Protocol, and Network.

The following sections discusses the recording options that are specific for
Oracle Applications and PeopleSoft Enterprise Vusers. For information on
the other Recording Options, see the appropriate section:

➤ General: Script: see Chapter 5, “Setting Script Generation Preferences.”

➤ Network: Port Mapping: see Chapter 6, “Configuring the Port Mappings.”

➤ Internet Protocol: Advanced: see “Setting Advanced Recording Options,” on
page 538. Note that the Save snapshot resources locally and Generate
web_reg_find functions for page titles options do not apply to GUI-based
scripts (see explanation of GUI-based scripts below).

Part X • ERP/CRM Protocols

814

➤ Internet Protocol: Correlation: see Chapter 46, “Setting Correlation Rules
for Web Vuser Scripts.” Note that there are built-in rules for the Oracle and
PeopleSoft servers. To enable them, select the check box adjacent to the
Oracle or PeopleSoft server name.

Configuring Object Identification

When you record an operation on an object, VuGen learns a set of
properties and values that uniquely describe the object within its parent
object. In most cases, this description is sufficient to enable VuGen to
identify the object during the run session.

If these mandatory property values are not sufficient to uniquely identify an
object you record, VuGen can add some assistive properties and/or an
ordinal identifier in order to create a unique description.

Mandatory properties are properties that VuGen always learns for a
particular test object class.

Assistive properties are properties that VuGen learns only if the mandatory
properties that VuGen learns for a particular object in your application are
not sufficient to create a unique description. If several assistive properties
are defined for an object class, then VuGen learns one assistive property at a
time, and stops as soon as it creates a unique description for the object. If
VuGen does learn assistive properties, those properties are added to the test
object description.

You use the Object Identification dialog box (Tools > Object Identification)
to configure the mandatory and assistive properties that VuGen uses to
record descriptions of the objects in your application

The Object Identification dialog box also enables you to configure new
user-defined classes and map them to an existing test object class so that
VuGen can recognize objects from your user-defined classes when you run
your test.

Chapter 57 • Setting Web GUI Recording Options

815

Configuring Mandatory and Assistive Recording Properties

When you record an object of a specific class, VuGen learns several
mandatory and assistive properties. If necessary, you can modify the
properties that VuGen learns. For example:

➤ if you find that the description VuGen uses for a certain object class is not
the most logical one for the objects in your application.

➤ if you expect that the values of the properties currently used in the object
description may change.

During the run session, VuGen looks for objects that match all properties in
the test object description—it does not distinguish between properties that
were learned as mandatory properties and those that were learned as
assistive properties.

For example, the default mandatory properties for a Web Image object are
the alt, html tag, and image type properties. There are no default assistive
properties defined. Suppose your Web site contains several space holders for
different collections of rotating advertisements. You want to record a test
that clicks on the images in each one of these space holders. However, since
each advertisement image has a different alt value, one alt value would be
recorded when you create the test, and most likely another alt value will be
captured when you run the test, causing the run to fail. In this case, you
could remove the alt property from the Web Image mandatory properties
list. Instead, since each ad image displayed in a certain space holder in your
site has the same value for the image name property, you could add the
name property to the mandatory properties to enable VuGen to uniquely
identify the object.

Also, suppose that whenever a Web image is displayed more than once on a
page (like a logo displayed on the bottom and top of a page), the Web
designer adds a special ID property to the Image tag. Thus, the mandatory
properties are sufficient to create a unique description for images that are
only displayed once on the page, but you also want VuGen to learn the ID
property for images that are displayed more than once on a page. To do this,
you add the ID property as an assistive property, so that VuGen learns the
ID property only when it is necessary for creating a unique test object
description.

Part X • ERP/CRM Protocols

816

To configure mandatory and assistive properties for a test object class:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options.

 2 Select the Object Identification node.

The common test object classes are displayed in the Test object classes list.

 3 In the Test Object classes list, select the test object class you want to
configure.

Chapter 57 • Setting Web GUI Recording Options

817

 4 In the Mandatory Properties list, click Add/Remove. The Add/Remove
Properties dialog box for mandatory properties opens.

 5 Select the properties you want to include in the Mandatory Properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Mandatory Properties list. For example, to add a property called
MyColor, enter attribute/MyColor.

Part X • ERP/CRM Protocols

818

 6 Click OK to close the Add/Remove Properties dialog box. The updated set of
mandatory properties is displayed in the Mandatory Properties list.

 7 In the Assistive Properties list, click Add/Remove. The Add/Remove
Properties dialog box for assistive properties opens.

 8 Select the properties you want to include in the assistive properties list
and/or clear the properties you want to remove from the list.

Note: You cannot include the same property in both the mandatory and
assistive property lists.

You can specify a new property by clicking New and specifying a valid
property name in the displayed dialog box.

Chapter 57 • Setting Web GUI Recording Options

819

Tip: You can also add property names to the set of available properties for
Web objects using the attribute/<PropertyName> notation. To do this, click
New. The New Property dialog box opens. Enter a valid property in the
format attribute/<PropertyName> and click OK. The new property is added to
the Assistive Properties list. For example, to add a property called MyColor,
enter attribute/MyColor.

 9 Click OK to close the Add/Remove Properties dialog box. The properties are
displayed in the Assistive Properties list.

 10 Use the up and down arrows to set your preferred order for the assistive
properties. When you record a test and assistive properties are necessary to
create a unique object description, VuGen adds the assistive properties to
the description one at a time until it has enough information to create a
unique description, according to the order you set in the Assistive Properties
list.

Part X • ERP/CRM Protocols

820

Configuring Web Event Recording

VuGen creates your test by recording the events you perform on your Web-
based application. An event is a notification that occurs in response to an
operation, such as a change in state, or as a result of the user clicking the
mouse or pressing a key while viewing the document.

You may find that you need to record more or fewer events than VuGen
automatically records by default. You can modify the default event
recording settings by using the Web Event Recording Configuration dialog
box to select one of three standard configurations, or you can customize the
individual event recording configuration settings to meet your specific
needs.

This section describes how to configure VuGen’s handling of Web Events:

➤ Selecting a Standard Event Recording Configuration

➤ Customizing the Event Recording Configuration

➤ Adding and Deleting Objects in the Custom Configuration Object List

➤ Adding and Deleting Listening Events for an Object

➤ Modifying the Listening and Recording Settings for an Event

➤ Saving and Loading Custom Event Configuration Files

➤ Resetting Event Recording Configuration Settings

For example, VuGen does not generally record mouseover events on link
objects. If, however, you have a mouseover behavior connected to a link, it
may be important for you to record the mouseover event. In this case, you
could customize the configuration to record mouseover events on link
objects whenever they are connected to a behavior.

Notes: Event configuration is a global setting and therefore affects all test
that are recorded after you change the settings.

Changing the event configuration settings does not affect tests that have
already been recorded. If you find that VuGen recorded more or less than

Chapter 57 • Setting Web GUI Recording Options

821

you need, change the event recording configuration and then re-record the
part of your test that is affected by the change.

Changes to the custom Web event recording configuration settings do not
take effect on open browsers. To apply your changes for an existing test,
make the changes you need in the Web Event Recording Configuration
dialog box, refresh any open browsers, and then start a new recording
session.

Selecting a Standard Event Recording Configuration

The Web Event Recording Configuration dialog box offers three standard
event-configuration levels. By default, VuGen uses the Basic
recording-configuration level. If VuGen does not record all the events you
need, you may require a higher event-configuration level.

Level Description

Basic Default

• Always records click events on standard Web
objects such as images, buttons, and radio
buttons.

• Always records the submit event within forms.

• Records click events on other objects with a
handler or behavior connected.
For more information on handlers and
behaviors, see “Listening Criteria” on page 828.

• Records the mouseover event on images and
image maps only if the event following the
mouseover is performed on the same object.

Medium Records click events on the <DIV>, , and
<TD> HTML tag objects, in addition to the objects
recorded in the basic level.

Part X • ERP/CRM Protocols

822

To set a standard event-recording configuration:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options.

 2 Select the Web Event Configuration node.

 3 Use the slider to select your preferred standard event recording
configuration.

Tip: You can click the Custom Settings button to open the Custom Web
Event Recording dialog box where you can customize the event recording
configuration. For more information, see “Customizing the Event Recording
Configuration,” below.

 4 Click OK.

High Records mouseover, mousedown, and double-click
events on objects with handlers or behaviors
attached, in addition to the objects recorded in the
basic level.

For more information on handlers and behaviors,
see “Listening Criteria” on page 828.

Level Description

Chapter 57 • Setting Web GUI Recording Options

823

Customizing the Event Recording Configuration

If the standard event configuration levels do not exactly match your
recording needs, you can customize the event recording configuration using
the Custom Web Event Recording Configuration dialog box.

The Custom Web Event Recording Configuration dialog box enables you to
customize event recording in several ways. You can:

➤ add or delete objects to which VuGen should apply special listening or
recording settings

➤ add or delete events for which VuGen should listen

➤ modify the listening or recording settings for an event

To customize the event recording configuration:

 1 Open the Recording Options dialog box. Choose Tools > Recording Options.

 2 Select the Web Event Configuration node.

 3 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

Part X • ERP/CRM Protocols

824

 4 Customize the event recording configuration using the following options:

Option Description

Objects pane Displays a list of Web test object classes and HTML tag
objects.

• To add an object, choose Object > Add.

• Only HTML Tag objects can be deleted. To delete an
HTML object from the list, choose Object > Delete.

For more information, see “Adding and Deleting Objects in
the Custom Configuration Object List” on page 825.

Events pane Displays a list of events associated with the object.

• To add an event to the Events pane, choose
Event > Add.

• To delete an event, choose Event > Delete.

For more information, see “Adding and Deleting Listening
Events for an Object” on page 827.

Event Name The name of the event.

Listen The criteria for when VuGen listens to the event.

• Always—Always listens to the event.

• If Handler—Listens to the event if a handler is attached
to it. A handler is code in a Web page, typically a
function or routine written in a scripting language, that
receives control when the corresponding event occurs.

• If Behavior—Listens to the event if a DHTML behavior
is attached to it. A DHTML behavior encapsulates
specific functionality or behavior on a page. When
applied to a standard HTML element on a page, a
behavior enhances that element's default behavior.

• If Handler or Behavior—Listens to the event if a
handler or behavior is attached to it.

• Never—Never listens to the event.

For more information, see “Modifying the Listening and
Recording Settings for an Event” on page 828.

Chapter 57 • Setting Web GUI Recording Options

825

 5 Click OK. The Event Configuration Level displays Custom.

Adding and Deleting Objects in the Custom Configuration
Object List

The Custom Web Event Recording Configuration dialog box lists objects in
an object hierarchy. The top of the hierarchy is Any Web Object. The
settings for Any Web Object apply to any object on the Web page being
tested, for which there is no specific event recording configuration set.
Below this are the Web Objects and HTML Tag Objects categories, each of
which contains a list of objects.

When working with the objects in the Custom Web Event Recording
Configuration dialog box, keep the following principles in mind:

➤ If an object is listed in the Custom Web Event Recording Configuration
dialog box, then the settings for that object override the settings for Any
Web Object.

➤ You cannot delete or add to the list of objects in the Web Objects category,
but you can modify the settings for any of these objects.

➤ You can add any HTML Tag object in your Web page to the HTML Tag
Objects category.

Record Enables or disables recording of the event for the selected
object, or enables recording of the event only if the
subsequent event occurs on the same object.

Reset Enables you to reset your settings to a preconfigured level.

Option Description

Part X • ERP/CRM Protocols

826

To add objects to the event configuration object list:

 1 In the Custom Web Event Recording Configuration dialog box, choose
Object > Add. A New Object object is displayed in the HTML Tag Objects
list. A New Object object is displayed in the HTML Tag Objects list.

 2 Click New Object to rename it. Enter the exact HTML Tag name.

By default the new object is set to listen and record onclick events with
handlers attached.

For more information on adding or deleting events, see “Adding and
Deleting Listening Events for an Object,” below. For more information on
listening and recording settings, see “Modifying the Listening and
Recording Settings for an Event” on page 828.

To delete objects from the HTML Tag Objects list:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object in the HTML Tag Objects category that you want to delete.

 2 Choose Object > Delete. The object is deleted from the list.

Chapter 57 • Setting Web GUI Recording Options

827

Note: You cannot delete objects from the Web Objects category.

Adding and Deleting Listening Events for an Object

You can modify the list of events that trigger VuGen to listen to an object.

To add listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object to which you want to add an event, or select Any Web Object.

 2 Choose Event > Add. A list of available events opens.

 3 Select the event you want to add. The event is displayed in the Event Name
column in alphabetical order. By default, VuGen listens to the event when a
handler is attached and always records the event (as long as it is listened to
at some level).

For more information on listening and recording settings, see “Modifying
the Listening and Recording Settings for an Event,” below.

Part X • ERP/CRM Protocols

828

To delete listening events for an object:

 1 In the Custom Web Event Recording Configuration dialog box, select the
object from which you want delete an event, or select Any Web Object.

 2 Select the event you want to delete from the Event Name column.

 3 Choose Event > Delete. The event is deleted from the Event Name column.

Modifying the Listening and Recording Settings for an Event

You can select the listening criteria and set the recording status for each
event listed for each object.

Note: The listen and record settings are mutually independent. This means
that you can choose to listen to an event for particular object, but not record
it, or you can choose not to listen to an event for an object, but still record
the event. For more information, see “Tips for Working with Event Listening
and Recording” on page 830.

Listening Criteria

For each event, you can instruct VuGen to listen every time the event occurs
on the object if an event handler is attached to the event, if a DHTML
behavior is attached to the event, if an event handler or DHTML behavior
are attached to the event, or to never listen to the event.

An event handler is code in a Web page, typically a function or routine
written in a scripting language, that receives control when the
corresponding event occurs.

A DHTML behavior encapsulates specific functionality or behavior on a
page. When applied to a standard HTML element on a page, a behavior
enhances that element's default behavior.

To specify the listening criterion for an event:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the listening criterion or select Any
Web Object.

Chapter 57 • Setting Web GUI Recording Options

829

 2 In the row of the event you want to modify, select the listening criterion
you want from the Listen column.

You can select Always, If Handler, If Behavior, If Handler or Behavior, or
Never.

Recording Status

For each event, you can enable recording, disable recording, or enable
recording only if the next event is dependent on the selected event.

➤ Enabled—Records the event each time it occurs on the object as long as
VuGen listens to the event on the selected object, or on another object to
which the event bubbles.

Bubbling is the process whereby, when an event occurs on a child object,
the event can travel up the chain of hierarchy within the HTML code until it
encounters an event handler to process the event.

➤ Disabled—Does not record the specified event and ignores event bubbling
where applicable.

➤ Enabled on next event—Same as Enabled, except that it records the event
only if the subsequent event occurs on the same object. For example,
suppose a mouseover behavior modifies an image link. You may not want to
record the mouseover event each time you happen to move the mouse over
this image. Because only the image that is displayed after the mouseover
event enables the link event, however, it is essential that the mouseover
event is recorded before a click event on the same object. This option applies
only to the Image and WebArea objects.

Part X • ERP/CRM Protocols

830

To set the recording status for an event:

 1 From the Custom Web Event Recording Configuration dialog box, select the
object for which you want to modify the recording status or select Any Web
Object.

 2 In the row of the event you want to modify, select a recording status from
the Record column.

Tips for Working with Event Listening and Recording

It can sometimes be difficult to find the ideal listen and recording settings.
When defining these settings, keep in mind the following guidelines:

➤ If settings for different objects in the Objects Pane conflict, VuGen gives first
priority to settings for specific HTML Tag Objects and second priority to
Web Objects settings. VuGen only applies the settings for Any Web Object
to Web objects that were not defined in the HTML Tag Object or Web
Objects areas.

➤ To record an event on an object, you must instruct VuGen to listen for the
event, and to record the event when it occurs. You can listen for an event on
a child object, even if a parent object contains the handler or behavior, or
you can listen for an event on a parent object, even if the child object
contains the handler or behavior.

However, you must enable recording for the event on the source object (the
one on which the event actually occurs, regardless of which parent object
contains the handler or behavior).

For example, suppose a table cell with an onmouseover event handler
contains two images. When a user touches either of the images with the
mouse pointer, the event also bubbles up to the cell, and the bubbling
includes information on which image was actually touched. You can record
this mouseover event by:

Chapter 57 • Setting Web GUI Recording Options

831

➤ Setting Listen on the <TD> tag mouseover event to If Handler (so that
VuGen “hears” the event when it occurs), while disabling recording on it,
and then setting Listen on the tag mouseover event to Never,
while setting Record on the tag to Enable (to record the
mouseover event on the image after it is listened to at the <TD> level).

➤ Setting Listen on the tag mouseover event to Always (to listen for
the mouseover event even though the image tag does not contain a
behavior or handler), and setting Record on the tag to Enabled
(to record the mouseover event on the image).

➤ Instructing VuGen to listen for many events on many objects may lower
performance, so try to limit listening settings to the required objects.

➤ In rare situations, listening to the object on which the event occurs (the
source object) can interfere with the event.

If you find that your application works properly until you begin recording
on the application using VuGen, your listen settings may be interfering.

If this problem occurs with a mouse event, try selecting the appropriate Use
standard Windows mouse events option(s) in the Advanced Web Options
dialog box.

If this problem occurs with a keyboard or internal event, or the Use
standard Windows mouse events option does not solve your problem, set
the listen settings for the event to Never on the source object (but keep the
record setting enabled on the source object), and set the listen settings to
Always for a parent object.

Saving and Loading Custom Event Configuration Files

You can save the changes you make in the Custom Web Event Recording
Configuration dialog box, and load them at any time.

To save a custom configuration:

 1 Customize the event recording configuration as desired. For more
information on how to customize the configuration, see “Customizing the
Event Recording Configuration” on page 823.

 2 In the Custom Web Event Recording Configuration dialog box, Choose
File > Save Configuration As. The Save As dialog box opens.

Part X • ERP/CRM Protocols

832

 3 Navigate to the folder in which you want to save your event configuration
file and enter a configuration file name. The extension for configuration
files is .xml.

 4 Click Save to save the file and close the dialog box.

To load a custom configuration:

 1 Choose Tools > Web Event Recording Configuration and then click Custom
Settings to open the Custom Web Event Recording Configuration dialog
box.

 2 Choose File > Load Configuration. The Open dialog box opens.

 3 Locate the event configuration file (.xml) that you want to load and click
Open. The dialog box closes and the selected configuration is loaded.

Resetting Event Recording Configuration Settings

You can restore standard settings after you set Custom settings by resetting
the event recording configuration settings to the basic level from the Web
Event Recording Configuration dialog box.

Note: When you choose to reset standard settings, your custom settings are
cleared completely. If you do not want to lose your changes, be sure to save
your settings in an event configuration file. For more information, see
“Saving and Loading Custom Event Configuration Files” on page 831.

To reset basic level configuration settings from the Web Event Recording
Configuration dialog box:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click Default. The standard configuration slider is displayed again and all
event settings are restored to the Basic event recording configuration level.

 3 If you want to select a different standard configuration level, see “Selecting a
Standard Event Recording Configuration” on page 821.

Chapter 57 • Setting Web GUI Recording Options

833

You can also restore the settings to a specific (base) custom configuration
from within the Custom Web Event Recording Configuration dialog box so
that you can begin customizing from that point.

To reset the settings to a custom level from the Custom Web Event
Recording Configuration dialog box:

 1 Choose Tools > Web Event Recording Configuration. The Web Event
Recording Configuration dialog box opens.

 2 Click the Custom Settings button. The Custom Web Event Recording
Configuration dialog box opens.

 3 In the Reset to box, select the standard event recording level you want.

 4 Click Reset. All event settings are restored to the defaults for the level you
selected.

Selecting a Recording Level for GUI-Level Vusers

VuGen lets you specify what information to record and which functions to
use when generating a script by selecting a recording level. The recording
level you select, depends on your needs and environment. The available
levels are GUI-based script, HTML-based script, and URL-based script.
Follow these guidelines in deciding which recording level to choose.

➤ For browser applications with JavaScript, use the GUI-based level. This is the
ideal recording level for Oracle Web Applications 11i and PeopleSoft
Enterprise.

➤ For browser applications without JavaScript, use the HTML-based level.

Part X • ERP/CRM Protocols

834

➤ For non-browser applications, use the URL-based level.

The GUI-based script level instructs VuGen to record HTML actions as
context sensitive GUI functions such as web_text_link.

Chapter 57 • Setting Web GUI Recording Options

835

You can also indicate the action to take if VuGen cannot successfully replay
the GUI-based script—generate the GUI-based script anyway, or fallback to
an HTML-based script—by clearing or selecting the Use HTML-based script
as fallback option. For more information, see “Setting Advanced GUI-Based
Options,” on page 837.

/* GUI-based mode - CS type functions with JavaScript support*//
vuser_init()
{

web_url("about:blank",
"URL=http://psft1/servlets/iclientservlet/peoplesoft8/?cmd=login",
LAST);

web_edit_field("userid",
DESCRIPTION,
"Type=text",
"Name=userid",
ACTION,
"SetValue=VP5",
LAST);

…

Part X • ERP/CRM Protocols

836

The HTML-based script level generates a separate step for each HTML user
action. The steps are also intuitive, but they do not reflect true emulation of
the JavaScript code.

For additional information about the different recording levels and their
options, see Chapter 41, “Setting Recording Options for Web Vusers.”

/* HTML-based mode - a script describing user actions*/
...
web_url("MercuryWebTours",

"URL=http://localhost/MercuryWebTours/",
"TargetFrame=",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t4.inf",
"Mode=HTML",
LAST);

web_link("Click Here For Additional Restrictions",
"Text=Click Here For Additional Restrictions",
"Snapshot=t4.inf",
LAST);

web_image("buttonhelp.gif",
"Src=/images/buttonhelp.gif",
"Snapshot=t5.inf",
LAST);

…

Chapter 57 • Setting Web GUI Recording Options

837

Setting Advanced GUI-Based Options

VuGen lets you set advanced options for GUI-based level recording:

Enable out-of-context recording: VuGen does not natively support the
recording of ActiveX controls and Java applets. You can instruct VuGen to
create a URL-based script for ActiveX controls and Java applets, so that they
will be replayed. Since these functions are not part of the native recording,
they are referred to as out-of-context recording. (enabled by default)

Use HTML-based script as fallback: You can indicate what action VuGen
should take if it cannot successfully replay the GUI-based script—generate
the GUI-based script anyway, or fallback to an HTML-based script. (disabled
by default)

Part X • ERP/CRM Protocols

838

In the following example, the script was regenerated with the out-of-context
recording option enabled.

web_text_link("Dialog",
"Snapshot=t2.inf",
DESCRIPTION,
"Text=Dialog",
"Ordinal=1",
LAST);

web_url("DialogApplet.class",
"URL=http://localhost/Java/java/awt/dialog/DialogApplet.class",
"Resource=1",
"RecContentType=application/octet-stream",
"Referer=",
LAST);

web_url("DialogDemo_Panel.class",
"URL=http://localhost/Java/java/awt/dialog/DialogDemo_Panel.class",
"Resource=1",
"RecContentType=application/octet-stream",
"Referer=",
LAST);

web_url("DialogDemo_Panel$SymItem.class",
"URL=http://localhost/Java/java/awt/dialog/DialogDemo_Panel$Sym-

Item.class",
"Resource=1",
"RecContentType=application/octet-stream",
"Referer=",
LAST);

. . .

Chapter 57 • Setting Web GUI Recording Options

839

If you disable this option, VuGen does not generate code for the ActiveX
controls and Java applets as illustrated in the following example.

It only generated the web_text_link function—not the web_url functions
containing the class files.

web_text_link("Dialog",
"Snapshot=t2.inf",
DESCRIPTION,
"Text=Dialog",
"Ordinal=1",
LAST);

Part X • ERP/CRM Protocols

840

841

58
Creating Oracle NCA Vuser Scripts

You can use VuGen to create scripts that emulate an Oracle NCA user. You
record typical NCA business processes with VuGen. You then run the script
to emulate users interacting with your system.

This chapter describes:

➤ Getting Started with Oracle NCA Vusers

➤ Recording Guidelines

➤ Enabling the Recording of Objects by Name

➤ Oracle Applications via the Personal Home Page

➤ Using Oracle NCA Vuser Functions

➤ Understanding Oracle NCA Vusers

➤ Configuring the Run-Time Settings

➤ Testing Oracle NCA Applications

➤ Correlating Oracle NCA Statements for Load Balancing

➤ Additional Recommended Correlations

➤ Recording in Pragma Mode

The following information applies only to the Oracle NCA protocol.

Part X • ERP/CRM Protocols

842

About Creating Oracle NCA Vuser Scripts

Oracle NCA is a Java-based database protocol. Using your browser, you
launch the database client, an applet viewer. You perform actions on the
NCA database through its applet viewer.

This eliminates the need for client software and allows you to perform
database actions from all platforms that support the applet viewer. There is a
Vuser type specifically designed to emulate an Oracle NCA client.

The NCA environment is a three-tier environment. The user first sends an
http call from his browser to a Web server. This call accesses the startup
HTML page which invokes the Oracle Applications applet. The applet runs
locally on the client machine—all subsequent calls are communicated
between the client and the Forms server through the proprietary NCA
protocol.

The client (applet viewer) communicates with the application server (Oracle
Forms server) which then submits information to the database server
(Oracle 8.x).

VuGen records and replays the NCA communication between the client and
the Forms server (application server).

When you record an Oracle NCA session, VuGen records all of the NCA and
Web actions, even if you only created a single protocol script. If you know in
advance that the Web functions are important for your test, create a multi-
protocol script from the beginning for the Oracle NCA and Web protocols.

client: applet viewer

NCA protocol

Forms server Oracle database

database calls

VuGen

Chapter 58 • Creating Oracle NCA Vuser Scripts

843

If you initially created a single protocol script for Oracle NCA, and at a later
stage you require the Web functions for testing, you can regenerate your
script in VuGen to add the Web functions, without having to re-record the
session. You indicate this from the Protocols node in the Regenerate Script
dialog box. For more information, see Chapter 4, “Recording with VuGen.”

Getting Started with Oracle NCA Vusers

The following procedure outlines how to create an Oracle NCA Vuser script.

 1 Ensure that the recording machine is properly configured.

Make sure that your machine is configured to run the Oracle NCA applet
viewer, before you start VuGen. You must also make sure VuGen supports
your version of Oracle Forms. For more information, see “Recording
Guidelines” on page 844, and the Readme file.

 2 Create a skeleton Oracle NCA Vuser script.

Use VuGen to create a skeleton Oracle NCA Vuser script. For details, see
Chapter 4, “Recording with VuGen.”

 3 Record typical user actions.

Begin recording, and perform typical actions and business processes from
the applet viewer. VuGen records your actions and generates a Vuser script.
For details, see Chapter 4, “Recording with VuGen.”

 4 Enhance the Vuser script.

Use the Insert menu to add transactions, rendezvous points, comments, and
messages in order to enhance the Vuser script. For details, see Chapter 7,
“Enhancing Vuser Scripts.”

 5 Parameterize the script.

Replace recorded constants with parameters. For details, see Chapter 8,
“Working with VuGen Parameters.”

 6 Set the run-time properties for the script.

Configure run-time settings for the Vuser script. The run-time settings
define certain aspects of the script execution. For details, see Chapter 12,
“Configuring Run-Time Settings.”

Part X • ERP/CRM Protocols

844

 7 Save and run the Vuser script.

Run the script from VuGen and view the execution log for run-time
information. For details, see Chapter 14, “Running Vuser Scripts in
Standalone Mode.”

Recording Guidelines

When recording an Oracle NCA Vuser script, follow these guidelines:

➤ Specify which browser VuGen should use when recording an Oracle NCA
session. In the Start Recording dialog box, select the desired browser in the
Program to Record list. The list contains all of the available browsers.

➤ Close all browsers before you begin recording.

Chapter 58 • Creating Oracle NCA Vuser Scripts

845

➤ Record the login procedure in the vuser_init section. Record a typical
business process in the Actions section. When you run the script, you can
then specify multiple iterations for a specific business process. For more
information, see “Creating New Virtual User Scripts” on page 56.

➤ Due to a Netscape limitation, you cannot launch an Oracle NCA session
within Netscape when another Netscape browser is already running on the
machine.

➤ VuGen supports the recording of Oracle Forms applications using the Forms
Listener Servlet in multi--protocol mode. In Oracle Forms, the application
server uses the Forms Listener Servlet to create a runtime process for each
client. The runtime process, known as the Forms Server Runtime process,
maintains a persistent connection with the client and sends information to
and from the server.

vuser_init()
{
connect_server("199.203.78.170", "9000"/*version=107*/,"

module=e:\\appsnca\\fnd\\7.5\\forms\\us\\fndscsgn
userid=applsyspub/pub@vision fndnam=apps");

edit_set("FNDSCSGN.SIGNON.USERNAME.0","VISION");
edit_set("FNDSCSGN.SIGNON.PASSWORD.0","WELCOME");
button_press("FNDSCSGN.SIGNON.CONNECT_BUTTON.0");
lov_retrieve_items("Responsibilities",1,17);

return 0;
}

Part X • ERP/CRM Protocols

846

To support Forms 4.5 in replay, set the following in the mdrv.dat file:

[Oracle_NCA]
ExtPriorityType=protocol
WINNT_EXT_LIBS=ncarp110.dll
WIN95_EXT_LIBS=ncarp110.dll
LINUX_EXT_LIBS=liboranca.so
SOLARIS_EXT_LIBS=liboranca.so
HPUX_EXT_LIBS=liboranca.sl
AIX_EXT_LIBS=liboranca.so
LibCfgFunc=oracle_gui_configure
UtilityExt=lrun_api

To restore Forms 6 or 9 support, restore the original values.

Enabling the Recording of Objects by Name

When recording an Oracle NCA script, you must record the session using
object names instead of the standard object ID. If the script is recorded using
the object ID, replay will fail because the ID is generated dynamically by the
server and differs between record and replay. You can verify that your script
is being recorded with object names by examining the nca_connect_server
statement.

nca_connect_server("199.35.107.119","9002"/*version=11i*/,"module=/d1/oracle
/visappl/fnd/11.5.0/forms/US/FNDSCSGN userid=APPLSYSPUB/PUB@VIS
fndnam=apps record=names ");

If the record=names argument does not appear in the nca_connect_server
function, you are recording object IDs. You can instruct VuGen to record
object names in by modifying one of the following:

➤ Startup HTML File

➤ URL to Record

➤ Forms Configuration File

Chapter 58 • Creating Oracle NCA Vuser Scripts

847

Note that the ability to capture the developer name for all objects was
introduced in Oracle Forms6i Patch 9 (Oracle Forms Version: 6.0.8.18.3).
Test Starter Kit scripts that were written before the release of Oracle Forms 6i
Patch 9 will not have the developer name as part of an object's physical
description, except for the edit fields.

Startup HTML File

If you have access to the startup HTML file, you instruct VuGen to record
object names instead of its object ID by setting the record=names flag in the
startup file, the file that is loaded when you start the Oracle NCA
application.

Edit the startup file that is called when the applet viewer begins. Modify the
line:

<PARAM name="serverArgs … fndnam=APPS">

and add the Oracle key "record=names":

<PARAM name="serverArgs … fndnam=APPS record=names">

URL to Record

If you do not have access to the startup HTML file, you can still have Oracle
NCA record object names instead of its object ID by modifying the URL to
record. The following solution only works if the startup HTML file does not
reference another file while loading.

Part X • ERP/CRM Protocols

848

For this solution, you add "?record=names" after the URL in the Start
Recording dialog box, after the URL name to record. This allows VuGen to
record object names for the session.

Forms Configuration File

If the application has a startup HTML file that references a Forms Web CGI
configuration file formsweb.cfg (a common reference), you may encounter
problems if you add record=names to the Startup file.

In this situation, you should modify the configuration file.

To modify the configuration file to record object names:

 1 Go to the Forms Web CGI configuration file.

 2 Define a new parameter in this file (see sample Web CGI configuration file
below for this change).

 3 Open the startup HTML file and locate PARAM NAME="serverArgs".

serverApp=forecast
serverPort=9001
serverHost=easgdev1.dats.ml.com
connectMode=socket
archive=f60web.jar
archive_ie=f60all.cab
xrecord=names

Chapter 58 • Creating Oracle NCA Vuser Scripts

849

 4 Add the variable name as an argument to the ServerArgs parameter, for
example, record=%xrecord%.

 5 Alternatively, you can edit the basejini.htm file in Oracle Forms installation
directory. This file is the default HTML file for running a form on the web
using JInitiator-style tags to include the Forms applet. In the basejinin.hmt
file add the following line to the parameter definitions:

<PARAM NAME="recordFileName" VALUE="%recordFileName%">

In the <EMBED> tag, add the following line:

...
serverApp="%serverApp%"
logo="%logo%"
imageBase="%imageBase%"
formsMessageListener="%formsMessageListener%"
recordFileName="%recordFileName%"

The drawback in editing this file instead of the servlet configuration file
formsweb.cfg, is that this file is replaced when you reinstall Oracle Forms.
To avoid this, you can create a copy of the basejini.htm file and store it at
another location. In the servlet configuration file, edit the
baseHTMLJinitiator parameter to point to the new file.

<PARAM NAME="serverArgs" VALUE="module=%form% userid=%use-
rid% %otherParams% record=%xrecord%">

Part X • ERP/CRM Protocols

850

Oracle Applications via the Personal Home Page

When launching Oracle Forms 6i applications by logging in through the
Personal Home Page, you must set several system profile options at the user
level. It is desirable to pass such variables at the user level, and not at the site
level, where it will affect all users.

To configure the "ICX: Forms Launcher" profile:

 1 Sign on to the application and select the "System Administrator"
responsibility.

 2 Select Profile/System from the Navigator menu.

 3 Within the Find System Profile Values form:

Select the Display:Site option

Users = <your user logon> (i.e. operations, mfg, and so on)

Enter Profile =%ICX%Launch%

Click Find.

 4 Update the User value to the ICX:Forms Launcher profile:

If no parameter has been passed to the URL, append the following string
to the end of the URL of the user value: ?play=&record=names

If a parameter has been passed to the URL, append the following string to
the end of the URL of the user value: &play=&record=names

 5 Save the transaction.

 6 Log out of the Oracle Forms session.

 7 Log out of the Personal Home Page session.

 8 Sign on again via the Personal Home Page using your username.

If you were unable to update the ICX: Forms Launcher profile option at the
user level, open the Application Developer responsibility and select the
Updatable option for the ICX_FORMS_LAUNCHER profile.

Chapter 58 • Creating Oracle NCA Vuser Scripts

851

The first parameter passed to the URL, must begin with a question mark (?).
You pass all subsequent parameters with an ampersand (&). In most cases,
the URL already contains parameters, which you can identify by searching
for a question mark.

Using Oracle NCA Vuser Functions

VuGen automatically records most of the functions listed in this section
while you perform typical NCA business processes. The functions are
recorded with an nca prefix. (NCA functions recorded without nca prefixes
in earlier versions of VuGen, are still supported.) You can also manually
program any of the functions into your Vuser script. When working in tree
view, click the graphical icon for the appropriate step. In text view, you can
manually add the desired function. For more information about the Oracle
NCA Vuser functions, refer to the Online Function Reference (Help > Function
Reference).

Button Object Functions

Combo Box Object Functions

Connection Functions

nca_button_double_press Performs a double press on a push button.

nca_button_press Activates a push button.

nca_button_set Sets the state of the specified button.

nca_combo_select_item Selects an item in a combo box.

nca_combo_set_item Sets a new item in a combo box.

nca_connect_server Connects to an Oracle NCA server.

nca_logon_connect Performs a login to an Oracle NCA database.

nca_logon_cancel Disconnects from an Oracle NCA database.

Part X • ERP/CRM Protocols

852

Edit Object Functions

Flex Object Functions

nca_edit_box_press Clicks on an edit box message.

nca_edit_click Clicks in an edit object.

nca_edit_get_text Returns the text in an edit object.

nca_edit_press Activates the browse button in an edit field.

nca_edit_set Replaces the entire contents of an edit object.

nca_flex_click_cell Clicks a table cell in a Flexfield window.

nca_flex_get_cell_data Gets data from a Flexfield cell.

nca_flex_get_column
_name

Gets the name of a column in a Flexfield
window.

nca_flex_press_clear Clicks Clear in a Flexfield window.

nca_flex_press_find Clicks Find in a Flexfield window.

nca_flex_press_help Clicks Help in a Flexfield window.

nca_flex_press_lov Clicks on the List of Values button in a
Flexfield window.

nca_flex_press_ok Clicks OK in a Flexfield window.

nca_flex_set_cell_data Inserts data in a Flexfield window.

nca_flex_set_cell_data_
press_ok

Clicks OK in a Flexfield window after data is
entered.

Chapter 58 • Creating Oracle NCA Vuser Scripts

853

List Item Functions

Java Object Functions

Menu Object Functions

Message Functions

nca_list_activate_item Activates an item in a list (double-click).

nca_list_select_index_item Selects a list item by its index.

nca_list_select_item Selects a list item by its name.

nca_lov_auto_select Specifies the first letter of an item.

nca_lov_find_value Clicks Find in a List of Values window.

nca_lov_get_item_name Retrieves the name of an entry in a list of
values by the entry’s index number.

nca_lov_retrieve_items Retrieves a list of values.

nca_lov_select_index_item Selects an item from a list of values by its
index number.

nca_lov_select_item Selects an item from a list of values.

nca_lov_select_random_
item

Selects a random item from a list of values.

nca_java_action Performs an event on a Java object.

nca_java_get_value Retrieves the value of a Java object.

nca_java_set_reply_property Sets a reply property for a Java object.

nca_menu_select_item Selects an item from a menu.

nca_popup_message_press Clicks a button in a popup window.

nca_message_box_press Clicks a button in a message window.

Part X • ERP/CRM Protocols

854

Object Functions

Response Object Functions

Scroll Object Functions

Session Functions

nca_obj_get_info Returns the value of an object property.

nca_obj_mouse_click Clicks within an object.

nca_obj_mouse_dbl_click Double-clicks within an object.

nca_obj_status Returns the status of the specified object.

nca_obj_type Types special characters into an edit box.

nca_response_press_lov Clicks a drop down arrow in a Response box.

nca_response_press_ok Clicks OK inside a Response box.

nca_response_set_cell_data Inserts data into a cell in a Response box.

nca_response_set_data Inserts data into a Response box.

nca_scroll_drag_from_min Drags the scroll to the specified distance
from the minimum position (0).

nca_scroll_line Scrolls the specified number of lines.

nca_scroll_page Scrolls the specified number of pages.

nca_console_get_text Retrieves the console message.

nca_set_iteration_offset Sets an offset value for an object ID.

nca_set_server_response_time Sets the server response time.

nca_set_exception Specifies how to handle exceptions.

nca_set_think_time Sets the think time range.

Chapter 58 • Creating Oracle NCA Vuser Scripts

855

Tree Object Functions

Window Object Functions

You can further enhance your script with C Vuser functions such as
lr_output_message and lr_rendezvous. For information on using these
functions, see Chapter 7, “Enhancing Vuser Scripts.”

Understanding Oracle NCA Vusers

When you create an Oracle NCA Vuser script, VuGen records all of the NCA
communication between the client and the application server. While you
record, VuGen generates context sensitive functions. These functions
describe your actions on the database in terms of GUI objects (such as
windows, lists, and buttons). As you record, VuGen inserts the context
sensitive functions into the Vuser script.

After you finish recording, you can modify the functions in your script, or
add additional functions to enhance it. For information about enhancing
Vuser script, see Chapter 7, “Enhancing Vuser Scripts.” For a list of the
available Oracle NCA Vuser functions, see “Using Oracle NCA Vuser
Functions” on page 851. For details of these functions, see the Online
Function Reference (Help > Function Reference).

nca_tree_activate_item Activates an item in an NCA tree.

nca_tree_collapse_item Collapses a tree item.

nca_tree_expand_item Expands a tree item.

nca_tree_select_item Selects an item in an NCA tree.

nca_win_get_info Returns the value of an window property.

nca_win_close Closes a window.

nca_set_window Indicates the name of the current window.

Part X • ERP/CRM Protocols

856

In the following segment, the user selected an item from a list
(nca_list_activate_item), pressed a button (nca_button_press), retrieved a
list value (nca_lov_retrieve_items), and performed a click in an edit field
(nca_edit_click). The logical names of the objects are the parameters of
these functions.

In certain tests, such as those performed on Oracle Configurator
applications, information returned by one function is required throughout
the session. VuGen automatically saves the dynamic information to a
parameter, by inserting a web_reg_save_param function into the script. In
the following example, the connection information is saved to a parameter
called NCAJServSessionID.

In the above example, the right boundary is \r. The actual right boundary
may differ between systems.

…
nca_lov_select_item("Responsibilities","General Ledger, Vision Opera-
tions");
nca_list_activate_item("FNDSCSGN.NAVIGATOR.LIST.0","+ Journals");
nca_list_activate_item("FNDSCSGN.NAVIGATOR.LIST.0"," Enter");
nca_button_press("GLXJEENT.TOOLBAR.LIST.0");
nca_lov_find_value("Batches","");
nca_lov_retrieve_items("Batches",1,9);
nca_lov_select_item("Batches","AR 1020 Receivables 2537: A 1020");
nca_edit_click("GLXJEENT.FOLDER_QF.BATCH_NAME.0");
…

web_reg_save_param ("NCAJServSessionId", "LB=\r\n\r\n", "RB=\r",
LAST);

web_url("f60servlet",
"URL=http://usscifforms05.sfb.na/servlet/f60servlet\?config
=mult", LAST);

Chapter 58 • Creating Oracle NCA Vuser Scripts

857

Configuring the Run-Time Settings

Before running your script, you can set the run-time settings to allow the
script to accurately emulate a real user. For information on the general run-
time settings for all protocols, such as think time, pacing, and logging, see
Chapter 12, “Configuring Run-Time Settings.” For network speed related
settings, see Chapter 13, “Configuring Network Run-Time Settings.”

The following section describes the run-time settings specific to Oracle NCA
Vusers. These run-time setting allow you to indicate the communication
parameters.

Client Emulation Run-Time Settings

You can configure several network settings to accurately emulate an Oracle
NCA client.

You can set the following options:

Socket Mode

The communication to and from the client is performed on a socket level—
not on the higher HTTP level.

Part X • ERP/CRM Protocols

858

Timeout (seconds): The time that an Oracle NCA Vuser waits for a response
from the server. The default value of -1 disables the timeout and the client
waits indefinitely.

Pragma Mode

In Pragma mode, communication is carried out in the Oracle-defined
Pragma mode. This communication level, above the HTTP and Servlet
levels, is characterized by the periodic sending of messages. In this mode,
the client recognizes that the server cannot respond with data immediately.
The server sends messages at given intervals until it is able to send the
requested data.

➤ Max Retries: indicates the maximum number of IfError messages the
client will accept from the server before issuing an error. IfError messages
are the periodic messages the server sends to the client, indicating that it
will respond with the data as soon as it is able.

➤ Retry Interval defines the interval between retries in the case of IfError
messages.

➤ Include retry intervals in transaction: includes the interval between
retires time, as part of the transaction duration time.

For information about recording in Pragma mode, see “Recording in Pragma
Mode” on page 867.

Heartbeat

You can enable or disable the heartbeat sent to the Oracle server. The
heartbeat verifies that there is proper communication with the server. If you
are experiencing a heavy load on the Oracle NCA server, disable the
heartbeat. If you enable the heartbeat, you can set the frequency of how
often heartbeat messages are sent to the server.

Enable Heartbeat: By default, a heartbeat signal is sent to the server. To
disable it, clear the checkbox.

Frequency: The frequency of the heartbeat signal. The default is 120
seconds.

Chapter 58 • Creating Oracle NCA Vuser Scripts

859

Forms

You can specify the version of the Oracle Forms server detected during
recording.

Version: Modify this setting only if the server was upgraded since the
recording.

Diagnostic

This section lets you provide information about diagnostic modules for the
database layer of Oracle Applications.

Application version: The version of Oracle Application. This option is
relevant when using Oracle Application—not a custom Oracle NCA
application. It is only required when using Oracle database breakdown.

To set the Client Emulation settings:

 1 Open the Run-Time Settings dialog box. Choose Vuser > Run-Time Settings
or click the Run-Time Settings button on the VuGen toolbar.

 2 Select the Oracle NCA:Client Emulation node from the Run-Time settings
tree.

 3 Set the network timeout value in seconds. To instruct the client to wait
indefinitely for a server response, use the default value of -1.

 4 When working in Pragma mode, specify the number of retries Max Retries,
(IfError messages) for the client to accept before issuing an error. The default
is 20.

 5 To enable the sending a a heartbeat to the Oracle NCA server, select the
Enable Heartbeat option. In the next line, specify a frequency in seconds for
the sending of the heartbeat. The default is 120 seconds.

 6 Click OK to accept the settings and run the script.

Part X • ERP/CRM Protocols

860

Testing Oracle NCA Applications

The following sections contain several tips for testing secure Oracle NCA
applications and servlets.

Testing Secure Oracle NCA Applications

➤ When selecting the protocols to record, you only need to select Oracle
NCA—not Web Protocol from the protocol list. VuGen records the security
information internally and therefore does not need the explicit Web
functions.

➤ In the Port Mapping recording options, delete any existing entries for port
443 and create a new entry for the Oracle server name:

Service ID: HTTP
Target Server: Oracle Forms Server IP address or long host name
Target Port: 443
Connection Type: SSL
SSL Version: Active SSL version. If in doubt, select SSL 2/3.

For more information, see Chapter 6, “Configuring the Port Mappings.”

➤ If you encounter problems when replaying an NCA HTTPS script during the
nca_connect_server command, insert the following function at the
beginning of the script.

web_set_sockets_option(“SSL_VERSION”,”3”);

Testing Servlets and other Oracle NCA Applications

Certain NCA sessions use servlets:

➤ the Forms Listener servlet

➤ applications or modules that use both NCA and HTTP communications,
such as the Oracle Configurator

➤ the initializing of the NCA application (downloading the applet, jar, and
gif files)

Chapter 58 • Creating Oracle NCA Vuser Scripts

861

When recording servlets, you must record both Oracle NCA and Web
functions. You can do this by initially creating a multi-protocol script.
Alternatively, if you created a single protocol script for Oracle NCA, open
the General:Protocols node in the Recording Options, and enable the Web
protocol. Then you can begin recording.

If you are unsure whether your application uses servlets, check the
default.cfg file in the script directory. Locate the entry

UseServletMode=

If the value is 1 or 2, then servlets are being used and you must enable HTTP
recording in addition to Oracle NCA.

If you already recorded a script, you can regenerate the code automatically
to include the Web functions without having to re-record. Choose Tools >
Regenerate Script, and select the Web protocol in the Protocols section.

Determining the Recording Mode

When recording Oracle NCA scripts: VuGen automatically determines the
correct connection mode: HTTP or Socket mode. Generally, you are not
required to modify any of the recording settings as VuGen auto-detects the
system configuration. In systems where the standard port mapping are
reserved by other applications, you may need to modify the Port Mapping
settings, depending on the recording mode.

Part X • ERP/CRM Protocols

862

You can determine the recording mode in one of the following ways:

➤ When using the NCA application, open the Java Console.

proxyHost=null
proxyPort=0
connectMode=HTTP
Forms Applet version is: 60812

The connectMode entry indicates HTTP, HTTPS, or socket.

➤ After recording an NCA session, open the default.cfg file in the Vuser
directory and check the value of the UseHttpConnectMode entry.

[HttpConnectMode]
UseHttpConnectMode= 2
// 0 = socket 1 = http 2 = https

When defining a new port mapping int he Server Entry dialog box, use a
Service ID of HTTP for HTTP or HTTPS modes. For Socket mode, use a
Service ID of NCA.

For more information about Port Mapping settings, see Chapter 6,
“Configuring the Port Mappings.”

Recording Trace Information for Oracle DB

To debug your script, you can use the Oracle DB breakdown graphs. To
gather data for this graph, you turn on the trace mechanism before running
the script.

To manually turn on the tracing mechanism, use the
nca_set_custom_dbtrace function. For more information, see the Online
Function Reference (Help > Function Reference).

Chapter 58 • Creating Oracle NCA Vuser Scripts

863

Correlating Oracle NCA Statements for Load Balancing

VuGen supports load balancing for multiple application servers. You
correlate the HTTP return values with the nca_connect_server parameters.
The Vuser then connects to the relevant server during test execution,
applying load balancing.

To correlate statements for load balancing:

 1 Record a multi-protocol script.

Record a multi-protocol script for Oracle NCA and Web Protocols. Perform
the desired actions and save the script.

 2 Define parameters for host and host arguments.

Define two variables, serverHost and serverArgs, for parameterization:

 3 Call the web_url function to assign values to serverHost and serverArgs:

web_url("step_name", "URL=http://server1.merc-int.com/test.htm", LAST);

 4 Modify the nca_connect_server statement from:

nca_connect_server("199.203.78.170",
9000"/*version=107*/, "module=e:\\appsnca…fndnam=apps ");

to:

nca_connect_server("< serverHost >", "9000"/*version=107*/, "<
serverArgs >");

web_set_max_html_param_len("512");
web_reg_save_param("serverHost", "NOTFOUND=ERROR",

"LB=<PARAM name=\"serverHost\" value=\"","RB=\">", LAST);
web_reg_save_param("serverArgs", "NOTFOUND=ERROR",

"LB=<PARAM name=\"serverArgs\" value=\"","RB=\">", LAST);

Part X • ERP/CRM Protocols

864

The script should now look like this:

Additional Recommended Correlations

When recording an Oracle NCA session, VuGen records dynamic values—
values that change for each record and replay session. Two common
dynamic arguments are icx_ticket and JServSessionIdroot.

icx_ticket

The icx_ticket variable, is part of the information sent in the web_url and
nca_connect_server functions:

web_set_max_html_param_len("512");
web_reg_save_param("serverHost", "NOTFOUND=ERROR",

"LB=<PARAM name=\"serverHost\" value=\"","RB=\">", LAST);
web_reg_save_param("serverArgs", "NOTFOUND=ERROR",

"LB=<PARAM name=\"serverArgs\" value=\"","RB=\">", LAST);
web_url("step_name", "URL=http://server1.merc-int.com/test.htm",

LAST);
nca_connect_server("<serverHost>","9000"/*version=107*/,"<server-
Args>");

web_url("fnd_icx_launch.runforms",
"URL=http://ABC-123:8002/pls/VIS/fnd_icx_launch.run-
forms\?ICX_TICKET=5843A55058947ED3&RESP_APP=AR&RESP_KE
Y=RECEIVABLES_MANAGER&SECGRP_KEY=STANDARD", LAST);

Chapter 58 • Creating Oracle NCA Vuser Scripts

865

This icx_ticket value is different for each recording. It contains cookie
information sent by the client. To correlate your recording, add
web_reg_save_param before the first occurrence of the recorded icx_ticket
value:

Note: The left and right boundaries of web_reg_save_param may differ
depending on your application setup.

web_reg_save_param("icx_ticket", "LB=TICKET=", "RB=&RES", LAST);

…

web_url("fnd_icx_launch.runforms",
"URL=http://ABC-123:8002/pls/VIS/fnd_icx_launch.run-
forms\?ICX_TICKET=<icx_ticket>&RESP_APP=AR&RESP_KEY=RECE
IVABLES_MANAGER&SECGRP_KEY=STANDARD", LAST);

Part X • ERP/CRM Protocols

866

JServSessionIdroot

The JServSessionIdroot value is a cookie that the application sets to store the
session ID. In most cases, VuGen automatically correlates this value and
inserts a web_reg_save_param function. If VuGen did not add this function
automatically, you add it manually, replacing all of its occurrences with the
parameter name.

