

Mercury WinRunner
Basic Features User’s Guide

Version 8.2

Mercury WinRunner Basic Features User’s Guide, Version 8.2

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1993 - 2005 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

WRUG8.2/01

iii

Multi-Volume Chapter Summary

WinRunner user documentation is divided into two volumes:

➤ The Mercury WinRunner Basic Features User’s Guide introduces WinRunner
and describes its features and automated testing procedures.

➤ The Mercury WinRunner Advanced Features User’s Guide describes
WinRunner’s advanced features, introduces Mercury’s Test Script Language
(TSL), and provides advanced configuration options. It also describes how to
work with other Mercury products.

A summary of the various chapters in each guide is provided below:

Mercury WinRunner Basic Features User’s Guide

PART I: STARTING THE TESTING PROCESS

Chapter 1: Introduction ..3

Chapter 2: WinRunner at a Glance ...11

PART I I : INTRODUCING THE GUI MAP

Chapter 3: Understanding How WinRunner Identifies GUI Objects ..25

Chapter 4: Understanding Basic GUI Map Concepts33

Chapter 5: Working in the Global GUI Map File Mode45

Chapter 6: Working in the GUI Map File per Test Mode65

Chapter 7: Editing the GUI Map ...71

Multi-Volume Chapter Summary

iv

PART III: CREATING TESTS—BASIC

Chapter 8: Designing Tests ...93

Chapter 9: Checking GUI Objects ...127

Chapter 10: Working with Web Objects...175

Chapter 11: Working with ActiveX and Visual Basic Controls217

Chapter 12: Checking PowerBuilder Applications............................237

Chapter 13: Checking Table Contents ..247

Chapter 14: Checking Databases ..259

Chapter 15: Checking Bitmaps ...321

Chapter 16: Checking Text ...331

Chapter 17: Checking Dates ...349

Chapter 18: Creating Data-Driven Tests...365

Chapter 19: Synchronizing the Test Run ..411

PART IV: RUNNING TESTS—BASIC

Chapter 20: Understanding Test Runs..427

Chapter 21: Analyzing Test Results ..453

PART V: CONFIGURING BASIC SETTINGS

Chapter 22: Setting Properties for a Single Test..............................509

Chapter 23: Setting Global Testing Options531

Mercury WinRunner Advanced Features User’s Guide

PART I: WORKING WITH THE GUI MAP

Chapter 1: Merging GUI Map Files ...3

Chapter 2: Configuring the GUI Map ...15

Chapter 3: Learning Virtual Objects ...37

Multi-Volume Chapter Summary

v

PART II: CREATING TESTS—ADVANCED

Chapter 4: Defining and Using Recovery Scenarios45

Chapter 5: Handling Web Exceptions...87

Chapter 6: Using Regular Expressions ..93

PART III : PROGRAMMING WITH TSL

Chapter 7: Enhancing Your Test Scripts with Programming103

Chapter 8: Generating Functions..121

Chapter 9: Calling Tests ..131

Chapter 10: Creating User-Defined Functions..................................147

Chapter 11: Employing User-Defined Functions in Tests157

Chapter 12: Calling Functions from External Libraries.....................175

Chapter 13: Creating Dialog Boxes for Interactive Input.................183

PART IV: RUNNING TESTS—ADVANCED

Chapter 14: Running Batch Tests..193

Chapter 15: Running Tests from the Command Line.......................201

PART V: DEBUGGING TESTS

Chapter 16: Controlling Your Test Run ..225

Chapter 17: Using Breakpoints ...231

Chapter 18: Monitoring Variables ..241

Multi-Volume Chapter Summary

vi

PART VI: CONFIGURING ADVANCED SETTINGS

Chapter 19: Customizing the Test Script Editor...............................251

Chapter 20: Customizing the WinRunner User Interface.................261

Chapter 21: Setting Testing Options from a Test Script285

Chapter 22: Customizing the Function Generator313

Chapter 23: Initializing Special Configurations................................329

PART VII: WORKING WITH OTHER MERCURY PRODUCTS

Chapter 24: Working with Business Process Testing........................335

Chapter 25: Integrating with QuickTest Professional371

Chapter 26: Managing the Testing Process379

Chapter 27: Testing Systems Under Load ..415

vii

Table of Contents

Multi-Volume Chapter Summary .. iii
Mercury WinRunner Basic Features User’s Guide............................... iii
Mercury WinRunner Advanced Features User’s Guide........................iv

Welcome to Mercury WinRunner ...xv
Using this Guide..xv
WinRunner Documentation Set...xvi
Online Resources ...xvii
Documentation Updates ... xviii
Typographical Conventions...xix

PART I: STARTING THE TESTING PROCESS

Chapter 1: Introduction ..3
WinRunner Testing Modes..4
The WinRunner Testing Process ...5
Sample Application ...8
Integrating with Other Mercury Interactive Products9

Chapter 2: WinRunner at a Glance ...11
Starting WinRunner ..11
The Main WinRunner Window ..14
The Test Editor Window ...16
Using WinRunner Commands..17
Loading WinRunner Add-Ins ..20

Table of Contents

viii

PART II : INTRODUCING THE GUI MAP

Chapter 3: Understanding How WinRunner Identifies GUI Objects..25
About Identifying GUI Objects ...25
How a Test Identifies GUI Objects ..27
Logical Names ...29
The GUI Map...30
Setting the Window Context ..31

Chapter 4: Understanding Basic GUI Map Concepts33
About the GUI Map...33
Viewing GUI Object Properties ...34
Teaching WinRunner the GUI of Your Application40
Finding an Object or Window in the GUI Map..................................41
General Guidelines for Working with GUI Map Files41
Deciding Which GUI Map File Mode to Use42

Chapter 5: Working in the Global GUI Map File Mode45
About the Global GUI Map File Mode ..45
Sharing a GUI Map File among Tests ..47
Teaching WinRunner the GUI of Your Application48
Saving the GUI Map ..57
Loading the GUI Map File...59
Guidelines for Working in the Global GUI Map File Mode63

Chapter 6: Working in the GUI Map File per Test Mode65
About the GUI Map File per Test Mode ..65
Specifying the GUI Map File per Test Mode67
Working in the GUI Map File per Test Mode68
Guidelines for Working in the GUI Map File per Test Mode69

Table of Contents

ix

Chapter 7: Editing the GUI Map ...71
About Editing the GUI Map ..72
The GUI Map Editor ..73
The Run Wizard...75
Modifying Logical Names and Physical Descriptions.........................77
How WinRunner Handles Varying Window Labels79
Using Regular Expressions in the Physical Description......................81
Copying and Moving Objects between Files.......................................82
Finding an Object in a GUI Map File ..84
Finding an Object in Multiple GUI Map Files85
Manually Adding an Object to a GUI Map File86
Deleting an Object from a GUI Map File ..86
Clearing a GUI Map File ..87
Filtering Displayed Objects ...88
Saving Changes to the GUI Map...89

PART III : CREATING TESTS—BASIC

Chapter 8: Designing Tests ...93
About Creating Tests ...94
Understanding the WinRunner Test Window....................................95
Planning a Test ..96
Creating Tests Using Context Sensitive Recording.............................97
Creating Tests Using Analog Recording..103
Guidelines for Recording a Test ..105
Adding Checkpoints to Your Test ...107
Working with Data-Driven Tests...107
Adding Synchronization Points to a Test ...108
Measuring Transactions ..108
Activating Test Creation Commands Using Softkeys111
Programming a Test ..114
Editing a Test ...114
Managing Test Files ...116

Table of Contents

x

Chapter 9: Checking GUI Objects ...127
About Checking GUI Objects..128
Checking a Single Property Value ...130
Checking a Single Object ..132
Checking Two or More Objects in a Window135
Checking All Objects in a Window...137
Understanding GUI Checkpoint Statements140
Using an Existing GUI Checklist in a GUI Checkpoint....................141
Modifying GUI Checklists...143
Understanding the GUI Checkpoint Dialog Boxes...........................148
Property Checks and Default Checks..158
Specifying Arguments for Property Checks164
Editing the Expected Value of a Property ...170
Modifying the Expected Results of a GUI Checkpoint172

Chapter 10: Working with Web Objects...175
About Working with Web Objects..176
Viewing Recorded Web Object Properties ..176
Using Web Object Properties in Your Tests178
Checking Web Objects ..187

Chapter 11: Working with ActiveX and Visual Basic Controls217
About Working with ActiveX and Visual Basic Controls218
Choosing Appropriate Support for Visual Basic Applications222
Viewing ActiveX and Visual Basic Control Properties......................223
Retrieving and Setting the Values of ActiveX and

Visual Basic Control Properties ..226
Activating an ActiveX Control Method..229
Working with Visual Basic Label Controls230
Checking Sub-Objects of ActiveX and Visual Basic Controls232
Using TSL Table Functions with ActiveX Controls...........................235

Chapter 12: Checking PowerBuilder Applications............................237
About Checking PowerBuilder Applications238
Checking Properties of DropDown Objects238
Checking Properties of DataWindows ..241
Checking Properties of Objects within DataWindows243
Working with Computed Columns in DataWindows......................245

Chapter 13: Checking Table Contents ..247
About Checking Table Contents ...247
Checking Table Contents with Default Checks................................249
Checking Table Contents while Specifying Checks250
Understanding the Edit Check Dialog Box.......................................253

Table of Contents

xi

Chapter 14: Checking Databases ..259
About Checking Databases..260
Creating a Runtime Database Record Checkpoint............................264
Editing a Runtime Database Record Checklist..................................272
Creating a Default Check on a Database ..277
Creating a Custom Check on a Database..280
Messages in the Database Checkpoint Dialog Boxes283
Working with the Database Checkpoint Wizard..............................283
Understanding the Edit Check Dialog Box.......................................291
Modifying a Standard Database Checkpoint297
Modifying the Expected Results of a Standard

Database Checkpoint ...308
Parameterizing Standard Database Checkpoints310
Specifying a Database ..314
Using TSL Functions to Work with a Database.................................316

Chapter 15: Checking Bitmaps..321
About Checking Bitmaps...321
Creating Bitmap Checkpoints ...323
Checking Window and Object Bitmaps..326
Checking Area Bitmaps ...328

Chapter 16: Checking Text..331
About Checking Text...331
Reading Text..333
Searching for Text ...337
Comparing Text ..342
Teaching Fonts to WinRunner ...342

Chapter 17: Checking Dates ...349
About Checking Dates...349
Testing Date Operations..350
Testing Two-Character Date Applications ..351
Setting Date Formats ...352
Using an Existing Date Format Configuration File...........................354
Checking Dates in GUI Objects ..355
Checking Dates with TSL ..357
Overriding Date Settings ...358

Table of Contents

xii

Chapter 18: Creating Data-Driven Tests...365
About Creating Data-Driven Tests ..366
The Data-Driven Testing Process...366
Creating a Basic Test for Conversion ..367
Converting a Test to a Data-Driven Test...369
Preparing the Data Table...383
Importing Data from a Database...390
Running and Analyzing Data-Driven Tests395
Assigning the Main Data Table for a Test ...396
Using Data-Driven Checkpoints

and Bitmap Synchronization Points ..397
Using TSL Functions with Data-Driven Tests402
Guidelines for Creating a Data-Driven Test......................................409

Chapter 19: Synchronizing the Test Run ..411
About Synchronizing the Test Run...411
Waiting for Objects and Windows..413
Waiting for Property Values of Objects and Windows.....................414
Waiting for Bitmaps of Objects and Windows419
Waiting for Bitmaps of Screen Areas...421
Tips for Synchronizing Tests ...423

PART IV: RUNNING TESTS—BASIC

Chapter 20: Understanding Test Runs..427
About Understanding Test Runs ...428
WinRunner Test Run Modes ...429
WinRunner Run Commands ..433
Choosing Run Commands Using Softkeys435
Running a Test to Check Your Application436
Running a Test to Debug Your Test Script ..437
Running a Test to Update Expected Results......................................438
Running a Test to Check Date Operations442
Supplying Values for Input Parameters When Running a Test447
Controlling the Test Run with Testing Options448
Solving Common Test Run Problems ...449

Table of Contents

xiii

Chapter 21: Analyzing Test Results ..453
About Analyzing Test Results ..454
Understanding the Unified Report View Results Window456
Customizing the Test Results Display ...466
Understanding the WinRunner Report View Results Window467
Viewing the Results of a Test Run...474
Viewing Checkpoint Results ...481
Analyzing the Results of a Single-Property Check483
Analyzing the Results of a GUI Checkpoint484
Analyzing the Results of a GUI Checkpoint on Table Contents486
Analyzing the Expected Results of a GUI Checkpoint

on Table Contents ..489
Analyzing the Results of a Bitmap Checkpoint493
Analyzing the Results of a Database Checkpoint494
Analyzing the Expected Results of a Content Check

in a Database Checkpoint ..496
Updating the Expected Results of a Checkpoint

in the WinRunner Report View..499
Viewing the Results of a File Comparison ..500
Viewing the Results of a GUI Checkpoint on a Date........................502
Reporting Defects Detected During a Test Run.................................503

PART V: CONFIGURING BASIC SETTINGS

Chapter 22: Setting Properties for a Single Test509
About Setting Properties for a Single Test ...509
Setting Test Properties from the Test Properties Dialog Box510
Documenting General Test Information ..512
Documenting Descriptive Test Information514
Managing Test Parameters ..515
Associating Add-ins with a Test ..519
Reviewing Current Test Settings ...521
Defining Startup Applications and Functions523

Table of Contents

xiv

Chapter 23: Setting Global Testing Options531
About Setting Global Testing Options ..531
Setting Global Testing Options from the General Options

Dialog Box ..532
Setting General Options..535
Setting Folder Options ..541
Setting Recording Options ..545
Setting Test Run Options ..562
Setting Notification Options ...579
Setting Appearance Options..585
Choosing Appropriate Timeout and Delay Settings589

Index ..593

xv

Welcome to Mercury WinRunner

Welcome to WinRunner, the Mercury enterprise test automation solution.
With WinRunner you can create and run sophisticated automated tests on
your application.

Note: The Mercury WinRunner Basic Features User’s Guide and Mercury
WinRunner Advanced Features User’s Guide are available as separate books only
in the printed version. In the PDF and context-sensitive Help, the
information is combined.

Using this Guide

This guide describes the main concepts behind automated software testing.
It provides step-by-step instructions to help you create, debug, and run tests,
and to report defects detected during the testing process.

The Mercury WinRunner Basic Features User’s Guide provides detailed
descriptions of WinRunner’s features and automated testing procedures. The
Mercury WinRunner Advanced Features User’s Guide describes WinRunner’s
advanced features. It is recommended that users of the Mercury WinRunner
Advanced Features User’s Guide have a working knowledge of the information
covered in the Mercury WinRunner Basic Features User’s Guide.

Welcome

xvi

This guide contains the following parts:

 Part I Starting the Testing Process

Provides an overview of WinRunner and the main stages of the testing
process.

 Part II Introducing the GUI Map

Describes Context Sensitive testing and the importance of the GUI map for
creating adaptable and reusable test scripts.

 Part III Creating Tests—Basic

Describes how to create test scripts, insert checkpoints, and assign
parameters.

 Part IV Running Tests—Basic

Describes how to run tests from within WinRunner and analyze test results.

 Part V Configuring Basic Settings

Describes how to change WinRunner’s default settings, both per test and
globally.

WinRunner Documentation Set

In addition to this Basic Features User’s Guide, WinRunner comes with a
complete set of printed documentation:

WinRunner Advanced Features User’s Guide provides information on the
more advanced WinRunner features you can use to meet the special testing
requirements of your application.

WinRunner Installation Guide describes how to install WinRunner on a
single computer or a network.

WinRunner Tutorial teaches you basic WinRunner skills and shows you how
to start testing your application.

Welcome

xvii

TSL Reference Guide describes the WinRunner Test Script Language (TSL)
and the functions it contains.

WinRunner Customization Guide explains how to customize WinRunner to
meet the special testing requirements of your application.

Online Resources

WinRunner includes the following online resources, accessible from the
program group or Help menu:

Read Me provides last-minute news and information about WinRunner.

WinRunner Help provides immediate context-sensitive answers to questions
that arise as you work with WinRunner. It describes menu commands and
dialog boxes, and shows you how to perform WinRunner tasks.

WinRunner Quick Preview provides a short presentation of the main
WinRunner capabilities for new WinRunner users.

TSL Online Reference describes the WinRunner Test Script Language (TSL),
the functions it contains, and examples of how to use the functions.

Printer-Friendly Documentation displays the complete documentation set
in PDF format. The printer-friendly books can be read and printed using
Adobe Acrobat Reader. It is recommended that you use version 5.0 or later.
You can download the latest version of Adobe Acrobat Reader from
www.adobe.com.

Sample Tests includes utilities and sample tests with accompanying
explanations.

What’s New in WinRunner describes the newest features in the latest
versions of WinRunner.

http://www.adobe.com

Welcome

xviii

Note: The Mercury WinRunner User's Guide online version is a single
volume, while the printed and PDF versions consists of two books, the
Mercury WinRunner Basic Features User’s Guide and the Mercury WinRunner
Advanced Features User’s Guide.

Technical Support Online uses your default Web browser to open the
Mercury Customer Support Web site. The URL for this Web site is
http://support.mercury.com.

Mercury Interactive on the Web uses your default web browser to open
Mercury Interactive’s home page. This site provides you with the most
up-to-date information on Mercury Interactive, its products and services.
This includes new software releases, seminars and trade shows, customer
support, training, and more. The URL for this Web site is
http://www.mercury.com.

Documentation Updates

Mercury is continuously updating its product documentation with new
information. You can download the latest version of this document from
the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Select Product Name, select WinRunner.

Note that if WinRunner does not appear in the list, you must add it to your
customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
recently updated, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

xix

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

> The greater-than sign separates menu levels (for example,
File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements (for example, the Run button) and other items
that require emphasis.

Bold Bold text indicates method or function names.

Italics Italic text indicates method or function arguments,
file names in syntax descriptions, and book titles.
It is also used when introducing a new term.

<> Angle brackets enclose a part of a file path or URL address
that may vary from user to user (for example, <MyProduct
installation folder>\bin).

Arial The Arial font is used for examples and text that is to be
typed literally.

Arial bold The Arial bold font is used in syntax descriptions for text
that should be typed literally.

SMALL CAPS The SMALL CAPS font indicates keyboard keys.

... In a line of syntax, an ellipsis indicates that more items of
the same format may be included. In a programming
example, an ellipsis is used to indicate lines of a program
that were intentionally omitted.

[] Square brackets enclose optional arguments.

| A vertical bar indicates that one of the options separated
by the bar should be selected.

Welcome

xx

Part I

Starting the Testing Process

2

3

1
Introduction

Recent advances in client/server software tools enable developers to build
applications quickly and with increased functionality. Quality Assurance
departments must cope with software that has dramatically improved, but is
increasingly complex to test. Each code change, enhancement, defect fix, or
platform port necessitates retesting the entire application to ensure a quality
release. Manual testing can no longer keep pace in this dynamic
development environment.

Mercury WinRunner is the powerful test automation solution for the
enterprise. It helps you automate the testing process, from test development
to execution. You create adaptable and reusable test scripts that challenge
the functionality of your application. Prior to a software release, you can run
these tests in a single overnight run—enabling you to detect defects and
release software of superior quality.

You can also convert existing WinRunner tests to scripted components, or
create new scripted components. Scripted components are part of Business
Process Testing in Mercury Quality Center, which utilizes a keyword-driven
methodology for testing applications. Scripted components are reusable
modular scripts that can be created in WinRunner, and then used in
business process tests.

The information, examples, and screen captures in this guide focus
specifically on working with WinRunner tests. Much of the information
that is relevant for tests is also relevant for scripted components, which have
functionality that is similar to tests.

Integration with Quality Center and how to work with scripted components
is described in the Mercury WinRunner Advanced Features User’s Guide. For
more information, refer to the Business Process Testing User’s Guide.

Part I • Starting the Testing Process

4

WinRunner Testing Modes

WinRunner facilitates test creation by recording how you work on your
application. As you point and click GUI (Graphical User Interface) objects in
your application, WinRunner automatically generates a test script in its
C-like Test Script Language (TSL). You can further enhance your test scripts
with manual programming. WinRunner includes the Function Generator,
which helps you quickly and easily add functions to your recorded tests.

WinRunner includes two modes for recording tests: Context Sensitive and
Analog.

Context Sensitive

Context Sensitive mode records your actions on the application you are
testing in terms of the GUI objects you select (such as windows, lists, and
buttons), while ignoring the physical location of the object on the screen.
Every time you perform an operation on the application you are testing, a
TSL statement describing the object selected and the action performed is
generated in the test script.

As you record, WinRunner writes a unique description of each selected
object to a GUI map file. The GUI map files are maintained separately from
your test scripts and the same GUI map file (or files) can be used for multiple
tests. If the user interface of your application changes, you have to update
only the GUI map, instead of hundreds of tests. This allows you to reuse
your Context Sensitive test scripts on future versions of your application.

To run a test, you play back the test script. WinRunner emulates a user by
moving the mouse pointer over your application, selecting objects, and
entering keyboard input. WinRunner reads the object descriptions in the
GUI map and then searches in the application you are testing for objects
matching these descriptions. It can locate objects in a window even if their
placement has changed.

Chapter 1 • Introduction

5

Analog

Analog mode records mouse clicks, keyboard input, and the exact
x- and y-coordinates traveled by the mouse. When the test is run,
WinRunner retraces the mouse tracks. Use Analog mode when exact mouse
coordinates are important to your test, such as when testing a drawing
application.

The WinRunner Testing Process

Testing with WinRunner involves six main stages:

Create the GUI Map

The first stage is to create the GUI map so WinRunner can recognize the GUI
objects in the application you are testing. Use the RapidTest Script wizard to
review the user interface of your application and systematically add
descriptions of every GUI object to the GUI map. Alternatively, you can add
descriptions of individual objects to the GUI map by clicking objects while
recording a test.

Note that when you work in GUI Map per Test mode, you can skip this step.
For additional information, see Chapter 3, “Understanding How WinRunner
Identifies GUI Objects.”

Create Tests

Create
GUI Map

Run Tests

Debug Tests View Results

Report Defects

Part I • Starting the Testing Process

6

Create Tests

You create test scripts by recording, programming, or a combination of
both. While recording tests, insert checkpoints where you want to check the
response of the application you are testing. You can insert checkpoints that
check GUI objects, bitmaps, and databases. During this process, WinRunner
captures data and saves it as expected results—the expected response of the
application you are testing.

Debug Tests

You run tests in Debug mode to check whether they run smoothly. You can
set breakpoints, monitor variables, and control how tests are run to identify
and isolate defects. Test results are saved in the debug folder, which you can
discard once you’ve finished debugging the test.

When WinRunner runs a test, it checks each script line for basic syntax
errors, like incorrect syntax or missing elements in If, While, Switch, and
For statements. You can use the Syntax Check options (Tools >Syntax Check)
to check for these types of syntax errors before running your test.

Run Tests

You run tests in Verify mode to test your application. Each time WinRunner
encounters a checkpoint in the test script, it compares the current data of
the application you are testing to the expected data captured earlier. If any
mismatches are found, WinRunner captures them as actual results.

Note: Verify mode is only relevant when running tests, not components.
When working with components, the application is verified when the
component is run as part of a business process test in Quality Center.

Chapter 1 • Introduction

7

View Results

You view results to determine the success or failure of your tests. Following
each test run, WinRunner displays the results in a report. The report details
all the major events that occurred during the run, such as checkpoints, error
messages, system messages, or user messages.

If mismatches are detected at checkpoints during the test run, you can view
the expected results and the actual results from the Test Results window. In
cases of bitmap mismatches, you can also view a bitmap that displays only
the difference between the expected and actual results.

You can view your results in the standard WinRunner report view or in the
Unified report view. The WinRunner report view displays the test results in a
Windows-style viewer. The Unified report view displays the results in an
HTML-style viewer (identical to the style used for QuickTest Professional test
results).

Report Defects

If a test run fails due to a defect in the application you are testing, you can
report information about the defect directly from the Test Results window.
This information is managed by the quality assurance manager, who tracks
the defect until it is fixed.

You can also insert qcdb_add_defect statements to your test script that
instruct WinRunner to add a defect to a Quality Center project based on
conditions you define in your test script.

Part I • Starting the Testing Process

8

Sample Application

Many examples in this book use the sample Flight Reservation application
provided with WinRunner.

Starting the Sample Application

You can start this application by choosing Start > Programs > WinRunner >
Sample Applications and then choosing the version of the flight application
you want to open: Flight 4A or Flight 4B.

Multiple Versions of the Sample Application

The sample Flight Reservation application comes in two versions: Flight 4A
and Flight 4B. Flight 4A is a fully working application, while Flight 4B has
some “bugs” built into it. These versions are used together in the WinRunner
Tutorial to simulate the development process, in which the performance of
one version of an application is compared with that of another. You can use
the examples in this guide with either Flight 4A or Flight 4B.

When WinRunner is installed with Visual Basic support, Visual Basic
versions of Flight A and Flight B are installed in addition to the regular
Windows-based sample applications.

Logging In

When you start the sample Flight Reservation application, the Login dialog
box opens. You must log in to start the application. To log in, enter a name
of at least four characters. The password is mercury and is not case sensitive.

Sample Web Application

WinRunner also includes a sample flight reservation application for the
Web. The URL for this Web site is http://newtours.mercuryinteractive.com. You
can also start this application by choosing Start > Programs > WinRunner >
Sample Applications > Mercury Tours site.

Chapter 1 • Introduction

9

Integrating with Other Mercury Interactive Products

WinRunner works with other Mercury Interactive products to provide an
integrated solution for all phases of the testing process: test planning, test
development, GUI and load testing, defect tracking, and client load testing
for multi-user systems.

For more information about integration with QuickTest Professional,
Quality Center, Business Process Testing, and LoadRunner, refer to the
Mercury WinRunner Advanced Features User’s Guide.

Mercury QuickTest Professional

QuickTest Professional is an easy to use, yet comprehensive, icon-based
functional testing tool designed to perform functional and regression
testing of dynamic Windows-based, Visual Basic, ActiveX, Web, and
multimedia applications. You can also expand QuickTest’s functionality to
test your applications created using leading-edge development
environments such as Java, .NET, SAP, Siebel, PeopleSoft, and Oracle.

You can design tests in QuickTest Professional and then leverage your
investments in existing WinRunner script libraries by calling WinRunner
tests and functions from your QuickTest test. You can also call QuickTest
tests from WinRunner.

Mercury Quality Center

Quality Center (formerly TestDirector) is an application quality
management product. It helps quality assurance personnel plan and
organize the testing process. With Quality Center you can create a database
of scripted components and manual and automated tests, build test cycles,
run tests, and report and track defects. You can also create reports and
graphs to help review the progress of planning tests, running tests, and
tracking defects before a software release.

When you work with WinRunner, you can choose to save your tests and
scripted components directly to your Quality Center database. You can also
run tests in WinRunner and then use Quality Center to review the overall
results of a testing cycle.

Part I • Starting the Testing Process

10

Integrating WinRunner and Quality Center with Business Process Testing
support enables you to leverage your investment in existing WinRunner
script libraries and improve the test automation process by using the
Business Process Testing framework.

Mercury LoadRunner

LoadRunner is the Mercury solution for automated performance testing.
Using LoadRunner, you can emulate an environment in which many users
are simultaneously engaged in a single server application. Instead of human
users, it substitutes virtual users that run automated tests on the application
you are testing. You can test an application’s performance “under load” by
simultaneously activating virtual users on multiple host computers.

11

2
WinRunner at a Glance

This chapter explains how to start WinRunner and introduces the
WinRunner window.

This chapter describes:

➤ Starting WinRunner

➤ The Main WinRunner Window

➤ The Test Editor Window

➤ Using WinRunner Commands

➤ Loading WinRunner Add-Ins

Starting WinRunner

To start WinRunner for the first time:

 1 Choose Programs > WinRunner > WinRunner on the Start menu.

The WinRunner Record/Run Engine icon appears in the status area of the
Windows taskbar. This engine establishes and maintains the connection
between WinRunner and the application you are testing.

 2 By default, the WinRunner Add-in Manager dialog box opens.

The WinRunner Add-in Manager dialog box contains a list of the add-ins
available on your computer. Select the add-ins you want to load for the
current session of WinRunner.

Part I • Starting the Testing Process

12

If you do not make a change in the Add-in Manager dialog box within a
certain amount of time, the window closes and the add-ins that were loaded
in the previous WinRunner session are automatically loaded. A progress bar
displays how much time is left before the window closes.

Note: The first time you start a new version of WinRunner on your
computer, “What’s New in WinRunner” Help also opens.

For more information on the Add-in Manager, see “Loading WinRunner
Add-Ins” on page 20.

Chapter 2 • WinRunner at a Glance

13

 3 The Welcome to WinRunner window opens. From the Welcome to
WinRunner window you can click Create a New Test to open a new, blank
test, click Open an Existing Test to select a saved test to open, or click View a
Quick Preview of WinRunner to view an overview presentation of
WinRunner in your default browser.

Tip: If you do not want the Welcome to WinRunner window to open the
next time you start WinRunner, clear the Show on startup check box. Once
you have selected this option, you can instruct WinRunner to display the
Welcome screen at a later time. Choose Tools > General Options, select the
General > Startup category, and select the Display Welcome screen on
startup check box.

Part I • Starting the Testing Process

14

The Main WinRunner Window

The main WinRunner window contains the following key elements:

➤ WinRunner title bar—displays the name and path of the currently open
test.

➤ File toolbar—provides access to frequently performed tasks, such as
opening and saving tests, and viewing test results.

➤ Debug toolbar—provides access to options used while debugging tests.

➤ Test toolbar—provides access to options used while running and
maintaining tests.

➤ User toolbar—displays the tools you frequently use to create test scripts. By
default, the User toolbar is hidden. To display the User toolbar, choose
View > User Toolbar.

➤ Status bar—displays information on the current command, the line number
of the insertion point, and the name of the current results folder.

➤ Test Editor—displays the test script.

➤ Debug Viewer—displays data from the currently selected debug option:
Watch List, Breakpoints, or Call Chain. You can close this pane by clearing
all selected debug toggle options in the Debug menu.

➤ Function Viewer—displays loaded functions that you can call from your
tests. You can close this pane by clearing the Function Viewer toggle option
in the Tools menu.

Chapter 2 • WinRunner at a Glance

15

An example of the main WinRunner window is shown below:

Tip: By default, each test is displayed in a separate tab in the test editor. If
there are more test tabs than can fit across the bottom of the editor, you can
click the left or right arrow buttons to scroll the test tabs to the left or the
right. If tabs are not displayed, you can display them by selecting the
Display test tabs option in the Appearance category of the General Options
dialog box.

File toolbar User toolbar

Status bar

Debug toolbarWinRunner title bar

Debug Viewer Function Viewer Test editor

Test toolbar

Part I • Starting the Testing Process

16

The Test Editor Window

You create and run WinRunner tests in the test editor window. It contains
the following key elements:

➤ Test window title bar, with the name of the open test

➤ Test script, with statements generated by recording and/or manually entered
by programming in Test Script Language (TSL)

➤ Execution arrow, which indicates the line of the test script being executed
during a test run, or the line that will next run if you select the Run from
arrow option

➤ Insertion point, which indicates where you can insert or edit text

Execution arrow

Test script

Insertion point

Test window title bar

Chapter 2 • WinRunner at a Glance

17

Using WinRunner Commands

You can select WinRunner commands from the menu bar or from a toolbar.
Certain WinRunner commands can also be executed by pressing softkeys.

Choosing Commands on a Menu

You can choose all WinRunner commands from the menu bar.

Clicking Commands on a Toolbar

You can execute some WinRunner commands by clicking buttons on the
toolbars. WinRunner has four built-in toolbars: the File toolbar, the Test
toolbar, the Debug toolbar, and the User toolbar. You can customize the User
toolbar with the commands you use most frequently.

Creating a Floating Toolbar

You can change any toolbar to a floating toolbar. In addition, when the User
toolbar is a floating toolbar, you can minimize WinRunner and still
maintain access to the commands on the User toolbar, so you can work
freely with the application you are testing.

Double-click a toolbar handle to change it to a floating toolbar; double-click
a floating toolbar title bar to snap it back into the toolbar area. You can also
drag a toolbar handle or title bar to toggle it from a docked toolbar to a
floating toolbar and vice versa.

The File Toolbar

The File toolbar contains buttons for the commands used for frequently
performed tasks, such as opening and saving tests, viewing test results, and
accessing Help. The default location of the File toolbar is docked below the
WinRunner menu bar.

Part I • Starting the Testing Process

18

The following buttons appear on the File toolbar:

For more information about the File toolbar, see Chapter 8, “Designing
Tests.”

The Test Toolbar

The Test toolbar contains buttons for the commands used in running a test.
The default location of the Test toolbar is docked below the WinRunner File
toolbar.

The following buttons appear on the Test toolbar:

For more information about the Test toolbar, see Chapter 20,
“Understanding Test Runs.”

The Debug Toolbar

The Debug toolbar contains buttons for commands used while debugging
tests. The default location of the Debug toolbar is docked below the
WinRunner menu bar, to the right of the File toolbar.

Open

SaveNew

Print

Test
Properties

Help

Test
Results

Run from ArrowRecord

StopRun from TopRun Mode

Chapter 2 • WinRunner at a Glance

19

The following buttons appear on the Debug toolbar:

For more information about the Debug toolbar, see Chapter 20,
“Understanding Test Runs.”

The User Toolbar

The User toolbar contains buttons for commands used when creating tests.
By default, the User toolbar is hidden. To display the User toolbar, select
View > User Toolbar. When it is displayed, its default position is docked at
the right edge of the WinRunner window.

The User toolbar is a customizable toolbar. You can add or remove buttons
to facilitate access to commands commonly used for an application you are
testing. The following buttons appear by default on the User toolbar:

Step

Step
Into

Pause

Add
Watch

Toggle
Breakpoint

Delete All
Breakpoints

Break in
Function

Insert Function for Object/Window

Record - Context Sensitive

Stop

GUI Checkpoint for Object/Window

GUI Checkpoint for Multiple Objects

Bitmap Checkpoint for Object/Window

Synchronization Point for Object/Window Bitmap

Get Text from Object/Window

Get Text from Screen Area

Synchronization Point for Screen Area Bitmap

Insert Function from Function Generator

Default Database Checkpoint

Synchronization Point for Object/Window Property

Bitmap Checkpoint for Screen Area

Part I • Starting the Testing Process

20

For information on customizing the User toolbar, refer to Chapter 20,
“Customizing the WinRunner User Interface” in the Mercury WinRunner
Advanced Features User’s Guide.

Activating Commands Using Softkeys

You can execute some WinRunner commands by pressing softkeys.
WinRunner reads input from softkeys even when the WinRunner window is
not the active window on your screen, or when it is minimized.

Softkey assignments are configurable. If the application you are testing uses
a default softkey that is preconfigured for WinRunner, you can redefine the
WinRunner softkey using the softkey configuration utility.

For a list of default WinRunner softkey configurations and information
about redefining WinRunner softkeys, refer to Chapter 20, “Customizing
the WinRunner User Interface” in the Mercury WinRunner Advanced Features
User’s Guide.

Loading WinRunner Add-Ins

If you installed core add-ins such the WebTest, Visual Basic, PowerBuilder, or
ActiveX Controls while installing WinRunner or afterward, or if you have
installed external add-ins, you can specify which add-ins to load at the
beginning of each WinRunner session.

By default, the Add-In Manager dialog box opens when you start
WinRunner. It displays a list of all installed add-ins for WinRunner. You can
select which add-ins to load for the current session of WinRunner. If you do
not make a change within a certain amount of time, the window closes and
the selected add-ins are automatically loaded.

Chapter 2 • WinRunner at a Glance

21

The progress bar displays how much time is left before the window closes.

The first time WinRunner starts, no add-ins are selected. At the beginning of
each subsequent WinRunner session, your selection from the previous
session is the default setting. Once you make a change to the list, the timer
stops running, and you must click OK to close the dialog box and load the
selected add-ins.

The Add-in Manager displays the list of add-ins available from your
computer. The core WinRunner installation includes the ActiveX Controls,
PowerBuilder, Visual Basic, and WebTest add-ins.

You can also extend WinRunner’s functionality to support a large number of
development environments by purchasing external WinRunner add-ins.

Part I • Starting the Testing Process

22

If you install external WinRunner add-ins, they are displayed in the Add-in
Manager together with the core add-ins. When you install external add-ins
with a seat license, you must also install a special WinRunner add-in license.
The first time you open WinRunner after installing an external add-in, the
Add-in Manager displays the add-in, but the check box is disabled and the
add-in name is grayed. Click the Add-in License button to install the Add-in
license. For more information, refer to the WinRunner Installation Guide.

You can determine whether to display the Add-In Manager dialog box each
time WinRunner opens and, if so, for how long using the Display Add-In
Manager on startup option in the General > Startup category of the General
Options dialog box. For information on working with the General Options
dialog box, see Chapter 23, “Setting Global Testing Options.” You can also
specify these options using the -addins and -addins_select_timeout
command line options. For information on working with command line
options, refer to Chapter 15, “Running Tests from the Command Line” in
the Mercury WinRunner Advanced Features User’s Guide.

Part II

Introducing the GUI Map

24

25

3
Understanding How WinRunner Identifies
GUI Objects

This chapter introduces Context Sensitive testing and explains how
WinRunner identifies the Graphical User Interface (GUI) objects in your
application.

This chapter describes:

➤ About Identifying GUI Objects

➤ How a Test Identifies GUI Objects

➤ Logical Names

➤ The GUI Map

➤ Setting the Window Context

About Identifying GUI Objects

When you work in Context Sensitive mode, you can test your application as
the user sees it—in terms of GUI objects—such as windows, menus, buttons,
and lists. Each object has a defined set of properties that determines its
behavior and appearance. WinRunner learns these properties and uses them
to identify and locate GUI objects during a test run. Note that in Context
Sensitive mode, WinRunner does not need to know the physical location of
a GUI object to identify it.

Part II • Introducing the GUI Map

26

You can use the GUI Spy to view the properties of any GUI object on your
desktop, to see how WinRunner identifies it. For additional information on
viewing the properties of GUI objects and teaching them to WinRunner, see
Chapter 4, “Understanding Basic GUI Map Concepts.”

WinRunner stores the information it learns in a GUI map. When WinRunner
runs a test, it uses the GUI map to locate objects: It reads an object’s
description in the GUI map and then looks for an object with the same
properties in the application being tested. You can view the GUI map in
order to gain a comprehensive picture of the objects in your application.

The GUI map is actually the sum of one or more GUI map files. There are two
modes for organizing GUI map files:

➤ You can create a GUI map file for your entire application, or for each
window in your application. Multiple tests can reference a common GUI
map file. This is the default mode in WinRunner. For experienced
WinRunner users, this is the most efficient way to work. For more
information about working in the Global GUI Map File mode, see Chapter 5,
“Working in the Global GUI Map File Mode.”

➤ WinRunner can automatically create a GUI map file for each test you create.
You do not need to worry about creating, saving, and loading GUI map files.
If you are new to WinRunner, this is the simplest way to work. For more
information about working in the GUI Map File per Test mode, see Chapter 6,
“Working in the GUI Map File per Test Mode.”

At any stage in the testing process, you can switch from the GUI Map File per
Test mode to the Global GUI Map File mode. For additional information, refer
to Chapter 1, “Merging GUI Map Files” in the Mercury WinRunner Advanced
Features User’s Guide.

As the user interface of your application changes, you can continue to use
tests you developed previously. You simply add, delete, or edit object
descriptions in the GUI map so that WinRunner can continue to find the
objects in your modified application. For more information, see Chapter 7,
“Editing the GUI Map.”

Chapter 3 • Understanding How WinRunner Identifies GUI Objects

27

You can specify which properties WinRunner uses to identify a specific class
of object. You can also teach WinRunner to identify custom objects, and to
map these objects to a standard class of objects. For additional information,
refer to Chapter 2, “Configuring the GUI Map” in the Mercury WinRunner
Advanced Features User’s Guide.

You can also teach WinRunner to recognize any bitmap in a window as a
GUI object by defining the bitmap as a virtual object. For additional
information, refer to Chapter 3, “Learning Virtual Objects” in the Mercury
WinRunner Advanced Features User’s Guide.

How a Test Identifies GUI Objects

You create tests by recording or programming test scripts. A test script
consists of statements in Mercury Interactive’s test script language (TSL).
Each TSL statement represents mouse and keyboard input to the application
being tested. For more information, see Chapter 8, “Designing Tests.”

WinRunner uses a logical name to identify each object: for example “Print”
for a Print dialog box, or “OK” for an OK button. The logical name is
actually a nickname for the object’s physical description. The physical
description contains a list of the object’s physical properties: the Print dialog
box, for example, is identified as a window with the label “Print”. The
logical name and the physical description together ensure that each GUI
object has its own unique identification.

Physical Descriptions

WinRunner identifies each GUI object in the application being tested by its
physical description: a list of physical properties and their assigned values.
These property:value pairs appear in the following format in the GUI map:

{property1:value1, property2:value2, property3:value3, ...}

For example, the description of the “Open” window contains two
properties: class and label. In this case the class property has the value
window, while the label property has the value Open:

{class:window, label:Open}

Part II • Introducing the GUI Map

28

The class property indicates the object’s type. Each object belongs to a
different class, according to its functionality: window, push button, list,
radio button, menu, etc.

Each class has a set of default properties that WinRunner learns. For a
detailed description of all properties, refer to Chapter 2, “Configuring the
GUI Map” in the Mercury WinRunner Advanced Features User’s Guide.

3

Test Script GUI Map

WinRunner reads the
logical name in the test
script and refers to the
GUI map

1 2

WinRunner uses the
physical description to
find an object in the
application

Application Being Tested

logical
name

logical
name

“Open” window label

WinRunner
matches the
logical name with
the physical
description

physical
description

Chapter 3 • Understanding How WinRunner Identifies GUI Objects

29

Note that WinRunner always learns an object’s physical description in the
context of the window in which it appears. This creates a unique physical
description for each object. For more information, see “Setting the Window
Context” on page 31.

Note: Although WinRunner always identifies objects within the context of
its window, a window’s description is not dependent on the objects
contained within it.

Logical Names

In the test script, WinRunner does not use the full physical description for
an object. Instead, it assigns a short name to each object: the logical name.

An object’s logical name is determined by its class. In most cases, the logical
name is the label that appears on an object: for a button, the logical name is
its label, such as OK or Cancel; for a window, it is the text in the window’s
title bar; and for a list, the logical name is the text appearing next to or
above the list.

For a static text object, the logical name is a combination of the text and the
string “(static)”. For example, the logical name of the static text “File Name”
is: “File Name (static)”.

In certain cases, several GUI objects in the same window are assigned the
same logical name, plus a location selector (for example: LogicalName_1,
LogicalName_2). The purpose of the selector property is to create a unique
name for the object.

Part II • Introducing the GUI Map

30

The GUI Map

You can view the contents of the GUI map at any time by choosing
Tools > GUI Map Editor. The GUI map is actually the sum of one or more
GUI map files.

In the GUI Map Editor, you can view either the contents of the entire GUI
map or the contents of individual GUI map files. GUI objects are grouped
according to the window in which they appear in the application.

For additional information on the GUI Map Editor, see Chapter 7, “Editing
the GUI Map.”

Window

Click to expand dialog
box and display the
physical description of the
selected object or window

This view shows the contents
of the entire GUI map.

Objects within
the window

The GUI map file contains the logical names and
physical descriptions of GUI objects.

Chapter 3 • Understanding How WinRunner Identifies GUI Objects

31

There are two modes for organizing GUI map files:

➤ Global GUI Map File mode: You can create a GUI map file for your entire
application, or for each window in your application. Different tests can
reference a common GUI map file. For more information, see Chapter 5,
“Working in the Global GUI Map File Mode.”

➤ GUI Map File per Test mode: WinRunner automatically creates a GUI map file
that corresponds to each test you create. For more information, see
Chapter 6, “Working in the GUI Map File per Test Mode.”

For a discussion of the relative advantages and disadvantages of each mode,
see “Deciding Which GUI Map File Mode to Use” on page 42.

Setting the Window Context

WinRunner learns and performs operations on objects in the context of the
window in which they appear. When you record a test, WinRunner
automatically inserts a set_window statement into the test script each time
the active window changes and an operation is performed on a GUI object.
All objects are then identified in the context of that window. For example:

set_window ("Print", 12);
button_press ("OK");

The set_window statement indicates that the Print window is the active
window. The OK button is learned within the context of this window.

If you program a test manually, you need to enter the set_window
statement when the active window changes. When editing a script, take care
not to delete necessary set_window statements.

Part II • Introducing the GUI Map

32

33

4
Understanding Basic GUI Map Concepts

This chapter explains how WinRunner identifies the Graphical User
Interface (GUI) of your application and how to work with GUI map files.

This chapter describes:

➤ About the GUI Map

➤ Viewing GUI Object Properties

➤ Teaching WinRunner the GUI of Your Application

➤ Finding an Object or Window in the GUI Map

➤ General Guidelines for Working with GUI Map Files

➤ Deciding Which GUI Map File Mode to Use

About the GUI Map

When WinRunner runs tests, it simulates a human user by moving the
mouse cursor over the application, clicking GUI objects and entering
keyboard input. Like a human user, WinRunner must learn the GUI of an
application in order to work with it.

WinRunner does this by learning the GUI objects of an application and their
properties and storing these object descriptions in the GUI map. You can use
the GUI Spy to view the properties of any GUI object on your desktop, to see
how WinRunner identifies it.

Part II • Introducing the GUI Map

34

WinRunner can learn the GUI of your application in the following ways:

➤ by using the RapidTest Script wizard to learn the properties of all GUI
objects in every window in your application

➤ by recording in your application to learn the properties of all GUI objects on
which you record

➤ by using the GUI Map Editor to learn the properties of an individual GUI
object, window, or all GUI objects in a window

If the GUI of your application changes during the software development
process, you can use the GUI Map Editor to learn individual windows and
objects in order to update the GUI map.

Before you start teaching WinRunner the GUI of your application, you
should consider how you want to organize your GUI map files:

➤ In the GUI Map File per Test mode, WinRunner automatically creates a new
GUI map file for every new test you create.

➤ In the Global GUI Map File mode, you can use a single GUI map for a group
of tests.

The considerations for deciding which mode to use are discussed at the end
of this chapter.

Viewing GUI Object Properties

When WinRunner learns the description of a GUI object, it looks at the
object’s physical properties. Each GUI object has many properties, such as
“class,” “label,” “width,” “height”, “handle,” and “enabled”. WinRunner,
however, learns only a selected set of these properties in order to uniquely
distinguish the object from all other objects in the application.

Before you create the GUI map for an application, or before adding a GUI
object to the GUI map, you may want to view the properties of the GUI
object. Using the GUI Spy, you can view the properties of any GUI object on
your desktop. You use the Spy pointer to point to an object, and the GUI Spy
displays the properties and their values in the GUI Spy dialog box.

Chapter 4 • Understanding Basic GUI Map Concepts

35

You can choose to view all the properties of an object, or only the selected
set of properties that WinRunner learns.

In the following example, pointing to the Agent Name edit box in the Login
window of the sample flight application displays the All Standard tab in the
GUI Spy as follows:

Tip: You can resize the GUI Spy to view the entire contents at once.

Note: The ActiveX tab is displayed only if the ActiveX Add-in is installed
and loaded.

Part II • Introducing the GUI Map

36

To spy on a GUI object or window:

 1 Choose Tools > GUI Spy to open the GUI Spy dialog box.

By default, the GUI Spy displays the Recorded tab, which enables you to
view the properties of standard GUI objects that WinRunner records or
learns.

➤ To view all properties of standard windows and objects, click the All
Standard tab.

➤ To view all properties and methods of ActiveX controls, click the ActiveX
tab (only if the ActiveX Add-in is installed and loaded).

 2 In the Spy on box, select Objects or Windows.

 3 Select Hide WinRunner if you want to hide the WinRunner screen (but not
the GUI Spy) while you spy on objects.

Chapter 4 • Understanding Basic GUI Map Concepts

37

 4 Click Spy and point to an object on the screen. The object is highlighted
and the active window name, object name, and object description
(properties and their values) appear in the appropriate fields.

Note that as you move the pointer over other objects, each one is
highlighted in turn and its description appears in the Description pane.

In the following example, pointing to the Agent Name edit box in the Login
window of the sample flight application displays the Recorded tab in the
GUI Spy as follows:

 5 To capture an object description in the GUI Spy dialog box, point to the
desired object and press the STOP softkey. (The default softkey combination
is CTRL LEFT + F3.)

If you selected Hide WinRunner before you began spying on objects, the
WinRunner screen is displayed again when you press the STOP softkey.

➤ In the Recorded and All Standard tabs, you can click the Copy button to
copy the physical description of the object to the Clipboard.