To identify the value that you need to correlate, open the Execution log
(View > Output Window) and locate the response body.

vuser_init.c(8): Set-Cookie: JServSessionIdroot=my1sanw2n1.JS4; path=/\r\n
vuser_init.c(8): Content-Length: 79\r\n
vuser_init.c(8): Content-Type: text/plain\r\n
vuser_init.c(8): \r\n
vuser_init.c(8): 81-byte response body for "http://ABC-
123/servlet/oracle.forms.servlet.ListenerServlet?ifcmd=getinfo&ifhost=mercury&
ifip=123.45.789.12" (RelFrameId=1)
vuser_init.c(8):
/servlet/oracle.forms.servlet.ListenerServlet?JServSessionIdroot=my1san
w2n1.JS4\r\n

To correlate this dynamic value, insert a web_reg_save_param function
before the first occurrence and then replace the variable value with the
parameter name throughout the script. In this example, the right and left
boundaries are \r and \n, but you should check your specific environment
to determine the exact boundaries in your environment.

web_reg_save_param("NCAJServSes-
sionId","LB=\r\n\r\n","RB=\r","ORD=1",LAST);

web_url("f60servlet",
"URL= http://ABC-"123/servlet/oracle.forms.servlet.ListenerServ-

let?ifcmd=getinfo&" "ifhost=mercury&ifip=123.45.789.12", LAST);

web_url("oracle.forms.servlet.ListenerSer",
"URL=http://ABC-123<NCAJServSessionId>?ifcmd=getinfo&"

"ifhost=mercury&ifip=123.45.789.12", LAST);

Chapter 58 • Creating Oracle NCA Vuser Scripts

867

Recording in Pragma Mode

The client side of the Oracle NCA Vuser can be configured to send an
additional header to the server named Pragma. The header is a counter that
behaves in the following way: the initial message of the NCA handshake has
a value of 1.

The messages that follow the handshake are counted, beginning with 3. The
counter is incremented by 1 for each message sent by the client.

If the message received from the server is the type plain\text and the body of
the message begins with ifError:#/#00, the client sends a 0 byte message to
the server and the Pragma value changes its sign to a minus. This sign
changes back after the client succeeds in receiving the information from the
server.

Recording of the Pragma header is only supported in the multi-protocol
mode (Oracle NCA and Web). You can identify the Pragma mode within the
script’s default.cfg file. When operating in Pragma mode, the
UseServletMode is set to 2.

For information on the Pragma related run-time settings, see “Client
Emulation Run-Time Settings” on page 857.

[HttpConnectMode]
UseHttpConnectMode=1
RelativeURL=<NCAJServSessionId>
UseServletMode=2

Part X • ERP/CRM Protocols

868

To identify the Pragma mode, you can perform a WinSocket level recording
and check the buffer contents. In the first example, the buffer contains the
Pragma values as a counter:

In the following example, the buffer contains the Pragma values as an error
indicator:

send buf108
"POST /ss2servlet/oracle.forms.servlet.ListenerServ-

let?JServSessionIdss2ser"
"vlet=gk5q79uqy1 HTTP/1.1\r\n"
"Pragma: 1\r\n"
...

send buf110
"POST /ss2servlet/oracle.forms.servlet.ListenerServ-

let?JServSessionIdss2ser"
"vlet=gk5q79uqy1 HTTP/1.1\r\n"
"Pragma: 3\r\n"
...

recv buf129 281
"HTTP/1.1 200 OK\r\n"
"Date: Tue, 21 May 2002 00:03:48 GMT\r\n"
"Server: Oracle HTTP Server Powered by Apache/1.3.19 (Unix)

mod_fastcgi/2.2"
".10 mod_perl/1.25 mod_oprocmgr/1.0\r\n"
"Content-Length: 13\r\n"
"Content-Type: text/plain\r\n"
"\r\n"
"ifError:8/100"

send buf130
"POST /ss2servlet/oracle.forms.servlet.ListenerServ-

let?JServSessionIdss2ser"
"vlet=gk5q79uqy1 HTTP/1.1\r\n"
"Pragma: -12\r\n"
...

869

59
Developing SAPGUI Vuser Scripts

In the growing field of ERP (Enterprise Resource Planning), SAP provides
solutions allowing companies to manage all of their business processes.
Mercury provides tools for testing SAP solution modules on both functional
and load testing levels. This chapter discusses the solution for testing the
SAPGUI for Windows client (SAPGUI Vuser). For information on testing
solutions for mySAP Workplace and Portal clients, see Chapter 60,
“Developing SAP-Web Vuser Scripts.” This chapter describes:

➤ About Developing SAPGUI Vuser Scripts

➤ Checking your Environment for SAPGUI Vusers

➤ Creating a SAPGUI Vuser Script

➤ Recording a SAPGUI Vuser Script

➤ Setting the SAPGUI Recording Options

➤ Inserting Steps Interactively into a SAPGUI Script

➤ Understanding a SAPGUI Vuser Script

➤ Enhancing a SAPGUI Vuser Script

➤ Replaying SAPGUI Optional Windows

➤ Setting SAPGUI Run-Time Settings

➤ SAPGUI Functions

➤ Tips for SAPGUI Vuser Scripts

➤ Troubleshooting SAPGUI Vuser Scripts

➤ Additional Resources

The following information only applies to the SAPGUI and the
SAPGUI/SAP-Web dual protocols.

Part X • ERP/CRM Protocols

870

About Developing SAPGUI Vuser Scripts

This chapter discusses the solution for testing the SAPGUI for Windows
client (SAPGUI Vuser). To test the SAPGUI user operating only on the client,
use the SAPGUI Vuser type. To test a SAPGUI user that also uses a Web
browser, use the SAPGUI/SAP-Web dual protocol.

Before recording a session, verify that your modules and client interfaces are
supported by VuGen. The following sections describe the SAP client
modules for SAP Business applications.

➤ SAP Web Client or mySAP.com: Use the SAP-Web Vuser type.

➤ SAPGUI for Windows - a Windows-based client, emulated by the SAPGUI
Vuser. This also supports APO module recording (requires patch level 24 for
APO 3.0).

➤ SAPGUI for Windows and a web browser: Use the SAPGUI/SAP-Web dual
protocol.

➤ SAPGUI for Java: This client is not supported

Version 6.20 and later:

➤ For Functional Testing: Use the QuickTest Professional Add-in for
mySAP.com client.

➤ For Load Testing: Use the SAPGUI or SAPGUI/SAP-Web dual protocol to
create a script in VuGen and run a scenario or session step in the
Controller or Console.

You use VuGen’s recorder to record typical business processes. VuGen
records SAPGUI for Windows client activity during SAP business processes,
and generates a Vuser script. When you perform actions within the SAPGUI
for Windows client, VuGen generates functions that describe this activity.
Each function begins with a sapgui prefix.

Chapter 59 • Developing SAPGUI Vuser Scripts

871

During replay, these functions emulate user activity on SAPGUI objects.

For example, sapgui_select_radio_button selects the radio button Blue.

Checking your Environment for SAPGUI Vusers

The basic steps in checking and setting up your system for the recording of
SAPGUI Vusers, are Checking the Patch Level and Enabling Scripting. Once
your environment is configured properly, you can record a typical SAP
session and replay it in VuGen.

Checking the Patch Level

You can check the patch level of your SAPGUI for Windows client from the
About box. The lowest patch level supported is 32.

sapgui_select_radio_button("Blue",
 "usr/radRB7",
 BEGIN_OPTIONAL,
 "AdditionalInfo=sapgui1027",
 END_OPTIONAL);

Part X • ERP/CRM Protocols

872

To check the patch level:

 1 Invoke the SAPGUI logon window. Click the top left corner of the SAP
Logon dialog box and choose About SAP Logon from the menu.

 2 The SAP version information dialog box opens. Verify that the Patch Level
entry is 32 or higher.

Chapter 59 • Developing SAPGUI Vuser Scripts

873

Enabling Scripting

Mercury Interactive's support for the SAPGUI for Windows client, is based
on SAP's Scripting API. This API allows Vusers to interact with the SAPGUI
client, receive notifications, and perform operations.

The Scripting API is only available in recent versions of the SAP Kernel. In
kernel versions that support scripting, the option is disabled by default. In
order to use Mercury Interactive’s tools, first ensure that the SAP servers
support the Scripting API, and enable the API on both the server and clients.
For more information and to download patches, refer to the SAP OSS note
#480149.

VuGen provides a utility that checks if your system supports scripting. The
utility, VerifyScript.exe is located on the CD in the Patches and Tools
directory. For more information, refer to the Readme file provided with this
utility.

The following sections present the steps that are required to enable
scripting.

➤ Checking the Configuration

➤ Enabling Scripting on the SAP Application Server

➤ Enabling Scripting on SAPGUI 6.20 Client

Part X • ERP/CRM Protocols

874

Checking the Configuration

The first step in enabling scripting is ensuring that the right kernel version is
installed, and updating it if required.

Check the table below, for the minimum kernel patch level required for your
version of the SAP Application Server. If required, download and install the
latest patch.

Software
Component

 Release
 Package

Name
 Kernel Patch

Level

SAP_APPL 31I SAPKH31I96 Kernel 3.1I
level 650

SAP_APPL 40B SAPKH40B71 Kernel 4.0B
level 903

SAP_APPL 45B SAPKH45B49 Kernel 4.5B
level 753

SAP_BASIS 46B SAPKB46B37 Kernel 4.6D
level 948

SAP_BASIS 46C SAPKB46C29 Kernel 4.6D
level 948

SAP_BASIS 46D SAPKB46D17 Kernel 4.6D
level 948

SAP_BASIS 610 SAPKB61012 Kernel 6.10
level 360

Chapter 59 • Developing SAPGUI Vuser Scripts

875

To check the kernel patch level:

 1 Log in to the SAP system

 2 Select System > Status

 3 Click the Other kernel information button (with the yellow arrow).

Part X • ERP/CRM Protocols

876

 4 In the Kernel Information section, check the value of the Sup. Pkg. lvl.

If the level is lower than 948, you must download the latest kernel version
and upgrade your existing one. Refer to the SAP OSS note #480149 for
detailed instructions on how to perform this upgrade.

To check the R/3 support packages:

 1 Log on to the SAP system and run the SPAM transaction.

 2 In the Directory section, select All Support Packages, and click the Display
button.

Chapter 59 • Developing SAPGUI Vuser Scripts

877

 3 Verify that SAPKB46C29 is installed for SAP_BASIS, 4.6C. If it is installed, a
green circle appears in the Status column.

If you do not have the OCS package installed, download it the from the
www.sap.com Web site and install it. For more information, refer to the SAP
OSS note #480149.

Part X • ERP/CRM Protocols

878

Enabling Scripting on the SAP Application Server

A user with administrative permissions enables scripting by setting the
sapgui/user_scripting profile parameter to TRUE on the application server.
To enable scripting for all users, set this parameter on all application servers.
To enable scripting for a specific group of users, only set the parameter on
application servers with the desired access restrictions.

To change the profile parameter:

 1 Open transaction rz11. Specify the parameter name sapgui/user_scripting
and click Display. The Display Profile Parameter Attributes window opens.

If Parameter name is unknown appears in the status bar, this indicates that
you are missing the current Support Package. Import the Support Package
that corresponds to the SAP BASIS and kernel versions of the application
server, as described in “Checking the Configuration” on page 874.

Chapter 59 • Developing SAPGUI Vuser Scripts

879

 2 If Profile Val is FALSE, you need to modify its value. Click the Change value
button in the toolbar. The Change Parameter Value window opens. Enter
TRUE in the ProfileVal box and click the Save button.

When you save the change, the window closes and ProfileVal is set to TRUE.

 3 Restart the application server, since this change only takes effect when you
log onto the system.

If the updated ProfileVal did not change, even after restarting the server,
then the kernel of the application server is outdated. Import the required
kernel patch, as specified in the section “Checking the Configuration” on
page 874.

Part X • ERP/CRM Protocols

880

Note that the Profile Value may be dynamically activated in the following
kernel versions, using transaction rz11, without having to restart the
application server.

Enabling Scripting on SAPGUI 6.20 Client

To allow VuGen to run scripts, you must also enable scripting on the
SAPGUI client. You should also configure the client not to display certain
messages, such as when a connection is established, or when a script is
attached to the GUI process.

To configure the SAPGUI client to work with VuGen:

➤ During installation: While installing the SAPGUI client, enable the SAP
GUI Scripting option.

➤ After installation: Suppress warning messages. Open the Options dialog
box in the SAPGUI client. Select the Scripting tab and clear the following
options:

 1 Notify when a script attaches to a running GUI

 2 Notify when a script opens a connection

 Release
Kernel
Version

 Patch Level

 4.6B, 4.6C, 4.6D 4.6D 972

 6.10 6.10 391

 6.20 all versions all levels

Chapter 59 • Developing SAPGUI Vuser Scripts

881

You can also prevent these messages from popping up by setting the values
WarnOnAttach and WarnOnConnection in the following registry key to 0:

HKCU\SOFTWARE\SAP\SAPGUI Front\SAP Frontend Server\Security.

Part X • ERP/CRM Protocols

882

Creating a SAPGUI Vuser Script

The first step in creating a SAPGUI Vuser script is choosing the Vuser and
script type. The SAP Vuser type, SAPGUI is under the ERP/CRM category. You
can create either a single or multi-protocol Vuser script.

To create a SAPGUI Vuser script:

 1 Invoke VuGen and choose File > New.

 2 To record a standard SAPGUI client session (with no browser controls),
create a single-protocol Vuser script using the SAPGUI type Vuser.

 3 To record a SAPGUI session that uses browser controls, create a multi-
protocol Vuser script. Specify both the SAPGUI and SAP-Web Vuser types.
This allows VuGen to record Web-specific functions when encountering the
browser controls.

 4 Click OK to open the Vuser script.

Chapter 59 • Developing SAPGUI Vuser Scripts

883

Recording a SAPGUI Vuser Script

After creating an empty script, you set the recording options and then
record your SAPGUI session. VuGen generates a script corresponding to your
actions within the client.

To begin recording a SAPGUI script:

 1 If the Start Recording dialog box was not opened, click the Start Recording
button. The Start Recording dialog box opens.

 2 VuGen detects and fills in the relevant information:

Program to record: VuGen locates the saplogon.exe file in the SAP client
installation.

Working Directory: For applications that require you to specify a working
directory, specify it here. The required information differs, depending on
the type of Vuser script.

Record into Action: Select the section into which you want to record.
Initially, the available sections are vuser_init, Action1, and vuser_end.

 3 Click OK and begin recording.

Part X • ERP/CRM Protocols

884

Recording at the Cursor

VuGen also allows you to record actions into an existing script. You may
choose to record into an existing script for several reasons:

➤ You made a mistake in the actions that you performed during recording.

➤ Your actions were correct, but you need to add additional information such
as the handling of popup windows. For example the SAP server may issue an
inventory warning, which did not apply during the recording session.

This feature, called Recording at the Cursor, lets you insert new actions or
replace existing actions. When you begin Recording at the Cursor, VuGen
prompts you with two options:

Insert steps into action: Inserts the newly recorded steps at the cursor
without overwriting any existing steps. The new segment is enclosed with
comments indicating the beginning and end of the added section. This
option is ideal for handling occasional popup windows that were not
present during the recording

Overwrite the rest of the script: Replaces all steps from the point of the
cursor onward. This option overwrites the remainder of the current Action
and deletes all other Actions. It does not affect the vuser_init or vuser_end
sections. This option is ideal for when you make a mistake in the recording.

After you choose one of the Recording at the Cursor options, VuGen replays
the script from the beginning until the cursor’s entry point. Then it opens
the Recording floating toolbar and begins recording.

Note: If you use the Recording at the Cursor feature, the Regenerate Script
tool becomes disabled.

// Recording at the cursor - Begin
sapgui_select_active_connection(“con[0]”);
sapgui_select_active_session(“ses[0]”);
sapgui_select_active_window(“wnd[0]”);

//Recording at the cursor - End

Chapter 59 • Developing SAPGUI Vuser Scripts

885

To Record at the Cursor:

Note that you can choose a default and then instruct VuGen to hide this
dialog box for future Recording at the Cursor.

 1 Click the Recording at the Cursor button.

VuGen prompts you to make a selection.

 2 Select Insert steps into action or Overwrite the rest of the script. Click OK.
VuGen replays the script until the point of the cursor.

 3 Wait for the Recording floating toolbar to open. Then begin performing
actions in the SAPGUI client, switching between sections and actions as
required.

 4 Click the Stop button to end the recording session.

Part X • ERP/CRM Protocols

886

Setting the SAPGUI Recording Options

You use the recording options to set your SAP-related preferences for the
recording session. To open the Recording Options dialog box, choose Tools >
Recording Options or click Options in the Start Recording dialog box. The
keyboard shortcut is CTRL+F7.

You can set recording options in the following areas:

➤ SAPGUI General Recording Options

➤ SAPGUI Code Generation Recording Options

➤ SAPGUI Auto Logon Recording Options

If you are recording a multi-protocol Vuser script with a SAP-Web Vuser
type, see Chapter 40, “Setting Recording Options for Internet Protocols” for
additional recording options.

SAPGUI General Recording Options

You use these recording options to set your general preferences during the
recording session.

Chapter 59 • Developing SAPGUI Vuser Scripts

887

To set the General recording options:

 1 Open the Recording Options dialog box and select the SAPGUI:General
node.

 2 For the Capture screen snapshots option, indicate how to save the
snapshots of the SAPGUI screens as they appear during recording. Select an
item from the list: ActiveScreen snapshots, Regular snapshots, or None.

 3 Click OK to accept the settings and close the dialog box.

SAPGUI Code Generation Recording Options

You use these recording options to set the code generation preferences.

To set the Code Generation recording options:

 1 Open the Recording Options dialog box and select the SAPGUI:Code
Generation node.

 2 Select Generate logon operation as a single step to instruct VuGen to
generate a single sapgui_logon method for all of the logon operations. This
helps simplify the code. If you encounter login problems, disable this
option.

 3 To generate Fill Data steps for table and grid controls—instead of separate
steps for each cell, select Generate Fill Data Steps.

 4 To create a more compact and cleaner script, select Always generate Object
IDs in header file which places the Object IDs in a separate header file
instead of in the script. When you disable this option, VuGen generates the

Part X • ERP/CRM Protocols

888

IDs according to the specified string length in the general script setting.
Note that disabling this option only increases readability—there is no
difference in overhead.

 5 Click OK to accept the settings and close the dialog box.

SAPGUI Auto Logon Recording Options

You set these recording options to log on automatically when you begin
recording. The logon functions are placed in the vuser_init section of the
script. The server name list contains all of the servers on the SAP Logon
description list

To enable and set the Auto Logon recording options:

 1 Open the Recording Options dialog box and select the SAPGUI:Auto Logon
node.

 2 Select Enable Auto logon.

 3 Enter the Login information:

➤ the SAP Server name

➤ the User name for the SAP server

➤ the Password for the SAP server

➤ the Client name by which the SAP server identifies the client

➤ the interface Language

 4 Click OK to accept the settings and close the dialog box.

Chapter 59 • Developing SAPGUI Vuser Scripts

889

Inserting Steps Interactively into a SAPGUI Script

After recording, you can manually add steps to the script in either Script
view and Tree View. For information about adding steps from the various
views, see “Viewing and Modifying Vuser Scripts” on page 17.

In addition to manually adding new functions, you can add new steps
interactively for SAPGUI Vusers, directly from the snapshot. Using the right-
click menu, you can add object-related steps.

When adding a step from within a snapshot, VuGen uses the Active Screen
capability and determines the ID of each object in the SAPGUI client
window (unless you disabled Active Screen snapshots in the SAPGUI
General Recording Options).

To determine which objects were recognized by VuGen, you move the
mouse over the snapshot. VuGen draws a box around the objects as you pass
over them and displays a tool tip with the object’s Control ID. In the
following example, the selected active object is the NORMAL CENTER button.

Part X • ERP/CRM Protocols

890

When you add a step while holding the mouse over a recognized object,
VuGen automatically inserts the Control ID of that object into the relevant
field of the Properties dialog box. For example, if you add a Press Button
step, for the NORMAL CENTER button as shown above, the Properties box
displays the following ID:

To insert a step interactively for a specific object:

 1 Click within the Snapshot window.

 2 Move the mouse over the object for which you want to add a function.
Make sure that VuGen recognizes the object and encloses it with a box.

 3 Select Insert New Step from the right-click menu. The Insert Step box opens.

 4 Choose a step from the menu. The step’s Properties dialog box opens, with
the Control ID of the object when relevant.

 5 Enter a name for the object in the Description box. Click OK. VuGen inserts
the new step after the selected step.

 6 To get the Control ID of the object for the purpose of pasting it into a
specific location, select Copy Control ID from the right-click menu. VuGen
places it on the clipboard. You can past it into a Properties box or directly
into the code from the Script view.

Chapter 59 • Developing SAPGUI Vuser Scripts

891

Understanding a SAPGUI Vuser Script

The SAPGUI Vuser script typically contains several SAP transactions which
make up a business process. A business process consists of functions that
emulate user actions. Open the tree view to see each user action as a Vuser
script step.

The following example shows a typical recording of a SAPGUI client. The
first section, vuser_init, contains the opening of a connection and a logon.

Part X • ERP/CRM Protocols

892

Note that the Open Connection step uses one of the connection names in
the SAP Logon Descriptions list. If the specified connection name is not in
the list, the Vuser looks for a server with that name.

In the following section, the functions emulate typical user operations such
as menu selection and the setting of a check box.

Chapter 59 • Developing SAPGUI Vuser Scripts

893

The final section, vuser_end, illustrates the logoff procedure.

When recording a multi- protocol script for both SAPGUI and Web, VuGen
generates steps for both protocols. In the Script view, you can view both
sapgui and web functions.

The following example illustrates a multi-protocol recording in which the
SAPGUI client opens a Web control. Note the switch from sapgui to web
functions.

Part X • ERP/CRM Protocols

894

sapgui_tree_double_click_item("Use as general WWW browser, REPTI-
TLE",

"shellcont/shell",
"000732",
"REPTITLE",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1020",
END_OPTIONAL);

...
sapgui_set_text("",

"http:\\\\yahoo.com",
"usr/txtEDURL",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1021",
END_OPTIONAL);

...
web_add_cookie("B=7pt5cisv1p3m2&b=2; DOMAIN=www.yahoo.com");

web_url("yahoo.com",
"URL=http://yahoo.com/",
"Resource=0",
"RecContentType=text/html",
"Referer=",
"Snapshot=t1.inf",
"Mode=HTML",
EXTRARES,

"URL=http://srd.yahoo.com/hpt1/ni=17/ct=lan/sss=1043752588/t1=10437
52575385/d1=1251/d2=1312/d3=1642/d4=4757/0.4097009487287739/*1"
, "Referer=http://www.yahoo.com/", ENDITEM,

LAST);

Chapter 59 • Developing SAPGUI Vuser Scripts

895

Enhancing a SAPGUI Vuser Script

After you examine the recorded Vuser script, you enhance it in the
following ways:

➤ Transactions: Inserting transactions, rendezvous points, and control-flow
structures into the script. For details, see Chapter 7, “Enhancing Vuser
Scripts.”

➤ Verification: Insert SAPGUI verification functions to verify the current state
of SAPGUI objects. For details, see Adding Verification Functions.

➤ Retrieve information: Insert SAPGUI functions to verify the current value
of SAPGUI objects. You use the sapgui_get_xxx functions to retrieve
information. For more information, see “Retrieving Information” on
page 897.

Define parameters (optional). Define parameters for the fixed-values
recorded into your Vuser script. By substituting fixed-values with
parameters, you can repeat the same business process many times using
different values. For details, see Chapter 8, “Working with VuGen
Parameters.”

Adding Verification Functions

When working with optional or dynamic windows or frames, you can use
verification functions to determine if the window or object is available. An
optional window is a window that does not consistently open during the
SAP session. This function allow the Vuser script to continue running even if
an optional window opens or an exception occurs.

The first example checks if a window is available. If the window is available,
the Vuser closes it before continuing.

if (!sapgui_is_object_available("wnd[1]"))
sapgui_call_method("{ButtonID}",

"press",
LAST,
AdditionalInfo=info1011");

sapgui_press_button(.....)

Part X • ERP/CRM Protocols

896

The next example illustrates a dynamic object in the ME51N transaction.
The Document overview frame is optional, and can be opened/closed by the
Document overview on/off button.

The code checks the text on the Document overview button. If the text on
the button shows Document overview on, we click the button to close the
Document overview frame.

if(sapgui_is_object_available("tbar[1]/btn[9]"))
{

sapgui_get_text("Document overview on/off button",
"tbar[1]/btn[9]",
"paramButtonText",
LAST);

if(0 == strcmp("Document overview off", lr_eval_string("{param-
ButtonText}")))

sapgui_press_button("Document overview off",
"tbar[1]/btn[9]",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1013",
END_OPTIONAL);

}

Chapter 59 • Developing SAPGUI Vuser Scripts

897

Retrieving Information

When working with SAGUI Vusers, you can retrieve the current value of a
SAPGUI object using the sapgui_get_<xxx> functions. You can use this
value as input for another business process, or display it in the output log.

Retrieving Status Bar Information

The following example illustrates how to save part of a status bar message in
order to retrieve the order number.

To retrieve the order number from the status bar:

 1 Navigate to the point where you want to check the status bar text, and select
Insert > New Step. Choose the sapgui_status_bar_get_type function. This
verifies that the Vuser can successfully retrieve text from the status bar.

 2 Insert an if statement that checks if the previous statement succeeded. If so,
save the value of the argument using sapgui_status_bar_get_param.

This sapgui_status_bar_get_param function saves the order number into a
user-defined parameter. In this case, the order number is the second index of
the status bar string.

During test execution, the Execution log indicates the value and parameter
name:

Action.c(240): Pressed button " Save (Ctrl+S)"
Action.c(248): The type of the status bar is "Success"
Action.c(251): The value of parameter 2 in the status bar is "33232"

sapgui_press_button("Save (Ctrl+S)",
"tbar[0]/btn[11]",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1038",
END_OPTIONAL);

sapgui_status_bar_get_type("Status");
if(0==strcmp(lr_eval_string("{Status}"),"Success"))
 sapgui_status_bar_get_param("2", " Order_Number ");

Part X • ERP/CRM Protocols

898

Saving Date Information

When creating scripts that use dates, your script may not run properly. For
example, if you record the script on June 2, and replay it on June 3, the date
fields will be incorrect. Therefore, you need to save the date to a parameter
during text execution, and use the stored value as input for other date fields.
To save the current date or time during script execution, use the
lr_save_datetime function. Insert this function before the function
requiring the date information. Note that the format of the date is specific
to your locale. Use the relevant format within the lr_save_datetime
function. For example, for month.day.year, specify "%m.%d.%Y".

In the following example, lr_save_datetime saves the current date. The
sapgui_set_text function uses this value to set the delivery date for two days
later.

lr_save_datetime("%d.%m.%Y", DATE_NOW + (2 * ONE_DAY),
"paramDateTodayPlus2");

sapgui_set_text("Req. deliv.date",
"{paramDateTodayPlus2}",
"usr/ctxtRV45A-KETDAT",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui1025",
END_OPTIONAL);

Chapter 59 • Developing SAPGUI Vuser Scripts

899

Replaying SAPGUI Optional Windows

When working with SAPGUI Vuser Scripts, you may encounter optional
windows in the SAPGUI client—windows that were present during
recording, but do not exist during replay. If you try to replay your recorded
script as is, it will fail when it attempts to find the missing windows.

VuGen’s optional window mechanism performs the actions on a window
only after verifying that it exists. The Vuser checks if the window indicated
in the Select active window step exists. If the window is found during
replay, it performs the actions as they were recorded in the script. If it does
not exist, the Vuser ignores all window actions until the next Select active
window step. Note that only SAPGUI steps (beginning with a sapgui prefix)
are ignored.

To use this feature, in Tree view select the appropriate Select Active Window
step and choose Run steps for window only if it exists from the right-click
menu.

To disable this feature and attempt to run these steps at all times, regardless
of whether the Vuser finds the window or not, choose Always run steps for
this window from the right-click menu.

Setting SAPGUI Run-Time Settings

After creating and enhancing your SAPGUI Vuser script, you configure its
run-time settings and run it from VuGen to check its functionality. Run-
Time settings let you control the Vuser behavior during replay. You
configure these settings before running the Vuser script. You can set both
general and SAPGUI-specific run-time settings.

The general settings include the run logic, pacing, logging, think time, and
performance preferences. For information about the general run-time
settings, see Chapter 12, “Configuring Run-Time Settings.” For SAPGUI-
specific settings, see the following sections.

Part X • ERP/CRM Protocols

900

Once you configure the Run-Time settings, you save the Vuser script and
run it from VuGen to verify that it runs correctly. For details about running
the Vuser script as a standalone test, see Chapter 14, “Running Vuser Scripts
in Standalone Mode.”

After verifying that your Vuser script is functional, you integrate it into your
environment: a LoadRunner scenario, Performance Center load test, Tuning
Module session, or Business Process Monitor profile. For more information,
refer to the LoadRunner Controller User’s Guide, Tuning Console, Performance
Center, or Application Management documentation.

You can configure the SAPGUI specific Run-Time settings in the following
areas:

➤ SAPGUI General Run-Time Settings

➤ SAPGUI Advanced Run-Time Settings

SAPGUI General Run-Time Settings

General run-time settings let you set the general settings for a SAPGUI Vuser
script. VuGen uses these settings when running the script.

The Log run-time settings specify the information a Vuser sends to the
Execution log whenever an error occurs.

Chapter 59 • Developing SAPGUI Vuser Scripts

901

Send status bar text: Send the text from the status bar to the log file.

Send active window title: Send the active window title text to the log file.

The Performance run-time settings allow you to indicate whether or not to
display the SAP client during replay.

Show SAP Client during replay: Shows an animation of the actions in the
SAP client during replay. The benefit of displaying the user interface (UI) is
that you can see how the forms are filled out and closely follow the actions
of the Vuser. This option, however, requires additional resources and may
affect the performance of your load test.

Take ActiveScreen snapshots during replay: Captures replay snapshots with
the Control ID information for all active objects. ActiveScreen snapshots
differ from regular ones, in that they allow you to see which objects were
recognized by VuGen in the SAPGUI client. As you move your mouse across
the snapshot, VuGen highlights the detected objects. You can then add new
steps to the script directly from within the snapshot. It also allows you to
add steps interactively from within the snapshot for a specific object. For
more information, see “Inserting Steps Interactively into a SAPGUI Script”
on page 889.

Advanced options let you set a timeout for the SAPfewgsvr.exe process, save
a snapshot on error, and configure VuGen to use SAPlogon during replay.
For more information, see “SAPGUI Advanced Run-Time Settings” on
page 902.

To set the SAPGUI Run-Time Settings:

 1 Open the Run-Time settings dialog box. Click the Run-Time Settings button
on the VuGen toolbar, or choose Vuser > Run-Time Settings.

 2 Select the SAPGUI:General node.

 3 In the Log messages on error section, select one or more message sources:
Send status bar text or Send active window title.

 4 In the Performance section, select the Show SAP client during replay check
box to show the SAPGUI user interface during replay.

 5 Click Options to set a timeout for the SAPfewgsvr.exe process.

Part X • ERP/CRM Protocols

902

SAPGUI Advanced Run-Time Settings

Each Vuser invokes a separate SAPfewgsvr.exe process during test execution.
In some instances, the process stays active even after the replay session has
ended. You can check the Windows Task Manager to see if the process is still
active.

The Advanced SAPGUI settings let you set a timeout for this application.
When the timeout is reached, VuGen closes any SAPfewgsvr processes not
previously terminated.

Replay using running SAPlogon application: Instructs the Vusers to use the
SAPlogon application that is currently running for replay.

Set SAPfewgsvr application timeout: Allows you to modify the
SAPfewgsvr.exe process timeout.

➤ Timeout to SAPfewgsvr: The SAPfewgsvr.exe process timeout in seconds.
The default is 300 seconds.

Chapter 59 • Developing SAPGUI Vuser Scripts

903

SAPGUI Functions

During a SAPGUI recording session, VuGen generates functions that
emulate user interaction with the SAPGUI client. When you record the
SAPGUI for Windows client, VuGen generates functions with a sapgui
prefix. This section lists all of the sapgui functions.

When you record a SAP session using a Web interface such as SAP Workplace
or Portal, or if the SAPGUI client opens a Web control, VuGen generates
functions with a web prefix.

For more information about the sapgui and web functions, use the Show
Function Syntax feature from the Edit menu, or refer to the Online Function
Reference (Help > Function Reference).

While most of the functions are recorded, you can manually insert any
function into your script. The functions that are not recorded are the data
retrieval functions beginning with sapgui_get, and those used for
verification, beginning with sapgui_is.

There are several categories of sapgui functions: Connection and Session
Functions, Method and Property Functions, Verification and Data Retrieval
Functions, and Object functions. Object functions are those which perform
an action within a SAPGUI object such as Calendar Functions, Grid
Functions, APO Grid Functions, Status Bar Functions, Table Functions, Tree
Functions, Window Functions, and General Object Functions.

Connection and Session Functions
sapgui_create_session Creates a new SAPGUI session.

sapgui_logon Logs in to a SAP server.

sapgui_open_connection Opens a connection to a SAP
server.

sapgui_open_connection_ex Opens a connection to the SAP
server specified by a connection
string.

Part X • ERP/CRM Protocols

904

Method and Property Functions

sapgui_select_active_connection Sets the specified connection as
the active connection.

sapgui_select_active_session Sets the active SAPGUI session.

sapgui_get_property_of_active_object Retrieves a property of the active
object.

sapgui_active_object_from_parent
_method

Selects an object within a parent
object by calling the parent's
method.

sapgui_active_object_from_parent
_property

Selects an object that is a
property of a parent object.

sapgui_call_method Invokes a method of a SAPGUI
object.

sapgui_call_method_of_active_object Invokes a method of the active
object.

sapgui_get_property Gets the property of a SAPGUI
object.

sapgui_set_collection_property Sets the property of a object of
type SAP GuiCollection.

sapgui_set_property Sets the property of a SAPGUI
object.

sapgui_set_property_of_active_object Sets a property of the active
object.

Chapter 59 • Developing SAPGUI Vuser Scripts

905

APO Grid Functions
sapgui_apogrid_clear_selection Deselects all selected cells.

sapgui_apogrid_deselect_cell Deselects a specific cell.

sapgui_apogrid_deselect_column Deselects a specific column.

sapgui_apogrid_deselect_row Deselects a specific row.

sapgui_apogrid_double_click Double clicks inside an APO grid.

sapgui_apogrid_get_cell_data Gets the data from a specific APO
grid cell.

sapgui_apogrid_get_cell_format Gets the format of the specified
APO grid cell.

sapgui_apogrid_get_cell_tooltip Gets the tooltip of the specified
APO grid cell.

sapgui_apogrid_is_cell_changeable Checks whether the specified cell
is editable.

sapgui_apogrid_open_cell_context
_menu

Opens a context menu in the
specified cell.

sapgui_apogrid_press_ENTER Presses ENTER in an APO grid.

sapgui_apogrid_scroll_to_column Scrolls to a specified column
within the APO grid.

sapgui_apogrid_scroll_to_row Scrolls to a specified row within
the APO grid.

sapgui_apogrid_select_all Selects all cells in the APO grid.

sapgui_apogrid_select_cell Selects a cell in the APO grid.

sapgui_apogrid_select_column Selects a column in the APO grid.

sapgui_apogrid_select_row Selects a row in the APO grid.

sapgui_apogrid_set_cell_data Sets the data in the specified APO
grid cell.

Part X • ERP/CRM Protocols

906

Calendar Functions

Grid Functions

sapgui_calendar_focus_date Sets the focus on a specific date.

sapgui_calendar_scroll_to_date Scrolls to a specific date in the
calendar.

sapgui_calendar_select_interval Selects a range of dates within
the calendar.

sapgui_grid_clear_selection Clears a selection in a grid.

sapgui_grid_click Clicks within a grid.

sapgui_grid_click_current_cell Clicks within a grid’s active cell.

sapgui_grid_double_click Double-clicks within a grid.

sapgui_grid_double_click_current_cell Double-clicks within a grid’s
active cell.

sapgui_grid_get_cell_data Retrieves the text from a grid
cell.

sapgui_grid_get_current_cell_column Retrieves the KEY (Inner ID) of a
column of the current cell
within a grid.

sapgui_grid_get_current_cell_row Retrieves the row number of a
grid’s current cell.

sapgui_grid_is_checkbox_selected Checks the state of a check box
in a grid.

sapgui_grid_open_context_menu Right clicks in a grid to open a
context menu.

sapgui_grid_press_button Clicks a button in a grid cell.

sapgui_grid_press_button_current_cell Clicks a button in the active grid
cell.

sapgui_grid_press_column_header Presses the column header of a
grid.

Chapter 59 • Developing SAPGUI Vuser Scripts

907

sapgui_grid_press_ENTER Presses ENTER within a grid.

sapgui_grid_press_F1 Presses F1 within a grid.

sapgui_grid_press_F4 Presses F4 within a grid.

sapgui_grid_press_toolbar_button Clicks a toolbar button in a grid.

sapgui_grid_press_toolbar_context
_button

Clicks a toolbar context button
in a grid.

sapgui_grid_press_total_row Clicks the total row area in a
grid.

sapgui_grid_press_total_row_current
_cell

Clicks the total row button in
the currently active grid cell.

sapgui_grid_scroll_to_row Scrolls to a row in a grid.

sapgui_grid_select_cell Selects a cell in a grid.

sapgui_grid_select_cell_column Selects a cell in the specified
column of the current row.

sapgui_grid_select_cell_row Selects a cell in the specified row
of the current column.

sapgui_grid_select_cells Selects cells in a grid.

sapgui_grid_select_columns Selects columns in a grid.

sapgui_grid_select_context_menu Selects a context menu in a grid.

sapgui_grid_select_rows Selects rows in a grid.

sapgui_grid_select_toolbar_menu Selects a toolbar menu in a grid.

sapgui_grid_set_cell_data Inserts text into a grid cell.

sapgui_grid_set_checkbox Selects or clears a grid check
box.

sapgui_grid_set_column_order Sets the column order in a grid.

Part X • ERP/CRM Protocols

908

Status Bar Functions

Table Functions

Tree Functions

sapgui_status_bar_get_param Gets a parameter from the status
bar.

sapgui_status_bar_get_text Gets text from the status bar.

sapgui_status_bar_get_type Retrieves status bar information:
Success, Warning, or Error.

sapgui_table_is_checkbox_selected Checks the state of a check box
in a table.

sapgui_table_is_row_selected Checks if a table row is selected.

sapgui_table_get_text Retrieves the text in a table cell.

sapgui_table_is_radio_button_selected Checks the state of a radio
button in a table.

sapgui_table_press_button Presses a button in a table.

sapgui_table_select_combobox_entry Selects a list entry within a table.

sapgui_table_select_radio_button Selects a radio button in a table.

sapgui_table_set_checkbox Selects or clears a check box in a
table.

sapgui_table_set_focus Sets the focus to a table.

sapgui_table_set_password Sets the password within a table.

sapgui_table_set_row_selected Selects or deselects a table row.

sapgui_table_set_text Inserts text into a table cell.

sapgui_tree_click_link Clicks a link in a tree.

sapgui_tree_collapse_node Collapses a tree node.

sapgui_tree_double_click_item Double-clicks a tree item.

sapgui_tree_double_click_node Double-clicks a tree node.

Chapter 59 • Developing SAPGUI Vuser Scripts

909

sapgui_tree_expand_node Expands a tree node.

sapgui_tree_get_item_text Gets the text of a tree item.

sapgui_tree_get_node_text Gets the text of a tree node.

sapgui_tree_is_checkbox_selected Checks if a tree check box is
selected.

sapgui_tree_open_default_context

_menu

Opens a tree’s default context
sensitive menu.

sapgui_tree_open_header_context
_menu

Opens a tree header’s context
sensitive menu.

sapgui_tree_open_item_context
_menu

Opens a tree item’s context
sensitive menu.

sapgui_tree_open_node_context
_menu

Opens a tree node’s context
sensitive menu.

sapgui_tree_press_button Clicks a button in a tree.

sapgui_tree_press_header Clicks on a column header in a
tree.

sapgui_tree_press_key Presses a key from within a tree.

sapgui_tree_scroll_to_item Scrolls to a tree item.

sapgui_tree_scroll_to_node Scrolls to a tree node.

sapgui_tree_select_column Selects a column in a tree.

sapgui_tree_select_item Selects an item in a tree.

sapgui_tree_select_node Selects a node in a tree.

sapgui_tree_set_checkbox Selects or clears a tree check box.

sapgui_tree_set_column_width Sets the column width of a tree.

sapgui_tree_set_hierarchy_header
_width

Sets the width of the tree
hierarchy.

sapgui_tree_set_selected_node Selects a node in a tree.

sapgui_tree_unselect_all Cancels all selections in a tree.

Part X • ERP/CRM Protocols

910

Window Functions

Verification and Data Retrieval Functions

sapgui_tree_unselect_column Cancels the selection of a tree
column.

sapgui_tree_unselect_node Cancels the selection of a tree
node.

sapgui_window_close Closes the SAPGUI client
window.

sapgui_window_maximize Sets window to full screen size.

sapgui_window_resize Resizes a window to the specified
size.

sapgui_window_restore Restores the window to non-
maximized state.

sapgui_window_scroll_to_row Scrolls to a row in a window.

sapgui_get_active_window_title Retrieves the active window’s
title.

sapgui_get_ok_code Retrieves the Command field
text.

sapgui_get_text Gets the text from an object.

sapgui_is_checkbox_selected Checks if a check box is selected.

sapgui_is_object_available Checks whether an object is
available.

sapgui_is_object_changeable Checks if an object can be
changed.

sapgui_is_radio_button_selected Checks if a radio button is
selected.

sapgui_is_tab_selected Checks if a tab is selected.

Chapter 59 • Developing SAPGUI Vuser Scripts

911

General Object Functions

Tips for SAPGUI Vuser Scripts

The following sections provides Recording Tips, Replay Tips, and Tips for
Replaying in a Scenario or Session Step for SAPGUI Vusers. In addition, you
can obtain information directly from the SAP support site.

Recording Tips

This section provides recording tips for a SAPGUI Vuser script.

➤ Make sure to record the actions into the appropriate sections: Record the
logon procedure into the vuser_init section, the actions that you want to
repeat in the Actions sections, and the logoff procedure in the vuser_end

sapgui_htmlviewer_send_event Sends an event to the HTML
Viewer.

sapgui_select_combobox_entry Selects a list entry.

sapgui_press_button Presses a button.

sapgui_select_active_window Sets the specified window as the
active window.

sapgui_select_radio_button Selects a radio button.

sapgui_select_tab Selects a tab.

sapgui_send_vkey Sends a virtual key.

sapgui_set_checkbox Selects or clears a check box.

sapgui_set_focus Sets the focus to the specified
object.

sapgui_select_menu Selects the specified menu.

sapgui_set_password Sets the text of the password
field.

sapgui_set_text Inserts text into a text box.

sapgui_set_ok_code Sets the Command field text.

Part X • ERP/CRM Protocols

912

section.

➤ When recording a multi-protocol script in which the SAPGUI client
contains Web controls, close the SAPLogon application before recording.

➤ Use modal dialog boxes for F1. Instruct the SAPGUI client to open the F1
help in a modal dialog box. Choose Help >Settings. Click the F1 Help tab
and select the in modal dialog box option in the Display section.

➤ Use modal dialog boxes for F4. Instruct the SAPGUI client to open the F4
help in a modal dialog box.

The following procedure must be performed by a SAP administrator:

To open F4 help in modal dialog boxes:

 1 Ensure that all users have logged off from the server.

Chapter 59 • Developing SAPGUI Vuser Scripts

913

 2 Choose Help > Settings. Click the F4 Help tab.

 3 In the Display section (bottom left), choose System defaults.

 4 In the Display portion of the System defaults section (bottom right), select
Dialog.

 5 Save the changes—click Copy initial system setting or CTRL+S.

 6 Verify that the status bar displays the message Data was saved.

 7 Close the session.

 8 Restart the service through the SAP Management Console.

Part X • ERP/CRM Protocols

914

Replay Tips

Follow these guidelines before replaying your script in standalone-mode:

➤ Replace the encrypted password in the sapgui_logon function generated
during recording, with the real password. It is the second argument of the
function, after the user name: sapgui_logon("user", "pswd", "800", "EN"); For
additional security, you can encrypt the password within the code. Select
the password text (the actual text, not *****) and choose Encrypt string from
the right-click menu. VuGen inserts an lr_decrypt function at the location
of the password: sapgui_logon("user", lr_decrypt("3ea037b758"), "800", "EN");.

➤ When running a script for the first time, configure VuGen to show the
SAPGUI user interface during replay, in order to see the operations being
performed through the UI. To show the user interface during replay, open
the run-time settings (F4) and select the Show SAP Client During Replay
option in the SAPGUI:General node. During a load scenario, disable this
option, since it uses a large amount of system resources in displaying the UI
for multiple Vusers.

Tips for Replaying in a Scenario or Session Step

The following sections provide configuration tips for running the script on a
Controller or Console or Load Generator machine.

Controller and Console Settings

When working with a LoadRunner scenario or session step, set the following
values when running your script in a load test configuration:

Ramp-up: One by one (to insure proper logon) in the Scheduler.

Think time: Random think time in the Run-Time settings.

Users per load generator: 50 Vusers for machine with 512 MB of memory in
the Load Generators dialog box.

Load Generator Settings

When running your script in a scenario or session step, check the agent
mode and configure the terminal sessions on the Load Generator machines.

Agent Mode: Make sure that the LoadRunner (or Performance Center)
Remote Agent is running in Process mode. Service mode is not supported.

Chapter 59 • Developing SAPGUI Vuser Scripts

915

To check this, move your mouse over the agent’s icon in the Windows task
bar area, and read the description. If the description reads LoadRunner
Agent Service, it is running as a service.

To restart the agent as a process:

 1 Stop the agent. Right-click the LoadRunner Agent icon and select Close.

 2 Run magentproc.exe, located in the launch_service\bin directory, under the
LoadRunner or Tuning Module installation.

 3 To ensure that the correct Agent is launched the next time you start your
machine, change the Start type of the Agent Service from Automatic to
Manual. Then add a shortcut to magentproc.exe to the Windows Startup
folder.

Terminal Sessions: Machines running SAPGUI Vusers may be limited in the
number of Vusers that can run, due to the graphic resources available to that
machine. To increase the number of Vusers per machine, open additional
terminal server sessions on the Load Generator machines. Choose Agent
Configuration from Start > Programs > Mercury <product_name> >
Advanced Settings, and select the Enable Terminal Service option. You
specify the number of terminal sessions in the Load generator machine
properties. For more information, see the Configuring Terminal Services
section in the LoadRunner Controller User’s Guide.

Note: When the LoadRunner Agent is running in a terminal session, and the
terminal session’s window is minimized, no snapshots will be captured on
errors.

ms-its:wlrun.chm::terminal_services.htm
ms-its:wlrun.chm::terminal_services.htm

Part X • ERP/CRM Protocols

916

Troubleshooting SAPGUI Vuser Scripts

Question 1: I was able to record a script, but why does replay fail?

Answer: In LoadRunner, make sure that the LoadRunner Remote Agent is
running in Process mode. Service mode is not supported. For more
information, see “Replay Tips” on page 914.

Question 2: Why were certain SAPGUI controls not recorded?

Answer: Some SAPGUI controls are only supported in their menu or toolbar
contexts. Try performing the problematic task using a different means—
through a menu option, context menu, toolbar, and so on.

Question 3: Why can’t I record or replay any scripts in VuGen?

Answer:

 1 Verify that you have the latest patch of SAPGUI 6.20 installed. The lowest
allowed patch level is patch 32.

 2 Make sure that scripting is enabled. See the “Checking the
Configuration” on page 874.

 3 Verify that notifications are disabled in the SAPGUI for Windows client.
Click the Customizing of Local Layout button or press ALT+F12. Click
Options and select the Scripting tab. Clear both Notify options.

Question 4: What is the meaning of the error popup messages that are
issued when I try to run the script?

Answer: Certain SAP applications store the last layout for each user (such as
which frames are visible or hidden). If the stored layout was changed since
the script was recorded, this may cause replay problems. For Example, in the
ME52N transaction, the “Document overview Off/On” button will change
the number of visible frames.

If this occurs:

 1 Navigate the transaction to the same point as it was during recording, before
starting replay. You can use the Snapshot viewer to see the layout in which it
was recorded.

Chapter 59 • Developing SAPGUI Vuser Scripts

917

 2 Add statements to the script that bring the transaction to the desired layout
during replay. For example, if an optional frame interferes with your replay,
insert a verification function that checks if the frame is open. If it is open,
click a button to close it. For verification examples, see “Adding Verification
Functions” on page 895.

Question 5: Can I use the single sign-on mechanism when running a script
on a remote machine?

Answer: No, VuGen does not support the single sign-on connection
mechanism. In your SAPGUI client, open the Advanced Options and clear
the Enable Secure Network Communication feature. Note that you must re-
record the script after you modify the Connection preferences.

Question 6: Can VuGen record all SAP objects?

Answer: Recording is not available for objects not supported by SAPGUI
Scripting. See your recording log for information about those objects.

Question 7: Are all business processes supported?