Part II • Introducing the GUI Map

38

Clicking Copy in the previous example pastes the following physical
description to the Clipboard:

{class: "edit", attached_text: "Agent Name:"}

Tip: You can press CTRL + C to copy the property and value from the selected
row to the Clipboard.

➤ When you highlight a property in the ActiveX tab, then if a description
has been included for this property, it is displayed in the gray pane at the
bottom. If a help file has been installed for this ActiveX control, then
clicking Item Help displays it.

In the following example, pointing to the “Flights Table” in the Visual
Basic sample flight application, pressing the STOP softkey and
highlighting the FixedAlignment property, displays the ActiveX tab in
the GUI Spy as follows:

ActiveX control methods

property information

Chapter 4 • Understanding Basic GUI Map Concepts

39

Note: If an ActiveX property value is a pointer (reference) to another object
and that other object has a property marked by the control vendor as
default then the GUI Spy shows a value of that default property rather than
the value of the pointer. However, when using the ActiveX_get_info
function for a property containing a pointer value, you should specify the
property in the format PropA.PropB.

For example, if an ActiveX list object has a SelectedItem property, whose
value is a pointer to another object representing the list item, and the list
item’s default property is the text property, then the GUI Spy will show the
value of the text property, like ABC.

When using the ActiveX_get_info function:

ActiveX_get_info("LogName", "SelectedItem", RetVal)
returns a pointer value, like Object Reference - 0x782e789f.

ActiveX_get_info("LogName", "SelectedItem.Text", RetVal)
returns the text property value, like ABC.

 6 Click Close to close the GUI Spy.

Part II • Introducing the GUI Map

40

Teaching WinRunner the GUI of Your Application

Like a human user, WinRunner must learn the GUI of an application in
order to work with it. WinRunner can learn this information in the
following ways:

➤ recording in your application to learn the properties of all GUI objects on
which you record

➤ clicking the Learn button in the GUI Map Editor to learn the properties of
an individual GUI object, window, or all GUI objects in a window

➤ using the RapidTest Script wizard to learn the properties of all GUI objects in
every window in your application

Note: When you work in the GUI Map File per Test mode, the RapidTest
Script wizard is not available. The RapidTest Script wizard is also not
available if the WebTest or certain other add-ins are loaded. To find out
whether the RapidTest wizard is available with the add-in(s) you are using,
refer to the add-in documentation.

When you work in the Global GUI Map File mode, you must first take some
administrative steps in addition to utilizing one of the three ways
mentioned above. For example, you must save the object in a permanent
GUI file, and make sure the file is loaded when the test is running. For more
information, see Chapter 5, “Working in the Global GUI Map File Mode.”
However, in the Gui File Per Test mode you do not need to take any extra
steps. WinRunner performs the administrative tasks automatically.

For additional information on how to teach WinRunner the GUI of your
application in the ways described above, see Chapter 5, “Working in the
Global GUI Map File Mode” and Chapter 6, “Working in the GUI Map File
per Test Mode.”

Chapter 4 • Understanding Basic GUI Map Concepts

41

Finding an Object or Window in the GUI Map

When the cursor is on a statement in your test script that references a GUI
object or window, you can right-click and select Find in GUI Map.

WinRunner finds and highlights the specified object or window in the GUI
map or GUI map file and in the application, if it is open.

➤ If the GUI map file containing the window is loaded, and the specified
window is open, then WinRunner opens the GUI Map Editor and highlights
the window in the GUI map and in the application.

➤ If the GUI map file containing the object is loaded, and the window
containing the specified object is open, then WinRunner opens the GUI
Map Editor and highlights the object in the GUI map and in the
application.

➤ If the GUI map file containing the object or window is loaded, but the
application containing the object or window is not open, then WinRunner
opens the GUI Map Editor and highlights the object or window in the GUI
map.

General Guidelines for Working with GUI Map Files

Consider the following guidelines when working with GUI map files:

➤ A single GUI map file cannot contain two windows with the same logical
name.

➤ A single window in a GUI map file cannot contain two objects with the
same logical name.

➤ In the GUI Map Editor, you can use the Options > Filter command to open
the Filters dialog box and filter the objects in the GUI map by logical name,
physical description, or class. For more information, see “Filtering Displayed
Objects” on page 88.

Part II • Introducing the GUI Map

42

Deciding Which GUI Map File Mode to Use

When you plan and create tests, you must consider how you want to work
with GUI maps. You can work with one GUI map file for each test or a
common GUI map file for multiple tests.

➤ If you are new to WinRunner or to testing, you may want to consider
working in the GUI Map File Per Test mode. In this mode, a GUI map file is
created automatically every time you create a new test. The GUI map file
that corresponds to your test is automatically saved whenever you save your
test and automatically loaded whenever you open your test.

➤ If you are familiar with WinRunner or with testing, it is probably most
efficient to work in the Global GUI Map File mode. This is the default mode
in WinRunner.

The following table lists the relative advantages and disadvantages of
working in each mode:

GUI Map File per Test Global GUI Map File

Method WinRunner learns the GUI of
your application as you
record and automatically
saves this information in a
GUI map file that
corresponds to each test.
When you open the test,
WinRunner automatically
loads the corresponding GUI
map file.

Before you record, have
WinRunner learn your
application by clicking the
Learn button in the GUI Map
Editor and clicking your
application window. You repeat
this process for all windows in
the application. You save the
GUI map file for each window
or set of windows as a separate
GUI map file. When you run
your test, you load the GUI
map file. When the application
changes, you update the GUI
map files.

Chapter 4 • Understanding Basic GUI Map Concepts

43

Note: Sometimes the logical name of an object is not descriptive. If you use
the GUI Map Editor to learn your application before you record, then you
can modify the name of the object in the GUI map to a descriptive name by
highlighting the object and clicking the Modify button. When WinRunner
records on your application, the new name will appear in the test script. For
more information on modifying the logical name of an object, see
“Modifying Logical Names and Physical Descriptions,” on page 77.

For additional guidelines on working in the Global GUI Map File mode, see
“Guidelines for Working in the Global GUI Map File Mode” on page 63.

Advantages 1. Each test has its own GUI
map file.
2. This is the simplest mode
for inexperienced testers or
WinRunner users who may
forget to save or load GUI
map files.
3. It is easy to maintain and
update an individual test.

1. If an object or window
description changes, you only
have to modify one GUI map
file for all tests referencing that
file to run properly.
2. It is easy to maintain and
update a suite of tests
efficiently.

Disadvantages Whenever the GUI of your
application changes, you
need to update the GUI map
file for each test separately in
order for your tests to run
properly.

You need to remember to save
and load the GUI map file, or
to add statements that load the
GUI map file to your startup
test or to your other tests.

Suggested
Method

This is the preferred method
if you are an inexperienced
tester or WinRunner user or
if the GUI of your
application is not expected
to change.

This is the preferred method
for experienced WinRunner
users and other experienced
testers, or if the GUI of your
application may change.

GUI Map File per Test Global GUI Map File

Part II • Introducing the GUI Map

44

45

5
Working in the Global GUI Map File Mode

This chapter explains how to save the information in your GUI map when
you work in the Global GUI Map File mode. This is the default mode in
WinRunner. If you want to work in the simpler GUI Map File per Test mode,
you can skip this chapter and proceed to Chapter 6, “Working in the GUI
Map File per Test Mode.”

This chapter describes:

➤ About the Global GUI Map File Mode

➤ Sharing a GUI Map File among Tests

➤ Teaching WinRunner the GUI of Your Application

➤ Saving the GUI Map

➤ Loading the GUI Map File

➤ Guidelines for Working in the Global GUI Map File Mode

About the Global GUI Map File Mode

The most efficient way to work in WinRunner is to organize tests into
groups when you design your test suite. Each test in the group should test
the same GUI objects in your application. Therefore, these tests should
reference the information about GUI objects in a common repository. When
a GUI object in your application changes, you need to update the
information only in the relevant GUI map file, instead of updating it in
every test. When you work in the manner described above, you are working
in the Global GUI Map File mode.

Part II • Introducing the GUI Map

46

It is possible that one test within a test-group will test certain GUI objects
within a window, while another test within the same group will test some of
those objects and additional ones within the same window. Therefore, if you
teach WinRunner the GUI of your application only by recording, your GUI
map file may not contain a comprehensive list of all the objects in the
window. It is best for WinRunner to learn the GUI of your application
comprehensively before you start recording your tests.

WinRunner can learn the GUI of your application in several ways. Usually,
you use the RapidTest Script wizard before you start to test in order to learn
all the GUI objects in your application at once. This ensures that
WinRunner has a complete, well-structured basis for all your Context
Sensitive tests. The descriptions of GUI objects are saved in GUI map files.
Since all test users can share these files, there is no need for each user to
individually relearn the GUI.

If the GUI of your application changes during the software development
process, you can use the GUI Map Editor to learn individual windows and
objects in order to update the GUI map. You can also use the GUI Map
Editor to learn individual windows or objects. You can also learn objects
while recording: you simply start to record a test and WinRunner learns the
properties of each GUI object you use in your application. This approach is
fast and enables a beginning user to create test scripts immediately.

Note that since GUI map files are independent of tests, they are not saved
automatically when you close a test. You must save the GUI map file
whenever you modify it with changes you want to keep.

Similarly, since GUI map files are independent of tests, they are not
automatically loaded when you open a test. Therefore, you must load the
appropriate GUI map files before you run tests. WinRunner uses these files
to help locate the objects in the application being tested. It is most efficient
to insert a GUI_load statement into your startup test. When you start
WinRunner, it automatically runs the startup test and loads the specified
GUI map files. For more information on startup tests, refer to Chapter 23,
“Initializing Special Configurations” in the Mercury WinRunner Advanced
Features User’s Guide.

Chapter 5 • Working in the Global GUI Map File Mode

47

Alternatively, you can insert a GUI_load statement into individual tests, or
use the GUI Map Editor to load GUI map files manually.

Note: When you are working in the Global GUI Map File mode, then if you
call a test created in the GUI Map File per Test mode that references GUI
objects, the test may not run properly.

Sharing a GUI Map File among Tests

When you design your test suite so that a single GUI map file is shared by
multiple tests, you can easily keep up with changes made to the user
interface of the application being tested. Instead of editing your entire suite
of tests, you only have to update the relevant object descriptions in the GUI
map.

For example, suppose the Open button in the Open dialog box is changed to
an OK button. You do not have to edit every test script that uses this Open
button. Instead, you can modify the Open button’s physical description in
the GUI map, as shown in the example below. The value of the label
property for the button is changed from Open to OK:

Open button: {class:push_button, label:OK}

During a test run, when WinRunner encounters the logical name “Open” in
the Open dialog box in the test script, it searches for a push button with the
label “OK”.

GUI Map
test1
test2
test3
test4
test5
test6
test7
test8
test9
test10

Part II • Introducing the GUI Map

48

You can use the GUI Map Editor to modify the logical names and physical
descriptions of GUI objects at any time during the testing process. In
addition, you can use the Run wizard to update the GUI map during a test
run. The Run wizard opens automatically if WinRunner cannot locate an
object in the application while it runs a test. See Chapter 7, “Editing the GUI
Map,” for more information.

Note: You can modify the set of properties that WinRunner learns for a
specific object class using the GUI Map Configuration dialog box. For more
information on GUI Map Configuration, refer to Chapter 2, “Configuring
the GUI Map” in the Mercury WinRunner Advanced Features User’s Guide.

Teaching WinRunner the GUI of Your Application

WinRunner must learn the information about the GUI objects in your
application in order to add it to the GUI map file. WinRunner can learn the
information it needs about the properties of GUI objects in the following
ways:

➤ using the RapidTest Script wizard to teach WinRunner the properties of all
GUI objects in every window in your application

➤ recording in your application to teach WinRunner the properties of all GUI
objects on which you record

➤ using the GUI Map Editor to teach WinRunner the properties of an
individual GUI object, window, or all GUI objects in a window

Chapter 5 • Working in the Global GUI Map File Mode

49

Teaching WinRunner the GUI with the RapidTest Script Wizard

You can use the RapidTest Script wizard before you start to test in order to
teach WinRunner all the GUI objects in your application at once. This gives
WinRunner a well-structured basis for all your Context Sensitive tests. The
descriptions of GUI objects are saved in GUI map files. Since all test users
can share these files, there is no need for each user to individually relearn
the GUI.

Note: You can use the RapidTest Script wizard only when you work in the
Global GUI Map File mode (the default mode, which is described in this
chapter). All tests created in WinRunner version 6.02 or earlier use this
mode.

When you work in the GUI Map File per Test mode, the RapidTest Script
wizard is not available. The RapidTest Script wizard is also not available if
the WebTest or certain other add-ins are loaded. To find out whether the
RapidTest wizard is available with the add-in(s) you are using, refer to the
add-in documentation.

The RapidTest Script wizard enables WinRunner to learn all windows and
objects in your application being tested at once. The wizard systematically
opens each window in your application and learns the properties of the GUI
objects it contains. WinRunner provides additional methods for learning
the properties of individual objects.

WinRunner then saves the information in a GUI map file. WinRunner also
creates a startup script which includes a GUI_load command that loads this
GUI map file. For information on startup tests, refer to Chapter 23,
“Initializing Special Configurations” in the Mercury WinRunner Advanced
Features User’s Guide.

Part II • Introducing the GUI Map

50

To teach WinRunner your application using the RapidTest Script wizard:

 1 Choose Insert > RapidTest Script Wizard. The RapidTest Script wizard
welcome screen opens.

Click Next.

Note: The RapidTest Script Wizard option is not available when you use the
WinRunner run-only version, when you work in GUI file per test mode, or
when you load the WebTest add-in or certain other add-ins. Refer to the
add-in documentation to see whether the RapidTest Script wizard is
available when your add-in is loaded.

Chapter 5 • Working in the Global GUI Map File Mode

51

 2 The Identify Your Application screen opens.

Click the pointing hand, and then click your application in order to identify
it for the Script wizard. The name of the window you clicked appears in the
Window Name box. Click Next.

 3 The Select Tests screen opens.

Part II • Introducing the GUI Map

52

 4 Select the type(s) of test(s) you want WinRunner to create for you. When the
Script wizard finishes walking through your application, the tests you select
are displayed in the WinRunner window.

You can choose any of the following tests:

➤ GUI Regression Test - This test enables you to compare the state of GUI
objects in different versions of your application. For example, it can check
whether a button is enabled or disabled.

To create a GUI Regression test, the wizard captures default information
about each GUI object in your application. When you run the test on your
application, WinRunner compares the captured state of GUI objects to their
current state, and reports any mismatches.

➤ Bitmap Regression Test - This test enables you to compare bitmap images
of your application in different versions of your application. Select this test
if you are testing an application that does not contain GUI objects.

To create a Bitmap Regression test, the wizard captures a bitmap image of
each window in your application. When you run the test, WinRunner
compares the captured window images to the current windows, and reports
any mismatches.

➤ User Interface Test - This test determines whether your application adheres
to Microsoft Windows standards. It checks that:

➤ GUI objects are aligned in windows

➤ All defined text is visible on a GUI object

➤ Labels on GUI objects are capitalized

➤ Each label includes an underlined letter (mnemonics)

➤ Each window includes an OK button, a Cancel button, and a system
menu

When you run this test, WinRunner searches the user interface of your
application and reports each case that does not adhere to Microsoft
Windows standards.

Chapter 5 • Working in the Global GUI Map File Mode

53

➤ Test Template - This test provides a basic framework of an automated test
that navigates your application. It opens and closes each window, leaving
space for you to add code (through recording or programming) that checks
the window.

Tip: Even if you do not want to create any of the tests described above, you
can still use the Script wizard to learn the GUI of your application.

Click Next.

 5 The Define Navigation Controls screen opens.

Enter the characters that represent navigation controls in your application.
If you want the RapidTest Script wizard to pause in each window in your
application, so that you can confirm which objects will be activated to open
additional windows, select the Pause to confirm for each window check
box.

Click Next.

Part II • Introducing the GUI Map

54

 6 The Set the Learning Flow screen opens.

Choose Express or Comprehensive learning flow. Click Learn. WinRunner
begins to systematically learn your application, one window at a time. This
may take several minutes depending on the complexity of your application.

 7 The Start Application screen opens.

Choose Yes or No to tell WinRunner whether or not you want WinRunner
to automatically activate this application whenever you invoke WinRunner.
Click Next.

 8 The Save Files screen opens.

Enter the full path and file name where you want your startup script and
GUI Map file to be stored, or accept the defaults. Click Next.

 9 The Congratulations screen opens.

Click OK to close the RapidTest Script wizard. The test(s) that were created
based on the application that WinRunner learned are displayed in the
WinRunner window.

Teaching WinRunner the GUI by Recording

WinRunner can also learn objects while recording in Context Sensitive
mode (the default mode) in your application: you simply start to record a
test and WinRunner learns the properties of each GUI object you use in your
application. This approach is fast and enables a beginning user to create test
scripts immediately. For information on recording in Context Sensitive
mode, see Chapter 8, “Designing Tests.”

When you record a test, WinRunner first checks whether the objects you
select are in the GUI map. If they are not in the GUI map, WinRunner learns
the objects.

Chapter 5 • Working in the Global GUI Map File Mode

55

WinRunner adds the information it learned to the temporary GUI map file.
To save the information in the temporary GUI map file, you must save this
file before exiting WinRunner. For additional information on saving the
GUI map, see “Saving the GUI Map” on page 57.

Tip: If you do not want WinRunner to add information to the temporary
GUI map file, you can instruct WinRunner not to load the temporary GUI
map file in the General category of the General Options dialog box. For
more information, see Chapter 23, “Setting Global Testing Options.”

In general, you should use recording as a learning tool for small, temporary
tests only. Use the RapidTest Script wizard or the GUI Map Editor to learn
the entire GUI of your application.

Teaching WinRunner the GUI Using the GUI Map Editor

WinRunner can use the GUI Map Editor to learn an individual object or
window, or all objects in a window.

To teach GUI objects to WinRunner using the GUI Map Editor:

 1 Choose Tools > GUI Map Editor. The GUI Map Editor opens.

Part II • Introducing the GUI Map

56

 2 Click Learn. The mouse pointer becomes a pointing hand. Place the
pointing hand on the object to learn, and click the left mouse button.

➤ To learn all the objects in a window, click the title bar of the window.
When prompted to learn all the objects in the window, click Yes (the
default).

➤ To learn only a window, click the title bar of the window. When
prompted to learn all the objects in the window, click No.

➤ To learn an object, click the object.

(To cancel the operation, click the right mouse button.)

WinRunner adds the information it learns to the temporary GUI map file.
To keep the information in the temporary GUI map file, you must save it
before exiting WinRunner.

Learns the objects in a window.

Chapter 5 • Working in the Global GUI Map File Mode

57

Saving the GUI Map

When you learn GUI objects by recording, the object descriptions are added
to the temporary GUI map file. The temporary file is always open, so that
any objects it contains are recognized by WinRunner. When you start
WinRunner, the temporary file is loaded with the contents of the last testing
session.

To avoid overwriting valuable GUI information during a new recording
session, you should save the temporary GUI map file in a permanent GUI
map file.

To save the contents of the temporary GUI map file to a permanent GUI
map file:

 1 Choose Tools > GUI Map Editor. The GUI Map Editor opens.

 2 Choose View > GUI Files.

 3 Make sure the <Temporary> file is displayed in the GUI File list. An
asterisk (*) preceding the file name indicates the GUI map file was changed.
The asterisk disappears when the file is saved.

 4 In the GUI Map Editor, choose File > Save to open the Save GUI File dialog
box.

 5 Click a folder. Type in a new file name or click an existing file.

Part II • Introducing the GUI Map

58

 6 Click Save. The saved GUI map file is loaded and appears in the GUI Map
Editor.

You can also move objects from the temporary file to an existing GUI map
file. For details, see “Copying and Moving Objects between Files” on
page 82.

To save the contents of a GUI map file to a Quality Center database:

Note: You can only save GUI map files to a Quality Center database if you
are working with Quality Center. For additional information, refer to
Chapter 26, “Managing the Testing Process” in the Mercury WinRunner
Advanced Features User’s Guide.

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Make sure the <Temporary> file is displayed in the GUI File list. An asterisk
(*) next to the file name indicates the GUI map file was changed. The
asterisk disappears when the file is saved.

 4 In the GUI Map Editor, choose File > Save.

The Save GUI File to Quality Center project dialog box opens.

Chapter 5 • Working in the Global GUI Map File Mode

59

 5 In the File name text box, enter a name for the GUI map file. Use a
descriptive name that will help you easily identify it later.

 6 Click Save to save the GUI map file to a Quality Center database and to close
the dialog box.

Loading the GUI Map File

When WinRunner learns the objects in an application, it stores the
information in a GUI map file. In order for WinRunner to use a GUI map file
to locate objects in your application, you must load it into the GUI map. You
must load the appropriate GUI map files before you run tests on your
application being tested.

You can load GUI map files in one of two ways:

➤ using the GUI_load function

➤ from the GUI Map Editor

You can view a loaded GUI map file in the GUI Map Editor. A loaded file is
indicated by the letter “L” and a number preceding the file name. You can
also open the GUI map file for editing without loading it.

Note: If you are working in the GUI Map File per Test mode, you should not
manually load, unload, or save GUI map files.

Loading GUI Map Files Using the GUI_load Function

The GUI_load statement loads any GUI map file you specify. Although the
GUI map may contain one or more GUI map files, you can load only one
GUI map file at a time. To load several files, use a separate statement for
each. You can insert the GUI_load statement at the beginning of any test,
but it is preferable to place it in your startup test. In this way, GUI map files
are loaded automatically each time you start WinRunner. For more
information, refer to Chapter 23, “Initializing Special Configurations” in the
Mercury WinRunner Advanced Features User’s Guide.

Part II • Introducing the GUI Map

60

To load a file using GUI_load:

 1 Choose File > Open to open the test from which you want to load the file.

 2 In the test script, type the GUI_load statement as follows, or click the
GUI_load function in the Function Generator and browse to or type in the
file path:

GUI_load ("file_name_full_path");

For example:

GUI_load ("c:\\qa\\flights.gui");

Refer to Chapter 8, “Generating Functions,” in the Mercury WinRunner
Advanced Features User’s Guide for information on how to use the Function
Generator.

 3 Run the test to load the file. See Chapter 20, “Understanding Test Runs,” for
more information.

Note: If you only want to edit the GUI map file, you can use the GUI_open
function to open a GUI map file for editing, without loading it. You can use
the GUI_close function to close an open GUI map file. See Chapter 7,
“Editing the GUI Map,” for information about editing the GUI map file. You
can use the GUI_unload and GUI_unload_all functions to unload loaded
GUI map files. For information on working with TSL functions, refer to
Chapter 7, “Enhancing Your Test Scripts with Programming” in the Mercury
WinRunner Advanced Features User’s Guide. For more information about
specific TSL functions and examples of usage, refer to the TSL Reference.

Chapter 5 • Working in the Global GUI Map File Mode

61

Loading GUI Map Files Using the GUI Map Editor

You can load a GUI map file manually from the file system or from a Quality
Center database, using the GUI Map Editor.

Note: You can only load GUI map files from a Quality Center database if you
are connected to a Quality Center project. For additional information, refer
to Chapter 26, “Managing the Testing Process” in the Mercury WinRunner
Advanced Features User’s Guide.

To load a GUI map file from the file system using the GUI Map Editor:

 1 Choose Tools > GUI Map Editor. The GUI Map Editor opens.

 2 Choose View > GUI Files.

 3 Choose File > Open.

 4 In the Open GUI File dialog box, select a GUI map file.

Note that by default, the file is loaded into the GUI map. If you only want to
edit the GUI map file, click Open for Editing Only. See Chapter 7, “Editing
the GUI Map,” for information about editing the GUI map file.

 5 Click Open. The GUI map file is added to the GUI file list. The letter “L” and
a number preceding the file name indicates that the file has been loaded.

Part II • Introducing the GUI Map

62

To load a GUI map file from a Quality Center database using the GUI Map
Editor:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose File > Open.

The Open GUI File from Quality Center Project dialog box opens. All the
GUI map files that have been saved to the selected database are listed in the
dialog box.

 3 Select a GUI map file from the list of GUI map files in the selected database.
The name of the GUI map file appears in the File name text box.

To load the GUI map file into the GUI Map Editor, make sure the
Load into the GUI Map default setting is selected. Alternatively, if you only
want to edit the GUI map file, click Open For Editing Only. For more
information, see Chapter 7, “Editing the GUI Map.”

 4 Click Open to open the GUI map file. The GUI map file is added to the GUI
file list. The letter “L” indicates that the file is loaded.

Chapter 5 • Working in the Global GUI Map File Mode

63

Guidelines for Working in the Global GUI Map File Mode

Consider the following guidelines when working in the Global GUI Map File
mode:

➤ To improve performance, use smaller GUI map files for testing your
application instead of one larger file. You can divide your application’s user
interface into different GUI map files by window or in another logical
manner.

➤ Sometimes the logical name of an object is not descriptive. If you use the
GUI Map Editor to learn your application before you record, then you can
modify the logical name of the object in the GUI map to a descriptive name
by highlighting the object and clicking the Modify button. When
WinRunner records on your application, the new name will appear in the
test script. If you recorded your test before changing the logical name of the
object in the GUI map, make sure to update the logical name of the object
accordingly in your test script before you run your test. For more
information on modifying the logical name of an object, see “Modifying
Logical Names and Physical Descriptions,” on page 77.

➤ Do not store information that WinRunner learns about the GUI of an
application in the temporary GUI map file, since this information is not
automatically saved when you close WinRunner. Unless you are creating a
small, temporary test that you do not intend to reuse, you should save the
GUI map from the GUI Map Editor (by choosing File > Save) before closing
your test.

Tip: You can instruct WinRunner not to load the temporary GUI map file in
the General category of the General Options dialog box. For more
information on this option, see Chapter 23, “Setting Global Testing
Options.”

Part II • Introducing the GUI Map

64

➤ When WinRunner learns the GUI of your application by recording, it learns
only those objects upon which you perform operations; it does not learn all
the objects in your application. Therefore, unless you are creating a small,
temporary test that you do not intend to reuse, it is best for WinRunner to
learn the GUI of an application using the Learn button in the GUI Map
Editor before you start recording than for WinRunner to learn your
application once you start recording.

➤ Consider appointing one tester a “GUI Map Administrator,” with
responsibility for updating the GUI maps when the GUI of your application
changes.

For additional guidelines for working with GUI maps, see “General
Guidelines for Working with GUI Map Files” on page 41.

65

6
Working in the GUI Map File per Test
Mode

This chapter explains how to work in the GUI Map File per Test mode. This
mode is recommended if you are new to testing or to WinRunner. It is very
easy to use because you do not need to understand how to create, save, or
load GUI map files.

This chapter describes:

➤ About the GUI Map File per Test Mode

➤ Specifying the GUI Map File per Test Mode

➤ Working in the GUI Map File per Test Mode

➤ Guidelines for Working in the GUI Map File per Test Mode

About the GUI Map File per Test Mode

When you work in the GUI Map File per Test mode, you do not need to teach
WinRunner the GUI of your application, save, or load GUI map files (as
discussed in Chapter 5, “Working in the Global GUI Map File Mode”), since
WinRunner does this for you automatically.

In the GUI Map File per Test mode, WinRunner creates a new GUI map file
whenever you create a new test. WinRunner saves the test’s GUI map file
whenever you save the test. When you open the test, WinRunner
automatically loads the GUI map file associated with the test.

Part II • Introducing the GUI Map

66

Note that some WinRunner features are not available when you work in this
mode:

➤ The RapidTest Script wizard is disabled. For information about this wizard,
see Chapter 5, “Working in the Global GUI Map File Mode.”

➤ The option to reload the (last) temporary GUI map file when starting
WinRunner (the Load temporary GUI map file check box in the General
category of the General Options dialog box) is disabled. For additional
information about this option, see Chapter 23, “Setting Global Testing
Options.”

➤ Compiled modules do not load GUI map files. If a compiled module
references GUI objects, then those objects must also be referenced in the test
that loads the compiled module. For additional information, refer to
Chapter 11, “Employing User-Defined Functions in Tests” in the Mercury
WinRunner Advanced Features User’s Guide.

➤ If a called test that was created in the GUI Map File per Test mode references
GUI objects, it may not run properly in the Global GUI Map File mode.

You choose to work in the GUI Map File per Test mode by specifying this
option in the General category of the General Options dialog box.

When you become more familiar with WinRunner, you may want to
consider working in the Global GUI Map File mode. In order to change from
working in the GUI Map File per Test mode to working in the Global GUI Map
File mode, it is recommended that you merge the GUI map files associated
with each test into GUI map files that are common to a test-group. You can
use the GUI Map File Merge Tool to merge GUI map files. For additional
information on merging GUI map files and changing to the Global GUI Map
File mode, refer to Chapter 1, “Merging GUI Map Files” in the Mercury
WinRunner Advanced Features User’s Guide.

Chapter 6 • Working in the GUI Map File per Test Mode

67

Specifying the GUI Map File per Test Mode

In order to work in the GUI Map File per Test mode, you must specify this
option in the General category of the General Options dialog box.

To work in the GUI Map File per Test mode:

 1 Choose Tools > General Options.

The General Options dialog box opens.

 2 Click the General category.

 3 In the GUI files section, select GUI Map File per Test.

 4 Click OK to close the dialog box.

 5 A dialog box opens warning you that changes will not take effect until you
close and restart WinRunner. Click OK.

Note that the Load temporary GUI map file option is automatically disabled.

Set the GUI Map
File per Test mode.

Part II • Introducing the GUI Map

68

 6 When you close WinRunner, you will be prompted to save changes made to
the configuration. Click Yes.

Note: In order for this change to take effect, you must restart WinRunner.

For additional information on the General Options dialog box, see
Chapter 23, “Setting Global Testing Options.”

Working in the GUI Map File per Test Mode

Every time you create a new test, WinRunner automatically creates a new
GUI map file for the test. Whenever you save the test, WinRunner saves the
corresponding GUI map file. The GUI map file is saved in the same folder as
the test. Moving a test to a new location also moves the GUI map file
associated with the test.

WinRunner learns the GUI of your application either by recording, or by
using the Learn feature. If the GUI of your application changes, you can
update the GUI map file for each test using the GUI Map Editor. You do not
need to load or save the GUI map file.

To update a GUI map file:

 1 Open the test for which you want to update the GUI map file.

 2 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 3 Edit the open GUI map file, as described in Chapter 7, “Editing the GUI
Map.”

Note: If you change the logical name of an object in your GUI map file, you
must update your test script accordingly. For additional information, see
“Modifying Logical Names and Physical Descriptions” on page 77.

 4 When you are done, choose File > Exit to close the GUI Map Editor.

Chapter 6 • Working in the GUI Map File per Test Mode

69

Guidelines for Working in the GUI Map File per Test Mode

Consider the following guidelines when working in the GUI Map File per Test
mode:

➤ Do not save your changes to a GUI map file from the GUI Map Editor. Your
changes are saved automatically when you save your test.

➤ Do not insert any GUI_load statements into your tests.

➤ Do not manually load or unload GUI map files while working in the GUI
Map File per Test mode. The GUI map file for each test is automatically
loaded when you open your test.

➤ Do not call other tests that utilize the Global GUI Map mode.

For additional guidelines for working with GUI maps, see “General
Guidelines for Working with GUI Map Files” on page 41.

Part II • Introducing the GUI Map

70

71

7
Editing the GUI Map

This chapter explains how to extend the life of your tests by modifying
descriptions of objects in the GUI map.

This chapter describes:

➤ About Editing the GUI Map

➤ The GUI Map Editor

➤ The Run Wizard

➤ Modifying Logical Names and Physical Descriptions

➤ How WinRunner Handles Varying Window Labels

➤ Using Regular Expressions in the Physical Description

➤ Copying and Moving Objects between Files

➤ Finding an Object in a GUI Map File

➤ Finding an Object in Multiple GUI Map Files

➤ Manually Adding an Object to a GUI Map File

➤ Deleting an Object from a GUI Map File

➤ Clearing a GUI Map File

➤ Filtering Displayed Objects

➤ Saving Changes to the GUI Map

Part II • Introducing the GUI Map

72

About Editing the GUI Map

WinRunner uses the GUI map to identify and locate GUI objects in your
application. If the GUI of your application changes, you must update object
descriptions in the GUI map so you can continue to use existing tests.

You can update the GUI map in two ways:

➤ at any time during the testing process, using the GUI Map Editor

➤ during a test run, using the Run wizard

The Run wizard opens automatically during a test run if WinRunner cannot
locate an object in the application being tested. It guides you through the
process of identifying the object and updating its description in the GUI
map. This ensures that WinRunner will find the object in subsequent test
runs.

While working with the GUI Map Editor, you can:

➤ manually edit the GUI map

➤ modify the logical names and physical descriptions of objects, add new
descriptions, and remove obsolete descriptions

➤ move or copy descriptions from one GUI map file to another

Before you can update the GUI map, the appropriate GUI map files must be
loaded. You can load files by using the GUI_load statement in a test script or
by choosing File > Open in the GUI Map Editor. See Chapter 5, “Working in
the Global GUI Map File Mode,” for more information.

Note: If you are working in the GUI Map File per Test mode, you should not
manually load or unload GUI map files.

Chapter 7 • Editing the GUI Map

73

The GUI Map Editor

You can edit the GUI map at any time using the GUI Map Editor. To open
the GUI Map Editor, choose Tools > GUI Map Editor.

There are two views in the GUI Map Editor, which enable you to display the
contents of either:

➤ the entire GUI map

➤ an individual GUI map file

Objects within windows are indented.

Displays all windows and objects in the GUI map.

When selected, displays the physical description
of the selected object or window.

Part II • Introducing the GUI Map

74

When viewing the contents of specific GUI map files, you can expand the
GUI Map Editor to view two GUI map files simultaneously. This enables you
to easily copy or move descriptions between files. To view the contents of
individual GUI map files, choose View > GUI Files.

In the GUI Map Editor, objects are displayed in a tree under the icon of the
window in which they appear. When you double-click a window name or
icon in the tree, you can view all the objects it contains. To concurrently
view all the objects in the tree, choose View > Expand Objects Tree. To view
windows only, choose View > Collapse Objects Tree.

When you view the entire GUI map, you can select the Show Physical
Description check box to display the physical description of any object you
select in the Windows/Objects list. When you view the contents of a single
GUI map file, the GUI Map Editor automatically displays the physical
description.

Lists the open GUI map files.

Shows the windows and objects in
the selected GUI map file.

Displays the physical description
of the selected window or object.

Expands the dialog box so you can view
the contents of two GUI map files.

Chapter 7 • Editing the GUI Map

75

Suppose the WordPad window is in your GUI map file. If you select
Show Physical Description and click the WordPad window name or icon in
the window list, the following physical description is displayed in the
middle pane of the GUI Map Editor:

{
class: window,
label: "Document - WordPad",
MSW_class: WordPadClass
}

Notes:

If you modify the logical name of an object in the GUI map, you must also
modify the logical name of the object in the test script, so that WinRunner
will be able to locate the object in the GUI map.

If the value of a property contains any spaces or special characters, that
value must be enclosed by quotation marks. Multiple property:value sets
must be separated by commas.

The Run Wizard

The Run wizard detects changes in the GUI of your application that interfere
with the test run. During a test run, the Run wizard automatically opens
when WinRunner cannot locate an object. The Run wizard prompts you to
point to the object in your application, determines why the object cannot
be found, and then offers a solution. For example, the Run wizard may
suggest loading an appropriate GUI map file. In most cases, a new
description is automatically added to the GUI map or the existing
description is modified. When this process is completed, the test run
continues. (In future test runs, WinRunner can successfully locate the
object.)

Part II • Introducing the GUI Map

76

For example, suppose you run a test in which you click the Network button
in an Open window in your application. This portion of your script may
appear as follows:

set_window ("Open");
button_press ("Network");

If the Network button is not in the GUI map, the Run wizard opens and
describes the problem.

Click the Hand button in the wizard and point to the Network button. The
Run wizard suggests a solution.

Chapter 7 • Editing the GUI Map

77

When you click OK, the Network object description is automatically added
to the GUI map and WinRunner resumes the test. The next time you run the
test, WinRunner will be able to identify the Network button.

In some cases, the Run wizard edits the test script, rather than the GUI map.
For example, if WinRunner cannot locate an object because the appropriate
window is inactive, the Run wizard inserts a set_window statement in the
test script.

Modifying Logical Names and Physical Descriptions

You can modify the logical name or the physical description of an object in
a GUI map file using the GUI Map Editor.

Changing the logical name of an object is useful when the assigned logical
name is not sufficiently descriptive or is too long. For example, suppose
WinRunner assigns the logical name “Employee Address” (static) to a static
text object. You can change the name to “Address” to make test scripts easier
to read.

Changing the physical description is necessary when the property value of
an object changes. For example, suppose the label of a button is changed
from “Insert” to “Add”. You can modify the value of the label property in
the physical description of the Insert button as shown below:

Insert button:{class:push_button, label:Add}

During a test run, when WinRunner encounters the logical name “Insert” in
a test script, it searches for the button with the label “Add”.

To modify an object’s logical name or physical description in a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 If the appropriate GUI map file is not already loaded, choose File > Open to
open the file.

 4 To see the objects in a window, double-click the window name in the
Windows/Objects field. Note that objects within a window are indented.

Part II • Introducing the GUI Map

78

 5 Select the name of the object or window to modify.

 6 Click Modify to open the Modify dialog box.

 7 Edit the logical name or physical description as desired and click OK. The
change appears immediately in the GUI map file.

Click Modify.

Select a window or an object.

Chapter 7 • Editing the GUI Map

79

Adding Comments to the Physical Description

When you modify an object’s physical description, you can add comments
to make the physical description easier to understand. For example, suppose
you want to add a comment that makes it easier for you to recognize the
object. You could write:

{
 class: object,
 MSW_class: html_text_link,
 html_name: here,
 comment: "Link to the home page"
}

Note: As with any other property, if the value of a comment property
contains any spaces or special characters, that value must be enclosed by
quotation marks.

How WinRunner Handles Varying Window Labels

Windows often have varying labels. For example, the main window in a text
application may display the file name and application name in the title bar.

If WinRunner cannot recognize a window because its name changed after
WinRunner learned it, the Run wizard opens and prompts you to identify
the window in question. Once you identify the window, WinRunner realizes
the window has a varying label, and it modifies the window’s physical
description accordingly.

For example, suppose you record a test on the main window of Microsoft
Word. WinRunner learns the following physical description:

{
 class: window,
 label: "Microsoft Word - Document11",
 MSW_class: OpusApp
}

Part II • Introducing the GUI Map

80

Suppose you run your test when Document 12 is open in Microsoft Word.
When WinRunner cannot find the window, the Run wizard opens:

You click the Hand button and click the appropriate Microsoft Word
window, so that WinRunner will learn it. You are prompted to instruct
WinRunner to update the window’s description in the GUI map.

Chapter 7 • Editing the GUI Map

81

If you click Edit, you can see that WinRunner has modified the window’s
physical description to include regular expressions:

{
class: window,
label: "!Microsoft Word - Document.*",
MSW_class: OpusApp
}

(To continue running the test, you click OK.)

These regular expressions enable WinRunner to recognize the window
regardless of the name appearing after the Microsoft Word - Document
window title.

Using Regular Expressions in the Physical Description

WinRunner uses two “hidden” properties in order to use a regular
expression in an object’s physical description. These properties are
regexp_label and regexp_MSW_class.

The regexp_label property is used for windows only. It operates “behind the
scenes” to insert a regular expression into a window’s label description.

The regexp_MSW_class property inserts a regular expression into an
object’s MSW_class. It is obligatory for all types of windows and for the
object class object.

Adding a Regular Expression

You can add the regexp_label and the regexp_MSW_class properties to the GUI
configuration for a class as needed. You would add a regular expression in
this way when either the label or the MSW class of objects in your
application has characters in common that can safely be ignored.

Part II • Introducing the GUI Map

82

Suppressing a Regular Expression

You can suppress the use of a regular expression in the physical description
of a window. Suppose the label of all the windows in your application begins
with “AAA Wingnuts —”.

For WinRunner to distinguish between the windows, you could replace the
regexp_label property in the list of obligatory learned properties for windows
in your application with the label property. For more information, refer to
Chapter 2, “Configuring the GUI Map” in the Mercury WinRunner Advanced
Features User’s Guide.

For more information about regular expressions, refer to Chapter 6, “Using
Regular Expressions” in the Mercury WinRunner Advanced Features User’s
Guide.

Copying and Moving Objects between Files

You can update GUI map files by copying or moving the description of GUI
objects from one GUI map file to another. Note that you can only copy
objects from a GUI file that you have opened for editing only, that is, from a
file you have not loaded.

Note: If you are working in the GUI Map File per Test mode, you should not
manually open GUI map files or copy or move objects between files.

To copy or move objects between two GUI map files:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

Chapter 7 • Editing the GUI Map

83

 3 Click Expand in the GUI Map Editor. The dialog box expands to display two
GUI map files simultaneously.

 4 View a different GUI map file on each side of the dialog box by selecting the
file names in the GUI File lists.

 5 In one file, select the objects you want to copy or move. Use the Shift key
and/or Control key to select multiple objects. To select all objects in a GUI
map file, choose Edit > Select All.

 6 Click Copy or Move.

 7 To restore the GUI Map Editor to its original size, click Collapse.

Note: If you add new windows from a loaded GUI map file to the temporary
GUI map file, then when you save the temporary GUI map file, the New
Windows dialog box opens. You are prompted to add the new windows to
the loaded GUI map file or save them in a new GUI map file. For additional
information, refer to the context-sensitive Help.

Part II • Introducing the GUI Map

84

Finding an Object in a GUI Map File

You can find a specific object in a GUI map file either by pointing to the
object, or by selecting a line in your test script that contains the object.

To find an object from the application in a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Choose File > Open to load the GUI map file.

 4 Click Find. The mouse pointer turns into a pointing hand.

 5 Click the object in the application. The object is highlighted in the GUI
map.

To find an object from the test script in a GUI map file:

 1 Open an existing test and make sure that all relevant GUI maps are loaded.

 2 Right-click anywhere in the line that contains the object and choose Find In
GUI Map. The GUI Map Editor dialog box opens with the relevant object
highlighted.

For more information on test scripts and the Test Script Language, refer to
Chapter 7, “Enhancing Your Test Scripts with Programming” in the Mercury
WinRunner Advanced Features User’s Guide.

Chapter 7 • Editing the GUI Map

85

Finding an Object in Multiple GUI Map Files

If an object is described in more than one GUI map file, you can quickly
locate all the object descriptions using the Trace button in the GUI Map
Editor. This is particularly useful if you want WinRunner to learn a new
description of an object and want to find and delete older descriptions in
other GUI map files.

To find an object in multiple GUI map files:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Click File > Open to open the GUI map files in which the object description
might appear.

Select the GUI map file you want to open and click Open for Editing Only.
Click OK.

 4 Display the contents of the file with the most recent description of the
object by displaying the GUI map file in the GUI File box.

 5 Select the object in the Windows/Objects box.

 6 Click Expand to expand the GUI Map Editor dialog box.

 7 Click Trace. The GUI map file in which the object is found is displayed on
the other side of the dialog box, and the object is highlighted.

Part II • Introducing the GUI Map

86

Manually Adding an Object to a GUI Map File

You can manually add an object to a GUI map file by copying the
description of another object, and then editing it as needed.

To manually add an object to a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Choose File > Open to open the appropriate GUI map file.

 4 Select the object to use as the basis for editing.

 5 Click Add to open the Add dialog box.

 6 Edit the appropriate fields and click OK. The object is added to the GUI map
file.

Deleting an Object from a GUI Map File

If an object description is no longer needed, you can delete it from the GUI
map file.

To delete an object from a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

Chapter 7 • Editing the GUI Map

87

 3 Choose File > Open in the GUI Map Editor to open the appropriate GUI map
file.

 4 Select the object to be deleted. If you want to delete more than one object,
use the Shift key and/or Control key to make your selection.

 5 Click Delete.

 6 Choose File > Save to save the changes to the GUI map file.

To delete all objects from a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Choose File > Open in the GUI Map Editor to open the appropriate GUI map
file.

 4 Choose Edit > Clear All.

Clearing a GUI Map File

You can quickly clear the entire contents of the temporary GUI map file or
any other GUI map file.

To delete the entire contents of a GUI map file:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose View > GUI Files.

 3 Open the appropriate GUI map file.

 4 Display the GUI map file at the top of the GUI File list.

 5 Choose Edit > Clear All.

Part II • Introducing the GUI Map

88

Filtering Displayed Objects

You can filter the list of objects displayed in the GUI Map Editor by using
any of the following filters:

➤ Logical name displays only objects with the specified logical name (e.g.
“Open”) or substring (e.g. “Op”).

➤ Physical description displays only objects matching the specified physical
description. Use any substring belonging to the physical description. (For
example, specifying “w” displays only objects containing a “w” in their
physical description.)

➤ Class displays only objects of the specified class, such as all the push
buttons.

To apply a filter:

 1 Choose Tools > GUI Map Editor to open the GUI Map Editor.

 2 Choose Options > Filters to open the Filters dialog box.

 3 Select the type of filter you want by selecting a check box and entering the
appropriate information.

 4 Click Apply. The GUI Map Editor displays objects according to the filter
applied.

Chapter 7 • Editing the GUI Map

89

Saving Changes to the GUI Map

If you edit the logical names and physical descriptions of objects in the GUI
map or modified the objects or windows within a GUI map file, you must
save your changes in the GUI Map Editor before ending the testing session
and exiting WinRunner.

Note: If you are working in the GUI Map File per Test mode, you should not
manually save changes to the GUI map. Your changes are saved
automatically with your test.

To save changes to the GUI map, do one of the following:

➤ Choose File > Save in the GUI Map Editor to save changes in the appropriate
GUI map file.

➤ Choose File > Save As to save the changes in a new GUI map file.

Note: If you add new windows from a loaded GUI map file to the temporary
GUI map file, then when you save the temporary GUI map file, the New
Windows dialog box opens. You are prompted to add the new windows to
the loaded GUI map file or save them in a new GUI map file. For additional
information, refer to the context-sensitive Help.

Part II • Introducing the GUI Map

90

Part III

Creating Tests—Basic

92

93

8
Designing Tests

Using recording, programming, or a combination of both, you can design
automated tests quickly.

This chapter describes:

➤ About Creating Tests

➤ Understanding the WinRunner Test Window

➤ Planning a Test

➤ Creating Tests Using Context Sensitive Recording

➤ Creating Tests Using Analog Recording

➤ Guidelines for Recording a Test

➤ Adding Checkpoints to Your Test

➤ Working with Data-Driven Tests

➤ Adding Synchronization Points to a Test

➤ Measuring Transactions

➤ Activating Test Creation Commands Using Softkeys

➤ Programming a Test

➤ Editing a Test

➤ Managing Test Files

Part III • Creating Tests—Basic

94

About Creating Tests

You can create tests using both recording and programming. Usually, you
start by recording a basic test script. As you record, each operation you
perform generates a statement in Mercury Interactive’s Test Script Language
(TSL). These statements are displayed as a test script in a test window. You
can then enhance your recorded test script, either by typing in additional
TSL functions and programming elements or by using WinRunner’s visual
programming tool, the Function Generator, or using the Function Viewer.

Two modes are available for recording tests:

➤ Context Sensitive records the operations you perform on your application by
identifying Graphical User Interface (GUI) objects.

➤ Analog records keyboard input, mouse clicks, and the precise
x- and y-coordinates traveled by the mouse pointer across the screen.

You can add GUI, bitmap, text, and database checkpoints, as well as
synchronization points to your test script. Checkpoints enable you to check
your application by comparing its current behavior to its behavior in a
previous version. Synchronization points solve timing and window location
problems that may occur during a test run.

You can create a data-driven tests, which are tests driven by data stored in an
internal table.

Note: Many WinRunner recording and editing operations are generally
performed using the mouse. In accordance with Section 508, WinRunner
also recognizes operations performed using the MouseKeys option in the
Windows Accessibility Options utility. Additionally, you can perform many
operations using WinRunner softkeys. For more information, refer to
Chapter 20, “Customizing the WinRunner User Interface” in the Mercury
WinRunner Advanced Features User’s Guide.

Chapter 8 • Designing Tests

95

To create a test script, you perform the following main steps:

 1 Decide on the functionality you want to test. Determine the checkpoints
and synchronization points you need in the test script.

 2 Document general information about the test in the Test Properties dialog
box.

 3 Choose a Record mode (Context Sensitive or Analog) and record the test on
your application.

 4 Assign a test name and save the test in the file system or in your Quality
Center project.

Understanding the WinRunner Test Window

You develop and run WinRunner tests in the test window, which contains
the following elements:

➤ Test window title bar, which displays the name of the open test.