Answer: VuGen does not support business processes that invoke Microsoft
Office module controls, nor those that require the use of GuiXT. You can
disable GuiXT from the SAPGUI for Windows client Options menu.

Part X • ERP/CRM Protocols

918

Additional Resources

LoadRunner and Tuning Module

For Online Help on dialog boxes, press F1 within a dialog box. You can also
choose Help > Contents and Index to manually open the Help. In the Index
tab, locate the SAPGUI Vuser scripts entry and click the appropriate sub-
entry.

For Online Help with a function, click within the function or step, and click
F1 to open the Online Function Reference.

SAP

For more information, refer to the SAP website at www. sap.com or one of
the following locations:

➤ SAP Notes - https://websmp103.sap-ag.de/notes

Note #480149: New profile parameter for user scripting on the front end

Note #587202: Drag & Drop is a known limitation of the SAPGUI interface

➤ SAP Patches - https://websmp104.sap-ag.de/patches

SAP GUI for Windows - SAPGUI 6.20 Patch (the lowest allowed level is 32)

919

60
Developing SAP-Web Vuser Scripts

You use VuGen’s SAP-Web Vuser type, to record the activity in SAP
Workplace or SAP Portal clients.

This chapter describes:

➤ About Developing SAP-Web Vuser Scripts

➤ Creating a SAP-Web Vuser Script

➤ Setting SAP-Web Recording Options

➤ Understanding a SAP-Web Vuser Script

➤ Replaying a SAP-Web Vuser Script

The following information only applies to the SAP-Web protocol.

Part X • ERP/CRM Protocols

920

About Developing SAP-Web Vuser Scripts

You use VuGen to record typical SAP business processes. VuGen records SAP
Workplace or Portal activity during the business processes, and generates a
Vuser script. When you perform actions within your browser, VuGen
generates functions that describe this activity. Each function begins with a
web prefix.

During replay, these functions emulate user activity on the SAP Workplace
or Portal clients. For example, web_url navigates to the PageBuilder.

Creating a SAP-Web Vuser Script

The first step in creating a SAP-Web Vuser script, is choosing the Vuser and
script type. The SAP-Web Vuser is under the ERP/CRM category. You can
create either a single or multi-protocol Vuser script. In addition, you can use
the single-protocol SAPGUI/SAP-Web dual Vuser type.

To create a SAP-Web Vuser:

 1 Invoke VuGen and choose File > New.

 2 To record a session that does not incorporate any SAPGUI controls within
the Workplace or Portal clients, create a single-protocol Vuser script using
the SAP-Web Vuser type.

web_url("PageBuilder[myPage]",
"URL=http://sonata.mercury.co.il/hrnp$30001/sonata.mercury.co.il:80/Acti
on/PageBuilder[myPage]?pageName=com.sapportals.pct.home.mynews",

"Resource=0",
"RecContentType=text/html",
"Referer=http://sonata.mercury.co.il/sapportal",
"Snapshot=t2.inf",
"Mode=HTML",
EXTRARES,
"Url=/irj/services/laf/themes/portal/sap_mango_polarwind/..,

ENDITEM,
LAST);

Chapter 60 • Developing SAP-Web Vuser Scripts

921

 3 To record a session that uses SAPGUI controls, create either:

➤ a single-protocol Vuser script, specifying the SAPGUI/SAP-Web dual
protocol.

➤ a multi-protocol Vuser script, specifying both the SAP-Web and SAPGUI
Vuser types.

Part X • ERP/CRM Protocols

922

Setting SAP-Web Recording Options

You use the recording options to set your preferences for how VuGen
generates the Vuser script.

The recommended settings for the Internet Protocol:Recording node are:

For SAP Workplace recordings: URL-based script

For SAP Portal recordings: HTML-based script (the default)

For information about the other Web related recording options, see
Chapter 40, “Setting Recording Options for Internet Protocols.”

Chapter 60 • Developing SAP-Web Vuser Scripts

923

Understanding a SAP-Web Vuser Script

The SAP-Web Vuser script typically contains several SAP transactions which
make up a business process. The business process consists of functions that
emulate user actions. For information about these functions, see the Web
functions in the Online Function Reference (Help > Function Reference).

The following example shows a typical recording for a SAP Portal client:

vuser_init()
{

web_reg_find("Text=SAP Portals Enterprise Portal 5.0",
LAST);

web_set_user("junior{UserNumber}",
lr_decrypt("3ed4cfe457afe04e"),
"sonata.mercury.co.il:80");

web_url("sapportal",
"URL=http://sonata.mercury.co.il/sapportal",
"Resource=0",
"RecContentType=text/html",
"Snapshot=t1.inf",
"Mode=HTML",
EXTRARES,
"Url=/SAPPor-

tal/IE/Media/sap_mango_polarwind/images/header/branding_image.jpg",
"Referer=http://sonata.mercury.co.il/hrnp$30001/sonata.mer-
cury.co.il:80/Action/26011[header]", ENDITEM,

"Url=/SAPPor-
tal/IE/Media/sap_mango_polarwind/images/header/logo.gif", "Ref-
erer=http://sonata.mercury.co.il/hrnp$30001/sonata.mercury.co.il:80/Actio
n/26011[header]", ENDITEM,
…

LAST);

Part X • ERP/CRM Protocols

924

The following section illustrates a multi-protocol recording in which the
Portal client opens a SAP control. Note the switch from web_xxx to
sapgui_xxx functions.

web_url("dummy",
"URL=http://sonata.mercury.co.il:1000/hrnp$30000/sonata.mer-

cury.co.il:1000/Action/dummy?PASS_PARAMS=YES&dummy-
Comp=dummy&Tcode=VA01&draggable=0&CompFName=VA01&Style=s
ap_mango_polarwind",

"Resource=0",
"RecContentType=text/html",
"Referer=http://sonata.mercury.co.il/sapportal",
"Snapshot=t9.inf",
"Mode=HTML",
LAST);

sapgui_open_connection_ex(" /H/Protector/S/3200 /WP",
"",
"con[0]");

sapgui_select_active_connection("con[0]");

sapgui_select_active_session("ses[0]");

/*Before running script, enter password in place of asterisks in logon
function*/

sapgui_logon("JUNIOR{UserNumber}",
"ides",
"800",
"EN",
BEGIN_OPTIONAL,

"AdditionalInfo=sapgui102",
END_OPTIONAL);

Chapter 60 • Developing SAP-Web Vuser Scripts

925

Replaying a SAP-Web Vuser Script

After creating and enhancing your SAP-Web Vuser script, you configure its
run-time settings and run it from VuGen to check its functionality.

Run-Time settings let you control the Vuser behavior during replay. You
configure these settings before running the Vuser script. You can set both
General and Web related run-time settings.

The General settings include the run logic, pacing, logging, think time, and
performance preferences. For information about the General run-time
settings, see Chapter 12, “Configuring Run-Time Settings.” For SAP-Web
specific settings, see Chapter 42, “Configuring Internet Run-Time Settings.”

Once you configure the Run-Time settings, you save the Vuser script and
run it from VuGen as a standalone test, to verify that it runs correctly. For
further information, see Chapter 14, “Running Vuser Scripts in Standalone
Mode.”

After verifying that your Vuser script is functional, you integrate it into your
environment: a LoadRunner scenario, Performance Center load test, Tuning
Module session, or Business Process Monitor profile. For more information,
refer to the LoadRunner Controller User’s Guide, Tuning Console, Performance
Center, or Application Management documentation.

Part X • ERP/CRM Protocols

926

927

61
Developing Siebel-Web Vuser Scripts

You use VuGen to record the activity in a Siebel Web environment and
generate a Vuser script. When you run the script, Vusers emulate the actions
within your Siebel environment.

This chapter describes:

➤ About Developing Siebel-Web Vuser Scripts

➤ Recording a Siebel-Web Session

➤ Correlating Siebel-Web Scripts

➤ Correlating SWECount, ROWID, and SWET Parameters

➤ Troubleshooting Siebel-Web Vuser Scripts

The following information only applies to Siebel-Web Vuser scripts.

About Developing Siebel-Web Vuser Scripts

The Siebel-Web protocol is similar to the standard Web Vuser, with several
changes in the default settings to allow it to work with the Siebel Customer
Relationship Management (CRM) application.

You record typical activities in your Siebel session. VuGen records the
actions and generates functions with a web_ prefix, that emulate the
actions.

The sections below provide tips for working with Siebel-Web recorded Vuser
Scripts and provide samples of the parameters that need to be correlated.

Part X • ERP/CRM Protocols

928

Recording a Siebel-Web Session

When recording a Siebel-Web session, use the following guidelines:

To record a Siebel-Web Vuser script:

 1 Create a Siebel-Web type Vuser script from the ERP category.

 2 Set the following Recording Options:

➤ Record node: HTML based script

Advanced HTML - Script options: a script containing explicit URLs only

Advanced HTML - Non HTML-generated elements: Do not record

➤ Advanced node: Clear the Reset context for each action option.

 3 Record the login in the vuser_init section.

 4 Record the Business Process in Action1.

 5 Record the logout in the vuser_end section.

 6 In the Run-Time settings, clear the Simulate a new user on each iteration
option in the Browser Emulation node.

For more information on how to configure the Recording Options and Web
related Run-Time settings, see Chapter 40, “Setting Recording Options for
Internet Protocols”, and Chapter 42, “Configuring Internet Run-Time
Settings.”

Chapter 61 • Developing Siebel-Web Vuser Scripts

929

Correlating Siebel-Web Scripts

When creating a test script for a Siebel session, you will most probably need
to use correlation in your script. Correlation is the mechanism by which
VuGen saves dynamic values to parameters during record and replay, for use
at a later point in the script. If you replayed the recorded script as is, without
correlation, it would fail, since the values of the arguments differ each time
the script runs. An example of such variables are SWECount and SWEBMC.

When you use correlation, VuGen saves the dynamic variables during both
record and replay, and uses them at the appropriate points within the script.
You can instruct VuGen to apply correlation during recording using one of
the following methods:

➤ Siebel Correlation Library

The Siebel correlation library automatically correlates most of the dynamic
values, creating a concise script that you can replay without major
modifications. This is the recommended method for correlation.

➤ VuGen Native Siebel Correlation

The native, built-in rules, work on a low level, allowing you to debug your
script and understand the correlations in depth.

Siebel Correlation Library

To assist you with correlation, Siebel has released a correlation library file as
part of the Siebel Application Server version 7.7. This library is available
only through Siebel. The library file, ssdtcorr.dll, is located under the
siebsrvr\bin folder for Windows and under siebsrvr/lib for UNIX
installations.

The library file, ssdtcorr.dll, must be available to all machines where a Load
Generator, Controller, or Console reside. Support for this library requires
VuGen 8.0 and higher.

To enable correlation with this library:

 1 Copy the DLL file into the bin directory of the Mercury product installation.

 2 Open a multi-protocol script using the Siebel-Web Vuser type.

Part X • ERP/CRM Protocols

930

 3 Enable UTF-8 support in the recording options. For more information, see
“Setting Advanced Recording Options” on page 538.

 4 Open the recording option’s Correlation node and click Import. Import the
rules file, WebSiebel77Correlation.cor, from the
\dat\webrulesdefaultsetting directory. If you are prompted with warnings,
click Override. For more information, see “Setting the Correlation Recording
Options” on page 647.

To revert back to the default correlation, delete all of the Siebel rules and
click Use Defaults.

When using the Siebel correlation library, verify that the SWE count rules
(where the left boundary contains the SWEC string) are not disabled. For
more information, see “Disabling and Enabling Rules” on page 934.

VuGen Native Siebel Correlation

VuGen’s native built-in rules for the Siebel server detect the Siebel server
variables and strings, automatically saving them for use at a later point
within the script.

You can view these rules in the list of correlation rules (see “Using VuGen’s
Correlation Rules” on page 638). The rules list the boundary criteria that are
unique for Siebel server strings.

When VuGen detects a match using the boundary criteria, it saves the value
between the boundaries to a parameter. The value can be a simple variable
or a public function.

You can also create your own rules by entering unique boundary criteria in
the Correlation Recording Options (see Chapter 46, “Setting Correlation
Rules for Web Vuser Scripts”) or after the recording from the Correlation
Results tab (see “Performing a Scan for Correlations” on page 657).

Chapter 61 • Developing Siebel-Web Vuser Scripts

931

In the Replay Log tab, VuGen indicates when it registers, saves, or uses the
parameters. Note that to display this information, you need to enable
Extended logging. For more information, see “Configuring the Log Run-
Time Settings” on page 158.

Simple Variable Correlation

In the following example, the left boundary criteria is _sn=. For every
instance of _sn= in the left boundary and ; in the right, VuGen creates a
parameter with the Siebel_sn_cookie prefix.

Part X • ERP/CRM Protocols

932

In the following example, VuGen detected the _sn boundary. It saved the
parameter to Siebel_sn_cookie6 and used it in the web_url function.

Function Correlation

In certain instances, the boundary match is a function. Functions generally
use an array to store the run-time values. In order to correlate these values,
VuGen parses the array and saves each argument to a separate parameter
using the following format:

<parameter_name> = <recorded_value> (display_name)

The display name is the text that appears next to the value, in the Siebel
Application.

/* Registering parameter(s) from source
web_reg_save_param("Siebel_sn_cookie6",
"LB/IC=_sn=",
"RB/IC=;",
"Ord=1",
"Search=headers",
"RelFrameId=1",
LAST);

…

web_url("start.swe_3",
"URL=http://cannon.mercury.co.il/callcenter_enu/start.swe?SWECmd=Got
oPostedAc-
tion&SWEDIC=true&_sn={Siebel_sn_cookie6}&SWEC={Siebel_SWECo
unt}&SWEFrame=top._sweclient&SWECS=true",
"TargetFrame=",
"Resource=0",
"RecContentType=text/html",
"Referer=http://cannon.mercury.co.il/callcenter_enu/start.swe?SWECmd=
GetCached-
Frame&_sn={Siebel_sn_cookie6}&SWEC={Siebel_SWECount}&SWE-
Frame=top._swe",
"Snapshot=t4.inf",
"Mode=HTML",
LAST);

Chapter 61 • Developing Siebel-Web Vuser Scripts

933

VuGen inserts a comment block with all of the parameter definitions.

In addition, when encountering a function, VuGen generates a new
parameter for web_reg_save_param, AutoCorrelationFunction. VuGen also
determines the prefix of the parameters and uses it as the parameter name.
In the following example, the prefix is Siebel_Star_Array_Op33.

/* Registering parameter(s) from source task id 159
// {Siebel_Star_Array_Op33_7} = ""
// {Siebel_Star_Array_Op33_6} = "1-231"
// {Siebel_Star_Array_Op33_2} = ""
// {Siebel_Star_Array_Op33_8} = "Opportunity"
// {Siebel_Star_Array_Op33_5} = "06/26/2003 19:55:23"
// {Siebel_Star_Array_Op33_4} = "06/26/2003 19:55:23"
// {Siebel_Star_Array_Op33_3} = ""
// {Siebel_Star_Array_Op33_1} = "test camp"
// {Siebel_Star_Array_Op33_9} = ""
// {Siebel_Star_Array_Op33_rowid} = "1-6F"
// */

web_reg_save_param("Siebel_Star_Array_Op33",
"LB/IC=`v`",
"RB/IC=`",
"Ord=1",
"Search=Body",
"RelFrameId=1",
"AutoCorrelationFunction=flCorrelationCallbackParseStarArray",
LAST);

Part X • ERP/CRM Protocols

934

VuGen uses the parameters at a later point within the script. In the
following example, the parameter is called in web_submit_data.

During replay, Vusers do a callback to the public function, using the array
elements that were saved as parameters.

Note: Correlation for the SWEC parameter is not done through the
correlation rules. VuGen handles it automatically with a built-in detection
mechanism. For more information, see “SWEC Correlation” on page 935.

Disabling and Enabling Rules

In normal situations, you do not need to disable any rules. In some cases,
however, you may choose to disable rules that do not apply. For example,
disable Japanese content check rules when testing English-only applications.

web_submit_data("start.swe_14",
"Action=http://cannon.mercury.co.il/callcenter_enu/start.swe",
"Method=POST",
"RecContentType=text/html",
"Referer=",
"Snapshot=t15.inf",
"Mode=HTML",
ITEMDATA,
"Name=SWECLK", "Value=1", ENDITEM,
"Name=SWEField", "Value=s_2_1_13_0", ENDITEM,
"Name=SWER", "Value=0", ENDITEM,
"Name=SWESP", "Value=false", ENDITEM,
"Name=s_2_2_29_0", "Value={Siebel_Star_Array_Op33_1}",

ENDITEM,
"Name=s_2_2_30_0", "Value={Siebel_Star_Array_Op33_2}",

ENDITEM,
"Name=s_2_2_36_0", "Value={Siebel_Star_Array_Op33_3}",

ENDITEM,
…

Chapter 61 • Developing Siebel-Web Vuser Scripts

935

Another reason to disable a rule is if the Controller or Console explicitly
requires an error condition to be generated. View the rule properties in the
recording options and determine the conditions necessary for your
application.

To disable rules:

 1 Open the Correlation recording options. Choose Tools > Recording Options
and click the Correlation node.

 2 Select the Enable correlation during recording option. The dialog box
displays the supported servers.

 3 Expand the rules under Siebel and view their properties.

 4 Clear the check box adjacent to the rule for each rule you want to disable.

SWEC Correlation

SWEC is a parameter used by Siebel servers representing the number of user
clicks. The SWEC parameter usually appears as an argument of a URL or a
POST statement. For example:

or

VuGen handles the changes of the SWEC by incrementing a counter before
each relevant step. VuGen stores the current value of the SWEC in a separate
variable (Siebel_SWECount_var). Before each step, VuGen saves the
counter’s value to a VuGen parameter (Siebel_SWECount).

GET /callcenter_enu/start.swe?SWECmd=GetCachedFrame&_sn=2-
mOTFXHWBAAGb5Xzv9Ls2Z45QvxGQnOnPVtX6vnfUU_&SWEC=1&S
WEFrame=top._swe._sweapp HTTP/1.1

POST /callcenter_enu/start.swe HTTP/1.1
…
\r\n\r\n
SWERPC=1&SWEC=0&_sn=2-
mOTFXHWBAAGb5Xzv9Ls2Z45QvxGQnOnPVtX6vnfUU_&SWECmd=In
vokeMethod…

Part X • ERP/CRM Protocols

936

In the following example, web_submit_data uses the dynamic value of the
SWEC parameter, Siebel_SWECount.

Note that the SWEC parameter may also appear in the referrer URL.
However, its value in the referrer URL usually differs from its value in the
requested URL. VuGen handles this automatically.

Correlating SWECount, ROWID, and SWET Parameters

This section provides tips for correlating several special parameters:

➤ SWECount

➤ Row ID Length

➤ SWETS (Timestamps)

Siebel_SWECount_var += 1;

lr_save_int(Siebel_SWECount_var, "Siebel_SWECount");

web_submit_data("start.swe_8",
"Action=http://cannon.mercury.co.il/callcenter_enu/start.swe",
"Method=POST",
"TargetFrame=",
"RecContentType=text/html",
"Referer=",
"Snapshot=t9.inf",
"Mode=HTML",
"EncodeAtSign=YES",
ITEMDATA,
"Name=SWERPC", "Value=1", ENDITEM,
"Name=SWEC", "Value={Siebel_SWECount}", ENDITEM,
"Name=SWECmd", "Value=InvokeMethod", ENDITEM,
"Name=SWEService", "Value=SWE Command Manager", ENDITEM,
"Name=SWEMethod", "Value=BatchCanInvoke", ENDITEM,
"Name=SWEIPS",…
LAST);

Chapter 61 • Developing Siebel-Web Vuser Scripts

937

SWECount

The SWECount parameter value is usually a small number consisting of one
or two digits. It is often difficult to determine where to replace the recorded
value with a parameter.

In the web_submit_data function, VuGen only replaces it in the SWEC
field.

In URLs, VuGen only replaces the value when it appears after the strings
"SWEC=" or "SWEC`".

The parameter name for all the SWECount correlations is the same.

Row ID Length

In certain cases, the rowid is preceded by its length, encoded in hexadecimal
format. Since this length can change, this value must be correlated.

For example, the following string is comprised of a length value and RowID,
xxx6_1-4ABCyyy, where 6 is the length, and 1-4ABC is the RowID.

If you define parameters to correlate the string as

xxx{rowid_Length}_{rowid}yyy

then using this enhanced correlation, VuGen generates the following
function before the string:

web_save_param_length("rowid", LAST);

This function gets the value of rowid, and saves its length into the
parameter rowid_length in hexadecimal format.

SWETS (Timestamps)

The SWETS value in the script, is the number of milliseconds since midnight
January 1st, 1970.

VuGen replaces all non-empty timestamps in the script, with the parameter
{SiebelTimeStamp}. Before saving a value to this parameter, VuGen generates
the following function:

web_save_timestamp_param("SiebelTimeStamp", LAST);

Part X • ERP/CRM Protocols

938

This function saves the current timestamp to the SiebelTimeStamp
parameter.

Troubleshooting Siebel-Web Vuser Scripts

This section provides information about errors you might encounter when
creating a script, and the breakdown diagnostic tool.

➤ Typical Errors

➤ Recording Breakdown Information

Typical Errors

You may encounter one or more of the following errors while creating a
Siebel-Web Vuser script:

➤ Back or Refresh Error

➤ Same Values

➤ No Content HTTP Response

➤ Restoring the Context

➤ Cannot Locate Record

➤ End of File

➤ Unable to Retrieve Search Categories

Back or Refresh Error

An error message relating to Back or Refresh typically has the following text:

We are unable to process your request. This is most likely because you used the
browser BACK or REFRESH button to get to this point.

Cause: The possible causes of this problem may be:

➤ The SWEC was not correlated correctly for the current request.

➤ The SWETS was not correlated correctly for the current request.

➤ The request was submitted twice to the Siebel server without the SWEC
being updated.

Chapter 61 • Developing Siebel-Web Vuser Scripts

939

➤ A previous request should have opened a frame for the browser to
download. This frame was not created on the server probably because the
SWEMethod has changed since the recording.

Same Values

A typical Web page response to the Same Values error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`10`0`1`Errors`0`2`0`Level0`0`ErrMsg`Th
e same values for 'Name' already exist. If you would like to enter a new record,
please ensure that the field values are unique.`ErrCode`28591`

Cause: The possible cause of this problem may be that one of the values in
the request (in the above example, the value of the Name field) duplicates a
value in another row of the database table. This value needs to be replaced
with a unique value to be used for each iteration per user. The
recommended solution is to replace the row ID with its parameter instead
insuring that it will be unique.

No Content HTTP Response

A typical HTTP response for a No Content HTTP Response type error is:

HTTP/1.1 204 No Content
Server: Microsoft-IIS/5.0
Date: Fri, 31 Jan 2003 21:52:30 GMT
Content-Language: en
Cache-Control: no-cache

Cause: The possible causes of this problem may be that the row ID is not
correlated at all or that it is correlated incorrectly.

Restoring the Context

The typical Web page response to the Restoring the Context type error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`9`0`1`Errors`0`2`0`Level0`0`ErrMsg`An
error happened during restoring the context for requested
location`ErrCode`27631`

Cause: The possible causes of this problem may be that the rowid is not
correlated or that it is correlated incorrectly.

Part X • ERP/CRM Protocols

940

Cannot Locate Record

The typical Web page response to the Cannot locate record type error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`23`0`2`Errors`0`2`0`Level0`0`ErrMsg`Ca
nnot locate record within view: Contact Detail - Opportunities View applet:
Opportunity List Applet.`ErrCode`27573`

Cause: The possible causes of this problem may be that the input name
SWERowId does not contain a row ID for a record on the Web page. This
input name should have been parameterized. The parameter's source value
may have changed its location.

End of File

The typical Web page response to the End of File type error is:

@0`0`3`3``0`UC`1`Status`Error`SWEC`28`0`1`Errors`0`2`0`Level0`0`ErrMsg`An
end of file error has occurred. Please continue or ask your systems administrator
to check your application configuration if the problem persists.`ErrCode`28601`

Cause: The possible causes of this problem may be that the input name
SWERowId does not contain a row ID for a record on the Web page. This
input name should have been parameterized. The parameter's source value
may have changed its location.

Unable to Retrieve Search Categories

The typical Web page response to the Unable to Retrieve Search Categories
type error is:

Cause: A possible cause of this problem may be that the search frame was
not downloaded from the server. This occurs when the previous request did
not ask the server to create the search frame correctly.

Chapter 61 • Developing Siebel-Web Vuser Scripts

941

Recording Breakdown Information

VuGen provides a diagnostic tool for understanding the transaction
components in your test—transaction breakdown. Using transaction
breakdown, you can determine where the bottlenecks are and the issues that
need to be resolved.

When preparing your script for transaction breakdown, it is recommended
that you add think time at the end of each transaction using the ratio of one
second per hour of testing. For more information on entering think time,
see Chapter 7, “Enhancing Vuser Scripts.”

In order to record the transaction breakdown information, you need to
modify your the parameterization functions in your script.

To prepare your script for transaction breakdown:

 1 Identify the script parameterization replacement of the Session ID.

/* Registering parameter(s) from source task id 15
// {Siebel_sn_body4} = "28eMu9uzkn.YGFFevN1FdrCfCCOc8c_"
// */
web_reg_save_param("Siebel_sn_body4",

"LB/IC=_sn=",
"RB/IC=&",
"Ord=1",
"Search=Body",
"RelFrameId=1",
LAST);

 2 Mark the next web_submit_data function as a transaction by enclosing it
with lr_start_transaction and lr_end_transaction functions.

Part X • ERP/CRM Protocols

942

 3 Before the end of the transactions, add a call to
lr_transaction_instance_add_info, where the first parameter, 0 is
mandatory and the session ID has a SSQLBD prefix.

lr_start_transaction("LoginSQLSync");
web_submit_data("start.swe_2",

"Action=http://design/callcenter_enu/start.swe",
"Method=POST",
"RecContentType=text/html",
"Referer=http://design/callcenter_enu/start.swe",
"Snapshot=t2.inf",
"Mode=HTML",
ITEMDATA,
"Name=SWEUserName", "Value=wrun", ENDITEM,
"Name=SWEPassword", "Value=wrun", ENDITEM,
"Name=SWERememberUser", "Value=Yes", ENDITEM,
"Name=SWENeedContext", "Value=false", ENDITEM,
"Name=SWEFo", "Value=SWEEntryForm", ENDITEM,
"Name=SWETS", "Value={SiebelTimeStamp}", ENDITEM,
"Name=SWECmd", "Value=ExecuteLogin", ENDITEM,
"Name=SWEBID", "Value=-1", ENDITEM,
"Name=SWEC", "Value=0", ENDITEM,
LAST);

lr_transaction_instance_add_info(0,lr_eval_string("SSQLBD:{Siebel_sn_body4}
"));
lr_end_transaction("LoginSQLSync", LR_AUTO);

Note: To avoid session ID conflicts, make sure that the Vusers log off from
the database at the end of each session.

Part XI

Legacy Protocols

944

945

62
Introducing RTE Vuser Scripts

RTE Vusers operate terminal emulators in Windows environments. This
chapter describes how to develop Windows-based RTE Vuser scripts.

This chapter describes:

➤ About Developing RTE Vuser Scripts

➤ Introducing RTE Vusers

➤ Understanding RTE Vuser Technology

➤ Getting Started with RTE Vuser Scripts

➤ Using TE Functions

➤ Mapping Terminal Keys to PC Keyboard Keys

The following information applies only to RTE (Windows) Vuser scripts.

About Developing RTE Vuser Scripts

RTE Vusers operate terminal emulators in order to load test client/server
systems.

You record a terminal emulator session with VuGen to represent a true user’s
actions. You can then enhance your recorded script with transaction and
synchronization functions.

This chapter describes how to develop Windows-based RTE Vuser scripts.

Part XI • Legacy Protocols

946

Introducing RTE Vusers

An RTE Vuser types character input into a terminal emulator, submits the
data to a server, and then waits for the server to respond. For instance,
suppose that you have a server that maintains customer information for a
maintenance company. Every time a field service representative makes a
repair, he accesses the server database by modem using a terminal emulator.
The service representative accesses information about the customer and
then records the details of the repair that he performs.

You could use RTE Vusers to emulate this case. An RTE Vuser would:

 1 Type 60 at the command line to open an application program.

 2 Type F296, the field service representative’s number.

 3 Type NY270, the customer number.

 4 Wait for the word "Details" to appear on the screen. The appearance of
"Details" indicates that all the customer details are displayed on the screen.

 5 Type Changed gasket P249, and performed Major Service the details of the
current repair.

 6 Type Q to close the application program.

You use VuGen to create RTE Vuser scripts. The script generator records the
actions of a human user in a terminal emulator. It records the keyboard
input from the terminal window, generates the appropriate statements, and
inserts them into the Vuser script. While you record, the script generator
automatically inserts synchronization functions into the script. For details,
see Chapter 65, “Synchronizing RTE Vuser Scripts.”

Chapter 62 • Introducing RTE Vuser Scripts

947

Understanding RTE Vuser Technology

An RTE Vuser emulates the actions of a real user. Human users use terminals
or terminal emulators to operate application programs.

In the RTE Vuser environment, a Vuser replaces the human. The Vuser
operates PowerTerm, a terminal emulator.

PowerTerm works like a standard terminal emulator, supporting common
protocols such as IBM 3270 & 5250, VT100, and VT220.

Getting Started with RTE Vuser Scripts

This section provides an overview of the process of developing RTE Vuser
scripts using VuGen.

To develop an RTE Vuser script:

 1 Record the basic script using VuGen.

Use the Virtual User Generator (VuGen) to record the operations that you
perform in a terminal emulator. VuGen records the keyboard input from the
terminal window, generates the appropriate statements, and then inserts
these statements into the Vuser script.

For details, see Chapter 63, “Recording RTE Vuser Scripts.”

 2 Enhance the script.

Enhance the Vuser script by inserting transactions, rendezvous points,
synchronization functions, and control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 TerminalApplication Human User
EmulatorProgram

PowerTerm
Application

VuserProgram

Part XI • Legacy Protocols

948

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

 4 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.”

 5 Run the script from VuGen.

Run the script from VuGen to verify that it runs correctly. View the standard
output to verify that the program is communicating properly with the
server.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you successfully create an RTE script, you integrate it into a scenario,
profile, or session step. For more information on integrating scripts in a
scenario, profile, or session step, refer to the appropriate user’s guide.

Chapter 62 • Introducing RTE Vuser Scripts

949

Using TE Functions

The functions developed to emulate a terminal communicating with a
server are called TE Vuser functions. Each TE Vuser function has a TE prefix.
VuGen automatically records most of the TE functions listed in this section
during an RTE session. You can also manually program any of the functions
into your script. For syntax and examples of the TE functions, refer to the
Online Function Reference (Help > Function Reference).

Terminal Emulator Connection Function

Text Retrieval Functions

Cursor Functions

System Variable Functions

TE_connect Connects the terminal emulator to the
specified host.

TE_find_text Searches for text in a designated area of the
screen.

TE_get_line_attribute Returns information about text formatting.

TE_get_text_line Reads text from a designated line on the
screen.

TE_get_cursor_pos Returns the current location of the cursor.

TE_set_cursor_pos Sets the position of the cursor on the
terminal screen.

TE_getvar Returns the value of an RTE system variable.

TE_setvar Sets the value of an RTE system variable.

Part XI • Legacy Protocols

950

Error Code Functions

Typing Functions

Synchronization Functions

The following TE functions can be parameterized: TE_connect,
TE_find_text, TE_get_text_line, and TE_type. For details on
parameterizing function in Vuser scripts, see Chapter 8, “Working with
VuGen Parameters.”

TE_perror Prints an error code to the Output window.

TE_sperror Translates an error code into a string.

TE_type Sends a formatted string to the client
application.

TE_typing_style Determines the way text is typed into the
terminal emulator.

TE_unlock_keyboard Unlocks the keyboard of a mainframe
terminal.

TE_wait_cursor Waits for the cursor to appear at a specified
location in the terminal window.

TE_wait_silent Waits for the client application to be silent
for a specified number of seconds.

TE_wait_sync Waits for the system to return from
X-SYSTEM or Input Inhibited mode.

TE_wait_sync_transaction Records the time that the system remained in
the most recent X SYSTEM mode.

TE_wait_text Waits for a string to appear in a designated
location.

Chapter 62 • Introducing RTE Vuser Scripts

951

Mapping Terminal Keys to PC Keyboard Keys

Because you are using a terminal emulator, you will be using a PC keyboard
in place of a terminal keyboard. Many keys that are found on the terminal
keyboard are not available on a PC keyboard. Examples of such keys are
HELP, AUTOR, and PUSH, which are found on the IBM 5250 keyboard. To
successfully operate the terminal emulator and any associated application
programs, you may have to map certain terminal keys to keys on the PC
keyboard.

To map a terminal key to a key on the PC keyboard:

 1 In the terminal emulator, select Options > Keyboard Map, or click the
Keyboard Mapping button. The Keyboard Mapping dialog box opens.

Part XI • Legacy Protocols

952

 2 Click the Keyboard Mapping button on the toolbar. To map a terminal key
to a PC key, drag a key from the upper terminal keyboard to a PC key on the
lower keyboard.

You can click the Shift and/or Control keys on the upper keyboard to display
additional key functions that can be viewed only by first selecting either of
these keys. You can then drag the required key from the upper terminal
keyboard to a key on the lower PC keyboard.

To cancel a definition, drag the PC key definition to the wastebasket. This
restores the default function of the PC key.

To restore the default mappings, click Defaults.

953

63
Recording RTE Vuser Scripts

You use VuGen to record Windows-based Remote Terminal Emulation (RTE)
Vuser scripts.

This chapter describes:

➤ About Recording RTE Vuser Scripts

➤ Creating a New RTE Vuser Script

➤ Recording the Terminal Setup and Connection Procedure

➤ Recording Typical User Actions

➤ Recording the Log Off Procedure

➤ Setting the RTE Recording Options

➤ Typing Input into a Terminal Emulator

➤ Generating Unique Device Names

➤ Setting the Field Demarcation Characters

The following information applies only to Terminal Emulation (RTE)
Vuser scripts.

Part XI • Legacy Protocols

954

About Recording RTE Vuser Scripts

You use VuGen to record Windows-based RTE Vuser scripts. VuGen uses the
PowerTerm terminal emulator to emulate a wide variety of terminal types.
You use PowerTerm to perform a typical terminal connection, followed by
typical business processes. Thereafter, you perform the log off procedure.
While you perform typical user actions in the terminal emulator, VuGen
generates the appropriate statements, and inserts them into a Vuser script.
You can view and edit the script while recording.

Before recording an RTE Vuser script, ensure that the recording options are
set correctly. The recording options allow you to control how VuGen
generates certain functions while you record a Vuser script. VuGen applies
the recording options during all subsequent recording sessions.

Creating a New RTE Vuser Script

Before recording a user’s actions into a Vuser script, you must open one. You
can open an existing script, or create a new one. You use VuGen to create a
new Vuser script.

To create a new RTE Vuser script:

 1 Select Virtual User Generator from your product’s start menu. The VuGen
window opens.

Chapter 63 • Recording RTE Vuser Scripts

955

 2 Click the New button. The New Virtual User dialog box opens:

 3 Select the Legacy protocol type, and choose Terminal Emulator (RTE). Click
OK. VuGen generates and displays an empty RTE script, with the cursor
positioned to begin recording in the vuser_init section.

Recording the Terminal Setup and Connection Procedure

After you create a skeleton Vuser script, you record the terminal setup and
connection procedure into the script. VuGen uses the PowerTerm terminal
emulator when you record an RTE Vuser script.

To record the terminal setup and connection procedure:

 1 Open an existing RTE Vuser script, or create a new one.

Part XI • Legacy Protocols

956

 2 In the Sections box, select the section into which you want VuGen to insert
the recorded statements. The available sections are vuser_init, Actions, and
vuser_end.

Note: Always record the terminal setup and connection procedure into the
vuser_init section. The vuser_init section is not repeated when you run
multiple iterations of a Vuser script—only the Actions section is repeated.
For more information on the iteration settings, see Chapter 12,
“Configuring Run-Time Settings.”

 3 In the Vuser script, place the cursor at the location where you want to begin
recording.

 4 Click the Record button. The PowerTerm main window opens.

Chapter 63 • Recording RTE Vuser Scripts

957

 5 From the PowerTerm menu bar, select Terminal > Setup to display the
Terminal Setup dialog box.

 6 Select the type of emulation from the VT Terminal and IBM Terminal types,
and then click OK.

Note: Select an IBM terminal type to connect to an AS/400 machine or an
IBM mainframe; select a VT terminal type to connect to a UNIX
workstation.

Part XI • Legacy Protocols

958

 7 Select Communication > Connect to display the Connect dialog box.

 8 Under Session Type, select the type of communication to use.

 9 Under Parameters, specify the required options. The available parameters
vary depending on the type of session that you select. For details on the
parameters, click Help.

Note: You can save the parameters that you define for re-use in the future.
To save the parameters, click Save As. The parameter-sets that you save are
displayed in the Sessions List box.

Chapter 63 • Recording RTE Vuser Scripts

959

 10 Click Connect. PowerTerm connects to the specified system, and VuGen
inserts a TE_connect function into the script, at the insertion point.

The TE_connect statement has the following form:

The inserted TE_connect statement is followed by an if statement that
checks whether or not the TE_connect function succeeds during replay.

Note: Do not record more than one connection to a server (TE_connect) in
a Vuser script.

The terminal setup and connection procedure is complete. You are now
ready to begin recording typical user actions into the Vuser script, as
described below.

/* *** The terminal type is VT220-7. */
 TE_connect(
 "comm-type = telnet;"
 "host-name = pharaoh;"
 "set-window-size = true;"
 "security-type = unsecured;"
 "telnet-binary-mode = true;"
 "terminal-type = vt220-7;"
 "terminal-model = vt320;"
 , 60000);
 if (TE_errno != TE_SUCCESS)
 return -1;

Part XI • Legacy Protocols

960

Recording Typical User Actions

After recording the setup procedure, you perform typical user actions or
business processes. You record these processes into the Actions section of the
Vuser script. Only the Actions section of a Vuser script is repeated when you
run multiple iterations of the script. For details on setting iterations, see
Chapter 12, “Configuring Run-Time Settings.”

When recording a session, VuGen records the text strokes and not the text.
Therefore, it is not recommended that you copy and paste commands into
the PowerTerm window—instead, type them in directly.

To record user actions:

 1 Open an existing RTE Vuser script, and then click Actions in the Section
box.

 2 Proceed to perform typical user actions in the terminal emulator. VuGen
generates the appropriate statements, and inserts them into the Vuser script
while you type. If necessary, you can edit the recorded statements while you
record the script.

Note: By default, VuGen waits a maximum of 5 seconds between successive
keystrokes before generating the appropriate TE_type function. To change
the waiting time, see “Setting the RTE Recording Options” on page 963.

When you finish recording the typical user actions, proceed to record the
log off procedure, as described in the next section.

Chapter 63 • Recording RTE Vuser Scripts

961

Recording the Log Off Procedure

You record the Vuser log off process into the vuser_end section of the Vuser
script. The vuser_end section is not repeated when you run many iterations
of the script. For details on setting iterations, see Chapter 12, “Configuring
Run-Time Settings.”

To record the log off procedure:

 1 Ensure that you have performed and recorded the typical user actions as
described in the previous section.

 2 In the VuGen main window, click vuser_end in the Section box.

 3 Perform the log off procedure. VuGen records the procedure into the
vuser_end section of the script.

 4 Click Stop Recording on the Recording toolbar. The main VuGen window
displays all the recorded statements.

 5 Click Save to save the recorded session. The Save As dialog box opens (for
new Vuser scripts only). Specify a script name. After recording a script, you
can manually edit it in VuGen’s main window.

Part XI • Legacy Protocols

962

Setting RTE Configuration Options

You can set the recording options to match the character set used during
terminal emulation. The default character set is ANSI. For Kanji and other
multi-byte platforms, you can specify DBCS (Double-byte Character Set).

To open the Configuration Recording Options, click the Recording Options
button on the toolbar or select Tools > Recording Options. Select the
RTE:Configuration node.

Chapter 63 • Recording RTE Vuser Scripts

963

Setting the RTE Recording Options

By setting the recording options, you can customize the code that VuGen
generates for RTE functions. You use the Recording Options dialog box to set
the recording options.

To open the Recording Options dialog box, click the Recording Options
button on the toolbar, or select Tools > Recording Options. Select the
RTE:RTE node.

You can set the following recording options:

➤ Automatic Synchronization Commands

➤ Automatic Screen Header Comments (IBM terminals only)

➤ Automatic X-System Transactions (IBM terminals only)

➤ Keyboard Recording Timeout

Part XI • Legacy Protocols

964

Automatic Synchronization Commands

VuGen can automatically generate a number of TE-synchronization
functions, and insert them into the script while you record.

 1 You can specify that VuGen generate a TE_wait_sync function each time a
new screen is displayed while recording. To do so, select the X-System check
box in the Recording Options dialog box.

By default, VuGen does automatically generate a TE_wait_sync function
each time a new screen is displayed while recording.

Note: VuGen generates TE_wait_sync functions when recording IBM block
mode terminals only.

 2 You can specify that VuGen generate a TE_wait_cursor function before each
TE_type function. To do so, select the Cursor check box in the Recording
Options dialog box.

By default, VuGen does not automatically generate TE_wait_cursor
functions.

 3 You can specify that VuGen generate a TE_wait_text function before each
TE_type function (where appropriate). To do so, select the Prompt check
box in the Recording Options dialog box.

By default, VuGen does not automatically generate a TE_wait_text function
before each TE_type function.

Note: VuGen generates meaningful TE_wait_text functions when recording
VT type terminals only. Do not use automatic TE_wait_text function
generation when recording block-mode (IBM) terminals.

Chapter 63 • Recording RTE Vuser Scripts

965

Automatic Screen Header Comments (IBM terminals only)

You can instruct VuGen to automatically generate screen header comments
while recording a Vuser script, and insert the comments into the script.

Generated comments make a recorded script easier to read by identifying
each new screen as it is displayed in the terminal emulator. A generated
comment contains the text that appears on the first line of the terminal
emulator window. The following generated comment shows that the Office
Tasks screen was displayed in the terminal emulator:

To ensure that VuGen automatically generates comments while you record a
script, select the “Generate screen header comments” check box in the
Recording Options dialog box.

By default, VuGen does not automatically generate screen comments.

Note: You can generate comments automatically only when using block-
mode terminal emulators such as the IBM 5250.

Automatic X-System Transactions (IBM terminals only)

You can specify that VuGen record the time that the system was in the
X SYSTEM mode during a tuning session or scenario run. To do so, VuGen
inserts a TE_wait_sync_transaction function after each TE_wait_sync
function. Each TE_wait_sync_transaction function creates a transaction
with the name “default”. Each TE_wait_sync_transaction function records
the time that the system spent in the previous X SYSTEM state.

To instruct VuGen to insert TE_wait_sync_transaction statements while
recording, select the Generate automatic X SYSTEM transactions check box
in the Recording Options dialog box.

By default, VuGen does not automatically generate transactions.

/* OFCTSK Office Tasks */

Part XI • Legacy Protocols

966

Keyboard Recording Timeout

When you type text into a terminal emulator while recording, VuGen
monitors the text input. After each keystroke, VuGen waits up to a specified
amount of time for the next key stroke. If there is no subsequent keystroke
within the specified time, VuGen assumes that the command is complete.
VuGen then generates and inserts the appropriate TE_type function into
the script.

To set the maximum amount of time that VuGen waits between successive
keystrokes, enter an amount in the Keyboard record timeout box.

By default, VuGen waits a maximum of 5 seconds between successive
keystrokes before generating the appropriate TE_type function.

Typing Input into a Terminal Emulator

Two TE Vuser functions enable Vusers to “type” character input into the
PowerTerm terminal emulator:

➤ TE_type sends characters to the terminal emulator. When recording, the
VuGen automatically generates TE_type functions for keyboard input to
the terminal window. For details, see “Using the TE_type Function” on
page 967.

➤ TE_typing_style determines the speed at which the Vuser types. You can
manually define the typing style by inserting a TE_typing_style function
into the Vuser script. For details, see “Setting the Typing Style” on
page 968. Alternatively, you can set the typing style by using the run-
time settings. For details, see Chapter 64, “Configuring RTE Run-Time
Settings.”

Note: While recording an RTE Vuser script, do not use the mouse to relocate
the cursor within the terminal emulator window. VuGen does not record
these cursor movements.

Chapter 63 • Recording RTE Vuser Scripts

967

Using the TE_type Function

When you record a script, the VuGen records all keyboard input and
generates appropriate TE_type functions. During execution, TE_type
functions send formatted strings to the terminal emulator.

Keyboard input is defined as a regular text string (including blank spaces).
For example:

Input key names longer than one character are represented by identifiers
beginning with the letter k, and are bracketed within greater-than/less-than
signs (< >).

For example, the following function depicts the input of the Return key
followed by the Control and y keys:

Some other examples include: <kF1>, <kUp>, <kF10>, <kHelp>, <kTab>.

To determine a key name, record an operation on the key, and then check
the recorded statement for its name.

Note: When you program a TE_type statement (rather than recording it),
use the key definitions provided in the Online Function Reference (Help >
Function Reference).

Setting the Timeout Value for TE_type

If a Vuser attempts to submit a TE_type statement while the system is in
X SYSTEM (or input inhibited) mode, the Vuser will wait until the
X SYSTEM mode ends before typing. If the system stays in X SYSTEM mode
for more than TE_XSYSTEM_TIMEOUT milliseconds, then the TE_type
function returns a TE_TIMEOUT error.

TE_type ("hello, world");

TE_type("<kReturn><kControl-y>");

Part XI • Legacy Protocols

968

You can set the value of TE_XSYSTEM_TIMEOUT by using TE_setvar. The
default value for TE_XSYSTEM_TIMEOUT is 30 seconds.

Allowing a Vuser to Type Ahead

Under certain circumstances you may want a Vuser to submit a keystroke
even though the system is in X SYSTEM (or input inhibited) mode. For
example, you may want the Vuser to press the Break key. You use the
TE_ALLOW_TYPEAHEAD variable to enable the Vuser to submit a keystroke
even though the system is in X SYSTEM mode.

Set TE_ALLOW_TYPEAHEAD to zero to disable typing ahead, and to any
non-zero number to permit typing ahead. You use TE_setvar to set the value
of TE_ALLOW_TYPEAHEAD. By default, TE_ALLOW_TYPEAHEAD is set to
zero, preventing keystrokes from being sent during X SYSTEM mode.

For more information about the TE_type function and its conventions, refer
to the Online Function Reference (Help > Function Reference).

Setting the Typing Style

You can set two typing styles for RTE Vuser: FAST and HUMAN. In the FAST
style, the Vuser types input into the terminal emulator as quickly as
possible. In the HUMAN style, the Vuser pauses after typing each character.
In this way, the Vuser more closely emulates a human user typing at the
keyboard.

You set the typing style using the TE_typing_style function. The syntax of
the TE_typing_style function is:

int TE_typing_style (char *style);

where style can be FAST or HUMAN. The default typing style is HUMAN. If
you select the HUMAN typing style, the format is:

HUMAN, delay [,first_delay]

Chapter 63 • Recording RTE Vuser Scripts

969

The delay indicates the interval (in milliseconds) between keystrokes. The
optional parameter first_delay indicates the wait (in milliseconds) before
typing the first character in the string. For example,

means that the Vuser will wait 0.5 seconds before typing the letter A; it will
then wait 0.1 seconds before typing “B” and then a further 0.1 seconds
before typing “C”.

For more information about the TE_typing_style function and its
conventions, refer to the Online Function Reference (Help > Function
Reference).

In addition to setting the typing style by using the TE_typing_style
function, you can also use the run-time settings. For details, see Chapter 64,
“Configuring RTE Run-Time Settings.”

Generating Unique Device Names

Some protocols, such as APPC, require a unique device name for each
terminal that logs on to the system. Using the run-time settings, you can
specify that the TE_connect function generate a unique 8-character device
name for each Vuser, and connect using this name. Although this solves the
requirement for uniqueness, some systems have an additional requirement:
The device names must conform to a specific format. For details about the
run-time settings, see “Configuring Run-Time Settings” in your VuGen user’s
guide.

To define the format of the device names that the TE_connect function uses
to connect a Vuser to the system, add an RteGenerateDeviceName function
to the Vuser script. The function has the following prototype:

void RteGenerateDeviceName(char buf[32])

The device name should be written into buf.

TE_typing_style ("HUMAN, 100, 500");
TE_type ("ABC");

Part XI • Legacy Protocols

970

If an RteGenerateDeviceName function exists in a Vuser script, the Vuser
calls the function each time a new device name is needed. If no
RteGenerateDeviceName function is defined in the script—and unique
device names are required—the TE_connect function generates the required
names.

In the following example, the RteGenerateDeviceName function generates
unique device names with the format “TERMx”. The first name is TERM0,
followed by TERM1, TERM2 etc.

RteGenerateDeviceName(char buf[32])
{

static int n=0;
sprintf(buf, "TERM%d", n);
n=n+1;

}

Chapter 63 • Recording RTE Vuser Scripts

971

Setting the Field Demarcation Characters

Some terminal emulators use demarcation characters to mark the beginning
and the end of each field. These demarcation characters are not visible—
appearing on the screen as spaces. In the terminal emulator shown below,
the colors in the middle section of the screen have been inverted to display
the field demarcation characters. These characters are surrounded by
ellipses.

The TE_wait_text, TE_get_text, and TE_find_text functions operate by
identifying the characters in a specified portion of the screen. If a field
demarcation character is located within the specified section, you can
choose to identify the character either as a space, or as an ASCII character.
You use the TE_FIELD_CHARS system variable to specify the method of
identification. You can set TE_FIELD_CHARS to 0 or 1:

➤ 0 specifies that the character in the position of the field demarcation
characters is returned as a space.

➤ 1 specifies that the character in the position of the field demarcation
characters is returned as an ascii code (ascii 0 or ascii 1).

By default, TE_FIELD_CHARS is set to 0.

You retrieve and set the value of TE_FIELD_CHARS by using the TE_getvar
and TE_setvar functions.

Part XI • Legacy Protocols

972

973

64
Configuring RTE Run-Time Settings

After you record a Terminal Emulator script, you configure its run-time
settings. This chapter describes the following Terminal Emulator Vuser run-
time settings:

➤ About Terminal Emulator Run-Time Settings

➤ Modifying Connection Attempts

➤ Specifying an Original Device Name

➤ Setting the Typing Delay

➤ Configuring the X-System Synchronization

The following information only applies to Terminal Emulator (TE) type
Vusers.

Part XI • Legacy Protocols

974

About Terminal Emulator Run-Time Settings

After developing a Terminal Emulator Vuser script, you set the run-time
settings. These settings let you control the behavior of the Vuser when
running the script. Terminal Emulator run-time settings allow you to
configure your TE Vusers so that they accurately emulate real users
performing remote terminal emulation. You can configure settings for the
number of connection attempts, device names, typing delay, and X-System
synchronization.

You set the Terminal Emulator related run-time settings through the RTE
node in the Run-Time Settings dialog box.

To display the Run-Time Settings dialog box, click the Run-Time Settings
button on the VuGen toolbar. You can also modify the run-time settings
from the LoadRunner Controller or the Mercury Tuning Module. For more
information, refer to the appropriate documentation.

Chapter 64 • Configuring RTE Run-Time Settings

975

Note: This chapter only discusses the Run-Time settings for Terminal
Emulator Vusers. For information about run-time settings that apply to all
Vusers, see Chapter 12, “Configuring Run-Time Settings.”

Modifying Connection Attempts

The TE_connect function is generated by VuGen when you record a
connection to a host. When you replay an RTE Vuser script, the TE_connect
function connects the terminal emulator to the specified host. If the first
attempt to connect is not successful, the Vuser retries a number of times to
connect successfully. Details of each connection are recorded in the report
file output.txt.

To set the maximum number of times that a Vuser will try to connect, enter
a number in the Maximum number of connection attempts box in the RTE
Run-Time settings.

By default, a Vuser will try to connect 5 times.

For more information about the TE_connect function, refer to the Online
Function Reference (Help > Function Reference).

Part XI • Legacy Protocols

976

Specifying an Original Device Name

In certain environments, each session (Vuser) requires a unique device
name. The TE_connect function generates a unique 8-character device
name for each Vuser, and connects using this name. To connect using the
device name (that is contained within the com_string parameter of the
TE_connect function), select the Use original device name option in the
RTE Run-Time settings.

Note: The original device name setting applies to IBM block-mode terminals
only.

By default, Vusers use original device names to connect.

For details about the TE_connect function, refer to the Online Function
Reference (Help > Function Reference).

Setting the Typing Delay

The delay setting determines how Vusers execute TE_type functions.

To specify the amount of time that a Vuser waits before entering the first
character in a string, enter a value in the First key box, in milliseconds.

To specify the amount of time that a Vuser waits between submitting
successive characters, enter a value in the Subsequent keys box, in
milliseconds.

If you enter zero for both the first key and the subsequent key delays, the
Vuser will send characters as a single string, with no delay between
characters.

You can use the TE_typing_style function to override the Delay settings for
a portion of a Vuser script.

For details about the TE_type and TE_typing_style functions, refer to the
Online Function Reference (Help > Function Reference).

Chapter 64 • Configuring RTE Run-Time Settings

977

Configuring the X-System Synchronization

RTE Vuser scripts use the TE_wait_sync function for synchronization. You
can set a timeout value and a stable-time value that VuGen applies to all
TE_wait_sync functions. For details about the TE_wait_sync function, refer
to the Online Function Reference (Help > Function Reference).

Timeout

When you replay a TE_wait_sync function, if the system does not stabilize
before the synchronization timeout expires, the TE_wait_sync function
returns an error code. To set the synchronization timeout, enter a value (in
seconds) in the Timeout section of the RTE Run-Time settings.

The default timeout value is 60 seconds.

Stable Time

After a Vuser executes a TE_wait_sync function, the Vuser waits until the
terminal is no longer in the X-SYSTEM mode. After the terminal returns
from the X-SYSTEM mode, the Vuser still monitors the system for a short
time. This makes sure that the terminal has become stable, that is, that the
system has not returned to the X-SYSTEM mode. Only then does the
TE_wait_sync function terminate.

To set the time that a Vuser continues to monitor the system after the
system has returned from the X-SYSTEM mode, enter a value (in
milliseconds) in the Stable time box of the RTE Run-Time settings.

The default stable time is 1000 milliseconds.

Part XI • Legacy Protocols

978

979

65
Synchronizing RTE Vuser Scripts

Synchronization functions in an RTE Vuser script help you synchronize the
input that a Vuser submits to a terminal emulator with the responses from
the server.

This chapter describes:

➤ About Synchronizing Vuser Scripts

➤ Synchronizing Block-Mode (IBM) Terminals

➤ Synchronizing Character-Mode (VT) Terminals

The following information applies only to RTE (Windows) Vuser scripts.

About Synchronizing Vuser Scripts

Depending on the system you are testing, you may need to synchronize the
input that a Vuser sends to a terminal emulator with the subsequent
responses from the server. When you synchronize input, you instruct the
Vuser to suspend script execution and wait for a cue from the system, before
the Vuser performs its next action. For instance, suppose that a human user
wants to submit the following sequence of key strokes to a bank application:

 1 Type 1 to select “Financial Information” from the menu of a bank
application.

 2 When the message “What information do you require?” appears, type 3 to
select “Dow Jones Industrial Average” from the menu.

 3 When the full report has been written to the screen, type 5 to exit the bank
application.

Part XI • Legacy Protocols

980

In this example, the input to the bank application is synchronized because
at each step, the human user waits for a visual cue before typing.
This cue can be either the appearance of a particular message on the screen,
or stability of all the information on the screen.

You can synchronize the input of a Vuser in the same way by using the TE-
synchronization functions, TE_wait_sync, TE_wait_text, TE_wait_silent,
and TE_wait_cursor. These functions effectively emulate a human user who
types into a terminal window and then waits for the server to respond,
before typing in the next command.

The TE_wait_sync function is used to synchronize block-mode (IBM)
terminals only. The other TE-synchronization functions are used to
synchronize character-mode (VT) terminals.

When you record an RTE Vuser script, VuGen can automatically generate
and insert TE_wait_sync, TE_wait_text, and TE_wait_cursor statements
into the script. You use VuGen’s recording options to specify which
synchronization functions VuGen should insert.

Note: Do not include any synchronization statements in the Vuser_end
section of a Vuser script. Since a Vuser can be aborted at any time, you
cannot predict when the Vuser_end section will be executed.

Chapter 65 • Synchronizing RTE Vuser Scripts

981

Synchronizing Block-Mode (IBM) Terminals

The TE_wait_sync function is used for synchronization RTE Vusers
operating block-mode (IBM) terminals. Block-mode terminals display the
“X SYSTEM” message to indicate that the system is in Input Inhibited mode.
When a system is in the Input Inhibited mode no typing can take place
because the terminal emulator is waiting for a transfer of data from the
server.

When you record a script on a block-mode terminal, by default, VuGen
generates and inserts a TE_wait_sync function into the script each time the
“X SYSTEM” message appears. You use VuGen’s recording options to specify
whether or not VuGen should automatically insert TE_wait_sync functions.

When you run a Vuser script, the TE_wait_sync function checks if the
system is in the X SYSTEM mode. If the system is in the X SYSTEM mode,
the TE_wait_sync function suspends script execution. When the “X
SYSTEM” message is removed from the screen, script execution continues.

Note: You can use the TE_wait_sync function only with IBM block-mode
terminals emulators (5250 and 3270).

In general, the TE_wait_sync function provides adequate synchronization
for all block-mode terminal emulators. However, if the TE_wait_sync
function is ineffective in a particular situation, you can enhance the
synchronization by including a TE_wait_text function. For more
information on the TE_wait_text function, see “Waiting for Text to Appear
on the Screen” on page 986, and the Online Function Reference (Help >
Function Reference).

The syntax of the TE_wait_sync function is:

TE_wait_sync ();

Part XI • Legacy Protocols

982

In the following script segment, the Vuser logs on with the user name
“QUSER” and the password “MERCURY“. The Vuser then presses Enter to
submit the login details to the server. The terminal emulator displays the
X SYSTEM message while the system waits for the server to respond.

The TE_wait_sync statement causes the Vuser to wait until the server has
responded to the login request, that is, for the X SYSTEM message to be
removed—before executing the next line of the script.

When a TE_wait_sync function suspends the execution of a script while an
X SYSTEM message is displayed, the Vuser continues to monitor the
system—waiting for the X SYSTEM message to disappear. If the X SYSTEM
message does not disappear before the synchronization timeout expires, the
TE_wait_sync function returns an error code. The default timeout is 60
seconds.

To set the TE_wait_sync synchronization timeout:

 1 Select Vuser > Run-Time Settings. The Run-Time Settings dialog box appears.

 2 Select the RTE:RTE node in the Run-Time setting tree.

 3 Under X SYSTEM Synchronization, enter a value (in seconds) in the Timeout
box.

 4 Click OK to close the Run-Time Settings dialog box.

TE_type("QUSER");
lr_think_time(2);
TE_type("<kTab>MERCURY");
lr_think_time(3);
TE_type("<kEnter>");
TE_wait_sync();
....

Chapter 65 • Synchronizing RTE Vuser Scripts

983

After a Vuser executes a TE_wait_sync function, the Vuser waits until the
terminal is no longer in the X SYSTEM mode. When the terminal returns
from the X SYSTEM mode, the Vuser continues to monitor the system for a
short period to verify that the terminal is fully stable, that is, that the system
does not return to the X SYSTEM mode. Only then does the TE_wait_sync
function terminate and allow the Vuser to continue executing its script. The
period that the Vuser continues to monitor the system, after the system has
returned from the X SYSTEM mode, is known as the stable time. The default
stable time is 1000 milliseconds.

You may need to increase the stable time if your system exhibits the
following behavior:

When a system returns from the X SYSTEM mode, some systems “flickers”
to and from the X SYSTEM for a short period of time until the system
stabilizes. If the system remains out of the X SYSTEM mode for more than
one second, and then returns to the X SYSTEM mode, the TE_wait_sync
function will assume that the system is stable. If a Vuser then tries to type
information to the system, the system will shift into keyboard-locked mode.

Alternatively, if your system never flickers when it returns from the
X SYSTEM mode, you can reduce the stable time to less than the default
value of one second.

To change the stable time for TE_wait_sync functions:

 1 Choose Vuser > Run-Time Settings. The Run-Time Settings dialog box
appears.

 2 Select the RTE:RTE node.

 3 Under X SYSTEM Synchronization, enter a value (in milliseconds) in the
Stable time box.

 4 Click OK to close the Run-Time Settings dialog box.

For more information on the TE_wait_sync function, refer to the Online
Function Reference (Help > Function Reference).

Part XI • Legacy Protocols

984

You can instruct VuGen to record the time that the system remains in the
X SYSTEM mode each time that the X SYSTEM mode is entered. To do so,
VuGen inserts a TE_wait_sync_transaction function after each
TE_wait_sync function, as shown in the following script segment:

Each TE_wait_sync_transaction function creates a transaction with the
name “default.” This allows you to analyze how long the terminal emulator
waits for responses from the server during a tuning session or scenario run.
You use the recording options to specify whether VuGen should generate
and insert TE_wait_sync_transaction statements.

To instruct VuGen to insert TE_wait_sync_transaction statements:

 1 Choose Vuser > Recording Options. The Recording Settings dialog box
appears.

 2 Select the Generate Automatic X SYSTEM transactions option, and then
click OK.

Synchronizing Character-Mode (VT) Terminals

There are three types of synchronization that you can use for character-
mode (VT) terminals. The type of synchronization that you select depends
on:

➤ the design of the application that is running in the terminal emulator

➤ the specific action to be synchronized

Waiting for the Cursor to Appear at a Specific Location

The preferred method of synchronization for VT type terminals is cursor
synchronization. Cursor synchronization is particularly useful with full-
screen or form-type applications, as opposed to scrolling or TTY-type
applications.

TE_wait_sync();
TE_wait_sync_transaction("syncTrans1");

Chapter 65 • Synchronizing RTE Vuser Scripts

985

Cursor synchronization uses the TE_wait_cursor function. When you run
an RTE Vuser script, the TE_wait_cursor function instructs a Vuser to
suspend script execution until the cursor appears at a specified location on
the screen. The appearance of the cursor at the specified location means that
the application is ready to accept the next input from the terminal emulator.

The syntax of the TE_wait_cursor function is:

int TE_wait_cursor (int col, int row, int stable, int timeout);

During script execution, the TE_wait_cursor function waits for the cursor to
reach the location specified by col, row.

The stable parameter specifies the time (in milliseconds) that the cursor
must remain at the specified location. If you record a script using VuGen,
stable is set to 100 milliseconds by default. If the client application does not
become stable in the time specified by the timeout parameter, the function
returns TIMEOUT. If you record a script using VuGen, timeout is set by
default to the value of TIMEOUT, which is 90 seconds. You can change the
value of both the stable and timeout parameters by directly editing the
recorded script.

The following statement waits for the cursor to remain stable for three
seconds. If the cursor doesn’t stabilize within 10 seconds, the function
returns TIMEOUT.

For more information on the TE_wait_cursor function, refer to the Online
Function Reference (Help > Function Reference).

You can instruct VuGen to automatically generate TE_wait_cursor
statements, and insert them into a script, while you record the script. The
following is an example of a TE_wait_cursor statement that was
automatically generated by VuGen:

TE_wait_cursor (10, 24, 3000, 10);

TE_wait_cursor(7, 20, 100, 90);

Part XI • Legacy Protocols

986

To instruct VuGen to automatically generate TE_wait_cursor statements,
and insert them into a script while recording:

 1 Select Vuser > Recording Options. The Recording Settings dialog box
appears.

 2 Under Generate Automatic Synchronization Commands select the Cursor
check box, and then click OK.

Waiting for Text to Appear on the Screen

You can use text synchronization to synchronize an RTE Vuser running on a
VT terminal emulator. Text synchronization uses the TE_wait_text
function. During script execution, the TE_wait_text function suspends
script execution and waits for a specific string to appear in the terminal
window before continuing with script execution. Text synchronization is
useful with those applications in which the cursor does not consistently
appear in a predefined area on the screen.

Note: Although text synchronization is designed to be used with character
mode (VT) terminals, it can also be used with IBM block-mode terminals. Do
not use automatic text synchronization with block-mode terminals.

The syntax of the TE_wait_text function is:

int TE_wait_text (char *pattern, int timeout, int col1, int row1, int col2, int row2,
int *retcol, int *retrow, char *match);

This function waits for text matching pattern to appear within the rectangle
defined by col1, row1, col2, row2. Text matching the pattern is returned to
match, and the actual row and column position is returned to retcol and
retrow. If the pattern does not appear before the timeout expires, the
function returns an error code. The pattern can include a regular expression.
Refer to the Online Function Reference for details on using regular expressions.
Besides the pattern and timeout parameters, all the other parameters are
optional.

Chapter 65 • Synchronizing RTE Vuser Scripts

987

If pattern is passed as an empty string, the function will wait for timeout if it
finds any text at all within the rectangle. If there is no text, it returns
immediately.

If the pattern does appear, then the function waits for the emulator to be
stable (finish redrawing, and not display any new characters) for the interval
defined by the TE_SILENT_SEC and TE_SILENT_MILLI system variables.
This, in effect, allows the terminal to become stable and emulates a human
user.

If the terminal does not become stable within the interval defined by
TE_SILENT_TIMEOUT, script execution continues. The function returns 0
for success, but sets the TE_errno variable to indicate that the terminal was
not silent after the text appeared.

To modify or retrieve the value of any of the TE_SILENT system variables,
use the TE_getvar and TE_setvar functions. For more information, refer to
the Online Function Reference (Help > Function Reference).

In the following example, the Vuser types in its name, and then waits for
the application to respond.

You can instruct VuGen to automatically generate TE_wait_text statements,
and insert them into a script, while you record the script.

/* Declare variables for TE_wait_text */
int ret_row;
int ret_col;
char ret_text [80];

/* Type in user name. */
TE_type ("John");

/* Wait for teller to respond. */
TE_wait_text ("Enter secret code:", 30, 29, 13, 1, 13, &ret_col, &ret_row,

ret_text);

Part XI • Legacy Protocols

988

To instruct VuGen to automatically generate TE_wait_text statements, and
insert them into a script while recording:

 1 Select Vuser > Recording Options. The Recording Settings dialog box
appears.

 2 Under Generate Automatic Synchronization Commands, select the Prompt
check box, and then click OK.

The following is an example of a TE_wait_text statement that was
automatically generated by VuGen. The function waits up to 20 seconds for
the string “keys” to appear anywhere on the screen. Note that VuGen omits
all the optional parameters when it generates a TE_wait_text function.

Waiting for the Terminal to be Silent

In instances when neither cursor synchronization nor text synchronization
are effective, you can use “silent synchronization” to synchronize the script.
With “silent synchronization,” the Vuser waits for the terminal emulator to
be silent for a specified period of time. The emulator is considered to be
silent when it does not receive any input from the server for a specified
period of time.

Note: Use silent synchronization only when neither cursor synchronization
nor text synchronization are effective.

You use the TE_wait_silent function to instruct a script to wait for the
terminal to be silent. You specify the period for which the terminal must be
silent. If the terminal is silent for the specified period, then the
TE_wait_silent function assumes that the application has stopped printing
text to the terminal screen, and that the screen has stabilized.

The syntax of the function is:

int TE_wait_silent (int sec, int milli, int timeout);

TE_wait_text("keys", 20);

Chapter 65 • Synchronizing RTE Vuser Scripts

989

The TE_wait_silent function waits for the terminal emulator to be silent for
the time specified by sec (seconds) and milli (milliseconds). The emulator is
considered silent when it does not receive any input from the server. If the
emulator does not become silent (i.e. stop receiving characters) during the
time specified by the time timeout variable, then the function returns an
error.

For example, the following statement waits for the screen to be stable for
three seconds. If after ten seconds, the screen has not become stable, the
function returns an error.

For more information, refer to the Online Function Reference (Help > Function
Reference).

TE_wait_silent (3, 0, 10);

Part XI • Legacy Protocols

990

991

66
Reading Text from the Terminal Screen

RTE Vusers can read text from the user interface of a terminal emulator, and
then perform various tasks with that text.

This chapter describes:

➤ About Reading Text from the Terminal Screen

➤ Searching for Text on the Screen

➤ Reading Text from the Screen

The following information applies only to RTE (Windows) Vuser scripts.

About Reading Text from the Terminal Screen

There are several Vuser functions that RTE Vusers can use to read text from
the terminal screen. You can use these functions, TE_find_text and
TE_get_text_line, to check that the terminal emulator is responding
correctly, or to enhance the logic in your scripts.

After recording, you can manually insert TE_find_text and
TE_get_text_line statements directly into your RTE Vuser scripts.

Part XI • Legacy Protocols

992

Searching for Text on the Screen
The TE_find_text function searches for a line of text on the screen. The
syntax of the function is:

int TE_find_text (char *pattern, int col1, int row1, int col2, int row2,
int *retcol, int *retrow, char *match);

This function searches for text matching pattern within the rectangle
defined by col1, row1, col2, row2. Text matching the pattern is returned to
match, and the actual row and column position is returned to retcol and
retrow. The search begins in the top-left corner. If more than one string
matches pattern, the one closest to the top-left corner is returned.

The pattern can include a regular expression. Refer to the Online Function
Reference for details on using regular expressions.

You must manually type TE_find_text statements into your Vuser scripts.
For details on the syntax of the TE_find_text function, refer to the Online
Function Reference (Help > Function Reference).

Reading Text from the Screen

The TE_get_text_line function reads a line of text from the area of the
screen that you designate. The syntax of the function is:

char *TE_get_text_line (int col, int row, int width, char *text);

This function copies a line of text from the terminal screen to a buffer text.
The first character in the line is defined by col, row. The column coordinate
of the last character in the line is indicated by width. The text from the
screen is returned to the buffer text. If the line contains tabs or spaces, the
equivalent number of spaces is returned.

Chapter 66 • Searching for Text on the Screen

993

In addition, the TE_get_cursor_position function can be used to retrieve
the current position of the cursor on the terminal screen. The
TE_get_line_attribute function returns the character formatting (for
instance, bold or underline) of a line of text.

You must manually type TE_get_text_line statements into your Vuser
scripts. For details on the syntax of the TE_get_text_line function, refer to
the Online Function Reference (Help > Function Reference).

Part XI • Legacy Protocols

994

Part XII

Mailing Services Protocols

996

997

67
Developing Vuser Scripts for Mailing
Services

VuGen allows you to test several mailing services on a protocol level. It
emulates the sending of mail, and most of the standard operations
performed against a mail server.

This chapter describes:

➤ About Developing Vuser Scripts for Mailing Services

➤ Getting Started with Mailing Services Vuser Scripts

➤ Working with IMAP Functions

➤ Working with MAPI Functions

➤ Working with POP3 Functions

➤ Working with SMTP Functions

The following information applies only to IMAP, MAPI, POP3, and SMTP
Virtual User scripts.

About Developing Vuser Scripts for Mailing Services

The Mailing Service protocols emulate a user working with an email client,
viewing and sending emails. The following mailing services are supported:

➤ Internet Messaging (IMAP)

➤ MS Exchange (MAPI)

➤ Post Office Protocol (POP3)

➤ Simple Mail Transfer Protocol (SMTP)

Part XII • Mailing Services Protocols

998

The mail protocols support both record and replay, with the exception of
MAPI that only supports replay.

When you record an application using one of the mail protocols, VuGen
generates functions that emulate the mail client’s actions. You can indicate
the programming language in which to create a Vuser script —either C or
Visual Basic scripting. For more information, see Chapter 5, “Setting Script
Generation Preferences.” If the communication is performed through
multiple protocols, you can record both of them. You can record several
mail protocols, or a mail protocol together with HTTP or WinSock. For
instructions on specifying multiple protocols, see Chapter 4, “Recording
with VuGen.”

All Mailing Service functions come in pairs—one for global sessions and one
where you can indicate a specific mail session. For example, imap_logon
logs on to the IMAP server globally, while imap_logon_ex logs on to the
IMAP server for a specific session.

Getting Started with Mailing Services Vuser Scripts

This section provides an overview of the process of developing Vuser scripts
for Mailing Services using VuGen.

To develop a Mailing Service Vuser script:

 1 Create a basic script using VuGen.

Invoke VuGen and create a new Vuser script for either a single mail protocol
or multiple protocols.

 2 Record the basic script using VuGen. (Except MAPI)

Choose an application to record. Perform typical operations in your
application. For details, see Chapter 4, “Recording with VuGen.”

For MAPI, recording is not supported. Instead, you create an empty MAPI
script and manually insert mapi functions into it. For examples, refer to the
Online Function Reference (Help > Function Reference).

Chapter 67 • Developing Vuser Scripts for Mailing Services

999

 3 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 4 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

 5 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see Chapter 11, “Correlating Statements.”

 6 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.”

 7 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Part XII • Mailing Services Protocols

1000

Working with IMAP Functions

IMAP Vuser script functions record the Internet Mail Application Protocol.
Each IMAP function begins with an imap prefix. For detailed syntax
information on these functions, refer to the Online Function Reference (Help >
Function Reference).

Function Name Description

imap_append[_ex] Appends a message to the end of a mailbox.

imap_check[_ex] Requests a checkpoint for the current
mailbox.

imap_close[_ex] Closes the current mailbox.

imap_copy[_ex] Copies mail messages to another mailbox.

imap_create[_ex] Creates a mailbox.

imap_custom_request[_ex] Executes a custom IMAP request.

imap_delete[_ex] Deletes the specified mailbox.

imap_examine[_ex] Examines a mailbox.

imap_expunge[_ex] Removes all messages that are marked to be
deleted.

imap_fetch[_ex] Retrieves data associated with a mailbox
message.

imap_free_ex Frees an IMAP session descriptor.

imap_get_attribute_int[_ex] Returns a mailbox attribute.

imap_get_attribute_sz[_ex] Returns a mailbox attribute as a string.

imap_get_result[_ex] Gets an IMAP server return code.

imap_list_mailboxes[_ex] Lists the available mailboxes.

imap_list_subscriptions[_ex] Lists the mailboxes that are subscribed or
active.

imap_logon[_ex] Logs in to an IMAP server.

imap_logout[_ex] Logs off from an IMAP server.

Chapter 67 • Developing Vuser Scripts for Mailing Services

1001

In the following example, the imap_create function creates several new
mailboxes: Products, Solutions, and FAQs.

imap_noop[_ex] Performs a noop operation.

imap_search[_ex] Searches a mailbox by keywords.

imap_select[_ex] Selects a mailbox.

imap_status[_ex] Requests the status of a mailbox.

imap_store[_ex] Alters data associated with a mailbox
message.

imap_subscribe[_ex] Subscribes to or activates a mailbox.

imap_unsubscribe[_ex] Unsubscribes from or deactivates a mailbox.

Actions()
{

imap_logon("ImapLogon",
"URL=imap://johnd:letmein@exchange.mycompany.com",
LAST);

imap_create("CreateMailboxes",
"Mailbox=Products",
"Mailbox=Solutions",
"Mailbox=FAQs",
LAST);

imap_logout();

return 1;
}

Part XII • Mailing Services Protocols

1002

Working with MAPI Functions

MAPI Vuser script functions record activity to and from an MS Exchange
server. Each MAPI function begins with an mapi prefix For detailed syntax
information on these functions, refer to the Online Function Reference (Help >
Function Reference).

Function Name Description

mapi_delete_mail[_ex] Deletes the current or selected email entries.

mapi_get_property_sz[_ex] Obtain a property value from the MAPI
sessions.

mapi_logon[_ex] Logs on to MS Exchange.

mapi_logout[_ex] Logs out of MS Exchange.

mapi_read_next_mail[_ex] Reads the next mail in the mailbox.

mapi_send_mail[_ex] Sends an email to recipients.

mapi_set_property_sz[_ex] Sets a MAPI attribute.

Chapter 67 • Developing Vuser Scripts for Mailing Services

1003

In the following example, the mapi_send_mail function sends a sticky note
through an MS Exchange server.

Actions()
{

mapi_logon("Logon",
"ProfileName=John Smith",
"ProfilePass=Tiger",
LAST);

//Send a Sticky Note message
mapi_send_mail("SendMail",

"To=user1@techno.merc-int.com",
"Cc=user0002t@techno.merc-int.com",
"Subject=<GROUP>:<VUID> @ <DATE>",
"Type=Ipm.StickyNote",
"Body=Please update your profile today.",
LAST);

mapi_logout();

return 1;
}

Part XII • Mailing Services Protocols

1004

Working with POP3 Functions

POP3 Vuser script functions emulate actions using the Post Office Protocol,
POP3. Each function begins with a pop3 prefix. For detailed syntax
information on these functions, refer to the Online Function Reference
(Help > Function Reference).

In the following example, the pop3_retrieve function retrieves five
messages from the POP3 server.

Function Name Description

pop3_command[_ex] Sends a command to a POP3 server.

pop3_delete[_ex] Deletes a message on the server.

pop3_free[_ex] Frees the POP3 server from its commands.

pop3_list[_ex] Lists the messages on the POP3 server.

pop3_logoff[_ex] Logs off from a POP3 server.

pop3_logon[_ex] Logs on to a POP3 server.

pop3_retrieve[_ex] Retrieves messages from the POP3 server.

Actions()
{
pop3_logon("Login", "

URL=pop3://user0004t:my_pwd@techno.merc-int.com",
LAST);

// List all messages on the server and receive that value
totalMessages = pop3_list("POP3", LAST);

// Display the received value (It is also displayed by the pop3_list function)
lr_log_message("There are %d messages.\r\n\r\n", totalMessages);

// Retrieve 5 messages on the server without deleting them
pop3_retrieve("POP3", "RetrieveList=1:5", "DeleteMail=false", LAST);
pop3_logoff();

return 1;
}

Chapter 67 • Developing Vuser Scripts for Mailing Services

1005

Working with SMTP Functions

SMTP Vuser script functions emulate the Single Mail Transfer Protocol
traffic. Each SMTP function begins with an smtp prefix. For detailed syntax
information on these functions, refer to the Online Function Reference (Help >
Function Reference).

Function Name Description

smtp_free[_ex] Frees the SMTP server from its commands.

smtp_logon[_ex] Logs on to an SMTP server.

smtp_logout[_ex] Logs off from an SMTP server.

smtp_send_mail[_ex] Sends an SMTP message.

smtp_translate[_ex] Translates an SMTP message.

Part XII • Mailing Services Protocols

1006

In the following example, the smtp_send_mail function sends a mail
message, through the SMTP mail server, techno.

Actions()
{

smtp_logon("Logon",
 "URL=smtp://user0001t@techno.merc-int.com",

 "CommonName=Smtp Test User 0001",
 NULL);

smtp_send_mail("SendMail",
"To=user0002t@merc-int.com",
"Subject=MIC Smtp: Sample Test",
"MAILOPTIONS",
"X-Priority: 3",
"X-MSMail-Priority: Medium",
"X-Mailer: Microsoft Outlook Express 5.50.400\r\n",
"X-MimeOLE: By Microsoft MimeOLE V5.50.00\r\n",
"MAILDATA",
"MessageText="

"Content-Type: text/plain;\r\n"
"\tcharset=\"iso-8859-1\"\r\n"
"Test,\r\n"
"MessageBlob=16384",

NULL);

smtp_logout();

return 1;
}

Part XIII

Middleware Protocols

1008

1009

68
Developing Jacada Vuser Scripts

VuGen allows you to record your communication with the Jacada Interface
Server. You can run the recorded script or enhance it using standard Java
library functions and Java Vuser API functions.

This chapter describes:

➤ About Jacada Vuser Scripts

➤ Getting Started with Jacada Vusers

➤ Recording a Jacada Vuser

➤ Replaying a Jacada Vuser

➤ Understanding Jacada Vuser Scripts

➤ Working with Jacada Vuser Scripts

The following information only applies to Jacada Vuser scripts.

About Jacada Vuser Scripts

The Jacada Interface Server provides an interface layer for mainframe
applications. This layer separates the user interface from the application
logic in order to insulate the organization from changes in standards and
technologies. Instead of working with green-screen applications, the Jacada
server converts the environment to a user friendly interface.

VuGen records Jacada’s Java thin-client. To record communication with the
Jacada server through the HTML thin-client, use the Web HTTP/HTML type
Vuser. For more information, see Chapter 38, “Creating Web Vuser Scripts.”

Part XIII • Middleware Protocols

1010

To create a script, you invoke VuGen and you record typical actions and
business processes. VuGen generates a script that represents all of your
actions. This script is java compatible.

After you prepare your script, you run it in standalone mode from VuGen.
Sun’s standard Java compiler, javac.exe, checks the script for errors and
compiles it. Once you verify that the script is functional, you integrate it
into your environment: a LoadRunner scenario, Performance Center load
test, Tuning Module session, or Business Process Monitor profile. For more
information, refer to the LoadRunner Controller User’s Guide, Tuning Console,
Performance Center, or Application Management documentation.

When you create a script through recording and manual enhancements, all
of the guidelines and limitations associated with Java Vuser scripts apply.
See Chapter 29, “Programming Java Scripts” for important information
about function syntax and system configuration.

The next few sections discuss the recording options, run-time settings, and
correlation.

Getting Started with Jacada Vusers

The following procedure outlines how to create Jacada Vuser scripts.

 1 Ensure that the recording machine is properly configured.

Make sure that your machine is configured properly for Java before you
begin recording. For more information, see Chapter 29, “Programming Java
Scripts” and the Read Me file.

 2 Create a new Jacada Vuser script.

Select a Jacada type Vuser from the Middleware group.

 3 Set the recording parameters and options for the Vuser script.

You specify the parameters for your applet or application such as working
directory and paths. You can also set JVM, correlation, recorder, and debug
recording options. For more information, see Chapter 18, “Setting Java
Recording Options.”

Chapter 68 • Developing Jacada Vuser Scripts

1011

 4 Record typical user actions.

Begin recording a script. Perform typical actions against your Jacada server.
VuGen records your actions and generates a Vuser script.

 5 Enhance the Vuser script.

Add Vuser API functions to the Vuser script. For details, see Chapter 29,
“Programming Java Scripts.” Use VuGen’s Function Navigator to add classes
or methods. (See Chapter 55, “Performing EJB Testing.”)

 6 Parameterize the Vuser script.

Replace recorded constants with parameters. You can parameterize complete
strings or parts of a string. For details, see Chapter 8, “Working with VuGen
Parameters.”

 7 Configure the run-time setting for the script.

Configure run-time settings for the Vuser script. The run-time settings
define the run-time aspects of the script execution. For the specific run-time
settings for Java, see Chapter 20, “Configuring Java Run-Time Settings.”

 8 Save and run the Vuser script.

Run the script from VuGen and view the messages in the Execution log tab.
For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

Part XIII • Middleware Protocols

1012

Recording a Jacada Vuser

You record a Jacada script to create a fully compatible Java program.

To record a Jacada script:

 1 To begin recording, choose File > New and select Jacada from the
Middleware Vuser type. The Start Recording dialog box opens.

 2 Select an application type Internet Explorer of Netscape.

 3 In the Vendor Classes box, the default is Network class. If clbase.jar is in
your classpath, choose Local vendor classes.

 4 Specify the browser path and the URL of the Jacada server start page.

Note that a Working Directory is only necessary for applications that
accesses a working directory (for example, reading property files or writing
log files).

 5 To set recording options, such as command line parameters for the JVM,
click Options. For information about setting recording options, see
Chapter 18, “Setting Java Recording Options.”

Chapter 68 • Developing Jacada Vuser Scripts

1013

 6 In the Record into Action box, select the section corresponding to the
method into which you want to record. The Actions class contains three
methods: init, action, and end, corresponding to the vuser_init, Actions,
and vuser_end sections. The following table shows what to include into
each method, and when each method is executed.

 7 Click OK to begin recording. VuGen starts your application, minimizes itself
and opens a progress bar and the floating recording toolbar. The progress
toolbar displays the names of classes as they load. This indicates that the
Java recording support is active.

 8 Perform typical actions within your application. Use the floating toolbar to
switch methods during recording.

 9 After recording the typical user actions, select the vuser_end method from
the floating toolbar.

Perform the log off procedure. VuGen records the procedure into the
vuser_end method of the script.

method within
Actions class

Record into
action

Used to emulate... Executed during...

init vuser_init a login to a server Initialization

action Actions client activity Running

end vuser_end a log off procedure Finish or Stopped

Part XIII • Middleware Protocols

1014

 10 Click Stop Recording on the Recording toolbar. The VuGen editor displays
all the recorded statements.

 11 Click Save to save the script. The Save Test dialog box opens (for new Vuser
scripts only). Specify a script name.

Replaying a Jacada Vuser

Ensure that you have properly installed a JDK version from Sun on the
machine running the Vusers—JRE alone is insufficient.Verify that the
classpath and path environment variables are set according to the JDK
installation instructions. Before you replay a Vuser script, verify that your
environment is configured properly for the JDK and relevant Java classes.

Before replay, you must also download the clbase.jar file from the Jacada
server. All classes used by the Java Vuser must be in the classpath—either set
in the machine’s CLASSPATH environment variable or in the Classpath Entries
list in the Classpath node of the Run-Time settings.

The Jacada server may return screens from the legacy system, in a different
order than they appear in the recorded script. This may cause an exception
in the replay. For information on how to handle these exceptions, please
contact Mercury Interactive support.

For more information on the required environment settings, see Chapter 29,
“Programming Java Scripts.”

Chapter 68 • Developing Jacada Vuser Scripts

1015

Understanding Jacada Vuser Scripts

When you record a Jacada session, VuGen logs all calls to the server and
generates a script. These functions describe all of your actions within the
application or applet. The script also contains exception handling for proper
playback.

The recorded script is comprised of three sections:

➤ Imports

The Imports section is at the beginning of the script. It contains a reference
to all the packages required for compiling the script.

➤ Code

The Code section contains the Actions class and the recorded code within
the init, actions, and end methods. The code section also contains the
exceptions handler try-catch blocks for each command sent to the server.

➤ Variables

The Variables section, after the end method, contains all the type
declarations for the variables used in the code.

After you finish recording, you can modify the functions in your script, or
add additional Java or Vuser API functions to enhance the script. Note that
if you intend to run Java Vusers as threads, the Java code you add to your
script must be thread-safe. For details about function syntax, refer to the
Online Function Reference (Help > Function Reference).

Part XIII • Middleware Protocols

1016

Working with Jacada Vuser Scripts

The Actions method of a Jacada script, has two main parts: properties and
body. The properties section gets the server properties. VuGen then sets the
system properties and connects to the Jacada server.

The body of the script contains the user actions along with the exception
handling blocks for the checkFieldValue and checkTableCell methods.

 // Set system properties...
 _properties = new Properties(System.getProperties());
 _properties.put("com.ms.applet.enable.logging", "true");
 System.setProperties(_properties);

 _jacadavirtualuser = new cst.client.manager.JacadaVirtualUser();

 lr.think_time(4);
 _jacadavirtualuser.connectUsingPorts("localhost", 1100,
"LOADTEST", "", "", "");

 …

 l…
/*
try {
 _jacadavirtualuser.checkFieldValue(23, "S44452BA");
 }catch(java.lang.Exception e) {
 lr.log_message(e.getMessage());
 }
*/ l…
/*
try {

_jacadavirtualuser.checkTableCell(41, 0, 0, "");
 }catch(java.lang.Exception e) {
 lr.log_message(e.getMessage());
 }
*/ l…

Chapter 68 • Developing Jacada Vuser Scripts

1017

The checkField method has two arguments: field ID number and expected
value. The checkTableCell method has four arguments: table ID, row,
column, and expected value. If there is a mismatch between the expected
value and the received value, an exception is generated.

By default, the try-catch wrapper blocks are commented out. To use them in
your script, remove the comment markers.

In addition to the recorded script, you can add any of the Java Vuser API
functions. For a list of these functions and information on how to add them
to your script, see Chapter 29, “Programming Java Scripts.”

Part XIII • Middleware Protocols

1018

1019

69
Developing Tuxedo Vuser Scripts

You use VuGen to record communication between a Tuxedo client
application and a Tuxedo application server. The resulting script is called a
Tuxedo Vuser script.

This chapter describes:

➤ About Tuxedo Vuser Scripts

➤ Getting Started with Tuxedo Vuser Scripts

➤ Using LRT Functions

➤ Understanding Tuxedo Vuser Scripts

➤ Viewing Tuxedo Buffer Data

➤ Defining Environment Settings for Tuxedo Vusers

➤ Debugging Tuxedo Applications

➤ Correlating Tuxedo Scripts

The following information applies only to PeopleSoft-Tuxedo, Tuxedo 6
and Tuxedo 7 Vuser scripts.

Part XIII • Middleware Protocols

1020

About Tuxedo Vuser Scripts

When you record a Tuxedo application, VuGen generates LRT functions that
describe the recorded actions. These functions emulate communication
between a Tuxedo client and a server. Each LRT function begins with an lrt
prefix.

In addition to the lrt prefix, certain functions use an additional prefix of tp,
tx or F. These sub-prefixes indicate the function type, similar to the actual
Tuxedo functions. The tp sub-prefix indicates a Tuxedo client tp session. For
example, lrt_tpcall sends a service request and awaits its reply. The tx sub-
prefix indicates a global tx session. For example, lrt_tx_begin begins a
global transaction. The F sub-prefix indicates an FML buffer related
function. For example, lrt_Finitialize initializes an existing buffer.

Functions without an additional prefix emulate standard C functions. For
example, lrt_strcpy copies a string, similar to the C function strcpy.

You can view and edit the recorded script from VuGen’s main window. The
LRT functions that are recorded during the session are displayed in the
VuGen window, allowing you to visually track your network activities.

Before You Record

Before you record, verify that the Tuxedo directory, %TUXDIR%\bin is in
the path.

If the environment variables have changed since the last time you restarted
VuGen, VuGen may record the original variable value rather than the
current value.

To avoid any inconsistencies, you should restart VuGen before recording
Tuxedo applications.

Chapter 69 • Developing Tuxedo Vuser Scripts

1021

Getting Started with Tuxedo Vuser Scripts

This section provides an overview of the process of developing Tuxedo Vuser
scripts using VuGen.

To develop a Tuxedo Vuser script:

 1 Record the basic script using VuGen.

Invoke VuGen and create a new Vuser script. Specify Tuxedo6 (for recording
Tuxedo Version 6.x) or Tuxedo7 (for recording Tuxedo Version 7.x) as the
type of Vuser. Choose an application to record. Record typical operations on
your application.

For details, see Chapter 4, “Recording with VuGen.”

 2 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

 4 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see Chapter 11, “Correlating Statements.”

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.”

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

Part XIII • Middleware Protocols

1022

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Using LRT Functions

The functions developed to emulate a Tuxedo client communications with a
server are called LRT functions. Each LRT Vuser function has an lrt prefix.
VuGen automatically records most of the LRT functions listed in this section
during a Tuxedo session. You can also manually program any of the
functions into your script. For syntax and examples of the LRT functions,
refer to the Online Function Reference (Help > Function Reference).

Note: Some of the FML buffer functions indicate an optional “32” in the
function name. These are the FML32 versions of the functions.

Chapter 69 • Developing Tuxedo Vuser Scripts

1023

Buffer Manipulation Functions

lrt_Fadd[32]_fld Adds a new field to an FML buffer.

lrt_Finitialize[32] Initializes an existing FML buffer fbfr.

lrt_Fldid[32] Maps a field name to a field identifier.

lrt_Fname[32] Provides a map field identifier to field name.

lrt_memcpy Copies the specified amount of bytes from
the source to the destination.

lrt_strcpy Copies a string like the C function strcpy.

lrt_tpalloc Returns a pointer to a buffer type of type.

lrt_tprealloc Changes the size of a typed buffer.

lrt_tpfree Frees a typed buffer.

lrt_tptypes Determines information about a typed buffer.

Part XIII • Middleware Protocols

1024

Client/Server Session Functions

Communication Functions

lrt_tpchkauth Checks if authentication is required by the
application.

lrt_tpinitialize Enables a client to join a System/T
application.

lrt_tpterm Removes a client from a System/T
application.

lrt_tpacall Sends a service request.

lrt_tpbroadcast Broadcasts notification by name.

lrt_tpcall Sends a service request and awaits its reply.

lrt_tpcancel Cancels a call descriptor.

lrt_tpchkunsol Checks for an unsolicited message.

lrt_tpconnect Establishes a conversational service
connection.

lrt_tpdequeue Dequeues a message from a queue.

lrt_tpdiscon Terminates a conversational service
connection.

lrt_tpenqueue Stores a message in the queue.

lrt_tpgetrply Returns a reply from a previously sent
request.

lrt_tpgprio Returns the priority for the last request sent
or received.

lrt_tpnotify Sends notification to a client.

lrt_tprecv Receives a message in a conversational
connection.

lrt_tpsend Sends a message in a conversational
connection.

Chapter 69 • Developing Tuxedo Vuser Scripts

1025

Environment Variable Functions

Error Processing Functions

lrt_tpsetunsol Sets the method for handling unsolicited
messages.

lrt_tpsprio Sets the priority for the next request sent or
forwarded.

lrt_tpsubscribe Subscribes to an event.

lrt_tpunsubscribe Unsubscribes to an event.

lrt_set_env_list Sets a list of environment variables.

lrt_tuxgetenv Returns a value corresponding to an
environment name.

lrt_tuxputenv Modifies an existing environment value or
adds a value to the environment.

lrt_tuxreadenv Adds variables to the environment from a
file.

lrt_abort_on_error Aborts the current transaction, if the
previous Tuxedo function call resulted in
an error.

lrt_Fstrerror[32] Retrieves error message string for FML
error.

lrt_getFerror[32] Retrieves the error status code for the last
FML operation that failed.

lrt_gettperrno Retrieves the error status code for the last
Tuxedo transaction monitor function.

lrt_gettpurcode Retrieves the application return code.

lrt_tpstrerror Retrieves error message string for System/T
error.

Part XIII • Middleware Protocols

1026

Transaction Handling Functions

lrt_tpabort Aborts the current transaction.

lrt_tpbegin Begins a transaction.

lrt_tpcommit Commits the current transaction.

lrt_tpgetlev Checks if a transaction is in progress.

lrt_tpresume Resumes a global transaction.

lrt_tpscmt Sets when lrt_tpcommit should return.

lrt_tpsuspend Suspends a global transaction.

lrt_tx_begin Begins a global transaction.

lrt_tx_close Closes a set of resource managers.

lrt_tx_commit Commits a global transaction.

lrt_tx_info Returns global transaction information.

lrt_tx_open Opens a set of resource managers.

lrt_tx_rollback Rolls back a global transaction.

lrt_tx_set_commit_return Sets the commit_return characteristic to the
value specified in when_return.

lrt_tx_set_transaction
_control

Sets the transaction_control characteristic
to the value specified in control.

lrt_tx_set_transaction
_timeout

Sets the transaction_timeout characteristic
to the value specified in timeout.

Chapter 69 • Developing Tuxedo Vuser Scripts

1027

Correlating Statement Functions

Note: In general, it is recommended to use lrt_save_parm to save a portion
of a character array to a parameter. Use lrt_save_searched_string when you
want to save information, relative to the position of a particular string in a
character array. For PeopleSoft Vusers, it is recommended to use
lrt_save_searched_string, since the reply buffers returned from the
PeopleSoft server often differ in size during replay from what was seen
during recording.

Understanding Tuxedo Vuser Scripts

After you record a session, VuGen’s built-in editor lets you view the recorded
code. You can scroll through the script, see Tuxedo statements that were
generated by your application, and examine the data that was returned by
the server. The VuGen window provides you with valuable information
about the recorded Tuxedo session. When you view the script in the main
window, you see the sequence in which VuGen recorded your activities.

lrt_display_buffer Stores buffer information in a file.

lrt_save[32]_fld_val Saves the current value of an FML buffer to
a parameter.

lrt_save_parm Saves a portion of a character array (such as
a STRING or CARRAY buffer) to a
parameter.

lrt_save_searched_string Searches for an occurrence of a string in a
buffer and saves a portion of the buffer,
relative to the string occurrence, to a
parameter.

Part XIII • Middleware Protocols

1028

In the following example, VuGen recorded a client’s actions in a Tuxedo
bank application. The client performed an action of opening a bank account
and specifying all the necessary details. The session was aborted when the
client specified a zero opening balance.

lrt_abort_on_error();
lr_think_time(65);
tpresult_int = lrt_tpbegin(30, 0);
data_0 = lrt_tpalloc("FML", "", 512);
lrt_Finitialize((FBFR*)data_0);

/* Fill the data buffer data_0 with new account information */
lrt_Fadd_fld((FBFR*)data_0, "name=BRANCH_ID", "value=8",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=ACCT_TYPE", "value=C",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=MID_INIT", "value=Q",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0,"name=PHONE","value=123-456-7890",

LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0, "name=ADDRESS", "value=1 Broadway
New York, NY 10000", LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0,"name=SSN","value=111111111",
LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0,"name=LAST_NAME",
"value=Doe",LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0,"name=FIRST_NAME",
"value=BJ",LRT_END_OF_PARMS);

lrt_Fadd_fld((FBFR*)data_0, "name=SAMOUNT",
"value=0.00",LRT_END_OF_PARMS);

/* Open a new account */
tpresult_int = lrt_tpcall("OPEN_ACCT", data_0, 0, &data_0, &olen_2, 0);
lrt_tpabort(0);
lrt_tpcommit(0);
lrt_tpfree(data_0);
lrt_tpterm();

Chapter 69 • Developing Tuxedo Vuser Scripts

1029

Using Parameters in Tuxedo Scripts

You can define parameters in Tuxedo scripts, as described in Chapter 8,
“Working with VuGen Parameters.” Note that Tuxedo scripts contain strings
of type “name=...” or “value=...”. You can only define parameters for the
portion of the string following the equal sign (=). For example:

Running Tuxedo Scripts

If you encounter problems recording or running Tuxedo applications, check
that the Tuxedo application runs without VuGen, and that the environment
variables have been defined correctly. For more information, see “Viewing
Tuxedo Buffer Data” below. Note that after you set or modify the Tuxedo
variables, you should restart VuGen and your application, in order for the
changes to take effect. If your application is 16-bit, then you also need to kill
the NTVDM process.

If you experience problems during execution, check the Tuxedo log file on
the side of the server for error messages. By default, this file is found in the
directory indicated by the environment variable APPDIR. The file name has
the form ULOG.mmddyy, where mmddyy indicates the current month, day,
and year. The file for March 12, 1999 would be ULOG.031299. The default
location of this file can be changed by setting the environment variable
ULOGPFX on the server. A log file can also be found on the client side, in
the current directory, unless the ULOGPFX variable changes its location.

Viewing Tuxedo Buffer Data

When you use VuGen to create a Tuxedo Vuser script, your actions are
recorded into the three sections of the script: vuser_init, Actions, and
vuser_end.

The data that is received or transmitted is stored in data buffers, which can
be very large. In order to simplify the appearance of the script, the actual
data is stored in external files—not in the C file. When a data transfer
occurs, the data is copied from the external file into a temporary buffer.

lrt_Fadd_fld((FBFR*)data_0,"name=PHONE","value=<parameter_1>",
LRT_END_OF_PARMS);

Part XIII • Middleware Protocols

1030

The external file is called replay.vdf, and it contains the contents of all the
temporary buffers. The buffers’ contents are stored as sequential records.
The records are marked by identifiers indicating whether the data was sent
or received, and the buffer descriptor. The LRT functions use the buffer
descriptors to access the data.

You can use VuGen to view the contents of the data file by selecting the
replay.vdf file in the left pane’s tree view.

The option to view a data file is available by default for Tuxedo scripts.

Chapter 69 • Developing Tuxedo Vuser Scripts

1031

Defining Environment Settings for Tuxedo Vusers

The following section describes the system variable settings for Tuxedo
Vusers running on Windows and UNIX platforms. You define the system
variables in your Control Panel/System dialog box (NT) or .cshrc or .login
file (UNIX).

For example:

You must define the following system variables for Tuxedo clients using
Tuxedo/WS workstation extensions during execution:

TUXDIR the root directory for Tuxedo sources.

FLDTBLDIR list of directories containing FML buffer information.
In Windows, separate the names of directories with
semi-colons. On UNIX platforms, separate the names
of the directories with a colon.

FIELDTBLS list of files containing FML buffer information. On
both Windows and UNIX platforms, separate the file
names with commas.

SET FLDTBLDIR=%TUXDIR%\udataobj;%TUXDIR%\APPS\WS (PC)
SET FIELDTBLS=bankflds,usysflds (PC)
setenv FLDTBLDIR $TUXDIR/udataobj:$TUXDIR/apps/bankapp (Unix)
setenv FIELDTBLS bank.flds,Usysflds (Unix)

WSNADDR specifies the network address of the workstation
listener process. This enables the client application to
access Tuxedo. Note that to define multiple addresses
in a WSNADDR statement, each address must be
separated by a comma.