➤ Test script, which consists of statements generated by recording and/or
programming in TSL, Mercury Interactive’s Test Script Language.

➤ Execution arrow, which indicates the line of the test script being executed
during a test run or the line from which the test run will begin if you use the
Run test from arrow option. (To move the marker to any line in the script,
click the mouse in the left window margin next to the line.)

Part III • Creating Tests—Basic

96

➤ Insertion point, which indicates where you can insert or edit text.

Planning a Test

Plan a test carefully before you begin recording or programming. Following
are some points to consider:

➤ Determine the functionality you are about to test. It is better to design short,
specialized tests that check specific functions of the application, than long
tests that perform multiple tasks.

➤ If you plan to record some or all of your test, decide which parts of your test
should use the Analog recording mode and which parts should use the
Context Sensitive mode. For more information, see “Creating Tests Using
Context Sensitive Recording” on page 97 and “Creating Tests Using Analog
Recording” on page 103.

➤ Decide on the types of checkpoints and synchronization points you want to
use in the test. For more information, see “Adding Checkpoints to Your
Test” on page 107 and “Adding Synchronization Points to a Test” on
page 108.

➤ Determine the types of programming elements (such as loops, arrays, and
user-defined functions) that you want to add to the recorded test script. For
more information, see “Programming a Test” on page 114.

Execution arrow

Test script

Test window title bar

Insertion point

Chapter 8 • Designing Tests

97

Creating Tests Using Context Sensitive Recording

Context Sensitive mode records the operations you perform on your
application in terms of its GUI objects. As you record, WinRunner identifies
each GUI object you click (such as a window, button, or list), and the type of
operation performed (such as drag, click, or select).

For example, if you click the Open button in an Open dialog box,
WinRunner records the following:

button_press ("Open");

When it runs the test, WinRunner looks for the Open dialog box and the
Open button represented in the test script. If, in subsequent runs of the test,
the button is in a different location in the Open dialog box, WinRunner is
still able to find it.

Use Context Sensitive mode to test your application by operating on its user
interface. For example, WinRunner can perform GUI operations (such as
button clicks and menu or list selections), and then check the outcome by
observing the state of different GUI objects (the state of a check box, the
contents of a text box, the selected item in a list, and so on).

In version 1, the Open button is
above the Cancel button.

In version 2, the Open button is
below the Cancel button.

Part III • Creating Tests—Basic

98

Remember that Context Sensitive tests work in conjunction with the GUI
map and GUI map files. It is strongly recommended to read the
“Introducing the GUI Map” section of this guide (beginning on page 23)
before you start recording.

The following example illustrates the connection between the test script and
the GUI map. It also demonstrates the connection between the logical name
and the physical description. Assume that you record a test in which you
print a readme file by choosing the Print command on the File menu to
open the Print dialog box, and then clicking the OK button. The test script
might look like this:

Activate the Readme.doc - WordPad window.
win_activate ("Readme.doc - WordPad");

Direct the Readme.doc - WordPad window to receive input.
set_window ("Readme.doc - WordPad", 10);

Choose File > Print.
menu_select_item ("File;Print... Ctrl+P");

Direct the Print window to receive input.
set_window ("Print", 10);

Click the OK button.
button_press ("OK");

WinRunner learns the actual description—the list of properties and their
values—for each object involved and writes this description in the GUI map.

Chapter 8 • Designing Tests

99

When you open the GUI map and highlight an object, you can view the
physical description. In the following example, the Readme.doc window is
highlighted in the GUI map:

WinRunner writes the following descriptions for the other window and
objects in the GUI map:

File menu: {class:menu_item, label:File, parent:None}
Print command: {class: menu_item, label: "Print... Ctrl+P", parent: File}
Print window: {class:window, label:Print}
OK button: {class:push_button, label:OK}

(To see these descriptions, you would highlight the windows or objects in
the GUI map in order to see the corresponding physical description below.)

Logical name of window

Window icon

Physical description of window

Push button icon

Menu item icon

Part III • Creating Tests—Basic

100

WinRunner also assigns a logical name to each object. As WinRunner runs
the test, it reads the logical name of each object in the test script and refers
to its physical description in the GUI map. WinRunner then uses this
description to find the object in the application being tested.

To record a test in Context Sensitive mode:

 1 Choose Test > Record–Context Sensitive or click the Record–Context
Sensitive button.

The letters Rec are displayed in dark blue text with a light blue background
on the Record button to indicate that a context sensitive record session is
active.

 2 Perform the test as planned using the keyboard and mouse.

Insert checkpoints and synchronization points as needed by choosing the
appropriate commands from the User toolbar or from the Insert menu
menu: GUI Checkpoint, Bitmap Checkpoint, Database Checkpoint, or
Synchronization Point.

 3 To stop recording, click Test > Stop Recording or click Stop.

Chapter 8 • Designing Tests

101

Solving Common Context Sensitive Recording Problems

This section discusses common problems that can occur while creating
Context Sensitive tests.

WinRunner Does Not Record the Appropriate TSL Statements for Your
Object

You record on an object, but WinRunner does not record the appropriate
TSL statements for the object class. Instead, WinRunner records obj_mouse
statements. This occurs when WinRunner does not recognize the class to
which your object belongs, and therefore it assigns it to the generic “object”
class.

There are several possible causes and solutions:

Possible Causes Possible Solutions

Add-in support
for the object is
not loaded.

You must install and load add-in support for the required
object. For example, for HTML objects, you must load the
WebTest add-in. For information on loading add-in support,
see “Loading WinRunner Add-Ins” on page 20.

The object is a
custom class
object.

If a custom object is similar to a standard object, you can map
the custom class to a standard class, as described in Chapter 2,
“Configuring the GUI Map” in the Mercury WinRunner
Advanced Features User’s Guide.

You can add a custom GUI object class. For more information
on creating custom GUI object classes and checking custom
objects, refer to the WinRunner Customization Guide. You can
also create GUI checks for custom objects. For information on
checking GUI objects, see Chapter 5, “Working in the Global
GUI Map File Mode.”

You can create custom record and execution functions. If your
object changes, you can modify your functions instead of
updating all your test scripts. For more information on
creating custom record and execution functions, refer to the
WinRunner Customization Guide.

Part III • Creating Tests—Basic

102

WinRunner Cannot Read Text from HTML Pages in Your Application

There are several possible causes and solutions:

For more information, see Chapter 10, “Working with Web Objects,” or the
TSL Reference. For more information on solving Context Sensitive testing
problems, refer to WinRunner context-sensitive help.

Possible Causes Possible Solutions

The WebTest add-in
is not loaded.

You must install and load add-in support for Web objects.
For information on loading add-in support, see “Loading
WinRunner Add-Ins” on page 20.

WinRunner does
not identify the
text as originating
in an HTML frame
or table.

Use the Insert > Get Text > From Selection (Web only)
command to retrieve text from an HTML page. For a frame,
WinRunner inserts a web_frame_get_text statement. For
any other GUI object class, WinRunner inserts a
web_obj_get_text statement.

Use the Insert > Get Text > Web Text Checkpoint
command to check whether a specified text string exists in
an HTML page. For a frame, WinRunner inserts a
web_frame_text_exists statement. For any other GUI
object class, WinRunner inserts a web_obj_text_exists
statement.

Chapter 8 • Designing Tests

103

Creating Tests Using Analog Recording

Analog mode records keyboard input, mouse clicks, and the exact path
traveled by your mouse. For example, if you choose the Open command
from the File menu in your application, WinRunner records the movements
of the mouse pointer on the screen. When WinRunner executes the test, the
mouse pointer retraces the coordinates.

In your test script, the menu selection described above might look like this:

mouse track
move_locator_track (1);

left mouse button press
mtype ("<T110><kLeft>-");

mouse track
move_locator_track (2);

left mouse button release
mtype ("<kLeft>+");

Use Analog mode when exact mouse movements are an integral part of the
test, such as in a drawing application. Note that you can switch to and from
Analog mode during a Context Sensitive recording session by selecting the
appropriate menu item, clicking the Record button during the record
session, or using the F2 shortcut key.

Note for XRunner users: You cannot run test scripts in WinRunner that
were recorded in XRunner in Analog mode. The portions of XRunner test
scripts recorded in Analog mode must be rerecorded in WinRunner before
running them in WinRunner. For information on configuring GUI maps
created in XRunner for WinRunner, refer to Chapter 2, “Configuring the
GUI Map” in the Mercury WinRunner Advanced Features User’s Guide. For
information on using GUI checkpoints created in XRunner in WinRunner
test scripts, see Chapter 9, “Checking GUI Objects.” For information on
using bitmap checkpoints created in XRunner in WinRunner test scripts, see
Chapter 15, “Checking Bitmaps.”

Part III • Creating Tests—Basic

104

To record a test using Analog mode:

 1 Position the WinRunner window and the application you are testing so that
you can see both applications.

 2 Choose Test > Record – Analog. Alternatively, click the Record–Context
Sensitive button to start recording in Context Sensitive mode, and then
click the Record button again or press F2 any time during the recording
session to toggle to Analog mode.

The letters Rec are displayed in red text with a white background on the
Record button to indicate that an analog record session is active.

 3 Perform the necessary operations on the application you want to test using
the keyboard and mouse.

Note: All mouse operations, including those performed on the WinRunner
window or WinRunner dialog boxes are recorded during an analog
recording session. Therefore, you should not insert checkpoints and
synchronization points, or select other WinRunner menu or toolbar options
during an analog recording session.

 4 To stop recording, click Test > Stop Recording or click Stop. To switch back
to context-sensitive recording mode, press F2 or click the Record toolbar
button.

Chapter 8 • Designing Tests

105

Guidelines for Recording a Test

Consider the following guidelines when recording a test:

➤ Before you start to record, close all applications not required for the test.

➤ Use an invoke_application statement or set a startup application in the
Run tab of the Test Properties dialog box to open the application you are
testing.

For information on working with TSL functions, refer to Chapter 7,
“Enhancing Your Test Scripts with Programming” in the Mercury WinRunner
Advanced Features User’s Guide. For more information about the
invoke_application function and an example of usage, refer to the TSL
Reference. For more information on startup applications, refer to Chapter 22,
“Setting Properties for a Single Test” in the Mercury WinRunner Advanced
Features User’s Guide.

➤ Before you record on objects within a window, click the title bar of the
window to record a win_activate statement. This activates the window. For
information on working with TSL functions, refer to Chapter 7, “Enhancing
Your Test Scripts with Programming” in the Mercury WinRunner Advanced
Features User’s Guide. For more information about the win_activate function
and an example of usage, refer to the TSL Reference.

➤ Create your test so that it “cleans up” after itself. When the test is
completed, the environment should resemble the pre-test conditions. (For
example, if the test started with the application window closed, then the
test should also close the window and not minimize it to an icon.)

➤ When you record a test, you can minimize WinRunner and turn the User
toolbar into a floating toolbar. This enables you to record on a full screen of
your application, while maintaining access to important menu commands.
To minimize WinRunner and work from the floating User toolbar: undock
the User toolbar from the WinRunner window, start recording, and
minimize WinRunner. The User toolbar stays on top of all other
applications. Note that you can customize the User toolbar with the menu
commands you use most frequently when creating a test. For additional
information, refer to Chapter 20, “Customizing the WinRunner User
Interface” in the Mercury WinRunner Advanced Features User’s Guide.

➤ When recording, use mouse clicks rather than the Tab key to move within a
window in the application being tested.

Part III • Creating Tests—Basic

106

➤ When recording in Analog mode, use softkeys rather than the WinRunner
menus or toolbars to insert checkpoints.

➤ When recording in Analog mode, avoid typing ahead. For example, when
you want to open a window, wait until it is completely redrawn before
continuing. In addition, avoid holding down a mouse button when this
results in a repeated action (for example, using the scroll bar to move the
screen display). Doing so can initiate a time-sensitive operation that cannot
be precisely recreated. Instead, use discrete, multiple clicks to achieve the
same results.

➤ WinRunner supports recording and running tests on applications with RTL-
style window properties. RTL-style window properties include right-to-left
menu order and typing, a left scroll bar, and attached text at the top right
corner of GUI objects. WinRunner supports pressing the CTRL and SHIFT
keys together or the ALT and SHIFT keys together to change language and
direction when typing. The default setting for attached text supports
recording and running tests on applications with RTL-style windows. For
more information on attached text options, see Chapter 23, “Setting Global
Testing Options,” and Chapter 21, “Setting Testing Options from a Test
Script” in the Mercury WinRunner Advanced Features User’s Guide.

➤ WinRunner supports recording and running tests on applications with drop-
down and menu-like toolbars. Although menu-like toolbars may look
exactly like menus, they are of a different class, and WinRunner records
them differently. When an item is selected from a drop-down or a menu-like
toolbar, WinRunner records a toolbar_select_item statement. (This
function resembles the menu_select_item function, which records selecting
menu commands on menus.) For more information, refer to the TSL
Reference.

➤ If the test folder or the test script file is marked as read-only in the file
system, you cannot perform any WinRunner operations which change the
test script or the expected results folder.

Chapter 8 • Designing Tests

107

Adding Checkpoints to Your Test

Checkpoints allow you to compare the current behavior of the application
being tested to its behavior in an earlier version.

You can add four types of checkpoints to your test scripts:

➤ GUI checkpoints verify information about GUI objects. For example, you
can check that a button is enabled or see which item is selected in a list. See
Chapter 9, “Checking GUI Objects,” for more information.

➤ Bitmap checkpoints take a “snapshot” of a window or area of your
application and compare this to an image captured in an earlier version. See
Chapter 15, “Checking Bitmaps,” for more information.

➤ Text checkpoints read text in GUI objects and in bitmaps and enable you to
verify their contents. See Chapter 16, “Checking Text,” for more
information.

➤ Database checkpoints check the contents and the number of rows and
columns of a result set, which is based on a query you create on your
database. See Chapter 14, “Checking Databases,” for more information.

Working with Data-Driven Tests

When you test your application, you may want to check how it performs
the same operations with multiple sets of data. You can create a data-driven
test with a loop that runs ten times: each time the loop runs, it is driven by
a different set of data. In order for WinRunner to use data to drive the test,
you must link the data to the test script which it drives. This is called
parameterizing your test. The data is stored in a data table. You can perform
these operations manually, or you can use the DataDriver wizard to
parameterize your test and store the data in a data table. For additional
information, see Chapter 18, “Creating Data-Driven Tests.”

Part III • Creating Tests—Basic

108

Adding Synchronization Points to a Test

Synchronization points enable you to solve anticipated timing problems
between the test and your application. For example, if you create a test that
opens a database application, you can add a synchronization point that
causes the test to wait until the database records are loaded on the screen.

For Analog testing, you can also use a synchronization point to ensure that
WinRunner repositions a window at a specific location. When you run a
test, the mouse cursor travels along exact coordinates. Repositioning the
window enables the mouse pointer to make contact with the correct
elements in the window. See Chapter 19, “Synchronizing the Test Run,” for
more information.

Measuring Transactions

You can measure how long it takes to run a section of your test by defining
transactions. A transaction represents the business process that you are
interested in measuring. You define transactions within your test by
enclosing the appropriate sections of the test with start_transaction and
end_transaction statements. For example, you can define a transaction that
measures how long it takes to reserve a seat on a flight and for the
confirmation to be displayed on the client’s terminal.

You must declare each transaction using a declare_transaction statement
somewhere in the test prior to the corresponding start_transaction
statement. You may want to declare all transactions at the beginning of your
test, or you can declare each transaction immediately prior to the
corresponding start_transaction statement.

During the test run, the start_transaction statement signals the beginning
of the time measurement. The time measurement continues until the
end_transaction statement is encountered. The test report displays the time
it took to perform the transaction.

Chapter 8 • Designing Tests

109

Consider the following when planning transactions:

➤ There is no limit to the number of transactions that can be added to a test.

➤ It is recommended to insert a synchronization point before the end of the
transaction.

➤ Transactions can be nested, but each start_transaction statement must be
associated with a corresponding end_transaction statement.

Notes:

If no end_transaction statement exists for a particular transaction, then no
transaction time is reported to the test results.

If a start_transaction name is used more than once before the
corresponding end_transaction, then the timing restarts (reset to 0) when
the test run reaches the line containing the repeated start_transaction
statement.

You can insert declare_transaction, start_transaction, and
end_transaction statements manually, or you can use the Insert >
Transactions options to insert these statements.

To insert transaction statements using the Insert > Transactions options:

 1 If you want to insert the declare_transaction and start_transaction
statements on consecutive lines, proceed to step 4.

If you want to insert the declare_transaction statement two or more lines
above the start_transaction statement, place the cursor at the location
where you want to declare the transaction.

Part III • Creating Tests—Basic

110

 2 Choose Insert > Transactions > Declare Transaction. The Declare Transaction
dialog box opens.

 3 Enter a name for the transaction and click OK. The declare_transaction
statement is added to your test.

 4 Place the cursor at the beginning of the line where you want the transaction
measurement to begin.

 5 Choose Insert > Transactions > Start Transaction. The Start Transaction
dialog box opens.

 6 Enter a name for the transaction.

If you have already entered a declare_transaction statement in the test, the
start_transaction name should be identical to the one specified in the
declare_transaction statement. Note that transaction names are
case-sensitive.

 7 If you have not yet entered a declare_transaction statement for this
transaction, and you want to insert the declaration on the line immediately
above the start_transaction statement, select the Insert a
declare_transaction TSL function check box.

 8 Click OK. The start_transaction (and declare_transaction, if applicable)
statement(s) are added to your test.

Chapter 8 • Designing Tests

111

 9 Place the cursor below the line that marks the end of the transaction
measurement.

 10 Choose Insert > Transactions > End Transaction. The End Transaction dialog
box opens.

 11 Enter the name of the transaction you want to end. The transaction name
must be identical to the name used in the declare_transaction and
start_transaction statements. Note that transaction names are
case-sensitive.

 12 Select the pass/fail status that you want to assign to the transaction.

 13 Click OK.

For information on inserting declare_transaction, start_transaction, and
end_transaction statements manually, refer to the TSL Reference.

Activating Test Creation Commands Using Softkeys

You can activate several of WinRunner’s commands using softkeys.
WinRunner reads input from softkeys even when the WinRunner window is
not the active window on your screen, or when it is minimized. Note that
you can configure the softkeys. For more information, refer to Chapter 20,
“Customizing the WinRunner User Interface” in the Mercury WinRunner
Advanced Features User’s Guide.

Part III • Creating Tests—Basic

112

The following table lists the default softkey configurations for test creation:

Command
Default Softkey
Combination

Function

RECORD F2 Starts test recording. While recording,
this softkey toggles between the Context
Sensitive and Analog modes.

CHECK GUI FOR
SINGLE PROPERTY

Alt Right + F12 Checks a single property of a GUI object.

CHECK GUI FOR
OBJECT/WINDOW

Ctrl Right + F12 Creates a GUI checkpoint for an object
or a window.

CHECK GUI FOR
MULTIPLE OBJECTS

F12 Opens the Create GUI Checkpoint dialog
box.

CHECK BITMAP OF
OBJECT/WINDOW

Ctrl Left + F12 Captures an object or a window bitmap.

CHECK BITMAP OF
SCREEN AREA

Alt Left + F12 Captures an area bitmap.

CHECK DATABASE
(DEFAULT)

Ctrl Right + F9 Creates a check on the entire contents of
a database.

CHECK DATABASE
(CUSTOM)

Alt Right + F9 Checks the number of columns, rows
and specified information of a database.

RUNTIME RECORD
CHECK

Alt Right + F10 Opens the Runtime wizard.

SYNCHRONIZE
OBJECT/WINDOW
PROPERTY

Ctrl Right + F10 Instructs WinRunner to wait for a
property of an object or a window to
have an expected value.

SYNCHRONIZE
BITMAP OF
OBJECT/WINDOW

Ctrl Left + F11 Instructs WinRunner to wait for a
specific object or window bitmap to
appear.

SYNCHRONIZE
BITMAP OF SCREEN
AREA

Alt Left + F11 Instructs WinRunner to wait for a
specific area bitmap to appear.

Chapter 8 • Designing Tests

113

GET TEXT FROM
OBJECT/WINDOW

F11 Captures text in an object or a window.

GET TEXT FROM
SCREEN AREA

Alt Right + F11 Captures text in a specified area and adds
a get_text statement to the test script.

INSERT FUNCTION
FOR
OBJECT/WINDOW

F8 Inserts a TSL function for a GUI object.

INSERT FUNCTION
FROM FUNCTION
GENERATOR

F7 Opens the Function Generator dialog
box.

CALL QUICKTEST TEST Ctrl Left + q Inserts a call to a QuickTest test.

DECLARE
TRANSACTION

Ctrl Left + 4 Inserts a declare_transaction statement.

START TRANSACTION Ctrl Left + 5 Inserts a start_transaction statement.

END TRANSACTION Ctrl Left + 6 Inserts an end_transaction statement.

DATA TABLE Ctrl Left + 8 Opens an existing data table or creates a
new one.

PARAMETERIZE DATA Ctrl Left + 9 Opens the Parameterize Data dialog box.

DATA DRIVER WIZARD Ctrl Left + 0 Opens the Data Driver wizard.

STOP Ctrl Left + F3 Stops test recording.

Command
Default Softkey
Combination

Function

Part III • Creating Tests—Basic

114

Programming a Test

You can use programming to create an entire test script, or to enhance your
recorded tests. WinRunner contains a visual programming tool, the
Function Generator, which provides a quick and error-free way to add TSL
functions to your test scripts. To generate a function call, simply point to an
object in your application or select a function from a list. For more
information, refer to Chapter 8, “Generating Functions” in the Mercury
WinRunner Advanced Features User’s Guide.

You can also add general purpose programming features such as variables,
control-flow statements, arrays, and user-defined functions to your test
scripts. You may type these elements directly into your test scripts. For more
information on creating test scripts with programming, see the
“Programming with TSL” section of the Mercury WinRunner Advanced
Features User’s Guide.

Editing a Test

To make changes to a test script, use the commands in the Edit menu or the
corresponding toolbar buttons. The following commands are available:

Edit
Command

Description

Undo Cancels the last editing operation.

Redo Reverses the last Undo operation.

Cut Deletes the selected text from the test script and places it onto the
Clipboard.

Copy Makes a copy of the selected text and places it onto the Clipboard.

Paste Pastes the text on the Clipboard at the insertion point.

Delete Deletes the selected text.

Select All Selects all the text in the active test window.

Chapter 8 • Designing Tests

115

Comment Converts the selected line(s) of text to a comment by adding a ‘#’
sign at the beginning of the line. The commented text is also
converted to italicized, red text.

Uncomment Converts the selected, commented line(s) of text into executable
code by removing the ‘#’ sign from the beginning of the line. The
text is also converted to plain, black text.

Increase
Indent

Moves the selected line(s) of text one tab stop to the right. Note
that you can change the tab stop size in the Editor Options dialog
box. For more information, refer to Chapter 19, “Customizing the
Test Script Editor” in the Mercury WinRunner Advanced Features User’s
Guide.

Decrease
Indent

Moves the selected line(s) of text one tab stop to the left. Note that
you can change the tab stop size in the Editor Options dialog box.
For more information, refer to Chapter 19, “Customizing the Test
Script Editor” in the Mercury WinRunner Advanced Features User’s
Guide.

Find Finds the specified characters in the active test window.

Find Next Finds the next occurrence of the specified characters.

Find Previous Finds the previous occurrence of the specified characters.

Replace Finds and replaces the specified characters with new characters.

Go To Moves the insertion point to the specified line in the test script.

Edit
Command

Description

Part III • Creating Tests—Basic

116

Managing Test Files

You use the commands in the File menu to create, open, save, print, and
close test files.

Creating a New Test

Choose File > New or click New. A new window opens, titled Noname, and
followed by a numeral (for example, Noname7). You are ready to start
recording or programming a test script.

Note: To create a new scripted component, you follow the above
instructions to create a test and then save the document as a scripted
component. For more information, refer to the Mercury WinRunner Advanced
Features User’s Guide.

Saving a Test

The following options are available for saving tests:

➤ Save changes to a previously saved test by choosing File > Save or by clicking
Save on the toolbar.

➤ Save a new test to the file system or to Quality Center by choosing File >
Save As Test or by clicking Save on the toolbar.

➤ Save two or more open tests simultaneously by choosing File > Save All.

➤ Save a test script as a scripted component in a Quality Center project by
choosing File > Save As Scripted Component. For more information, refer to
the Mercury WinRunner Advanced Features User’s Guide.

Chapter 8 • Designing Tests

117

To save a new test to the file system:

 1 On the File menu, choose the Save or Save as Test command, or click Save
on the toolbar. The Save Test dialog box opens.

 2 In the Save in box, click the location where you want to save the test.

 3 Enter the name of the test in the File name box.

 4 Select or clear the Save test results check box to indicate whether you want
to save any existing test results with your test.

Note that if you clear this box, your test result files will not be saved with
the test, and you will not be able to view them later. Clearing the Save test
results check box can be useful for conserving disk space if you do not
require the test results for later analysis, or if you are saving an existing test
under a new name and do not need the test results.

Note: By default, this option is selected when saving a new test (Save), and
cleared when saving an existing test under a new name (Save As).

 5 Click Save to save the test.

Part III • Creating Tests—Basic

118

To save a test to a Quality Center project:

Note: You can save a test to a Quality Center database only if you are
connected to a Quality Center project. For additional information, refer to
Chapter 26, “Managing the Testing Process” in the Mercury WinRunner
Advanced Features User’s Guide.

 1 After connecting to a Quality Center project, choose File > Save as Test. The
Save Test to Quality Center Project dialog box opens.

The test plan tree from the Quality Center Test Plan module is displayed.

Note that the Save Test to Quality Center Project dialog box opens only
when WinRunner is connected to a Quality Center project.

 2 Select the relevant subject folder in the test plan tree or click the New Folder
button to create a new folder. To expand the subject tree, double-click a
closed folder icon. To collapse a sublevel, double-click an open folder icon.

Chapter 8 • Designing Tests

119

 3 In the Test Name text box, enter a name for the test. Use a descriptive name
that will help you easily identify the test.

 4 Click OK to save the test and close the dialog box.

Note: You can click the File System button to open the Save Test dialog box
and save a test in the file system.

The next time you start Quality Center, or refresh the test plan tree in the
Test Plan module, the new test will be displayed in the tree. Refer to the
Mercury Quality Center User’s Guide for more information.

For more information on saving tests to a Quality Center project, refer to
Chapter 26, “Managing the Testing Process” in the Mercury WinRunner
Advanced Features User’s Guide.

Opening an Existing Test

You can open an existing test from the file system or from a Quality Center
project.

You can also open a scripted component from a Quality Center project. For
more information, see “Opening an Existing Scripted Component” on
page 122.

Note: No more than 100 tests may be open at the same time.

Part III • Creating Tests—Basic

120

To open a test from the file system:

 1 Choose File > Open or click Open to open the Open Test dialog box.

 2 In the Look in box, click the location of the test you want to open.

 3 In the File name box, click the name of the test to open.

 4 If the test has more than one set of expected results, click the folder you
want to use on the Expected list. The default folder is called exp.

 5 Click Open to open the test.

If you select to open a test that is already opened by another WinRunner
user, a message similar to the following opens:

Chapter 8 • Designing Tests

121

Click Cancel to open the test as a locked, editable test. You can edit and run
the test, but you cannot save the test with its current name.

Click OK to unlock the test only if you are sure that your work will not
interfere with other users.

To open a test from a Quality Center project:

Note: You can open a test from a Quality Center database only if you are
connected to a Quality Center project. For additional information, refer to
Chapter 26, “Managing the Testing Process” in the Mercury WinRunner
Advanced Features User’s Guide.

 1 Choose File > Open Test or click Open. If you are connected to a Quality
Center project, the Open Test from Quality Center Project dialog box opens
and displays the test plan tree.

Note that the Open Test from Quality Center Project dialog box opens only
when WinRunner is connected to a Quality Center project.

Part III • Creating Tests—Basic

122

 2 Click the relevant subject in the test plan tree. To expand the tree and view
sublevels, double-click closed folders. To collapse the tree, double-click open
folders.

Note that when you select a subject, the tests that belong to the subject are
displayed in the Test Name list.

 3 Select a test in the Test Name list. The test is displayed in the read-only Test
Name box.

 4 If desired, enter an expected results folder for the test in the Expected box.
(Otherwise, the default folder is used.)

 5 Click OK to open the test. The test opens in a window in WinRunner. Note
that the test window’s title bar shows the full subject path.

Note: You can click the File System button to open the Open Test dialog box
and open a test from the file system.

For more information on opening tests in a Quality Center project, refer to
Chapter 26, “Managing the Testing Process” in the Mercury WinRunner
Advanced Features User’s Guide.

Opening an Existing Scripted Component

WinRunner Scripted components can be included in business process tests
in Quality Center with Business Process Testing support. However, they
cannot be edited in Quality Center. You can open an existing WinRunner
scripted component in WinRunner for viewing or editing if required.

Chapter 8 • Designing Tests

123

To open a scripted component from a Quality Center project:

Note: You can open a scripted component from a Quality Center database
only if you are connected to a Quality Center project. For additional
information, refer to Chapter 26, “Managing the Testing Process” in the
Mercury WinRunner Advanced Features User’s Guide.

 1 After connecting to a Quality Center project, choose File > Open Scripted
Component or press CTRL+H. The Open WinRunner Component from
Quality Center Project dialog box opens and displays the component tree.

Note: The Open Scripted Component option in the File menu is visible only
when you are connected to Quality Center with Business Process Testing
support.

Part III • Creating Tests—Basic

124

 2 Select the relevant component in the component tree. To expand the tree
and view sublevels, double-click closed folders. To collapse the tree,
double-click open folders. The scripted component is displayed in the read-
only Component Name box.

 3 Click OK to open the scripted component. The component opens in a
window in WinRunner. Note that WinRunner’s title bar shows the full
subject path of the scripted component.

 4 View or edit the component as required.

For more information on opening scripted components in a Quality Center
project, refer to Chapter 26, “Managing the Testing Process” in the Mercury
WinRunner Advanced Features User’s Guide.

Zipping and Extracting WinRunner Tests

You can zip your WinRunner test for easy distribution using the Export to
Zip File option. When you choose this option, all files that are saved in your
test folder are zipped, including the Data Table, test results, GUI files, etc.
External files stored in locations outside your test folder are not zipped.

You can use the Import from Zip File option to extract the files for any test
that was zipped using the Export to Zip File option. Note that you cannot
use this option to extract files from a test that was zipped using another
utility.

To zip a test:

 1 Open the test you want to zip.

 2 If the open test contains unsaved changes, save the test.

 3 Choose File > Export to Zip File. The Export to Zip File dialog box opens and
displays the source path of the test and a suggested zip file name.

Chapter 8 • Designing Tests

125

 4 Accept the default zip file name and path or specify a new one.

 5 Click OK. The dialog box displays a progress bar as it zips the test. The dialog
box closes when the zip process is complete.

To extract a zipped test:

 1 Choose File > Import from Zip File. The Import from Zip File dialog box
opens.

 2 Enter or browse to the location of the zipped test you want to extract.

 3 Accept the default location for extracting the test, or specify a new location.

 4 Click OK. The dialog box displays a progress bar as it extracts the test. When
the extraction process is complete, the dialog box closes and the extracted
test is displayed in the WinRunner window.

Printing a Test

To print a test script, choose File > Print to open the Print dialog box.

➤ Choose the print options you want.

➤ Click OK to print.

Closing a Test

➤ To close the current test, choose File > Close.

➤ To simultaneously close two or more open tests, choose File > Close All.

Part III • Creating Tests—Basic

126

127

9
Checking GUI Objects

By adding GUI checkpoints to your test scripts, you can compare the
behavior of GUI objects in different versions of your application.

This chapter describes:

➤ About Checking GUI Objects

➤ Checking a Single Property Value

➤ Checking a Single Object

➤ Checking Two or More Objects in a Window

➤ Checking All Objects in a Window

➤ Understanding GUI Checkpoint Statements

➤ Using an Existing GUI Checklist in a GUI Checkpoint

➤ Modifying GUI Checklists

➤ Understanding the GUI Checkpoint Dialog Boxes

➤ Property Checks and Default Checks

➤ Specifying Arguments for Property Checks

➤ Editing the Expected Value of a Property

➤ Modifying the Expected Results of a GUI Checkpoint

Part III • Creating Tests—Basic

128

About Checking GUI Objects

You can use GUI checkpoints in your test scripts to help you examine GUI
objects in your application and detect defects. For example, you can check
that when a specific dialog box opens, the OK, Cancel, and Help buttons are
enabled.

You point to GUI objects and choose the properties you want WinRunner to
check. You can check the default properties recommended by WinRunner,
or you can specify which properties to check. Information about the GUI
objects and the selected properties is saved in a checklist. WinRunner then
captures the current property values for the GUI objects and saves this
information as expected results. A GUI checkpoint is automatically inserted
into the test script. This checkpoint appears in your test script as an
obj_check_gui or a win_check_gui statement.

When you run the test, the GUI checkpoint compares the current state of
the GUI objects in the application being tested to the expected results. If the
expected results and the current results do not match, the GUI checkpoint
fails. Your GUI checkpoint can be part of a loop. If a GUI checkpoint is run
in a loop, the results for each iteration of the checkpoint are displayed in the
test results as separate entries. The results of each iteration of the checkpoint
can be viewed in the Test Results window. For more information, see
Chapter 21, “Analyzing Test Results.”

Note that any GUI object you check that is not already in the GUI map is
added automatically to the temporary GUI map file. See Chapter 3,
“Understanding How WinRunner Identifies GUI Objects,” for additional
information.

You can use a regular expression to create a GUI checkpoint on an edit
object or a static text object with a variable name. For additional
information, refer to Chapter 6, “Using Regular Expressions” in the Mercury
WinRunner Advanced Features User’s Guide.

Checklist
objects and properties to check

Expected Results
captured property values

GUI Checkpoint

Chapter 9 • Checking GUI Objects

129

WinRunner provides special built-in support for ActiveX control, Visual
Basic, and PowerBuilder application development environments. When you
load the appropriate add-in support, WinRunner recognizes these controls,
and treats them as it treats standard GUI objects. You can create GUI
checkpoints for these objects as you would create them for standard GUI
objects. WinRunner provides additional special built-in support for
checking ActiveX and Visual Basic sub-objects.

For additional information, see Chapter 11, “Working with ActiveX and
Visual Basic Controls.” For information on WinRunner support for
PowerBuilder, see Chapter 12, “Checking PowerBuilder Applications.”

You can also create GUI checkpoints that check the contents and properties
of tables. For information, see Chapter 13, “Checking Table Contents.”

Setting Options for Failed GUI Checkpoints

You can instruct WinRunner to send an e-mail to selected recipients each
time a GUI checkpoint fails and you can instruct WinRunner to capture a
bitmap of your window or screen when any checkpoint fails. You set these
options in the General Options dialog box.

To instruct WinRunner to send an e-mail message when a GUI checkpoint
fails:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click the Notifications category in the options pane. The notification
options are displayed.

 3 Select GUI checkpoint failure.

 4 Click the Notifications > E-mail category in the options pane. The e-mail
options are displayed.

 5 Select the Active E-mail service option and set the relevant server and sender
information.

 6 Click the Notifications > Recipient category in the options pane. The e-mail
recipient options are displayed.

 7 Add, remove, or modify recipient details as necessary to set the recipients to
whom you want to send an e-mail message when a GUI checkpoint fails.

Part III • Creating Tests—Basic

130

The e-mail contains summary details about the test and checkpoint and
details about the expected and actual values of the property check.

For more information, see “Setting Notification Options” on page 579.

To instruct WinRunner to capture a bitmap when a checkpoint fails:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click the Run > Settings category in the options pane. The run settings
options are displayed.

 3 Select Capture bitmap on verification failure.

 4 Select Window, Desktop, or Desktop area to indicate what you want to
capture when checkpoints fail.

 5 If you select Desktop area, specify the coordinates of the area of the desktop
that you want to capture.

When you run your test, the captured bitmaps are saved in your test results
folder.

For more information, see “Setting Test Run Options” on page 562.

Checking a Single Property Value

You can check a single property of a GUI object. For example, you can check
whether a button is enabled or disabled or whether an item in a list is
selected. To create a GUI checkpoint for a property value, use the Check
Property dialog box to add one of the following functions to the test script:

For information about working with these functions, refer to the TSL
Reference.

button_check_info scroll_check_info

edit_check_info static_check_info

list_check_info win_check_info

obj_check_info

Chapter 9 • Checking GUI Objects

131

To create a GUI checkpoint for a property value:

 1 Choose Insert > GUI Checkpoint > For Single Property. If you are recording
in Analog mode, press the CHECK GUI FOR SINGLE PROPERTY softkey in order to
avoid extraneous mouse movements.

The WinRunner window is minimized, the mouse pointer becomes a
pointing hand, and a help window opens on the screen.

 2 Click an object.

The Check Property dialog box opens and shows the default function for the
selected object. WinRunner automatically assigns argument values to the
function.

 3 You can modify the arguments for the property check.

➤ To modify assigned argument values, choose a value from the Property
list. The expected value is updated in the Expected text box.

➤ To choose a different object, click the pointing hand and then click an
object in your application. WinRunner automatically assigns new
argument values to the function.

Note that if you click an object that is not compatible with the selected
function, a message states that the current function cannot be applied to
the selected object. Click OK to clear the message, and then click Close to
close the Check Property dialog box. Repeat steps 1 and 2.

 4 Click Paste to paste the statement into your test script.

The function is pasted into the script at the insertion point. The Check
Property dialog box closes.

Part III • Creating Tests—Basic

132

Note: To change to another function for the object, click Change. The
Function Generator dialog box opens and displays a list of functions. For
more information on using the Function Generator, refer to Chapter 8,
“Generating Functions” in the Mercury WinRunner Advanced Features User’s
Guide.

Checking a Single Object

You can create a GUI checkpoint to check a single object in the application
being tested. You can either check the object with its default properties or
you can specify which properties to check.

Each standard object class has a set of default checks. For a complete list of
standard objects, the properties you can check, and default checks, see
“Property Checks and Default Checks” on page 158.

Note: You can set the default checks for an object using the
gui_ver_set_default_checks function. For more information, refer to the
TSL Reference and the WinRunner Customization Guide.

Creating a GUI Checkpoint using the Default Checks

You can create a GUI checkpoint that performs a default check on the
property recommended by WinRunner. For example, if you create a GUI
checkpoint that checks a push button, the default check verifies that the
push button is enabled.

To create a GUI checkpoint using default checks:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey
in order to avoid extraneous mouse movements. Note that you can press the
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

Chapter 9 • Checking GUI Objects

133

The WinRunner window is minimized, the mouse pointer becomes a
pointing hand, and a help window opens on the screen.

 2 Click an object.

 3 WinRunner captures the current value of the property of the GUI object
being checked and stores it in the test’s expected results folder. The
WinRunner window is restored and a GUI checkpoint is inserted in the test
script as an obj_check_gui statement. For more information, see
“Understanding GUI Checkpoint Statements” on page 140.

Creating a GUI Checkpoint by Specifying which Properties to
Check

You can specify which properties to check for an object. For example, if you
create a checkpoint that checks a push button, you can choose to verify that
it is in focus, instead of enabled.

To create a GUI checkpoint by specifying which properties to check:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey
in order to avoid extraneous mouse movements. Note that you can press the
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer becomes a
pointing hand, and a help window opens on the screen.

Part III • Creating Tests—Basic

134

 2 Double-click the object or window. The Check GUI dialog box opens.

 3 Click an object name in the Objects pane. The Properties pane lists all the
properties for the selected object.

 4 Select the properties you want to check.

➤ To edit the expected value of a property, first select it. Next, either click
the Edit Expected Value button, or double-click the value in the Expected
Value column to edit it. For more information, see “Editing the Expected
Value of a Property” on page 170.

➤ To add a check in which you specify arguments, first select the property
for which you want to specify arguments. Next, either click the Specify
Arguments button, or double-click in the Arguments column. Note that
if an ellipsis (three dots) is displayed in the Arguments column, then you
must specify arguments for a check on this property. (You do not need to
specify arguments if a default argument is specified.) When checking
standard objects, you specify arguments only for certain properties of
edit and static text objects. You also specify arguments for checks on
certain properties of nonstandard objects. For more information, see
“Specifying Arguments for Property Checks” on page 164.

➤ To change the viewing options for the properties of an object, use the
Show Properties buttons. For more information, see “The Check GUI
Dialog Box,” on page 150.

Chapter 9 • Checking GUI Objects

135

 5 Click OK to close the Check GUI dialog box.

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and a GUI checkpoint is
inserted in the test script as an obj_check_gui or a win_check_gui
statement. For more information, see “Understanding GUI Checkpoint
Statements” on page 140.

For more information on the Check GUI dialog box, see “Understanding the
GUI Checkpoint Dialog Boxes” on page 148.

Checking Two or More Objects in a Window

You can use a GUI checkpoint to check two or more objects in a window. For
a complete list of standard objects and the properties you can check, see
“Property Checks and Default Checks” on page 158.

To create a GUI checkpoint for two or more objects:

 1 Choose Insert > GUI Checkpoint > For Multiple Objects or click the
GUI Checkpoint for Multiple Objects button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR MULTIPLE OBJECTS softkey
in order to avoid extraneous mouse movements. The Create GUI
Checkpoint dialog box opens.

 2 Click the Add button. The mouse pointer becomes a pointing hand and a
help window opens.

 3 To add an object, click it once. If you click a window title bar or menu bar, a
help window prompts you to check all the objects in the window. For more
information on checking all objects in a window, see “Checking All Objects
in a Window” on page 137.

 4 The pointing hand remains active. You can continue to choose objects by
repeating step 3 above for each object you want to check.

Note: You cannot insert objects from different windows into a single
checkpoint.

Part III • Creating Tests—Basic

136

 5 Click the right mouse button to stop the selection process and to restore the
mouse pointer to its original shape. The Create GUI Checkpoint dialog box
reopens.

 6 The Objects pane contains the name of the window and objects included in
the GUI checkpoint. To specify which objects to check, click an object name
in the Objects pane.

The Properties pane lists all the properties of the object. The default
properties are selected.

➤ To edit the expected value of a property, first select it. Next, either click
the Edit Expected Value button, or double-click the value in the Expected
Value column to edit it. For more information, see “Editing the Expected
Value of a Property” on page 170.

➤ To add a check in which you specify arguments, first select the property
for which you want to specify arguments. Next, either click the Specify
Arguments button, or double-click in the Arguments column.
Note that if an ellipsis is displayed in the Arguments column, then you
must specify arguments for a check on this property. (You do not need to
specify arguments if a default argument is specified.) When checking
standard objects, you specify arguments only for certain properties of
edit and static text objects.

Chapter 9 • Checking GUI Objects

137

You also specify arguments for checks on certain properties of
nonstandard objects. For more information, see “Specifying Arguments
for Property Checks” on page 164.

➤ To change the viewing options for the properties of an object, use the
Show Properties buttons. For more information, see “The Create GUI
Checkpoint Dialog Box,” on page 152.

 7 To save the checklist and close the Create GUI Checkpoint dialog box, click
OK.

WinRunner captures the current property values of the selected GUI objects
and stores it in the expected results folder. A win_check_gui statement is
inserted in the test script. For more information, see “Understanding GUI
Checkpoint Statements” on page 140.

For more information on the Create GUI Checkpoint dialog box, see
“Understanding the GUI Checkpoint Dialog Boxes” on page 148.

Checking All Objects in a Window

You can create a GUI checkpoint to perform default checks on all GUI
objects in a window. Alternatively, you can specify which checks to perform
on all GUI objects in a window.

Each standard object class has a set of default checks. For a complete list of
standard objects, the properties you can check, and default checks, see
“Property Checks and Default Checks” on page 158.

Note: You can set the default checks for an object using the
gui_ver_set_default_checks function. For more information, refer to the
TSL Reference and the WinRunner Customization Guide.

Part III • Creating Tests—Basic

138

Checking All Objects in a Window using Default Checks

You can create a GUI checkpoint that checks the default property of every
GUI object in a window.

To create a GUI checkpoint that performs a default check on every GUI
object in a window:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey
in order to avoid extraneous mouse movements. Note that you can press the
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer turns into a
pointing hand, and a help window opens.

 2 Click the title bar or the menu bar of the window you want to check.

The Add All dialog box opens.

 3 Select Objects or Menus or both to indicate the types of objects to include in
the checklist. When you select only Objects (the default setting), all objects
in the window except for menus are included in the checklist. To include
menus in the checklist, select Menus.

 4 Click OK to close the dialog box.

WinRunner captures the expected property values of the GUI objects and/or
menu items and stores this information in the test’s expected results folder.
The WinRunner window is restored and a win_check_gui statement is
inserted in the test script.

Chapter 9 • Checking GUI Objects

139

Specifying which Checks to Perform on All Objects in a
Window

You can use a GUI checkpoint to specify which checks to perform on all GUI
objects in a window.

To create a GUI checkpoint in which you specify which checks to perform on
all GUI objects in a window:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar. If you are
recording in Analog mode, press the CHECK GUI FOR OBJECT/WINDOW softkey
in order to avoid extraneous mouse movements. Note that you can press the
CHECK GUI FOR OBJECT/WINDOW softkey in Context Sensitive mode as well.

The WinRunner window is minimized, the mouse pointer turns into a
pointing hand, and a help window opens.

 2 Double-click the title bar or the menu bar of the window you want to check.

WinRunner generates a new checklist containing all the objects in the
window. This may take a few seconds.

The Check GUI dialog box opens.

 3 Specify which checks to perform, and click OK to close the dialog box. For
more information, see “The Check GUI Dialog Box” on page 150.

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and a win_check_gui
statement is inserted in the test script.

Part III • Creating Tests—Basic

140

Understanding GUI Checkpoint Statements

A GUI checkpoint for a single object appears in your script as an
obj_check_gui statement. A GUI checkpoint that checks more than one
object in a window appears in your script as a win_check_gui statement.
Both the obj_check_gui and win_check_gui statements are always
associated with a checklist and store expected results in a expected results file.

➤ A checklist lists the objects and properties that need to be checked. For an
obj_check_gui statement, the checklist lists only one object. For a
win_check_gui statement, a checklist contains a list of all objects to be
checked in a window. When you create a GUI checkpoint, you can create a
new checklist or use an existing checklist. For information on using an
existing checklist, see “Using an Existing GUI Checklist in a GUI
Checkpoint” on page 141.

➤ An expected results file contains the expected property values for each object
in the checklist. These property values are captured when you create a
checkpoint, and can later be updated manually or by running the test in
Update mode. For more information, see “Running a Test to Update
Expected Results” on page 438. Each time you run the test, the expected
property values are compared to the current property values of the objects.

The obj_check_gui function has the following syntax:

obj_check_gui (object, checklist, expected results file, time);

The object is the logical name of the GUI object. The checklist is the name of
the checklist defining the objects and properties to check. The expected
results file is the name of the file that stores the expected property values.
The time is the interval marking the maximum delay between the previous
input event and the capture of the current property values, in seconds. This
interval is added to the timeout_msec testing option during the test run. For
more information on the timeout_msec testing option, refer to Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

For example, if you click the OK button in the Login window in the Flight
application, the resulting statement might be:

obj_check_gui ("OK", "list1.ckl", "gui1", 1);

Chapter 9 • Checking GUI Objects

141

The win_check_gui function has the following syntax:

win_check_gui (window, checklist, expected results file, time);

The window is the logical name of the GUI window. The checklist is the name
of the checklist defining the objects and properties to check. The expected
results file is the name of the file that stores the expected property values.
The time is the interval marking the maximum delay between the previous
input event and the capture of the current property values, in seconds. This
interval is added to the timeout_msec testing option during the test run. For
more information on the timeout_msec testing option, refer to Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

For example, if you click the title bar of the Login window in the sample
Flight application, the resulting statement might be:

win_check_gui ("Login", "list1.ckl", "gui1", 1);

Note that WinRunner names the first checklist in the test list1.ckl and the
first expected results file gui1. For more information on the obj_check_gui
and win_check_gui functions, refer to the TSL Reference.

Using an Existing GUI Checklist in a GUI Checkpoint

You can create a GUI checkpoint using an existing GUI checklist. This is
useful when you want to use a GUI checklist to create new GUI checkpoints,
either in your current test or in a different test. For example, you may want
to check the same properties of certain objects at several different points
during your test. These object properties may have different expected
values, depending on when you check them.

Although you can create a new GUI checklist whenever you create a new
GUI checkpoint, it is expedient to “reuse” a GUI checklist in as many
checkpoints as possible. Using a single GUI checklist in many GUI
checkpoints facilitates the testing process by reducing the time and effort
involved in maintaining the GUI checkpoints in your test.

Part III • Creating Tests—Basic

142

To enable WinRunner to locate the objects to check in your application, you
must load the appropriate GUI map file before you run the test. For
information about loading GUI map files, see “Loading the GUI Map File”
on page 59.