WSDEVICE specifies the device that accesses the network. Note
that you do not need to define this variable for some
network protocols.

Part XIII • Middleware Protocols

1032

For example:

Debugging Tuxedo Applications

In general, use Tuxedo 6 to record applications using Tuxedo 6.x or earlier,
and use Tuxedo 7 to record applications using Tuxedo 7.1.

If you encounter problems recording or replaying Tuxedo applications, or
the script is missing a call to lrt_tpinitialize, contact Customer Support to
check which DLLs are used with the application.

If the application uses wtuxws32.dll, instead of libwsc.dll, contact Customer
Support to obtain a patch to enable the recording.

Correlating Tuxedo Scripts

VuGen supports correlation for Vuser scripts recorded with Tuxedo
applications. Correlated statements enable you to link statements by saving
a portion of a buffer and use it in subsequent statements.

To correlate statements, you modify your recorded script within the VuGen
editor using one of the following LRT functions:

➤ lrt_save[32]_fld_val saves the current value of an FML or FML32 buffer
(a string in the form “name=<NAME>” or “id=<ID>”) to a parameter.

➤ lrt_save_parm saves a portion of a character array (such as a STRING or
CARRAY buffer) to a parameter.

➤ lrt_save_searched_string searches for an occurrence of a string in a
buffer and saves a portion of the buffer, relative to the string occurrence,
to a parameter.

For additional information about the syntax of these functions, refer to the
Online Function Reference.

SET WSNADDR=0x0002ffffc7cb4e4a (PC)
setenv WSNADDR 0x0002ffffc7cb4e4a (Unix)
setenv WSDEVICE /dev/tcp (Unix)

Chapter 69 • Developing Tuxedo Vuser Scripts

1033

Correlating FML and FML32 Buffers

Use lrt_save_fld_val or lrt_save32_fld_val to save the contents of the FML
or FML32 buffer.

To correlate statements using lrt_save_fld_val:

 1 Insert the lrt_save_fld_val statement in your script where you want to save
the contents of the current FML (or FML32) buffer.

lrt_save_fld_val (fbfr, "name", occurrence, "param_name");

 2 Reference the parameter.

Locate the lrt statements with the recorded values that you want to replace
with the contents of the saved buffer. Replace all instances of the recorded
values with the parameter name in angle brackets.

In the following example, a bank account was opened and the account
number was stored to a parameter, account_id.

/* Fill the data_0 buffer with new account information*/
data_0 = lrt_tpalloc("FML", "", 512);
lrt_Finitialize((FBFR*)data_0);
lrt_Fadd_fld((FBFR*)data_0, "name=BRANCH_ID", "value=1",
LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=ACCT_TYPE", "value=S",
LRT_END_OF_PARMS);
…

LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=LAST_NAME", "value=Doe", …);
lrt_Fadd_fld((FBFR*)data_0, "name=FIRST_NAME", "value=John", …);
lrt_Fadd_fld((FBFR*)data_0, "name=SAMOUNT", "value=234.12", …);

/* Open a new account and save the new account number*/
tpresult_int = lrt_tpcall("OPEN_ACCT", data_0, 0,&data_0, &olen_2, 0);
lrt_abort_on_error();
lrt_save_fld_val((FBFR*)data_0, "name=ACCOUNT_ID", 0,
"account_id");

Part XIII • Middleware Protocols

1034

In the above example, the account ID was represented by a field name,
ACCOUNT_ID. Some systems represent a field by an ID number rather than
a field name during recording.

You can correlate by field ID as follows:

lrt_save_fld_val((FBFR*)data_0, "id=8302", 0, "account_id");

Correlating Character Strings

Use lrt_save_parm or lrt_save_searched_string to correlate character
strings.

➤ In general, it is recommended to use lrt_save_parm to save a portion of a
character array to a parameter.

➤ Use lrt_save_searched_string when you want to save information, relative
to the position of a particular string in a character array. If the Vuser is for
PeopleSoft, it is recommended to use lrt_save_searched_string, since the
reply buffers returned from the PeopleSoft server often differ in size during
replay from what was seen during recording.

Determining Which Values to Correlate

When working with CARRAY buffers, VuGen generates log files during
recording (with the .rec extension) and during replay (with the .out
extension) which you can compare using the Wdiff utility. You can look at
the differences between the recording and replay logs to determine which
portions of CARRAY buffers require correlation.

/* Use result from first query to fill buffer for the deposit*/
lrt_Finitialize((FBFR*)data_0);
lrt_Fadd_fld((FBFR*)data_0, "name=ACCOUNT_ID",
"value=<account_id>", LRT_END_OF_PARMS);
lrt_Fadd_fld((FBFR*)data_0, "name=SAMOUNT", "value=200.11", …);

Chapter 69 • Developing Tuxedo Vuser Scripts

1035

To compare the log files:

 1 Select View > Output to display the execution log and recording log for your
script.

 2 Examine the Replay Log tab.

The error message should be followed by a statement beginning with the
phrase: Use wdiff to compare.

 3 Double-click on the statement in the execution log to start the Wdiff utility.

WDiff opens and the differences between the record and replay files are
highlighted in yellow. For more details about the Wdiff utility, see
Chapter 11, “Correlating Statements.”

To correlate statements using lrt_save_parm:

Once you decide which value to correlate, you can use lrt_save_parm to
save a portion of a character array (such as a STRING or CARRAY buffer) to a
parameter.

 1 Insert the lrt_save_parm statement in your script at the point where you
want to save the contents of the current buffer.

lrt_save_parm (buffer, offset, length, "param_name");

 2 In the replay.vdf file, locate the buffer data that you want to replace with the
contents of the saved buffer.

View the buffer contents by selecting the replay.vdf file in the Data Files box
of the main VuGen window.

 3 Replace all instances of the value with the parameter name in angle
brackets.

Part XIII • Middleware Protocols

1036

In the following example, an employee ID from a CARRAY buffer must be
saved for later use. The recorded value was “G001” as shown in the output.

Insert lrt_save_parm using the offset, 123, immediately after the request
buffer that sends “PprLoad” and 227 bytes.

In the replay.vdf file, replace the recorded value, “G001”, with the
parameter, empid.

lrt_tpcall:227, PprLoad, 1782
Reply Buffer received.
…
123 “G001”
126 “…”
134 “Claudia”

/* Request CARRAY buffer 57 */
lrt_memcpy(data_0, buf_143, 227);
tpresult_int = lrt_tpcall("PprLoad",

data_0, 227, &data_1, &olen, TPSIGRSTRT);
lrt_save_parm(data_1, 123, 9, "empid");

char buf_143[] =
"\xf5\x0\x0\x0\x4\x3\x2\x1\x1\x0\x0\x0\xbc\x2\x0\x0\x0\x0\x0\x0"
 "X"
"\x89\x0\x0\x0\xb\x0"
 "SPprLoadReq"
 "\xff\x0\x10\x0\x0\x4\x3\x6"
 ”<empid>” // G001
 "\x7"
 ”Claudia”
 "\xe"
 "LAST_NAME_SRCH"
...

Chapter 69 • Developing Tuxedo Vuser Scripts

1037

This function can also be used to save a portion of a character array within
an FML buffer. In the following example, the phone number is a character
array, and the area code is the first three characters. First, the
lrt_save_fld_val statement saves the phone number to a parameter,
phone_num. The lrt_save_parm statement uses lr_eval_string to turn the
phone number into a character array and then saves the area code into a
parameter called area_code.

To correlate statements using lrt_save_searched_string:

Use lrt_save_searched_string to search for a string in a buffer, and save a
portion of the buffer, relative to the string occurrence, to a parameter.

 1 Insert the lrt_save_searched_string statement in your script where you
want to save a portion of the current buffer.

lrt_save_searched_string (buffer, buf_size, occurrence, string, offset,
length, "param_name");

Note that offset is the offset from the beginning of the string.

 2 In the replay.vdf file, locate the buffer data that you want to replace with the
contents of the saved buffer.

View the buffer contents by selecting the replay.vdf file in the Data Files box
of the main VuGen window.

 3 Replace all instances of the value with the parameter name in angle
brackets.

In the following example, a Certificate is saved to a parameter for a later use.
The lrt_save_searched_string function saves 16 bytes from the specified
olen buffer, to the parameter cert1. The saved string location in the buffer, is
9 bytes past the first occurrence of the string “SCertRep”.

This application is useful when the buffer’s header information is different
depending on the recording environment.

lrt_save_fld_val((FBFR*)data_0, "name=PHONE", 0, "phone_num");
lrt_save_parm(lr_eval_string("<phone_num>"), 0, 3, "area_code");
lr_log_message("The area code is %s\n", lr_eval_string("<area_code>"));

Part XIII • Middleware Protocols

1038

The certificate will come 9 bytes past the first occurrence of “SCertRep”, but
the length of the information before this string varies.

/* Request CARRAY buffer 1 */
lrt_memcpy(data_0, sbuf_1, 41);
lrt_display_buffer("sbuf_1", data_0, 41, 41);
data_1 = lrt_tpalloc("CARRAY", "", 8192);
tpresult_int = lrt_tpcall("GetCertificate",

data_0,
41,
&data_1,
&olen,
TPSIGRSTRT);

/* Reply CARRAY buffer 1 */
lrt_display_buffer("rbuf_1", data_1, olen, 51);
lrt_abort_on_error();

lrt_save_searched_string(data_1, olen, 0, "SCertRep", 9, 16, "cert1");

Part XIV

Streaming Data Protocols

1040

1041

70
Developing Streaming Data Vuser Scripts

Streaming media is a rapidly growing market that allows for the delivery of
audio/visual content over the Internet. The idea behind streaming media is
that the audio/video content can be transmitted to the end user without
having to first download the file in its entirety. Streaming works by having
the server continuously stream the content to the client as it displays it.

RealPlayer is an application that display streaming content.

You use VuGen to record communication between a client application and a
server that communicate using the RealPlayer protocol. The resulting script
is called a Real Vuser script.

This chapter describes:

➤ About Recording Streaming Data Virtual User Scripts

➤ Getting Started with Streaming Data Vuser Scripts

➤ Using RealPlayer LREAL Functions

The following information applies only to the Real and Media Player
(MMS) protocols.

Part XIV • Streaming Data Protocols

1042

About Recording Streaming Data Virtual User Scripts

The Streaming Data protocols allows you to emulate a user playing media or
streaming data files.

When you record an application using a streaming data protocol, VuGen
generates functions that describe your actions. For RealPlayer sessions,
VuGen generates functions with an lreal prefix. For Media Player sessions,
VuGen uses functions with an mms prefix. Note that recording is not
supported for Media Player mms functions—only replay.

Getting Started with Streaming Data Vuser Scripts

This section provides an overview of the process of developing RealPlayer
and Media Player streaming data Vuser scripts using VuGen.

To develop a Real or Media Player Vuser script:

 1 Record the basic script using VuGen. (Real only)

Invoke VuGen and create a new Vuser script. Choose an application to
record, and record typical operations on your application. For details, see
Chapter 4, “Recording with VuGen.”

 2 Enhance the script.

Enhance the script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 3 Define parameters (optional).

Define parameters for the fixed-values recorded into your script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values.

For details, see Chapter 8, “Working with VuGen Parameters.”

 4 Correlate statements (optional).

Correlating statements enables you to use the result of one business process
in a subsequent one.

For details, see Chapter 11, “Correlating Statements.”

Chapter 70 • Developing Streaming Data Vuser Scripts

1043

 5 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include loop, log, and timing information.

For details, see Chapter 12, “Configuring Run-Time Settings.”

 6 Run the script from VuGen.

Save and run the script from VuGen to verify that it runs correctly.

For details, see Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Part XIV • Streaming Data Protocols

1044

Using RealPlayer LREAL Functions

The functions developed to emulate communication between a client and a
server by using the RealPlayer protocol are called Real Player functions. Each
Real Player function has an lreal prefix. VuGen automatically records most
of the LREAL functions listed in this section during a Real Player session.
You can also manually program any of the functions into your script. For
more information about the LREAL functions, refer to the Online Function
Reference (Help > Function Reference).

For example, the lreal_play function takes the form:

int lreal_play (int miplayerID, long mulTimeToPlay);

To play the clip until the end, use any negative value for mulTimeToPlay. To
play the clip for a specific duration number of milliseconds, specify the
number of milliseconds. miplayerID represents a unique ID of a RealPlayer
instance.

lreal_clip_size Returns the size of the current clip.

lreal_close_player Closes a RealPlayer instance.

lreal_open_player Creates a new RealPlayer instance.

lreal_open_url Opens a URL.

lreal_pause Pauses the playing of a RealPlayer clip.
lreal_play Plays a RealPlayer clip.

lreal_seek Seeks a position in a RealPlayer clip.
lreal_stop Stops playing a RealPlayer clip.

Chapter 70 • Developing Streaming Data Vuser Scripts

1045

Using Media Player MMS Functions

The functions developed to emulate client/server communication for Media
Player’s MMS protocol, are called MMS Virtual User functions—each
function has an mms prefix.

All MMS functions come in pairs—one for global sessions and one for a
specific session. For example, mms_close closes the Media Player globally,
while mms_close_ex closes the Media Player for a specific session.

For detailed syntax information on these functions, refer to the Online
Function Reference (Help > Function Reference).

For example, the mms_play function takes the form:

int mms_play (char message, <List of Attributes>, LAST);

Function Name Description

mms_close[_ex] Closes the Media Player.

mms_get_property[_ex] Retrieves a property of a Media Player clip.

mms_isactive[_ex] Verifies that the Media Player is active.

mms_pause[_ex] Pauses the playing of a Media Player clip.

mms_play[_ex] Plays a Media Player clip.

mms_resume[_ex] Resumes playing a Media Player clip.

mms_sampling[_ex] Samples a Media Player clip.

mms_set_property[_ex] Sets a Media Player clip property.

mms_set_timeout[_ex] Sets a timeout value for a Media Player clip.

mms_stop[_ex] Stops playing a Media Player clip.

Part XIV • Streaming Data Protocols

1046

In the following example, the mms_play function plays an asf file for
different durations:

//Play for a duration of 10 seconds.
mms_play("Welcome","URL=mms://server/welcome.asf","
duration=10",
LAST);

//Play the clip until its completion, after waiting 5 seconds.
mms_play ("Welcome","URL=mms://server/welcome.asf",
"duration=-1",
"starttime=5",
LAST);

Part XV

Wireless Protocols

1048

1049

71
Introducing Wireless Vusers

You use VuGen to develop scripts for wireless applications using the WAP,
VoiceXML, or i-mode protocols. VuGen creates Vuser scripts by recording
your actions over a wireless network.

This chapter describes:

➤ About Wireless Vusers

➤ Understanding the WAP Protocol

➤ Understanding the i-mode System

➤ i-mode versus WAP

➤ Understanding VoiceXML

About Wireless Vusers

VuGen supports three wireless protocols:

➤ WAP (Wireless Application Protocol)

➤ i-mode

➤ VoiceXML

Each protocol has specific characteristics, differing in both the
implementation and development of user content.

Developers use toolkits that serve as a development environment for
creating content and applications for the wireless protocols.

Part XV • Wireless Protocols

1050

Understanding the WAP Protocol

The Wireless Application Protocol (WAP) is an open, global specification
that enables mobile users with wireless devices to instantly access and
interact with information and services.

The WAP protocol specifies a microbrowser thin-client using a new standard
called WML that is optimized for wireless handheld mobile terminals. WML
is a stripped-down version of XML.

WAP also specifies a proxy server that:

➤ acts as a gateway between the wireless network and the wire-line Internet

➤ provides protocol translation

➤ optimizes data transfer for the wireless handset

WAP architecture closely resembles the WWW model. All content is
specified in formats that are similar to the standard Internet formats.
Content is transported using standard protocols in the WWW domain and
an optimized HTTP-like protocol in the wireless domain (Wireless Session
Protocol). You locate all WAP content using WWW standard URLs.

WAP uses many WWW standards, including authoring and publishing
methods. WAP enhances some of the WWW standards in ways that reflect
the device and network characteristics. WAP extensions are added to support
Mobile Network Services such as Call Control and Messaging. It accounts for
the memory and CPU processing constraints that are found in mobile
terminals. WAP also supports low bandwidth and high latency networks.

Chapter 71 • Introducing Wireless Vusers

1051

WAP assumes the existence of a gateway that is responsible for encoding and
decoding data transferred to and from the mobile client. The purpose of
encoding content delivered to the client is to minimize the size of data sent
to the client over-the-air, as well as to minimize the computational energy
required by the client to process that data. The gateway functionality can be
added to origin servers, or placed in dedicated gateways as illustrated below.

WAP Toolkits

To assist developers in producing WAP applications and services, the leading
companies such as Nokia, Ericsson, and Phone.com, have developed
toolkits. The WAP Toolkit provides an environment for developers who
want to provide Internet services and content for mobile terminals. It allows
developers to write, test, debug, and run applications on a PC-based
simulator phone. The toolkit allows users to browse WAP sites through an
HTTP connection or a WAP gateway.

A mobile phone communicates with a gateway in WSP protocol; a toolkit
can communicate with the gateway, or directly with the server. VuGen lets
your record in two modes: WSP and HTTP. If you are interested in the traffic
to the gateway, you record in WSP mode. If you want to check the server
and the content providers, you can record your toolkit session in HTTP
mode, and bypass the gateway.

Part XV • Wireless Protocols

1052

VuGen uses custom API functions to emulate a user session. Most functions
are the standard Web protocol functions utilizing the HTTP protocol. Several
WAP functions emulate actions specific to WAP Vusers. For a list of the
supported functions, see “Using Wireless Vuser Functions” on page 1060.

Understanding the i-mode System

The i-mode protocol is NTT DoCoMo's mobile Internet access system.
Technically, i-mode is an overlay over ordinary mobile voice systems. While
the voice systems are circuit-switched (that is, you need to dial-up), i-mode
is packet-switched. This means that i-mode is in principle always connected,
provided the i-mode signal can reach you. When you select an i-mode item
on the handset menu, the data is usually downloaded immediately, without
the usual dial-up delay. However, there may be a delay in receiving the data,
depending on the size of the data and network bandwidth.

Working with i-mode is similar to accessing the Internet with a browser. For
example, they send e-mail, look at the weather forecasts, sports results, play
games, execute online stock trades, purchase air tickets, and search for
restaurants.

The i-mode protocol uses cHTML (compact HTML), a subset of ordinary
HTML. In addition to standard HTML tags, there are several i-mode specific
tags. For example, one i-mode tag sets up a link, which dials up to a
telephone number. Another i-mode-specific tag informs search engines that
a particular web page is an i-mode page.

In addition, there are many DoCoMo special characters which serve as
symbols. For example, there are special characters that represent joy, love,
sadness, telephone, trains, encircled numbers, and so forth.

Since cHTML is a subset of HTML, you can use your Netscape or IE browser
to view i-mode pages, such as http://www.eurotechnology.com/i/ or
http://www.eu-japan.com/i/. However, since nearly all i-mode users are
Japanese, almost all i-mode content is in the Japanese language. Therefore,
you will need Japanese Text Display support in your browser. When you
view i-mode content in a regular browser, you will not be able to see i-mode-
specific tags. In addition, you cannot display the special DoCoMo-i-mode
symbols.

Chapter 71 • Introducing Wireless Vusers

1053

i-mode Toolkits

To assist developers in producing i-mode services, several toolkits are
available and supported by VuGen. The i-mode toolkits provide an
environment for developers who want to provide Internet services and
content for mobile terminals. Toolkits allow developers to write, test, debug,
and run applications on a PC-based simulator phone. The toolkit allows
users to browse i-mode sites through a standard HTTP connection. A partial
list of the supported toolkits are CompactViewer, and Pixo versions 2.0 and
2.1.

i-mode versus WAP

There are several important differences in the way i-mode and WAP based
services are presently implemented. i-mode uses cHTML, a subset of HTML
which is relatively easier to master than WAP's markup language WML.
Currently, i-mode is implemented with a packet-switched system, which is
in principle "always on" while WAP systems use a circuit-switched model,
that is, dial-up. Note that packet-switching or circuit-switching is a technical
difference of the telecommunication system on which the services are
based. In principle, i-mode and WAP encoded web pages can be delivered
over packet or circuit switched systems.

An additional difference is in the pricing methods: an i-mode user is charged
for the amount of information downloaded, plus various premium service
charges. WAP users are charged by the connection time.

Part XV • Wireless Protocols

1054

Understanding VoiceXML

VoiceXML or VXML, is a technology that allows you to interact with the
Internet using voice-recognition technology through a voice browser or a
telephone. Using VoiceXML, you interact with voice browser by listening to
pre-recorded or computer-synthesized audio and submitting input through
a natural speaking voice or a keypad, such as a telephone.

A VoiceXML consists of a VoiceXML gateway that accesses static or dynamic
VoiceXML content on the Web. The gateway has a VoiceXML browser, Text-
To-Speech, Automatic Speech Recognition (ASR), and the telephony
hardware that connects to a Public Switched Telephone Network (PSTN). It
connects to the phone network through one of the following lines: T1,
POTS, or ISDN. A Plain Old Telephone Server (POTS) line, similar to the ones
used in residential locations, only handles a single connection; a T1 line has
24 individual phone lines.

A typical voice dialog consists of:

 1 You dial up the system by phone (wireless or fixed). The telephony hardware
picks it up and passes the call to the VoiceXML browser.

 2 The VoiceXML gateway retrieves a VoiceXML document with a vxml
extension from the specified Web server, and plays a prompt tone.

 3 You speak into the telephone or press a key on the phone keypad.

 4 The telephony equipment passes the recorded sound to the speech
recognition engine (if it's speech), using a predefined dictionary contained
in the VoiceXML document.

 5 The VoiceXML browser executes the commands in the document based
upon the results of the speech analysis, and plays another pre-recorded or
synthesized prompt.

Chapter 71 • Introducing Wireless Vusers

1055

VuGen supports recording for VoiceXML sessions. The recorded script
contains web_url functions that emulate your actions. In the following
example, a user requests the a page with stock information.

Action1()
{

web_add_auto_header("Accept",
"text/x-vxml, */*");

web_add_auto_header("Content-Type",
"application/x-www-form-urlencoded");

web_add_auto_header("User-Agent",
"Motorola VoxGateway/2.0");

web_url("top.vxml",
"URL=http://testserver1/Vxmlexample/top.vxml?DNIS=-",
"Resource=0",
"RecContentType=application/octet-stream",
"Referer=",
"Mode=HTTP",
LAST);

web_url("stock.vxml",
"URL=http://testserver1/Vxmlexample/stock.vxml",
"Resource=0",
"RecContentType=application/octet-stream",
"Referer=",
"Mode=HTTP",
LAST);

return 0;
}

Part XV • Wireless Protocols

1056

1057

72
Recording Wireless Vuser Scripts

VuGen enables you to generate Wireless Vuser scripts by recording typical
Wireless sessions. When you run a script, the resulting Vuser emulates
activity between your toolkit or phone and Web server (or gateway for
WAP).

This chapter describes:

➤ About Recording Wireless Vuser Scripts

➤ Getting Started with Wireless Vuser Scripts

➤ Using Wireless Vuser Functions

➤ Troubleshooting Wireless Vuser Scripts

The following information only applies to all Wireless protocols, WAP,
i-mode, and VoiceXML.

About Recording Wireless Vuser Scripts

Suppose you have a Web site that displays purchase request status by
customers. You want to ensure that the response time for any customer
query is less than a specified value (for example, 20 seconds)—even when a
large number of users (for example 200) access the site simultaneously. You
use Vusers to emulate this scenario or session step, in which the Web or
WAP server services the simultaneous requests for information. Each Vuser
could:

➤ load an opening page

➤ submit a request

➤ wait for a response from the server

Part XV • Wireless Protocols

1058

You can distribute several hundred Vusers among the available testing
machines, each Vuser accessing the server by using its API. This enables you
to measure the performance of the server under the load of many users.

Getting Started with Wireless Vuser Scripts

This section provides an overview of the process of developing Wireless
Vuser scripts using VuGen.

To develop a Wireless script:

 1 Create a new script using VuGen.

Select File > New or click the New button to create a new script in either
single or multiple protocol mode.

For details about creating a new script, see Chapter 4, “Recording with
VuGen.”

 2 Set the recording options.

Set the recording options. For information about setting common Internet
recording options, see Chapter 40, “Setting Recording Options for Internet
Protocols.” For information about Wireless specific recording options, see
Chapter 74, “Setting Wireless Vuser Recording Options.”

 3 Record the actions using VuGen.

Record the actions over the toolkit session.

For information about recording, see Chapter 4, “Recording with VuGen.”

 4 Enhance the Vuser script.

Enhance the Vuser script by inserting transactions, rendezvous points, and
control-flow structures into the script.

For details, see Chapter 7, “Enhancing Vuser Scripts.”

 5 Define parameters (optional).

Define parameters for the fixed-values recorded into your Vuser script. By
substituting fixed-values with parameters, you can repeat the same business
process many times using different values. For details, see Chapter 8,
“Working with VuGen Parameters.”

Chapter 72 • Recording Wireless Vuser Scripts

1059

 6 Configure the run-time settings.

The run-time settings control the Vuser behavior during script execution.
These settings include the run logic, pacing, logging, think time, and
performance preferences.

For information about the General run-time settings, see Chapter 12,
“Configuring Run-Time Settings.”

For information about common Internet protocol run-time settings, see
Chapter 42, “Configuring Internet Run-Time Settings.”

For information about WAP specific run-time settings, see Chapter 75,
“Configuring WAP Run-Time Settings.”

 7 Perform correlation.

Check your script to determine if there are dynamic values that require
correlation. For Wireless protocols, you perform manual correlation by
adding web_reg_save_param functions.

For more information, see “Performing Manual Correlation” on page 661.

 8 Save and run the Vuser script from VuGen.

Save and run the Vuser script from VuGen to verify that it runs correctly.
While you record, VuGen creates a series of configuration, data, and source
code files. These files contain Vuser run-time and setup information. VuGen
saves these files together with the script.

For details about running the Vuser script as a standalone test, see
Chapter 14, “Running Vuser Scripts in Standalone Mode.”

After you create a script, you integrate it into your environment: a
LoadRunner scenario, Performance Center load test, Tuning Module session,
or Business Process Monitor profile. For more information, refer to the
LoadRunner Controller User’s Guide, Tuning Console, Performance Center, or
Application Management documentation.

Part XV • Wireless Protocols

1060

Using Wireless Vuser Functions

The functions developed to emulate communication between a wireless
instrument and Web server (or gateway for WAP), are called Vuser functions.
Some functions are generated when you record a script; others you must
manually insert into the script. You can also add Vuser message functions
and custom C functions to your Vuser scripts after recording.

The functions representing standard HTTP actions, have a web prefix. For
information about these functions, see Chapter 39, “Using Web Vuser
Functions.”

General Vuser functions begin with an lr prefix. For more information, see
“Using C Vuser Functions” on page 33.

The following section describes the functions representing WAP specific
actions, which have a wap prefix.

For a complete list of all Web related functions, see Chapter 39, “Using Web
Vuser Functions”, or refer to the Online Function Reference (Help > Function
Reference).

For WAP Vusers running scripts in Wireless Session Protocol (WSP) mode,
only the following functions are supported:

Action Functions: web_custom_request, web_submit_data, and
web_url

Authentication
Functions:

All—web_set_user, web_set_certificate[_ex]

Cookie Functions: All—web_add_cookie, web_cleanup_cookie,
web_remove_cookie

Header Functions: All —web_add_auto_header,
web_add_header, web_cleanup_auto_headers,
web_save_header

Correlation Functions: All—web_create_html_param[_ex],
web_reg_save_param,
web_set_max_html_param_len

Chapter 72 • Recording Wireless Vuser Scripts

1061

WAP Specific Functions

For more information, select the function in the VuGen editor and press F1,
or refer to the Online Function Reference (Help > Function Reference).

Troubleshooting Wireless Vuser Scripts

Nokia Toolkits

For Nokia toolkits (3.0 and 3.1), you need to launch the toolkit manually
assigning it the proper IP address.

wap_add_const_header Specifies a constant header to pass
to a WAP gateway.

wap_connect Connects to a WAP gateway.

wap_disconnect Disconnects from a WAP gateway.

wap_format_si_message Formats an SI type message

wap_format_sl_message Formats an SL type message

wap_pi_push_cancel Cancels a message sent to a PPG.

wap_pi_push_submit Submits a Push message.

wap_radius_connection Connects or disconnects from a
RADIUS server.

wap_send_sms Sends an SMS type message.

wap_set_bearer Sets the underlying bearer-UDP or
CIMD2 (SMS).

wap_set_capability Sets a client capability for a WAP
gateway connection.

wap_set_connection_mode Sets the connection mode and
security level.

wap_set_gateway Sets a gateway IP address and port.

wap_set_sms_user Sets login information for the SMSC.

wap_wait_for_push Waits for a Push message to arrive.

Part XV • Wireless Protocols

1062

To relaunch the toolkit:

 1 Ensure that there is no gateway running on the VuGen machine. The
presence of another gateway could block the port for the pseudo-gateway.

 2 Start VuGen.

 3 Invoke the toolkit. (You must invoke the toolkit after starting VuGen.)

 4 In the Recording Options, choose the Internet Protocol:WAP Toolkit node
and select Manually launch a WAP toolkit.

 5 Click OK. A message box opens with the Gateway IP address assigned by
VuGen.

 6 Copy the IP address and paste it into the toolkit’s connection settings.

 7 In the toolkit, enter the desired URL. Ignore the message Gateway not
connected. Enter the URL again. VuGen may have recorded several
web_add_const_header events at this point.

Every new recording session requires closing the toolkit and repeating steps
2 - 7.

Note: You can use the above procedure for other toolkits for which you
encounter recording issues.

1063

73
Working with WAP Vuser Scripts

You use VuGen to develop WAP (Wireless Application Protocol) Vuser
scripts. VuGen creates Vuser scripts by recording your actions while you
operate a WAP device.

This chapter describes:

➤ About WAP Vusers

➤ Recording Over a Phone

➤ Bearers Support

➤ RADIUS Support

➤ Push Support

➤ VuGen Push Support

About WAP Vusers

The Wireless Application Protocol (WAP) is an open specification that
enables mobile users with wireless devices to access and interact with
information and services instantly. For an overview of WAP technology, see
Chapter 71, “Introducing Wireless Vusers.”

VuGen uses custom API functions to emulate a user session. Most functions
are the standard Web protocol functions utilizing the HTTP protocol. Several
WAP functions emulate actions specific to WAP Vusers. For a list of the
supported functions, see “Using Wireless Vuser Functions” on page 1060.

Part XV • Wireless Protocols

1064

You can record a WAP session using a toolkit or through your phone. For
information about recording through a toolkit, see Chapter 74, “Setting
Wireless Vuser Recording Options.” For information about recording over a
phone, see “Recording Over a Phone” below.

You can program scripts to emulate WAP sessions using the wap Vuser
functions. For more information and examples, refer to the Online Function
Reference (Help > Function Reference).

VuGen support for WAP allows you to choose a bearer, identify a RADIUS
server, and emulate a Push mechanism. This support is described in this
chapter.

Recording Over a Phone

You can record a WSP session between phones or toolkits and a WAP
gateway. In order to record the WSP session, make sure that the toolkit or
phone gateways settings are configurable.

During recording, VuGen launches a pseudo gateway. VuGen captures the
WSP traffic on this gateway and creates a script.

To configure VuGen for a WSP recording session, you must enable WSP in
the Recording Mode tab of the recording options (see Chapter 74, “Setting
Wireless Vuser Recording Options”).

You enter an origin gateway IP address and set the recording mode to CO or
CL. Make sure that the recording mode you select is supported by your
toolkit or phone.

To record over a phone through wireless connection, you must first dial in
to your ISP to get Internet access. Configure the phone to the IP address of
the VuGen machine and set the phone to the desired recording mode (CO
or CL).

The VuGen machine can exist in one of the following configurations:

➤ If you connect through a third party ISP, the VuGen machine with the
pseudo gateway should be open to Internet access—it must not sit beyond a
firewall.

Chapter 73 • Working with WAP Vuser Scripts

1065

➤ If you dial in through a Remote Access Server (RAS), you can access the
VuGen machine as part of the network.

Bearers Support

The Transport layer protocol in the WAP architecture consists of the Wireless
Transaction Protocol (WTP) and the Wireless Datagram Protocol (WDP).

An underlying bearer is a data transport mechanism used to carry the WDP
protocols between two devices. Examples of underlying bearers include
SMS-CIMD2, UDP, CSD, GSM GPRS, GSM CSD, and Packet Data.

WAP Vusers currently support the UDP (User Datagram Protocol) and SMS-
CIMD2 (Short Message Service) bearers.

UDP bearers do not require a separate connection- they operate over an IP
network. To work with SMS-CIMD2 however, you must connect to an SMS
Center (SMSC) and provide the appropriate information:

➤ IP and Port Information: For UDP bearers, you define the port and login
information in the Run-Time Setting's Bearers tab (see “Configuring Bearer
Information” on page 1085).

➤ Login Information for the SMS Center: You define the SMS login
information in the Run-Time Setting's Bearers tab. You can also set this
information through the wap_set_sms_user function. This is useful for load
testing when you need to set the login information for many Vusers using
parameterization.

➤ Login Information for the CIMD2: You set the CIMD2 bearer information in
the Run-Time settings Bearers tab (see Chapter 75, “Configuring WAP Run-
Time Settings”).

In some instances, you may need to work with several types of bearers. For
example, someone sends you a message in UDP protocol when your phone
is off. When you turn your phone on, you retrieve it through the SMS
protocol. You can use the wap_set_bearer function to switch bearer types
during script execution.

Part XV • Wireless Protocols

1066

RADIUS Support

RADIUS (Remote Authentication Dial-In User Service) is a client/server
protocol and software that enables remote access servers to communicate
with a central server to authenticate dial-in users and authorize their access
to the requested system or service.

RADIUS allows a company to maintain user profiles in a central database
that all remote servers can share. It provides better security, allowing a
company to set up a policy that can be applied at a single administered
network point. Using a central service makes it easier to track usage for
billing and store network statistics.

RADIUS has two sub-protocols:

➤ Authentication: Authorizes and controls user access.

➤ Accounting: Tracks usage for billing and for keeping network statistics.

In VuGen, the RADIUS protocol is only supported for WSP replay for both
Radius sub-protocols—authentication and accounting.

You supply the dial-in information in the Run-Time Settings Radius tab. For
more information, see Chapter 75, “Configuring WAP Run-Time Settings.”

Push Support

In the normal client/server model, a client requests information or a service
from a server. The server responds by transmitting information or
performing a service to the client. This is known as pull technology—the
client pulls information from the server.

In contrast to this, there is also push technology. The WAP push framework
transmits information to a device without a previous user action. This
technology is also based on the client/server model, but there is no explicit
request from the client before the server transmits its content.

Chapter 73 • Working with WAP Vuser Scripts

1067

To perform a push operation in WAP, a Push Initiator (PI) transmits content
to a client. However, the Push Initiator protocol is not fully compatible with
the WAP Client—the Push Initiator is on the Internet, and the WAP Client is
in the WAP domain. Therefore, we need to insert a translating gateway to
serve as an intermediary between the Push Initiator and the WAP Client.
The translating gateway is known as the Push Proxy Gateway (PPG).

The access protocol on the Internet side is called the Push Access Protocol
(PAP).

The protocol on the WAP end is called the Push Over-The-Air (OTA)
protocol.

The Push Initiator contacts the Push Proxy Gateway (PPG) over the Internet
using the PAP Internet protocol. PAP uses XML messages that may be
tunneled through various well-known Internet protocols such as HTTP. The
PPG forwards the pushed content to the WAP domain. The content is then
transmitted using the OTA protocol over the mobile network to the
destination client. The OTA protocol is based on WSP services.

In addition to providing basic proxy gateway services, the PPG is capable of
notifying the Push Initiator about the final status of the push operation. In
two-way mobile networks, it can also wait for the client to accept or reject
the content.

Push Services Types

Push services can be of the SL or SI type:

➤ SL - The Service Loading (SL) content type provides the ability to cause a
user agent on a mobile client to load and execute a service—for example, a
WML deck. The SL contains a URI indicating the service to be loaded by the
user agent without user intervention when appropriate.

➤ SI - The Service Indication (SI) content type provides the ability to send
notifications to end-users in an asynchronous manner. For example, the
notifications may be about new e-mails, changes in stock price, news
headlines, and advertising.

Part XV • Wireless Protocols

1068

In its most basic form, an SI contains a short message and a URI indicating a
service. The message is presented to the end-user upon reception, and the
user is given the choice to either start the service indicated by the URI
immediately, or postpone the SI for later handling. If the SI is postponed,
the client stores it and the end-user is given the ability to act upon it at a
later point of time.

VuGen Push Support

Push support for VuGen is divided into three parts:

➤ Push support at the client end—the ability to accept push messages.

➤ Push support to WAP HTTP Vusers—emulating Push Initiators.

➤ Push messages (SI & SL) format services—formatting push messages.

Client Push Support

At the client end, VuGen supports both push services (SL and SI) for all
replay modes (CO and CL). The wap_wait_for_push function instructs the
Vuser to wait for a push message to arrive. You set the timeout for this
function in the run-time settings.

When a push message arrives, the Vuser parses it to determine its type and
to retrieve its attributes. If parsing was successful, it generates and executes a
pull transaction to retrieve the relevant data. You can disable the pull event,
indicating to the Vuser not to retrieve the message data by configuring the
Run-Time settings. For more information, see Chapter 75, “Configuring
WAP Run-Time Settings.”

Emulating a Push Initiator

Push support for WAP HTTP Vusers enables you to perform load testing of
the PPG. Push support allows Vusers to function as Push Initiators
supporting the Push Access Protocol (PAP). The PAP defines the following
sets of operations between the PI and the PPG:

 1 Submit a Push request.

 2 Cancel a Push request.

Chapter 73 • Working with WAP Vuser Scripts

1069

 3 Submit a query for the status of a push request.

 4 Submit a query for the status of a wireless device’s capabilities.

 5 Initiate a result notification message from the PPG to the PI.

All operations are request/response—for every initiated message, a response
is issued back to the PI. PI operations are based on the regular HTTP POST
method supported by VuGen. Currently, only the first two operations are
supported through wap_push_submit and wap_push_cancel.

You can submit data to a Web server using the web_submit_data function.
It is difficult, however, to send long and complex data structures using this
function. To overcome this difficulty and provide a more intuitive API
function, several new API functions were added to properly format the XML
message data: wap_format_si_msg and wap_format_sl_msg. For more
information about these functions, refer to the Online Function Reference.

Part XV • Wireless Protocols

1070

1071

74
Setting Wireless Vuser Recording Options

Before recording a Wireless session, you can customize the recording
options.

This chapter describes:

➤ About Setting Wireless Recording Options

➤ Specifying the Recording Mode (WAP only)

➤ Specifying the Information to Record (i-mode and VoiceXML)

➤ Specifying a Toolkit

About Setting Wireless Recording Options

VuGen enables you to generate Wireless Vuser scripts by recording typical
processes that users perform on your Web site using their wireless interfaces.

Before recording, you can configure the Recording Options and specify the
information to record, the toolkit with which to record, and the global
proxy settings.

You can set the common Internet protocol recording options, such as proxy
settings and other advanced settings. For more information, see Chapter 40,
“Setting Recording Options for Internet Protocols.”

Part XV • Wireless Protocols

1072

Specifying the Recording Mode (WAP only)

Use the Recording Mode settings in the Recording Options dialog box
(Tools > Recording Options) to define the information that VuGen records
during a recording session for WAP Vusers.

To define recording information for WAP Vusers:

Select one of the following options in the Recording Mode section:

➤ WSP: Instructs VuGen to record all WSP traffic between the toolkit or
phone and the gateway. The actions are recorded as URL steps. Enter the
IP address of the gateway, and select Connectionless or Connection-
Oriented from the WSP mode box. To allow recording using secure WAP,
select the Enable security check box.

For recording in WSP mode, VuGen contains native support for the
Phone.com UP Simulator 4.1 toolkit. It detects the installation,
automatically sets the configuration parameters, and launches it. For
Nokia toolkits (1.3 and 2.0), you need to launch the toolkit manually
assigning it the proper IP address. For more information, see
“Troubleshooting Wireless Vuser Scripts” on page 1061.

Chapter 74 • Setting Wireless Vuser Recording Options

1073

➤ HTTP: Instructs VuGen to record the HTTP traffic between the toolkit and
the Web server as URL steps. Select the Record all HTTP requests as
custom requests check box to record all HTTP requests as contextless
custom HTTP requests, generating web_custom_request functions.

Specifying the Information to Record (i-mode and
VoiceXML)

Use the Recording node in the Recording Options tree to define the
information that VuGen records during a recording session. You can select
both an i-mode Recording Mode and a VoiceXML Recording Mode.

The only available recording mode is HTTP. This mode instructs VuGen to
record the HTTP traffic between the toolkit and the Web server as URL steps.

To define recording information for i-mode or VoiceXML Vusers:

 1 Open the Recording Options (Tools > Recording Options) and in the
Recording Options tree, select the Internet Protocol:Recording node.

 2 In the Information to record section, select the Record all HTTP requests as
custom requests option to record all HTTP requests as contextless Custom
HTTP Requests, generating web_custom_request functions.

Part XV • Wireless Protocols

1074

i-mode Recording Mode

This node allows you to specify a recording mode for i-mode Vusers.

The recording mode that you select depends on your needs and
environment. The available recording modes are HTTP or Custom Requests.

HTTP: Captures all HTTP requests sent to the server as a result of user
actions, creating web_url statements for each request. This recording level
captures even non-HTML applications such as applets and non-browser
applications.

Record All HTTP Requests as Custom Requests: Records all HTTP requests as
custom HTTP requests, disregarding their contexts. Custom requests do not
rely on a specific structure or the HTTP request statement. VuGen generates
a web_custom_request function for each page and resource that it records,
instead of the web_url, web_image, or web_submit_form functions.

VoiceXML Recording Mode

This node allows you to specify a recording mode for VoiceXML Vusers.

The recording mode that you select depends on your needs and
environment. The available recording modes are HTTP or Custom Requests.

HTTP: Captures all HTTP requests sent to the server as a result of user
actions, creating web_url statements for each request. This recording level
captures even non-HTML applications such as applets and non-browser
applications.

Record All HTTP Requests as Custom Requests: Records all HTTP requests as
custom HTTP requests, disregarding their contexts. Custom requests do not
rely on a specific structure or the HTTP request statement. VuGen generates
a web_custom_request function for each page and resource that it records,
instead of the web_url, web_image, or web_submit_form functions.

Chapter 74 • Setting Wireless Vuser Recording Options

1075

Specifying a Toolkit

You can specify which toolkit VuGen should use when recording a Wireless
Vuser script. You use the Toolkit node in the Recording Options tree to
specify the desired VoiceXML Toolkit, i-mode Toolkit, or VoiceXML Toolkit.

The following options are available:

➤ Use default… toolkit - record using the default toolkit.

➤ Manually launch… toolkit - manually launch a toolkit.

➤ Use supported… toolkits - Use a toolkit from the list of supported
toolkits.

Part XV • Wireless Protocols

1076

WAP Toolkit

In this node, you indicate which WAP toolkit to use during recording. The
supported toolkits that are installed are listed below.

To specify the toolkit for recording a WAP Vuser script:

 1 Choose Tools > Recording Options and select the WAP Toolkit (or i-mode
VoiceXML Toolkit) node.

 2 Select one of the following options in the Toolkit Location section:

➤ Use default WAP (i-mode or VoiceXML) Toolkit: Instructs VuGen to use
the default toolkit on the recording computer (currently disabled).

➤ Manually launch a WAP (i-mode or VoiceXML) Toolkit: Instructs VuGen
not to launch a toolkit when you start recording. You must manually
launch a WAP toolkit after you start the recording session.

➤ Use supported WAP (i-mode or VoiceXML) Toolkits: Instructs VuGen to
use a specific toolkit installed on the machine. Select one of the available
toolkits listed in the dialog box.

i-mode Toolkit

In this node, you indicate which i-mode toolkit to use during recording. The
supported toolkits that are installed are listed below.

To specify the toolkit for recording an i-mode Vuser script:

 1 Choose Tools > Recording Options and select the i-mode Toolkit node.

 2 Select one of the following options in the Toolkit Location section:

➤ Use default i-mode Toolkit: Instructs VuGen to use the default toolkit on
the recording computer (currently disabled).

➤ Manually launch a i-mode Toolkit: Instructs VuGen not to launch a
toolkit when you start recording. You must manually launch a WAP
toolkit after you start the recording session.

➤ Use supported i-mode Toolkits: Instructs VuGen to use a specific toolkit
installed on the machine. Select one of the available toolkits listed in the
dialog box.

Chapter 74 • Setting Wireless Vuser Recording Options

1077

VoiceXML Toolkit

In this node, you indicate which VoiceXML toolkit to use during recording.
The supported toolkits that are installed are listed.

To specify the toolkit for recording a VoiceXML Vuser script:

 1 Choose Tools > Recording Options and select the VoiceXML Toolkit node.

 2 Select one of the following options in the Toolkit Location section:

➤ Use default VoiceXML Toolkit: Instructs VuGen to use the default toolkit
on the recording computer (currently disabled).

➤ Manually launch a VoiceXML Toolkit: Instructs VuGen not to launch a
toolkit when you start recording. You must manually launch a WAP
toolkit after you start the recording session.

➤ Use supported VoiceXML Toolkit: Instructs VuGen to use a specific toolkit
installed on the machine. Select one of the available toolkits listed in the
dialog box.

Part XV • Wireless Protocols

1078

1079

75
Configuring WAP Run-Time Settings

After you record a WAP Vuser script, you configure the WAP specific run-
time settings.

This chapter describes:

➤ About WAP Run-Time Settings

➤ Configuring Gateway Options

➤ Configuring Bearer Information

➤ Configuring RADIUS Connection Data

For information on setting the common Internet protocol run-time settings
for WAP and all Wireless protocols, see Chapter 42, “Configuring Internet
Run-Time Settings.”

About WAP Run-Time Settings

After developing a WAP Vuser script, you set the WAP specific run-time
settings. These settings let you control the behavior of the WAP Vusers so
that they accurately emulate real users on a WAP device. You can configure
WAP run-time settings in the areas of Gateway, Radius, and Bearer settings.

You set the WAP run-time settings from the Run-Time Settings dialog box.
You click on the appropriate tab to view and specify the desired settings.

To display the Run-Time Settings dialog box, click the Run-Time Settings
button on the VuGen toolbar.

Part XV • Wireless Protocols

1080

This chapter discusses the Gateway Run-Time settings for WAP Vusers. For
information about the general run-time settings that apply to all wireless
Vusers, see Chapter 42, “Configuring Internet Run-Time Settings.”

Configuring Gateway Options

You use the WAP:Gateway node in the Run-Time Settings tree to set the
gateway settings.

Communication Protocol

The Gateway settings are only relevant if you want to run the Vusers using
WSP protocol, accessing a Web server via a WAP Gateway (by selecting the
Replay through a WAP gateway option). If you are running a script through
a gateway, you must specify an IP and port address.

If you are running Vusers in the HTTP mode, accessing a Web server directly,
(by clearing the Replay through a WAP gateway option), then the Gateway
settings do not apply.

Chapter 75 • Configuring WAP Run-Time Settings

1081

Settings

IP: Specify the IP address of the gateway.

Port: Specify the port of the gateway. When running your Vusers through a
WAP gateway, VuGen automatically sets default port numbers, depending
on the selected mode. However, you can customize the settings and specify
a custom IP address and port for the gateway.

Advanced: Opens the Advanced Gateway Options dialog box, where you
can set the client capabilities and other advanced gateway options.

Connection Settings

In this section you indicate the desired replay connection mode.

➤ Connection-oriented Mode: Sets the connection mode for the WSP
session to Connection-Oriented.

➤ Connectionless Mode: Sets the connection mode for the WSP session to
Connectionless.

➤ Enable security: Enables a secure connection to the WAP gateway.

Real Phone Simulation

VuGen allows you to indicate the type of phone instrument for replaying
the Vusers. You can choose from a list of phones from popular vendors.
VuGen determines the correct client headers for the selected phone and
emulates it accordingly.

➤ Simulate a real phone: Instructs VuGen to simulate a real phone.

➤ Phone model: Select the phone model to simulate from this menu.

Note that when you enable real phone simulation, all of the Advanced
gateway options are ignored. Instead it retrieves the header and client
capability information from the VuGen configuration file which defines
each of the supported phones.

Part XV • Wireless Protocols

1082

Real Phone simulation is especially useful if you need to perform a tests for
several different telephones. For example, you can record a script for a
Motorola Timeport, and replay it on a Nokia 6110. When you replay a script
using Real Phone simulation, it ignores all of the wap_set_capability and
wap_add_const_header functions in the script. It retrieves all the necessary
information from the configuration file which defines the headers for each
phone.

If the phone you want to emulate does not appear on the list, you can add it
to the Run-Time settings interface by manually adding it to the
configuration file, LrwWapPhoneDB.dat in your application’s dat directory.
For more information, see the comments at the beginning of the
configuration file.

Advanced Gateway Options

When you click Advanced in the Gateway node, VuGen opens the
Capabilities dialog box. In this dialog box you configure the WAP
Capabilities and other advanced gateway options.

Chapter 75 • Configuring WAP Run-Time Settings

1083

➤ Server SDU buffer size - the largest transaction service data unit that may be
sent to the server during the session (4000 by default).

➤ Client SDU buffer size - the largest transaction service data unit that may be
sent to the client during the session (4000 by default).

➤ Acknowledgement Headers - return standard headers that provide
information to the gateway (disabled by default).

➤ Push support - Enables push type messages across the gateway (disabled by
default).

➤ Confirm Push support - In CO mode, if a push message is received, this
option instructs the Vuser to confirm the receipt of the message (disabled by
default).

➤ Retrieve messages - When a push messages is received, this option instructs
the Vuser to retrieve the message data from the URL indicated in the push
message (disabled by default).

➤ Support Cookies - Provide support for saving and retrieving cookies
(disabled by default).

➤ WTP Segmentation and Reassembly- Enables segmentation and reassembly
(SAR) in WTP, Wireless Transport Protocol. (True by default).

➤ WTP Retransmission Time- The time in seconds that the WTP layer waits
before resending the PDU if it did not receive a response. (5000 by default).

➤ WTLS Abbreviated Handshake- Use an abbreviated handshake instead of a
full one, when receiving a redirect message. (False by default).