Note: If you want a checklist to be available to more than one test, you must
save it in a shared folder. For information on saving a GUI checklist in a
shared folder, see “Saving a GUI Checklist in a Shared Folder,” on page 143.

To use an existing GUI checklist in a GUI checkpoint:

 1 Choose Insert > GUI Checkpoint > For Multiple Objects or click the
GUI Checkpoint for Multiple Objects button on the User toolbar.

The Create GUI Checkpoint dialog box opens.

 2 Click Open. The Open Checklist dialog box opens.

 3 To see checklists in the Shared folder, click Shared.

 4 Select a checklist and click OK.

The Open Checklist dialog box closes and the selected list is displayed in the
Create GUI Checkpoint dialog box.

Chapter 9 • Checking GUI Objects

143

 5 Open the window in the application being tested that contains the objects
shown in the checklist (if it is not already open).

 6 Click OK.

WinRunner captures the current property values and a win_check_gui
statement is inserted into your test script.

Modifying GUI Checklists

You can make changes to a checklist you created for a GUI checkpoint. Note
that a checklist includes only the objects and properties that need to be
checked. It does not include the expected results for the values of those
properties.

You can:

➤ make a checklist available to other users by saving it in a shared folder

➤ edit a checklist

Note: In addition to modifying GUI checklists, you can also modify the
expected results of GUI checkpoints. For more information, see “Modifying
the Expected Results of a GUI Checkpoint” on page 172.

Saving a GUI Checklist in a Shared Folder

By default, checklists for GUI checkpoints are stored in the folder of the
current test. You can specify that a checklist be placed in a shared folder to
enable wider access, so that you can use a checklist in multiple tests.

The default folder in which WinRunner stores your shared checklists is
WinRunner installation folder/chklist. To choose a different folder, you can use
the Shared checklists box in the Folders category of the General Options
dialog box. For more information, see Chapter 23, “Setting Global Testing
Options.”

Part III • Creating Tests—Basic

144

To save a GUI checklist in a shared folder:

 1 Choose Insert > Edit GUI Checklist. The Open Checklist dialog box opens.
Note that GUI checklists have the .ckl extension, while database checklists
have the .cdl extension.

For information on database checklists, see “Modifying a Standard Database
Checkpoint,” on page 297.

 2 Select a GUI checklist and click OK. The Open Checklist dialog box closes.
The Edit GUI Checklist dialog box displays the selected checklist.

 3 Save the checklist by clicking Save As. The Save Checklist dialog box opens.

 4 Under Scope, click Shared. Type a name for the shared checklist. Click OK
to save the checklist and close the dialog box.

 5 Click OK to close the Edit GUI Checklist dialog box.

Editing GUI Checklists

You can edit an existing GUI checklist. Note that a GUI checklist includes
only the objects and the properties to be checked. It does not include the
expected results for the values of those properties.

You may want to edit a GUI checklist if you add a checkpoint for a window
that already has a checklist.

Chapter 9 • Checking GUI Objects

145

When you edit a GUI checklist, you can:

➤ change which objects in a window to check

➤ change which properties of an object to check

➤ change the arguments for an existing property check

➤ specify the arguments for a new property check

Note that before you start working, the objects in the checklist must be
loaded into the GUI map. For information about loading the GUI map, see
“Loading the GUI Map File,” on page 59.

To edit an existing GUI checklist:

 1 Choose Insert > Edit GUI Checklist. The Open Checklist dialog box opens.

 2 A list of checklists for the current test is displayed. If you want to see
checklists in a shared folder, click Shared.

For more information on sharing GUI checklists, see “Saving a GUI
Checklist in a Shared Folder” on page 143.

 3 Select a GUI checklist.

Lists the available checklists.

Displays checklists created for the current
test.

Displays checklists created in a shared
folder.

Describes the selected checklist.

Part III • Creating Tests—Basic

146

 4 Click OK. The Open Checklist dialog box closes. The Edit GUI Checklist
dialog box opens and displays the selected checklist.

 5 To see a list of the properties to check for a specific object, click the object
name in the Objects pane. The Properties pane lists all the properties for the
selected object. To change the viewing options for the properties for an
object, use the Show Properties buttons. For more information, see “The
Edit GUI Checklist Dialog Box,” on page 155.

➤ To check additional properties of an object, select the object in the
Objects pane. In the Properties pane, select the properties to be checked.

➤ To delete an object from the checklist, select the object in the Objects
pane. Click the Delete button and then select the Object option.

➤ To add an object to the checklist, make sure the relevant window is open
in the application being tested. Click the Add button. The mouse pointer
becomes a pointing hand and a help window opens.

Click each object that you want to include in your checklist. Click the
right mouse button to stop the selection process. The Edit GUI Checklist
dialog box reopens.

In the Properties pane, select the properties you want to check or accept
the default checks.

Chapter 9 • Checking GUI Objects

147

Note: You cannot insert objects from different windows into a single
checklist.

➤ To add all objects or menus in a window to the checklist, make sure the
window of the application you are testing is active. Click the Add All
button and select Objects or Menus.

Note: If the edited checklist is part of an obj_check_gui statement, do not
add additional objects to it, as by definition this statement is for a single
object only.

➤ To add a check in which you specify arguments, first select the property
for which you want to specify arguments. Next, either click the Specify
Arguments button, or double-click in the Arguments column. Note that
if an ellipsis is displayed in the Arguments column, then you must
specify arguments for a check on this property. (You do not need to
specify arguments if a default argument is specified.) When checking
standard objects, you specify arguments only for certain properties of
edit and static text objects. You also specify arguments for checks on
certain properties of nonstandard objects. For more information, see
“Specifying Arguments for Property Checks” on page 164.

 6 Save the checklist in one of the following ways:

➤ To save the checklist under its existing name, click OK to close the Edit
GUI Checklist dialog box. A WinRunner message prompts you to
overwrite the existing checklist. Click OK.

➤ To save the checklist under a different name, click the Save As button.
The Save Checklist dialog box opens. Type a new name or use the default
name. Click OK. Note that if you do not click the Save As button,
WinRunner automatically saves the checklist under its default name
when you click OK to close the Edit GUI Checklist dialog box.

A new GUI checkpoint statement is not inserted in your test script.

Part III • Creating Tests—Basic

148

For more information on the Edit GUI Checklist dialog box, see
“Understanding the GUI Checkpoint Dialog Boxes” on page 148.

Note: Before you run your test in Verify run mode, you must update the
expected results to match the changes you made in the checklist. To update
the expected results, run your test in Update run mode. For more
information on running a test in Update run mode, see “WinRunner Test
Run Modes” on page 429.

Understanding the GUI Checkpoint Dialog Boxes

When creating a GUI checkpoint to check your GUI objects, you can specify
the objects and properties to check, create new checklists, and modify
existing checklists. Three dialog boxes are used to create and maintain your
GUI checkpoints: the Check GUI dialog box, the Create GUI Checkpoint
dialog box, and the Edit GUI Checklist dialog box.

Note that by default, the toolbar at the top of each GUI Checkpoint dialog
box displays large buttons with text. You can choose to see dialog boxes
with smaller buttons without titles. Examples of both kinds of buttons are
illustrated below.

To display the GUI Checkpoint dialog boxes with small buttons:

 1 Click the top-left corner of the dialog box.

 2 Clear the Large Buttons option.

Large Add All button Small Add All button

Chapter 9 • Checking GUI Objects

149

Messages in the GUI Checkpoint Dialog Boxes

The following messages may be displayed in the GUI Checkpoint dialog
boxes:

Message Meaning Dialog Box Location

Complex
Value

The expected or actual value of
the selected property check is too
complex to display in the
column. This message often
appears for content checks on
tables.

Check GUI,
Create GUI
Checkpoint,
GUI Checkpoint
Results* (see
note below)

Properties
pane,
Expected
Value column
or Actual
Value column

N/A The expected value of the selected
property check was not captured:
either arguments need to be
specified before this check can
have an expected value, or the
expected value of this check is
captured only once this check is
added to the checkpoint.

Check GUI,
Create GUI
Checkpoint,
GUI Checkpoint
Results* (see
note below)

Properties
pane,
Expected
Value column

Cannot
Capture

The expected or actual value of
the selected property could not be
captured.

Check GUI,
Create GUI
Checkpoint,
GUI Checkpoint
Results* (see
note below)

Properties
pane,
Expected
Value column
or Actual
Value

No
properties
are available
for this
object

The specified object did not have
any properties.

Check GUI,
Create GUI
Checkpoint,
Edit GUI
Checklist

Properties
pane

No
properties
were
captured for
this object

When this checkpoint was
created, no property checks were
selected for this object.

GUI Checkpoint
Results* (see
note below)

Properties
pane

Part III • Creating Tests—Basic

150

Note: For information on the GUI Checkpoint Results dialog box, see
“Modifying the Expected Results of a GUI Checkpoint” on page 172 or
Chapter 21, “Analyzing Test Results.”

The Check GUI Dialog Box

You can use the Check GUI dialog box to create a GUI checkpoint with the
checks you specify for a single object or a window. This dialog box opens
when you choose Insert > GUI Checkpoint > For Object/Window or click the
GUI Checkpoint for Object/Window button on the User toolbar, and
double-click an object or a window.

The Objects pane contains the name of the window and objects that will be
included in the GUI checkpoint. The Properties pane lists all the properties
of a selected object. A checkmark indicates that the item is selected and is
included in the checkpoint.

When you select an object in the Objects pane, the Highlight Selected
Object option highlights the actual GUI object if the object is visible on the
screen.

Chapter 9 • Checking GUI Objects

151

Note: When arguments have not been specified for a property check that
requires arguments, <N/A> appears in the Expected Value column for that
check. The arguments specified for a check determine its expected value,
and therefore the expected value is not available until the arguments are
specified.

The Check GUI dialog box includes the following options:

Button Description

Add All adds all objects or menus in a window to your checklist.

Select All selects all objects, properties, or objects of a given class in
the Check GUI dialog box. If you want to select all objects of a given
class, the Classes of Objects dialog box opens. Specify the class of
objects to select.

Clear All clears all objects, properties, or objects of a given class in the
Check GUI dialog box. If you want to clear all objects of a given class,
the Classes of Objects dialog box opens. Specify the class of objects to
clear.

Property List calls the ui_function parameter that is defined only for
classes customized using the gui_ver_add_class function. Note that
this button appears only if at least one object in the Objects pane
belongs to a class for which the ui_function parameter has been
defined using the gui_ver_add_class function. For additional
information, refer to the WinRunner Customization Guide.

Edit Expected Value enables you to edit the expected value of the
selected property. For more information, see “Editing the Expected
Value of a Property” on page 170.

Specify Arguments enables you to specify the arguments for a check
on the selected property. For more information, see “Specifying
Arguments for Property Checks” on page 164.

Show Selected Properties Only displays only properties whose check
boxes are selected. (Toggles between viewing all properties and
viewing selected properties only.) By default, all properties are
shown.

Part III • Creating Tests—Basic

152

When you click OK to close the dialog box, WinRunner captures the current
property values and stores them in the test’s expected results folder. The
WinRunner window is restored and a GUI checkpoint is inserted in the test
script as an obj_check_gui or a win_check_gui statement.

The Create GUI Checkpoint Dialog Box

You can use the Create GUI Checkpoint dialog box to create a GUI checklist
with default checks for multiple objects or by specifying which properties to
check. To open the Create GUI Checkpoint dialog box, choose
Insert > GUI Checkpoint > For Multiple Objects or click the GUI Checkpoint
for Multiple Objects button on the User toolbar.

Show Standard Properties Only displays only standard properties.

Show Nonstandard Properties Only displays only nonstandard
properties, such as Visual Basic, PowerBuilder, and ActiveX control
properties.

Show User Properties Only displays only user-defined property
checks. To create user-defined property checks, refer to the
WinRunner Customization Guide.

Show All Properties displays all properties, including standard,
nonstandard, and user-defined properties.

Button Description

Chapter 9 • Checking GUI Objects

153

The Objects pane contains the name of the window and objects that will be
included in the GUI checkpoint. The Properties pane lists all the properties
of a selected object. A checkmark indicates that the item is selected and is
included in the checkpoint.

When you select an object from the Objects pane, the Highlight Selected
Object option highlights the actual GUI object if the object is visible on the
screen.

Note: When arguments have not been specified for a property check that
requires arguments, <N/A> appears in the Expected Value column for that
check. The arguments specified for a check determine its expected value,
and therefore the expected value is not available until the arguments are
specified.

The Create GUI Checkpoint dialog box includes the following options:

Button Description

Open opens an existing GUI checklist.

Save As saves the open GUI checklist to a different name. Note that if
you do not click the Save As button, WinRunner automatically saves
the checklist under its default name when you click OK to close the
Create GUI Checkpoint dialog box. The Save As option is particularly
useful for saving a checklist to the “shared checklist” folder.

Add adds an object to your GUI checklist.

Add All adds all objects or menus in a window to your GUI checklist.

Delete deletes an object, or all of the objects that appear in the GUI
checklist.

Select All selects all objects, properties, or objects of a given class in
the Create GUI Checkpoint dialog box. If you want to select all
objects of a given class, the Classes of Objects dialog box opens.
Specify the class of objects to select.

Part III • Creating Tests—Basic

154

When you click OK to close the dialog box, WinRunner saves your changes,
captures the current property values, and stores them in the test’s expected
results folder. The WinRunner window is restored and a GUI checkpoint is
inserted in the test script as a win_check_gui statement.

Clear All clears all objects, properties, or objects of a given class in the
Create GUI Checkpoint dialog box. If you want to clear all objects of
a given class, the Classes of Objects dialog box opens. Specify the
class of objects to clear.

Property List calls the ui_function parameter that is defined only for
classes customized using the gui_ver_add_class function. Note that
this button appears only if at least one object in the Objects pane
belongs to a class for which the ui_function parameter has been
defined using the gui_ver_add_class function. For additional
information, refer to the WinRunner Customization Guide.

Edit Expected Value enables you to edit the expected value of the
selected property. For more information, see “Editing the Expected
Value of a Property” on page 170.

Specify Arguments enables you to specify the arguments for a check
on the selected property. For more information, see “Specifying
Arguments for Property Checks” on page 164.

Show Selected Properties Only displays only properties whose check
boxes are selected. (Toggles between viewing all properties and
viewing selected properties only.) By default, all properties are
shown.

Show Standard Properties Only displays only standard properties.

Show Nonstandard Properties Only displays only nonstandard
properties, such as Visual Basic, PowerBuilder, and ActiveX control
properties.

Show User Properties Only displays only user-defined property
checks. To create user-defined property checks, refer to the
WinRunner Customization Guide.

Show All Properties displays all properties, including standard,
nonstandard, and user-defined properties.

Button Description

Chapter 9 • Checking GUI Objects

155

The Edit GUI Checklist Dialog Box

You can use the Edit GUI Checklist dialog box to modify your checklist. A
checklist contains a list of objects and properties. It does not capture the
current values for those properties. Consequently you cannot edit the
expected values of an object’s properties in this dialog box.

To open the Edit GUI Checklist dialog box, choose
Insert > Edit GUI Checklist.

The Objects pane contains the name of the window and objects that are
included in the checklist. The Properties pane lists all the properties for a
selected object. A checkmark indicates that the item is selected and will be
checked in checkpoints that use this checklist.

When you select an object from the Objects pane, the Highlight Selected
Object option highlights the actual GUI object if the object is visible on the
screen.

Part III • Creating Tests—Basic

156

The Edit GUI Checklist dialog box includes the following options:

Button Description

Open opens an existing GUI checklist.

Save As saves your GUI checklist to another location. Note that if
you do not click the Save As button, WinRunner will
automatically save the checklist under its default name when you
click OK to close the Edit GUI Checklist dialog box. This option is
particularly useful for saving a checklist to the “shared checklist”
folder.

Add adds an object to your GUI checklist.

Add All adds all objects or all menus in a window to your GUI
checklist.

Delete deletes the specified object, or all objects that appear in the
GUI checklist.

Select All selects all objects, properties, or objects of a given class
in the Edit GUI Checklist dialog box. If you want to select all
objects of a given class, the Classes of Objects dialog box opens.
Specify the class of objects to select.

Clear All clears all objects, properties, or objects of a given class in
the Edit GUI Checklist dialog box. If you want to clear all objects
of a given class, the Classes of Objects dialog box opens. Specify
the class of objects to clear.

Property List calls the ui_function parameter that is defined only
for classes customized using the gui_ver_add_class function. Note
that this button appears only if at least one object in the Objects
pane belongs to a class for which the ui_function parameter has
been defined using the gui_ver_add_class function. For additional
information, refer to the WinRunner Customization Guide.

Specify Arguments enables you to specify the arguments for a
check on the selected property. For more information, see
“Specifying Arguments for Property Checks” on page 164.

Chapter 9 • Checking GUI Objects

157

When you click OK to close the dialog box, WinRunner prompts you to
overwrite your checklist. Note that when you overwrite a checklist, any
expected results captured earlier in checkpoints using the edited checklist
remain unchanged.

A new GUI checkpoint statement is not inserted in your test script.

Note: Before you run your test in Verify run mode, you must update the
expected results to match the changes you made in the checklist. To update
the expected results, run your test in Update run mode. For more
information on running a test in Update run mode, see “WinRunner Test
Run Modes” on page 429.

Show Selected Properties Only displays only properties whose
check boxes are selected. (Toggles between viewing all properties
and viewing selected properties only.) By default, selected
properties are shown.

Show Standard Properties Only displays only standard properties.

Show Nonstandard Properties Only displays only nonstandard
properties, such as Visual Basic, PowerBuilder, and ActiveX control
properties.

Show User Properties Only displays only user-defined property
checks. To create user-defined property checks, refer to the
WinRunner Customization Guide.

Show All Properties displays all properties, including standard,
nonstandard, and user-defined properties.

Button Description

Part III • Creating Tests—Basic

158

Property Checks and Default Checks

When you create a GUI checkpoint, you can determine the types of checks
to perform on GUI objects in your application. For each object class,
WinRunner recommends a default check. For example, if you select a push
button, the default check determines whether the push button is enabled.
Alternatively, you can specify in a dialog box which properties of an object
to check. For example, you can choose to check a push button’s width,
height, label, and position in a window (x- and y-coordinates).

To use the default check, you choose a Insert > GUI Checkpoint command.
Click a window or an object in your application. WinRunner automatically
captures information about the window or object and inserts a GUI
checkpoint into the test script.

To specify which properties to check for an object, you choose a
Insert > GUI Checkpoint command. Double-click a window or an object. In
the Check GUI dialog box, choose the properties you want WinRunner to
check. Click OK to save the checks and close the dialog box. WinRunner
captures information about the GUI object and inserts a GUI checkpoint
into the test script.

The following sections show the types of checks available for different
object classes.

Calendar Class

You can check the following properties for a calendar class object:

Enabled: Checks whether the calendar can be selected.

Focused: Checks whether keyboard input will be directed to the calendar.

Height: Checks the calendar’s height in pixels.

Selection: The selected date in the calendar (default check).

Width: Checks the calendar’s width in pixels.

Chapter 9 • Checking GUI Objects

159

X: Checks the x-coordinate of the top left corner of the calendar, relative to
the window.

Y: Checks the y-coordinate of the top left corner of the calendar, relative to
the window.

Check_button Class and Radio_button Class

You can check the following properties for a check box (an object of
check_button class) or a radio button:

Enabled: Checks whether the button can be selected.

Focused: Checks whether keyboard input will be directed to this button.

Height: Checks the button’s height in pixels.

Label: Checks the button’s label.

State: Checks the button’s state (on or off) (default check).

Width: Checks the button’s width in pixels.

X: Checks the x-coordinate of the top left corner of the button, relative to
the window.

Y: Checks the y-coordinate of the top left corner of the button, relative to
the window.

Edit Class and Static Text Class

You can check the properties below for edit class and static_text class
objects.

Checks on any of these five properties (Compare, DateFormat, Range,
RegularExpression, and TimeFormat) require you to specify arguments. For
information on specifying arguments for property checks, see “Specifying
Arguments for Property Checks” on page 164.

Part III • Creating Tests—Basic

160

Compare: Checks the contents of the object (default check). This check has
arguments. You can specify the following arguments:

➤ a case-sensitive check on the contents as text (default setting)

➤ a case-insensitive check on the contents as text

➤ numeric check on the contents

DateFormat: Checks that the contents of the object are in the specified date
format. You must specify arguments (a date format) for this check.
WinRunner supports a wide range of date formats. For a complete list of
available date formats, see “Date Formats” on page 166.

Enabled: Checks whether the object can be selected.

Focused: Checks whether keyboard input will be directed to this object.

Height: Checks the object’s height in pixels.

Range: Checks that the contents of the object are within the specified
range. You must specify arguments (the upper and lower limits for the
range) for this check.

RegularExpression: Checks that the string in the object meets the
requirements of the regular expression. You must specify arguments (the
string) for this check. Note that you do not need to precede the regular
expression with an exclamation point. For more information, refer to
Chapter 6, “Using Regular Expressions” in the Mercury WinRunner Advanced
Features User’s Guide.

TimeFormat: Checks that the contents of the object are in the specified
time format. You must specify arguments (a time format) for this check.
WinRunner supports the time formats shown below, with an example for
each format.

hh.mm.ss 10.20.56

hh:mm:ss 10:20:56

hh:mm:ss ZZ 10:20:56 AM

Chapter 9 • Checking GUI Objects

161

Width: Checks the text object’s width in pixels.

X: Checks the x-coordinate of the top left corner of the object, relative to
the window.

Y: Checks the y-coordinate of the top left corner of the object, relative to the
window.

List Class

You can check the following properties for a list object:

Content: Checks the contents of the entire list.

Enabled: Checks whether an entry in the list can be selected.

Focused: Checks whether keyboard input will be directed to this list.

Height: Checks the list’s height in pixels.

ItemsCount: Checks the number of items in the list.

Selection: Checks the current list selection (default check).

Width: Checks the list’s width in pixels.

X: Check the x-coordinate of the top left corner of the list, relative to the
window.

Y: Check the y-coordinate of the top left corner of the list, relative to the
window.

Menu_item Class

Menus cannot be accessed directly, by clicking them. To include a menu in a
GUI checkpoint, click the window title bar or the menu bar. The Add All
dialog box opens. Select the Menus option. All menus in the window are
added to the checklist. Each menu item is listed separately.

You can check the following properties for menu items:

HasSubMenu: Checks whether a menu item has a submenu.

ItemEnabled: Checks whether the menu is enabled (default check).

Part III • Creating Tests—Basic

162

ItemPosition: Checks the position of each item in the menu.

SubMenusCount: Counts the number of items in the submenu.

Object Class

You can check the following properties for an object that is not mapped to a
standard object class:

Enabled: Checks whether the object can be selected.

Focused: Checks whether keyboard input will be directed to this object.

Height: Checks the object’s height in pixels (default check).

Width: Checks the object’s width in pixels (default check).

X: Checks the x-coordinate of the top left corner of the GUI object, relative
to the window (default check).

Y: Checks the y-coordinate of the top left corner of the GUI object, relative
to the window (default check).

Push_button Class

You can check the following properties for a push button:

Enabled: Checks whether the button can be selected (default check).

Focused: Checks whether keyboard input will be directed to this button.

Height: Checks the button’s height in pixels.

Label: Checks the button’s label.

Width: Checks the button’s width in pixels.

X: Checks the x-coordinate of the top left corner of the button, relative to
the window.

Y: Checks the y-coordinate of the top left corner of the button, relative to
the window.

Chapter 9 • Checking GUI Objects

163

Scroll Class

You can check the following properties for a scrollbar:

Enabled: Checks whether the scrollbar can be selected.

Focused: Checks whether keyboard input will be directed to this scrollbar.

Height: Checks the scrollbar’s height in pixels.

Position: Checks the current position of the scroll thumb within the
scrollbar (default check).

Width: Checks the scrollbar’s width in pixels.

X: Checks the x-coordinate of the top left corner of the scrollbar, relative to
the window.

Y: Checks the y-coordinate of the top left corner of the scrollbar, relative to
the window.

Window Class

You can check the following properties for a window:

CountObjects: Counts the number of GUI objects in the window (default
check).

Enabled: Checks whether the window can be selected.

Focused: Checks whether keyboard input will be directed to this window.

Height: Checks the window’s height in pixels.

Label: Checks the window’s label.

Maximizable: Checks whether the window can be maximized.

Maximized: Checks whether the window is maximized.

Minimizable: Checks whether the window can be minimized.

Minimized: Checks whether the window is minimized.

Resizable: Checks whether the window can be resized.

Part III • Creating Tests—Basic

164

SystemMenu: Checks whether the window has a system menu.

Width: Checks the window’s width in pixels.

X: Checks the x-coordinate of the top left corner of the window.

Y: Checks the y-coordinate of the top left corner of the window.

Specifying Arguments for Property Checks

You can perform many different property checks on objects. If you want to
perform the property checks listed below on edit class and static_text class
objects, you must specify arguments for those checks:

➤ Compare

➤ DateFormat

➤ Range

➤ RegularExpression

➤ TimeFormat

To specify arguments for a property check on an edit class or static_text
class object:

 1 Make sure that one of the GUI Checkpoint dialog boxes containing the
object for whose property you want to specify arguments is open. If
necessary, choose Insert > GUI Checkpoint > For Multiple Objects or Insert >
Edit GUI Checklist to open the relevant dialog box.

 2 In the Objects pane of the dialog box, select the object to check.

 3 In the Properties pane of the dialog box, select the desired property check.

 4 Do one of the following:

➤ Click the Specify Arguments button.

➤ Double-click the default argument (for the Compare check) or the ellipsis
in the corresponding Arguments column (for the other checks).

➤ Right-click with the mouse and choose Specify Arguments from the
pop-up menu.

Chapter 9 • Checking GUI Objects

165

A dialog box for the selected property check opens.

Note: When you select the check box beside a property check for which you
need to specify arguments, the dialog box for the selected property check
opens automatically.

 5 Specify the arguments in the dialog box that opens. For example, for a Date
Format check, specify the date format. For information on specifying
arguments for a particular property check, see the relevant section below.

 6 Click OK to close the dialog box for specifying arguments.

 7 When you are done, click OK to close the GUI Checkpoint dialog box that is
open.

Compare Property Check

Checks the contents of the edit class or static_text class object (default
check). Opens the Specify ‘Compare’ Arguments dialog box.

➤ Click Text to check the contents as text (default setting).

➤ To ignore the case when checking text, select the Ignore Case check box.

➤ Click Numeric to check the contents as a number.

Note that the default argument setting for the Compare property check is a
case-sensitive comparison of the object as text.

Part III • Creating Tests—Basic

166

DateFormat Property Check

Checks that the contents of the edit or static_text class object are in the
specified date format. To specify a date format, select it from the drop-down
list in the Check Arguments dialog box.

Date Formats

WinRunner supports the following date formats, shown with an example
for each:

mm/dd/yy 09/24/04

dd/mm/yy 24/09/04

dd/mm/yyyy 24/09/2004

yy/dd/mm 04/24/09

dd.mm.yy 24.09.04

dd.mm.yyyy 24.09.2004

dd-mm-yy 24-09-04

dd-mm-yyyy 24-09-2004

yyyy-mm-dd 2004-09-24

Day, Month dd, yyyy Friday (or Fri), September (or Sept) 24, 2004

dd Month yyyy 24 September 2004

Day dd Month yyyy Friday (or Fri) 24 September (or Sept) 2004

Note: When the day or month begins with a zero (such as 09 for
September), the 0 is not required for a successful format check.

Chapter 9 • Checking GUI Objects

167

Range Property Check

Checks that the contents of the edit class or static_text class object are
within the specified range. In the Check Arguments dialog box, specify the
lower limit in the top edit field, and the upper limit in the bottom edit field.

Note: Any currency sign preceding the number is removed prior to making
the comparison for this check.

RegularExpression Property Check

Checks that the string in the edit class or static_text class object meets the
requirements of the regular expression. In the Check Arguments dialog box,
enter a string into the Regular Expression box. You do not need to precede
the regular expression with an exclamation point. For more information,
refer to Chapter 6, “Using Regular Expressions” in the Mercury WinRunner
Advanced Features User’s Guide.

Note: Two “\” characters (“\\”) are interpreted as a single “\” character.

Part III • Creating Tests—Basic

168

TimeFormat Property Check

Checks that the contents of the edit class or static_text class object are in the
specified time format. To specify the time format, select it from the drop-
down list in the Check Arguments dialog box.

WinRunner supports the following time formats, shown with an example
for each:

Time Formats

hh.mm.ss 10.20.56

hh:mm:ss 10:20:56

hh:mm:ss ZZ 10:20:56 AM

Closing the GUI Checkpoint Dialog Boxes

If you select property checks that requires arguments without specifying the
actual arguments for them, and then click OK to close the dialog box, you
are prompted to specify the arguments.

Specifying Arguments for One Property Check

If you click OK to close a GUI checkpoint dialog box when you have selected
a check on a property that requires arguments, without first specifying
arguments for that property check, the Check Arguments dialog box for that
property check opens.

Specifying Arguments for Multiple Property Checks

If you select check boxes for multiple property checks that need arguments,
and you did not specify arguments, then when you try to close the open
dialog box, the Argument Specification dialog box opens. This dialog box
enables you to specify arguments for the relevant property checks.

Chapter 9 • Checking GUI Objects

169

In the example below, the user clicked OK to close the Create GUI
Checkpoint dialog before specifying arguments for the Date Format, Time
Format, Range and RegularExpression property checks on the “Departure
Time:” edit object in the sample Flights application:

The property check appears in the Check column. The logical name of the
object appears in the Object column. An ellipsis appears in the Arguments
column to indicate that the arguments for the property check have not been
specified.

To specify arguments from the Argument Specification dialog box:

 1 In the Check column, select a property check.

 2 Click the Specify Arguments button. Alternatively, double-click the property
check.

 3 The dialog box for specifying arguments for that property check opens.

 4 Specify the arguments for the property check, as described above.

 5 Click OK to close the dialog box for specifying arguments.

 6 Repeat the above steps until arguments appear in the Arguments column for
all property checks.

 7 Once arguments are specified for all property checks in the dialog box, click
Close to close it and return to the GUI Checkpoint dialog box that is open.

 8 Click OK to close the GUI Checkpoint dialog box that is open.

Part III • Creating Tests—Basic

170

Editing the Expected Value of a Property

When you create a GUI checkpoint, WinRunner captures the current
property values for the objects you check. These current values are saved as
expected values in the expected results folder.

When you run your test, WinRunner captures these property values again. It
compares the new values captured during the test with the expected values
that were stored in the test’s expected results folder.

Suppose that you want to change the value of a property after it has been
captured in a GUI checkpoint but before you run your test script. You can
simply edit the expected value of this property in the Check GUI dialog box
or the Create GUI Checkpoint dialog box.

Note that you cannot edit expected property values in the Edit GUI
Checklist dialog box: When you open the Edit GUI Checklist dialog box,
WinRunner does not capture current values. Therefore, this dialog box does
not display expected values that can be edited.

Note: If you want to edit the expected value for a property check that is
already part of a GUI checkpoint, you must change the expected results of
the GUI checkpoint. For more information, see “Modifying the Expected
Results of a GUI Checkpoint” on page 172.

To edit the expected value of an object property:

 1 Confirm that the object for which you want to edit an expected value is
displayed in your application.

Note: If the object is not displayed, WinRunner cannot display the expected
value of the object’s properties in the Check GUI or Create GUI Checkpoint
dialog box.

Chapter 9 • Checking GUI Objects

171

 2 If the Check GUI dialog box or the Create GUI Checkpoint dialog box is not
already open, choose Insert > GUI Checkpoint > For Multiple Objects to
open the Create GUI Checkpoint dialog box and click Open to open the
checklist in which to edit the expected value. Note that the Check GUI
dialog box opens only when you create a new GUI checkpoint.

 3 In the Objects pane, select an object.

 4 In the Properties pane, select the property whose expected value you want
to edit.

 5 Do one of the following:

➤ Click the Edit Expected Value button.

➤ Double-click the existing expected value (the current value).

➤ Right-click with the mouse and choose Edit Expected Value from the
pop-up menu.

Depending on the property, an edit field, an edit box, a list box, a spin box,
or a new dialog box opens.

For example, when you edit the expected value of the Enabled property for a
push_button class object, a list box opens:

 6 Edit the expected value of the property, as desired.

 7 Click OK to close the dialog box.

Part III • Creating Tests—Basic

172

Modifying the Expected Results of a GUI Checkpoint

You can modify the expected results of an existing GUI checkpoint by
changing the expected value of a property check within the checkpoint. You
can make this change before or after you run your test script.

To modify the expected results for an existing GUI checkpoint:

 1 Choose Tools > Test Results or click Test Results.

The WinRunner Test Results window opens.

 2 Display the expected results:

➤ In the Unified report view—Click the Open button or choose File >
Open. The Open Test Results dialog box opens. Select exp and click
Open.

Chapter 9 • Checking GUI Objects

173

➤ In the WinRunner report view—Select exp in the Results location box.

 3 Locate the GUI checkpoint by looking for end GUI capture events.

Note: If you are working in the WinRunner report view, you can use the
Show TSL button to open the test script to the highlighted line number.

 4 Select and display end GUI capture entry. The GUI Checkpoint Results
dialog box opens.

Part III • Creating Tests—Basic

174

 5 Select the property check whose expected results you want to modify. Click
the Edit expected value button. In the Expected Value column, modify the
value, as desired. Click OK to close the dialog box.

Notes: You can also modify the expected value of a property check while
creating a GUI checkpoint. For more information, see “Editing the Expected
Value of a Property” on page 170.

You can also modify the expected value of a GUI checkpoint to the actual
value after a test run. For more information, see “Updating the Expected
Results of a Checkpoint in the WinRunner Report View” on page 499.

For more information on working in the Test Results window, see
Chapter 21, “Analyzing Test Results.”

175

10
Working with Web Objects

When you load WinRunner with WebTest add-in support, WinRunner can
record and run Context Sensitive operations on the Web (HTML) objects in
your Web site in Netscape and Internet Explorer.

Using the WebTest add-in, you can also view the properties of Web objects,
retrieve information about the Web objects in your Web site, and create
checkpoints on Web objects to check the functionality of your Web site.

Note: You can also use the AOL browser to record and run tests on Web
objects in your site, but you cannot record or run objects on browser
elements, such as the Back, Forward, and Navigate buttons.

This chapter describes:

➤ About Working with Web Objects

➤ Viewing Recorded Web Object Properties

➤ Using Web Object Properties in Your Tests

➤ Checking Web Objects

Part III • Creating Tests—Basic

176

About Working with Web Objects

When you create tests using the WebTest Add-in, WinRunner recognizes
Web objects such as: frames, text links, images, tables, and form objects.
Each object has a number of different properties. You can use these
properties to identify objects, retrieve and check property values and
perform Web functions.

You can also check that your Web site works as expected. For example, you
can check the structure or content of frames, tables, and cells, the URL of
links, the source and type of images, the color or font of text links, and
more.

Note: Before you open your browser to begin testing your Web site, you
must first start WinRunner with the WebTest add-in loaded. For more
information, see “Loading WinRunner Add-Ins” on page 20.

Viewing Recorded Web Object Properties

You can use the Recorded tab of the GUI Spy to see the properties and
property values that WinRunner records for the selected object just as you
do for any Windows object.

To view recorded Web object properties:

 1 Start WinRunner.

 2 Open your Web browser.

Note: You must start WinRunner with the WebTest add-in loaded before you
open your Web browser.

 3 Choose Tools > GUI Spy to open the GUI Spy dialog box.

Chapter 10 • Working with Web Objects

177

 4 Select Hide WinRunner if you want to hide the WinRunner window (but not
the GUI Spy) while you spy on the objects in your Web site.

 5 Click Spy and point to an object in your Web page. The object is highlighted
and the Window name, object name, and the recorded properties and values
are displayed.

 6 To capture an object description in the GUI Spy dialog box, point to an
object and press the STOP softkey. (The default softkey combination is LEFT
CTRL + F3.)

For more information on the GUI Spy, see “Viewing GUI Object Properties,”
on page 34.

Notes:

The All Standard tab of the GUI Spy does not display additional (not
recorded) properties of Web objects. For a list of properties associated with
each Web object, see “Using Web Object Properties in Your Tests” on
page 178.

The GUI Map Configuration tool does not support configuring all Web
objects. You can use the GUI Map Configuration tool to modify how
WinRunner recognizes Web objects with a window handle (HWND), such as
html_frame, html_edit, html_check_button, html_combobox, html_listbox,
html_radio_button, and html_push_button. You cannot use the GUI Map
Configuration tool to modify how WinRunner recognizes Web-oriented
objects such as html_text_link and html_rect. To modify how WinRunner
recognizes these Web objects, you can use the GUI map configuration
functions, such as set_record_attr, and set_record_method.

For more information on the GUI Map Configuration tool, refer to
Chapter 2, “Configuring the GUI Map” in the Mercury WinRunner Advanced
Features User’s Guide. For information about the GUI map configuration
functions, refer to the TSL Reference.

Part III • Creating Tests—Basic

178

Using Web Object Properties in Your Tests

In order to create checkpoints, write statements using descriptive
programming, and to take advantage of some TSL functions (such as
web_obj_get_info and _web_set_tag_attr), you need to know the properties
that you can use with each Web object.

This section lists and defines the properties available for each Web object
including:

➤ Using Properties for Web Objects

➤ Using Properties for Frame Objects

➤ Using Properties for Web Images

➤ Using Properties for Text Links

➤ Using Properties for Web Tables and Table Cells

➤ Using Properties for Form Objects including: Radio Buttons, Check Boxes,
Edit Boxes, List and Combo Boxes, and Web Buttons

For more information on checking Web objects, see “Checking Web
Objects,” on page 187.

For more information on descriptive programming, refer to Chapter 7,
“Enhancing Your Test Scripts with Programming” in the Mercury WinRunner
Advanced Features User’s Guide.

For more information on web_obj_get_info and other functions that may
be useful for testing a Web site, refer to the TSL Reference.

Chapter 10 • Working with Web Objects

179

Using Properties for Web Objects

The following object properties are common to all Web objects except Web
frames (html_frame class):

Property Name Description

attribute/<prop_name> Enables you to access the specified internal property of
the object. For more information, see “Using
attribute/<prop_name> Notation,” on page 180.

bgcolor The object's background color.

class The WinRunner class of the object.

class_name The object's class as it appears in the HTML.

color The object's color.

current_bgcolor The background color property for the element as
defined by the current style.
Supported only in Internet Explorer.

current_color The color property for the element as defined by the
current style.
Supported only in Internet Explorer.

focused Indicates whether the object has the focus.
Possible values: 1: True

0: False

height The object's height (in pixels).

html_id The object's HTML identifier.

inner_html The HTML code contained between the object's start and
end tags.

inner_text The text contained between the object's start and end
tags.

outer_html The object's HTML code and its content.
Supported only in Internet Explorer.

source_index The selector value that WinRunner assigns to the object
to indicate the order in which the object's HTML tag
appears in the source code relative to other HTML tags.
Starting value = 0.
Supported only in Internet Explorer.

Part III • Creating Tests—Basic

180

Using attribute/<prop_name> Notation

You can use the attribute/<prop_name> notation to identify a Web object
according to its internal (user-defined) properties.

For example, suppose a Web page has the same company logo image in two
places on the page:

You could identify the image that you want to click using descriptive
programming by including the user-defined LogoID property in the object
description as follows:

web_image_click("{class: object, MSW_class: html_rect, attribute/logoID: 123}" ,
164 , 253);

For more information about descriptive programming, refer to Chapter 7,
“Enhancing Your Test Scripts with Programming” in the Mercury WinRunner
Advanced Features User’s Guide.

Setting the Property to Use for the Logical Name of an Object Class

Each Web object class has a default property defined, whose value is used as
the logical name of the object. You can change the default logical name
property for a Web object class using the _web_set_tag_attr function.

If you want to use a user-defined property for the logical name of an object,
you can use the attribute/<prop_name> notation in your
_web_set_tag_attr statement.

tag_name The object's HTML tag.

visible Indicates whether the object is visible.
Possible values: 1: True

0: False

width The object's width (in pixels).

Property Name Description

Chapter 10 • Working with Web Objects

181

For example, suppose you have the following source code in a Web page:

<input type="text" name="InputName1" maxlength="20" size="20" value="name"
MyAttr="Your Name">
<input type="text" name="InputName2" maxlength="20" size="20" value="name"
MyAttr="My Name">

By default, WinRunner would use the name attribute of the text box
(InputName1 or InputName2 in the above example) as the logical name. To
instruct WinRunner to use the value of the MyAttr property as the logical
name, use the following line:

_web_set_tag_attr("html_edit", "attribute/MyAttr");

For more information, refer to the TSL Reference.

Using Properties for Frame Objects

The following object properties can be used when working with objects
from the html_frame MSW class:

Property Name Description

frame_title The frame's title.

html_id The frame's HTML identifier.

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value of
this property is taken from the frame’s name property if it
exists. If not, it uses the frame’s title property if it exists.
Otherwise it uses the frame’s url property.

page_title The title of the page containing the frame.

url The URL of the frame.

Part III • Creating Tests—Basic

182

Using Properties for Web Images

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the html_rect MSW
class:

Using Properties for Text Links

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the html_text_link
MSW class:

Property Name Description

alt The object's tooltip text.

element_name The name property specified within the tag.

file_name The file name of the object (without the path).

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value of
this property is taken from the image’s alt property if it exists. If
not, it uses the image's name property if it exists. Otherwise it
uses the filename from the image's src property.

src The object's source location (the full path).

type The image type.
Possible values: Server side

Client side
Plain

Property Name Description

currrent_font The font property for the link as defined by the style.

element_name The name property specified within the <A HREF>
tag.

font The link's font.

text The text associated with the link.

url The URL of the link.

Chapter 10 • Working with Web Objects

183

Using Properties for Web Tables

When working with tables, you can perform functions on table objects or
cell objects.

Tables

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the html_table
MSW class:

Table Cells

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the html_cell MSW
class:

Property Name Description

columns The number of columns in the table.

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value of
this property is taken from the first object in the table that has
a name property.

rows The number of rows in the table.

table_index The selector value indicating the order in which the table
appears in the source code relative to other tables on the page.
Starting value = 0.

text The text contained in the table.

Property Name Description

col The table column in which the cell is located. The first column
in the table is 1.

row The table row in which the cell is located. The first row in the
table is 1.

Part III • Creating Tests—Basic

184

Using Properties for Form Objects

When working with Web forms, you can perform functions on radio
buttons, check boxes, edit boxes, list boxes, combo boxes, and buttons.

Radio Buttons

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the
html_radio_button MSW class:

table_index The selector indicating the order in which the cell's table appears
in the source code relative to other tables on the page.
Starting value = 0.

text The text contained in the cell.

Property Name Description

checked Indicates whether or not the radio button is selected.
Possible values: 1: True

0: False

element_name The name property specified within the <input> tag.

enabled Indicates whether or not the radio button is enabled.
Possible values: 1: True

0: False

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value of
this property is taken from the radio button’s name property.

part_value The button's attached text.
Supported only in Internet Explorer.

value The button's html value (label).

Property Name Description

Chapter 10 • Working with Web Objects

185

Check Boxes

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the
html_check_button MSW class:

Edit Boxes

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the html_edit MSW
class:

Property Name Description

checked Indicates whether or not the check box is selected.
Possible values: 1: True

0: False

element_name The name property specified within the <INPUT> tag.

enabled Indicates whether or not the check box is enabled.
Possible values: 1: True

0: False

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value of
this property is taken from the check box’s name property.

part_value The check box's value (label).
Supported only in Internet Explorer.

value The check box's value (label).

Property Name Description

cols The width of the edit box (in columns).

element_name The name property specified within the <INPUT> tag.

enabled Indicates whether or not the check box is enabled.
Possible values: 1: True

0: False

kind The type of edit box.
Possible values: single-line

multi-line

Part III • Creating Tests—Basic

186

List and Combo Boxes

In addition to the properties supported for all objects, the following
properties can be used when working with objects from the html_listbox
and hmtl_combobox MSW classes:

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value
of this property is taken from the edit box’s name property.

rows The height of the edit box (in rows).

type The object's type as defined in the HTML tag.
For example: <input type=text>

Property Name Description

element_name The name property specified within the <SELECT> tag.

is_multiple Indicates whether the list offers a multiple selection option.
Possible values: 1: True

0: False

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value of
this property is taken from the list’s name property.

selection The items that are selected in the list (separated by ;).

Property Name Description

Chapter 10 • Working with Web Objects

187

Web Buttons

In addition to the properties supported for all objects, the following
properties can be used when working with the html_push_button MSW
class:

Checking Web Objects

You can use GUI checkpoints in your test scripts to help you check the
behavior of Web objects in your Web site. You can check frames, tables,
cells, links, and images on a Web page for differences between test runs. You
can define GUI checkpoints according to default properties recommended
by WinRunner, or you can define custom checks by selecting other
properties. For general information on GUI checkpoints, see Chapter 9,
“Checking GUI Objects.”

You can also add text checkpoints in your test scripts to read and check text
in Web objects and in areas of the Web page.

Property Name Description

element_name The name property specified within the <input> tag.

enabled Indicates whether or not the button is enabled.
Possible values: 1: True

0: False

name The WinRunner name for the object. This is the value that
WinRunner uses as the logical name of the object. The value of
this property is taken from the button’s value property if it
exists. If not, it uses the button's innertext property if it exists.
Otherwise it uses the button’s name property.

part_value The value of the button's "value" property if the HTML tag for
the is <INPUT>. The value of the button's "innertext" property
if the HTML tag for the button is <BUTTON>.
Supported only in Internet Explorer.

value The button's value (label).

Part III • Creating Tests—Basic

188

You can create checkpoints for:

➤ Checking Standard Frame Properties

➤ Checking the Object Count in Frames

➤ Checking the Structure of Frames, Tables, and Cells

➤ Checking the Content of Frames, Cells, Links, or Images

➤ Checking the Number of Columns and Rows in a Table

➤ Checking the URL of Links

➤ Checking Source or Type of Images and Image Links

➤ Checking Color or Font of Text Links

➤ Checking Broken Links

➤ Checking Links and Images in a Frame

➤ Checking the Text Content of Tables

➤ Checking Cells in a Table

➤ Checking Text

Checking Standard Frame Properties

You can create a GUI checkpoint to check standard properties of a frame.

To check standard frame properties:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

Chapter 10 • Working with Web Objects

189

 2 Double-click an object on your Web page. The Check GUI dialog box opens,
and the object is highlighted.

 3 In the Objects column, make sure that the frame is selected.

The Properties column indicates the available standard properties and the
default check for that frame.

 4 In the Properties column, choose the properties you want WinRunner to
check.

You can check the following standard properties:

➤ Enabled checks whether the frame can be selected.

➤ Focused checks whether keyboard input will be directed to this frame.

➤ Label checks the frame’s label.

➤ Minimizable, Maximizable, Minimized, Maximized these properties
are not relevant for frame objects.

➤ Resizable checks whether the frame can be resized.

➤ SystemMenu checks whether the frame has a system menu.

➤ Width and Height check the frame’s width and height, in pixels.

➤ X and Y check the x and y coordinates of the top left corner of the frame.

Part III • Creating Tests—Basic

190

 5 Click OK to close the dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as a win_check_gui statement. For
more information on the win_check_gui function, refer to the TSL
Reference.

Checking the Object Count in Frames

You can create a GUI checkpoint to check the number of objects in a frame.

To check the object count in a frame:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

 2 Double-click an object on your Web page. The Check GUI dialog box opens,
and the object is highlighted.

 3 In the Objects column, make sure that the frame is selected.

The Properties column indicates the properties available for you to check.

Chapter 10 • Working with Web Objects

191

 4 In the Properties column, select the CountObjects check box.

 5 To edit the expected value of the property, highlight CountObjects.

Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. A spin box opens.

Enter the expected number of objects.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as a win_check_gui statement. For
more information on the win_check_gui function, refer to the TSL
Reference.

Checking the Structure of Frames, Tables, and Cells

You can create a GUI checkpoint to check the structure of frames, tables,
and cells on a Web page.

To check the structure of a frame, table, or cell:

 1 Choose Insert > GUI Checkpoint > For Object/Window. The WinRunner
window is minimized to an icon, the mouse pointer turns into a pointing
hand, and a help window opens.

Part III • Creating Tests—Basic

192

 2 Double-click an object on your Web page. The Check GUI dialog box opens,
and the object is highlighted.

 3 In the Objects column, select an object.

The Properties column indicates the properties available for you to check.

 4 In the Properties column, select the Format check box.

 5 To edit the expected value of the property, highlight Format.

➤ Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. A text file opens in Notepad describing
the structure of the frame, table, or cell.

➤ Modify the expected structure.

➤ Save the text file and close Notepad.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as an obj_check_gui or
win_check_gui statement. For more information on the obj_check_gui and
win_check_gui functions, refer to the TSL Reference.

Chapter 10 • Working with Web Objects

193

Checking the Content of Frames, Cells, Links, or Images

You can create a GUI checkpoint to check the content of a frame, cell, text
link, image link, or an image. To check the content of a table, see “Checking
the Text Content of Tables” on page 203.

To check content:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

 2 Double-click an object on your Web page. The Check GUI dialog box opens,
and the object is highlighted.

 3 In the Objects column, select an object (frame, cell, text link, image link, or
an image). The Properties column indicates the properties available for you
to check.

Part III • Creating Tests—Basic

194

 4 In the Properties column, select one of the following checks:

➤ If your object is a frame, select the FrameContent check box.

➤ If your object is a cell, select the CellContent check box.

➤ If your object is a text link, select the Text check box.

➤ If your object is an image link, select the ImageContent check box.

➤ If your object is an image, select the ImageContent check box.

 5 To edit the expected value of a the property, highlight a property.

Note that you cannot edit the expected value of the ImageContent
property.

 6 Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it.

➤ For the FrameContent property, an editor opens.

➤ For the CellContent property, an editor opens.

➤ For the Text property, an edit box opens.

 7 Modify the expected value.

 8 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as an obj_check_gui or
win_check_gui statement. For more information on the obj_check_gui and
win_check_gui functions, refer to the TSL Reference.

Checking the Number of Columns and Rows in a Table

You can create a GUI checkpoint to check the number of columns and rows
in a table.

To check the number of columns and rows in a table:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

Chapter 10 • Working with Web Objects

195

 2 Double-click a table on your Web page. The Check GUI dialog box opens,
and the object is highlighted.

 3 In the Objects column, make sure the table is selected.

The Properties column indicates the properties available for you to check.

 4 In the Properties column, select the Columns and/or Rows check box.

 5 To edit the expected value of a property, highlight Columns or Rows.

➤ Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. A spin box opens.

➤ Edit the expected value of the property, as desired.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as an obj_check_gui or
win_check_gui statement. For more information on the obj_check_gui and
win_check_gui functions, refer to the TSL Reference.

Checking the URL of Links

You can create a GUI checkpoint to check the URL of a text link or an image
link in your Web page.

Part III • Creating Tests—Basic

196

To check the URL of a link:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

 2 Double-click a text link on your Web page. The Check GUI dialog box
opens, and the object is highlighted.

 3 In the Objects column, make sure that link is selected. The Properties
column indicates the properties available for you to check.

 4 In the Properties column, select URL to check address of the link.

 5 To edit the expected value of the URL property, highlight URL.

➤ Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. An edit box opens.

➤ Edit the expected value.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as an obj_check_gui statement. For
more information on the obj_check_gui function, refer to the TSL Reference.

Chapter 10 • Working with Web Objects

197

Checking Source or Type of Images and Image Links

You can create a GUI checkpoint to check the source and the image type of
an image or an image link in your Web page.

To check the source or type of an image or an image link:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

 2 Double-click an image or image link on your Web page. The Check GUI
dialog box opens, and the object is highlighted.

 3 In the Objects column, make sure that the image or the image link is
selected. The Properties column indicates the properties available for you to
check.

 4 In the Properties column, select a property check.

➤ Source indicates the location of the image.

➤ Type indicates whether the object is a plain image, an image link, or an
image map.

Part III • Creating Tests—Basic

198

 5 To edit the expected value of the property, highlight a property.

➤ Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. An edit box opens.

➤ Edit the expected value.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as an obj_check_gui statement. For
more information on the obj_check_gui function, refer to the TSL Reference.

Checking Color or Font of Text Links

You can create a GUI checkpoint to check the color and font of a text link in
your Web page.

To check the color or font of a text link:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

 2 Double-click a text link on your Web page. The Check GUI dialog box
opens, and the object is highlighted.

Chapter 10 • Working with Web Objects

199

 3 In the Objects column, make sure that the text link is selected. The
Properties column indicates the properties available for you to check.

 4 In the Properties column, select a property check.

➤ BackgroundColor indicates the background color of a text link.

➤ Color indicates the foreground color of a text link.

➤ Font indicates the font of a text link.

 5 To edit the expected value of a property, highlight a property.

Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. A box opens.

Edit the expected value.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as an obj_check_gui statement.

For more information on the obj_check_gui function, refer to the TSL
Reference.

Checking Broken Links

You can create a checkpoint to check whether a text link or an image link is
active. You can create a checkpoint to check a single broken link or all the
broken links in a frame.

To check a single broken link:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

Part III • Creating Tests—Basic

200

 2 Double-click a link on your Web page. The Check GUI dialog box opens,
and the object is highlighted.

 3 In the Objects column, make sure that the link is selected. The Properties
column indicates the properties available for you to check.

 4 In the Properties column, select the BrokenLink check box.

 5 To edit the expected value of the property, highlight BrokenLink.

Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. A combo box opens.

Select Valid or NotValid. Valid indicates that the link is active, and NotValid
indicates that the link is broken.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as an obj_check_gui or
win_check_gui statement. For more information on the obj_check_gui and
win_check_gui function, refer to the TSL Reference.

Chapter 10 • Working with Web Objects

201

To check all broken links in a frame:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

 2 Double-click an object on your Web page. The Check GUI dialog box opens,
and an object is highlighted.

 3 In the Objects column, make sure that frame is selected.

The Properties column indicates the properties available for you to check.

 4 In the Properties column, select the BrokenLinks check box.

 5 To edit the expected value of the property, highlight BrokenLinks.

Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. The Edit Check dialog box opens.

You can specify which links to check, and which verification method and
verification type to use. You can also edit the expected data. For additional
information on using this dialog box, see “Checking Cells in a Table” on
page 205.

When you are done, click OK to save and close the Edit Check dialog box.
The Check GUI dialog box is restored.

 6 Click OK to close the Check GUI dialog box.

Part III • Creating Tests—Basic

202

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as a win_check_gui statement. For
more information on the win_check_gui function, refer to the TSL
Reference.

Checking Links and Images in a Frame

You can create a checkpoint to check image links, text links and images in a
frame.

To check links and images in a frame:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

 2 Double-click an object on your Web page. The Check GUI dialog box opens,
and an object is highlighted.

 3 In the Objects column, make sure that frame object is selected.

The Properties column indicates the properties available for you to check.

Chapter 10 • Working with Web Objects

203

 4 In the Properties column, select one of the following checks:

➤ To check images or image links, select the Images check box.

➤ To check text links, select the Links check box.

 5 To edit the expected value of the property, highlight Images.

Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. The Edit Check dialog box opens.

You can specify which images or links to check in the table, and which
verification method and verification type to use. You can also edit the
expected data. For additional information on using this dialog box, see
“Checking Cells in a Table” on page 205.

When you are done, click OK to save and close the Edit Check dialog box.
The Check GUI dialog box is restored.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as a win_check_gui statement. For
more information on the win_check_gui function, refer to the TSL
Reference.

Checking the Text Content of Tables

You can create a checkpoint to check the text content of a table.

To check the content of a table:

 1 Choose Insert > GUI Checkpoint > For Object/Window.

The WinRunner window is minimized to an icon, the mouse pointer turns
into a pointing hand, and a help window opens.

Part III • Creating Tests—Basic

204

 2 Double-click a table on your Web page. The Check GUI dialog box opens,
and an object is highlighted.

 3 In the Objects column, make sure that the table is selected. The Properties
column indicates the properties available for you to check.

 4 In the Properties column, select the TableContent check box.

 5 To edit the expected value of the property, highlight TableContent.

Click the Edit Expected Value button, or double-click the value in the
Expected Value column to edit it. The Edit Check dialog box opens.

You can specify which column or rows to check in the table, and which
verification method and verification type to use. You can also edit the
expected data. For additional information on using this dialog box, see
“Checking Cells in a Table” on page 205.

When you are done, click OK to save and close the Edit Check dialog box.
The Check GUI dialog box is restored.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the object information and stores it in the test's
expected results folder. The WinRunner window is restored and a
checkpoint appears in your test script as a win_check_gui statement. For
more information on the win_check_gui function, refer to the TSL
Reference.

Chapter 10 • Working with Web Objects

205

Checking Cells in a Table

The Edit Check dialog box enables you to specify which cells in a table to
check, and which verification method and verification type to use. You can
also edit the expected data for the table cells included in the check.

In the Select Checks tab, you can specify the information that is saved in the
GUI checklist:

➤ which table cells to check

➤ the verification method

➤ the verification type

Part III • Creating Tests—Basic

206

Note that if you are creating a check on a single-column table, the contents
of the Select Checks tab of the Edit Check dialog box differ from what is
shown above. For additional information, see “Specifying the Verification
Method for a Single-Column Table” on page 209.

Specifying which Cells to Check

The List of checks box displays all the checks that will be performed,
including the verification type. When the Edit Check dialog box is opened
for the first time for a checkpoint, the default check is displayed:

➤ The default check for a multiple-column table is a case sensitive check on
the entire table by column name and row index.

➤ The default check for a single-column table is a case sensitive check on the
entire table by row position.

Note: If your table contains multiple columns with the same name,
WinRunner disregards the duplicate columns and does not perform checks
on them. Therefore, you should select the column index option.

If you do not wish to accept the default settings, you must delete the default
check before you specify the checks to perform. Select the “Entire Table -
Case Sensitive check” entry in the List of Checks box and click the Delete
button. Alternatively, double-click this entry in the List of Checks box. A
WinRunner message prompts you to delete the highlighted check. Click Yes.

Next, specify the checks to perform. You can choose different verification
type for different selections of cells. Therefore, specify the verification type
before selecting cells. For more information, see “Specifying the Verification
Type” on page 210.

Chapter 10 • Working with Web Objects

207

Highlight the cells on which you want to perform the content check. Next,
click the Add button toolbar to add a check for these cells. Alternatively, you
can:

➤ double-click a cell to check it

➤ double-click a row header to check all the cells in a row

➤ double-click a column header to check all the cells in a column

➤ double-click the top-left corner to check the entire table

A description of the cells to be checked appears in the List of Checks box.

Specifying the Verification Method

You can select the verification method to control how WinRunner identifies
columns or rows within a table. The verification method applies to the
entire table. Specifying the verification method is different for multiple-
column and single-column tables.

Specifying the Verification Method for a Multiple-Column Table

➤ Column:

➤ Name: WinRunner looks for the selection according to the column
names. A shift in the position of the columns within the table does not
result in a mismatch.

➤ Index: WinRunner looks for the selection according to the index, or
position, of the columns. A shift in the position of the columns within
the table results in a mismatch. Select this option if your table contains
multiple columns with the same name. For additional information, see
the note on page 206. Choosing this option enables the Verify column
headers check box, which enables you to check column headers as well
as cells.

Part III • Creating Tests—Basic

208

➤ Row:

➤ Key: WinRunner looks for the rows in the selection according to the data
in the key column(s) specified in the Select key columns list box. For
example, you could tell WinRunner to identify the second row in the
table on page 211 based on the arrival time for that row. A shift in the
position of the rows does not result in a mismatch. If the key selection
does not uniquely identify a row, WinRunner checks the first matching
row. You can use more than one key column to uniquely identify the
row.

Note: If the value of a cell in one or more of the key columns changes,
WinRunner will not be able to identify the corresponding row, and a
check of that row will fail with a “Not Found” error. If this occurs, select a
different key column or use the Index verification method.

➤ Index (default setting): WinRunner looks for the selection according to
the index, or position, of the rows. A shift in the position of any of the
rows results in a mismatch.

Chapter 10 • Working with Web Objects

209

Specifying the Verification Method for a Single-Column Table

The Verification methods box in the Select Checks tab for a single-column
table is different from that for a multiple-column table. The default check
for a single-column table is a case sensitive check on the entire table by row
position.

➤ By position: WinRunner checks the selection according to the location of
the items within the column.

➤ By content: WinRunner checks the selection according to the content of the
items, ignoring their location in the column.

Part III • Creating Tests—Basic

210

Specifying the Verification Type

WinRunner can verify the contents of a table in several different ways. You
can choose different verification types for different selections of cells.

➤ Case Sensitive (the default): WinRunner compares the text content of the
selection. Any difference in case or text content between the expected and
actual data results in a mismatch.

➤ Case Insensitive: WinRunner compares the text content of the selection.
Only differences in text content between the expected and actual data result
in a mismatch.

➤ Numeric Content: WinRunner evaluates the selected data according to
numeric values. WinRunner recognizes, for example, that “2” and “2.00” are
the same number.

➤ Numeric Range: WinRunner compares the selected data against a numeric
range. Both the minimum and maximum values are any real number that
you specify. This comparison differs from text and numeric content
verification in that the actual table data is compared against the range that
you defined and not against the expected results.

Note: This option causes a mismatch on any string that does not begin with
a number. A string starting with 'e' is translated into a number.

➤ Case Sensitive Ignore Spaces: WinRunner checks the data in the cell
according to case and content, ignoring differences in spaces. WinRunner
reports any differences in case or content as a mismatch.

➤ Case Insensitive Ignore Spaces: WinRunner checks the content in the cell
according to content, ignoring differences in case and spaces. WinRunner
reports only differences in content as a mismatch.

Click OK to save your changes to both tabs of the Edit Check dialog box.
The dialog box closes and the Check GUI dialog box is restored.

Chapter 10 • Working with Web Objects

211

Editing the Expected Data

To edit the expected data in the table, click the Edit Expected Data tab. If
you previously saved changes in the Select Checks tab, you can click Reload
Table to reload the table selections from the checklist. A WinRunner
message prompts you to reload the saved data. Click Yes.

Note that if you previously saved changes to the Select Checks tab, and then
reopened the Edit Check dialog box, the table appears color coded in the
Edit Expected Data tab.

The cells included in the check appear in blue on a white background. The
cells excluded from the check appear in green on a yellow background.

To edit the expected value of data in a cell, double-click inside the cell. A
cursor appears in the cell. Change the contents of the cell, as desired. Click
OK to save your changes to both tabs of the Edit Check dialog box. The
dialog box closes and the Check GUI dialog box is restored.

Part III • Creating Tests—Basic

212

Checking Text

You can use text checkpoints in your test scripts to read and check text in
Web objects and in areas of the Web page. While creating a test, you point
to an object or a frame containing text. WebTest reads the text and writes a
TSL statement to the test script. You may then add simple programming
elements to your test scripts to verify the contents of the text.

You can use a text checkpoint to:

➤ read a text string or all the text from a Web object or frame, using
web_obj_get_text or web_frame_get_text

➤ check that a text string exists in a Web object or frame, using
web_obj_text_exists or web_frame_text_exists

Reading All the Text in a Frame or an Object

You can read all the visible text in a frame or an object using
web_obj_get_text or web_frame_get_text.

To read all the text in a frame or an object:

 1 Choose Insert > Get Text > From Object/Window.

WinRunner is minimized, the mouse pointer becomes a pointing hand, and
a help window opens.

 2 Click the Web object or the frame.

WinRunner captures the text in the object and a web_obj_get_text or a
web_frame_get_text statement is inserted in your test script.

Note: When the WebTest add-in is not loaded, or when a non-Web object is
selected, WinRunner generates a win_get_text or obj_get_text statement in
your test script. For more information on the _get_text functions, refer to
the TSL Reference. For more information on checking text in a non-Web
object, see Chapter 16, “Checking Text.”

Chapter 10 • Working with Web Objects

213

Reading a Text String from a Frame or an Object

You can read a text string from a frame or an object using the
web_obj_get_text or web_frame_get_text function.

To read a text string from a frame or an object:

 1 Choose Insert > Get Text > From Selection (Web only).

WinRunner is minimized, the mouse pointer becomes a pointing hand, and
a Help window opens.

 2 Highlight the text string to be read.

 3 On the highlighted text string, right-click the mouse button to capture the
string. The Specify Text dialog box opens.

The text string to be read is displayed in green and underlined. The bold red
text that is displayed on the left and right of your selection, defines the
bounds of the string.

Part III • Creating Tests—Basic

214

 4 You can modify your text selections.

➤ To modify your highlighted text selection, highlight a new text string
and click New Text. Your new text selection is displayed underlined and
in green. The text that appears before and after your text string is
displayed bold in red.

➤ To modify the red text string that appears to the left of your selection,
highlight a new text string and click Text Before.

➤ To modify the red text string that appears to the right of your selection,
highlight a new text string and click Text After.

 5 Click OK to close the Specify Text dialog box.

The WinRunner window is restored and a web_obj_get_text or a
web_frame_get_text statement is inserted in your test script.

Checking that a Text String Exists in a Frame or an Object

You can check whether a text string exists in an object or a frame using
web_obj_text_exists or web_frame_text_exists.

To check that a text string exists in a frame or an object:

 1 Choose Insert > Get Text > Web Text Checkpoint.

WinRunner is minimized, the mouse pointer becomes a pointing hand, and
a help window opens.

 2 Highlight the text string to be checked.

Chapter 10 • Working with Web Objects

215

 3 On the highlighted text string, right-click the mouse button to capture the
string. The Specify Text dialog box opens.

The text string to be checked is displayed in green and underlined. The bold
red text that is displayed on the left and right of your selection defines the
bounds of the string.

 4 You can modify your text selections.

➤ To modify your highlighted text selection, highlight a new text string
and click New Text.

Your new text selection is displayed in green. The text that is displayed
before and after your text string is displayed in red.

➤ To modify the red text string that is displayed to the left of your
selection, highlight a new text string and click Text Before.

➤ To modify the red text string that is displayed to the right of your
selection, highlight a new text string and click Text After.

Part III • Creating Tests—Basic

216

 5 Click OK to close the Specify Text dialog box.

The WinRunner window is restored and a web_obj_text_exists or a
web_frame_text_exists statement is inserted in your test script.

Note: After you run your test, a check_text statement is displayed in your
Test Results window.

217

11
Working with ActiveX and Visual Basic
Controls

WinRunner supports Context Sensitive testing on ActiveX controls (also
called OLE or OCX controls) and Visual Basic controls in Visual Basic and
other applications.

This chapter describes:

➤ About Working with ActiveX and Visual Basic Controls

➤ Choosing Appropriate Support for Visual Basic Applications

➤ Viewing ActiveX and Visual Basic Control Properties

➤ Retrieving and Setting the Values of ActiveX and Visual Basic Control
Properties

➤ Activating an ActiveX Control Method

➤ Working with Visual Basic Label Controls

➤ Checking Sub-Objects of ActiveX and Visual Basic Controls

➤ Using TSL Table Functions with ActiveX Controls

Part III • Creating Tests—Basic

218

About Working with ActiveX and Visual Basic Controls

Many applications include ActiveX and Visual Basic controls developed by
third-party organizations. WinRunner can record and run Context Sensitive
operations on supported controls, as well as check their properties.

WinRunner supports all standard (built-in) Visual Basic and ActiveX
controls. WinRunner also offers a more customized Context Sensitive
support for several ActiveX Controls. For a list of these controls, see
“Supported ActiveX Controls,” on page 219.

WinRunner provides two types of support for ActiveX and Visual Basic
controls within a Visual Basic application. You can either:

➤ install and load add-in support for ActiveX and Visual Basic controls (also
known as non-agent support)

➤ compile a WinRunner agent into your application, and install and load add-
in support for Visual Basic controls

When you work with the appropriate support, WinRunner recognizes
ActiveX and Visual Basic controls, and treats them as it treats standard GUI
objects. You can check the properties of ActiveX and Visual Basic controls as
you check the properties of any standard GUI object. For more information,
see Chapter 9, “Checking GUI Objects.”

At any time, you can view the current values of the properties of an ActiveX
or a Visual Basic control using the GUI Spy. In addition, you can retrieve and
set the values of properties for ActiveX and Visual Basic controls using TSL
functions. You can also use a TSL function to activate an ActiveX control
method.

Note: If you are using non-agent support, you must start WinRunner before
launching the application containing ActiveX and Visual Basic controls.

Chapter 11 • Working with ActiveX and Visual Basic Controls

219

WinRunner provides special built-in support for checking Visual Basic label
controls and the contents or properties of ActiveX controls that are tables.
For information on which TSL table functions are supported for specific
ActiveX controls, see “Using TSL Table Functions with ActiveX Controls” on
page 235. For information on checking the contents of an ActiveX table
control, see Chapter 13, “Checking Table Contents.”

Supported ActiveX Controls

WinRunner supports all ActiveX controls. WinRunner also offers a more
customized Context Sensitive support for certain ActiveX Controls. The
following lists summarize the controls with special support. For the latest
list of supported controls and detailed ProgID and version information, refer
to the WinRunner Readme.

Button Objects

The following ActiveX controls are supported for button objects:

➤ Infragistics (Sheridan) ActiveThreeD Control
Infragistics (Sheridan) Data CommandButton Control
Infragistics (Sheridan) OLE Data CommandButton Control

Calendar Objects

The following ActiveX controls are supported for calendar objects:

➤ Crescent CSCalendar Control

➤ Infragistics (Sheridan) MonthView Control

Check Box Objects

The following ActiveX controls are supported for check box objects:

➤ Infragistics (Sheridan) ActiveThreeD Control

Combo Box Objects

The following ActiveX controls are supported for combo box objects:

➤ Infragistics (Sheridan) Data Combo Control
Infragistics (Sheridan) OLE Data Combo Control

Part III • Creating Tests—Basic

220

Edit Objects

The following ActiveX controls are supported for edit objects:

➤ FarPoint InputPro Control

List Objects

The following ActiveX controls are supported for list objects:

➤ FarPoint ListPro Control

➤ Microsoft ListView Control

Menu and Toolbar Objects

The following ActiveX controls are supported for menu and toolbar objects:

➤ DataDynamics ActiveBar Control

➤ Infragistics UltraToolBar Control

➤ Infragistics (Sheridan) ActiveToolBars Control
Infragistics (Sheridan) ActiveToolBars Plus Control

Radio Button Objects

The following ActiveX controls are supported for radio button objects:

➤ Infragistics (Sheridan) ActiveThreeD Control

Radio Group Objects

The following ActiveX controls are supported for radio group objects:

➤ Infragistics (Sheridan) Data Option Set Control
Infragistics (Sheridan) OLE Data Option Set Control

Tab Objects

The following ActiveX controls are supported for tab objects:

➤ Microsoft TabStrip Control

➤ Infragistics (Sheridan) ActiveTabs Control

Chapter 11 • Working with ActiveX and Visual Basic Controls

221

Table Objects

The following ActiveX controls are supported for ActiveX tables:

➤ Apex True DBGrid Control,
Apex True OLE DBGrid Control

➤ FarPoint Spread Control
FarPoint Spread (OLEDB) Control

➤ Infragistics UltraGrid (supported for running tests only)

➤ Microsoft DataBound Grid Control
Microsoft DataGrid Control
Microsoft FlexGrid Control
Microsoft Grid Control
Microsoft Hierarchical FlexGrid Control

➤ Infragistics (Sheridan) Data Grid Control
Infragistics (Sheridan) OLE DBGrid
Infragistics (Sheridan) DBData Option Set
Infragistics (Sheridan) OLEDBData Option Set
Infragistics (Sheridan) DBCombo
Infragistics (Sheridan) OLE DBCombo
Infragistics (Sheridan) DBData Command
Infragistics (Sheridan) OLEDBData Command

Toolbar Objects

The following ActiveX controls are supported for tool bar objects:

➤ DataDynamics ActiveBar Control

➤ Microsoft Toolbar Control

➤ Infragistics (Sheridan) ActiveToolBars Control
Infragistics (Sheridan) ActiveToolBars Plus Control

Tree Objects

The following ActiveX controls are supported for tree objects:

➤ Microsoft TreeView Control

➤ Infragistics (Sheridan) ActiveTreeView Control

Part III • Creating Tests—Basic

222

Choosing Appropriate Support for Visual Basic Applications

WinRunner provides two types of support for ActiveX and Visual Basic
controls within a Visual Basic application. You can either:

➤ install and load add-in support for ActiveX and Visual Basic controls (also
known as non-agent support)

➤ compile a WinRunner agent into your application, and install and load add-
in support for Visual Basic controls

When you work with add-in support for ActiveX and Visual Basic controls,
you can:

➤ record and run tests with operations on supported ActiveX and Visual Basic
controls

➤ uniquely identify names of internal ActiveX and Visual Basic controls

➤ create GUI checkpoints which check the properties of standard Visual Basic
controls

➤ use the ActiveX_get_info and ActiveX_set_info TSL functions with ActiveX
and Visual Basic controls

➤ use the ActiveX_activate_method TSL function to activate methods in the
ActiveX control.

Working with ActiveX and Visual Basic Add-In Support without
the WinRunner Agent

You can install add-in support for ActiveX and Visual Basic applications
when you install WinRunner. For additional information, refer to the
WinRunner Installation Guide. You can choose which installed add-ins to load
for each session of WinRunner. For additional information, see “Loading
WinRunner Add-Ins” on page 20.

Chapter 11 • Working with ActiveX and Visual Basic Controls

223

Working with the WinRunner Agent and Visual Basic Add-In
Support

You can add a WinRunner agent, called WinRunnerAddIn.Connect, to your
application and compile them together. The agent is in the vbdev folder on
the WinRunner CD-ROM. For information on how to install and compile
the agent, refer to the readme.wri file in the same folder. You can install add-
in support for Visual Basic applications when you install WinRunner. For
additional information, refer to the WinRunner Installation Guide. You can
choose which installed add-ins to load for each session of WinRunner. For
additional information, see “Loading WinRunner Add-Ins” on page 20.

Viewing ActiveX and Visual Basic Control Properties

You use the ActiveX tab of the GUI Spy to see the properties, property
values, and methods for an ActiveX control. You open the GUI Spy from the
Tools menu. Note that in order for the GUI Spy to work on ActiveX controls,
you must load the ActiveX add-in when you start WinRunner. You may also
view ActiveX and Visual Basic control properties using the GUI checkpoint
dialog boxes. For information on using the GUI checkpoint dialog boxes, see
Chapter 9, “Checking GUI Objects.”

To view the properties of an ActiveX or a Visual Basic control:

 1 Choose Tools > GUI Spy to open the GUI Spy dialog box.

Part III • Creating Tests—Basic

224

 2 Click the ActiveX tab.

 3 Click Spy and point to an ActiveX or Visual Basic control.

The control is highlighted and the active window name, object name, and
object description (properties and their values) appear in the appropriate
fields. Note that as you move the pointer over other objects, each one is
highlighted in turn and its name appears in the Object Name box.

 4 To capture an object description in the GUI Spy dialog box, point to the
desired object and press the STOP softkey. (The default softkey combination
is CTRL LEFT + F3.)

Chapter 11 • Working with ActiveX and Visual Basic Controls

225

In the following example, pointing to the “Flights Table” in the Visual Basic
sample flight application, pressing the STOP softkey, and highlighting the
FixedAlignment property, displays the ActiveX tab in the GUI Spy as follows:

If a help file has been installed for this ActiveX control, then clicking Item
Help displays it.

When you highlight a property, then if a description has been included for
this property, it is displayed in the gray pane at the bottom.

 5 Click Close to close the GUI Spy.

ActiveX control methods

property description

Part III • Creating Tests—Basic

226

Note: When Object Reference appears in the Value column, it refers to the
object’s sub-objects and their properties. When <Parameter(s) Required>
appears in the Value column, this indicates either an array of type or a two-
dimensional array. You can use the ActiveX_get_info function to retrieve
these values. For information on the ActiveX_get_info function, see
“Retrieving the Value of an ActiveX or Visual Basic Control Property” on
page 226 or refer to the TSL Reference.

Retrieving and Setting the Values of ActiveX and
Visual Basic Control Properties

The ActiveX_get_info and ActiveX_set_info TSL functions enable you to
retrieve and set the values of properties for ActiveX and Visual Basic controls
in your application. You can insert these functions into your test script
using the Function Generator. For information on using the Function
Generator, refer to Chapter 8, “Generating Functions” in the Mercury
WinRunner Advanced Features User’s Guide.

Tip: You can view the properties of an ActiveX control property from the
ActiveX tab of the GUI Spy. For additional information, see “Viewing
ActiveX and Visual Basic Control Properties” on page 223.

Retrieving the Value of an ActiveX or Visual Basic Control
Property

Use the ActiveX_get_info function to retrieve the value of any ActiveX or
Visual Basic control property. The property can have no parameters or a one
or two-dimensional array. Properties can also be nested.

For an ActiveX property without parameters, the syntax is as follows:

ActiveX_get_info (ObjectName, PropertyName, OutValue [, IsWindow]);

Chapter 11 • Working with ActiveX and Visual Basic Controls

227

For an ActiveX property that is a one-dimensional array, the syntax is as
follows:

ActiveX_get_info (ObjectName, PropertyName (X) , OutValue
[, IsWindow]);

For an ActiveX property that is a two-dimensional array, the syntax is as
follows:

ActiveX_get_info (ObjectName, PropertyName (X , Y) , OutValue
[, IsWindow]);

ObjectName The name of the ActiveX/Visual Basic control.

PropertyName Any ActiveX/Visual Basic control property.

Tip: You can use the ActiveX tab in the GUI Spy to view the properties of an
ActiveX control.

OutValue The output variable that stores the property value.

IsWindow An indication of whether the operation is performed
on a window. If it is, set this parameter to TRUE.

Notes:

The IsWindow parameter should be used only when this function is applied
to a Visual Basic form to get its property or a property of its sub-object. In
order to get a property of a label control you should set this parameter to
TRUE. For information on retrieving label control properties, see “Working
with Visual Basic Label Controls” on page 230.

To get the value of nested properties, you can use any combination of
indexed or non-indexed properties separated by a dot. For example:

ActiveX_get_info("Grid", "Cell(10,14).Text", Text);

Part III • Creating Tests—Basic

228

Setting the Value of an ActiveX or Visual Basic Control
Property

Use the ActiveX_set_info function to set the value for any ActiveX or Visual
Basic control property. The property can have no parameters or a one or
two-dimensional array. Properties can also be nested.

For an ActiveX property without parameters, the syntax is as follows:

ActiveX_set_info (ObjectName, PropertyName, Value [, Type
[, IsWindow]]);

For an ActiveX property that is a one-dimensional array, the syntax is as
follows:

ActiveX_set_info (ObjectName, PropertyName (X) , Value [, Type
[, IsWindow]]);

For an ActiveX property that is a two-dimensional array, the syntax is as
follows:

ActiveX_set_info (ObjectName, PropertyName (X , Y) , Value [, Type
[, IsWindow]]);

ObjectName The name of the ActiveX/Visual Basic control.

PropertyName Any ActiveX/Visual Basic control property.

Tip: You can use the ActiveX tab in the GUI Spy to view the properties of an
ActiveX control.

Value The value to be applied to the property.

Chapter 11 • Working with ActiveX and Visual Basic Controls

229

Type The value type to be applied to the property. The
following types are available:

IsWindow An indication of whether the operation is performed
on a window. If it is, set this parameter to TRUE.

Notes:

The IsWindow parameter should be used only when this function is applied
to a Visual Basic form to set its property or a property of its sub-object. In
order to get a property of a label control you should set this parameter to
TRUE. For information on setting label control properties, see “Working
with Visual Basic Label Controls” on page 230.

To set the value of nested properties, you can use any combination of
indexed or non-indexed properties separated by a dot. For example:

ActiveX_set_info("Book", "Chapter(7).Page(2).Caption", "SomeText");

For more information on these functions and examples of usage, refer to the
TSL Reference.

Activating an ActiveX Control Method

You use the ActiveX_activate_method function to invoke an ActiveX
method of an ActiveX control. You can insert this function into the test
script using the Function Generator. The syntax of this function is:

ActiveX_activate_method (object, ActiveX_method, return_value
[, parameter1,...,parameter8]);

For more information on this function, refer to the TSL Reference.

VT_I2 (short) VT_I4 (long) VT_R4 (float)

VT_R8 (float double) VT_DATE (date) VT_BSTR (string)

VT_ERROR (S code) VT_BOOL (boolean) VT_UI1 (unsigned char)

Part III • Creating Tests—Basic

230

Working with Visual Basic Label Controls

WinRunner includes the following support for labels (static text controls)
within Visual Basic applications:

➤ Creating GUI Checkpoints

➤ Retrieving Label Control Names

➤ Retrieving Label Properties

➤ Setting Label Properties

Creating GUI Checkpoints

You can create GUI checkpoints on Visual Basic label controls.

To check Visual Basic Label controls:

 1 Choose Insert > GUI Checkpoint > For Multiple Objects. The Create GUI
Checkpoint dialog box opens.

 2 Click the Add button and click on the Visual Basic form containing Label
controls.

 3 The Add All dialog box opens. If you are not checking anything else in this
checkpoint, you can clear the Objects check box. Click OK. Right-click to
finish adding the objects. In the Create GUI Checkpoint dialog box, all
labels are listed in the Objects pane as sub-objects of the VB form window.
The names of these sub-objects are vb_names prefixed by the "[Label]" string.

Chapter 11 • Working with ActiveX and Visual Basic Controls

231

 4 When you select a label control in the Objects pane, its properties and their
values are displayed in the Properties pane. The default check for the label
control is the Caption property check. You can also select other property
checks to perform.

Retrieving Label Control Names

You use the vb_get_label_names function to retrieve the list of label
controls within the Visual Basic form. This function has the following
syntax:

vb_get_label_names (window, name_array, count);

window The logical name of the Visual Basic form.

name_array The out parameter containing the name of the storage
array.

count The out parameter containing the number of elements
in the array.

Part III • Creating Tests—Basic

232

This function retrieves the names of all label controls in the given form
window. The names are stored as subscripts of an array.

Note: The first element in the array index is numbered 1.

For more information on this function and an example of usage, refer to the
TSL Reference.

Retrieving Label Properties

You use the ActiveX_get_info function to retrieve the property value of a
label control within a Visual Basic form. This function is described in
“Retrieving and Setting the Values of ActiveX and Visual Basic Control
Properties” on page 226.

Setting Label Properties

You use the ActiveX_set_info function to set the property value of the label
control. This function is described in “Retrieving and Setting the Values of
ActiveX and Visual Basic Control Properties” on page 226.

Checking Sub-Objects of ActiveX and Visual Basic Controls

ActiveX and Visual Basic controls may contain sub-objects, which contain
their own properties. An example of a sub-object is Font. Note that Font is a
sub-object because it cannot be highlighted in the application you are
testing. When you load the appropriate add-in support, you can create a
GUI checkpoint that checks the properties of a sub-object using the Check
GUI dialog box. For information on GUI checkpoints, see Chapter 9,
“Checking GUI Objects.”

In the example below, WinRunner checks the properties of the Font sub-
object of an ActiveX table control. The example in the procedure below uses
WinRunner with add-in support for Visual Basic and the Flights table in the
sample Visual Basic Flights application.

Chapter 11 • Working with ActiveX and Visual Basic Controls

233

To check the sub-objects of an ActiveX or a Visual Basic control:

 1 Choose Insert > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

 2 Double-click the control in the application you are testing. WinRunner may
take a few seconds to capture information about the control and then the
Check GUI dialog box opens.

 3 In the Objects pane, click the Expand sign (+) beside the object to display its
sub-objects, and select a sub-object to display its ActiveX control properties.

Part III • Creating Tests—Basic

234

The Objects pane displays the object and its sub-objects. In this example,
the sub-objects are displayed under the “grdFlightTable” object. The
Properties pane displays the properties of the sub-object that is highlighted
in the Objects pane. Note that each sub-object has one or more default
property checks. In this example, the properties of the Font sub-object are
displayed, and the Name property of the Font sub-object is selected as a
default check.

Specify which sub-objects of the table to check: first, select a sub-object in
the Objects pane; next, select the properties to check in the Properties pane.

Note that since this ActiveX control is a table, by default, checks are selected
on the Height, Width, and TableContent properties. If you do not want to
perform these checks, clear the appropriate check boxes. For information on
checking table contents, see Chapter 13, “Checking Table Contents.”

 4 Click OK to close the dialog box.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, see Chapter 9, “Checking GUI
Objects,”or refer to the TSL Reference.

Chapter 11 • Working with ActiveX and Visual Basic Controls

235

Using TSL Table Functions with ActiveX Controls

You can use the TSL tbl_ functions to work with a number of ActiveX
controls. WinRunner contains built-in support for the ActiveX controls and
the functions in the table below. For detailed information about each
function, examples of usage, and supported versions of ActiveX controls,
refer to the TSL Reference.

D
at

a
B

o
un

d

G
ri

d
 C

o
n

tr
ol

Fa
rP

o
in

t
Sp

re
ad

sh
ee

t
C

o
n

tr
o

l

M
ic

ro
so

ft
 F

le
xG

ri
d

,
G

ri
d

 C
o

n
tr

ol

In
fr

ag
is

ti
cs

 (
Sh

er
id

an
)

D
at

a
G

ri
d

 C
o

n
tr

ol

A
p

ex
 T

ru
e

D
B

G
ri

d
C

o
n

tr
o

l

In
fr

ag
is

ti
cs

 U
lt

ra
G

ri
d

C

o
n

tr
o

l

tbl_activate_cell + + + + + +

tbl_activate_header + + + + + +

tbl_get_cell_data + + + + + +

tbl_get_cols_count + + + + + +

tbl_get_column_name + + + + + +

tbl_get_rows_count + + + + +

tbl_get_selected_cell + + + + + +

tbl_get_selected_row + + + + +

tbl_select_col_header + + + + + +

tbl_set_cell_data + + + + + +

tbl_set_selected_cell + + + + + +

tbl_set_selected_row + + + + +

Part III • Creating Tests—Basic

236

237

12
Checking PowerBuilder Applications

When you work with WinRunner with added support for PowerBuilder
applications, you can create GUI checkpoints to check PowerBuilder objects
in your application.

This chapter describes:

➤ About Checking PowerBuilder Applications

➤ Checking Properties of DropDown Objects

➤ Checking Properties of DataWindows

➤ Checking Properties of Objects within DataWindows

➤ Working with Computed Columns in DataWindows

Part III • Creating Tests—Basic

238

About Checking PowerBuilder Applications

You can use GUI checkpoints to check the properties of PowerBuilder objects
in your application. When you check these properties, you can check the
contents of PowerBuilder objects as well as their standard GUI properties.
This chapter provides step-by-step instructions for checking the properties
of the following PowerBuilder objects:

➤ DropDown objects

➤ DataWindows

➤ DataWindow columns

➤ DataWindow text

➤ DataWindow reports

➤ DataWindow graphs

➤ computed columns in a DataWindow

Checking Properties of DropDown Objects

You can create a GUI checkpoint that checks the properties, including
contents, of a DropDown list or a DropDown DataWindow. You can check
the same properties, including contents, for a DropDown DataWindow that
you can check for a regular DataWindow. Note that before creating a GUI
checkpoint on a DropDown object, you should first record a
tbl_set_selected_cell statement in your test script. Use the CHECK GUI FOR
OBJECT/WINDOW softkey to create the GUI checkpoint while recording. You
create a GUI checkpoint that checks the contents of a DropDown object as
you would create one for a table. For information on checking tables, see
Chapter 13, “Checking Table Contents.”

Chapter 12 • Checking PowerBuilder Applications

239

Checking Properties of a DropDown Object with Default
Checks

You can create a GUI checkpoint that performs a default check on a
DropDown object. A default check on a DropDown object includes a
case-sensitive check on the contents of the entire object. WinRunner uses
column names and the index number of rows to check the cells in the
object.

You can also perform a check on a DropDown object in which you specify
which checks to perform. For additional information, see “Checking
Properties of a DropDown Object while Specifying which Checks to
Perform” below.

To check the properties of a DropDown object with default checks:

 1 Choose Test > Record–Context Sensitive or click the Record–Context
Sensitive button.

 2 Click in the DropDown object to record a tbl_set_selected_cell statement in
your test script.

 3 While recording, press the CHECK GUI FOR OBJECT/WINDOW softkey.

 4 Click in the DropDown object once.

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the
obj_check_gui function, refer to the TSL Reference.

Checking Properties of a DropDown Object while Specifying
which Checks to Perform

You can create a GUI checkpoint in which you specify which checks to
perform on a DropDown object. When you double-click in a DropDown
object while creating a GUI checkpoint, the Check GUI dialog box opens. If
you are checking, for example, a DropDownListBox, you can double-click
the DropDownListBoxContent property check in the Check GUI dialog
box to open the Edit Check dialog box. In the Edit Check dialog box, you
can specify the scope of the content check on the object, select the
verification types and method, and edit the expected value of the
DataWindow contents.

Part III • Creating Tests—Basic

240

To check the properties of a DropDown object while specifying which
checks to perform:

 1 Choose Test > Record–Context Sensitive or click the Record–Context
Sensitive button.

 2 Click in the DropDown object to record a tbl_set_selected_cell statement in
your test script.

 3 While recording, press the CHECK GUI FOR OBJECT/WINDOW softkey.

 4 Double-click in the DropDown object.

The Check GUI dialog box opens.

The example above displays the Check GUI dialog box for a DropDown list.
The Check GUI dialog box for a DropDown DataWindow is identical to the
dialog box for a DataWindow.

 5 In the Properties pane, select the DropDownListBoxContent check and
click the Edit Expected Value button, or double-click the “<complex value>”
entry in the Expected Value column.

The Edit Check dialog box opens.

Chapter 12 • Checking PowerBuilder Applications

241

 6 You can select which checks to perform and edit the expected data. For
additional information on using this dialog box, see “Understanding the
Edit Check Dialog Box” on page 253.

 7 When you are done, click OK to save your changes, close the Edit Check
dialog box, and restore the Check GUI dialog box.

 8 Click OK to close the Check GUI dialog box.

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the
obj_check_gui function, refer to the TSL Reference.

Note: If you wish to check additional objects while performing a check on
the contents, use the Insert > GUI Checkpoint > For Multiple Objects
command (instead of the Insert > GUI Checkpoint > For Object/Window
command), which inserts a win_check_gui statement into your test script.
For information on checking the standard GUI properties of DropDown
objects, see Chapter 9, “Checking GUI Objects.”

Checking Properties of DataWindows

You can create a GUI checkpoint that checks the properties of a
DataWindow. One of the properties you can check is DWTableContent,
which is a check on the contents of the DataWindow. You create a content
check on a DataWindow as you would create one on a table. For additional
information on checking table contents, see Chapter 13, “Checking Table
Contents.”

Checking Properties of a DataWindow with Default Checks

You can create a GUI checkpoint that checks the properties of a
DataWindow with default checks. There are different default checks for
different types of DataWindows.

Part III • Creating Tests—Basic

242

To check the properties of a DataWindow with default checks:

 1 Choose Insert > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

 2 Click in the DataWindow once.

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the
obj_check_gui function, refer to the TSL Reference.

Checking Properties of a DataWindow while Specifying which
Checks to Perform

You can create a GUI checkpoint that checks the properties of a
DataWindow while specifying which checks to perform.

To check the properties of a DataWindow while specifying which checks to
perform:

 1 Choose Insert > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

 2 Double-click in the DataWindow. The Check GUI dialog box opens.

Chapter 12 • Checking PowerBuilder Applications

243

Note that the properties of objects within a DataWindow are displayed in
the dialog box. WinRunner can perform checks on these objects. For
additional information, see “Checking Properties of Objects within
DataWindows” below.

 3 Select the DWTableContent check and click the Edit Expected Value
button, or double-click the “<complex value>” entry in the Expected Value
column. The Edit Check dialog box opens.

 4 You can select which checks to perform and edit the expected data. For
additional information on using this dialog box, see “Understanding the
Edit Check Dialog Box” on page 253.

 5 When you are done, click OK to save your changes, close the Edit Check
dialog box, and restore the Check GUI dialog box.

 6 Click OK to close the Check GUI dialog box.

WinRunner captures the GUI information and stores it in the test’s expected
results folder. The WinRunner window is restored and an obj_check_gui
statement is inserted into the test script. For more information on the
obj_check_gui function, refer to the TSL Reference.

Checking Properties of Objects within DataWindows

You can create a GUI checkpoint that checks the properties of the following
DataWindow objects:

➤ DataWindows

➤ DataWindow columns

➤ DataWindow text

➤ DataWindow reports

➤ DataWindow graphs

➤ DataWindow computed columns

Part III • Creating Tests—Basic

244

DataWindow objects cannot be highlighted in the application you are
testing. You can create a GUI checkpoint that checks the properties of
objects within DataWindows using the Check GUI dialog box. For
information on GUI checkpoints, see Chapter 9, “Checking GUI Objects.”

To check the properties of objects in a DataWindow:

 1 Choose Insert > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

 2 Double-click the DataWindow in the application you are testing.
WinRunner may take a few seconds to capture information about the
DataWindow and then the Check GUI dialog box opens.

 3 In the Objects pane, click the Expand sign (+) beside the DataWindow to
display its objects, and select an object to display its properties.

The Objects pane displays the DataWindow and the objects within it. The
Properties pane displays the properties of the object in the DataWindow
that is highlighted in the Objects pane. These objects can be columns,
computed columns, text, graphs, and reports. Note that each object has one
or more default property checks.

Specify which objects of the DataWindow to check: first, select an object in
the Objects pane; next, select the properties to check in the Properties pane.

Chapter 12 • Checking PowerBuilder Applications

245

 4 Click OK to close the dialog box.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, see Chapter 9, “Checking GUI
Objects,” or refer to the TSL Reference.

Note: If an object in a DataWindow is displayed in the Objects pane of the
GUI checkpoint dialog boxes as “NoName,” then the object has no internal
name.

Working with Computed Columns in DataWindows

If computed columns are placed in detail band of the DataWindow,
WinRunner can record and run tests on them. WinRunner uses the
tbl_get_selected_cell, tbl_activate_cell, and tbl_get_cell_data TSL
functions to record and run tests on computed columns. For information on
using these TSL functions, refer to the TSL Reference.

WinRunner can also retrieve data about computed columns which are not
placed in detail band of the DataWindow, using the tbl_get_cell_data TSL
function. For information about this TSL function, refer to the TSL Reference.

To check the contents of computed columns in detail band of the
DataWindow, use the DWComputedContent property check.

You cannot refer to a computed column by its index, since the computed
column is not part of the database. Therefore, you must refer to a computed
column by its name.

➤ Record a selection on the computed column. The name of the column
appears in the tbl_selected_cell statement inserted in your test script.

➤ Perform a GUI checkpoint on the DataWindow in which the computed
column appears. The name of the computed column appears in the Objects
pane below the name of the parent DataWindow.

Part III • Creating Tests—Basic

246

247

13
Checking Table Contents

When you work with WinRunner with added support for application
development environments such as Visual Basic, PowerBuilder, Delphi, and
Oracle, you can create GUI checkpoints that check the contents of tables in
your application.

This chapter describes:

➤ About Checking Table Contents

➤ Checking Table Contents with Default Checks

➤ Checking Table Contents while Specifying Checks

➤ Understanding the Edit Check Dialog Box

About Checking Table Contents

Tables are generally part of a specific development environment application,
such as Visual Basic, PowerBuilder, Delphi, and Oracle. These toolkits can
display database information in a grid. In order to perform the checks on a
table described in this chapter, you must install and load add-in support for
the relevant development environment. You can choose to install support
for Visual Basic or PowerBuilder applications when you install WinRunner.
In addition, you can install support for other development environments,
such as Delphi and Oracle, separately. You can use the Add-In Manager
dialog box to choose which add-in support to load for each session of
WinRunner. For information on the Add-In Manager dialog box, see
Chapter 2, “WinRunner at a Glance.” For information on displaying the
Add-In Manager dialog box, see Chapter 23, “Setting Global Testing
Options.”

Part III • Creating Tests—Basic

248

Once you install WinRunner support for any of these tools, you can add a
GUI checkpoint to your test script that checks the contents of a table.

You can create a GUI checkpoint for table contents by clicking in the table
and choosing the properties that you want WinRunner to check. You can
check the default properties recommended by WinRunner, or you can
specify which properties to check. Information about the table and the
properties to be checked is saved in a checklist. WinRunner then captures the
current values of the table properties and saves this information as expected
results. A GUI checkpoint is automatically inserted into the test script. This
checkpoint appears in your test script as an obj_check_gui or a
win_check_gui statement. For more information about GUI checkpoints
and checklists, see Chapter 9, “Checking GUI Objects.”

When you run the test, WinRunner compares the current state of the
properties in the table to the expected results. If the expected results and the
current results do not match, the GUI checkpoint fails. You can view the
results of the checkpoint in the WinRunner Test Results Window. For more
information, see Chapter 21, “Analyzing Test Results.”

Note that any GUI object you check that is not already in the GUI map is
added automatically to the temporary GUI map file. See Chapter 3,
“Understanding How WinRunner Identifies GUI Objects,” for more
information.

This chapter provides step-by-step instructions for checking the contents of
tables.

You can also create a GUI checkpoint that checks the contents of a
PowerBuilder DropDown list or a DataWindow: you check a DropDown list
as you would check a single-column table; you check a DataWindow as you
would check a multiple-column table. For additional information, see
Chapter 12, “Checking PowerBuilder Applications.”