➤ WTLS Deffie Hellman- Use the Deffie Hellman encryption scheme for WTLS
(Wireless Transport Layer Security) instead of the default scheme, RSA. (False
by default).

➤ WTLS Deffie Hellman identifier- An identifier for the Deffie Hellman
encryption scheme. This identifier is required for the abbreviated handshake
with the Operwave gateway that uses the Deffie Hellman encryption
scheme.

➤ Network MTU Size- the maximum size in bytes, of the network packet.
(4096 by default).

Part XV • Wireless Protocols

1084

Setting the Gateway Options

The following section describes the procedure for setting the WAP Gateway
options.

To set the WAP gateway options:

 1 Click the Run-Time Settings button or select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Select the WAP:Gateway node.

 2 To replay the script in WSP mode (not HTTP), select Replay through a WAP
gateway.

 3 Specify an IP address and port for the gateway. You can also use the default
port indicated by VuGen.

 4 Select a connection mode—Connection-oriented or Connectionless. To
indicate a secure connection mode, select the Use secure connection option.

 5 To emulate a popular phone, select Simulate a real phone and select the
desired phone from the pull-down list.

 6 If you are not emulating a popular phone, click Advanced to set the client
capabilities and other advanced gateway options.

➤ Enter values for the Server SDU and Client SDU.

➤ To instruct Vusers to retrieve Acknowledgement Headers, select the
Acknowledgement Headers option.

➤ To allow push messages, choose True in the column adjacent to Push
support.

➤ To allow confirmations for push messages, select True in the column
adjacent to Confirm Push support.

➤ To retrieve data from push message URLs, select True in the column
adjacent to Retrieve messages.

➤ To enable cookies, select True in the column adjacent to Support
Cookies.

Chapter 75 • Configuring WAP Run-Time Settings

1085

Configuring Bearer Information

An underlying bearer is a data transport mechanism used to carry the WDP
protocols between two devices. Examples of underlying bearers include SMS,
UDP, CSD, GSM, GPRS, and Packet Data.

VuGen supports both UDP and SMS bearers. In the Run-Time settings you
indicate the initial bearer. You can switch between bearers during replay
using the wap_set_bearer function. Note that if you want to use both
bearers, you must enable them before replay in the Run-Time settings.

To work with the SMS-CIMD2 bearer, you must connect to a Short Message
System Center (SMSC) and provide login information. You define the port
information in the Run-Time Settings WAP:Bearers node.

You can set the SMS login information using the wap_set_sms_user API
function or through the run-time settings. The advantage of setting the
login information through a function, is that you can use parameters to run
the script. with many values. The values in the API function override the
run-time settings. You set the bearer attributes in the Run-Time Settings
Bearers node:

Bearer Setting Description

Active Bearer The default bearer type; UDP or CIMD2.

CIMD2 SMS Settings

SMSC IP Address IP address of the SMSC server.

SMSC Port Number Port number of the SMSC server.

Gateway ID WAP gateway application ID as defined in
the SMSC.

User name The username for logging on to the server.

User Password The user's password.

Originating Address User originating address.

Part XV • Wireless Protocols

1086

To set the WAP Bearer options:

 1 Click the Run-Time Settings button or select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Select the Bearers node.

 2 Select the active bearer type: UDP or CIMD2.

 3 For the CIMD2 bearer, specify the settings:

• Enter the SMSC IP address in the dot form.

• Enter the SMSC Port number.

• Enter the SMSC Gateway ID—not the SMS Gateway ID.

• Enter the SMSC User name.

• Enter the SMSC User password.

• Enter the SMSC originating address.

 4 Click OK to accept the setting and close the dialog box.

Chapter 75 • Configuring WAP Run-Time Settings

1087

Configuring RADIUS Connection Data

RADIUS (Remote Authentication Dial-In User Service) is a client/server
protocol and software that enables remote access servers to communicate
with a central server to authenticate dial-in users and authorize their access
to the requested system or service.

You supply the dial-in information in the Run-Time Settings’ Radius node:

To set the WAP Radius options:

 1 Click the Run-Time Settings button or select Vuser > Run-Time Settings to
display the Run-Time Settings dialog box. Click the Radius node.

Property Value

Network Type Accounting network type: GPRS (General Packet
Radio Service) or CSD (Circuit-Switched Data).

IP Address IP address of the Radius server.

Authentication Port Number Authentication port of the Radius server.

Accounting Port Number Accounting port of the Radius server.

Secret Key The secret key of the Radius server.

Connection Timeout (sec) The time in seconds to wait for the Radius server to
respond.

Part XV • Wireless Protocols

1088

 2 Choose an accounting Network type: GPRS (General Packet Radio Service)
or CSD (Circuit-Switched Data).

 3 Enter the IP address of the Radius server in dot form.

 4 Enter the Authentication Port number and Accounting Port number of the
Radius server.

 5 Type in the Secret key for Radius or Accounting Authentication.

 6 Enter a Connection Timeout value.

 7 Click OK to accept the settings and close the dialog box.

Part XVI

Information for Advanced Users

1090

1091

76
Creating Vuser Scripts in Visual Studio

You can create a Vuser script template in Visual Studio using Visual C or
Visual Basic. You compile it as you would a regular C or Visual Basic
program.

This chapter describes:

➤ About Creating Vuser Scripts in Visual Studio

➤ Creating a Vuser Script with Visual C

➤ Creating a Vuser Script with Visual Basic

➤ Configuring Runtime Settings and Parameters

About Creating Vuser Scripts in Visual Studio

There are several ways to create Vuser scripts: through VuGen or a
development environment such as Visual Studio.

VuGen You can use VuGen to create Vuser script that run on
Windows or UNIX platforms by recording or by
manually programming within the VuGen editor. You
create the script in a Windows environment and run it
in either Windows or UNIX—recording is not
supported on UNIX.

Visual Studio For users working with Visual Studio, you can program
in Visual Basic, C or C++. The programs must be
compiled into a dynamic link library (dll).

Part XVII • Information for Advanced Users

1092

This chapter describes how to develop a Vuser script through programming
within the Visual C and Visual Basic environments. In these environments,
you develop your Vuser script within your development application, while
importing the Vuser API libraries.

You can also program a Vuser script from within the VuGen editor,
incorporating your application’s libraries or classes. Programming within
VuGen is available for C, Java, Visual Basic, VBScript, and JavaScript. For
more information, see Chapter 28, “Creating Custom Vuser Scripts.”

To create a Vuser script through programming, you can use a VuGen
template as a basis for a larger Vuser script. The template provides:

➤ correct program structure

➤ Vuser API calls

➤ source code and makefiles for creating a dynamic library

After creating a basic Vuser script from a template, you can enhance the
script to provide run-time information and statistics. For more information,
see Chapter 7, “Enhancing Vuser Scripts.”

An online C reference of the common functions used in Vuser scripts, are
included in the Online Function Reference (Help > Function Reference).

Creating a Vuser Script with Visual C

Please note that you can create Vuser scripts using Visual C version 6.0 or
higher.

To create a Vuser script with Visual C:

 1 In Visual C, create a new project - dynamic link library (dll). Choose File >
New and click the Projects tab.

 2 In the Wizard, choose empty dll.

 3 Add the following files to the project:

➤ A new cpp file with 3 exported function: init, run, end (the names may be
customized).

➤ The library file lrun50.lib (located in the <lr installation dir>/lib).

Chapter 76 • Creating Vuser Scripts in Visual Studio

1093

 4 In the project settings change the following:

➤ Select the C/C++ tab and choose Code generation (Category) > Use Run
Time library (List). Change it to: Multithreaded dll.

➤ Select the C/C++ tab and choose Preprocessor (Category) > Preprocessor
definitions (edit field) Remove _DEBUG.

 5 Add code from your client application, or program as you normally would.

 6 Enhance your script with Vuser API functions. For example,
lr_output_message to issue messages, lr_start_transaction to mark
transactions, and so forth. For more information, refer to the General
functions in the Online Function Reference (Help > Function Reference).

 7 Build the project. The output will be a DLL.

 8 Create a directory with the same name as the DLL and copy the DLL to this
directory.

 9 In the lrvuser.usr file in the Template directory, Update the USR file key
BinVuser with the DLL name: BinVuser=<DLL_name>.

Part XVII • Information for Advanced Users

1094

In the following example, the lr_output_messsage function issues messages
indicating which section is being executed. The lr_eval_string function
retrieves the name of the user. To use the following sample, verify that the
path to the Vuser API include file, lrun.h is correct.

Creating a Vuser Script with Visual Basic

To create a Vuser in Visual Basic:

 1 In Microsoft Visual Basic, create a new project. Select File > New Project.

 2 Select LoadRunner Virtual User. A new project is created with one class and a
template for a Vuser.

 3 Save the project before you continue to program. Chose File > Save Project.

#include "c:\mercury\lrun_5\include\lrun.h"

extern "C" {
int __declspec(dllexport) Init (void *p)
{

lr_output_message("in init");
return 0;
}

int __declspec(dllexport) Run (void *p)
{

const char *str = lr_eval_string("<name>");
lr_output_message("in run and parameter is %s", str);

return 0;
}

int __declspec(dllexport) End (void *p)
{

lr_output_message("in end");
return 0;
}
} //extern C end

Chapter 76 • Creating Vuser Scripts in Visual Studio

1095

 4 Open the Object Browser (View menu). Select the LoadRunner Vuser library
and double-click on the Vuser Class module to open the template. The
template contains three sections, Vuser_Init, Vuser_Run, and Vuser_End.

 5 Add code from your client application, or program as you normally would.

 6 Use the Object Browser to add the desired VuGen elements to your code,
such as transactions, think time, rendezvous, and messages, using the object
browser.

 7 Enhance your program with run-time settings and parameters. For more
information, see “Configuring Runtime Settings and Parameters” on
page 1096.

 8 Build the Vuser script: select File > Make project_name.dll.

The project is saved in the form of a Vuser script (.usr). The script resides in
the same directory as the project.

Option Explicit

Implements Vuser

Private Sub Vuser_Init()
'Implement the Vuser initialization code here
End Sub

Private Sub Vuser_Run()
'Implement the Vuser main Action code here
End Sub

Private Sub Vuser_End()
'Implement the Vuser termination code here
End Sub

Part XVII • Information for Advanced Users

1096

Configuring Runtime Settings and Parameters

After you create the DLL for your script, you create a script (.usr) and
configure its settings. The lrbin.bat utility provided with VuGen lets you
define parameters and configure runtime settings for scripts created with
Visual C and Basic. This utility is located in the bin directory of the product
installation.

To configure runtime settings and parameterize scripts:

 1 In the product’s bin directory, double-click on lrbin.bat. The Standalone
Vuser Configuration dialog box opens.

 2 Choose File > New. Specify a script name for the usr file. The script name
must be identical to the name of the directory to which you saved the DLL.

 3 Choose Vuser > Advanced and enter the DLL name in the Advanced dialog
box.

 4 Choose Vuser > Run-time Settings to define run-time settings. The Run-time
Settings dialog box is identical to that displayed in the VuGen interface. For
more information, see Chapter 12, “Configuring Run-Time Settings.”

 5 Choose Vuser > Parameter List to define parameters for your script. The
Parameter dialog boxes are identical to those in VuGen. For more
information, see Chapter 8, “Working with VuGen Parameters.”

Test the script by running it in standalone mode. Choose Vuser > Run Vuser.
The Vuser execution window appears while the script runs.

 6 Choose File > Exit to close the configuration utility.

1097

77
Programming with the XML API

You can create Vuser scripts that support the complete XML structure.
VuGen provides functions that allow you to query and manipulate the XML
data.

This chapter describes:

➤ About Programming with the XML API

➤ Understanding XML Documents

➤ Using XML Functions

➤ Specifying XML Function Parameters

➤ Working with XML Attributes

➤ Structuring an XML Script

➤ Enhancing a Recorded Session

The following information applies primarily to Web, Web Services, and
Wireless Vuser scripts.

About Programming with the XML API

VuGen’s support for XML allows you to dynamically work with XML code
and retrieve the values during test execution. Follow these steps in creating
an effective XML script:

➤ Record a script in the desired protocol, usually Web, Web Services, or
Wireless.

➤ Copy the XML structures into your script.

Part XVII • Information for Advanced Users

1098

➤ Add XML functions from the LR API in order to retrieve dynamic data and
the XML element values.

The LR API uses XPath, the XML Path language to manipulate the text in an
XML document.

You can instruct VuGen to display the output values of XML elements in the
Execution log window using the Run-Time settings. VuGen displays the line
numbers, the number of matches, and the value. To allow the displaying of
values, you need to enable parameter substitution. In the Run-Time settings,
open the General:Log node, select Extended log, and choose Parameter
Substitution. For more information, see Chapter 12, “Configuring Run-Time
Settings.”

All Vuser API XML functions return the number of matches successfully
found, or zero for failure.

Chapter 77 • Programming with the XML API

1099

Understanding XML Documents

XML, or Extensible Markup Language, is a markup language that you can
use to create your own custom tags. Using these tags, you give a meaning to
the text between the tags. This stands in contrast to standard HTML tags
such as H1, P, DIV, and so on, which cannot be customized and do not
indicate the content of the text.

XML documents consist of trees with many nodes and branches. There are
three common terms used that describe the parts of an XML document: tags,
elements, and attributes. The following example illustrates these terms:

A tag is the text between the left and right angle brackets. <acme_org>,
<employee> and <name> are examples of tags. There are starting tags, such
as <name>, and ending tags, such as </name>. The above XML fragment
describes the Acme organization with two employees, John Smith and Sue
Jones.

An element is the starting tag, ending tag, and everything in between. In the
sample above, the <employee> element contains three child elements:
<name>, <cubicle>, and <extension>.

An attribute is a name-value pair inside the starting tag of an element. In this
example, type=’PT’ is an attribute of the <employee> element;

<acme_org>
<accounts_dept>

<employee type=’PT’>
<name>John Smith</name>
<cubicle>227</cubicle>
<extension>2145</extension>

</employee>
</accounts_dept>
<engineering_dept>

<employee type=’PT’>
<name>Sue Jones</name>
<extension>2375</extension>

</employee>
</engineering_dept>

</acme_org>

Part XVII • Information for Advanced Users

1100

In the above example, the tag name is an element of employee. Each element
has a value. An example of a name element’s value is the string “John
Smith”.

Using XML Functions
The next sections provide examples of how to work with data in an XML
tree. Certain functions allow you to retrieve information, and others let you
write information to an XML tree. These examples use the following XML
tree containing the names and extensions of several employees in the Acme
organization.

Reading Information from an XML Tree

The functions which read information from an XML tree are:

To retrieve a specific value through a query, you specify the tags of the
parent and child nodes in a path format.

<acme_org>
<accounting_dept>

<employee type=’PT’>
<name>John Smith</name>
<extension>2145</extension>

</employee>
</accounting_dept>
<engineering_dept>

<employee type=’PT’>
<name>Sue Jones</name>
<extension>2375</extension>

</employee>
</engineering_dept>

</acme_org>

lr_xml_extract Extracts XML string fragments from an XML string.

lr_xml_find Performs a query on an XML string.

lr_xml_get_values Retrieves values of XML elements found by a query.

Chapter 77 • Programming with the XML API

1101

For example, to retrieve an employee name in the Accounting department,
use the following string:

The Execution log window (with Extended logging enabled) shows the
output of this function:

Output:
Action.c(20): "lr_xml_get_values" was successful, 1 match processed
Action.c(25): Query result = John Smith

Writing to an XML Structure

The functions which write values to an XML tree are:

The most common writing function is lr_xml_set_values which sets the
values of specified elements in an XML string. The following example uses
lr_xml_set_values to change the phone extensions of two employee
elements in an XML string.

First, we save the XML string to a parameter called XML_Input_Param. We
want two values to be matched and substituted, so we prepare two new
parameters, ExtensionParam_1 and ExtensionParam_2, and set their values to
two new phone extensions, 1111 and 2222.

lr_xml_get_values("XML={XML_Input_Param}",
"ValueParam=OutputParam",
"Query=/acme_org/accounting_dept/employee/name",
LAST);

lr_xml_delete Deletes fragments from an XML string.

lr_xml_insert Inserts a new XML fragment into an XML string.

lr_xml_replace Replaces fragments of an XML string.

lr_xml_set_values Sets the values of XML elements found by a query.

lr_xml_transform Applies Extensible Stylesheet Language (XSL)
transformation to XML data.

Part XVII • Information for Advanced Users

1102

lr_xml_set_values contains the argument “ValueName=ExtensionParam”,
which picks up the values of ExtensionParam_1 and ExtensionParam_2. The
current extensions of the two employees are substituted with the values of
these parameters, 1111 and 2222. The value of OutputParam is then
evaluated proving that the new phone extensions were in fact substituted.

Action() {

int i, NumOfValues;
char buf[64];

lr_save_string(xml_input, "XML_Input_Param"); // Save input as
parameter

lr_save_string("1111", "ExtensionParam_1");
lr_save_string("2222", "ExtensionParam_2");

lr_xml_set_values("XML={XML_Input_Param}",
"ResultParam=NewXmlParam", "ValueParam=ExtensionParam",
"SelectAll=yes", "Query=//extension", LAST);

NumOfValues= lr_xml_get_values("XML={NewXmlParam}",
"ValueParam=OutputParam", "Query=//extension",
"SelectAll=yes", LAST);

for (i = 0; i < NumOfValues; i++) {/* Print the multiple values of Multi-
Param */

sprintf(buf, "Retrieved value %d : {OutputParam_%d}", i+1, i+1);
lr_output_message(lr_eval_string(buf));

}

return 0;
}
Output:
Action.c(40): Retrieved value 1: 1111
Action.c(40): Retrieved value 2: 2222

Chapter 77 • Programming with the XML API

1103

Specifying XML Function Parameters

Most XML API functions require that you specify the XML element and a
query. You can also indicate if you want to retrieve all results or a single one.

Defining the XML Element

For defining the XML element to query, you can specify a literal string of the
XML element, or a parameter that contains the XML. The following
example shows the XML input string defined as a literal string:

“XML=<employee>JohnSmith</employee>

Alternatively, the XML string can be a parameter containing the XML data.
For example:

“XML={EmployeeNameParam}”

Querying an XML Tree

Suppose you want to find a value within an XML tag, for example, an
employee’s extension. You formulate a query for the desired value. The
query indicates the location of the element and which element you want to
retrieve or set. The path that you specify limits the scope of the search to a
specific tag. You can also search for all elements of a specific type under all
nodes below the root.

For a specific path, use ”Query=/full_xml_path_name/element_name”

For the same element name under all nodes, use ”Query=//element_name”

In the VuGen implementation of XML functions, the scope of a query is the
entire XML tree. The tree information is sent to the Vuser API functions as
the value of the xml argument.

Multiple Query Matching

When you perform a query on an XML element, by default VuGen returns
only the first match. To retrieve multiple values from a query, you specify
the “SelectAll=yes“ attribute within your functions. VuGen adds a suffix of
_index to indicate multiple parameters. For example, if you defined a
parameter by the name EmployeeName, VuGen creates EmployeeName_1,
EmployeeName_2, EmployeeName_3, and so on.

Part XVII • Information for Advanced Users

1104

lr_xml_set_values("XML={XML_Input_Param}",
"ResultParam=NewXmlParam", "ValueParam=ExtensionParam",
"SelectAll=yes", "Query=//extension", LAST);

With functions that write to a parameter, the values written to the parameter
can then be evaluated. For example, the following code retrieves and prints
multiple matches of a query:

NumOfValues = lr_xml_get_values("Xml={XmlParam}", "Query=//name",
"SelectAll=yes", "ValueParam=EmployeeName", LAST);

For functions that read from parameters, the values of the parameters must
be pre-defined. The parameter must also use the convention
ParamName_IndexNumber, for example Param_1, Param_2, Param_3, and so
on. This collection of parameters is also known as a parameter set.

In the following example, lr_xml_set_values reads values from the
parameter set and then uses those values in the XPath query. The parameter
set that represents the employee extensions, is called ExtensionParam. It has
two members: ExtensionParam_1 and ExtensionParam_2. The
lr_xml_set_values function queries the XML input string and sets the value
of the first match to 1111 and the second match to 2222.

lr_save_string("1111", "ExtensionParam_1");
lr_save_string("2222", "ExtensionParam_2");

lr_xml_set_values("XML={XML_Input_Param}",
"ResultParam=NewXmlParam", "ValueParam=ExtensionParam",
"SelectAll=yes", "Query=//extension", LAST);

Chapter 77 • Programming with the XML API

1105

Working with XML Attributes

VuGen contains support for attributes. You can use a simple expression to
manipulate attributes of XML elements and nodes, just as you can
manipulate the elements themselves. You can modify the desired attribute
or only attributes with specific values.

In the following example, lr_xml_delete deletes the first cubicle element
with the name attribute.

In the next example, lr_xml_delete deletes the first cubicle element with a
name attribute that is equal to Paul.

Structuring an XML Script

Initially, you create a new script in your preferred protocol. You can record a
session in that protocol, or you may program the entire script without
recording. Structure the Actions section of the script as follows:

➤ XML input declaration

➤ The Actions section

lr_xml_delete("Xml={ParamXml}",
 "Query=//cubicle/@name",

"ResultParam=Result",
 LAST

);

lr_xml_delete("Xml={ParamXml}",
 "Query=//cubicle/@name="Paul",

"ResultParam=Result",
 LAST
);

Part XVII • Information for Advanced Users

1106

The XML input section contains the XML tree that you want to use as an
input variable. You define the XML tree as a char type variable. For example:

The Action section contains the evaluation of the variables and queries for
the element values. In the following example, the xml input string is
evaluated using lr_save_string. The input variable is queried for employee
names and extensions.

char *xml_input=
“<acme_org>”

"<employee>"
" <name>John Smith</name>"
"<cubicle>227</cubicle>"
"<extension>2145</extension>"

“</employee>”
"<employee>"

"<name>Sue Jones</name>"
"<cubicle>227</cubicle>"
"<extension>2375</extension>"

"</employee>"
"</acme_org>";

Action() {

/* Save the input as a parameter.*/
lr_save_string(xml_input, "XML_Input_Param");

/* Query 1 - Retrieve an employee name from the specified element.*/
lr_xml_get_values("XML={XML_Input_Param}",

"ValueParam=OutputParam",
"Query=/acme_org/employee/name", LAST);

/* Query 2 - Retrieve an extension under any path below the root.*/
lr_xml_get_values("XML={XML_Input_Param}",

"ValueParam=OutputParam",
"Query=//extension", LAST);

return 0;
}

Chapter 77 • Programming with the XML API

1107

Enhancing a Recorded Session

You can prepare an XML script by recording a session and then manually
adding the relevant XML and Vuser API functions.

The following example illustrates how a recorded session was enhanced
with Vuser API functions. Note that the only function that was recorded was
web_submit_data, which appears in bold.

The first section contains the XML input declaration of the variable
SoapTemplate, for a SOAP message:

#include "as_web.h"

// SOAP message
const char*pSoapTemplate=

"<soap:Envelope xmlns:soap=\"http://schemas.xml-
soap.org/soap/envelope/\">"

"<soap:Body>"
"<SendMail xmlns=\"urn:EmailIPortTypeInft-IEmailSer-

vice\"/>"
"</soap:Body>"

"</soap:Envelope>";

Part XVII • Information for Advanced Users

1108

The following section represents the actions of the user:

Action1()
{

// get response body
web_reg_save_param("ParamXml", "LB=", "RB=", "Search=body",

LAST);

// fetch weather by HTTP GET
web_submit_data("GetWeather",

"Action=http://glkev.net.innerhost.com/glkev_ws/
WeatherFetcher.asmx/GetWeather",

"Method=GET",
"EncType=",
"RecContentType=text/xml",
"Referer=http://glkev.net.innerhost.com

/glkev_ws/WeatherFetcher.asmx?op=GetWe
ather",

"Snapshot=t2.inf",
"Mode=HTTP",
ITEMDATA,
"Name=zipCode", "Value=10010", ENDITEM,
LAST);

// Get City value
lr_xml_get_values("Xml={ParamXml}",

 "Query=City",
 "ValueParam=ParamCity",
 LAST

);

lr_output_message(lr_eval_string("***** City = {ParamCity} *****"));

// Get State value
lr_xml_get_values("Xml={ParamXml}",

 "Query=State",
 "ValueParam=ParamState",
 LAST

);

lr_output_message(lr_eval_string("***** State = {ParamState} *****"));

Chapter 77 • Programming with the XML API

1109

// Get several values at once by using template
lr_xml_get_values_ex("Xml={ParamXml}",

 "Template="
"<Weather>"

"<Time>{ParamTime}</Time>"
"<Temperature>{ParamTemp}</Tempera-

ture>"
"<Humidity>{ParamHumid}</Humid-

ity>"
"<Conditions>{ParamCond}</Condi-

tions>"
"</Weather>",

 LAST
);

lr_output_message(lr_eval_string("***** Time = {ParamTime}, Tem-
perature = {ParamTemp}, "

"Humidity = {ParamHumid}, Condi-
tions = {ParamCond} *****"));

// Generate readable forecast
lr_save_string(lr_eval_string("\r\n\r\n*** Weather Forecast for {ParamCity}, {ParamState}

***\r\n"

 "\tTime: {ParamTime}\r\n"
"\tTemperature: {ParamTemp} deg. Fahr-

enheit\r\n"
"\tHumidity: {ParamHumid}\r\n"
"\t{ParamCond} conditions expected\r\n"

 "\r\n"),
"ParamForecast"

);

// Save soap template into parameter
lr_save_string(pSoapTemplate, "ParamSoap");

Part XVII • Information for Advanced Users

1110

// Insert request body into SOAP template
lr_xml_insert("Xml={ParamSoap}",

 "ResultParam=ParamRequest",
 "Query=Body/SendMail",
 "position=child",
 "XmlFragment="

"<FromAddress>taurus@merc-int.com</Fro-
mAddress>"

"<ToAddress>support@merc-int.com</ToAd-
dress>"

 "<ASubject>Weather Forecast</ASubject>"
 "<MsgBody/>",

 LAST
);

//
// "<soap:Envelope xmlns:soap=\"http://schemas.xml-
soap.org/soap/envelope/\">"
// "<soap:Body>"
// "<SendMail xmlns=\"urn:EmailIPortTypeInft-IEmailSer-
vice\"/>"
// "<FromAddress>taurus@merc-int.com</Fro-
mAddress>"
// "<ToAddress>support@merc-int.com</ToAd-
dress>"
// "<ASubject>Weather Forecast</ASubject>"
// "<MsgBody/>"
// "</SendMail>"
// "</soap:Body>"
// "</soap:Envelope>";
//

// Insert actual forecast text
lr_xml_set_values("Xml={ParamRequest}",

 "ResultParam=ParamRequest",
 "Query=Body/SendMail/MsgBody",
 "ValueParam=ParamForecast",
 LAST);

Chapter 77 • Programming with the XML API

1111

// Add header for SOAP
web_add_header("SOAPAction", "urn:EmailIPortTypeInft-IEmailSer-

vice");

// Get response body
web_reg_save_param("ParamXml", "LB=", "RB=", "Search=body",

LAST);

// Send forecast to recipient, using SOAP request
web_custom_request("web_custom_request",

"URL=http://webservices.matlus.com/scripts/emailwebservice.dll/soap/IEmailser-
vice",

"Method=POST",
"TargetFrame=",
"Resource=0",
"Referer=",
"Body={ParamRequest}",
LAST);

// Verify that mail was sent
lr_xml_find("Xml={ParamXml}",

 "Query=Body/SendMailResponse/return",
 "Value=0",
 LAST

);

return 0;
}

Part XVII • Information for Advanced Users

1112

1113

78
VuGen Debugging Tips

This chapter contains a few methods for obtaining more detailed debugging
information to help you produce error-free Vuser scripts.

➤ General Debugging Tip

➤ Using C Functions for Tracing

➤ Adding Additional C Language Keywords

➤ Examining Replay Output

➤ Debugging Database Applications

➤ Working with Oracle Applications

➤ Solving Common Problems with Oracle 2-Tier Vusers

➤ Two-tier Database Scripting Tips

➤ Running PeopleSoft-Tuxedo Scripts

Part XVII • Information for Advanced Users

1114

General Debugging Tip

VuGen can be used as a regular text editor. You can open any text file in it
and edit it. When an error message is displayed during replay in the output
window below, you can double click on it and VuGen jumps the cursor to
the line of the test that caused the problem. You can also place the cursor on
the error code and press F1 to view the online help explanation for the error
code.

Using C Functions for Tracing

You can use the C interpreter trace option (in version 230 or higher) to
debug your Vuser scripts. The ci_set_debug statement allows trace and debug
to be turned on and off at specific points in the script.

ci_set_debug(ci_this_context, int debug, int trace);

For example, you could add the following statements to your script:

ci_set_debug(ci_this_context, 1, 1) /* turn ON trace & debug */
ci_set_debug(ci_this_context, 0, 0) /* turn OFF trace & debug */

Adding Additional C Language Keywords

When you run a C script in VuGen, its parser uses the built-in C interpreter
to parse the functions in the script. You can add keywords that are not part
of the standard parser’s library. By default, several common C++ keywords
are added during installation, such as size_t and DWORD. You can edit the
list and add additional keywords for your environment.

To add additional keywords:

 1 Open the vugen_extra_keywords.ini file, located in your machine’s
<Windows> or <Windows>/System directory.

 2 In the EXTRA_KEYWORDS_C section, add the desired keywords for the C
interpreter.

Chapter 78 • VuGen Debugging Tips

1115

The file has the following format:

[EXTRA_KEYWORDS_C]
FILE=
size_t=
WORD=
DWORD=
LPCSTR=

Examining Replay Output

Look at the replay output (either from within VuGen, or the file output.txt
representing the output of the VuGen driver). You may also change the run-
time settings options in VuGen to select more extensive logging in order to
obtain a more detailed log output of the replayed test.

Debugging Database Applications

The following tips apply to database applications only (Oracle, ODBC,
Ctlib):

➤ Generating Debugging Information

➤ Examining Compiler Information

➤ Code Generation Information

➤ Preprocessing and Compilation Information

Generating Debugging Information

Note: You can now set options to view most of the information described in
this section using VuGen’s user interface.

VuGen contains an inspector “engine.” You can force VuGen recorder to
create “inspector” output by editing \WINDOWS_DIR\vugen.ini as follows:

Part XVII • Information for Advanced Users

1116

[LogMode]
EnableAscii=ASCII_LOG_ON

When this option is enabled, VuGen creates a file, vuser.asc in the Data
directory at the end of the recording. Note that this option should be used
for debugging purposes only. This output file can become very large (several
MB) and have serious effects on machine performance and disk space.

For cases like ODBC-based applications, it is possible to configure the ODBC
Administrator (located in the Windows Control Panel) to provide a similar
trace output. Open the ODBC options, and select ‘Trace ODBC calls’ to ON.
Similarly the ODBC Developer Kit provides a Spy utility for call tracing.

To enable further debug information, add the following section to the
\WINDOWS_DIR\vugen.ini file:

[INSPECTOR]
TRACE_LEVEL=3
TRACE_FILENAME=c:\tmp\sqltrace.txt

The file (sqltrace.txt) will include useful internal information regarding the
hooking calls made during recording. The trace_level is between 1 and 3,
with 3 representing the most detailed debug level. Note that in VuGen
versions 5.02 and higher, you can set the trace level from the user interface.

Examining Compiler Information

You can view information about each stage of code generation,
preprocessing and compilation to determine the source of any errors.

Code Generation Information

Look at the vuser.log file under the Data directory. This file, which contains
a log of the code generation phase, is automatically created at the end of
every lrd recording (i.e. all database protocols).

Chapter 78 • VuGen Debugging Tips

1117

The following is an example of a log file:

lrd_init: OK
lrd_option: OK
lrd_option: OK
lrd_option: OK
Code generation successful
lrd_option: OK
lrd_end: OK

If any of the messages are not OK or successful, then a problem occurred
during the code generation.

Preprocessing and Compilation Information

During runtime, VuGen displays information about both the preprocessing
and compilation processes.

Working with Oracle Applications

Oracle Applications is a two-tier ("fat" client) packaged application, made up
of 35 different modules (Oracle Human Resources, Oracle Financials, and so
forth).

There are a number of issues that you should be aware of while recording
and replaying Vusers for Oracle Applications:

➤ A typical script contains thousands of events, binds and assigns.

➤ A typical script has many db connections per user session.

➤ scripts almost always require correlated queries.

➤ Oracle Applications' clients are 16-bit only (developed with Oracle
Developer 2000). This means that for debugging, if you don't have the
Oracle 32bit client, you need to use VuGen's Force 16-bit options.

Part XVII • Information for Advanced Users

1118

When a new window is created, the application retrieves an .xpf file from
the file system for display. Currently, VuGen does not take this into
consideration since it records at the client/server level. Therefore, there is a
fairly significant inaccuracy in performance measurements since in most
cases performance problems are related to the network bottleneck between
clients and file server. We are currently thinking about this problem and
how, if at all, to solve it.

Solving Common Problems with Oracle 2-Tier Vusers

This section contains a list of common problems that you may encounter
while working with Oracle Vusers, and suggested solutions.

ORA-20001 and ORA-06512

Errors ORA-20001 and ORA-06512 appear during replay when the lrd_stmt
contains the pl/sql block: fnd_signon.audit_responsibility(...)

This statement fails during replay because the sign-on number is unique for
each new connection.

Solution

In order to solve this problem you need to use the new correlation tool for
the sign-on number. This is second assigned value in the statement.

After you scan for possible values to correlate, highlight the value of the
second lrd_assign_bind() for the failed statement. Note that the values in
the "correlated query" window may not appear in the same order as the
actual recorded statements.

The grid containing the substitution value should appear after the lrd_stmt
which contains the pl/sql block: fnd_signon.audit_user(...).

Note: Since the sign-on number is unique for every connection, you need to
use correlation for each new connection that you record.

Chapter 78 • VuGen Debugging Tips

1119

Example of Solution

The following statement failed in replay because the second value,
"1498224" is the unique sign-on number for every new connection.

lrd_stmt(Csr6, "begin fnd_signon.audit_responsibility(:s,:l,:f,:a,:r,:t,:p)"
 "; end;", -1, 1, 1, 0);
 lrd_assign_bind(Csr6, "s", "D", &s_D216, 0, 0, 0);
 lrd_assign_bind(Csr6, "l", "1498224", &l_D217, 0, 0, 0);
 lrd_assign_bind(Csr6, "f", "1", &f_D218, 0, 0, 0);
 lrd_assign_bind(Csr6, "a", "810", &a_D219, 0, 0, 0);
 lrd_assign_bind(Csr6, "r", "20675", &r_D220, 0, 0, 0);
 lrd_assign_bind(Csr6, "t", "Windows PC", &t_D221, 0, 0, 0);
 lrd_assign_bind(Csr6, "p", "", &p_D222, 0, 0, 0);
 lrd_exec(Csr6, 1, 0, 0, 0, 0);

The sign-on number can be found in the lrd_stmt with
"fnd_signon.audit_user". The value of the first placeholder "a" should be
saved. The input of "a" is always "0" but the output is the requested value.

Modified code:

 lrd_stmt(Csr4, "begin fnd_signon.audit_user(:a,:l,:u,:t,:n,:p,:s); end;", -1, 1, 1, 0);
 lrd_assign_bind(Csr4, "a", "0", &a_D46, 0, 0, 0);
 lrd_assign_bind(Csr4, "l", "D", &l_D47, 0, 0, 0);
 lrd_assign_bind(Csr4, "u", "1001", &u_D48, 0, 0, 0);
 lrd_assign_bind(Csr4, "t", "Windows PC", &t_D49, 0, 0, 0);
 lrd_assign_bind(Csr4, "n", "OraUser", &n_D50, 0, 0, 0);
 lrd_assign_bind(Csr4, "p", "", &p_D51, 0, 0, 0);
 lrd_assign_bind(Csr4, "s", "14157", &s_D52, 0, 0, 0);
 lrd_exec(Csr4, 1, 0, 0, 0, 0);

lrd_save_value(&a_D46, 0, 0, "saved_a_D46");
 Grid0(17);

lrd_stmt(Csr6, "begin fnd_signon.audit_responsibility(:s,:l,:f,:a,:r,:t,:p)"
 "; end;", -1, 1, 1, 0);
 lrd_assign_bind(Csr6, "s", "D", &s_D216, 0, 0, 0);
 lrd_assign_bind(Csr6, "l", "<saved_a_D46>", &l_D217, 0, 0, 0);
 lrd_assign_bind(Csr6, "f", "1", &f_D218, 0, 0, 0);
 lrd_assign_bind(Csr6, "a", "810", &a_D219, 0, 0, 0);
 lrd_assign_bind(Csr6, "r", "20675", &r_D220, 0, 0, 0);

Part XVII • Information for Advanced Users

1120

 lrd_assign_bind(Csr6, "t", "Windows PC", &t_D221, 0, 0, 0);
 lrd_assign_bind(Csr6, "p", "", &p_D222, 0, 0, 0);
 lrd_exec(Csr6, 1, 0, 0, 0, 0);

Working with large numbers

Large numbers (NUMBER data type) sometimes appear in different format in
the GRID and in the ASCII file. This difference makes it more difficult to
identify numbers while searching for values to save for correlation.

For example, you could have a value appear as 1000003 in the grid, but as
1e+0006 in the Recording Log (ASCII file).

Workaround

If you have an error during replay and the correlation tool cannot locate the
value in previous results, look for this value in the other format in grid.

ORA-00960

This error can occur if the column names in the recorded script are not
unique. For example:

lrd_stmt(Csr9, "SELECT UOM_CODE, UOM_CODE, DESCRIPTION FROM "
 "MTL_UNITS_OF_MEASURE "
 "WHERE NVL(DISABLE_DATE, SYSDATE + 1) > "
 "SYSDATE ORDER BY UOM_CODE", -1, 1, 1, 0);

In this case you receive the following error:

"lrdo.c/fjParse: "oparse" ERROR return-code=960, oerhms=ORA-00960:
ambiguous column naming in select list".

Workaround

Change the statement by adding an alias to at least one of the non-unique
columns, thus mapping it to a new unique name. For example:

lrd_stmt(Csr9,"SELECT UOM_CODE,UOM_CODE second, DESCRIPTION
FROM"
 "MTL_UNITS_OF_MEASURE "
 "WHERE NVL(DISABLE_DATE, SYSDATE + 1) > "
 "SYSDATE ORDER BY UOM_CODE", -1, 1, 1, 0);

Chapter 78 • VuGen Debugging Tips

1121

Alternate Workaround: remove ORDER BY from the lrd statement.

ORA-2002

Error 2002 appears when you try to use an unopened cursor. It occurs when
you replay a user more than one iteration and you recorded into more than
one section of the script.

Specifically, if a cursor is opened in the vuser_init section and closed in the
Actions section, then you will encounter this error on the second iteration if
you try to use the cursor. This is because it was closed but not re-opened.

For example: You have lrd_open_cursor in the vuser_init section and
lrd_close_cursor in the Actions section. If you replay this user more than one
iteration, you are going to get an error in the second iteration because you
try using an unopened cursor (it was closed in first iteration, but not re-
opened in the second).

Workaround

The easiest way to solve this is to move the lrd_close_cursor or/and
lrd_close_connection of the problem cursor to the vuser_end section.

Database Protocols (lrd)

Replay of recorded asynchronous operations is not supported.

Wrong Client Version

You may receive an error message when running the wrong Oracle client
version:

"Error: lrdo_open_connection: "olog" LDA/CDA return-code_019: unable to
allocate memory in the user side"

Workaround

You need to modify the library information in he lrd.ini file, located in the
your product’s bin directory. This file contains the settings that indicate
which version of Mercury's database support is loaded during recording or
replay. The file contains a section for each type of host. For example, the
following section of the lrd.ini file is for Oracle on HP/UX:

Part XVII • Information for Advanced Users

1122

[ORACLE_HPUX]
;816=liblrdhpo816.sl
;81=liblrdhpo81.sl
;80=liblrdhpo80.sl
73=liblrdhpo73.sl
72=liblrdhpo72.sl

These settings indicate that Vusers should use the Mercury library
liblrdhpo816.sl if the client uses Oracle 8.1.6, liblrdhpo81.sl for Oracle 8.1.5,
and so on.

During replay on UNIX, the settings in the lrd ini file must indicate the
correct version of the database to use. Suppose it is necessary to replay a
Vuser for HP/UX using Oracle 8.1.5. In that case the previous lines for other
versions of Oracle should be commented out with a ";" at the beginning of
the line.

This section of the lrd.ini file will now look like:

[ORACLE_HPUX]
;816=liblrdhpo816.sl
81=liblrdhpo81.sl
;80=liblrdhpo80.sl
73=liblrdhpo73.sl
72=liblrdhpo72.sl

You also may need to make a change for Win32 if the application does not
use the DLL mentioned in the lrd.ini file. For example, PowerBuilder 6.5
uses Oracle 8.0.5, but it uses the ora803.dll, not the ora805.dll. In that case,
either comment out the 805 and 804 sections of the ORACLE_WINNT
section, or change the 805 section from:

805=lrdo32.dll+ora805.dll

to

805=lrdo32.dll+ora803.dll

Chapter 78 • VuGen Debugging Tips

1123

Two-tier Database Scripting Tips

The following section offers solutions for two-tier database scripts. For Siebel
specific solutions, see “Siebel-specific Scripting Tips” on page 1128.

Question 1: Why does the script fail when it is data driven, while the same
values work with the application itself?

Answer: The failure may be a result of trailing spaces in your data values.
Even though the data values that you type directly into the GUI are
probably truncated, you should manually eliminate them from your data
file. Tab-delimited files can hide trailing spaces and therefore obscure
problems. In general, comma-delimited files are recommended. You can
view the files in Excel to see if things are correct.

Question 2: Why does an SQL error of an invalid cursor state occur on the
second iteration?

Answer: The lrd_close_cursor function may not have been generated or it
may be in the end section instead of the action section. You will need to add
a cursor close function or move it from the end section to make the script
iterate successfully.

Opening a new cursor may be costly in terms of resources. Therefore, it is
recommended that you only open a cursor once in the actions section
during the first iteration. You can then add a new parameter that contains
the iteration number as a string by using the Iteration Number type. Call
this parameter IterationNum. Then, inside the actions section replace a call to
open a new cursor like

 lrd_open_cursor(&Csr1, Con1, 0);

with

 if (!strcmp(lr_eval_string("<IterationNum>"), "1"))
 lrd_open_cursor(&Csr1, Con1, 0);

Part XVII • Information for Advanced Users

1124

Question 3: How can I fix code produced by VuGen that will not compile
because of data declarations in the vdf.h file?

Answer: The problem, most likely, is an SQL data type that is not supported
by VuGen. For Microsoft SQL, you can often work around this issue by
replacing the undefined error message in vdf.h with “DT_SZ” (null
terminated string). Although this is not the actual datatype, VuGen can
compile the script correctly. Please report the problem and send the original
script to customer support.

Question 4: What is the meaning of LRD Error 2048?

Answer: VuGen is failing because it is trying to bind a variable with a longer
length than what was allocated during recording. You can correct this by
enlarging the variable definition in vdf.h to receive a longer string back from
the database. Search this file for the unique numeric identifier. You will see
its definition and length. The length is the third element in the structure.
Increase this length as required and the script will replay successfully.

For example, in the following script, we have:

lrd_assign(&_2_D354, “<ROW_ID>”, 0, 0, 0);

In vdf.h, we search for _2_D354 and find

static LRD_VAR_DESC _2_D354 = {
 LRD_VAR_DESC_EYECAT, 1, 10, LRD_BYTYPE_ODBC,
 {0 ,0, 0}, DT_SZ, 0, 0, 15, 12};

We change it to:

static LRD_VAR_DESC _2_D354 = {
 LRD_VAR_DESC_EYECAT, 1, 12, LRD_BYTYPE_ODBC,
 {0,0, 0}, DT_SZ, 0, 0, 15, 12};

The complete definition of LRD_VAR_DESC appears in lrd.h. You can find it
by searching for typedef struct LRD_VAR_DESC.

Chapter 78 • VuGen Debugging Tips

1125

Question 5: How can I obtain the number of rows affected by an UPDATE,
INSERT or DELETE when using ODBC and Oracle?

Answer: You can use lrd functions to obtain this information. For ODBC,
use lrd_row_count. The syntax is:

 int rowcount;
 .
 .
 .
 lrd_row_count(Csr33, &rowcount, 0);

Note that lrd_row_count must immediately follow the pertinent statement
execution.

For Oracle you can use the fourth argument of lrd_exec.

 lrd_exec(Csr19, 1, 0, &rowcount, 0, 0);

If you are using Oracle's OCI 8, you can use the fifth argument of
lrd_ora8_exec.

 lrd_ora8_exec(OraSvc1, OraStm3, 1, 0, &uliRowsProcessed, 0, 0, 0, 0, 0);

Question 6: How can I avoid duplicate key violations?

Answer: Occasionally, you will see a duplicate key violation when
performing an Insert. You should be able to find the primary key by
comparing two recordings to determine the problem. Check whether this or
earlier UPDATE or INSERT statement should use correlated queries. You can
use the data dictionary in order to find the columns that are used in the
violated unique constraint.

In Oracle you will see the following message when a unique constraint is
violated:

ORA-00001: unique constraint (SCOTT.PK_EMP) violated

In this example SCOTT is the owner of the related unique index, and
PK_EMP is the name of this index. Use SQL*Plus to query the data dictionary
to find the columns. The pattern for this query is:

Part XVII • Information for Advanced Users

1126

select column_name from all_ind_columns where index_name = '<IndexName>
and index_owner = '<IndexOwner>';

select column_name from all_ind_columns where index_name = 'PK_EMP' and
index_owner = 'SCOTT';

Since the values inserted into the database are new, they might not appear
in earlier queries, but they could be related to the results of earlier queries,
such as one more than the value returned in an earlier query.

For Microsoft SQL Server you will see one of these messages:

Cannot insert duplicate key row in object 'newtab' with unique index 'IX_newtab'.

Violation of UNIQUE KEY constraint 'IX_Mark_Table'. Cannot insert duplicate
key in object 'Mark_Table'.

Violation of PRIMARY KEY constraint 'PK_NewTab'. Cannot insert duplicate key
in object 'NewTab'.

You can use the Query Analyzer to find out which columns used by the key
or index. The pattern for this query is:

select C.name
from sysindexes A, sysindexkeys B, syscolumns C
where C.colid = B.colid and C.id = B.id and
A.id = B.id and A.indid = B.indid
and A.name = '<IndexName>' and A.id = object_id('<TableName>')

select C.name
from sysindexes A, sysindexkeys B, syscolumns C
where C.colid = B.colid and C.id = B.id and
A.id = B.id and A.indid = B.indid
and A.name = 'IX_newtab' and A.id = object_id('newtab')

For DB2 you might see the following message:

SQL0803N One or more values in the INSERT statement, UPDATE statement,
or foreign key update caused by a DELETE statement are not valid because
they would produce duplicate rows for a table with a primary key, unique
constraint, or unique index. SQLSTATE=23505

Chapter 78 • VuGen Debugging Tips

1127

If you still encounter problems, be sure to check the number of rows
changed for Updates and Inserts for both recording and replay. Very often,
an UPDATE fails to change any rows during replay, because the WHERE clause
was not satisfied. This does not directly result in an error, but it causes a
table not to be properly updated, and can cause a later SELECT to choose the
wrong value when correlating the query.

Also verify that there are no problems during multi-user replay. In certain
instances, only one user will successfully perform an UPDATE. This occurs
with Siebel, where it is necessary to manually write a loop to overcome the
problem.

Question 7: The database does not appear to be modified after replaying a
script which should have modified the database.

Answer: Through the user application’s UI, check if the updated values
appear when trying to see the current data accessible to the application. If
the values have not been updated, you need to determine they were not
changed. Possibly, an UPDATE statement changed one or more rows when
the application was recorded, and did not change any during replay.

Check these items:

➤ Verify statement: If there is a WHERE clause in the UPDATE statement,
verify that it is correct.

➤ Check for correlations: Record the application twice and compare the
UPDATE statements from each of the recordings to make sure that the
necessary correlations were performed.

➤ Check the total number of rows: Check the number of rows that were
changed after the UPDATE. For Oracle, this information is stored in the
fourth parameter of lrd_exec. For ODBC, use lrd_row_count to
determine the number of rows updated. You can also add code to your
script that prints the number of rows that were updated. If this value is 0,
the UPDATE failed to modify the database.

➤ Check the SET clause: Check the SET clause of the UPDATE statement.
Make sure that you correlated any necessary values here instead of hard-
coding them. You can see this by comparing two recordings of the
UPDATE.

Part XVII • Information for Advanced Users

1128

It certain cases, the UPDATE works when replaying one Vuser, but not for
multiple Vusers. The UPDATE of one Vuser might interfere with that of
another. Parameterize each Vuser so that each one uses different values
during the UPDATE, unless you want each vuser to update with the same
values. In this case try adding retry logic to perform the UPDATE a second
time.

Question 8: How do I avoid the unique column name error when replaying
a statement recorded with an Oracle Application. For example:

lrd_stmt(Csr9, "SELECT UOM_CODE, UOM_CODE, DESCRIPTION FROM "
 "MTL_UNITS_OF_MEASURE "
 "WHERE NVL(DISABLE_DATE, SYSDATE + 1) > "
 "SYSDATE ORDER BY UOM_CODE", -1, 1, 1, 0);

The following error message was issued:

"lrdo.c/fjParse: "oparse" ERROR return-code=960, oerhms=ORA-00960:
ambiguous column naming in select list".

Answer: Change the statement by adding an alias to at least one of the non-
unique columns, thereby mapping it to a new unique name. For example:

lrd_stmt(Csr9,"SELECT UOM_CODE,UOM_CODE second, DESCRIPTION
FROM"
 "MTL_UNITS_OF_MEASURE "
 "WHERE NVL(DISABLE_DATE, SYSDATE + 1) > "
 "SYSDATE ORDER BY UOM_CODE", -1, 1, 1, 0);

Siebel-specific Scripting Tips

This section offers solutions for Siebel database users. You should also see
the previous section which discusses some general database scripting tips.

Question 9: Virtual users run fine in VuGen but fail in the Controller or
Console with duplicate key violations.

Answer: The Siebel client stores a key in the NEXT_SUFFIX column of the
S_SSA_ID table. This client has code that detects and recovers from
situations in which it fails to successfully get a block of suffix values.

Chapter 78 • VuGen Debugging Tips

1129

VuGen automatically correlates the NEXT_SUFFIX and
MODIFICATION_NUM fields of the S_SSA_ID table. During an UPDATE the
MODIFICATION_NUM field is incremented by 1 and the NEXT_SUFFIX
field is increased by 100 in base 36. However, VuGen does not add code in
instances where a client could not obtain a new block of suffix values. As a
result, the replay fails with a unique constraint error, when you attempt to
insert new values into the database.