In addition to checking a table’s contents, you can also check its other
properties. If a table contains ActiveX properties, you can check them in a
GUI checkpoint. WinRunner also has built-in support for ActiveX controls
that are tables. For additional information, see Chapter 11, “Working with
ActiveX and Visual Basic Controls.” You can also check a table’s standard
GUI properties in a GUI checkpoint. For additional information, see
Chapter 9, “Checking GUI Objects.”

Chapter 13 • Checking Table Contents

249

Checking Table Contents with Default Checks

You can create a GUI checkpoint that performs a default check on the
contents of a table.

A default check performs a case-sensitive check on the contents of the entire
table. WinRunner uses column names and the index number of rows to
locate the cells in the table.

You can also perform a check on table contents in which you specify which
checks to perform. For additional information, see “Checking Table
Contents while Specifying Checks” on page 250.

To check table contents with a default check:

 1 Choose Insert > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

 2 Click in the table in the application you are testing.

WinRunner may take a few seconds to capture information about the table.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, refer to the TSL Reference.

Note: If you wish to check other table object properties while performing a
check on the table contents, use the Insert > GUI Checkpoint > For Multiple
Objects command (instead of the Insert > GUI Checkpoint > For
Object/Window command), which inserts a win_check_gui statement into
your test script. For information on checking the standard GUI properties of
tables, see Chapter 9, “Checking GUI Objects.” For information on checking
the ActiveX control properties of a tables, see Chapter 11, “Working with
ActiveX and Visual Basic Controls.”

Part III • Creating Tests—Basic

250

Checking Table Contents while Specifying Checks

You can use a GUI checkpoint to specify which checks to perform on the
contents of a table. To create a GUI checkpoint on table contents in which
you specify checks, you choose a GUI checkpoint command and double-
click in the table.

The example in the procedure below uses WinRunner with add-in support
for Visual Basic and the Flights table in the sample Visual Basic Flights
application.

To check table contents while specifying which checks to perform:

 1 Choose Insert > GUI Checkpoint > For Object/Window or click the GUI
Checkpoint for Object/Window button on the User toolbar.

 2 Double-click in the table in the application you are testing.

WinRunner may take a few seconds to capture information about the table,
and then the Check GUI dialog box opens.

The dialog box displays the table’s unique table properties as nonstandard
objects.

 3 Scroll down in the dialog box or resize it so that the TableContent property
check is displayed in the Properties pane.

Chapter 13 • Checking Table Contents

251

Note that the table contents property check may have a different name than
TableContent, depending on which toolkit is used.

 4 Select the TableContent (or corresponding) property check and click the
Edit Expected Value button. Note that <complex value> appears in the
Expected Value column for this property check, since the expected value of
this check is too complex to be displayed in this column.

The Edit Check dialog box opens.

 5 You can select which cells to check and edit the expected data. For
additional information on using this dialog box, see “Understanding the
Edit Check Dialog Box” on page 253.

 6 When you are done, click OK to save your changes, close the Edit Check
dialog box, and restore the Check GUI dialog box.

Part III • Creating Tests—Basic

252

 7 Click OK to close the Check GUI dialog box.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, refer to the TSL Reference.

Note: If you wish to check other table object properties while performing a
check on the table contents, use the Insert > GUI Checkpoint > For Multiple
Objects command (instead of the Insert > GUI Checkpoint > For
Object/Window command), which inserts a win_check_gui statement into
your test script. For information on checking the standard GUI properties of
tables, see Chapter 9, “Checking GUI Objects.” For information on checking
the ActiveX control properties of a tables, see Chapter 11, “Working with
ActiveX and Visual Basic Controls.”

Chapter 13 • Checking Table Contents

253

Understanding the Edit Check Dialog Box

The Edit Check dialog box enables you to specify which cells in a table to
check, and which verification method and verification type to use. You can
also edit the expected data for the table cells included in the check.

In the Select Checks tab, you can specify which table cells to check, the
verification method, and the verification type.

Note that if you are creating a check on a single-column table, the contents
of the Select Checks tab of the Edit Check dialog box differ from what is
shown above.

For more information, see “Specifying the Verification Method for a Single-
Column Table” on page 256.

Part III • Creating Tests—Basic

254

Specifying which Cells to Check

The List of checks box displays all the checks that will be performed,
including the verification type. When the Edit Check dialog box is opened
for the first time for a checkpoint, the default check is displayed:

➤ The default check for a multiple-column table is a case sensitive check on
the entire table by column name and row index.

➤ The default check for a single-column table is a case sensitive check on the
entire table by row position.

Note: If your table contains multiple columns with the same name,
WinRunner disregards the duplicate columns and does not perform checks
on them. Therefore, you should select the column index option.

If you do not wish to accept the default settings, you must delete the default
check before you specify the checks to perform. Select the “Entire Table -
Case Sensitive check” entry in the List of checks box and click the Delete
button. Alternatively, double-click this entry in the List of checks box. A
WinRunner message prompts you to delete the highlighted check. Click Yes.

Next, specify the checks to perform. You can choose different verification
type for different selections of cells. Therefore, specify the verification type
before selecting cells. For more information, see “Specifying the Verification
Type” on page 257.

Highlight the cells on which you want to perform the content check. Next,
click the Add button toolbar to add a check for these cells. Alternatively:

➤ double-click a cell to check it

➤ double-click a row header to check all the cells in a row

➤ double-click a column header to check all the cells in a column

➤ double-click the top-left corner to check the entire table

A description of the cells to be checked appears in the List of checks box.

Chapter 13 • Checking Table Contents

255

Specifying the Verification Method

You can select the verification method to control how WinRunner identifies
columns or rows within a table. The verification method applies to the
entire table. Specifying the verification method is different for multiple-
column and single-column tables.

Specifying the Verification Method for a Multiple-Column Table

Column

➤ Name: WinRunner looks for the selection according to the column
names. A shift in the position of the columns within the table does not
result in a mismatch.

➤ Index: WinRunner looks for the selection according to the index, or
position, of the columns. A shift in the position of the columns within
the table results in a mismatch. Select this option if your table contains
multiple columns with the same name. For additional information, see
the note on page 254. Choosing this option enables the Verify column
headers check box, which enables you to check column headers as well
as cells.

Row

➤ Key: WinRunner looks for the rows in the selection according to the data
in the key column(s) specified in the Select key columns list box. For
example, you could tell WinRunner to identify the second row in the
table on page 258 based on the arrival time for that row. A shift in the
position of the rows does not result in a mismatch. If the key selection
does not uniquely identify a row, WinRunner checks the first matching
row. You can use more than one key column to uniquely identify the
row.

Note: If the value of a cell in one or more of the key columns changes,
WinRunner will not be able to identify the corresponding row, and a check
of that row will fail with a “Not Found” error. If this occurs, select a different
key column or use the Index verification method.

Part III • Creating Tests—Basic

256

➤ Index (default setting): WinRunner looks for the selection according to
the index, or position, of the rows. A shift in the position of any of the
rows results in a mismatch.

Specifying the Verification Method for a Single-Column Table

The Verification methods box in the Select Checks tab for a single-column
table is different from that for a multiple-column table. The default check
for a single-column table is a case sensitive check on the entire table by row
position.

➤ By position: WinRunner checks the selection according to the location of
the items within the column.

➤ By content: WinRunner checks the selection according to the content of the
items, ignoring their location in the column.

Chapter 13 • Checking Table Contents

257

Specifying the Verification Type

WinRunner can verify the contents of a table in several different ways. You
can choose different verification types for different selections of cells.

➤ Case Sensitive (the default): WinRunner compares the text content of the
selection. Any difference in case or text content between the expected and
actual data results in a mismatch.

➤ Case Insensitive: WinRunner compares the text content of the selection.
Only differences in text content between the expected and actual data result
in a mismatch.

➤ Numeric Content: WinRunner evaluates the selected data according to
numeric values. WinRunner recognizes, for example, that “2” and “2.00” are
the same number.

➤ Numeric Range: WinRunner compares the selected data against a numeric
range. Both the minimum and maximum values are any real number that
you specify. This comparison differs from text and numeric content
verification in that the actual table data is compared against the range that
you defined and not against the expected results.

Note: This option causes a mismatch on any string that does not begin with
a number. A string starting with 'e' is translated into a number.

➤ Case Sensitive Ignore Spaces: WinRunner checks the data in the cell
according to case and content, ignoring differences in spaces. WinRunner
reports any differences in case or content as a mismatch.

➤ Case Insensitive Ignore Spaces: WinRunner checks the content in the cell
according to content, ignoring differences in case and spaces. WinRunner
reports only differences in content as a mismatch.

Click OK to save your changes to both tabs of the Edit Check dialog box.
The dialog box closes and the Check GUI dialog box is restored.

Part III • Creating Tests—Basic

258

Editing the Expected Data

To edit the expected data in the table, click the Edit Expected Data tab. If
you previously saved changes in the Select Checks tab, you can click Reload
Table to reload the table selections from the checklist. A WinRunner
message prompts you to reload the saved data. Click Yes.

Note that if you previously saved changes to the Select Checks tab, and then
reopened the Edit Check dialog box, the table appears color coded in the
Edit Expected Data tab. The cells included in the check appear in blue on a
white background. The cells excluded from the check appear in green on a
yellow background.

To edit the expected value of data in a cell, double-click inside the cell. A
cursor appears in the cell. Change the contents of the cell, as desired. Click
OK to save your changes to both tabs of the Edit Check dialog box. The
dialog box closes and the Check GUI dialog box is restored.

259

14
Checking Databases

By adding runtime database record checkpoints you can compare the
information in your application during a test run with the corresponding
record in your database.

By adding standard database checkpoints to your test scripts, you can check
the contents of databases in different versions of your application.

This chapter describes:

➤ About Checking Databases

➤ Creating a Runtime Database Record Checkpoint

➤ Editing a Runtime Database Record Checklist

➤ Creating a Default Check on a Database

➤ Creating a Custom Check on a Database

➤ Messages in the Database Checkpoint Dialog Boxes

➤ Working with the Database Checkpoint Wizard

➤ Understanding the Edit Check Dialog Box

➤ Modifying a Standard Database Checkpoint

➤ Modifying the Expected Results of a Standard Database Checkpoint

➤ Parameterizing Standard Database Checkpoints

➤ Specifying a Database

➤ Using TSL Functions to Work with a Database

Part III • Creating Tests—Basic

260

About Checking Databases

When you create database checkpoints, you define a query on your
database, and your database checkpoint checks the values contained in the
result set. The result set is a set of values retrieved from the results of the
query.

There are several ways to define the query that will be used in your database
checkpoints:

➤ You can use Microsoft Query to create a query on a database. The results of a
query on a database are known as a result set. You can install Microsoft
Query from the custom installation of Microsoft Office.

➤ You can define an ODBC query manually, by creating its SQL statement.

➤ You can use Data Junction to create a conversion file that converts a database
to a target text file. (For standard database checkpoints only). Note that Data
Junction is not automatically included in your WinRunner package. To
purchase Data Junction, contact your Mercury Interactive representative.
For detailed information on working with Data Junction, refer to the
documentation in the Data Junction package.

For purposes of simplicity, this chapter will refer to the result of the ODBC
query or the target of the Data Junction conversion as a result set.

About Runtime Database Record Checkpoints

You can create runtime database record checkpoints in order to compare the
values displayed in your application during the test run with the
corresponding values in the database. If the comparison does not meet the
success criteria you specify for the checkpoint, the checkpoint fails. You can
define a successful runtime database record checkpoint as one where one or
more matching records were found, exactly one matching record was found,
or where no matching records are found. You can include your database
checkpoint in a loop. If you run your database checkpoint in a loop, the
results for each iteration of the checkpoint are displayed in the test results as
separate entries. The results of the checkpoint can be viewed in the Test
Results window. For more information, see Chapter 21, “Analyzing Test
Results.”

Chapter 14 • Checking Databases

261

Runtime record checkpoints are useful when the information in the
database changes from one run to the other. Runtime record checkpoints
enable you to verify that the information displayed in your application was
correctly inserted to the database or conversely, that information from the
database is successfully retrieved and displayed on the screen.

Note that when you create a runtime database record checkpoint, the data
in the application and in the database are generally in the same format. If
the data is in different formats, you can follow the instructions in
“Comparing Data in Different Formats” on page 269 to create a runtime
database record checkpoint. Note that this feature is for advanced
WinRunner users only.

About Standard Database Checkpoints

You can create standard database checkpoints to compare the current values
of the properties of the result set during the test run to the expected values
captured during recording or otherwise set before the test run. If the
expected results and the current results do not match, the database
checkpoint fails.

Standard database checkpoints are useful when the expected results can be
established before the test run. There are two types of standard database
checkpoints: Default and Custom.

You can use a default check to check the entire contents of a result set, or
you can use a custom check to check the partial contents, the number of
rows, and the number of columns of a result set. Information about which
result set properties to check is saved in a checklist. WinRunner captures the
current information about the database and saves this information as
expected results. A database checkpoint is automatically inserted into the test
script. This checkpoint appears in your test script as a db_check statement.

For example, when you check the database of an application for the first
time in a test script, the following statement is generated:

db_check("list1.cdl", "dbvf1");

where list1.cdl is the name of the checklist containing information about the
database and the properties to check, and dbvf1 is the name of the expected
results file. The checklist is stored in the test’s chklist folder.

Part III • Creating Tests—Basic

262

If you are working with Microsoft Query or ODBC, it references a *.sql query
file, which contains information about the database and the SQL statement.
If you are working with Data Junction, it references a *.djs conversion file,
which contains information about the database and the conversion. When
you define a query, WinRunner creates a checklist and stores it in the test’s
chklist folder. The expected results file is stored in the test’s exp folder. For
more information on the db_check function, refer to the TSL Reference.

When you run the test, the database checkpoint compares the current state
of the database in the application being tested to the expected results. If the
expected results and the current results do not match, the database
checkpoint fails. You can include your database checkpoint in a loop. If you
run your database checkpoint in a loop, the results for each iteration of the
checkpoint are displayed in the test results as separate entries. The results of
the checkpoint can be viewed in the Test Results window. For more
information, see Chapter 21, “Analyzing Test Results.”

You can modify the expected results of an existing standard database
checkpoint before or after you run your test. You can also make changes to
the query in an existing database checkpoint. This is useful if you move the
database to a new location on the network.

When you create a database checkpoint using ODBC/Microsoft Query, you
can add parameters to an SQL statement to parameterize your checkpoint.
This is useful if you want to create a database checkpoint on a query in
which the SQL statement defining your query changes. For more
information, see “Parameterizing Standard Database Checkpoints,” on
page 310.

Setting Options for Failed Database Checkpoints

You can instruct WinRunner to send an e-mail to selected recipients each
time a database checkpoint fails and you can instruct WinRunner to capture
a bitmap of your window or screen when any checkpoint fails. You set these
options in the General Options dialog box.

Chapter 14 • Checking Databases

263

To instruct WinRunner to send an e-mail message when a database
checkpoint fails:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click the Notifications category in the options pane. The notification
options are displayed.

 3 Select Database checkpoint failure.

 4 Click the Notifications > E-mail category in the options pane. The e-mail
options are displayed.

 5 Select the Active E-mail service option and set the relevant server and sender
information.

 6 Click the Notifications > Recipient category in the options pane. The e-mail
recipient options are displayed.

 7 Add, remove, or modify recipient details as necessary to set the recipients to
whom you want to send an e-mail message when a database checkpoint
fails.

The e-mail contains summary details about the test and checkpoint and
details about the connection string and SQL query used for the checkpoint.
For more information, see “Setting Notification Options” on page 579.

To instruct WinRunner to capture a bitmap when a checkpoint fails:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click the Run > Settings category in the options pane. The run settings
options are displayed.

 3 Select Capture bitmap on verification failure.

 4 Select Window, Desktop, or Desktop area to indicate what you want to
capture when checkpoints fail.

 5 If you select Desktop area, specify the coordinates of the area of the desktop
that you want to capture.

When you run your test, the captured bitmaps are saved in your test results
folder. For more information, see “Setting Test Run Options” on page 562.

Part III • Creating Tests—Basic

264

Creating a Runtime Database Record Checkpoint

You can add a runtime database record checkpoint to your test in order to
compare information displayed in your application during a test run with
the current value(s) in the corresponding record(s) in your database.

You add runtime database record checkpoints by running the Runtime
Record Checkpoint wizard. When you are finished, the wizard inserts the
appropriate db_record_check statement into your script.

Note that when you create a runtime database record checkpoint, the data
in the application and in the database are generally in the same format. If
the data is in different formats, you can follow the instructions in
“Comparing Data in Different Formats” on page 269 to create a runtime
database record checkpoint. Note that this feature is for advanced
WinRunner users only.

Using the Runtime Record Checkpoint Wizard

The Runtime Record Checkpoint wizard guides you through the steps of
defining your query, identifying the application controls that contain the
information corresponding to the records in your query, and defining the
success criteria for your checkpoint.

To open the wizard, select Insert > Database Checkpoint > Runtime Record
Check.

Chapter 14 • Checking Databases

265

Define Query Screen

The Define Query screen enables you to select a database and define a query
for your checkpoint. You can create a new query from your database using
Microsoft Query, or manually define an SQL statement.

You can choose from the following options:

➤ Create new query: Opens Microsoft Query, enabling you to create a new
query. Once you finish defining your query, you return to WinRunner. For
additional information, see “Creating a Query in ODBC/Microsoft Query,”
on page 314. Note that this option is enabled only if Microsoft Query is
installed on your machine.

➤ Specify SQL statement: Opens the Specify SQL Statement screen in the
wizard, enabling you to specify the connection string and an SQL statement.
For additional information, see “Specifying an SQL Statement” on page 287.

Part III • Creating Tests—Basic

266

Specify SQL Statement Screen

The Specify SQL Statement screen enables you to manually specify the
database connection string and the SQL statement.

Enter the required information:

➤ Connection String: Enter the connection string, or click the Create button.

➤ Create: Opens the ODBC Select Data Source dialog box. You can select a
*.dsn file in the Select Data Source dialog box to have it insert the
connection string in the box for you.

➤ SQL: Enter the SQL statement.

Note: You cannot use an SQL statement of the type "SELECT * from ..." with
the db_record_check function. Instead, you must supply the tables and
field names. The reason for this is that WinRunner needs to know which
database fields should be matched to which variables in the WinRunner
script. The expected SQL format is: SELECT table_name1.field_name1,
table_name2.field_name2, ... FROM table_name1, table_name2, ... [WHERE ...]

Chapter 14 • Checking Databases

267

Match Database Field Screen

The Match Database Field screen enables you to identify the application
control or text in your application that matches the displayed database field.
You repeat this step for each field included in your query.

This screen includes the following options:

➤ Database field: Displays a database field from your query. Use the pointing
hand to identify the control or text that matches the displayed field name.

➤ Logical name: Displays the logical name of the control you select on your
application.

(Displayed only when the Select text from a Web page check box is
cleared.)

➤ Text before: Displays the text that appears immediately before the text to
check.

(Displayed only when the Select text from a Web page check box is
checked.)

Part III • Creating Tests—Basic

268

➤ Text after: Displays the text that appears immediately after the text to
check.

(Displayed only when the Select text from a Web page check box is
selected.)

➤ Select text from a Web page: Enables you to indicate the text on your Web
page containing the value to be verified.

Notes:

When selecting text from a Web page, you must use the pointer to select the
text.

To create a database checkpoint on a database field mapped to a text string
in a Web page, the WebTest Add-in must be loaded. If necessary, you must
restart WinRunner with the WebTest Add-in loaded before creating the
checkpoint. For information on loading add-ins, see “Loading WinRunner
Add-Ins” on page 20.

Chapter 14 • Checking Databases

269

Matching Record Criteria Screen

The Matching Record Criteria screen enables you to specify the number of
matching database records required for a successful checkpoint.

➤ Exactly one matching record: Sets the checkpoint to succeed if exactly one
matching database record is found.

➤ One or more matching records: Sets the checkpoint to succeed if one or
more matching database records are found.

➤ No matching records: Sets the checkpoint to succeed if no matching
database records are found.

When you click Finish on the Runtime Record Checkpoint wizard, a
db_record_check statement is inserted into your script. For more
information on the db_record_check function, refer to the TSL Reference.

Comparing Data in Different Formats

Suppose you want to compare the data in your application to data in the
database, but the data is in different formats. You can follow the instructions
below to create a runtime database record checkpoint without using the
Runtime Record Checkpoint wizard. Note that this feature is for advanced
WinRunner users only.

Part III • Creating Tests—Basic

270

For example, in the sample Flight Reservation application, there are three
radio buttons in the Class box. When this box is enabled, one of the radio
buttons is always selected. In the database of the sample Flight Reservation
application, there is one field with the values 1, 2, or 3 for the matching
class.

To check that data in the application and the database have the same value,
you must perform the following steps:

 1 Record on your application up to the point where you want to verify the
data on the screen. Stop your test. In your test, manually extract the values
from your application.

 2 Based on the values extracted from your application, calculate the expected
values for the database. Note that in order to perform this step, you must
know the mapping relationship between both sets of values. See the
example below.

 3 Add these calculated values to any edit field or editor (e.g. Notepad). You
need to have one edit field for each calculated value. For example, you can
use multiple Notepad windows, or another application that has multiple
edit fields.

 4 Use the GUI Map Editor to teach WinRunner:

➤ the controls in your application that contain the values to check

➤ the edit fields that will be used for the calculated values

 5 Add TSL statements to your test script to perform the following operations:

➤ extract the values from your application

➤ calculate the expected database values based on the values extracted from
your application

➤ write these expected values to the edit fields

 6 Use the Runtime Record Checkpoint wizard, described in “Using the
Runtime Record Checkpoint Wizard,” on page 264, to create a
db_record_check statement.

When prompted, instead of pointing to your application control with the
desired value, point to the edit field where you entered the desired
calculated value.

Chapter 14 • Checking Databases

271

Tip: When you run your test, make sure to open the application(s) with the
edit field(s) containing the calculated values.

Example of Comparing Different Data Formats in a Runtime
Database Record Checkpoint

The following excerpts from a script are used to check the Class field in the
database against the radio buttons in the sample Flights application. The
steps refer to the instructions on page 270.

Step 1

Extract values from GUI objects in application.
button_get_state("First",vFirst);
button_get_state("Business",vBusiness);
button_get_state("Economy",vEconomy);

Step 2

Calculate the expected values for the database.
if (vFirst)

expDBval = "1" ;
else if (vBusiness)

expDBval = "2" ;
else if (vEconomy)

expDBval = "3" ;

Step 3

Add these calculated values to an edit field to be used in the checkpoint.
set_window("Untitled - Notepad", 1);
edit_set("Edit", expDBval);

Step 4

Create a runtime database record checkpoint using the wizard.
db_record_check("list1.cvr", DVR_ONE_MATCH);

Part III • Creating Tests—Basic

272

Editing a Runtime Database Record Checklist

You can make changes to a checklist you created for a runtime database
record checkpoint. Note that a checklist includes the connection string to
the database, the SQL statement or a query, the database fields in the data
source, the controls in your application, and the mapping between them. It
does not include the success conditions of a runtime database record
checkpoint.

When you edit a runtime database record checklist, you can:

➤ modify the data source connection string manually or using ODBC

➤ modify the SQL statement or choose a different query in Microsoft Query

➤ select different database fields to use in the data source (add or remove)

➤ match a database field already in the checklist to a different application
control

➤ match a new database field in the checklist to an application control

To edit an existing runtime database record checklist:

 1 Choose Insert > Edit Runtime Record Checklist.

The Runtime Record Checkpoint wizard opens.

Chapter 14 • Checking Databases

273

 2 Choose the runtime database record checklist to edit. Click Next to proceed.

Note: By default, runtime database record checklists are named sequentially
in each test, starting with list1.cvr.

Tip: You can see the name of the checklist you want to edit in the
db_record_check statement in your test script.

 3 The Specify SQL statement screen opens:

In this screen you can:

➤ modify the connection string manually or by clicking Edit to open the
ODBC Select Data Source dialog box, where you can select a new *.dsn
file in the Select Data Source dialog box to create a new connection
string.

➤ modify the SQL statement manually or redefine the query by clicking the
Microsoft Query button to open Microsoft Query.

Part III • Creating Tests—Basic

274

Note: If Microsoft Query is not installed on your machine, the Microsoft
Query button is not displayed.

Click Next to continue.

 4 The following screen opens:

➤ For a database field previously included in the checklist, the database
field is displayed along with the application control to which it is
mapped. You can use the pointing hand to map the displayed field name
to a different application control or text string in a Web page.

Note: To edit a database field mapped to a text string in a Web page, the
WebTest Add-in must be loaded. If necessary, you must restart WinRunner
with the WebTest Add-in loaded before editing this object in the checklist.
For information on loading add-ins, see “Loading WinRunner Add-Ins” on
page 20.

“New” icon
indicates that this
database field was
not previously
included in the
checklist.

Chapter 14 • Checking Databases

275

➤ If you modified the SQL statement or query in Microsoft Query so that it
now references an additional database field in the data source, the
checklist will now include a new database field. You must match this
database field to an application control. Use the pointing hand to
identify the control or text that matches the displayed field name.

Tip: New database fields are marked with a “New” icon.

Note: To map the database field to text in a Web page, click the Select text
from a Web page check box, which is enabled when you load the WebTest
Add-in. The wizard screen will display additional options. For information
on these options, see “Match Database Field Screen” on page 267.

Click Next to continue.

Note: The Match Database Field screen is displayed once for each database
field in the SQL statement or query in Microsoft Query. Follow the
instructions in this step each time this screen is displayed.

 5 The Finished screen is displayed.

Click Finish to modify the checklist used in the runtime record
checkpoint(s).

Part III • Creating Tests—Basic

276

Note: You can change the success condition of your checkpoint by
modifying the second parameter in the db_record_check statement in your
test script. The second parameter must contain one of the following values:

➤ DVR_ONE_OR_MORE_MATCH - The checkpoint passes if one or more
matching database records are found.

➤ DVR_ONE_MATCH - The checkpoint passes if exactly one matching
database record is found.

➤ DVR_NO_MATCH - The checkpoint passes if no matching database
records are found.

For additional information, refer to the TSL Reference.

Tip: You can use an existing checklist in multiple runtime record
checkpoints. Suppose you already created a runtime record checkpoint in
your test script, and you want to use the same data source and SQL
statement or query in additional runtime record checkpoints in the same
test. For example, suppose you want several different db_record_check
statements, each with different success conditions. You do not need to rerun
the Runtime Record Checkpoint wizard for each new checkpoint you create.
Instead, you can manually enter a db_record_check statement that
references an existing checklist. Similarly, you can modify an existing
db_record_check statement to reference an existing checklist.

Chapter 14 • Checking Databases

277

Creating a Default Check on a Database

When you create a default check on a database, you create a standard
database checkpoint that checks the entire result set using the following
criteria:

➤ The default check for a multiple-column query on a database is a case
sensitive check on the entire result set by column name and row index.

➤ The default check for a single-column query on a database is a case sensitive
check on the entire result set by row position.

If you want to check only part of the contents of a result set, edit the
expected value of the contents, or count the number of rows or columns,
you should create a custom check instead of a default check. For
information on creating a custom check on a database, see “Creating a
Custom Check on a Database,” on page 280.

Creating a Default Check on a Database Using ODBC or
Microsoft Query

You can create a default check on a database using ODBC or Microsoft
Query.

To create a default check on a database using ODBC or Microsoft Query:

 1 Choose Insert > Database Checkpoint > Default Check or click the Default
Database Checkpoint button on the User toolbar. If you are recording in
Analog mode, press the CHECK DATABASE (DEFAULT) softkey in order to avoid
extraneous mouse movements. Note that you can press the CHECK DATABASE
(DEFAULT) softkey in Context Sensitive mode as well.

Note: The first time you create a default database checkpoint, either
Microsoft Query or the Database Checkpoint wizard opens. Each subsequent
time you create a default database checkpoint, the last tool used is opened.
If the Database Checkpoint wizard opens, follow the instructions in
“Working with the Database Checkpoint Wizard” on page 283.

Part III • Creating Tests—Basic

278

 2 If Microsoft Query is installed and you are creating a new query, an
instruction screen opens for creating a query.

If you do not want to see this message next time you create a default
database checkpoint, clear the Show this message next time check box.

Click OK to close the instruction screen.

If Microsoft Query is not installed, the Database Checkpoint wizard opens to
a screen where you can define the ODBC query manually. For additional
information, see “Setting ODBC (Microsoft Query) Options” on page 284.

 3 Define a query, copy a query, or specify an SQL statement. For additional
information, see “Creating a Query in ODBC/Microsoft Query” on page 314
or “Specifying an SQL Statement” on page 287.

Note: If you want to be able to parameterize the SQL statement in the
db_check statement that is generated, then in the last wizard screen in
Microsoft Query, click View data or edit query in Microsoft Query. Follow
the instructions in “Guidelines for Parameterizing SQL Statements” on
page 313.

 4 WinRunner takes several seconds to capture the database query and restore
the WinRunner window.

WinRunner captures the data specified by the query and stores it in the test’s
exp folder. WinRunner creates the msqr*.sql query file and stores it and the
database checklist in the test’s chklist folder. A database checkpoint is
inserted in the test script as a db_check statement. For more information on
the db_check function, refer to the TSL Reference.

Chapter 14 • Checking Databases

279

Creating a Default Check on a Database Using Data Junction

You can create a default check on a database using Data Junction.

To create a default check on a database:

 1 Choose Insert > Database Checkpoint > Default Check or click the Default
Database Checkpoint button on the User toolbar. If you are recording in
Analog mode, press the CHECK DATABASE (DEFAULT) softkey in order to avoid
extraneous mouse movements. Note that you can press the CHECK DATABASE
(DEFAULT) softkey in Context Sensitive mode as well.

Note: The first time you create a default database checkpoint, either
Microsoft Query or the Database Checkpoint wizard opens. Each subsequent
time you create a default database checkpoint, the last client used is opened:
if you used Microsoft Query, then Microsoft Query opens; if you use Data
Junction, then the Database Checkpoint wizard opens. Note that the
Database Checkpoint wizard must open whenever you use Data Junction to
create a database checkpoint.

For information on working with the Database Checkpoint wizard, see
“Working with the Database Checkpoint Wizard” on page 283.

 2 An instruction screen opens for creating a query. If you do not want to see
this message next time you create a default database checkpoint, clear the
Show this message next time check box.

Click OK to close the instruction screen.

 3 Create a new conversion file or use an existing one. For additional
information, see “Creating a Conversion File in Data Junction” on page 315.

 4 WinRunner takes several seconds to capture the database query and restore
the WinRunner window.

WinRunner captures the data specified by the query and stores it in the test’s
exp folder. WinRunner creates the *.djs conversion file and stores it in the
checklist in the test’s chklist folder. A database checkpoint is inserted in the
test script as a db_check statement. For more information on the db_check
function, refer to the TSL Reference.

Part III • Creating Tests—Basic

280

Creating a Custom Check on a Database

When you create a custom check on a database, you create a standard
database checkpoint in which you can specify which properties to check on
a result set.

You can create a custom check on a database in order to:

➤ check the contents of part or the entire result set

➤ edit the expected results of the contents of the result set

➤ count the rows in the result set

➤ count the columns in the result set

You can create a custom check on a database using ODBC, Microsoft Query
or Data Junction.

To create a custom check on a database:

 1 Choose Insert > Database Checkpoint > Custom Check. If you are recording
in Analog mode, press the CHECK DATABASE (CUSTOM) softkey in order to
avoid extraneous mouse movements. Note that you can press the CHECK
DATABASE (CUSTOM) softkey in Context Sensitive mode as well.

The Database Checkpoint wizard opens.

 2 Follow the instructions on working with the Database Checkpoint wizard, as
described in “Working with the Database Checkpoint Wizard” on page 283.

 3 If you are creating a new query, an instruction screen opens for creating a
query.

If you do not want to see this message next time you create a default
database checkpoint, clear the Show this message next time check box.

 4 If you are using ODBC or Microsoft Query, define a query, copy a query, or
specify an SQL statement. For additional information, see “Creating a Query
in ODBC/Microsoft Query” on page 314 or “Specifying an SQL Statement”
on page 287.

If you are using Data Junction, create a new conversion file or use an
existing one. For additional information, see “Creating a Conversion File in
Data Junction” on page 315.

Chapter 14 • Checking Databases

281

 5 If you are using Microsoft Query and you want to be able to parameterize
the SQL statement in the db_check statement which will be generated, then
in the last wizard screen in Microsoft Query, click View data or edit query in
Microsoft Query. Follow the instructions in “Parameterizing Standard
Database Checkpoints” on page 310.

 6 WinRunner takes several seconds to capture the database query and restore
the WinRunner window.

The Check Database dialog box opens.

The Objects pane contains “Database check” and the name of the *.sql
query file or *.djs conversion file included in the database checkpoint. The
Properties pane lists the different types of checks that can be performed on
the result set. A check mark indicates that the item is selected and is
included in the checkpoint.

 7 Select the types of checks to perform on the database. You can perform the
following checks:

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in “Creating a
Default Check on a Database,” on page 277.

RowsCount: Counts the number of rows in the result set.

Part III • Creating Tests—Basic

282

 8 If you want to edit the expected value of a property, first select it. Next,
either click the Edit Expected Value button, or double-click the value in the
Expected Value column.

➤ For ColumnsCount or RowsCount checks on a result set, the expected
value is displayed in the Expected Value field corresponding to the
property check. When you edit the expected value for these property
checks, a spin box opens. Modify the number that appears in the spin
box.

➤ For a Content check on a result set, <complex value> appears in the
Expected Value field corresponding to the check, since the content of the
result set is too complex to be displayed in this column. When you edit
the expected value, the Edit Check dialog box opens. In the Select Checks
tab, you can select which checks to perform on the result set, based on
the data captured in the query. In the Edit Expected Data tab, you can
modify the expected results of the data in the result set.

For more information, see “Understanding the Edit Check Dialog Box”
on page 291.

 9 Click OK to close the Check Database dialog box.

WinRunner captures the current property values and stores them in the
test’s exp folder. WinRunner stores the database query in the test’s chklist
folder. A database checkpoint is inserted in the test script as a db_check
statement. For more information on the db_check function, refer to the TSL
Reference.

Chapter 14 • Checking Databases

283

Messages in the Database Checkpoint Dialog Boxes

The following messages may appear in the Properties pane in the Expected
Value or the Actual Value fields in the Check Database or the Database
Checkpoint Results dialog boxes:

Note: For information on the Database Checkpoint Results dialog box, see
Chapter 21, “Analyzing Test Results.”

Working with the Database Checkpoint Wizard

The wizard opens whenever you create a custom database checkpoint and
whenever you work with Data Junction. You can also use an SQL statement
to create a database checkpoint. When working with SQL statements, create
a custom database check and choose the ODBC (Microsoft Query) option.

You can work in either ODBC/Microsoft Query mode or Data Junction
mode. Depending on the last tool used, a screen opens for either ODBC
(Microsoft Query) or Data Junction. You can change from one mode to
another in the first wizard screen.

The Database Checkpoint wizard enables you to:

➤ switch between ODBC (Microsoft Query) mode and Data Junction mode

➤ specify an SQL statement without using Microsoft Query

➤ use existing queries and conversions in your database checkpoint

Message Meaning

Complex Value The expected or actual value of the selected property check is
too complex to display in the column. This message will
appear for the content checks.

Cannot Capture The expected or actual value of the selected property could
not be captured.

Part III • Creating Tests—Basic

284

ODBC (Microsoft Query) Screens

There are three screens in the Database Checkpoint wizard for working with
ODBC (Microsoft Query). These screens enable you to:

➤ set general options:

➤ switch to Data Junction mode

➤ choose to create a new query, use an existing one, or specify an SQL
statement

➤ limit the number of rows in the query

➤ display an instruction screen

➤ select an existing source query file

➤ specify an SQL statement

Setting ODBC (Microsoft Query) Options

The following screen opens if you are creating a custom database checkpoint
or working in ODBC mode.

Chapter 14 • Checking Databases

285

You can choose from the following options:

➤ Create new query: Opens Microsoft Query, enabling you to create a new
ODBC *.sql query file with the name specified below. Once you finish
defining your query:

➤ If you are creating a default database checkpoint, a db_check statement
is inserted into your test script.

➤ If you are creating a custom database checkpoint, the Check Database
dialog box opens. For information on the Check Database dialog box, see
“Creating a Custom Check on a Database” on page 280.

➤ Copy existing query: Opens the Select source query file screen in the wizard,
which enables you to copy an existing ODBC query from another query file.
For additional information, see “Selecting a Source Query File” on page 286.

➤ Specify SQL statement: Opens the Specify SQL statement screen in the
wizard, which enables you to specify the connection string and an SQL
statement. For additional information, see “Specifying an SQL Statement”
on page 287.

➤ New query file: Displays the default name of the new *.sql query file for this
database checkpoint. You can use the browse button to browse for a
different *.sql query file.

➤ Maximum number of rows: Select this check box and enter the maximum
number of database rows to check. If this check box is cleared, there is no
maximum. Note that this option adds an additional parameter to your
db_check statement. For more information, refer to the TSL Reference.

➤ Show me how to use Microsoft Query: Displays an instruction screen.

Part III • Creating Tests—Basic

286

Selecting a Source Query File

The following screen opens if you chose to use an existing query file in this
database checkpoint.

Enter the pathname of the query file or use the Browse button to locate it.
Once a query file is selected, you can use the View button to open the file for
viewing.

➤ If you are creating a default database checkpoint, a db_check statement is
inserted into your test script.

➤ If you are creating a custom database checkpoint, the Check Database dialog
box opens. For information on the Check Database dialog box, see
“Creating a Custom Check on a Database” on page 280.

Chapter 14 • Checking Databases

287

Specifying an SQL Statement

The following screen opens if you chose to specify an SQL statement to use
in this database checkpoint.

In this screen you must specify the connection string and the SQL
statement:

➤ Connection String: Enter the connection string, or click Create to open the
ODBC Select Data Source dialog box, in which you can select a *.dsn file,
which inserts the connection string in the box.

➤ SQL: Enter the SQL statement.

Note: If you create an SQL statement containing parameters, an instruction
screen opens. For information on parameterizing SQL statements, see
“Parameterizing Standard Database Checkpoints” on page 310.

Part III • Creating Tests—Basic

288

When you are done:

➤ If you are creating a default database checkpoint, a db_check statement is
inserted into your test script.

➤ If you are creating a custom database checkpoint, the Check Database dialog
box opens. For information on the Check Database dialog box, see
“Creating a Custom Check on a Database” on page 280.

Data Junction Screens in the Database Checkpoint Wizard

There are two screens in the Database Checkpoint wizard for working with
Data Junction. These screens enable you to:

➤ set general options:

➤ switch to ODBC (Microsoft Query) mode

➤ choose to create a new conversion or use an existing one

➤ display an instruction screen

➤ specify the conversion file

Chapter 14 • Checking Databases

289

Setting Data Junction Options

The following screen opens if you last worked with Data Junction or if you
are creating a default database checkpoint for the first time when only Data
Junction is installed:

You can choose from the following options:

➤ Create new conversion: Opens Data Junction and enables you to create a
new conversion file. For additional information, see “Creating a Conversion
File in Data Junction” on page 315. Once you have created a conversion file,
the Database Checkpoint wizard screen reopens to enable you to specify this
file. For additional information, see “Selecting a Data Junction Conversion
File” on page 290.

➤ Use existing conversion: Opens the Select conversion file screen in the
wizard, which enables you to specify an existing conversion file. For
additional information, see “Selecting a Data Junction Conversion File” on
page 290.

➤ Show me how to use Data Junction (available only when Create new
conversion is selected): Displays instructions for working with Data
Junction.

Part III • Creating Tests—Basic

290

Selecting a Data Junction Conversion File

The following wizard screen opens when you are working with Data
Junction.

Enter the pathname of the conversion file or use the Browse button to
locate it. Once a conversion file is selected, you can use the View button to
open the file for viewing.

You can also choose from the following options:

➤ Copy conversion to test folder: Copies the specified conversion file to the
test folder.

➤ Maximum number of rows: Select this check box and enter the maximum
number of database rows to check. If this check box is cleared, there is no
maximum.

When you are done:

➤ If you are creating a default database checkpoint, a db_check statement is
inserted into your test script.

➤ If you are creating a custom database checkpoint, the Check Database dialog
box opens. For information on the Check Database dialog box, see
“Creating a Custom Check on a Database” on page 280.

Chapter 14 • Checking Databases

291

Understanding the Edit Check Dialog Box

The Edit Check dialog box enables you to specify which cells to check, and
which verification method and verification type to use. You can also edit the
expected data for the database cells included in the check. (For information
on how to open the Edit Check dialog box, see “Creating a Custom Check
on a Database” on page 280.)

In the Selected Checks tab, you can specify the information that is saved in
the database checklist:

➤ which database cells to check

➤ the verification method

➤ the verification type

Part III • Creating Tests—Basic

292

Note that if you are creating a check on a single-column result set, the
contents of the Select Checks tab of the Edit Check dialog box differ from
what is shown above. For additional information, see “Specifying the
Verification Method for a Single-Column Result Set” on page 294.

Specifying which Cells to Check

The List of checks box displays all the checks that will be performed,
including the verification type. When the Edit Check dialog box is opened
for the first time for a checkpoint, the default check is displayed:

➤ The default check for a multiple-column result set is a case sensitive check
on the entire result set by column name and row index.

➤ The default check for a single-column result set is a case sensitive check on
the entire result set by row position.

Note: If your result set contains multiple columns with the same name,
WinRunner disregards the duplicate columns and does not perform checks
on them. Therefore, you should create a custom check on the database and
select the column index option.

If you do not wish to accept the default settings, you must delete the default
check before you specify the checks to perform. Select the “Entire Table -
Case Sensitive check” entry in the List of checks box and click the Delete
button. Alternatively, double-click this entry in the List of checks box. A
WinRunner message prompts you to delete the highlighted check. Click Yes.

Next, specify the checks to perform. You can choose different verification
types for different selections of cells. Therefore, specify the verification type
before selecting cells. For more information, see “Specifying the Verification
Type” on page 295.

Chapter 14 • Checking Databases

293

Highlight the cells on which you want to perform the content check. Next,
click the Add button to add a check for these cells. Alternatively:

➤ double-click a cell to check it

➤ double-click a row header to check all the cells in a row

➤ double-click a column header to check all the cells in a column

➤ double-click the top-left corner to check the entire result set

A description of the cells to be checked appears in the List of checks box.

Specifying the Verification Method

You can select the verification method to control how WinRunner identifies
columns or rows within a result set. The verification method applies to the
entire result set. Specifying the verification method is different for multiple-
column and single-column result sets.

Specifying the Verification Method for a Multiple-Column Result Set

Column

➤ Name: (default setting): WinRunner looks for the selection according to
the column names. A shift in the position of the columns within the
result set does not result in a mismatch.

➤ Index: WinRunner looks for the selection according to the index, or
position, of the columns. A shift in the position of the columns within
the result set results in a mismatch. Select this option if your result set
contains multiple columns with the same name. For additional
information, see the note on page 292. Choosing this option enables the
Verify column headers check box, which enables you to check column
headers as well as cells.

Part III • Creating Tests—Basic

294

Row

➤ Key: WinRunner looks for the rows in the selection according to the
key(s) specified in the Select key columns list box, which lists the names
of all columns in the result set. A shift in the position of any of the rows
does not result in a mismatch. If the key selection does not identify a
unique row, only the first matching row will be checked.

➤ Index: (default setting): WinRunner looks for the selection according to
the index, or position, of the rows. A shift in the position of any of the
rows results in a mismatch.

Specifying the Verification Method for a Single-Column Result Set

The Verification methods box in the Select Checks tab for a single-column
result set is different from that for a multiple-column result set. The default
check for a single-column result set is a case sensitive check on the entire
result set by row position.

Chapter 14 • Checking Databases

295

➤ By position: WinRunner checks the selection according to the location of
the items within the column.

➤ By content: WinRunner checks the selection according to the content of the
items, ignoring their location in the column.

Specifying the Verification Type

WinRunner can verify the contents of a result set in several different ways.
You can choose different verification types for different selections of cells.

➤ Case Sensitive (the default): WinRunner compares the text content of the
selection. Any difference in case or text content between the expected and
actual data results in a mismatch.

➤ Case Insensitive: WinRunner compares the text content of the selection.
Only differences in text content between the expected and actual data result
in a mismatch.

➤ Numeric Content: WinRunner evaluates the selected data according to
numeric values. WinRunner recognizes, for example, that “2” and “2.00” are
the same number.

➤ Numeric Range: WinRunner compares the selected data against a numeric
range. Both the minimum and maximum values are any real number that
you specify. This comparison differs from text and numeric content
verification in that the actual database data is compared against the range
that you defined and not against the expected results.

Note: This option causes a mismatch on any string that does not begin with
a number. A string starting with 'e' is translated into a number.

➤ Case Sensitive Ignore Spaces: WinRunner checks the data in the field
according to case and content, ignoring differences in spaces. WinRunner
reports any differences in case or content as a mismatch.

➤ Case Insensitive Ignore Spaces: WinRunner checks the content in the cell
according to content, ignoring differences in case and spaces. WinRunner
reports only differences in content as a mismatch.

Part III • Creating Tests—Basic

296

Click OK to save your changes to both tabs of the Edit Check dialog box.
The dialog box closes and the Check Database dialog box is restored.

Editing the Expected Data

To edit the expected data in the result set, click the Edit Expected Data tab.
If you previously saved changes in the Select Checks tab, you can click
Reload Table to reload the selections from the checklist. A WinRunner
message prompts you to reload the saved data. Click Yes.

Note that if you previously saved changes to the Select Checks tab, and then
reopened the Edit Check dialog box, the table appears color coded in the
Edit Expected Data tab. The cells included in the check appear in blue on a
white background. The cells excluded from the check appear in green on a
yellow background.

Chapter 14 • Checking Databases

297

To edit the expected value of data in a cell, double-click inside the cell. A
cursor appears in the cell. Change the contents of the cell, as desired. Click
OK to save your changes to both tabs of the Edit Check dialog box. The
dialog box closes and the Check Database dialog box is restored.

Modifying a Standard Database Checkpoint

You can make the following changes to an existing standard database
checkpoint:

➤ make a checklist available to other users by saving it in a shared folder

➤ change which database properties to check in an existing checklist

➤ modify a query in an existing checklist

Note: In addition to modifying database checklists, you can also modify the
expected results of database checkpoints. For more information, see
“Modifying the Expected Results of a Standard Database Checkpoint” on
page 308.

Saving a Database Checklist in a Shared Folder

By default, checklists for database checkpoints are stored in the folder of the
current test. You can specify that a checklist be placed in a shared folder to
enable wider access, so that you can use the same checklist in multiple tests.

Note: *.sql files are not saved in shared database checklist folders.

The default folder in which WinRunner stores your shared checklists is
WinRunner installation folder/chklist. To choose a different folder, you can use
the Shared checklists box in the Folders category of the General Options
dialog box. For more information, see Chapter 23, “Setting Global Testing
Options.”

Part III • Creating Tests—Basic

298

To save a database checklist in a shared folder:

 1 Choose Insert > Edit Database Checklist.

The Open Checklist dialog box opens.

 2 Select a database checklist and click OK. Note that database checklists have
the .cdl extension, while GUI checklists have the .ckl extension. For
information on GUI checklists, see “Modifying GUI Checklists,” on
page 143.

The Open Checklist dialog box closes. The Edit Database Checklist dialog
box displays the selected database checklist.

 3 Save the checklist by clicking Save As.

Chapter 14 • Checking Databases

299

The Save Checklist dialog box opens.

 4 Under Scope, click Shared. Type in a name for the shared checklist. Click
OK to save the checklist and close the dialog box.

 5 Click OK to close the Edit Database Checklist dialog box.

Editing Database Checklists

You can edit an existing database checklist. Note that a database checklist
includes only a reference to the msqr*.sql query file or the *.djs conversion
file of the database and the properties to be checked. It does not include the
expected results for the values of those properties.

You may want to edit a database checklist to change which properties in a
database to check.

To edit an existing database checklist:

 1 Choose Insert > Edit Database Checklist. The Open Checklist dialog box
opens.

 2 A list of checklists for the current test is displayed. If you want to see
checklists in a shared folder, click Shared.

Part III • Creating Tests—Basic

300

For more information on sharing database checklists, see “Saving a Database
Checklist in a Shared Folder” on page 297.

 3 Select a database checklist.

 4 Click OK.

The Open Checklist dialog box closes. The Edit Database Checklist dialog
box opens and displays the selected checklist.

Lists the available checklists.

Displays checklists created for the current
test.

Displays checklists created in a shared
folder.

Describes the selected checklist.

Chapter 14 • Checking Databases

301

The Objects pane contains “Database check” and the name of the *.sql
query file or *.djs conversion file that will be included in the database
checkpoint. The Properties pane lists the different types of checks that can
be performed on databases. A check mark indicates that the item is selected
and is included in the checkpoint.

You can use the Modify button to modify the database checkpoint, as
described in “Modifying a Query in an Existing Database Checklist” on
page 302.

In the Properties pane, you can edit your database checklist to include or
exclude the following types of checks:

ColumnsCount: Counts the number of columns in the result set.

Content: Checks the content of the result set, as described in “Creating a
Default Check on a Database,” on page 277.

RowsCount: Counts the number of rows in the result set.

Name of *.sql
query file or *.djs
conversion file

Part III • Creating Tests—Basic

302

 5 Save the checklist in one of the following ways:

➤ To save the checklist under its existing name, click OK to close the Edit
Database Checklist dialog box. A WinRunner message prompts you to
overwrite the existing checklist. Click OK.

➤ To save the checklist under a different name, click the Save As button.
The Save Checklist dialog box opens. Type a new name or use the default
name. Click OK. Note that if you do not click the Save As button,
WinRunner automatically saves the checklist under its current name
when you click OK to close the Edit Database Checklist dialog box.

A new database checkpoint statement is not inserted in your test script.

Note: Before you run your test in Verify run mode, you must update the
expected results to match the changes you made in the checklist. To update
the expected results, run your test in Update run mode. For more
information on running a test in Update run mode, see “WinRunner Test
Run Modes” on page 429.

Modifying a Query in an Existing Database Checklist

You can modify a query in an existing database checklist from the Edit
Database Checklist dialog box. You may want to do this if, for example, you
move the database to a new location on the network. You must use the same
tool to modify the query that you used to create it.

Modifying a Query Created with ODBC/Microsoft Query

You can modify a query created with ODBC/Microsoft Query from the Edit
Database Checklist dialog box.

To modify a database checkpoint created with ODBC/Microsoft Query:

 1 Choose Insert > Edit Database Checklist. The Open Checklist dialog box
opens.

 2 A list of checklists for the current test is displayed. If you want to see
checklists in a shared folder, click Shared.

Chapter 14 • Checking Databases

303

For more information on sharing database checklists, see “Saving a Database
Checklist in a Shared Folder” on page 297.

 3 Select a database checklist.

 4 Click OK.

The Open Checklist dialog box closes. The Edit Database Checklist dialog
box opens and displays the selected checklist.

The Objects pane contains “Database check” and the name of the *.sql
query file that will be included in the database checkpoint.

Lists the available checklists.

Displays checklists created for the current
test.

Displays checklists created in a shared
folder.

Describes the selected checklist.

Part III • Creating Tests—Basic

304

The Properties pane lists the different types of checks that can be performed
on databases. A check mark indicates that the item is selected and is
included in the checkpoint. To modify the properties to check, see “Editing
Database Checklists” on page 299.

 5 In the Objects column, highlight the name of the query file or the
conversion file, and click Modify.

The Modify ODBC Query dialog box opens.

Chapter 14 • Checking Databases

305

 6 Modify the ODBC query by changing the connection string and/or the SQL
statement. You can click Database to open the ODBC Select Data Source
dialog box, in which you can select a *.dsn file, which inserts the connection
string in the box. You can click Microsoft Query to open Microsoft Query.

 7 Click OK to return to the Edit Checklist dialog box.

 8 Click OK to close the Edit Checklist dialog box.

Note: You must run all tests that use this checklist in Update mode before
you run them in Verify mode. For more information, see “Running a Test to
Update Expected Results” on page 438.

Modifying a Query Created with Data Junction

You can modify a Data Junction conversion file used in a database
checkpoint directly in Data Junction. To see the pathname of the conversion
file, follow the instructions below.

To see the pathname of a Data Junction conversion file in a database
checkpoint:

 1 Choose Insert > Edit Database Checklist. The Open Checklist dialog box
opens.

 2 A list of checklists for the current test is displayed. If you want to see
checklists in a shared folder, click Shared.

Part III • Creating Tests—Basic

306

For more information on sharing database checklists, see “Saving a Database
Checklist in a Shared Folder” on page 297.

 3 Select a database checklist.

 4 Click OK.

The Open Checklist dialog box closes. The Edit Database Checklist dialog
box opens and displays the selected checklist.

The Objects pane contains “Database check” and the name of the *.djs
conversion file that will be included in the database checkpoint.

Lists the available checklists.

Displays checklists created for the current
test.

Displays checklists created in a shared
folder.

Describes the selected checklist.

Chapter 14 • Checking Databases

307

The Properties pane lists the different types of checks that can be performed
on databases. A check mark indicates that the item is selected and is
included in the checkpoint. To modify the properties to check, see “Editing
Database Checklists” on page 299.

 5 In the Objects column, highlight the name of the conversion file, and click
Modify.

WinRunner displays a message to use Data Junction to modify the
conversion file and the pathname of the conversion file.

 6 Click OK to close the message and return to the Edit Checklist dialog box.

 7 Click OK to close the Edit Checklist dialog box.

 8 Modify the conversion file directly in Data Junction.

Note: You must run all tests that use this checklist in Update mode before
you run them in Verify mode. For more information, see “Running a Test to
Update Expected Results” on page 438.

Part III • Creating Tests—Basic

308

Modifying the Expected Results of a Standard
Database Checkpoint

You can modify the expected results of an existing standard database
checkpoint by changing the expected value of a property check within the
checkpoint. You can make this change before or after you run your test.

To modify the expected results for an existing database checkpoint:

 1 Choose Tools > Test Results or click Test Results.

The WinRunner Test Results window opens.

 2 Select exp in the results location box.

 3 Locate the database checkpoint by looking at end database capture entries.

Note: If you are working in the WinRunner report view, you can use the
Show TSL button to open the test script to the highlighted line number.

Chapter 14 • Checking Databases

309

 4 Select and display the end database capture entry. The Database
Checkpoint Results dialog box opens.

 5 Select the property check whose expected results you want to modify. Click
the Edit expected value button. In the Expected Value column, modify the
value, as desired. Click OK to close the dialog box.

Notes:

You can also modify the expected value of a property check while creating a
database checkpoint. For more information, see “Creating a Custom Check
on a Database” on page 280.

You can also update the expected value of a database checkpoint to the
actual value after a test run. For more information, see “Updating the
Expected Results of a Checkpoint in the WinRunner Report View” on
page 499.

For more information on working in the Test Results window, see
Chapter 21, “Analyzing Test Results.”

Name of *.sql
query file or *.djs
conversion file

Part III • Creating Tests—Basic

310

Parameterizing Standard Database Checkpoints

When you create a standard database checkpoint using ODBC (Microsoft
Query), you can add parameters to an SQL statement to parameterize the
checkpoint. This is useful if you want to create a database checkpoint with a
query in which the SQL statement defining your query changes. For
example, suppose you are working with the sample Flight application, and
you want to select all the records of flights departing from Denver on
Monday when you create the query. You might also want to use an identical
query to check all the flights departing from San Francisco on Tuesday.
Instead of creating a new query or rewriting the SQL statement in the
existing query to reflect the changes in day of the week or departure points,
you can parameterize the SQL statement so that you can use a parameter for
the departure value. You can replace the parameter with either value:
“Denver,” or “San Francisco.” Similarly, you can use a parameter for the day
of the week value, and replace the parameter with either “Monday” or
“Tuesday.”

Understanding Parameterized Queries

A parameterized query is a query in which at least one of the fields of the
WHERE clause is parameterized, i.e., the value of the field is specified by a
question mark symbol (?). For example, the following SQL statement is
based on a query on the database in the sample Flight Reservation
application:

SELECT Flights.Departure, Flights.Flight_Number, Flights.Day_Of_Week
FROM Flights
WHERE (Flights.Departure=?) AND (Flights.Day_Of_Week=?)

➤ SELECT defines the columns to include in the query.

➤ FROM specifies the path of the database.

➤ WHERE (optional) specifies the conditions, or filters to use in the query.

➤ Departure is the parameter that represents the departure point of a flight.

➤ Day_Of_Week is the parameter that represents the day of the week of a
flight.

Chapter 14 • Checking Databases

311

To execute a parameterized query, you must specify the values for the
parameters.

Note for Microsoft Query users: When you use Microsoft Query to create a
query, the parameters are specified by brackets. When Microsoft Query
generates an SQL statement, the bracket symbols are replaced by a question
mark symbol (?). You can click the SQL button in Microsoft Query to view
the SQL statement which will be generated, based on the criteria you add to
your query.

Creating a Parameterized Database Checkpoint

You use a parameterized query to create a parameterized checkpoint. When
you create a database checkpoint, you insert a db_check statement into
your test script. When you parameterize the SQL statement in your
checkpoint, the db_check function has a fourth, optional, argument: the
parameter_array argument. A statement similar to the following is inserted
into your test script:

db_check("list1.cdl", "dbvf1", NO_LIMIT, dbvf1_params);

The parameter_array argument will contain the values to substitute for the
parameters in the parameterized checkpoint.

WinRunner cannot capture the expected result set when you record your
test. Unlike regular database checkpoints, recording a parameterized
checkpoint requires additional steps to capture the expected results set.
Therefore, you must use array statements to add the values to substitute for
the parameters. The array statements could be similar to the following:

dbvf1_params[1] = “Denver”;
dbvf1_params[2] = “Monday”;

You insert the array statements before the db_check statement in your test
script. You must run the test in Update mode once to capture the expected
results set before you run your test in Verify mode.

Part III • Creating Tests—Basic

312

To insert a parameterized SQL statement into a db_check statement:

 1 Create the parameterized SQL statement using one of the following
methods:

➤ In Microsoft Query, once you have defined your query, add criteria
whose values are a set of square brackets ([]). When you are done, click
File > Exit and return to WinRunner. It may take several seconds to return
to WinRunner.

➤ If you are working with ODBC, enter a parameterized SQL statement,
with a question mark symbol (?) in place of each parameter, in the
Database Checkpoint wizard. For additional information, see “Specifying
an SQL Statement” on page 287.

 2 Finish creating the database checkpoint.

➤ If you are creating a default database checkpoint, WinRunner captures the
database query.

➤ If you are creating a custom database checkpoint, the Check Database
dialog box opens. You can select which checks to perform on the
database. For additional information, see “Creating a Custom Check on a
Database” on page 280. Once you close the Check Database dialog box,
WinRunner captures the database query.

Note: If you are creating a custom database checkpoint, then when you try
to close the Check Database dialog box, you are prompted with the
following message: The expected value of one or more selected checks is not
valid. Continuing might cause these checks to fail. Do you wish to modify your
selection?

Click No. (This message appears because <Cannot Capture> appears under
the Expected Value column in the dialog box.

In fact, WinRunner only finishes capturing the database query once you
specify a value and run your test in Update mode.) For additional
information on messages in the Check Database dialog box, see “Messages
in the Database Checkpoint Dialog Boxes” on page 283.

Chapter 14 • Checking Databases

313

 3 A message box prompts you with instructions, which are also described
below. Click OK to close the message box.

The WinRunner window is restored and a db_check statement similar to the
following is inserted into your test script.

db_check("list1.cdl", "dbvf1", NO_LIMIT, dbvf1_params);

 4 Create an array to provide values for the variables in the SQL statement, and
insert these statements above the db_check statement. For example, you
could insert the following lines in your test script:

dbvf1_params[1] = “Denver”;
dbvf1_params[2] = “Monday”;

The array replaces the question marks (?) in the SQL statement on page 310
with the new values. Follow the guidelines below for adding an array in TSL
to parameterize your SQL statements.

 5 Run your test in Update mode to update the SQL statement with these
values.

After you have completed this procedure, you can run your test in Verify
mode with the SQL statement. To change the parameters in the SQL
statement, you modify the array in TSL.

Guidelines for Parameterizing SQL Statements

Follow the guidelines below when parameterizing SQL statements in
db_check statements:

➤ If the column is numeric, the parameter value can be either a text string or a
number.

➤ If the column is textual and the parameter value is textual, it can be a simple
text string.

➤ If the column is textual and the parameter value is a number, it should be
enclosed in simple quotes (' '), e.g. “'100'”. Otherwise the user will receive a
syntax error.

Part III • Creating Tests—Basic

314

➤ Special syntax is required for dates, times, and time stamps, as shown below:

Date {d '1999-07-11'}

Time {t '19:59:27'}

Time Stamp {ts '1999-07-11 19:59:27'}

Note: The date and time format may change from one ODBC driver to
another.

Specifying a Database

While you are creating a database checkpoint, you must specify which
database to check. You can use the following tools to specify which database
to check:

➤ ODBC/Microsoft Query

➤ Data Junction (Standard database checkpoints only)

Creating a Query in ODBC/Microsoft Query

You can use Microsoft Query to choose a data source and define a query
within the data source, or you can define a connection string and an SQL
statement manually.

To create a query in ODBC without using Microsoft Query, specify the
connection string and the SQL statement in the Database Checkpoint
wizard. For additional information, see “Specifying an SQL Statement” on
page 287.

To choose a data source and define a query in Microsoft Query:

 1 Choose a new or an existing data source.

 2 Define a query.

Chapter 14 • Checking Databases

315

Note: If you want to parameterize the SQL statement in the db_check
statement which will be generated, then in the last wizard screen in
Microsoft Query 8.00, click View data or edit query in Microsoft Query.
Follow the instructions in “Guidelines for Parameterizing SQL Statements”
on page 313.

 3 When you are done:

➤ In version 2.00, choose File > Exit and return to WinRunner to close
Microsoft Query and return to WinRunner.

➤ In version 8.00, in the Finish screen of the Query wizard, click Exit and
return to WinRunner and click Finish to exit Microsoft Query.
Alternatively, click View data or edit query in Microsoft Query and click
Finish. After viewing or editing the data, choose File > Exit and return to
WinRunner to close Microsoft Query and return to WinRunner.

 4 Continue creating a database checkpoint in WinRunner:

➤ To create a default check on a database, follow the instructions starting at
step 4 on page 278.

➤ To create a custom check on a database, follow the instructions starting
at step 6 on page 281.

For additional information on working with Microsoft Query, refer to the
Microsoft Query documentation.

Creating a Conversion File in Data Junction

You can use Data Junction to create a conversion file which converts a
database to a target text file. WinRunner supports versions 6.5 and 7.0 of
Data Junction.

To create a conversion file in Data Junction:

 1 Specify and connect to the source database.

 2 Select an ASCII (delimited) target spoke type and specify and connect to the
target file. Choose the “Replace File/Table” output mode.

Part III • Creating Tests—Basic

316

Note: If you are working with Data Junction version 7.0 and your source
database includes values with delimiters (CR, LF, tab), then in the Target
Properties dialog box, you must specify “\r\n\t” as the value for the
TransliterationIn property. The value for the TransliterationOut property
must be blank.

 3 Map the source file to the target file.

 4 When you are done, click File > Export Conversion to export the conversion
to a *.djs conversion file.

 5 The Database Checkpoint wizard opens to the Select conversion file screen.
Follow the instructions in “Selecting a Data Junction Conversion File” on
page 290.

 6 Continue creating a database checkpoint in WinRunner:

➤ To create a default check on a database, follow the instructions starting at
step 4 on page 278.

➤ To create a custom check on a database, follow the instructions starting
at step 6 on page 281.

For additional information on working with Data Junction, refer to the Data
Junction documentation.

Using TSL Functions to Work with a Database

WinRunner provides several TSL functions (db_) that enable you to work
with databases.

You can use the Function Generator to insert the database functions in your
test script, or you can manually program statements that use these
functions. For information about working with the Function Generator,
refer to Chapter 8, “Generating Functions” in the Mercury WinRunner
Advanced Features User’s Guide. For more information about these functions,
refer to the TSL Reference.

Chapter 14 • Checking Databases

317

Checking Data in a Database

You use the db_check function to create a standard database checkpoint
with ODBC (Microsoft Query) and Data Junction. For information on this
function, see “Creating a Default Check on a Database” on page 277 and
“Creating a Custom Check on a Database” on page 280. For information on
parameterizing db_check statements, see “Parameterizing Standard
Database Checkpoints” on page 310.

Checking Runtime Data in Your Application Against the Data in
a Database

You use the db_record_check function to create a runtime database record
checkpoint with ODBC (Microsoft Query) and Data Junction. For
information on this function, see “Creating a Runtime Database Record
Checkpoint,” on page 264.

TSL Functions for Working with ODBC (Microsoft Query)

When you work with ODBC (Microsoft Query), you must perform the
following steps in the following order:

 1 Connect to the database.

 2 Execute a query and create a result set based on an SQL statement. (This step
is optional. You must perform this step only if you do not create and execute
a query using Microsoft Query.)

 3 Retrieve information from the database.

 4 Disconnect from the database.

The TSL functions for performing these steps are described below:

 1 Connecting to a Database

The db_connect function creates a new database session and establishes a
connection to an ODBC database. This function has the following syntax:

db_connect (session_name, connection_string);

The session_name is the logical name of the database session. The
connection_string is the connection parameters to the ODBC database.

Part III • Creating Tests—Basic

318

 2 Executing a Query and Creating a Result Set Based on an SQL Statement

The db_execute_query function executes the query based on the SQL
statement and creates a record set. This function has the following syntax:

db_execute_query (session_name, SQL, record_number);

The session_name is the logical name of the database session. The SQL is the
SQL statement. The record_number is an out parameter returning the number
of records in the result set.

 3 Retrieving Information from the Database

Returning the Value of a Single Field in the Database

The db_get_field_value function returns the value of a single field in the
database. This function has the following syntax:

db_get_field_value (session_name, row_index, column);

The session_name is the logical name of the database session. The row_index
is the numeric index of the row. (The first row is always numbered “0”.) The
column is the name of the field in the column or the numeric index of the
column within the database. (The first column is always numbered “0”.)

Returning the Content and Number of Column Headers

The db_get_headers function returns the number of column headers in a
query and the content of the column headers, concatenated and delimited
by tabs. This function has the following syntax:

db_get_headers (session_name, header_count, header_content);

The session_name is the logical name of the database session. The
header_count is the number of column headers in the query. The
header_content is the column headers, concatenated and delimited by tabs.

Returning the Row Content

The db_get_row function returns the content of the row, concatenated and
delimited by tabs. This function has the following syntax:

db_get_row (session_name, row_index, row_content);

Chapter 14 • Checking Databases

319

The session_name is the logical name of the database session. The row_index
is the numeric index of the row. (The first row is always numbered “0”.) The
row_content is the row content as a concatenation of the fields values,
delimited by tabs.

Writing the Record Set into a Text File

The db_write_records function writes the record set into a text file
delimited by tabs. This function has the following syntax:

db_write_records (session_name, output_file [, headers [, record_limit]]);

The session_name is the logical name of the database session. The output_file
is the name of the text file in which the record set is written. The headers is
an optional Boolean parameter that will include or exclude the column
headers from the record set written into the text file. The record_limit is the
maximum number of records in the record set to be written into the text
file. A value of NO_LIMIT (the default value) indicates there is no maximum
limit to the number of records in the record set.

Returning the Last Error Message of the Last Operation

The db_get_last_error function returns the last error message of the last
ODBC or Data Junction operation. This function has the following syntax:

db_get_last_error (session_name, error);

The session_name is the logical name of the database session. The error is the
error message.

 4 Disconnecting from a Database

The db_disconnect function disconnects WinRunner from the database and
ends the database session. This function has the following syntax:

db_disconnect (session_name);

The session_name is the logical name of the database session.

TSL Functions for Working with Data Junction

You can use the following two functions when working with Data Junction.

Part III • Creating Tests—Basic

320

Running a Data Junction Export File

The db_dj_convert function runs a Data Junction export file (.djs file). This
function has the following syntax:

db_dj_convert (djs_file [, output_file [, headers [, record_limit]]]);

The djs_file is the Data Junction export file. The output_file is an optional
parameter to override the name of the target file. The headers is an optional
Boolean parameter that will include or exclude the column headers from the
Data Junction export file. The record_limit is the maximum number of
records that will be converted.

Returning the Last Error Message of the Last Operation

The db_get_last_error function returns the last error message of the last
ODBC or Data Junction operation. This function has the following syntax:

db_get_last_error (session_name, error);

The session_name is ignored when working with Data Junction. The error is
the error message.

321

15
Checking Bitmaps

WinRunner enables you to compare two versions of an application being
tested by matching captured bitmaps. This is particularly useful for checking
non-GUI areas of your application, such as drawings or graphs.

This chapter describes:

➤ About Checking Bitmaps

➤ Creating Bitmap Checkpoints

➤ Checking Window and Object Bitmaps

➤ Checking Area Bitmaps

About Checking Bitmaps

You can check an object, a window, or an area of a screen in your
application as a bitmap. While creating a test, you indicate what you want
to check. WinRunner captures the specified bitmap, stores it in the expected
results folder (exp) of the test, and inserts a checkpoint in the test script.
When you run the test, WinRunner compares the bitmap currently
displayed in the application being tested with the expected bitmap stored
earlier. In the event of a mismatch, WinRunner captures the current actual
bitmap and generates a difference bitmap. By comparing the three bitmaps
(expected, actual, and difference), you can identify the nature of the
discrepancy.

Part III • Creating Tests—Basic

322

Suppose, for example, your application includes a graph that displays
database statistics. You could capture a bitmap of the graph in order to
compare it with a bitmap of the graph from a different version of your
application. If there is a difference between the graph captured for expected
results and the one captured during the test run, WinRunner generates a
bitmap that shows the difference, pixel by pixel.

In the expected graph, captured when the
test was created, 25 tickets were sold.

In the actual graph, captured during the
test run, 27 tickets were sold. The last
column is taller because of the larger
quantity of tickets.

The difference bitmap shows where the
two graphs diverged: in the height of the
last column, and in the number of tickets
sold.

Chapter 15 • Checking Bitmaps

323

Creating Bitmap Checkpoints

When working in Context Sensitive mode, you can capture a bitmap of a
window, object, or of a specified area of a screen. WinRunner inserts a
checkpoint in the test script in the form of either a win_check_bitmap or
obj_check_bitmap statement.

To check a bitmap, you start by choosing Insert > Bitmap Checkpoint. To
capture a window or another GUI object, you click it with the mouse. To
capture an area bitmap, you mark the area to be checked using a crosshairs
mouse pointer.

Note that when you record a test in Analog mode, you should press the
CHECK BITMAP OF WINDOW softkey or the CHECK BITMAP OF SCREEN AREA softkey
to create a bitmap checkpoint. This prevents WinRunner from recording
extraneous mouse movements. If you are programming a test, you can also
use the Analog function check_window to check a bitmap. For more
information refer to the TSL Reference.

If the name of a window or object varies each time you run a test, you can
define a regular expression in the GUI Map Editor. This instructs WinRunner
to ignore all or part of the name. For more information on using regular
expressions in the GUI Map Editor, see Chapter 7, “Editing the GUI Map.”

Your can include your bitmap checkpoint in a loop. If you run your bitmap
checkpoint in a loop, the results for each iteration of the checkpoint are
displayed in the test results as separate entries. The results of the checkpoint
can be viewed in the Test Results window. For more information, see
Chapter 21, “Analyzing Test Results.”

Note about data-driven testing: In order to use bitmap checkpoints in
data-driven tests, you must parameterize the statements in your test script
that contain them. For information on using bitmap checkpoints in
data-driven tests, see “Using Data-Driven Checkpoints and Bitmap
Synchronization Points,” on page 397.

Part III • Creating Tests—Basic

324

Handling Differences in Display Drivers

A bitmap checkpoint on identical bitmaps could fail if different display
drivers are used when you create the checkpoint and when you run the test,
because different display drivers may draw the same bitmap using slightly
different color definitions. For example, white can be displayed as RGB
(255,255,255) with one display driver and as RGB (231,231,231) with
another.

You can configure WinRunner to treat such colors as equal by setting the
maximum percentage color difference that WinRunner ignores.

To set the ignorable color difference level:

 1 Open wrun.ini from the operating system folder, e.g. C:\\WINNT.

 2 Adding the XR_COLOR_DIFF_PRCNT= parameter to the [WrCfg] section.

 3 Enter the value indicating the maximum percentage difference to ignore.

In the example described above the difference between each RGB
component (255:231) is about 9.4%, so setting the
XR_COLOR_DIFF_PRCNT parameter to 10 forces WinRunner to treat the
bitmaps as equal:

[WrCfg]
XR_COLOR_DIFF_PRCNT=10

Setting Bitmap Checkpoint and Capture Options

You can instruct WinRunner to send an e-mail to selected recipients each
time a bitmap checkpoint fails and you can instruct WinRunner to capture a
bitmap of your window or screen when any checkpoint fails. You set these
options in the General Options dialog box.

You can also insert a statement in your script that instructs WinRunner to
capture a bitmap of your window or screen based at a specific point in your
test run.

Chapter 15 • Checking Bitmaps

325

To instruct WinRunner to send an e-mail message when a bitmap
checkpoint fails:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click the Notifications category in the options pane. The notification
options are displayed.

 3 Select Bitmap checkpoint failure.

 4 Click the Notifications > E-mail category in the options pane. The e-mail
options are displayed.

 5 Select the Active E-mail service option and set the relevant server and sender
information.

 6 Click the Notifications > Recipient category in the options pane. The e-mail
recipient options are displayed.

 7 Add, remove, or modify recipient details as necessary to set the recipients to
whom you want to send an e-mail message when a bitmap checkpoint fails.

The e-mail contains summary details about the test and the bitmap
checkpoint, and gives the file names for the expected, actual, and difference
images.

For more information, see “Setting Notification Options” on page 579.

To instruct WinRunner to capture a bitmap when a checkpoint fails:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click the Run > Settings category in the options pane. The run settings
options are displayed.

 3 Select Capture bitmap on verification failure.

 4 Select Window, Desktop, or Desktop area to indicate what you want to
capture when checkpoints fail.

 5 If you select Desktop area, specify the coordinates of the area of the desktop
that you want to capture.

When you run your test, the captured bitmaps are saved in your test results
folder.

For more information, see “Setting Test Run Options” on page 562.

Part III • Creating Tests—Basic

326

To capture a bitmap during the test run:

Enter a win_capture_bitmap or desktop_capture_bitmap statement. Use
the following syntax:

win_capture_bitmap(image_name [, window, x, y, width, height]);

or

desktop_capture_bitmap (image_name [, x, y, width, height]);

Enter only the desired image name in the statement. Do not include a folder
path or extension. The bitmap is automatically stored with a .bmp
extension in a subfolder of the test results folder.

For more information, refer to the TSL Reference.

Checking Window and Object Bitmaps

You can capture a bitmap of any window or object in your application by
pointing to it. The method for capturing objects and for capturing windows
is identical. You start by choosing Insert > Bitmap Checkpoint > For
Object/Window. As you pass the mouse pointer over the windows of your
application, objects and windows flash. To capture a window bitmap, you
click the window’s title bar. To capture an object within a window as a
bitmap, you click the object itself.

Note that during recording, when you capture an object in a window that is
not the active window, WinRunner automatically generates a set_window
statement.

To capture a window or object as a bitmap:

 1 Choose Insert > Bitmap Checkpoint > For Object/Window or click the
Bitmap Checkpoint for Object/Window button on the User toolbar.
Alternatively, if you are recording in Analog mode, press the CHECK BITMAP
OF OBJECT/WINDOW softkey.

The WinRunner window is minimized, the mouse pointer becomes a
pointing hand, and a help window opens.

Chapter 15 • Checking Bitmaps

327

 2 Point to the object or window and click it. WinRunner captures the bitmap
and generates a win_check_bitmap or obj_check_bitmap statement in the
script.

The TSL statement generated for a window bitmap has the following syntax:

win_check_bitmap (object, bitmap, time);

For an object bitmap, the syntax is:

obj_check_bitmap (object, bitmap, time);

For example, when you click the title bar of the main window of the Flight
Reservation application, the resulting statement might be:

win_check_bitmap ("Flight Reservation", "Img2", 1);

However, if you click the Date of Flight box in the same window, the
statement might be:

obj_check_bitmap ("Date of Flight:", "Img1", 1);

For more information on the win_check_bitmap and obj_check_bitmap
functions, refer to the TSL Reference.

Note: The execution of the win_check_bitmap and obj_check_bitmap
functions is affected by the current values specified for the delay_msec,
timeout_msec and min_diff testing options. For more information on these
testing options and how to modify them, refer to Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner Advanced
Features User’s Guide. You can also set the corresponding Delay for Window
Synchronization, Timeout for Checkpoints and CS Statements, and
Threshold for Difference between Bitmaps testing options globally using
the General Options dialog box. For more information, see Chapter 23,
“Setting Global Testing Options.”

Part III • Creating Tests—Basic

328

Checking Area Bitmaps

You can define any rectangular area of the screen and capture it as a bitmap
for comparison. The area can be any size: it can be part of a single window,
or it can intersect several windows. The rectangle is identified by the
coordinates of its upper left and lower right corners, relative to the upper
left corner of the window in which the area is located. If the area intersects
several windows or is part of a window with no title (for example, a popup
window), its coordinates are relative to the entire screen (the root window).

To capture an area of the screen as a bitmap:

 1 Choose Insert > Bitmap Checkpoint > For Screen Area or click the Bitmap
Checkpoint for Screen Area button. Alternatively, if you are recording in
Analog mode, press the CHECK BITMAP OF SCREEN AREA softkey.

The WinRunner window is minimized, the mouse pointer becomes a
crosshairs pointer, and a help window opens.

 2 Mark the area to be captured: press the left mouse button and drag the
mouse pointer until a rectangle encloses the area; then release the mouse
button.

 3 Press the right mouse button to complete the operation. WinRunner
captures the area and generates a win_check_bitmap statement in your
script.

Note: Execution of the win_check_bitmap function is affected by the
current settings specified for the delay_msec, timeout_msec and min_diff test
options. For more information on these testing options and how to modify
them, refer to Chapter 21, “Setting Testing Options from a Test Script” in
the Mercury WinRunner Advanced Features User’s Guide. You can also set the
corresponding Delay for Window Synchronization, Timeout for Checkpoints
and CS Statements, and Threshold for Difference between Bitmaps testing
options globally using the General Options dialog box. For more
information, see Chapter 23, “Setting Global Testing Options.”

Chapter 15 • Checking Bitmaps

329

The win_check_bitmap statement for an area of the screen has the
following syntax:

win_check_bitmap (window, bitmap, time, x, y, width, height);

For example, when you define an area to check in the Flight Reservation
application, the resulting statement might be:

win_check_bitmap ("Flight Reservation", "Img3", 1, 9, 159, 104, 88);

For more information on win_check_bitmap, refer to the TSL Reference.

Part III • Creating Tests—Basic

330

331

16
Checking Text

WinRunner enables you to read and check text in a GUI object or in any
area of your application.

This chapter describes:

➤ About Checking Text

➤ Reading Text

➤ Searching for Text

➤ Comparing Text

➤ Teaching Fonts to WinRunner

About Checking Text

You can use text checkpoints in your test scripts to read and check text in
GUI objects and in areas of the screen. While creating a test you point to an
object or a window containing text. WinRunner reads the text and writes a
TSL statement to the test script. You may then add simple programming
elements to your test scripts to verify the contents of the text.

You can use a text checkpoint to:

➤ read text from a GUI object or window in your application, using
obj_get_text and win_get_text

➤ read text from a GUI object or window in your application and compare it
to expected text, using obj_check_text and win_check_text

➤ search for text in an object or window, using win_find_text and
obj_find_text

Part III • Creating Tests—Basic

332

➤ move the mouse pointer to text in an object or window, using
obj_move_locator_text and win_move_locator_text

➤ click on text in an object or window, using obj_click_on_text and
win_click_on_text

➤ compare two strings, using compare_text

Note that you should use a text checkpoint on a GUI object only when a
GUI checkpoint cannot be used to check the text property. For example,
suppose you want to check the text on a custom graph object. Since this
custom object cannot be mapped to a standard object class (such as
pushbutton, list, or menu), WinRunner associates it with the general object
class. A GUI checkpoint for such an object can check only the object’s
width, height, x- and y- coordinates, and whether the object is enabled or
focused. It cannot check the text in the object. To do so, you must create a
text checkpoint.

The following script segment uses the win_check_text function to check
that the Name edit box in the Flight Reservation window contains the text
Kim Smith.

set_window ("Flight Reservation", 3);
text_check=obj_check_text ("Name:","Kim Smith");
if (text_check==0)

report_msg ("The name is correct.");

WinRunner can read the visible text from the screen in most applications. If
the Text Recognition Mechanism is set to driver based recognition, this
process is automatic. However, if the Text Recognition Mechanism is set to
image-based recognition, WinRunner must first learn the fonts used by your
application. Use the Learn Fonts utility to teach WinRunner the fonts. For
an explanation of when and how to perform this procedure, see “Teaching
Fonts to WinRunner” on page 342. For more information on setting the
Text Recognition Mechanism, see “Setting Text Recognition Options” on
page 558.

Chapter 16 • Checking Text

333

Note: When using the WinRunner text-recognition mechanism for
Windows-based applications, keep in mind that it may occasionally retrieve
unwanted text information (such as hidden text and shadowed text, which
appears as multiple copies of the same string).

Additionally, the text recognition may behave differently in different run
sessions depending on the operating system version you are using, service
packs you have installed, other installed toolkits, the APIs used in your
application, and so on.

Therefore, when possible, it is highly recommended to retrieve or check text
from your application window by inserting a standard GUI checkpoint and
selecting to check the object’s value (or similar) property.

For additional details, see “Considerations for Using Text Recognition for
Windows-Based Applications” on page 560.

Reading Text

You can read the entire text contents of any GUI object or window in your
application, or the text in a specified area of the screen. You can either
retrieve the text to a variable, or you can compare the retrieved text with
any value you specify.

To retrieve text to a variable, use the win_get_text, obj_get_text, and
get_text functions. These functions can be generated automatically, using a
Insert > Get Text command, or manually, by programming. In both cases,
the read text is assigned to an output variable.

To read all the text in a GUI object, you choose Insert > Get Text > From
Object/Window and click an object with the mouse pointer. To read the text
in an area of an object or window, you choose Insert > Get Text > From
Screen Area and then use a crosshairs pointer to enclose the text in a
rectangle.

Part III • Creating Tests—Basic

334

In most cases, WinRunner can identify the text on GUI objects
automatically. However, if you try to read text and the comment “#no text
was found” is inserted into the test script, this means WinRunner was unable
to recognize your text. To enable WinRunner to identify text, use the image-
based text recognition mechanism and teach WinRunner your application
fonts. For more information, see “Teaching Fonts to WinRunner” on
page 342.

To compare the text in a window or object with an expected text value, use
the win_check_text or obj_check_text functions.

Reading All the Text in a Window or an Object

You can read all the visible text in a window or other object using
win_get_text or obj_get_text.

To read all the visible text in a window or an object:

 1 Choose Insert > Get Text > From Object/Window or click the
Get Text from Object/Window button on the User toolbar. Alternatively, if
you are recording in Analog mode, press the GET TEXT FROM OBJECT/WINDOW
softkey.

WinRunner is minimized, the mouse pointer becomes a pointing hand, and
the Get Text dialog box opens.

 2 Click the window or object. WinRunner captures the text in the object and
generates a win_get_text or obj_get_text statement.

In the case of a window, this statement has the following syntax:

win_get_text (window, text);

The window is the name of the window. The text is an output variable that
holds all of the text displayed in the window. To make your script easier to
read, this text is inserted into the script as a comment when the function is
recorded.

Chapter 16 • Checking Text

335

For example, if you choose Insert > Get Text > From Object/Window and
click on the Windows Clock application, a statement similar to the
following is recorded in your test script:

Clock settings 10:40:46 AM 8/8/95
win_get_text("Clock", text);

In the case of an object other than a window, the syntax is as follows:

obj_get_text (object, text);

The parameters of obj_get_text are identical to those of win_get_text.

Note: When the WebTest add-in is loaded and a Web object is selected,
WinRunner generates a web_frame_get_text or web_obj_get_text
statement in your test script. For more information, see Chapter 10,
“Working with Web Objects,” or refer to the TSL Reference.

Reading the Text from an Area of an Object or a Window

The win_get_text and obj_get_text functions can be used to read text from
a specified area of a window or other GUI object.

To read the text from an area of a window or an object:

 1 Choose Insert > Get Text > From Screen Area or click the Get Text from
Screen Area button on the User toolbar. Alternatively, if you are recording in
Analog mode, press the GET TEXT FROM SCREEN AREA softkey.

WinRunner is minimized and the recording of mouse and keyboard input
stops. The mouse pointer becomes a crosshairs pointer.

 2 Use the crosshairs pointer to enclose the text to be read within a rectangle.
Move the mouse pointer to one corner of the text you want to capture. Press
and hold down the left mouse button. Drag the mouse until the rectangle
encompasses the entire text, then release the mouse button. Press the right
mouse button to capture the string.

Part III • Creating Tests—Basic

336

You can preview the string before you capture it. Press the right mouse
button before you release the left mouse button. (If your mouse has three
buttons, release the left mouse button after drawing the rectangle and then
press the middle mouse button.) The string appears under the rectangle or
in the upper left corner of the screen.

WinRunner generates a win_get_text statement with the following syntax
in the test script:

win_get_text (window, text, x1,y1,x2,y2);

For example, if you choose Get Text > Area and use the crosshairs to enclose
only the date in the Windows Clock application, a statement similar to the
following is recorded in your test script:

win_get_text ("Clock", text, 38, 137, 166, 185); # 8/13/95

The window is the name of the window. The text is an output variable that
holds all of the captured text. x1,y1,x2,y2 define the location from which to
read text, relative to the specified window. When the function is recorded,
the captured text is also inserted into the script as a comment.

The comment occupies the same number of lines in the test script as the
text being read occupies on the screen. For example, if three lines of text are
read, the comment will also be three lines long.

You can also read text from the screen by programming the Analog TSL
function get_text into your test script. For more information, refer to the
TSL Reference.

Note: When you read text with a learned font, WinRunner reads a single
line of text only. If the captured text exceeds one line, only the leftmost line
is read. If two or more lines have the same left margin, then the bottom line
is read. See “Teaching Fonts to WinRunner” on page 342 for more
information.

Chapter 16 • Checking Text

337

Checking Text in a Window or Object

If you want to compare the value of the text that WinRunner retrieves from
an object or window with an expected text value, you can use the
win_check_text, or obj_check_text functions.

Like the get_text functions, the check_text functions can check all the text
in a window or object, or only the text from specified coordinates.

If the expected text and actual text match, the check_text functions return
the E_OK (0) return code.

When checking the text in a window, use the following syntax:

win_check_text (window, expected_text [, x1, y1, x2, y2]);

When checking the text in an object, use the following syntax:

obj_check_text (object, expected_text [, x1, y1, x2, y2]);

For more information, refer to the TSL Reference.

Searching for Text

You can search for text on the screen using the following TSL functions:

➤ The win_find_text, obj_find_text, and find_text functions determine the
location of a specified text string.

➤ The obj_move_locator_text, win_move_locator_text, and
move_locator_text functions move the mouse pointer to a specified text
string.

➤ The win_click_on_text, obj_click_on_text, and click_on_text functions
move the pointer to a string and click it.

Part III • Creating Tests—Basic

338

Note that you must program these functions in your test scripts. You can use
the Function Generator to do this, or you can type the statements into your
test script. For information about programming functions into your test
scripts, refer to Chapter 8, “Generating Functions” in the Mercury WinRunner
Advanced Features User’s Guide. For information about specific functions,
refer to the TSL Reference.

Getting the Location of a Text String

The win_find_text and obj_find_text functions perform the opposite of
win_get_text and obj_get_text. Whereas the get_text functions retrieve
any text found in the defined object or window, the find_text functions
look for a specified string and return its location, relative to the window or
object.

The win_find_text and obj_find_text functions are Context Sensitive and
have similar syntax, as shown below:

win_find_text (window, string, result_array [,x1,y1,x2,y2] [,string_def]);

obj_find_text (object, string, result_array [,x1,y1,x2,y2] [,string_def]);

The window or object is the name of the window or object within which
WinRunner searches for the specified text. The string is the text to locate.
The result_array is the name you assign to the four-element array that stores
the location of the string. The optional x1,y1,x2,y2 specify the x- and y-
coordinates of the upper left and bottom right corners of the region of the
screen that is searched. If these parameters are not defined, WinRunner
treats the entire window or object as the search area. The optional string_def
defines how WinRunner searches for the text.

The win_find_text and obj_find_text functions return 1 if the search fails
and 0 if it succeeds.

In the following example, win_find_text is used to determine where the
total appears on a graph object in a Flight Reservation application.

set_window ("Graph", 10);
win_find_text ("Graph", "Total Tickets Sold:", result_array, 640,480,366,284,
FALSE);

Chapter 16 • Checking Text

339

You can also find text on the screen using the Analog TSL function
find_text.

For more information on the find_text functions, refer to the TSL Reference.

Note: When win_find_text, obj_find_text, or find_text is used with a
learned font, then WinRunner searches for a single, complete word only.
This means that any regular expression used in the string must not contain
blank spaces, and only the default value of string_def, FALSE, is in effect.

Moving the Pointer to a Text String

The win_move_locator_text and obj_move_locator_text functions search
for the specified text string in the indicated window or other object. Once
the text is located, the mouse pointer moves to the center of the text.

The win_move_locator_text and obj_move_locator_text functions are
Context Sensitive and have similar syntax, as shown:

win_move_locator_text (window, string, [,x1,y1,x2,y2] [,string_def]);

obj_move_locator_text (object, string, [,x1,y1,x2,y2] [,string_def]);

The window or object is the name of the window or object that WinRunner
searches. The string is the text to which the mouse pointer moves. The
optional x1,y1,x2,y2 parameters specify the x- and y-coordinates of the
upper left and bottom right corners of the region of the window or object
that is searched. The optional string_def defines how WinRunner searches for
the text.

Part III • Creating Tests—Basic

340

In the following example, obj_move_locator_text moves the mouse pointer
to a topic string in a Windows on-line help index.

function verify_cursor(win,str)
{

auto text,text1,rc;

 # Search for topic string and move locator to text. Scroll to end of document,
retry if not found.

 set_window (win, 1);
 obj_mouse_click ("MS_WINTOPIC", 1, 1, LEFT);

 type ("<kCtrl_L-kHome_E>");
 while(rc=obj_move_locator_text("MS_WINTOPIC",str,TRUE)){

type ("<kPgDn_E>");
obj_get_text("MS_WINTOPIC", text);
if(text==text1)

return E_NOT_FOUND;
text1=text;
}

 }

You can also move the mouse pointer to a text string using the TSL Analog
function move_locator_text. For more information on move_locator_text,
refer to the TSL Reference.

Clicking a Specified Text String

The win_click_on_text and obj_click_on_text functions search for a
specified text string in the indicated window or other GUI object, move the
screen pointer to the center of the string, and click the string.

The win_click_on_text and obj_click_on_text functions are Context
Sensitive and have similar syntax, as shown:

win_click_on_text (window, string, [,x1,y1,x2,y2] [,string_def]
[,mouse_button]);

Chapter 16 • Checking Text

341

The window or object is the window or object to search. The string is the text
the mouse pointer clicks. The optional x1,y1,x2,y2 parameters specify the
region of the window or object that is searched. The optional string_def
defines how WinRunner searches for the text. The optional mouse_button
specifies which mouse button to use.

In the following example, obj_click_on_text clicks a topic in an online help
index in order to jump to a help topic.

function show_topic(win,str)

{
auto text,text1,rc,arr[];

 # Search for the topic string within the object. If not found, scroll down to end
of document.
set_window (win, 1);
obj_mouse_click ("MS_WINTOPIC", 1, 1, LEFT);
 type ("<kCtrl_L-kHome_E>");
 while(rc=obj_click_on_text("MS_WINTOPIC",str,TRUE,LEFT)){

type ("<kPgDn_E>");
obj_get_text("MS_WINTOPIC", text);
if(text==text1)

return E_GENERAL_ERROR;
text1=text;
}

}

For information about the click_on_text functions, refer to the TSL
Reference.

Part III • Creating Tests—Basic

342

Comparing Text

The compare_text function compares two strings, ignoring any differences
that you specify. You can use it alone or in conjunction with the
win_get_text and obj_get_text functions.

The compare_text function has the following syntax:

variable = compare_text (str1, str2 [,chars1, chars2]);

The str1 and str2 parameters represent the literal strings or string variables to
be compared.

The optional chars1 and chars2 parameters represent the literal characters or
string variables to be ignored during comparison. Note that chars1 and
chars2 may specify multiple characters.

The compare_text function returns 1 when the compared strings are
considered the same, and 0 when the strings are considered different. For
example, a portion of your test script compares the text string “File”
returned by get_text. Because the lowercase “l” character has the same
shape as the uppercase “I”, you can specify that these two characters be
ignored as follows:

t = get_text (10, 10, 90, 30);
if (compare_text (t, "File", "l", "I"))

 move_locator_abs (10, 10);

Teaching Fonts to WinRunner

In most cases, WinRunner can identify the text on GUI objects
automatically. However, if you try to read text and the comment “#no text
was found” is inserted into the test script, this means WinRunner was unable
to identify your application font.

To enable WinRunner to identify text, you must teach WinRunner your
application fonts using the Fonts Expert Utility and use the image text
recognition mechanism when running your tests.

Chapter 16 • Checking Text

343

To teach fonts to WinRunner, you perform the following main steps:

 1 Use the Fonts Expert tool to have WinRunner learn the set of characters
(fonts) used by your application.

 2 Create a font group that contains one or more fonts.

A font group is a collection of fonts that are bound together for specific
testing purposes. Note that at any time, only one font group may be active
in WinRunner. In order for a learned font to be recognized, it must belong
to the active font group. However, a learned font can be assigned to multiple
font groups.

 3 In the Record > Text Recognition category of the General Options dialog
box, select the Use image-based text recognition option and enter the font
group you created in the Font group box.

 4 Use the TSL setvar function to activate the appropriate font group before
using any of the text functions.

Note that all learned fonts and defined font groups are stored in a font
library. This library is designated by the XR_GLOB_FONT_LIB parameter in the
wrun.ini file; by default, it is located in the WinRunner installation folder/fonts
subfolder.

Learning a Font

If WinRunner cannot read the text in your application, use the Font Expert
to learn the font.

To learn a font:

 1 Choose Tools > Fonts Expert or choose Start > Programs > WinRunner >
Fonts Expert. The Fonts Expert window opens.

Part III • Creating Tests—Basic

344

 2 Choose Font > Learn. The Learn Font dialog box opens.

 3 Type in a name for the new font in the Font Name box (maximum of eight
characters, no extension).

 4 Click Select Font. The Font dialog box opens.

 5 Choose the font name, style, and size on the appropriate lists.

Tip: You can ask your programmers for the font name, style, and size.

 6 Click OK.

 7 Click Learn Font.

When the learning process is complete, the Existing Characters box displays
all characters learned and the Properties box displays the properties of the
fonts learned. WinRunner creates a file called font_name.mfn containing the
learned font data and stores it in the font library.

 8 Click Close.

Chapter 16 • Checking Text

345

Creating a Font Group

Once a font is learned, you must assign it to a font group. Note that the
same font can be assigned to more than one font group.

Note: Put only a couple of fonts in each group, because text recognition
capabilities tend to deteriorate as the number of fonts in a group increases.

To create a new font group:

 1 In the Fonts Expert window, choose Font > Groups. The Font Groups dialog
box opens.

 2 Type in a unique name in the Group Name box (up to eight characters, no
extension).

 3 In the Fonts in Library list, select the name of the font to include in the font
group.

 4 Click New. WinRunner creates the new font group. When the process is
complete, the font appear in the Fonts in Group list.

WinRunner creates a file called group_name.grp containing the font group
data and stores it in the font library.

Part III • Creating Tests—Basic

346

To add fonts to an existing font group:

 1 In the Fonts Expert window, choose Font > Groups. The Font Groups dialog
box opens.

 2 Select the desired font group from the Group Name list.

 3 In the Fonts in Library list, click the name of the font to add.

 4 Click Add.

To delete a font from a font group:

 1 In the Fonts Expert window, choose Font > Groups. The Font Groups dialog
box opens.

 2 Select the desired font group from the Group Name list.

 3 In the Fonts in Group list, click the name of the font to delete.

 4 Click Delete.

Chapter 16 • Checking Text

347

Running Tests on Learned Fonts

In order to instruct WinRunner to use the fonts in your font group, you
must use the Image Text Recognition mechanism instead of WinRunner’s
standard text recognition mechanism and you must activate the font group
that includes the fonts your application uses.

To enable WinRunner to recognize learned fonts:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Choose the Record > Text Recognition category.

 3 Select Use image-based text recognition.

 4 In the Font group box, enter a font group.

 5 Click OK to save your selection and close the dialog box.

Part III • Creating Tests—Basic

348

Only one group can be active at any time. By default, this is the group
designated by the XR_FONT_GROUP system parameter in the wrun.ini file.
However, within a test script you can activate a different font group or the
setvar function together with the fontgrp test option.