You must manually add code to each location in the script where a block of
suffixes is obtained, in order to perform a retry if the first attempt fails. You
can locate these places by searching for SiebelPreSave in the script. You must
also add a while loop with code similar to the example below. This example
only works for Oracle. For ODBC use lrd_row_count instead of using the
fourth argument of lrd_exec.

unsigned long lRowUpdated;
int nAttempt;

…

// This loops until we successfully obtain a “next_suffix”
lRowUpdated = 0;
nAttempt=0;

while (lRowUpdated != 1) {

 nAttempt++;
 if (nAttempt > 1)
 lr_output_message (".......Next suffix retry %d", nAttempt);
 else
 {
 lrd_open_cursor(&Csr13, Con1, 0);
 lrd_stmt(Csr13, "SELECT\n T1.LAST_UPD,\n T1.CREATED_BY,\n "
 "T1.CONFLICT_ID,\n T1.CREATED,\n T1.NEXT_SUFFIX,\n "
 "T1.ROW_ID,\n T1.NEXT_PREFIX,\n T1.CORPORATE_PREFIX,\n "
 "T1.MODIFICATION_NUM,\n T1.NEXT_FILE_SUFFIX,\n "
 "T1.LAST_UPD_BY\n FROM \n SIEBEL.S_SSA_ID T1", -1, 1, 1, 0);
 }
 lrd_bind_cols(Csr13, BCInfo_D375, 0);
 lrd_exec(Csr13, 0, 0, 0, 0, 0);

Part XVII • Information for Advanced Users

1130

 SiebelPreSave_1();
 lrd_fetch(Csr13, -1, 4, 0, PrintRow26, 0);
 GRID(26);
 SiebelPostSave_1();

 if (nAttempt > 1)
 {

lrd_open_cursor(&Csr14, Con1, 0);
lrd_stmt(Csr14,"\nUPDATE SIEBEL.S_SSA_ID SET\n LAST_UPD_BY=:1,\n "
"NEXT_SUFFIX = :2,\n MODIFICATION_NUM = :3,\n LAST_UPD = "
":4\n WHERE\n ROW_ID = :5 AND MODIFICATION_NUM = :6\n", -1, 1,
1, 0);

 }
 lrd_assign_bind(Csr14, "6", "<modification_num>", &_6_D376, 0,
 LRD_BIND_BY_NUMBER, 0);
 lrd_assign_bind(Csr14,"5", "0-11",&_5_D377,0,LRD_BIND_BY_NUMBER, 0);
 strcpy (szTimeAtNewButton, lr_eval_string("<Now>"));
 sprintf (szTimeStamp, "%s %s", lr_eval_string("<Today>"),

szTimeAtNewButton);
 lr_save_string (szTimeStamp, "DateTimeStamp");
lrd_assign_bind(Csr14, "4", "<DateTimeStamp>", &_4_D378, 0,
 LRD_BIND_BY_NUMBER, 0);
lrd_assign_bind(Csr14, "3", "<next_modnum>", &_3_D379, 0,
 LRD_BIND_BY_NUMBER, 0);
lrd_assign_bind(Csr14, "2", "<next_suffix_x100>", &_2_D380, 0,
 LRD_BIND_BY_NUMBER, 0);
lrd_assign_bind(Csr14, "1", "1-1E1",&_1_D381,0,LRD_BIND_BY_NUMBER, 0);

// this update won’t update any rows unless we successfully got our suffix
lrd_exec(Csr14, 1, 0, &lRowUpdated, 0, 0);
lrd_commit(0, Con1, 0);

}//while
 lr_output_message ("…Rows updated %ld", lRowUpdated);

Chapter 78 • VuGen Debugging Tips

1131

Question 10: How can I find the correct value to correlate for a primary key?

Answer: Siebel tends to generate key values based on base 36 mathematical
manipulations of <next_suffix>. Try comparing several recordings and try to
determine the relationships. You can ignore date fields when correlating
Siebel, since they do not seem to effect script replay.

Question 11: How can I solve an INSERT into S_SRV_REQ failure with a
duplicate key violation?

Answer: The primary key is SR_NUM. Newer versions of VuGen
automatically correlate insertions into this table, by using the function
lrd_siebel_str2num, which converts the NEXT_SUFFIX value of the
S_SSA_ID table from base 36 to the base 10 equivalent. Older versions of
VuGen might not handle this correlation correctly.

Question 12: VuGen does not automatically perform all the correlations I
need in order to replay my script correctly. How can I add the missing
correlations?

Answer: Currently VuGen only saves the values of the NEXT_SUFFIX and
MODIFICATION_NUM columns from the S_SSA_ID table and replaces them
with parameters when they are used later in the script. You may need to add
some additional correlations manually. The correlation code in the
SiebelPreSave and SiebelPostSave functions in the print.inl file can serve as
an example of how to correlate specific values once you determine what
needs to be correlated.

➤ Sometimes the NEXT_FILE_SUFFIX and MODIFICATION_NUM columns
are chosen from the S_SSA_ID table. In this case, an UPDATE statement
updates the NEXT_FILE_SUFFIX by adding one to this string in base 36,
and one to the MODIFICATION_NUM. The value of the
NEXT_FILE_SUFFIX will often be inserted in the FILE_REV_NUM field of
a table. Often the name of this table ends with the _ATT suffix, to
indicate that it is an attachment.

➤ Whenever Siebel performs an UPDATE statement, there is a
MODIFICATION_NUM column that is incremented by one. VuGen only
generates this correlation automatically for the S_SSA_ID table. You have
to do it manually for other cases.

Part XVII • Information for Advanced Users

1132

➤ Siebel refers to records according to their ID number. Siebel usually finds
all records of a particular type (such as an agreement), and then later uses
the ID number for a record when trying to update or delete an existing
record of this type. You need to replace the ID number by a parameter
during replay in order to generate a meaningful load test. The ID number
has the form of one or more digits, a hyphen, followed by one or more
alphanumeric characters, such as 1-QPF9. VuGen does not do this
parameterization automatically, so you have to do it manually.

➤ If you find any other missing correlations or parameterizations, please
notify customer support in order that Mercury Interactive can improve
VuGen’s support for Siebel.

Running PeopleSoft-Tuxedo Scripts

To run PeopleSoft-Tuxedo Vusers with Tuxedo 7.x, you must change the
library extension in the mdrv.dat file:

[PeopleSoft-Tuxedo]
WINNT_EXT_LIBS=lrt7.dll

1133

79
Advanced Topics

This chapter contains additional information for advanced users of VuGen.

➤ Files Generated During Recording

➤ Files Generated During Replay

➤ Running a Vuser from the Unix Command Line

➤ Specifying the Vuser Behavior

➤ Command Line Parameters

➤ Recording OLE Servers

➤ Examining the .dat Files

➤ Adding a New Vuser Type

Part XVII • Information for Advanced Users

1134

Files Generated During Recording

Assume that the recorded test has been given the name ‘vuser’ and is stored
under c:\tmp. Following is a list of the more important files that are
generated after recording:

vuser.usr Contains information about the virtual user: type,
AUT, action files, and so forth.

vuser.bak A copy of Vuser.usr before the last save operation.

default.cfg Contains a listing of all run-time settings as defined in
the VuGen application (think time, iterations, log,
web).

vuser.asc The original recorded API calls.

vuser.grd Contains the column headers for grids in database
scripts.

default.usp Contains the script’s run logic, including how the
actions sections run.

init.c Exact copy of the Vuser_init function as seen in the
VuGen main window.

run.c Exact copy of the Action function as seen in the
VuGen main window.

end.c Exact copy of the Vuser_end function as seen in the
VuGen main window.

vdf.h A header file of C variable definitions used in the
script.

\Data The Data directory stores all of the recorded data used
primarily as a backup. Once the data is in this
directory, it is not touched or used. For example,
Vuser.c is a copy of run.c.

Chapter 79 • Advanced Topics

1135

Example of Vuser.usr File

[General]
Type=Oracle_NCA
DefaultCfg=default.cfg
AppName=C:\PROGRA~1\Netscape\COMMUN~1\Program\netscape.exe
BuildTarget=
ParamRightBrace=>
ParamLeftBrace=<
NewFunctionHeader=0
MajorVersion=5
MinorVersion=0
ParameterFile=nca_test3.prm
GlobalParameterFile=
[Transactions]
Connect=
[Actions]
vuser_init=init.c
Actions=run.c
vuser_end=end.c

Part XVII • Information for Advanced Users

1136

Example of default.cfg File

Files Generated During Replay

This section describes what occurs when the Vuser is replayed.

 1 The options.txt file is created which includes command line parameters to
the preprocessor.

 2 The file Vuser.c is created which contains ‘includes’ to all the relevant .c
and .h files.

 3 The c preprocessor cpp.exe is invoked in order to ‘fill in’ any macro
definitions, precompiler directives, and so on, from the development files.

The following command line is used:

cpp -foptions.txt

[General]
XlBridgeTimeout=120

[ThinkTime]
Options=NOTHINK
Factor=1
LimitFlag=0
Limit=1

[Iterations]
NumOfIterations=1
IterationPace=IterationASAP
StartEvery=60
RandomMin=60
RandomMax=90

[Log]
LogOptions=LogBrief
MsgClassData=0
MsgClassParameters=0
MsgClassFull=0

Chapter 79 • Advanced Topics

1137

 4 The file pre_cci.c is created which is also a C file (pre_cci.c is defined in the
options.txt file). The file logfile.log (also defined in options.txt) is created
containing any output of this process. This file should be empty if there are
no problems with the preprocessing stage. If the file is not empty then its
almost certain that the next stage of compilation will fail due to a fatal error.

 5 The cci.exe C compiler is now invoked to create a platform-dependent
pseudo-binary file (.ci) to be used by the virtual user driver program that will
interpret it at run-time. The cci takes the pre_cci.c file as input.

 6 The file pre_cci.ci is created as follows:

cci -errout c:\tmp\Vuser\logfile.log -c pre_cci.c

 7 The file logfile.log is the log file containing output of the compilation.

 8 The file pre_cci.ci is now renamed to Vuser.ci.

Since the compilation can contain both warnings and errors, and since the
driver does not know the results of this process, the driver first checks if
there are entries in the logfile.log file. If there are, it then checks if the file
Vuser.ci has been built. If the file size is not zero, it means that the cci has
succeeded to compile - if not then compilation has failed and an error
message will be given.

 9 The relevant driver is now run taking both the .usr file and the Vuser.ci file
as input. For example:

mdrv.exe -usr c:\tmp\Vuser\Vuser.usr -out c:\tmp\Vuser -file
c:\tmp\Vuser\Vuser.ci

The .usr file is needed since it tells the driver program which database is
being used. From here it can then know which libraries need to be loaded
for the run.

 10 The output.txt file is created (in the path defined by the ‘out’ variable)
containing all the output messages of the run. This is the same output as
seen in both the VuGen runtime output window and the VuGen main lower
window.

Part XVII • Information for Advanced Users

1138

Example of options.txt file

Example of Vuser.c file

Running a Vuser from the Unix Command Line

VuGen includes a Unix shell script utility, run_db_Vuser.sh, that
automatically performs the same operations as the virtual user but from the
command line. It can perform each of the replay steps optionally and
independently. This is a useful tool for debugging tests to be replayed on
Unix.

Place the file run_db_Vuser.sh in the $M_LROOT/bin directory. To replay a
Vuser type:

run_db_Vuser.sh Vuser.usr

You can also use the following command line options:

-DCCI
-D_IDA_XL
-DWINNT
-Ic:\tmp\Vuser (name and location of Vuser include files)
-IE:\LRUN45B2\include (name and location of include files)
-ec:\tmp\Vuser\logfile.log (name and location of output logfile)
 c:\tmp\Vuser\VUSER.c (name and location of file to be processed)

#include "E:\LRUN45B2\include\lrun.h"
#include "c:\tmp\web\init.c"
#include "c:\tmp\web\run.c"
#include "c:\tmp\web\end.c"

-cpp_only This option will start the prepocessing phase. The
output of this process is the file ‘Vuser.c’.

-cci_only This option runs the compilation phase. The ‘Vuser.c’
file is used as input, and the output produced is the
‘Vuser.ci’ file.

Chapter 79 • Advanced Topics

1139

Note that only one of the first three options can be used at a time for
running the run_db_vuser.

Specifying the Vuser Behavior

Since VuGen creates the Vuser script and the Vuser behavior as two
independent sources, you can configure user behavior without directly
referencing the Vuser script, for example, wait times, pacing times, looping
iterations, logging, and so forth. This feature lets you make configuration
changes to a Vuser, as well as store several ‘profiles’ for the same Vuser
script.

The ‘Vuser.cfg’ file, by default, is responsible for defining this behavior - as
specified in VuGen's Runtime settings dialog box. You can save several
versions of this file for different user behavior and then run the Vuser script
referencing the relevant .cfg file.

You can run the Vuser script with the relevant configuration file from a
server machine. To do this, add the following to the Vuser command line:

-cfg c:\tmp\profile2.cfg

-exec_only This option runs the Vuser, by taking as input the
‘Vuser.ci’ file and running it via the replay driver.

-ci ci_file This option allows you to specify the name and
location of a .ci file to be run. The second parameter
contains the location of the .ci file.

-out output_directory This option allows you to determine the location of
any output files created throughout the various
processes. The second parameter is the directory name
and location.

-driver driver_path This option allows you to specify the actual driver
executable to be used for running the Vuser. By default
the driver executable is taken from the settings in the
VuGen.dat file.

Part XVII • Information for Advanced Users

1140

For information on command line parameters, see “Command Line
Parameters” on page 1140.

Note that you cannot control the behavior file from VuGen. VuGen
automatically uses the .cfg file with the same name as the Vuser. (You can, of
course, rename the file to be ‘Vuser.cfg’). However, you can do this manually
from the command line by adding the -cfg parameter mentioned above to
the end of the driver command line.

Note: The Unix utility, run_db_vuser, does not yet support this option.

Command Line Parameters

The Vusers can accept command line parameters when invoked. There are
several Vuser API functions available to reference them
(lr_get_attrib_double, and so on). In your environment, you can send
command line parameters to the Vuser by adding them to the command
line entry of the script window.

When running the Vuser from VuGen, you cannot control the command
line parameters. You can do this manually, however, from the Windows
command line by adding the parameters at the end of the line, after all the
other driver parameters, for example:

mdrv.exe -usr c:\tmp\Vuser\Vuser.usr -out c:\tmp\vuser
vuser_command_line_params

Note: The Unix utility, run_db_vuser, does not yet support this option.

Chapter 79 • Advanced Topics

1141

Recording OLE Servers

VuGen currently does not support recording for OLE applications. These are
applications where the actual process is not launched by the standard
process creation routines, but by the OLE Automation system. However, you
can create a Vuser script for OLE applications based on the following
guidelines.

There are two types of OLE servers: executables, and DLLs.

DLL Servers

If the server is the DLL, it will eventually be loaded into the application
process space, and VuGen will record the call to LoadLibrary. In this case,
you may not even realize that it was an OLE application.

Executable Servers

If the server is the executable, you must invoke the executable in the VuGen
in a special way:

➤ First, determine which process actually needs to be recorded. In most cases,
the customer knows the name of the application's executable. If the
customer doesn't know the name of the application, invoke it and
determine its name from the NT Task Manager.

➤ After you identify the required process, click Start Recording in VuGen.
When prompted for the Application name, enter the OLE application
followed by the flag "/Automation". Next, launch the user process in the
usual way (not via VuGen). VuGen records the running OLE server and does
not invoke another copy of it. In most cases, these steps are sufficient to
enable VuGen to record the actions of an OLE server.

➤ If you still are experiencing difficulties with recording, you can use the
CmdLine program to determine the full command line of a process which is
not directly launched. (The program is available Patches section of the CSO
web site, http://support.mercuryinteractive.com)

Part XVII • Information for Advanced Users

1142

Using CmdLine

In the following example, CmdLine.exe is used to determine the full
command line for the process MyOleSrv.exe, which is launched by some
other process.

To determine its full command line:

 1 Rename MyOleSrv.exe to MyOleSrv.orig.exe.

 2 Place CmdLine.exe in the same directory as the application, and rename it to
MyOleSrv.exe.

 3 Launch MyOleSrv.exe. It issues a popup with a message containing the
complete command line of the original application, (including additional
information), and writes the information into c:\temp\CmdLine.txt.

 4 Restore the old names, and launch the OLE server, MyOleSrv.exe, from
VuGen with the correct command line parameters. Launch the user
application in a regular way - not through VuGen. In most cases, VuGen will
record properly.

If you still are experiencing difficulties with recording, proceed with the
following steps:

 1 Rename the OLE server to MyOleSrv.1.exe, and CmdLine to MyOleSrv.exe.

 2 Set the environment variables "CmdStartNotepad" and "CmdNoPopup" to 1.
See “CmdLine Environment Variables” on page 1143 for a list of the
CmdLine environment variables.

 3 Start the application (not from VuGen). Notepad opens with the full
command line. Check the command line arguments. Start the application
several times and compare the command line arguments. If the arguments
are the same each time you invoke the application, then you can reset the
CmdStartNotepad environment variable. Otherwise, leave it set to "1".

 4 In VuGen, invoke the program, MyOleSrv.1.exe with the command line
parameters (use Copy/Paste from the Notepad window).

 5 Start the application (not from within VuGen).

Chapter 79 • Advanced Topics

1143

CmdLine Environment Variables

You can control the execution of CmdLine through the following
environment variables:

Examining the .dat Files

There are two .dat files used by VuGen: vugen.dat and mdrv.dat.

vugen.dat

This vugen.dat file resides in the M_LROOT\dat directory and contains
general information about VuGen, to be used by both the VuGen and the
Controller or Console.

[Templates]
RelativeDirectory=template

The Templates section indicates where the templates are for the VuGen
protocols. The default entry indicates that they are in the relative template
directory. Each protocol has a subdirectory under template, which contains
the template files for that protocol.

The next section is the GlobalFiles section.

CmdNoPopup If set, the popup window will not appear.

CmdOutFileName If set, and non-empty, CmdLine will attempt to create
this file instead of c:\temp\CmdLine.txt.

CmdStartNotepad If set, the output file will be displayed in the notepad
(Best used with CmdNoPopup).

[GlobalFiles]
main.c=main.c
@@TestName@@.usr=test.usr
default.cfg=test.cfg
default.usp=test.usp

Part XVII • Information for Advanced Users

1144

The GlobalFiles section contains a list of files that VuGen copies to the test
directory whenever you create a new test. For example, if you have a test
called "user1", then VuGen will copy main.c, user1.usr and user1.cfg to the
test directory.

The ActionFiles section contains the name of the file containing the
Actions to be performed by the Vuser and upon which to perform iterations.

[ActionFiles]
@@actionFile@@=action.c

In addition to the settings shown above, vugen.dat contains settings that
indicate the operating system and other compilation related settings.

mdrv.dat

The mdrv.dat file contains a separate section for each protocol defining the
location of the library files and driver executables. The next section
describes what you need to add to this file in order to define a new protocol.

Adding a New Vuser Type

To add a new Vuser type/protocol to VuGen, you need to:

➤ Edit the mdrv.dat file with the new protocol’s settings.

➤ Add a .cfg file.

➤ Insert an .lrp file.

➤ Create a template directory.

Chapter 79 • Advanced Topics

1145

Editing the mdrv.dat File

First, you edit the mdrv.dat file which resides in the M_LROOT\dat directory.
You add a section for the new Vuser type with all of the applicable
parameters from the following list.

[<extension_name>]
ExtPriorityType=< {internal, protocol}>
WINNT_EXT_LIBS=<dll name for NT>
WIN95_EXT_LIBS=<dll name for 95>
SOLARIS_EXT_LIBS=<dll name for Solaris>
LINUX_EXT_LIBS=<dll name for Linux>
HPUX_EXT_LIBS=<dll name for HP>
AIX_EXT_LIBS=<dll name for IBM>
LibCfgFunc=<configuration function name>
UtilityExt=<other extensions list>
WINNT_DLLS=<dlls to load to the interpreter context, for NT>
WIN95_DLLS=<dlls to load to the interpreter context, for 95>
SOLARIS_DLLS=<dlls to load to the interpreter context, for Solaris>
LINUX_DLLS=<dlls to load to the interpreter context, for Linux>
HPUX_DLLS=<dlls to load to the interpreter context, for HP>
AIX_DLLS=<dlls to load to the interpreter context, for IBM>
ExtIncludeFiles=<extra include files. several files can be seperated by a
comma>
ExtCmdLineConc=<extra command line (if the attr exists concatenate
value)>
ExtCmdLineOverwrite=<extra command line (if the attr exists overwrite
value)>
CallActionByNameFunc=<interpreter exec_action function>
GetFuncAddress=<interpreter get_location function>
RunLogicInitFunc=<action_logic init function>
RunLogicRunFunc=<action_logic run function>
RunLogicEndFunc=<action_logic end function>

Part XVII • Information for Advanced Users

1146

For example, an Oracle NCA Vuser type is represented by:

VuGen was designed to be able to handle a new Vuser type with no code
modifications. You may, however, need to add a special View.

There is no generic driver supplied with VuGen, but you can customize one
of the existing drivers. To use a customized driver, modify mdrv.dat. Add a
line with the platform and existing driver, then add a new line with your
customized driver name, in the format <platform>_DLLS=<my_replay.dll
name>. For example, if your SAP replay dll is called SAPPLAY32.DLL, add the
following two lines to the [sap] section of mdrv.dat:

WINNT=sapdrv32.exe
WINNT_DLLS=sapplay32.dll

[Oracle_NCA]
ExtPriorityType=protocol
WINNT_EXT_LIBS=ncarp11i.dll
WIN95_EXT_LIBS=ncarp11i.dll
LINUX_EXT_LIBS=liboranca11i.so
SOLARIS_EXT_LIBS=liboranca11i.so
HPUX_EXT_LIBS=liboranca11i.sl
AIX_EXT_LIBS=liboranca11i.so
LibCfgFunc=oracle_gui_configure
UtilityExt=lrun_api,HttpEngine
ExtCmdLineOverwrite=-WinInet No
ExtCmdLineConc=-UsingWinInet No
SecurityRequirementsFiles=oracle_nca.asl
SecurityMode=On

Chapter 79 • Advanced Topics

1147

Adding a CFG file

You can optionally specify a configuration file to set the default Run-Time
Settings for your protocol. You define it in the LibCfgFunc variable in the
mdrv.dat file, or place one called default.cfg in the new protocols subdirectory
under templates. A sample default.cfg follows.

[ThinkTime]
Options=NOTHINK
Factor=1
LimitFlag=0
Limit=1

[Iterations]
NumOfIterations=1
IterationPace=IterationASAP
StartEvery=60
RandomMin=60
RandomMax=90

[Log]
LogOptions=LogExtended
MsgClassData=0
MsgClassParameters=0
MsgClassFull=1

Part XVII • Information for Advanced Users

1148

Inserting an LRP file

In the dat/protocols directory, insert an lrp file which defines the protocol.
This file contains the configuration information for the protocol in the
Protocol, Template, VuGen, and API sections. Certain protocols may have
additional sections, corresponding to the additional run-time setting
options.

The Protocol section contains the name, category, description, and bitmap
location for the protocol.

The Template section indicates the name of the various sections of the
script and the default test name.

The VuGen section has information about the record and replay engines,
along with the necessary DLLs and run-time files.

The API section contains information about the protocol’s script API
functions.

You can use one of the existing lrp files in the protocols directory as a base
for your new protocol.

 [Protocol]
Name=WAP
CommonName=WAP
Category=Wireless
Description=Wireless Application Protocol - used for Web-based, wireless
communication between mobile devices and content providers.
Icon=bitmaps\wap.bmp
Hidden=0
Single=1
Multi=0

[Template]
vuser_init.c=init.c
vuser_end.c=end.c
Action1.c=action.c
Default.usp=test.usp
@@TestName@@.usr=wap.usr
default.cfg=default.cfg

Chapter 79 • Advanced Topics

1149

Specifying a Template

After adding an lrp file, insert a subdirectory to M_LROOT/template with a
name corresponding to the protocol name defined in the lrp file. In this
subdirectory, insert a default.cfg file which defines the default settings for the
general and run-time settings.

If you want to use a global header file for all of your protocol’s scripts, add a
file named globals.h. This file should contain an include statement which
points to a header file for the new protocol. For example, the template/http
subdirectory contains a file called globals.h which directs VuGen to the
as_web.h file in the include directory:

#include #as_web.h”

Part XVII • Information for Advanced Users

1150

Part XVII

Appendixes

1152

1153

A
Calling External Functions

When working with VuGen, you can call functions that are defined in
external DLLs. By calling external functions from your script, you can
reduce the memory footprint of your script and the overall run-time.

To call the external function, you load the DLL in which the function is
defined.

You can load a DLL:

➤ locally—for one script, using the lr_load_dll function

➤ globally—for all scripts, by adding statements to the vugen.dat file

Loading a DLL—Locally

You use the lr_load_dll function to load the DLL in your Vuser script. Once
the DLL is loaded, you can call any function defined within the DLL,
without having to declare it in your script.

To call a function defined in a DLL:

 1 Use the lr_load_dll function to load the DLL at the beginning of your script.
Place the statement at the beginning of the vuser_init section. lr_load_dll
replaces the ci_load_dll function.

Use the following syntax:

lr_load_dll(library_name);

Note that for UNIX platforms, DLLs are known as shared libraries. The
extension of the libraries is platform dependent.

Part XVIII • Appendixes

1154

 2 Call the function defined in the DLL in the appropriate place within your
script.

In the following example, the insert_vals function, defined in orac1.dll, is
called, after the creation of the Test_1 table.

Note: You can specify a full path for the DLL. If you do not specify a path,
lr_load_library searches for the DLL using the standard sequence used by the
C++ function, LoadLibrary on Windows platforms. On UNIX platforms you
can set the LD_LIBRARY_PATH environment variable (or the platform
equivalent). The lr_load_dll function uses the same search rules as dlopen.
For more information, see the main pages for dlopen or its equivalent.

int LR_FUNC Actions(LR_PARAM p)
{
lr_load_dll("orac1.dll");

lrd_stmt(Csr1, "create table Test_1 (name char(15), id integer)\n", -1,
1 /*Deferred*/, 1 /*Dflt Ora Ver*/, 0);

lrd_exec(Csr1, 0, 0, 0, 0, 0);

/* Call the insert_vals function to insert values into the table. */
insert_vals();

lrd_stmt(Csr1, "select * from Test_1\n", -1, 1 /*Deferred*/, 1 /*Dflt Ora Ver*/,
0);
lrd_bind_col(Csr1, 1, &NAME_D11, 0, 0);
lrd_bind_col(Csr1, 2, &ID_D12, 0, 0);
lrd_exec(Csr1, 0, 0, 0, 0, 0);
lrd_fetch(Csr1, -4, 15, 0, PrintRow14, 0);
…

Appendix A • Calling External Functions

1155

Loading a DLL—Globally

You can load a DLL globally, to make its functions available to all your Vuser
scripts. Once the DLL is loaded, you can call any function defined within
the DLL, without having to declare it in your script.

To call a function defined in a DLL:

 1 Add a list of the DLLs you want to load to the appropriate section of the
mdrv.dat file, located in your application’s dat directory.

Use the following syntax,

PLATFORM_DLLS=my_dll1.dll, my_dll2.dll, …

replacing the word PLATFORM with your specific platform. For a list of
platforms, see the beginning section of the mdrv.dat file.

For example, to load DLLs for Winsocket Vusers on an NT platform, add the
following statement to the mdrv.dat file:

 2 Call the function defined in the DLL in the appropriate place within your
script.

[WinSock]
ExtPriorityType=protocol
WINNT_EXT_LIBS=wsrun32.dll
WIN95_EXT_LIBS=wsrun32.dll
LINUX_EXT_LIBS=liblrs.so
SOLARIS_EXT_LIBS=liblrs.so
HPUX_EXT_LIBS=liblrs.sl
AIX_EXT_LIBS=liblrs.so
LibCfgFunc=winsock_exten_conf
UtilityExt=lrun_api
ExtMessageQueue=0
ExtCmdLineOverwrite=-WinInet No
ExtCmdLineConc=-UsingWinInet No
WINNT_DLLS=user_dll1.dll, user_dll2.dll, …

Part XVIII • Appendixes

1156

1157

B
Working with Foreign Languages

VuGen supports multilingual environments, allowing you to use languages
other than English on native language machines when creating and
running scripts.

This appendix describes:

➤ About Working with Foreign Languages

➤ Manually Converting String Encoding

➤ Converting String Encoding In Parameter Files

➤ Setting the String Encoding for Web Record and Replay

➤ Specifying a Language for the Accept-Language Header

➤ Protocol Limitations

➤ Quality Center Integration

About Working with Foreign Languages

When working with languages other than English, the primary issue is
ensuring that VuGen recognizes the encoding of the text during record and
replay. The encoding applies to all texts used by the script. This includes
texts in HTTP headers and HTML pages for Web Vusers, data in parameter
files, and others.

Windows 2000 and higher lets you save text files with a specific encoding
directly from Notepad: ANSI, Unicode, Unicode big endian, or UTF-8.

Part XVIII • Appendixes

1158

By default, VuGen works with the local machine encoding (ANSI). Some
servers working with foreign languages, require you to work with UTF-8
encoding. To work against this server, you must indicate in the Advanced
recording options, that your script requires UTF-8 encoding.

Manually Converting String Encoding

You can manually convert a string from one encoding to another (UTF-8,
Unicode, or locale machine encoding) using the
lr_convert_string_encoding function. The syntax of the function is:

lr_convert_string_encoding(char * sourceString, char * fromEncoding, char *
toEncoding, char * paramName)

The function saves the result string (including its terminating NULL) in the
third argument, paramName. It returns a 0 on success and -1 on failure.

The format for the fromEncoding and toEncoding arguments are:

LR_ENC_SYSTEM_LOCALE NULL

LR_ENC_UTF8 "utf-8"

LR_ENC_UNICODE "ucs-2"

Appendix B • Working with Foreign Languages

1159

In the following example, lr_convert_string_encoding converts “Hello
world" from the system locale to Unicode.

In the Execution log, the output window shows the following information:

The result of the conversion is saved to the paramName argument.

Converting String Encoding In Parameter Files

The parameter file contains the data for parameters that were defined in the
script. This file, stored in the script’s directory, has a *.dat extension. When
running a script, Vusers use the data to execute actions with varying values.

By default, VuGen saves the parameter file with your machine’s encoding.
When working with languages other than English, however, in cases where
the server expects to receive the string in UTF-8, you may need to convert
the parameter file to UTF-8. You can do this directly from Notepad, provided
that you are working with Windows 2000 or higher.

Action()
{
 int rc = 0;
 unsigned long converted_buffer_size_unicode = 0;
 char *converted_buffer_unicode = NULL;

 rc = lr_convert_string_encoding("Hello world", NULL,
LR_ENC_UNICODE, "stringInUnicode");
 if(rc < 0)
 {
 // error
 }
return 0;
}

Output:
Starting action Action.
Action.c(7): Notify: Saving Parameter "stringInUnicode =
H\x00e\x00l\x00l\x00o\x00 \x00w\x00o\x00r\x00l\x00d\x00\x00\x00"
Ending action Action.

Part XVIII • Appendixes

1160

To apply UTF-8 encoding to a parameter file:

 1 Choose Vuser > Parameter List and view the parameter properties.

 2 In the right pane, locate the parameter file in the File path box.

 3 With the parameter table in view, click Edit in Notepad. Notepad opens with
the parameter file in csv format.

 4 In the Save as type box, select All Files.

In the Encoding box, select UTF-8 type encoding.

 5 Click Save. Notepad asks you to confirm the overwriting of the existing
parameter file. Click Yes.

VuGen now recognizes the parameter file as UTF-8 text, although it still
displays it in regular characters.

Appendix B • Working with Foreign Languages

1161

Setting the String Encoding for Web Record and Replay

When working with Web or other Internet protocols, you can indicate the
encoding of the Web page text for recording. The recorded site's language
must match the operating system language. You cannot mix encodings in a
single recording—for example, UTF-8 together with ISO-8859-1 or shift_jis.

This section discusses:

➤ Encoding Recording Option

➤ Manually Enabling Encoding

➤ Browser Configuration

Encoding Recording Option

In order to be recognized as a non-English Web page, the page must indicate
the charset in the HTTP header or in the HTML meta tag. Otherwise, VuGen
will not detect the EUC-JP encoding and the Web site will not be recorded
properly. To instruct VuGen to record non-English requests as EUC-JP or UT-
8, select the appropriate option in the Recording Options dialog box,
Internet Protocol: Advanced node.

➤ UTF-8: This option enables support for UTF-8 encoding. This instructs
VuGen to convert non-ASCII UTF-8 characters to the encoding of your
locale’s machine in order to display them properly in VuGen.

➤ EUC-JP: For users of Japanese Windows, select this option to enable
support for Web sites that use EUC-JP character encoding. This instructs
VuGen to convert EUC-JP strings to the encoding of your locale’s
machine in order to display them properly in VuGen. VuGen converts all
EUC-JP (Japanese UNIX) strings to the SJIS (Japanese Windows) encoding
of your locale machine, and adds a web_sjis_to_euc_param function to
the script (Kanji only).

Note that by selecting the EUC-JP or UTF-8 option in the Recording Options,
you are forcing VuGen to record a Web page with the selected encoding,
even when it uses different encoding. If, for example, a non-EUC encoded
Web page is recorded as EUC-JP, the script will not replay properly.

Part XVIII • Appendixes

1162

To enable the charset Encoding:

 1 Open the Recording Options (Ctrl+F7) and select the Advanced node.

 2 Select Support charset. Choose the desired character encoding—UTF-8 or
EUC-JP (only enabled for the Kanji operating system).

 3 Click OK.

For more information about these settings, see “Setting Advanced Recording
Options” on page 538.

Manually Enabling Encoding

You can manually add full support for recording and replaying of HTML
pages encoded in EUC-JP using the web_sjis_to_euc_param function. This
also allows VuGen to display Japanese EUC-encoded characters correctly in
Vuser scripts.

When you use web_sjis_to_euc_param, VuGen shows the value of the
parameter in the Execution Log using EUC-JP encoding. For example, when
you replay the web_find function, VuGen displays the encoded values.
These include string values that were converted into EUC by the
web_sjis_to_euc_param function, or parameter substitution when enabled
in the Run-Time Setting > Log > Extended Log.

Appendix B • Working with Foreign Languages

1163

Browser Configuration

If, during recording, non-English characters in the script are displayed as
escaped hexadecimal numbers (For example, the string "Ü&" becomes
"%DC%26"), you can correct this by configuring your browser not to send
URLs in UTF-8 encoding. In Internet Explorer, choose Tools > Internet
Options and click the Advanced tab. Clear the Always Send URLs as a UTF-8
option in the Browsing section.

For more information about web_sjis_to_euc_param, refer to the Online
Function Reference.

Part XVIII • Appendixes

1164

Specifying a Language for the Accept-Language Header

Before running a Web script, you can set the page’s request header to match
your current language. In the Internet Protocol Run-Time settings, you set
the language of the Accept-Language request header. This header provides the
server with a list of all of the accepted languages.

To set the Accept-Language header:

 1 Open the Run-Time settings (F4) and select the Internet
Protocols:Preferences node.

 2 In the Advanced section, click the Options button to open the Advanced
Options dialog box.

Appendix B • Working with Foreign Languages

1165

 3 Locate the Accept-Language request header option. In the Value column,
select the desired language from the list. This list is derived from the
Internet Options Language settings in your browser.

For more information about these settings, see “Additional Options for
Internet Preferences” on page 578.

Protocol Limitations

SMTP Protocol

If you work with SMTP protocol through MS Outlook or MS Outlook
Express, the Japanese text recorded in a Vuser script is not displayed
correctly. However, the script records and replays correctly.

Script Name Length

When recording in COM, FTP, IMAP, SMTP, POP3, REAL or VB in VBA mode,
the length of the script name is limited to 10 multi-byte characters (21
bytes).

Part XVIII • Appendixes

1166

Quality Center Integration

To open a script saved in a Quality Center project from VuGen, or a scenario
saved in a Quality Center project from Controller, add a new Test Set named
"Default" (in English) to the Quality Center project.

1167

C
Programming Scripts on UNIX Platforms

Vusers on UNIX platforms can create scripts through programming. To
create a script through programming, you use a template.

This appendix describes:

➤ About Programming Vuser Scripts to Run on UNIX Platforms

➤ Generating Templates

➤ Programming Vuser Actions

➤ Configuring Vuser Run-Time Settings

➤ Defining Transactions and Rendezvous Points

➤ Compiling Scripts

About Programming Vuser Scripts to Run on UNIX
Platforms

There are two ways to create Vuser scripts that run on UNIX platforms: by
using VuGen, or by programming.

VuGen You can use VuGen to create Vuser scripts that run on
UNIX platforms. You record your application in a
Windows environment and run it in UNIX—recording
is not supported on UNIX.

programming Users working in UNIX-only environments can
program Vuser scripts. Scripts can be programmed in C
or C++ and they must be compiled into a dynamic
library.

Part XVIII • Appendixes

1168

This appendix describes how to develop a Vuser script by programming.

To create a script through programming, you can use a Vuser template as a
basis for a larger Vuser scrips. The template provides:

➤ correct program structure

➤ Vuser API calls

➤ source code and makefiles for creating a dynamic library

After creating a basic script from a template, you can enhance the script to
provide run-time Vuser information and statistics. For more information,
see Chapter 7, “Enhancing Vuser Scripts.”

Generating Templates

VuGen includes a utility that copies a template into your working directory.
The utility is called mkdbtest, and is located in $M_LROOT/bin. You run the
utility by typing:

When you run mkdbtest, it creates a directory called name, which contains
the template file, name.c. For example, if you type:

mkdbtest creates a directory called test1, which contains the template script,
test1.c.

mkdbtest name

mkdbtest test1

Appendix C • Programming Scripts on UNIX Platforms

1169

When you run the mkdbtest utility, a directory is created containing four
files test.c, test.usr, test.cfg and Makefile, where test is the test name you
specified for mkdbtest.

Programming Vuser Actions

The Vuser script files, test.c, test.usr, and test.cfg, can be customized for your
Vuser.

You program the actual Vuser actions into the test.c file. This file has the
required structure for a programmed Vuser script. The Vuser script contains
three sections: vuser_init, Actions, and vuser_end.

test.c

makefile

Template Files
test.usr

test.cfg

Part XVIII • Appendixes

1170

Note that the template defines extern C for users of C++. This definition is
required for all C++ users, to make sure that none of the exported functions
are modified inadvertently.

You program Vuser actions directly into the empty script, before the
lr_message function of each section.

The vuser_init section is executed first, during initialization. In this section,
include the connection information and the logon procedure. The vuser_init
section is only performed once each time you run the script.

The Actions section is executed after the initialization. In this section,
include the actual operations performed by the Vuser. You can set up the
Vuser to repeat the Actions section (in the test.cfg file).

The vuser_end section is executed last, after the all of the Vuser’s actions. In
this section, include the clean-up and logoff procedures. The vuser_end
section is only performed once each time you run the script.

#include “lrun.h”
#if defined(__cplusplus) || defined(cplusplus) extern “C”
{
#endif
int LR_FUNC vuser_init(LR_PARAM p)
{

lr_message(“vuser_init done\n”);
return 0;

}
 int Actions(LR_PARAM p)
{

lr_message(“Actions done\n”);
return 0;

}
 int vuser_end(LR_PARAM p)
{

lr_message(“vuser_end done\n”);
return 0;

}
#if defined(__cplusplus) || defined(cplusplus)}
#endif

Appendix C • Programming Scripts on UNIX Platforms

1171

Note: Mercury applications control the Vuser by sending SIGHUP, SIGUSR1,
and SIGUSR2 UNIX signals. Do not use these signals in your Vuser
programs.

Configuring Vuser Run-Time Settings

To configure Vuser run-time settings, you modify the default.cfg and
default.usp files created with the script. These run-time settings correspond
to VuGen’s run-time settings. (See Chapter 12, “Configuring Run-Time
Settings”.) The default.cfg file contains the setting for the General, Think
Time, and Log options. The default.usp file contains the setting for the Run
Logic and Pacing.

General Options

There is one General options for Unix Vuser scripts:

ContinueOnError instructs the Vuser to continue when an error occurs. To
activate the option, specify 1. To disable the option, specify 0.

In the following example, the Vuser will continue on an error.

[General]
ContinueOnError=1

Part XVIII • Appendixes

1172

Think Time Options

You can set the think time options to control how the Vuser uses think time
during script execution. You set the parameters Options, Factor, LimitFlag,
and Limit parameters according to the following chart.

To limit the think time used during execution, set the LimitFlag variable to 1
and specify the think time Limit, in seconds.

In the following example, the settings tell the Vuser to multiply the
recorded think time by a random percentage, ranging from 50 to 150.

Option Options Factor LimitFlag Limit

Ignore think
time

NOTHINK N/A N/A N/A

Use recorded
think time

RECORDED 1.000 N/A N/A

Multiply the
recorded
think time
by...

MULTIPLY number
N/A N/A

Use random
percentage of
recorded
think time

RANDOM range
lowest

percentage
upper

percentage

Limit the
recorded
think time
to...

RECORDED
/ MULTIPLY

number (for
MULTIPLY)

1
value in
seconds

[ThinkTime]
Options=RANDOM
Factor=1
LimitFlag=0
Limit=0
ThinkTimeRandomLow=50
ThinkTimeRandomHigh=150

Appendix C • Programming Scripts on UNIX Platforms

1173

Log Options

You can set the log options to create a brief or detailed log file for the script’s
execution.

You set the parameters LogOptions, MsGClassData, MsgClassParameters, and
MsgClassFull variables according to the following chart:

[Log]
LogOptions=LogBrief
MsgClassData=0
MsgClassParameters=0
MsgClassFull=0

Logging
Type

LogOptions MsgClassData MsgClassParameters MsgClassFull

Disable
Logging

LogDisabled N/A N/A N/A

Standard
Log

LogBrief N/A N/A N/A

Parameter
Substitution
(only)

LogExtended 0 1 0

Data
Returned by
Server (only)

LogExtended 1 0 0

Advanced
Trace (only)

LogExtended 0 0 1

All LogExtended 1 1 1

Part XVIII • Appendixes

1174

In the following example, the settings tell the Vuser to log all data returned
by the server and the parameters used for substitution.

Iterations and Run Logic

You can set the Iteration options to perform multiple iterations and control
the pacing between the iterations. You can also manually set the order of
the actions and their weight. To modify the run logic and iteration
properties of a script, you must edit the default.usp file.

To instruct the Vuser to perform multiple iterations of the Actions section,
set RunLogicNumOfIterations to the appropriate value.

To control the pacing between the iterations, set the RunLogicPaceType
variable and its related values, according to the following chart:

[Log]
LogOptions=LogExtended
MsgClassData=1
MsgClassParameters=1
MsgClassFull=0

Pacing RunLogicPaceType Related Variables

As soon as
possible

Asap N/A

Wait between
Iterations for
a set time

Const RunLogicPaceConstTime

Wait between
iterations a
random time

Random
RunLogicRandomPaceMin,
RunLogicRandomPaceMax

Appendix C • Programming Scripts on UNIX Platforms

1175

In the following example, the settings tell the Vuser to perform four
iterations, while waiting a random number of seconds between iterations.
The range of the random number is from 60 to 90 seconds.

Wait after
each iteration
a set time

ConstAfter RunLogicPaceConstAfterTime

Wait after
each iteration
a random
time

After
RunLogicAfterPaceMin,
RunLogicAfterPaceMax

[RunLogicRunRoot]
MercIniTreeFather=""
MercIniTreeSectionName="RunLogicRunRoot"
RunLogicRunMode="Random"
RunLogicActionOrder="Action,Action2,Action3"
RunLogicPaceType="Random"
RunLogicRandomPaceMax="90.000"
RunLogicPaceConstTime="40.000"
RunLogicObjectKind="Group"
RunLogicAfterPaceMin="50.000"
Name="Run"
RunLogicNumOfIterations="4"
RunLogicActionType="VuserRun"
RunLogicAfterPaceMax="70.000"
RunLogicRandomPaceMin="60.000"
MercIniTreeSons="Action,Action2,Action3"
RunLogicPaceConstAfterTime="30.000"

Pacing RunLogicPaceType Related Variables

Part XVIII • Appendixes

1176

Defining Transactions and Rendezvous Points

When programming a Vuser script without VuGen, you must manually
configure the Vuser file in order to enable transactions and rendezvous. The
configuration settings are listed in the test.usr file.

Each transaction and rendezvous must be defined in the usr file. Add the
transaction name to the Transactions section (followed by an “=”). Add each
rendezvous name to the Rendezvous section (followed by an “=”). If the
sections are not present, add them to the usr file as shown above.

Compiling Scripts

After you modify the template, you compile it with the appropriate Makefile
in the script’s directory. Note that for C++ compiling, you must use the
native compiler (not gnu). The compiler creates a dynamic library called:

➤ libtest.so (solaris)

➤ libtest.a (AIX)

➤ libtest.sl (HP)

[General]
Type=any
DefaultCfg=Test.cfg
BinVuser=libtest.libsuffix
RunType=Binary

[Actions]
vuser_init=
Actions=
vuser_end=

[Transactions]
transaction1=

[Rendezvous]
Meeting=

Appendix C • Programming Scripts on UNIX Platforms

1177

You can modify the Makefile and assign additional compiler flags and
libraries by modifying the appropriate sections.

If you are working with a general template, you must include your
application’s libraries and header files. For example, if your application uses
a library called testlib, include it in the LIBS section.

After you modify the makefile, type Make from the command line in the
working directory to create the dynamic library files for the Vuser script.

After you create a script, you check it’s functionality from the command
line.

To run a Vuser script from the UNIX command line, type:

where pwd is the full path to the directory containing the Vuser script and
test.usr is the name of the Vuser file. Check that your script communicates
with the server and performs all the required tasks.

After you verify that your script is functional, you integrate it into your
environment: a LoadRunner scenario, Performance Center load test, Tuning
Module session, or Business Process Monitor profile. For more information,
refer to the LoadRunner Controller User’s Guide, Tuning Console, Performance
Center, or Application Management documentation.

LIBS = \
-testlib \
-lLrun50 \
-lm

mdrv -usr ‘pwd’ test.usr

Part XVIII • Appendixes

1178

1179

D
Using Keyboard Shortcuts

The following list describes the keyboard shortcuts available in the Virtual
User Generator.

ALT+F8 Compares the Current Snapshots (Web Vusers
only)

ALT+INS Create New Step

CTRL+A Select All

CTRL+C Copy

CTRL+F Find

CTRL+G Go To Line

CTRL+H Replace

CTRL+N New

CTRL+O Open

CTRL+P Print

CTRL+S Save

CTRL+V Paste

CTRL+X Cut

CTRL+Y Redo

CTRL+Z Undo

CTRL+F7 Recording Options

CTRL+F8 Scan for Correlations

Part XVIII • Appendixes

1180

CTRL+SHIFT+SPACE Show Function Syntax (Intellisense)

CTRL+SPACE Complete Wizard (completes the function
name)

F1 Help

F3 FIND Next Downward

SHIFT+F3 Find Next Upward

F4 Run-Time Settings

F5 Run Vuser

F6 Move Between Panes

F7 Show EBCDIC Translation Dialog (for
WinSocket data)

F9 Toggle Breakpoint

F10 Run Vuser Step by Step

1181

A

ABC icon 117
accept Server-Side compression 579
Accept-Language request header 579, 1164
Acrobat Reader xxiii
Action

method 405
section 54

Action steps
function list-Web 523
modifying - Web 613

actions
importing 71
recording multiple 65
reordering 72

Actions class 403
ActiveX, enabling support 582
Add new column dialog box 125
Add Rule 657
Add/Remove dialog box, object

identification 816
Additional Attributes run-time setting 165
ADO .NET Vuser 495
Advanced GUI dialog box 837
Advanced recording options 538
agent, for Citrix 311
allocating Vuser values

data files 131
data tables 134

ALNUM flag 603
animated run

defined 179
enabling 180

ANSI 962
ANSI C support, in custom scripts 395
Application Deployment Solution, Citrix

Vuser type 277–310

application server, Oracle NCA 844
argument view 749
AssignToParam property (Web) 607
assistive properties, configuring 815
authentication during recording 72
authentication retry think time 580
auto-detect protocol 88
automatic proxy configuration script 569
automatic transactions

Database Vuser scripts 326
general 171
Web and Wireless protocols 578

automation compliant 392
autorecovery 15

B

Basic event recording configuration level 821
bearers

run-time settings (WAP) 1085
support (WAP) 1065

behavior, DHTML 828
BIN flag 603
binary coded data 610
binary view of data (WinSock) 365
block size, allocating Vuser values 131
bookmarks in a Vuser script 188
bookmarks in data (WinSock) 368
Books Online xxiii
boundaries, defining for correlation 666
braces, using in parameterization 129
Breakpoint Manager 186
breakpoints 184
Brief log run-time setting 161
browser

cache (Web, Wireless) 574
launching (Web/WinSock) 767

Index

Index

1182

manual launching (Web) 548
recording options (Web) 548
specifying location (Web) 548
using the default (Web) 548

Browser Emulation settings, Web 572
bubbling 829
buffer navigator (WinSock) 366
buffer size on network (Internet) 580

C

C functions
additional keywords 1114
for debugging 1114
using in Vuser scripts 31

C language support
conventions 395
interpreter 32

C Vusers 393
cache

check for newer versions 574
clear each iteration 575
loading and dumping 529

CARRAY buffers 1034
character encoding 1161
character set, RTE 962
Check In command 209
Check Properties dialog box 634
checking-in scripts 209
checks (Web)

defining properties for 607
functions 524
image checks 604
modifying in scripts 634
overview 593
text 596
types of 595

cHTML 1052
Citrix agent 311
Citrix server, disconnecting 281
Citrix Vuser scripts 277–310

client version 280
disconnecting from server 281
display settings 291
editing 295
function list 303

getting started 279
recording options 290
run-time settings 292
synchronizing replay 296
tips for record and replay 307

Classpath
recording options 245
run-time settings 273

client emulation
Oracle NCA 857
Web Services 742

client for Citrix 280
client request view 749
client-side certificates 685
Close All command 191
CLR Vusers 495
code generation options (EJB) 789
Collapse All command 680
COM

data types 426
overview and interfaces 424

COM Vuser scripts
class context 425
creating object instances 442
debug functions 463
developing 423
error checking 441
functions 453
functions that create instances 454
getting started 426
IDispatch interface 446, 455
instantiating objects 442
interface pointers 440
log files for debugging 427
lrc_type functions 455
parameterization functions 458
recording options 430, 498
retrieving an interface 443
scanning for correlations 448
script structure 440
selecting COM objects to record 427
type assignment functions 455
type libraries 425
understanding 440
variant type conversion functions 456
Visual Basic collection 462

Index

1183

command line arguments
parsing functions 34
reading in C Vuser scripts 108
reading in Java Vuser scripts 414
UNIX Vuser scripts 192

command prompt 191
Comment button 100
comments

adding to correlation steps 642
inserting into Vuser scripts 100
screen header comments (RTE) 965

comparing
WSDL files 743
XML files 747

comparing Vusers 144
comparison method 655, 696
compiling Vuser scripts (UNIX) 1176
compression for HTML (gzip) 585
compression headers, requesting 581
concurrent group functions 525
configuration levels

customizing 823–833
standard 821–822

Connect dialog box (RTE) 958
connection attempts, modifying (RTE) 975
Connection to Quality Center dialog box

200
content check

limit errors 580
settings (Web) 588

content type filtering (Web) 542
Content type filters dialog box 543
Context Sensitive Help xxiii
Continue on error 105, 167
Control steps

functions (Web) 528
modifying (Web) 630

Controller
scenario 196

converting
custom request to C 627
Web functions to Java 518

copy and paste
advanced for WinSock Vusers 371
RTE Vusers 960

Corba Recording Options dialog box 256

Corba-Java Vuser scripts 465
CORBA recording options 256
correlation options 251
debug options 253
Recorder options 246
recording 466
serialization options 250

Correlated Query tab
COM 449
Database 346

correlating
advanced properties 645
after recording (Web, Wireless) 649
COM Vusers 448
debugging tips for Siebel 1128
for known contexts (Web) 638
functions (C) 141
functions (Java) 143
HTML statements (Web) 635
Java statements 259
maximum parameter size 639
modifying existing parameters 146
overview 139
recording options-Java 251
rules for Web Vusers 639
scanning Database Vuser script 346
scripting language options 80
Siebel-Web 638, 929
SWECount 937
Tuxedo 1037
with snapshots (Web) 649

Correlation options, for Script recording
options 80

Correlation Results tab 657
Correlation tab 647
Create Rule 652
CtLib 321

logging server messages 162
options 328
result set errors 343

custom event-recording configuration 823
adding listening events 827
adding objects to the list 826
deleting objects from the list 826
procedure 823
specifying listening criteria 828

Index

1184

custom headers, for Web and Wireless 540
Custom Request dialog box (Web) 628
Custom Request step

defined 529
for XML 672
modifying (Web) 627

custom requests 561
Custom Vuser types

C Vusers 393
Java Vusers 397
JavaScript Vusers 400
VB Vusers 398
VBScript Vusers 399

custom web event configuration files
loading 832
saving 831

Custom Web Event Recording Configuration
dialog box 823

D

data assignment methods, in
parameterization 134, 136

data buffers
Tuxedo Vuser scripts 1030
WinSock Vuser scripts 376

data file parameters
adding rows and columns 125
creating a data source 124
editing 126
importing data from database 126
importing data source using data

wizard 125
selecting data source 124

data files
used for parameterization 120
Windows Sockets Vuser scripts 378

data grids, enabling 191, 504
data table parameters

adding rows and columns 125
creating a data source 124
editing 126
importing data from database 126
importing data source using data

wizard 125
selecting data source 124

Data Wizard 127
MS Query 127
SQL statement 128

Database Query Wizard dialog box 127
Database recording options 326
Database Vuser scripts

correlating 345
developing 321
getting started 325
handling errors 342
return codes 341
row information 339
tips 1123
using lrd functions 330
viewing grids 338

date/time, parameter values 125
DB2-CLI 321
DBCS 962
DbLib 321
DCOM 424
DCOM tab 432
Debug Message dialog box 104
Debug recording settings (Java) 253
debugging

database applications 1115
during replay 184
enabling debugging features 190
enabling for Web Vusers 190
obtaining information (WAP) 584
Oracle applications 1117
setting debug level 161
Web Vuser scripts 677

decrypting text 109
deep correlation (Java) 261
defining parameter properties

data files 130
general 122
tables 132

defining properties, text checks 596
deleting

objects from list 826
deleting steps

from Web scripts 612
delimiter of columns

in data files 130
in data tables 132

Index

1185

detector, EJB 780
device name (RTE) 976
diagnostics

enabling in VuGen 172
DIG flag 603
disable logging log option 159
disabling functions (SAPGUI) 899
disconnecting from Quality Center 202
Display tab, General options 190
distinguished names 493
DLLs, calling from a Vuser script 1153
DN (LDAP) 493
DNS caching

Web 578
DNS Vusers

functions 352
overview 351

documentation set xxiv
DOM memory allocation 581
download filter 582
downloading

from Performance Center to VuGen
223

DSL 176
dual protocol

SAPGUI/SAP-Web 869
Web/WinSock 763

duplicate key violations
Oracle, MSSQL 1125
Siebel 1128

dynamic ports 386, 509

E

EBCDIC translation 380
editor, setting font for 15
EJB

code generation options 789
instance 792
method 794
Vuser scripts 779

EJB Detector 792
command-line 781
log files 784
setup 780

encoding passwords 110

encoding, EUC 561
encrypting text 109
end method 404
End Transaction dialog box 98
engine, recording 539
environment settings

Java 415
Tuxedo Vusers 1031

Environment tab 15
error handling 105, 167

COM Vuser scripts 441
modifying globally 342
modifying locally (severity level) 343

error matches, limiting 580
Error Message dialog box 104
errors, generate snapshot on 167
escape sequence 382
EUC encoded pages 561
EUC encoding 563
EUC-JP encoding

recording option 539
setting 1161

event-recording configuration 820–833
customizing levels 823
resetting 832
standard levels 821

Execution report (Web only) 696
Expand All command 680
Expect property, Web checks 608
exporting to a zip file 67
extended log option 160
extended result set 329
external functions 1153

F

fetching data 339
field demarcation characters 971
FIELDTBLS environment setting 1031
files, adding to script 111
filtering

content type (Web, Wireless) 542
downloaded resources 582
report information (Web) 681

Filters dialog box (Web reports) 681
flags, text search 603

Index

1186

FLDTBLDIR environment setting 1031
font in editor 15
format

for parameterization 135
of data in display buffer 382

Forms Listener 860
Frame property, for object checks (Web) 607
FTP protocol

function list 486
recording 485

full run-time trace 161
functions

automatic word completion 38
ctrx (Citrix) 303
DNS 352
FTP 486
GUI level (PeopleSoft, Oracle) 806
imap 1000
in Web Vuser scripts 522
Java 406
list of C functions 33
lr (C functions) 30
lrc (COM) 439
lrd (Database) 330
lreal (Real Player) 1044
lrs (WinSock) 359
lrt (Tuxedo) 1022
mapi 1002
mms 1045
pop3 1004
sapgui (SAP) 903
smtp 1005
syntax 39
te (RTE) 949
WAP 1061

G

Gateway settings (WAP) 1080
General options

all Vusers 130
Citrix display 291
Correlation tab 654
dialog box 131
Display tab (Web only) 190
Environment tab 15

Parameterization tab 129
Replay tab 180

Generate snapshot on error 167
Generation Log tab 70
Get Text tool, Citrix Vuser scripts 315
global directory 130
Global Unique Identifier (GUID) 425
go to command 189
graphs

enabling for Web 577
grids

hiding 191, 504
viewing 338

group name, parameter values 127
GUI Vuser scripts

tools for 8
GUID 425
gzip 585

H

handler 828
header files 39
headers

custom 540
risky 540

High event recording configuration level 822
history object, support for 582
host suffix, filtering by 582
HotSync 774
HTML

maximum parameter length 667
HTML view (Web snapshots) 23
HTML-based mode 549
HTTP

buffer size (Web) 580
HTTP recording mode, WAP 1080
hypergraphic link step, Web Vusers 529
hypertext link step

defined 528
modifying 615

I

IC flag 603
ica files 302

Index

1187

IDE Integration, Web Services 739
IDispatch interface 446, 455
If-Modified-Since header

Web 574
IIOP 476
image checks

modifying (Web) 617
Web Vuser scripts 604

Image Step Properties dialog box 618
IMAP protocol 997
i-mode

overview 1052
toolkits 1053

importing
actions 71
data from a database 126

Informix 321
init method 404
Insert Comment dialog box 100
installing

See the product’s Installation Guide
Instantiating COM objects 442
intellisense 38
internal data, parameterization 121, 124
Internet Messaging (IMAP) 997
ISDN 176
iteration number, parameter values 128
iterations

run-time settings 156
updating parameters for each 136

IUnknown interface 425

J

Jacada Vuser scripts 1009
recording 1012
replaying 1014
understanding 1015

Java plug-in 472
Java virtual machine

recording options 243
run-time settings 272

Java Vusers (all)
correlating statements 259
editing Java methods 403
environment settings 415

inserting rendezvous points 410
programming 401
run-time settings 271–274

Java Vusers (Corba, RMI)
Classpath run-time settings 273
Java VM run-time settings 272
recording options, correlation 251
recording options, Java VM 243
recording options, serialization 250
recording tip 472

Java Vusers (custom)
creating template 403
using Java code 397

JavaScript Vusers 400
JNDI properties

advanced, context factory 787
locating EJB home 790
specifying 786

Jscript 78

K

KDC (Key Distribution Server) 581
keep-alive connections, Web 579
Kerberos

server address 581
Kerebros

authentication 581
keyboard mapping (RTE) 951
keyboard shortcut

recording options 81
run-time settings 148
shortcuts list 1179

keywords, adding additional 1114

L

language encoding 1161
language for script generation 77
language headers 1164
LDAP protocol

function list 490
recording 489
via WinSock 353

libc functions, calling 395
libraries, for scripting 172

Index

1188

license information 7
Link Step Properties dialog box 615
load balancing, Oracle NCA 863
load generator name, parameter values 129
loading DLLs

globally 1155
locally 1153
overview 1153

log
setting detail level - PC 160
setting detail level - UNIX 1173

log cache size 160
Log Message dialog box 103
Log run-time settings 158
lrbin.bat utility 1096
lrc functions 439
lrd (Database) functions 330
lreal functions 1044
lrs functions 359
lrt functions 1022

M

Mailing Services protocols
IMAP 1000
MAPI 1002
POP3 1004
recording 998
SMTP 1005

mandatory properties, configuring 815
MAPI

working with functions 1002
mapping keyboard 951
MatchCase property 607
maximum length of HTML parameters 667
Media Player 1045
Medium event recording configuration level

821
memory allocation for DOM 581
messages

function list 36
sending to output 101

META refresh 581
methods, Java 403
Microsoft .NET Vuser scripts

developing 495

getting started 497
Miscellaneous run-time settings 166
mkdbtmpl script (UNIX) 1168
MMS functions (MS Media Player) 1045
modifying Web scripts

image steps 617
rendezvous points 631
submit data steps 623
submit form steps 619
think time 632
transactions 630
URL steps 613

MS
Exchange protocol (MAPI) 1002
SQL Server, recording on 321

MS Query 127
MTS components 435
multi action 56
multi protocol 56
multilingual support 1157–1166

parameter files 1159
multithreading 170

N

navigating through WinSock data 366
NCA Vusers, see Oracle NCA
NET references 502
network settings 176
Network Speed, run-time setting 176
New button 955
New Virtual User dialog box

RTE 955
Nokia toolkits 1061
non-printable characters 383
non-resources 544
non-standard HTTP applications 694
NTLM authentication 72

O

ODBC recording 321
offset of data in buffer (WinSock) 380
OnFailure property, Web checks 608
online browser 189, 692
Open command 683

Index

1189

optional windows 895
optional windows (SAPGUI) 899
options

CtLib 328
lrd log 328
recording (RTE) 963

Oracle
recording 2-tier database 321
version 8.0 333

Oracle application debugging 1117
Oracle Configurator 860
Oracle NCA Vuser scripts

check connection mode 861
correlating 863
creating 841
recording guidelines 844
run-time settings 857
secure applications 860
servlet testing 860
using Vuser functions 851

Oracle Web Applications 11i Vuser scripts
about 804
advanced GUI-based options 837
functions 806
recording level 833
tips 812

OrbixWeb 474
OTA, Over-The-Air 1067
Output Message dialog box 104
Output window 411

hiding 182
Replay tab 182
RunTime Data tab 183
show/hide 191

P

Pacing settings 156
page view (Web Services) 749
page view (Web snapshots) 23
Palm

protocol 763
recording applications 774

PAP, Push Access Protocol 1067
parameter formats

adding 135

deleting 136
restoring original 136

Parameter Properties dialog box 122
parameter types

data files 120, 123
data tables 123
date/time 125
group name 127
internal data 121, 123, 124
iteration number 128
load generator name 129
random number 130
tables 120
understanding 119
unique number 131
user-defined functions 121, 123, 134
Vuser ID 133

parameterization
assigning values from files and tables

134
brace style 119, 129
COM, .NET, VB 116
creating a new parameter 116
data files 120
defining properties 122
global directory 130
internal data type formats 135
Java 117
limitations 115
modifying existing parameters 146
naming a parameter 117
overview 114
parameter list 127
random sequence with seed 135
restoring original value 126
setting properties for data files 130
setting properties for tables 132
tables 120
Tuxedo scripts 1029
undoing (Web) 126
updating parameter values 136
updating with unique values 135
user-defined functions 121
using internal data 121, 124
using user-defined functions 134
UTF-8 encoded 1159

Index

1190

Parameterization Options 129
parameterization, replacing long string 79
parameters

creating in Script view 116
creating in Tree view 117
creating using Parameter List 128
deleting 128
modifying 127

Password Encoder dialog box 110
password, encoding 110
pausing a Vuser 182
PeopleSoft Enterprise Vuser scripts

about 804
advanced GUI-based options 837
functions 806
recording level 833
tips 812

PeopleSoft-Tuxedo Vusers 1019
running 1132

Performance Center
connecting to 216
managing Vuser scripts 215

persistent connections, Web 579
phone, recording over 1064
POP3 (Post Office) protocol 1004
Port Mapping settings 84
PPG, Push Proxy Gateway 1067
Pragma mode 857
Preferences run-time settings 576
Print dialog box (Web reports) 683
printing Results Summary reports 683
programming

in Visual Studio 1091
using templates 1092, 1168
Vuser actions 1169

properties
AssignToParam (Web) 607
Expect (Web) 608
Frame (Web) 607
MatchCase (Web) 607
OnFailure (Web) 608
Repeat (Web) 608
Report (Web) 608
text checks 607

properties of parameters
defining 122

defining for data files 130
defining for tables 132

protocols, list of supported 60
Proxy Authentication dialog box 536
proxy server

recording options (Web) 534
recording options (Web/WinSock)

768
run-time settings (Internet) 567

Push support 1066

Q

QC 199
Quality Center

connecting to 200
disconnecting from 202
managing scripts with 199
managing versions 206
managing Vuser scripts 199
opening a Vuser script 203
saving scripts to 205
version control for 206

R

Radius
run-time settings (WAP) 1087
support 1066

random number, parameter values 130
random parameter assignment 135
read only WinSock buffers 364
RealPlayer 1041
Record button 63
recording

status, options 829
recording at the cursor 884
recording engine 539
Recording Log tab 69
recording mode

i-mode, VoiceXML 1073
WAP 1072

recording options
Advanced (Web, Wireless) 538
Browser (Web) 548
Corba Options 256

Index

1191

Database 326
Debug (Java) 253
Internet protocols 533
Java language 241–256
keyboard shortcut 81
Port Mapping 84
Recorder (Java) 246
Recording (Web) 562
Recording Level, GUI-based 833
Recording Proxy (Web, Wireless) 534
Recording Proxy (Web/WinSock) 768
RTE 963
RTE Configuration 962
Script (FTP, COM, Mail) 78
WAP Toolkit 1075
Web 547
WinSock 356
Wireless 1071
Wireless Vusers 1071

recording Vuser scripts
Corba-Java 466
Database 325
DNS 351
FTP 485
LDAP 489
Mailing services 997
Oracle NCA 843
overview 53
proxy setting 534
Rmi-Java 475
SAPGUI 869
SAP-Web 919
Tuxedo 1019
Web/WinSock 763
Window Sockets 353
Wireless 1057

recovery of lost scripts 15
regenerating Vusers

all protocols 74
regression testing, WSDL 743
rendezvous

Rendezvous dialog box 99
rendezvous points

Java Vusers 410
modifying in Web scripts 631

rendezvous points, inserting 99

Repeat property, Web Vusers 608
Replace More Occurrences command 125
Replay tab, General Options dialog box 180
Report property, Web checks 608
Report toolbar 679
report tree, Results Summary (Web) 679
resources, excluding 544
restoring original value of parameter 126
Results Summary report 677

debugging Web scripts 677
filtering information 681
opening 682
printing 683
searching 682
tree branches 679
understanding 679
Web Services Vusers 759

return codes
database 341

RMI-Java Vuser scripts
correlation options 251
debug options 253
Recorder options 246
recording 477
recording over IIOP 476
serialization options 250

row count, obtaining 1125
row information, Database Vusers 339
RTE Vuser scripts

getting started 947
introducing 946
mapping PC keyboard 951
overview 945
reading text from screen 991
recording 953
run-time settings 974
steps in creating 947
synchronizing 979
using te functions 949

rules
adding from Correlation tab 657
advanced correlation 642
creating from correlation results 652
defining for correlation 643
testing in correlation 646

Run command 181

Index

1192

Run Logic run-time settings 149
run_db_vuser shell script 192
running Vuser scripts

animated mode 179
step by step 184
using VuGen 177

run-time settings
Additional Attributes 165
all protocols 147
Bearers node (WAP) 1085
Browser Emulation node 572
Client Emulation (Oracle NCA) 857
Client Emulation (Web Services) 742
configuring manually 1171
ContentCheck node (Web) 587
debug information (WAP) 584
dialog box 148
Gateway node (WAP) 1080
Internet protocols (Web etc.) 565
Java 271–274
keyboard shortcut 148
Log node 158
Miscellaneous 166
NET references 502
network 175
Oracle NCA 857
Pacing node 156
Preferences - Advanced 577
Preferences (Internet prtcls) 576
Proxy (Internet prtcls) 567
Radius (WAP) 1087
RTE 974
Run Logic 149
shortcuts 148
Speed Simulation 176
Think Time 163
VBA (Visual Basic Apps) 172
WAP 1079

run-time viewer
display options 181
enabling in VuGen 189
tips for using in VuGen 692

S

S_SSA_ID table 1131

safearray log (COM) 438
SAPGUI Vuser scripts

auto logon recording options 888
code generation recording options

887
function list 903
general recording options 886
inserting steps 889
recording 869
recording at the cursor 884
run-time settings 899
setting recording options 886
snapshots 889
using sapgui functions 903

SAPGUI/SAP-Web dual protocol 869
SAP-Web Vuser scripts

recording 919
recording options 922
run-time settings 925

Scan for Correlations command
Database Vusers 346

scenario
create from VuGen 196
integrating Vuser scripts into 195

Script Generator, See VuGen
Search and Replace dialog box 125
searching for text on screen (RTE) 992
sections of a Vuser script 54
secure WAP 1072
SED utility 518
Select or Create Parameter dialog box 116
Select Results Directory dialog box 180
sequential parameter assignment 134
serialization (Java correlation) 264
Serialization options 251
server response view 749
Service Step Properties dialog box 633
Service steps

modifying in tree view (Web) 633
session step

integrating Vuser scripts into 195
settings, See run-time settings
Shift Japan Industry Standard (SIJS) 561
show function 38
show function syntax 39

Index

1193

Siebel
base 36 key values 1131
scripting tips for 2-tier 1128

Siebel correlation library 929
Siebel-Web

correlating 638, 929
recording 928
troubleshooting 938

SMS - Short Message Service 1085
SMTP protocol 1005
snapshots

Citrix Vusers 295
generate on error 167
in Web Services scripts 749
SAPGUI Vusers 889
save replay snapshot locally 578
saving in Citrix recording 286
Web page 20
Winsock buffer 364
XML Vusers 670

Solaris
ASCII translations 357

Speed Simulation settings 176
split actions 78
SQL statement 128
standard event-recording configuration

821–822
standard log option 160
Start Recording dialog box 63
Start Transaction dialog box 97
Step button 184
stopping a Vuser 182
streaming data protocols

mms functions 1045
RealPlayer functions 1044
recording 1042

strings, replacing long with parameter 79
Submit Data step

defined 529
dialog box (Web) 624
modifying-Web 623

Submit Form step
defined 529
dialog box 620
modifying 619

suffix values in Siebel 1128

Support Information xxiii
Support Online xxiii
SWECount, correlating 937
synchronization functions

generating for Citrix text 287
synchronizing Vuser scripts

block-mode (IBM) terminals 981
character-mode (VT) terminals 984
overview 107
overview (RTE) 979
waiting for terminal to be silent 988
waiting for text to appear (RTE) 986
waiting for the cursor to appear 984

syntax, show for function 39
system variables

RTE 986
Tuxedo 1031

T

table icon 119
tables

used for parameterization 120
Tasks pane 42
te (RTE) functions 949
TE system variables 986
template

creating new 61
Java Vuser 403
programming in "C" 1092, 1159, 1168

Terminal Emulation 953
Terminal Services

Citrix Vusers 307
Terminal Setup dialog box 957
test results

Web Services Vusers 759
Web Vusers 679

TestDirector, see Quality Center 199
text

comparing in snapshots (Web) 696
reading text from screen (RTE) 992
searching for text on screen (RTE) 992

text checks
defined 595
defining additional properties 607
flags 603

Index

1194

text synchronization, Citrix 287
text view (WinSock) 364
think time

defined 163
dialog box (Web treeview) 632
function (C) 36
function (Java) 408
inserting 107
modifying in Web scripts 632
recommended ratio for Siebel 941
run-time settings 163
threshold, Database 327
threshold, WinSock 359

Think Time dialog box 107
thread, main (Java programming) 419
thread-safe code 418
threshold for setTimeout, setInterval 581
thumbnails

annotating 27
in workflow wizard 26
renaming 27
viewing 24

Tile windows 191
timeouts

Citrix connection 294
HTTP request 580
WAP connection 580

timestamp (Database) 328
tips

Database related 1123
Siebel specific 1128

Token Substitution Testpad dialog box 646
token, parameterizing 640
traffic forwarding 87
Transaction Editor 26, 46
transactions

automatic, for LRD functions 326
automatic, for Web Vuser scripts 171
breakdown limitation for Oracle DB

55
editor 46
functions for 33
in output log 182
inserting 96
modifying in Web scripts 630
nested 50, 98

Web Vusers 171
wizard workflow 46

Translation table settings 357
translation, ASCII on UNIX 357
trapping 770
treeview

all Vusers 19
inserting steps 19

troubleshooting
2-tier database 1123
Oracle applications 1117
Siebel Vusers 1128
VuGen 1113
Web Vuser scripts 685

TUXDIR environment setting 1031
Tuxedo Vuser scripts 1019

data buffers 1030
environment settings 1031
log file 1029
running 1029
system variables 1031
Tuxedo 6, 7 1019
understanding 1027
using lrt (Tuxedo) functions 1022
versions 1032
viewing data files 1029

typing style (RTE Vusers) 968

U

undo buffer, emptying (WinSock) 371
Undo Parameter command 126
unique column name 1128
unique number, parameter values 131
unique value parameter assignment 135
UNIX

command line 192
update methods, in parameterization 136
uploading

required VuGen version 218
scripts to Performance Center 218

URL Step Properties dialog box
Web 614

URL steps
defined (Web Vusers) 528
modifying 613

Index

1195

URL-based mode 549
Use Existing Parameter command 124
user-agent browser emulation 573
user-defined function parameters 121
user-defined functions, parameterization

134
UTF-8 conversion

recording option 539
setting 1161

V

validating
wsdl files 729

validation
wizard step 718

validation reports
ws-i 736

validation, WSDL documents 735
validation, WS-I compliance 736
VB Vusers 398
VBA references 172
VBA run-time setting 172
VBScript Vusers 399
verification checks

RTE 991
sapgui 895
Web 577

verify_generator 192
version control 206

checking tests in to 209
version history 211
Virtual User Generator, See VuGen
virtual users, defined 4
Visigenic 474
Visual Basic

scripting option 78
Vuser scripts 1091

Visual C, using Visual Studio 1091
Visual Log options (Web) 181
Visual Studio 1091
VM (virtual machine) 243
VoiceXML

overview 1054

VuGen
environment options 15
introducing 13
recording Vuser scripts 53
running Vuser scripts 29
starting 14
toolbar 66

Vuser functions
automatic word completion 38
ctrx (Citrix) 303
DNS 352
external, user defined 1153
FTP 486
general (C) 30
imap 1000
Java 406
list of C functions 33
lr (C functions) 30
lrc (COM) 442
lrd (Database) 330
lreal 1044
lrs (WinSock) 359
lrt (Tuxedo) 1022
mapi 1002
mms (MS Media Player) 1045
Oracle NCA 851
pop3 1004
sapgui (SAP) 903
smtp 1005
syntax 39
te (RTE) 949
Web Services 757
See Also Online Function Reference

Vuser Generator, See VuGen
Vuser ID, parameter values 133
Vuser information, obtaining 101
Vuser information, obtaining (Java) 411
Vuser scripts

adding functions 93
C support 395
comments, inserting 100
creating on UNIX 1167–1177
custom 391
debugging features 184
enhancing 93
importing from zip 62

Index

1196

Java language recording 229
opening 62
parameterizing 113
Performance Center

upload/download 215
programming 391, 1167–1177
Quality Center integration 199
regenerating 74
rendezvous points 99
running 177
running from command prompt 191
run-time settings 147
run-time settings-Java 271–274
scenario integration 195
sections 54
selecting generation language 77
session step integration 195
streaming data 1041
transactions 96
types See Vuser types
UNIX, compiling on 1176
UNIX, running on 192
uploading to Performance Center 218
version history 211
viewing 17
working from zip 62

Vuser types
COM 442
Corba-Java 465
EJB testing 779
Jacada 1009
Java (programming) 401
list of 6
list of (popup descriptions) 60
Media Player 1041
Real Player 1041

vuser_init, vuser_end sections 54
Vusers

introducing 4

W

waiting, for terminal to stabilize(RTE) 988
WAP Vuser scripts 1063–1069

bearer settings 1085
debug information 584

introducing 1063
run-time settings 1079
specifying what to record 1072
Toolkit 1075
understanding 1063

Wdiff 144
Web correlation 635
Web Event Recording Configuration dialog

box 822
Web functions, using 522
Web Gui-level scripts 803
Web performance graphs

generating for Web Vusers 577
Web Services

testing challenges 703
Web Services Vuser scripts

developing 709
functions 757
IDE integration 739
importing WSDL 717
parameterizing 755
recording 714
reporting tool 759
running 741
run-time settings 742
snapshots 749
testing 697
web_service_call 754
XML tree query 752

Web to Java converter 518
Web trapping 770
Web Trapping tab 771
Web Vuser scripts

adding steps 611
advanced tips 685
checks 593
content filtering 542
correlating 638
custom headers 540
custom request steps 627
debugging features, enabling 190
debugging tools 189
deleting steps 612
functions 519
image checks 604
Internet recording options 533

Index

1197

introducing 511
modifying 609
proxy settings 534
recording options 547
Results Summary report 677
run-time settings 175, 565
run-time viewer 189
sections 516
setting Visual Log options 189
specifying a browser for recording 548
understanding 513
verifying text and images 593
Visual Log options 181

Web/WinSock Vuser scripts 763
getting started 765
proxy settings 768
recording 772
Web trapping options 770

web_set_user function generation 72
Web-event-recording configuration

820–833
customizing 823–833
standard 821–822

window names, Citrix 286
Windows Sockets Vuser scripts

data buffers 376
data files 378
excluding sockets 358
getting started 354
recording 353
script and tree view 354
using lrs functions 359
viewing data files 376
working with data 363

WinInet engine (Internet protocols) 577
WinSock recording options 356
VoiceXML Vusers

See Wireless Vuser scripts
WAP Vuser scripts

See Also Wireless Vuser scripts
Wireless Vuser scripts

custom headers 540
getting started 1058
Internet recording options 533
introducing 1049
proxy settings 534

recording 1057
recording options 1071
understanding 1049
WAP toolkit 1075

wizard, workflow 41
word completion 38
workflow wizard 41
working copy, WSDL 718
WSDL documents

comparing 735, 743, 744
importing 717
management 728
overview 700
properties, setting 749
regression testing 743
tree view 749
validating 735
WS-I validation 736

WSP
recording options 1072
running mode 1080
session-recording over a phone 1064

WSxxx Tuxedo variables 1031

X

XML
attributes, working with 1105
custom requests 672
editing tree in Web Services 738
testing 669

XML API
programming with 1097

XP window style, Citrix 284
X-SYSTEM message (RTE) 981

Z

zip file
exporting to 68
using 70
working from 62

zlib headers 581

Index

1198

	Mercury Virtual User Generator
	Table of Contents
	Welcome to the Mercury Virtual User Generator
	Online Resources
	Documentation Sets
	Using the LoadRunner Documentation Set
	Documentation Updates
	Typographical Conventions

	Introducing Vuser Scripts
	Developing Vuser Scripts
	Introducing Vusers
	Looking at Vuser Types
	The Steps of Creating Vuser Scripts
	Using this Guide

	Working with VuGen
	Introducing VuGen
	About VuGen
	Starting VuGen
	Understanding the VuGen Environment Options
	Setting the Environment Options
	Viewing and Modifying Vuser Scripts
	Running Vuser Scripts with VuGen
	Understanding VuGen Code
	Using C Vuser Functions
	Getting Help on Functions

	Using the Workflow Wizard
	About the Workflow Wizard
	Viewing the Task Pane
	Recording Steps
	Verifying the Script
	Enhancing the Script
	Prepare for Load
	Finishing Your Script

	Recording with VuGen
	About Recording with VuGen
	Vuser Script Sections
	Creating New Virtual User Scripts
	Adding and Removing Protocols
	Choosing a Virtual User Category
	Creating a New Script
	Opening an Existing Script
	Recording Your Application
	Ending and Saving a Recording Session
	Viewing the Recording Logs
	Using Zip Files
	Importing Actions
	Providing Authentication Information
	Regenerating a Vuser Script

	Setting Script Generation Preferences
	About Setting Script Generation Preferences
	Selecting a Script Language
	Applying the Basic Options
	Understanding the Correlation Options
	Setting Script Recording Options

	Configuring the Port Mappings
	About Configuring the Port Mappings
	Defining Port Mappings
	Adding a New Server Entry
	Setting the Auto-Detection Options
	Setting the Port Mapping Recording Options

	Enhancing Vuser Scripts
	About Enhancing Vuser Scripts
	Inserting Transactions into a Vuser Script
	Inserting Rendezvous Points (LoadRunner and Tuning only)
	Inserting Comments into a Vuser Script
	Obtaining Vuser Information
	Sending Messages to Output
	Handling Errors in Vuser Scripts During Execution
	Synchronizing Vuser Scripts
	Emulating User Think Time
	Handling Command Line Arguments
	Encrypting Text
	Encoding Passwords Manually
	Adding Files to the Script Folder

	Working with VuGen Parameters
	About VuGen Parameters
	Understanding Parameter Limitations
	Creating Parameters
	Understanding Parameter Types
	Defining Parameter Properties
	Using Existing Parameters
	Using the Parameter List
	Setting Parameterization Options

	File and Table Type Parameters
	Selecting or Creating Data Files or Data Tables
	Setting Properties for File Type Parameters
	Setting Properties for Table Type Parameters
	Choosing Data Assignment Methods for File/Table Type Parameters

	Setting Parameter Properties
	About Setting Parameter Properties
	Setting Properties for Internal Data Parameter Types
	Setting Properties for User-Defined Functions
	Customizing Parameter Formats
	Selecting an Update Method

	Correlating Statements
	About Correlating Statements
	Using Correlation Functions for C Vusers
	Using Correlation Functions for Java Vusers
	Comparing Vuser Scripts using WDiff
	Modifying Saved Parameters

	Configuring Run-Time Settings
	About Run-Time Settings
	Configuring Run Logic Run-Time Settings (multi-action)
	Pacing Run-Time Settings
	Configuring Pacing Run-Time Settings (multi-action)
	Setting Pacing and Run Logic Options (single action)
	Configuring the Log Run-Time Settings
	Configuring the Think Time Settings
	Configuring Additional Attributes Run-Time Settings
	Configuring Miscellaneous Run-Time Settings
	Setting the VB Run-Time Settings

	Configuring Network Run-Time Settings
	About Network Run-Time Settings
	Setting the Network Speed

	Running Vuser Scripts in Standalone Mode
	About Running Vuser Scripts in Standalone Mode
	Running a Vuser Script in VuGen
	Replaying a Vuser Script
	Using VuGen’s Debugging Features
	Using VuGen’s Debugging Features for Web Vuser Scripts
	Working with VuGen Windows
	Running a Vuser Script from a Command Prompt
	Running a Vuser Script from a UNIX Command Line
	Integrating Scripts into Tests

	Managing Scripts Using Quality Center
	About Managing Scripts Using Quality Center
	Connecting to and Disconnecting from Quality Center
	Opening Scripts from a Quality Center Project
	Saving Scripts to a Quality Center Project
	Managing Script Versions in VuGen

	Managing Scripts with Performance Center
	About Managing Scripts with Performance Center
	Connecting VuGen to Performance Center
	Uploading Vuser Scripts
	Downloading Vuser Scripts

	Working with Java Language Protocols
	Recording Java Language Vuser Scripts
	About Recording Java Language Vuser Scripts
	Getting Started with Recording
	Understanding Java Language Vuser Scripts
	Running a Script as Part of a Package
	Viewing the Java Methods
	Manually Inserting Java Methods
	Configuring Script Generation Settings

	Setting Java Recording Options
	About Setting Java Recording Options
	Java Virtual Machine (JVM) Recording Options
	Setting Classpath Recording Options
	Recorder Options
	Serialization Options
	Correlation Options
	Debug Options
	CORBA Options

	Correlating Java Scripts
	About Correlating Java Scripts
	Standard Correlation
	Advanced Correlation
	String Correlation
	Using the Serialization Mechanism

	Configuring Java Run-Time Settings
	About Configuring Java Run-Time Settings
	Specifying the JVM Run-Time Settings
	Setting the Run-Time Classpath Options

	Application Deployment Solution Protocols
	Creating Citrix Vuser Scripts
	About Creating Citrix Vuser Scripts
	Getting Started with Citrix Vuser Scripts
	Setting Up the Client and Server
	Recording Tips
	Understanding Citrix Recording Options
	Setting the Citrix Recording Options
	Setting the Citrix Display Settings
	Setting the Citrix Run-Time Settings
	Viewing and Modifying Citrix Vuser Scripts
	Synchronizing Replay
	Understanding ICA Files
	Using Citrix Functions
	Tips for Replaying and Troubleshooting Citrix Vuser Scripts

	Using the LoadRunner Citrix Agent
	About the LoadRunner Citrix Agent
	Benefitting From the Citrix Agent
	Installation
	Effects and Memory Requirements of the Citrix Agent
	Sample Script

	Client Server Protocols
	Developing Database Vuser Scripts
	About Developing Database Vuser Scripts
	Introducing Database Vusers
	Understanding Database Vuser Technology
	Getting Started with Database Vuser Scripts
	Setting Database Recording Options
	Database Advanced Recording Options
	Using LRD Functions
	Understanding Database Vuser Scripts
	Evaluating Error Codes
	Handling Errors

	Correlating Database Vuser Scripts
	About Correlating Database Vuser Scripts
	Scanning a Script for Correlations
	Correlating a Known Value
	Database Correlation Functions

	Developing DNS Vuser Scripts
	About Developing DNS Vuser Scripts
	Working with DNS Functions

	Developing WinSock Vuser Scripts
	About Recording Windows Sockets Vuser Scripts
	Getting Started with Windows Sockets Vuser Scripts
	Setting the WinSock Recording Options
	Using LRS Functions

	Working with Windows Socket Data
	About Working with Windows Socket Data
	Viewing Data in the Snapshot Window
	Navigating Through the Data
	Modifying Buffer Data
	Modifying Buffer Names
	Viewing Windows Socket Data in Script View
	Understanding the Data File Format
	Viewing Buffer Data in Hexadecimal format
	Setting the Display Format
	Debugging Tips
	Manually Correlating WinSock Scripts

	Custom Vuser Scripts
	Creating Custom Vuser Scripts
	About Creating Custom Vuser Scripts
	C Vusers
	Using the Workflow Wizard for C Vuser Scripts
	Java Vusers
	VB Vusers
	VBScript Vusers
	JavaScript Vusers

	Programming Java Scripts
	About Programming Java Scripts
	Creating a Java Vuser
	Editing a Java Vuser Script
	Java Vuser API Functions
	Working with Java Vuser Functions
	Setting your Java Environment
	Running Java Vuser Scripts
	Compiling and Running a Script as Part of a Package
	Programming Tips

	Distributed Component Protocols
	Recording COM Vuser Scripts
	About Recording COM Vuser Scripts
	COM Overview
	Getting Started with COM Vusers
	Selecting COM Objects to Record
	Setting COM Recording Options

	Understanding COM Vuser Scripts
	About COM Vuser Scripts
	Understanding VuGen COM Script Structure
	Examining Sample VuGen COM Scripts
	Scanning a Script for Correlations
	Correlating a Known Value

	Understanding COM Vuser Functions
	About COM Vuser Functions
	Creating Instances
	IDispatch Interface Invoke Method
	Type Assignment Functions
	Variant Types
	Assignment from Reference to Variant
	Parameterization Functions
	Extraction from Variants
	Assignment of Arrays to Variants
	Array Types and Functions
	Byte Array Functions
	ADO RecordSet Functions
	Debug Functions
	VB Collection Support

	Developing Corba-Java Vuser Scripts
	About Developing Corba-Java Vuser Scripts
	Recording a Corba-Java Vuser
	Working with Corba-Java Vuser Scripts
	Recording on Windows XP and Windows 2000 Servers
	Application Specific Tips

	Developing RMI-Java Vuser Scripts
	About Developing RMI-Java Vuser Scripts
	Recording RMI over IIOP
	Recording an RMI Vuser
	Working with RMI Vuser Scripts

	E-Business Protocols
	Developing FTP Vuser Scripts
	About Developing FTP Vuser Scripts
	Working with FTP Functions

	Developing LDAP Vuser Scripts
	About Developing LDAP Vuser Scripts
	Working with LDAP Functions
	Defining Distinguished Name Entries

	Recording Microsoft .NET Vuser Scripts
	About Recording Microsoft .NET Vuser Scripts
	Getting Started with Microsoft .NET Vusers
	Setting Microsoft .NET Recording Options
	Viewing Scripts in VuGen and Visual Studio
	Adding .NET References in the Run-Time Settings
	Viewing Data Sets and Grids
	Troubleshooting Your Script
	Correlating Microsoft .NET Scripts

	Creating Web Vuser Scripts
	About Developing Web Vuser Scripts
	Introducing Web Vusers
	Understanding Web Vuser Technology
	Getting Started with Web Vuser Scripts
	Recording a Web Session
	Converting Web Vuser Scripts into Java

	Using Web Vuser Functions
	About Web Vuser Functions
	Adding and Editing Functions
	Web Function List
	Improving Performance Using Caching

	Setting Recording Options for Internet Protocols
	About Setting Recording Options for Internet Protocols
	Working with Proxy Settings
	Setting Advanced Recording Options
	Setting a Recording Scheme

	Setting Recording Options for Web Vusers
	About Setting Recording Options
	Specifying which Browser to Use for Recording
	Selecting a Recording Level

	Configuring Internet Run-Time Settings
	About Internet Run-Time Settings
	Setting Proxy Options
	Setting Browser Emulation Properties
	Setting Internet Preferences
	Filtering Web Sites
	Obtaining Debug Information
	Performing HTML Compression

	Checking Web Page Content
	About Checking Web Page Content
	Setting the ContentCheck Run-Time Settings

	Verifying Web Pages Under Load
	About Verification Under Load
	Adding a Text Check
	Understanding Text Check Functions
	Adding an Image Check
	Defining Additional Properties

	Modifying Web and Wireless Vuser Scripts
	About Modifying Web and Wireless Vuser Scripts
	Adding a Step to a Vuser Script
	Deleting Steps from a Vuser Script
	Modifying Action Steps
	Modifying Control Steps
	Modifying Service Steps
	Modifying Web Checks (Web only)

	Setting Correlation Rules for Web Vuser Scripts
	About Correlating Statements
	Understanding the Correlation Methods
	Using VuGen’s Correlation Rules
	Setting Correlation Rules
	Testing Rules
	Setting the Correlation Recording Options

	Correlating Vuser Scripts After Recording
	About Correlating with Snapshots
	Viewing the Correlation Results Tab
	Setting Up VuGen for Correlations
	Performing a Scan for Correlations
	Performing Manual Correlation
	Defining a Dynamic String’s Boundaries

	Testing XML Pages
	About Testing XML Pages
	Viewing XML as URL Steps
	Inserting XML as a Custom Request
	Viewing XML Custom Request Steps

	Using Reports to Debug Vuser Scripts
	About Using Reports to Debug Vuser Scripts
	Understanding the Results Summary Report
	Filtering Report Information
	Searching Your Results
	Managing Execution Results

	Power User Tips for Web Vusers
	Security Issues
	Handling Cookies
	The Run-Time Viewer (Online Browser)
	Browsers
	Configuration and Compatibility Issues

	Planning Web Service Tests
	About Planning Web Service Tests
	Implementing a Web Service
	Challenges in Web Services Testing
	Choosing a Web Services Script Type
	Performing a Load Test
	Client Emulation

	Developing Web Services Vusers
	About Web Services
	Getting Started with Web Services in VuGen
	Using the Workflow Wizard for Web Services Scripts
	Creating a New Web Services Script
	Recording a Web Services Script
	Scanning WSDL Documents
	Managing WSDL Documents
	Setting WSDL Validation and Comparison Options
	Editing an XML Tree
	IDE Integration

	Running Web Services Vusers
	About Running Web Services Vusers
	Setting Web Service Run-Time Settings
	Comparing WSDL Files
	Comparing XML Files
	Setting Scanned WSDL Properties
	Viewing Web Services Script Snapshots
	Using Web Services Functions
	Viewing Web Services Reports

	Recording Web/WinSock Vuser Scripts
	About Recording Web/WinSock Vuser Scripts
	Getting Started with Web/WinSock Vuser Scripts
	Setting Browser and Proxy Recording Options
	Setting Web Trapping Recording Options
	Recording a Web/WinSock Session
	Recording Palm Applications

	Enterprise Java Bean Protocols
	Performing EJB Testing
	About EJB Testing
	Working with the EJB Detector
	Creating an EJB Testing Vuser
	Setting EJB Recording Options
	Understanding EJB Vuser Scripts
	Running EJB Vuser Scripts

	ERP/CRM Protocols
	Developing Web GUI-Level Scripts
	About Developing Web GUI-Level Scripts
	Getting Started with Web GUI-Level Vusers
	Using GUI-Level Vuser Functions
	Understanding GUI-level Vuser Scripts
	Tips for Working with the GUI-Level Vusers

	Setting Web GUI Recording Options
	About Setting Web GUI Recording Options
	Configuring Object Identification
	Configuring Web Event Recording
	Selecting a Recording Level for GUI-Level Vusers

	Creating Oracle NCA Vuser Scripts
	About Creating Oracle NCA Vuser Scripts
	Getting Started with Oracle NCA Vusers
	Recording Guidelines
	Enabling the Recording of Objects by Name
	Oracle Applications via the Personal Home Page
	Using Oracle NCA Vuser Functions
	Understanding Oracle NCA Vusers
	Configuring the Run-Time Settings
	Testing Oracle NCA Applications
	Correlating Oracle NCA Statements for Load Balancing
	Additional Recommended Correlations
	Recording in Pragma Mode

	Developing SAPGUI Vuser Scripts
	About Developing SAPGUI Vuser Scripts
	Checking your Environment for SAPGUI Vusers
	Creating a SAPGUI Vuser Script
	Recording a SAPGUI Vuser Script
	Setting the SAPGUI Recording Options
	Inserting Steps Interactively into a SAPGUI Script
	Understanding a SAPGUI Vuser Script
	Enhancing a SAPGUI Vuser Script
	Replaying SAPGUI Optional Windows
	Setting SAPGUI Run-Time Settings
	SAPGUI Functions
	Tips for SAPGUI Vuser Scripts
	Troubleshooting SAPGUI Vuser Scripts
	Additional Resources

	Developing SAP-Web Vuser Scripts
	About Developing SAP-Web Vuser Scripts
	Creating a SAP-Web Vuser Script
	Setting SAP-Web Recording Options
	Understanding a SAP-Web Vuser Script
	Replaying a SAP-Web Vuser Script

	Developing Siebel-Web Vuser Scripts
	About Developing Siebel-Web Vuser Scripts
	Recording a Siebel-Web Session
	Correlating Siebel-Web Scripts
	Correlating SWECount, ROWID, and SWET Parameters
	Troubleshooting Siebel-Web Vuser Scripts

	Legacy Protocols
	Introducing RTE Vuser Scripts
	About Developing RTE Vuser Scripts
	Introducing RTE Vusers
	Understanding RTE Vuser Technology
	Getting Started with RTE Vuser Scripts
	Using TE Functions
	Mapping Terminal Keys to PC Keyboard Keys

	Recording RTE Vuser Scripts
	About Recording RTE Vuser Scripts
	Creating a New RTE Vuser Script
	Recording the Terminal Setup and Connection Procedure
	Recording Typical User Actions
	Recording the Log Off Procedure
	Setting RTE Configuration Options
	Setting the RTE Recording Options
	Typing Input into a Terminal Emulator
	Generating Unique Device Names
	Setting the Field Demarcation Characters

	Configuring RTE Run-Time Settings
	About Terminal Emulator Run-Time Settings
	Modifying Connection Attempts
	Specifying an Original Device Name
	Setting the Typing Delay
	Configuring the X-System Synchronization

	Synchronizing RTE Vuser Scripts
	About Synchronizing Vuser Scripts
	Synchronizing Block-Mode (IBM) Terminals
	Synchronizing Character-Mode (VT) Terminals

	Reading Text from the Terminal Screen
	About Reading Text from the Terminal Screen
	Reading Text from the Screen

	Mailing Services Protocols
	Developing Vuser Scripts for Mailing Services
	About Developing Vuser Scripts for Mailing Services
	Getting Started with Mailing Services Vuser Scripts
	Working with IMAP Functions
	Working with MAPI Functions
	Working with POP3 Functions
	Working with SMTP Functions

	Middleware Protocols
	Developing Jacada Vuser Scripts
	About Jacada Vuser Scripts
	Getting Started with Jacada Vusers
	Recording a Jacada Vuser
	Replaying a Jacada Vuser
	Understanding Jacada Vuser Scripts
	Working with Jacada Vuser Scripts

	Developing Tuxedo Vuser Scripts
	About Tuxedo Vuser Scripts
	Getting Started with Tuxedo Vuser Scripts
	Using LRT Functions
	Understanding Tuxedo Vuser Scripts
	Viewing Tuxedo Buffer Data
	Defining Environment Settings for Tuxedo Vusers
	Debugging Tuxedo Applications
	Correlating Tuxedo Scripts

	Streaming Data Protocols
	Developing Streaming Data Vuser Scripts
	About Recording Streaming Data Virtual User Scripts
	Getting Started with Streaming Data Vuser Scripts
	Using RealPlayer LREAL Functions
	Using Media Player MMS Functions

	Wireless Protocols
	Introducing Wireless Vusers
	About Wireless Vusers
	Understanding the WAP Protocol
	Understanding the i-mode System
	i-mode versus WAP
	Understanding VoiceXML

	Recording Wireless Vuser Scripts
	About Recording Wireless Vuser Scripts
	Getting Started with Wireless Vuser Scripts
	Using Wireless Vuser Functions
	Troubleshooting Wireless Vuser Scripts

	Working with WAP Vuser Scripts
	About WAP Vusers
	Recording Over a Phone
	Bearers Support
	RADIUS Support
	Push Support
	VuGen Push Support

	Setting Wireless Vuser Recording Options
	About Setting Wireless Recording Options
	Specifying the Recording Mode (WAP only)
	Specifying the Information to Record (i-mode and VoiceXML)
	Specifying a Toolkit

	Configuring WAP Run-Time Settings
	About WAP Run-Time Settings
	Configuring Gateway Options
	Configuring Bearer Information
	Configuring RADIUS Connection Data

	Information for Advanced Users
	Creating Vuser Scripts in Visual Studio
	About Creating Vuser Scripts in Visual Studio
	Creating a Vuser Script with Visual C
	Creating a Vuser Script with Visual Basic
	Configuring Runtime Settings and Parameters

	Programming with the XML API
	About Programming with the XML API
	Understanding XML Documents
	Using XML Functions
	Specifying XML Function Parameters
	Working with XML Attributes
	Structuring an XML Script
	Enhancing a Recorded Session

	VuGen Debugging Tips
	General Debugging Tip
	Using C Functions for Tracing
	Adding Additional C Language Keywords
	Examining Replay Output
	Debugging Database Applications
	Working with Oracle Applications
	Solving Common Problems with Oracle 2-Tier Vusers
	Two-tier Database Scripting Tips
	Running PeopleSoft-Tuxedo Scripts

	Advanced Topics
	Files Generated During Recording
	Files Generated During Replay
	Running a Vuser from the Unix Command Line
	Specifying the Vuser Behavior
	Command Line Parameters
	Recording OLE Servers
	Examining the .dat Files
	Adding a New Vuser Type

	Appendixes
	Calling External Functions
	Loading a DLL-Locally
	Loading a DLL-Globally

	Working with Foreign Languages
	About Working with Foreign Languages
	Manually Converting String Encoding
	Converting String Encoding In Parameter Files
	Setting the String Encoding for Web Record and Replay
	Specifying a Language for the Accept-Language Header
	Protocol Limitations
	Quality Center Integration

	Programming Scripts on UNIX Platforms
	About Programming Vuser Scripts to Run on UNIX Platforms
	Generating Templates
	Programming Vuser Actions
	Configuring Vuser Run-Time Settings
	Defining Transactions and Rendezvous Points
	Compiling Scripts

	Using Keyboard Shortcuts

	Index