For example, to activate the font group named editor from within a test
script, add the following statement to your script:

setvar ("fontgrp", "editor");

For more information about setting text recognition preferences from the
General Options dialog box, see Chapter 23, “Setting Global Testing
Options.” For more information about using the setvar function to choose a
font group from within a test script, refer to Chapter 21, “Setting Testing
Options from a Test Script” in the Mercury WinRunner Advanced Features
User’s Guide.

349

17
Checking Dates

You can use WinRunner to check date operations in your application.

This chapter describes:

➤ About Checking Dates

➤ Testing Date Operations

➤ Testing Two-Character Date Applications

➤ Setting Date Formats

➤ Using an Existing Date Format Configuration File

➤ Checking Dates in GUI Objects

➤ Checking Dates with TSL

➤ Overriding Date Settings

About Checking Dates

You can check how your application processes date information. Suppose
your application is used by European and North American customers. You
may want to check how your application will respond to the different date
formats used by these customers.

You can use aging to check how your application will react when processing
future dates.

Part III • Creating Tests—Basic

350

Checking date information can also help identify problems if your
application was not converted for Year 2000. To check date information in
your application, you add checkpoints to your test script. When you add a
checkpoint, WinRunner looks for dates in the active window or screen,
captures the dates, and stores them as expected results. You can also use
aging to simulate how your application will process date information on
future dates. When you run a test, a GUI checkpoint compares the expected
date to the actual date displayed in the application.

By default, WinRunner’s date testing functionality is disabled. Before you
can start working with the features described in this chapter you must select
the Enable date operations check box in the General category of the
General Options dialog box, save your configuration changes, and restart
WinRunner. For additional information, see Chapter 23, “Setting Global
Testing Options.”

Testing Date Operations

When you check dates in your application, the recommended workflow is as
follows:

 1 Define the date format(s) currently used in your application, for example,
DD/MM/YY, as described in “Setting Date Formats” on page 352 and “Using
an Existing Date Format Configuration File” on page 354.

 2 Create baseline tests by recording tests on your application. While
recording, insert checkpoints that will check the dates in the application.
For additional information, see “Checking Dates in GUI Objects” on
page 355.

 3 Run the tests (in Debug mode) to check that they run smoothly. For more
information, see Chapter 20, “Understanding Test Runs.”

If a test incorrectly identifies non-date fields as date fields or reads a date
field using the wrong date format, you can override the automatic date
recognition on selected fields. For more information, see “Overriding Date
Settings” on page 358.

 4 Run the tests (in Update mode) to create expected results. For more
information, see Chapter 20, “Understanding Test Runs.”

Chapter 17 • Checking Dates

351

 5 Run the tests (in Verify mode). If you want to check how your application
performs with future dates, you can age the dates before running the test.
For more information, see Chapter 20, “Understanding Test Runs.”

 6 Analyze test results to pinpoint where date-related problems exist in the
application. For more information, see Chapter 21, “Analyzing Test Results.”

If you change date formats in your application, (e.g. windowing, date field
expansion, or changing the date format style from European to North
American or vice versa) you should repeat the workflow described above
after you redefine the date formats used in your application. For
information on windowing and date field expansion, see “Testing Two-
Character Date Applications” on page 351. For information on date formats,
see “Setting Date Formats” on page 352 and “Using an Existing Date Format
Configuration File” on page 354.

Testing Two-Character Date Applications

In the past, programmers wrote applications using two-character fields to
manipulate and store dates (for example, ‘75’ represented 1975). Using a
two-character date conserved memory and improved application
performance at a time when memory and processing power were expensive.

Many of these applications are still in use today, and will continue to be in
use well into the 21st century. In industries where age calculation is
routinely performed, such as banking and insurance, applications using the
two-character date format generate serious errors after December 31, 1999
and must be corrected.

For example, suppose in the year 2001 an insurance application attempts to
calculate a person’s current age by subtracting his birth date from the
current date. If the application uses the two-character date format, a
negative age will result (Age = 01 - 30 years = -29).

In order to ensure that applications can accurately process date information
in the 21st century, programmers must examine millions of code lines to
find date-related functions.

Part III • Creating Tests—Basic

352

Each instance of a two-character date format must be corrected using one of
the following methods:

➤ Windowing

Programmers keep the two-character date format, but define thresholds
(cut-year points) that will determine when the application recognizes that a
date belongs to the 21st century. For example, if 60 is selected as the
threshold, the application recognizes all dates from 0 to 59 as 21st century
dates. All dates from 60 to 99 are recognized as 20th century dates.

➤ Date Field Expansion

Programmers expand two-character date formats to four-characters. For
example, “98” is expanded to “1998”.

Assessment testing helps you locate date-related problems in your
application.

Setting Date Formats

WinRunner supports a wide range of date formats. Before you begin creating
tests, you should specify the date formats currently used in your application.
This enables WinRunner to recognize date information when you insert
checkpoints into a test script and run tests.

By default, WinRunner recognizes the following date formats:
MM/DD/YYYY, MM/DD/YY, MMDDYYYY, MMDDYY. In the Set Date
Formats dialog box, you can:

➤ choose which original date formats WinRunner recognizes

➤ map original date formats to new date formats

Chapter 17 • Checking Dates

353

To specify date formats:

 1 Choose Tools > Date > Set Date Formats. The Set Date Formats dialog box
opens.

 2 In the Original date formats list, select the check box next to each date
format used in your application.

 3 Click Arrange to move all selected date formats to the top of the list. You
can also use the Up and Down buttons to rearrange the formats.

Note that you should move the most frequently-used date format in your
application to the top of the list. WinRunner considers the top date format
first.

Note that you can also choose from existing date format configuration files
to set the date format mapping. For additional information, see “Using an
Existing Date Format Configuration File” on page 354.

Part III • Creating Tests—Basic

354

Using an Existing Date Format Configuration File

WinRunner includes a set of date format configuration files, set for field
expansion or windowing preferences, and for European or American styles.
You can substitute one of these date format configuration files for the
default file used by WinRunner.

To use an existing date format configuration file:

 1 In the <WinRunner installation>\dat folder, create a backup copy of the
existing y2k.dat file.

 2 Rename one of the files below (in the same location) to y2k.dat, based on
your date format preferences:

Note that renaming one of these files to y2k.dat overwrites your changes to
the original y2k.dat file.

Configuration File Name Date Formats

y2k_expn.eur • Field expansion: the converted date field is
expanded to four digits.

• European style: the day followed by the month
followed by the year (/DD/MM /YY).

y2k_expn.us • Field expansion: the converted date field is
expanded to four digits.

• North American style: the month followed by
the day followed by the year (MM/DD/YY).

y2k_wind.eur • Windowing: the converted date field remains
two digits in length.

• European style: the day followed by the month
followed by the year (/DD/MM /YY).

y2k_wind.us • Windowing: the converted date field remains
two digits in length.

• North American style: the month followed by
the day followed by the year (MM/DD/YY).

Chapter 17 • Checking Dates

355

Checking Dates in GUI Objects

You can use GUI checkpoints to check dates in GUI objects (such as edit
boxes or static text fields). In addition you can check dates in the contents
of PowerBuilder, Visual Basic, and ActiveX control tables.

When you create a GUI checkpoint, you can use the default check for an
object or you can specify which properties to check. When WinRunner’s
date operations functionality is enabled:

➤ The default check for edit boxes and static text fields is the date.

➤ The default check for tables performs a case-sensitive check on the entire
contents of a table, and checks all the dates in the table.

Note that you can also use the Insert > GUI Checkpoint > For Multiple
Objects command to check multiple objects in a window. For more
information about this command, see Chapter 9, “Checking GUI Objects.”

Checking Dates with the Default Check

You can use the default check to check dates in edit boxes, static text fields,
and table contents.

To check the date in a GUI object:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar.

The WinRunner window is minimized, the mouse pointer turns into a
pointing hand, and a help window opens.

 2 Click the object containing the date.

 3 WinRunner captures the current date and stores it in the test’s expected
results folder. If you click in a table, WinRunner also captures the table
contents. The WinRunner window is restored and a GUI checkpoint is
inserted into the test script as an obj_check_gui statement. For more
information on obj_check_gui, refer to the TSL Reference.

For additional information on creating GUI checkpoints, see Chapter 9,
“Checking GUI Objects,”and Chapter 13, “Checking Table Contents.”

Part III • Creating Tests—Basic

356

Checking Dates Using the Check GUI Dialog Box

You can create a GUI checkpoint to check a date by specifying which
properties of an object to check.

To check dates using the Check GUI dialog box:

 1 Choose Insert > GUI Checkpoint > For Object/Window, or click the
GUI Checkpoint for Object/Window button on the User toolbar. The
WinRunner window is minimized, the mouse pointer turns into a pointing
hand, and a help window opens.

 2 Double-click the object containing the date. The Check GUI dialog box
opens.

 3 Highlight the object name in the Objects pane. The Properties pane lists all
the properties for the selected object.

 4 Select the properties you want to check. For more information on selecting
properties, see Chapter 9, “Checking GUI Objects,”and Chapter 13,
“Checking Table Contents.”

Note that you can edit the expected value of a property. To do so, first select
it in the Properties column. Next either click the Edit Expected Value
button, or double-click the value in the Expected Value column. For an edit
box or a static text field, an edit field opens in the Expected Value column
where you can change the value. For a table, the Edit Check dialog box
opens. In the Edit Expected Data tab, edit the table contents.

Chapter 17 • Checking Dates

357

 5 Click OK to close the Check GUI dialog box.

An obj_check_gui statement is inserted into your test script. For more
information on the obj_check_gui function, refer to the TSL Reference.

Checking Dates with TSL

You can enhance your recorded test scripts by adding the following TSL
date_ functions:

➤ The date_calc_days_in_field function calculates the number of days
between two date fields. It has the following syntax:

date_calc_days_in_field (field_name1, field_name2);

➤ The date_calc_days_in_string function calculates the number of days
between two numeric strings. It has the following syntax:

date_calc_days_in_string (string1, string2);

➤ The date_field_to_Julian function translates the contents of a date field to a
Julian number. It has the following syntax:

date_field_to_Julian (date_field);

➤ The date_is_field function determines whether a field contains a valid date.
It has the following syntax:

date_is_field (field_name, min_year, max_year);

➤ The date_is_string function determines whether a numeric string contains a
valid date. It has the following syntax:

date_is_string (string, min_year, max_year);

➤ The date_is_leap_year function determines whether a year is a leap year. It
has the following syntax:

date_is_leap_year (year);

Part III • Creating Tests—Basic

358

➤ The date_month_language function sets the language used for month
names. It has the following syntax:

date_month_language (language);

➤ The date_string_to_Julian function translates the contents of a date string
to a Julian number. It has the following syntax:

date_string_to_Julian (string);

For more information on TSL date_ functions and other available date_
functions, refer to the TSL Reference.

Overriding Date Settings

As you debug your tests, you may want to override how WinRunner
identifies or ages specific date fields in your application. You can override
the following:

➤ Aging of a specific date format. You can define that a specific date format (for
example, MM/DD/YY) will be aged differently than the default aging
applied to other date formats.

➤ Aging or date format of a specific object. You can define that a specific object
that resembles a date (for example, a catalog number such as 123172) will
not be treated as a date object. You can specify that a specific date object
(such as a birth date) will not be aged. Or, you can define that a specific
object will be assigned a different date format than that of the default.

Note: When WinRunner runs tests, it first examines the general settings
defined in the Date Operations Run Mode dialog box. Then, it examines the
aging overrides for specific date formats. Finally, it considers overrides
defined for particular objects.

Chapter 17 • Checking Dates

359

Overriding Aging of Specific Date Formats

You can override the aging of a specific date format so that it will be aged
differently than the default aging setting.

To override the aging of a date format:

 1 Choose Tools > Date > Set Date Formats. The Set Date Formats dialog box
opens.

 2 Click the Advanced button. The Advanced Settings dialog box opens.

Part III • Creating Tests—Basic

360

 3 In the Format list, select a date format.

Note that the Format list displays only the date formats that are selected in
the Set Date Formats dialog box.

 4 Click Change. The Override Aging dialog box opens.

 5 Clear the Use default aging check box and select one of the following:

➤ To increment the date format by a specific number of years, months, and
days, select the Add to recorded date option. To specify no aging for
the date format, use the default value of 0.

➤ To choose a specific date for the selected date format, select Change all
dates to, and choose a date from the list.

 6 Click OK to close the Override Aging dialog box.

Overriding Aging or Date Format of an Object

For any specific object, you can override the default settings and specify
that:

➤ the object should not be treated like a date object

➤ the object should be aged differently

➤ the object should be converted to a different date format

Chapter 17 • Checking Dates

361

To override settings for an object:

 1 Choose Tools > Date > Override Object Settings. The Override Object
Settings dialog box opens.

 2 Click the pointing hand button and then click the date object.

WinRunner displays the name of the selected date object in the Object
Name box.

 3 To override date format settings or to specify that the object is not a date
object, clear the Use default format conversion check box and do one of the
following:

➤ To specify that the object should not be treated like a date object, select
Not a date in the Original date format field and in the New date
format field.

➤ To override the date format assigned to the object, select the object’s
original date format and its new date format in the respective fields.

Part III • Creating Tests—Basic

362

 4 To override the aging applied to the object, click Change. The Override
Aging dialog box opens.

 5 Clear the Use default aging check box and do one of the following:

➤ To increment the date format by a specific number of years, months, and
days, select the Add to recorded date option. To specify no aging for
the date format, use the default value of 0.

➤ To choose a specific date for the selected date format, select Change all
dates to, and choose a date from the list.

 6 Click OK to close the Override Aging dialog box.

 7 In the Override Object Settings dialog box, click Apply to override additional
date objects, or click OK to close the dialog box.

Chapter 17 • Checking Dates

363

Overriding Date Formats and Aging with TSL

You can override dates in a test script using the following TSL functions:

➤ The date_age_string function ages a date string. It has the following syntax:

date_age_string (date, years, month, days, output);

➤ The date_align_day function ages dates to a specified day of the week or
type of day. It has the following syntax:

date_align_day (align_mode, day_in_week);

➤ The date_change_original_new_formats function overrides the date
format for a date object. It has the following syntax:

date_change_original_new_formats (object_name, original_format,
new format [, TRUE/FALSE]);

➤ The date_change_field_aging function overrides the aging applied to the
specified date object. It has the following syntax:

date_change_field_aging (field_name, aging_type, days, months, years);

➤ The date_set_aging function ages the test script. It has the following syntax:

date_set_aging (format, type, days, months, years);

➤ The date_set_system_date function sets the system date and time. It has the
following syntax:

date_set_system_date (year, month, day [, day, minute, second]);

➤ The date_type_mode function disables overriding of automatic date
recognition for all date objects in a GUI application. It has the following
syntax:

date_type_mode (mode);

For more information on TSL date_ functions, refer to the TSL Reference.

Part III • Creating Tests—Basic

364

365

18
Creating Data-Driven Tests

WinRunner enables you to create and run tests which are driven by data
stored in an external table.

This chapter describes:

➤ About Creating Data-Driven Tests

➤ The Data-Driven Testing Process

➤ Creating a Basic Test for Conversion

➤ Converting a Test to a Data-Driven Test

➤ Preparing the Data Table

➤ Importing Data from a Database

➤ Running and Analyzing Data-Driven Tests

➤ Assigning the Main Data Table for a Test

➤ Using Data-Driven Checkpoints and Bitmap Synchronization Points

➤ Using TSL Functions with Data-Driven Tests

➤ Guidelines for Creating a Data-Driven Test

Part III • Creating Tests—Basic

366

About Creating Data-Driven Tests

When you test your application, you may want to check how it performs
the same operations with multiple sets of data. For example, suppose you
want to check how your application responds to ten separate sets of data.
You could record ten separate tests, each with its own set of data.
Alternatively, you could create a data-driven test with a loop that runs ten
times. In each of the ten iterations, the test is driven by a different set of
data. In order for WinRunner to use data to drive the test, you must
substitute fixed values in the test with variables. The variables in the test are
linked with data stored in a data table. You can create data-driven tests using
the DataDriver wizard or by manually adding data-driven statements to
your test scripts.

The Data-Driven Testing Process

For non-data-driven tests, the testing process is performed in three steps:
creating a test; running the test; analyzing test results. When you create a
data-driven test, you perform an extra two-part step between creating the
test and running it: converting the test to a data-driven test and creating a
corresponding data table.

The following diagram outlines the stages of the data-driven testing process
in WinRunner:

Chapter 18 • Creating Data-Driven Tests

367

Creating a Basic Test for Conversion

In order to create a data-driven test, you must first create a basic test and
then convert it.

You create a basic test by recording a test, as usual, with one set of data. In
the following example, the user wants to check that opening an order and
updating the number of tickets in the order is performed correctly for a
variety of orders. The test is recorded using one passenger’s flight data.

To record this test, you open an order and use the Insert > GUI Checkpoint >
For Single Property command to check that the correct order is open. You
change the number of tickets in the order and then update the order. A test
script similar to the following is created:

The purpose of this test is to check that the correct order has been opened.
Normally you would use the Insert > GUI Checkpoint > For Object/Window
command to insert an obj_check_gui statement in your test script. All
*_check_gui statements contain references to checklists, however, and
because checklists do not contain fixed values, they cannot be
parameterized from within a test script while creating a data-driven test.

Part III • Creating Tests—Basic

368

You have two options:

➤ As in the example above, you use the
Insert > GUI Checkpoint > For Single Property command to create a
property check without a checklist. In this case, an edit_check_info
statement checks the content of the edit field in which the order number is
displayed. For information on checking a single property of an object, see
Chapter 9, “Checking GUI Objects.”

WinRunner can write an event to the Test Results window whenever these
statements fail during a test run. To set this option, select the Fail when
single property check fails check box in the Run > Settings category of the
General Options dialog box or use the setvar function to set the
single_prop_check_fail testing option. For additional information, see
Chapter 23, “Setting Global Testing Options,” or refer to Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

You can use the Insert > GUI Checkpoint > For Single Property command to
create property checks using the following *_check_* functions:

You can also use the following _check functions to check single properties
of objects without creating a checklist. You can create statements with these
functions manually or using the Function Generator. For additional
information, refer to Chapter 8, “Generating Functions” in the Mercury
WinRunner Advanced Features User’s Guide.

button_check_info scroll_check_info

edit_check_info static_check_info

list_check_info win_check_info

obj_check_info

button_check_state list_check_selected

edit_check_selection scroll_check_pos

edit_check_text static_check_text

list_check_item

Chapter 18 • Creating Data-Driven Tests

369

For information about specific functions, refer to the TSL Reference.

➤ Alternatively, you can create data-driven GUI and bitmap checkpoints and
bitmap synchronization points. For information on creating data-driven
GUI and bitmap checkpoints and bitmap synchronization points, see
“Using Data-Driven Checkpoints and Bitmap Synchronization Points” on
page 397.

Converting a Test to a Data-Driven Test

The procedure for converting a test to a data-driven test is composed of the
following main steps:

 1 Replacing fixed values in checkpoint statements and in recorded statements
with parameters, and creating a data table containing values for the
parameters. This is known as parameterizing the test.

 2 Adding statements and functions to your test so that it will read from the
data table and run in a loop while it reads each iteration of data.

 3 Adding statements to your script that open and close the data table.

 4 Assigning a variable name to the data table (mandatory when using the
DataDriver wizard and otherwise optional).

You can use the DataDriver wizard to perform these steps, or you can modify
your test script manually.

Creating a Data-Driven Test with the DataDriver Wizard

You can use the DataDriver wizard to convert your entire script or a part of
your script into a data-driven test. For example, your test script may include
recorded operations, checkpoints, and other statements which do not need
to be repeated for multiple sets of data. You need to parameterize only the
portion of your test script that you want to run in a loop with multiple sets
of data.

Part III • Creating Tests—Basic

370

To create a data-driven test:

 1 If you want to turn only part of your test script into a data-driven test, first
select those lines in the test script.

 2 Choose Table > Data Driver Wizard.

➤ If you selected part of the test script before opening the wizard, proceed
to step 3 on page 371.

➤ If you did not select any lines of script, the following screen opens:

If you want to turn only part of the test into a data-driven test, click
Cancel. Select those lines in the test script and reopen the DataDriver
wizard.

If you want to turn the entire test into a data-driven test, click Next.

Chapter 18 • Creating Data-Driven Tests

371

 3 The following wizard screen opens:

The Use a new or existing Excel table box displays the name of the Excel file
that WinRunner creates, which stores the data for the data-driven test.
Accept the default data table for this test, enter a different name for the data
table, or use the browse button to locate the path of an existing data table.
By default, the data table is stored in the test folder.

In the Assign a name to the variable box, enter a variable name with which
to refer to the data table, or accept the default name, “table.”

At the beginning of a data-driven test, the Excel data table you selected is
assigned as the value of the table variable. Throughout the script, only the
table variable name is used. This makes it easy for you to assign a different
data table to the script at a later time without making changes throughout
the script.

Part III • Creating Tests—Basic

372

Choose from among the following options:

➤ Add statements to create a data-driven test: Automatically adds
statements to run your test in a loop: sets a variable name by which to
refer to the data table; adds braces ({ and }), a for statement, and a
ddt_get_row_count statement to your test script selection to run it in a
loop while it reads from the data table; adds ddt_open and ddt_close
statements to your test script to open and close the data table, which are
necessary in order to iterate rows in the table.

Note that you can also add these statements to your test script manually.
For more information and sample statements, see “Adding Statements to
Your Test Script to Open and Close the Data Table and Run Your Test in a
Loop” on page 379.

If you do not choose this option, you will receive a warning that your
data-driven test must contain a loop and statements to open and close
your data table.

Note: You should not select this option if you have chosen it previously
while running the DataDriver wizard on the same portion of your test script.

➤ Import data from a database: Imports data from a database. This option
adds ddt_update_from_db, and ddt_save statements to your test script
after the ddt_open statement. For more information, see “Importing
Data from a Database” on page 384.

Note that in order to import data from a database, either Microsoft Query
or Data Junction must be installed on your machine. You can install
Microsoft Query from the custom installation of Microsoft Office. Note
that Data Junction is not automatically included in your WinRunner
package. To purchase Data Junction, contact your Mercury Interactive
representative. For detailed information on working with Data Junction,
refer to the documentation in the Data Junction package.

Chapter 18 • Creating Data-Driven Tests

373

Note: If the Add statements to create a data-driven test option is not
selected along with the Import data from a database option, the wizard also
sets a variable name by which to refer to the data table. In addition, it adds
ddt_open and ddt_close statements to your test script. Since there is no
iteration in the test, the ddt_close statement is at the end of the block of
ddt_ statements, rather than at the end of the block of selected text.

➤ Parameterize the test: Replaces fixed values in selected checkpoints and
in recorded statements with parameters, using the ddt_val function, and
in the data table, adds columns with variable values for the parameters.

Line by line: Opens a wizard screen for each line of the selected test
script, which enables you to decide whether to parameterize a particular
line, and if so, whether to add a new column to the data table or use an
existing column when parameterizing data.

Automatically: Replaces all data with ddt_val statements and adds new
columns to the data table. The first argument of the function is the name
of the column in the data table. The replaced data is inserted into the
table.

Note: You can also parameterize your test manually. For more information,
see “Parameterizing Values in a Test Script” on page 380.

Part III • Creating Tests—Basic

374

Note: The ddt_func.ini file in the dat folder lists the TSL functions that the
DataDriver wizard can parameterize while creating a data-driven test. This
file also contains the index of the argument that by default can be
parameterized for each function. You can modify this list to change the
default argument that can be parameterized for a function. You can also
modify this list to include user-defined functions or any other TSL
functions, so that you can parameterize statements with these functions
while creating a test. For information on creating user-defined functions,
refer to Chapter 10, “Creating User-Defined Functions” in the Mercury
WinRunner Advanced Features User’s Guide.

Click Next.

Note that if you did not select any check boxes, only the Cancel button is
enabled.

 4 If you selected the Import data from a database check box in the previous
screen, continue with “Importing Data from a Database” on page 384.
Otherwise, the following wizard screen opens:

The Test script line to parameterize box displays the line of the test script to
parameterize. The highlighted value can be replaced by a parameter.

Chapter 18 • Creating Data-Driven Tests

375

The Argument to be replaced box displays the argument (value) that you
can replace with a parameter. You can use the arrows to select a different
argument to replace.

Choose whether and how to replace the selected data:

➤ Do not replace this data: Does not parameterize this data.

➤ An existing column: If parameters already exist in the data table for this
test, select an existing parameter from the list.

➤ A new column: Creates a new column for this parameter in the data table
for this test. Adds the selected data to this column of the data table. The
default name for the new parameter is the logical name of the object in
the selected TSL statement above. Accept this name or assign a new
name.

In the sample Flight application test script shown earlier on page 367, there
are several statements that contain fixed values entered by the user.

In this example, a new data table is used, so no parameters exist yet. In this
example, for the first parameterized line in the test script, the user clicks the
Data from a new parameter radio button. By default, the new parameter is
the logical name of the object. You can modify this name. In the example,
the name of the new parameter was modified to “Date of Flight.”

The following line in the test script:

edit_set ("Edit", "6");

is replaced by:

edit_set("Edit",ddt_val(table,"Edit"));

The following line in the test script:

edit_check_info("Order No:","value",6);

is replaced by:

edit_check_info("Order No:","value",ddt_val(table,"Order_No"));

Part III • Creating Tests—Basic

376

➤ To parameterize additional lines in your test script, click Next. The wizard
displays the next line you can parameterize in the test script selection.
Repeat the above step for each line in the test script selection that can be
parameterized. If there are no more lines in the selection of your test
script that can be parameterized, the final screen of the wizard opens.

➤ To proceed to the final screen of the wizard without parameterizing any
additional lines in your test script selection, click Skip.

 5 The final screen of the wizard opens.

➤ If you want the data table to open after you close the wizard, select Show
data table now.

➤ To perform the tasks specified in previous screens and close the wizard,
click Finish.

➤ To close the wizard without making any changes to the test script, click
Cancel.

Note: If you clicked Cancel after parameterizing your test script but before
the final wizard screen, the data table will include the data you added to it.
If you want to save the data in the data table, open the data table and then
save it.

Chapter 18 • Creating Data-Driven Tests

377

Once you have finished running the DataDriver wizard, the sample test
script for the example on page 367 is modified, as shown below:

If you open the data table (Table > Data Table), the Open or Create a Data
Table dialog box opens. Select the data table you specified in the DataDriver
wizard. When the data table opens, you can see the entries made in the data
table and edit the data in the table.

Parameterized
statement

Parameterized
property check

Statements
to open data
table and run
test in a loop

Statement to
close data table

End of loop

Part III • Creating Tests—Basic

378

For the previous example, the following entry is made in the data table.

Creating a Data-Driven Test Manually

You can create a data-driven test manually, without using the DataDriver
wizard. Note that in order to create a data-driven test manually, you must
complete all the steps described below:

➤ defining the data table

➤ add statements to your test script to open and close the data table and run
your test in a loop

➤ import data from a database (optional)

➤ create a data table and parameterize values in your test script

Defining the Data Table

Add the following statement to your test script immediately preceding the
parameterized portion of the script. This identifies the name and the path of
your data table. Note that you can work with multiple data tables in a single
test, and you can use a single data table in multiple tests. For additional
information, see “Guidelines for Creating a Data-Driven Test” on page 409.

table="Default.xls";

Note that if your data table has a different name, substitute the correct
name. By default, the data table is stored in the folder for the test. If you
store your data table in a different location, you must include the path in
the above statement.

Chapter 18 • Creating Data-Driven Tests

379

For example:

table1 = "default.xls";

is a data table with the default name in the test folder.

table2 = "table.xls";

is a data table with a new name in the test folder.

table3 = "C:\\Data-Driven Tests\\Another Test\\default.xls";

is a data table with the default name and a new path. This data table is
stored in the folder of another test.

Note: Scripts created in WinRunner versions 5.0 and 5.01 may contain the
following statement instead.

table=getvar("testname") & "\\Default.xls";

This statement is still valid. However, scripts created in WinRunner 6.0 and
later use relative paths, and therefore the full path is not required in the
statement.

Adding Statements to Your Test Script to Open and Close the Data
Table and Run Your Test in a Loop

Add the following statements to your test script immediately following the
table declaration.

rc=ddt_open (table);
if (rc!= E_OK && rc != E_FILE_OPEN)

pause("Cannot open table.");
ddt_get_row_count(table,table_RowCount);
for(table_Row = 1; table_Row <= table_RowCount ;table_Row ++)
{

ddt_set_row(table,table_Row);

Part III • Creating Tests—Basic

380

These statements open the data table for the test and run the statements
between the curly brackets that follow for each row of data in the data table.

Add the following statements to your test script immediately following the
parameterized portion of the script:

}
ddt_close (table);

These statements run the statements that appear within the curly brackets
above for every row of the data table. They use the data from the next row of
the data table to drive each successive iteration of the test. When the next
row of the data table is empty, these statements stop running the statements
within the curly brackets and close the data table.

Importing Data from a Database

You must add ddt_update_from_db and ddt_save statements to your test
script after the ddt_open statement. You must use Microsoft Query to define
a query in order to specify the data to import. For more information, see
“Importing Data from a Database” on page 384. For more information on
the ddt_ functions, see “Using TSL Functions with Data-Driven Tests” on
page 402 or refer to the TSL Reference.

Parameterizing Values in a Test Script

In the sample test script in “Creating a Basic Test for Conversion” on
page 367, there are several statements that contain fixed values entered by
the user:

edit_set("Edit", "6");

edit_check_info("Order No:","value",6);

You can use the Parameterize Data dialog box to parameterize the
statements and replace the data with parameters.

Chapter 18 • Creating Data-Driven Tests

381

To parameterize statements using a data table:

 1 In your test script, select the first instance in which you have data that you
want to parameterize. For example, in the first edit_set statement in the test
script above, select: "6".

 2 Choose Table > Parameterize Data. The Parameterize Data dialog box opens.

 3 In the Parameterize using box, select Data table.

 4 In the Excel table file name box, you can accept the default name and
location of the data table, enter the different name for the data table, or use
the browse button to locate the path of a data table. Note that by default the
name of the data table is default.xls, and it is stored in the test folder.
If you previously worked with a different data table in this test, then it
appears here instead.

Click A new column. WinRunner suggests a name for the parameter in the
box. You can accept this name or choose a different name. WinRunner
creates a column with the same name as the parameter in the data table.

Part III • Creating Tests—Basic

382

The data with quotation marks that was selected in your test script appears
in the Add the data to the table box.

➤ If you want to include the data currently selected in the test script in the
data table, select the Add the data to the table check box. You can
modify the data in this box.

➤ If you do not want to include the data currently selected in the test script
in the data table, clear the Add the data to the table check box.

➤ You can also assign the data to an existing parameter, which assigns the
data to a column already in the data table. If you want to use an existing
parameter, click An existing column, and select an existing column from
the list.

 5 Click OK.

In the test script, the data selected in the test script is replaced with a
ddt_val statement which contains the name of the table and the name of
the parameter you created, with a corresponding column in the data table.

In the example, the value "6" is replaced with a ddt_val statement which
contains the name of the table and the parameter “Edit”, so that the original
statement appears as follows:

edit_set ("Edit",ddt_val(table,"Edit"));

In the data table, a new column is created with the name of the parameter
you assigned. In the example, a new column is created with the header Edit.

 6 Repeat steps 1 to 5 for each argument you want to parameterize.

For more information on the ddt_val function, see “Using TSL Functions
with Data-Driven Tests” on page 402 or refer to the TSL Reference.

Chapter 18 • Creating Data-Driven Tests

383

Preparing the Data Table

For each data-driven test, you need to prepare at least one data table. The
data table contains the values that WinRunner uses to replace the variables
in your data-driven test.

You usually create the data table as part of the test conversion process, either
using the DataDriver wizard or the Parameterize Data dialog box. You can
also create tables separately in Excel and then link them to the test.

After you create the test, you can add data to the table manually or import it
from an existing database.

The following data table displays three sets of data that were entered for the
test example described in this chapter. The first set of data was entered using
the Table > Parameterize Data command in WinRunner. The next two sets
of data were entered into the data table manually.

➤ Each row in the data table generally represents the values that WinRunner
submits for all the parameterized fields during a single iteration of the test.
For example, a loop in a test that is associated with a table with ten rows will
run ten times.

➤ Each column in the table represents the list of values for a single parameter,
one of which is used for each iteration of a test.

Note: The first character in a column header must be an underscore (_) or a
letter. Subsequent characters may be underscores, letters, or numbers.

Part III • Creating Tests—Basic

384

Adding Data to a Data Table Manually

You can add data to your data table manually by opening the data table and
entering values in the appropriate columns.

To add data to a data table manually:

 1 Choose Table > Data Table. The Open or Create a Data Table dialog box
opens. Select the data table you specified in the test script to open it, or
enter a new name to create a new data table. The data table opens in the
data table viewer.

 2 Enter data into the table manually.

 3 Move the cursor to an empty cell and choose File > Save from within the
data table.

Note: Closing the data table does not automatically save changes to the data
table. You must use the File > Save command from within the data table or a
ddt_save statement to save the data table. For information on menu
commands within the data table, see “Editing the Data Table” on page 384.
For information on the ddt_save function, see “Using TSL Functions with
Data-Driven Tests” on page 402. Note that the data table viewer does not
need to be open in order to run a data-driven test.

Importing Data from a Database

In addition to, or instead of, adding data to a data table manually, you can
import data from an existing database into your table. You can use either
Microsoft Query or Data Junction to import the data. For more information
on importing data from a database, see “Importing Data from a Database,”
on page 390.

Editing the Data Table

The data table contains the values that WinRunner uses for parameterized
input fields and checks when you run a test. You can edit information in the
data table by typing directly into the table. You can use the data table in the
same way as an Excel spreadsheet. You can also insert Excel formulas and
functions into cells.

Chapter 18 • Creating Data-Driven Tests

385

Note: If you do not want the data table editor to reformat your data (e.g.
change the format of dates), then strings you enter in the data table should
start with a quotation mark ('). This instructs the editor not to reformat the
string in the cell.

To edit the data table:

 1 Open your test.

 2 Choose Table > Data Table. The Open or Create a Data Table dialog box
opens.

 3 Select a data table for your test. The data table for the test opens.

 4 Use the menu commands described below to edit the data table.

 5 Move the cursor to an empty cell and select File > Save to save your changes.

 6 Select File > Close to close the data table.

File Menu

Use the File menu to import and export, close, save, and print the data table.
WinRunner automatically saves the data table for a test in the test folder and
names it default.xls. You can open and save data tables other than the
default.xls data table. This enables you to use several different data tables in
one test script, if desired.

Part III • Creating Tests—Basic

386

The following commands are available in the File menu:

File Command Description

New Creates a new data table.

Open Opens an existing data table. If you open a data table that was
already opened by the ddt_open function, you are prompted to
save and close it before opening it in the data table editor.

Save Saves the active data table with its existing name and location.
You can save the data table as a Microsoft Excel file or as a tabbed
text file.

Save As Opens the Save As dialog box, which enables you to specify the
name and location under which to save the data table. You can
save the data table as a Microsoft Excel file or as a tabbed text file.

Import Imports an existing table file into the data table. This can be a
Microsoft Excel file or a tabbed text file. If you open a file that was
already opened by the ddt_open function, you are prompted to
save and close it before opening it in the data table editor.
Note that the cells in the first row of an Excel file become the
column headers in the data table viewer. Note that the new table
file replaces any data currently in the data table.

Export Saves the data table as a Microsoft Excel file or as a tabbed text
file.
Note that the column headers in the data table viewer become the
cells in the first row of an Excel file.

Print Prints the data table.

Print Setup Enables you to select the printer, the page orientation, and paper
size.

Close Closes the data table. Note that changes are not automatically
saved when you close the data table. Use the Save command to
save your changes.

Chapter 18 • Creating Data-Driven Tests

387

Edit Menu

Use the Edit menu to move, copy, and find selected cells in the data table.
The following commands are available in the Edit menu:

Edit Command Description

Cut Cuts the data table selection and writes it to the Clipboard.

Copy Copies the data table selection to the Clipboard.

Paste Pastes the contents of the Clipboard to the current data table
selection.

Paste Values Pastes values from the Clipboard to the current data table
selection. Any formatting applied to the values is ignored. In
addition, only formula results are pasted; formulas are ignored.

Clear All Clears both the format of the selected cells, if the format was
specified using the Format menu commands, and the values
(including formulas) of the selected cells.

Clear Formats Clears the format of the selected cells, if the format was specified
using the Format menu commands. Does not clear values
(including formulas) of the selected cells.

Clear
Contents

Clears only values (including formulas) of the selected cells. Does
not clear the format of the selected cells.

Insert Inserts empty cells at the location of the current selection. Cells
adjacent to the insertion are shifted to make room for the new
cells.

Delete Deletes the current selection. Cells adjacent to the deleted cells
are shifted to fill the space left by the vacated cells.

Fill Right Copies data from the leftmost cell of the selected range of cells to
all the cells to the right of it in the range.

Fill Down Copies data from the top cell of the selected range of cells to all
the cells below it in the range.

Find Finds a cell containing a specified value. You can search by row or
column in the table and specify to match case or find entire cells
only.

Part III • Creating Tests—Basic

388

Data Menu

Use the Data menu to recalculate formulas, sort cells and edit autofill lists.
The following commands are available in the Data menu:

Replace Finds a cell containing a specified value and replaces it with a
different value. You can search by row or column in the table and
specify to match case or find entire cells only. You can also replace
all.

Go To Goes to a specified cell. This cell becomes the active cell.

Data Command Description

Recalc Recalculates any formula cells in the data table.

Sort Sorts a selection of cells by row or column and keys.

AutoFill List Creates, edits or deletes an autofill list.
An autofill list contains frequently-used series of text such as
months and days of the week. When adding a new list,
separate each item with a semi-colon.
To use an autofill list, enter the first item into a cell in the
data table. Drag the cursor across or down and WinRunner
automatically fills in the cells in the range according to the
autofill list.

Edit Command Description

Chapter 18 • Creating Data-Driven Tests

389

Format Menu

Use the Format menu to set the format of data in a selected cell or cells. The
following commands are available in the Format menu:

Format Command Description

General Sets format to General. General displays numbers with as
many decimal places as necessary and no commas.

Currency(0) Sets format to currency with commas and no decimal places.

Currency(2) Sets format to currency with commas and two decimal places.

Fixed Sets format to fixed precision with commas and no decimal
places.

Percent Sets format to percent with no decimal places. Numbers are
displayed as percentages with a trailing percent sign (%).

Fraction Sets format to fraction.

Scientific Sets format to scientific notation with two decimal places.

Date:
(MM/dd/yyyy)

Sets format to Date with the MM/dd/yyyy format.

Time: h:mm
AM/PM

Sets format to Time with the h:mm AM/PM format.

Custom Number Sets format to a custom number format that you specify.

Validation Rule Sets validation rule to test data entered into a cell or range of
cells. A validation rule consists of a formula to test, and text to
display if the validation fails.

Part III • Creating Tests—Basic

390

Technical Specifications for the Data Table

The following table displays the technical specifications for a data table.

Importing Data from a Database

In order to import data from an existing database into a data table, you must
specify the data to import using the DataDriver wizard. If you selected the
Import data from a database check box, the DataDriver wizard prompts you
to specify the program you will use to connect to the database. You can
select either ODBC/Microsoft Query or Data Junction.

Note that in order to import data from a database, Microsoft Query or Data
Junction must be installed on your machine. You can install Microsoft
Query from the custom installation of Microsoft Office. Note that Data
Junction is not automatically included in your WinRunner package. To
purchase Data Junction, contact your Mercury Interactive representative.

maximum number of columns 256

maximum number of rows 16,384

maximum column width 1020 characters

maximum row height 409 points

maximum formula length 1024 characters

number precision 15 digits

largest positive number 9.99999999999999E307

largest negative number -9.99999999999999E307

smallest positive number 1E-307

smallest negative number -1E-307

table format Tabbed text file or Microsoft Excel file.

valid column names Columns names cannot include spaces.
They can include only letters, numbers, and
underscores (_).

Chapter 18 • Creating Data-Driven Tests

391

For detailed information on working with Data Junction, refer to the
documentation in the Data Junction package.

Note: If you chose to replace data in the data table with data from an
existing column in the database, and there is already a column with the
same header in the data table, then the data in that column is automatically
updated from the database. The data from the database overwrites the data
in the relevant column in the data table for all rows that are imported from
the database.

Importing Data from a Database Using Microsoft Query

You can use Microsoft Query to choose a data source and define a query
within the data source.

Setting the Microsoft Query Options

After you select Microsoft Query in the Connect to database using option,
the following wizard screen opens:

Part III • Creating Tests—Basic

392

You can choose from the following options:

➤ Create new query: Opens Microsoft Query, enabling you to create a new
ODBC *.sql query file with the name specified below. For additional
information, see “Creating a New Source Query File” on page 392.

➤ Copy existing query: Opens the Select source query file screen in the wizard,
which enables you to copy an existing ODBC query from another query file.
For additional information, see “Selecting a Source Query File” on page 393.

➤ Specify SQL statement: Opens the Specify SQL statement screen in the
wizard, which enables you to specify the connection string and an SQL
statement. For additional information, see “Specifying an SQL Statement”
on page 394.

➤ New query file: Displays the default name of the new *.sql query file for the
data to import from the database. You can use the browse button to browse
for a different *.sql query file.

➤ Maximum number of rows: Select this check box and enter the maximum
number of database rows to import. If this check box is cleared, there is no
maximum. Note that this option adds an additional parameter to your
db_check statement. For more information, refer to the TSL Reference.

➤ Show me how to use Microsoft Query: Displays an instruction screen.

Creating a New Source Query File

Microsoft Query opens if you chose Create new query in the last step.
Choose a new or existing data source, define a query, and when you are
done:

➤ In version 2.00, choose File > Exit and return to WinRunner to close
Microsoft Query and return to WinRunner.

➤ In version 8.00, in the Finish screen of the Query wizard, click Exit and
return to WinRunner and click Finish to exit Microsoft Query.
Alternatively, click View data or edit query in Microsoft Query and click
Finish. After viewing or editing the data, choose File > Exit and return to
WinRunner to close Microsoft Query and return to WinRunner.

Once you finish defining your query, you return to the DataDriver wizard to
finish converting your test to a data-driven test. For additional information,
see step 4 on page 374.

Chapter 18 • Creating Data-Driven Tests

393

Selecting a Source Query File

The following screen opens if you chose Copy existing query in the last step.

Enter the pathname of the query file or use the Browse button to locate it.
Once a query file is selected, you can use the View button to open the file for
viewing.

Once you are done, you click Next to finish creating your data-driven test.
For additional information, see step 4 on page 374.

Part III • Creating Tests—Basic

394

Specifying an SQL Statement

The following screen opens if you chose Specify SQL statement in the last
step.

In this screen you must specify the connection string and the SQL
statement:

➤ Connection String: Enter the connection string, or click Create to open the
ODBC Select Data Source dialog box, in which you can select a *.dsn file,
which inserts the connection string in the box.

➤ SQL: Enter the SQL statement.

Once you are done, you click Next to finish creating your data-driven test.
For additional information, see step 4 on page 374.

Once you import data from a database using Microsoft Query, the query
information is saved in a query file called msqrN.sql (where N is a unique
number). By default, this file is stored in the test folder (where the default
data table is stored). The DataDriver wizard inserts a ddt_update_from_db
statement using a relative path and not a full path.

Chapter 18 • Creating Data-Driven Tests

395

During the test run, when a relative path is specified, WinRunner looks for
the query file in the test folder. If the full path is specified for a query file in
the ddt_update_from_db statement, then WinRunner uses the full path to
find the location of the query file.

For additional information on using Microsoft Query, refer to the Microsoft
Query documentation.

Running and Analyzing Data-Driven Tests

You run and analyze data-driven tests much the same as for any WinRunner
test. The following two sections describe these two procedures.

Running a Test

After you create a data-driven test, you run it as you would run any other
WinRunner test. WinRunner substitutes the parameters in your test script
with data from the data table. While WinRunner runs the test, it opens the
data table. For each iteration of the test, it performs the operations you
recorded on your application and conducts the checks you specified. For
more information on running a test, see Chapter 20, “Understanding Test
Runs.”

Note that if you chose to import data from a database, then when you run
the test, the ddt_update_from_db function updates the data table with data
from the database. For information on importing data from a database, see
“Importing Data from a Database,” on page 384. For information on the
ddt_update_from_db function, see “Using TSL Functions with Data-Driven
Tests” on page 402 or refer to the TSL Reference.

Analyzing Test Results

When a test run is complete, you can view the test results as you would for
any other WinRunner test. The Test Results window contains a description
of the major events that occurred during the test run, such as GUI and
bitmap checkpoints, file comparisons, and error messages. If a certain event
occurs during each iteration, then the test results will record a separate
result for the event for each iteration.

Part III • Creating Tests—Basic

396

For example, if you inserted a ddt_report_row statement in your test script,
then WinRunner prints a row of the data table to the test results. Each
iteration of a ddt_report_row statement in your test script creates a line in
the Test Log table in the Test Results window, identified as “Table Row” in
the Event column. Double-clicking this line displays all the parameterized
data used by WinRunner in an iteration of the test. For more information on
the ddt_report_row function, see “Reporting the Active Row in a Data Table
to the Test Results,” on page 407 or refer to the TSL Reference. For more
information on viewing test results, see Chapter 21, “Analyzing Test
Results.”

Assigning the Main Data Table for a Test

You can easily set the main data table for a test in the General tab of the Test
Properties dialog box. The main data table is the table that is selected by
default when you choose Tools > Data Table or open the DataDriver wizard.

To assign the main data table for a test:

 1 Choose File > Test Properties and click the General tab.

Chapter 18 • Creating Data-Driven Tests

397

 2 Choose the data table you want to assign from the Main data table list. All
data tables that are stored in the test folder are displayed in the list.

 3 Click OK. The data table you select is assigned as the new main data table.

Note: If you open a different data table after selecting the main data table
from the Test Properties dialog box, the last data table opened becomes the
main data table.

Using Data-Driven Checkpoints and Bitmap
Synchronization Points

When you create a data-driven test, you parameterize fixed values in TSL
statements. However, GUI and bitmap checkpoints and bitmap
synchronization points do not contain fixed values. Instead, these
statements contain the following:

➤ A GUI checkpoint statement (obj_check_gui or win_check_gui) contains
references to a checklist stored in the test’s chklist folder and expected results
stored in the test’s exp folder.

➤ A bitmap checkpoint statement (obj_check_bitmap or win_check_bitmap)
or a bitmap synchronization point statement (obj_wait_bitmap or
win_wait_bitmap) contains a reference to a bitmap stored in the test’s exp
folder.

Note: When you check properties of GUI objects in a data-driven test, it is
better to create a single property check than to create a GUI checkpoint: A
single property check does not contain checklist, so it can be easily
parameterized. You use the Insert > GUI Checkpoint > For Single Property
command to create a property check without a checklist. For additional
information on using single property checks in a data-driven test, see
“Creating a Basic Test for Conversion” on page 367. For information on
checking a single property of an object, see Chapter 9, “Checking GUI
Objects.”

Part III • Creating Tests—Basic

398

In order to parameterize GUI and bitmap checkpoints and bitmap
synchronization points statements, you insert dummy values into the data
table for each expected results reference. First you create separate columns
for each checkpoint or bitmap synchronization point. Then you enter
dummy values in the columns to represent captured expected results. Each
dummy value should have a unique name (for example, gui_exp1, gui_exp2,
etc.). When you run the test in Update mode, WinRunner captures expected
results during each iteration of the test (i.e. for each row in the data table)
and saves all the results in the test’s exp folder.

➤ For a GUI checkpoint statement, WinRunner captures the expected values of
the object properties.

➤ For a bitmap checkpoint statement or a bitmap synchronization point
statement, WinRunner captures a bitmap.

To create a data-driven checkpoint or bitmap synchronization point:

 1 Create the initial test by recording or programming.

In the example below, the recorded test opens the Search dialog box in the
Notepad application, searches for a text and checks that the appropriate
message appears. Note that a GUI checkpoint, a bitmap checkpoint, and a
synchronization point are all used in the example.

set_window ("Untitled - Notepad", 12);
menu_select_item ("Search;Find...");
set_window ("Find", 5);
edit_set ("Find what:", "John");
button_press ("Find Next");
set_window("Notepad", 10);
obj_check_gui("Message", "list1.ckl", "gui1", 1);
win_check_bitmap("Notepad", "img1", 5, 30, 23, 126, 45);
obj_wait_bitmap("Message", "img2", 13);
set_window ("Notepad", 5);
button_press ("OK");
set_window ("Find", 4);
button_press ("Cancel");

Chapter 18 • Creating Data-Driven Tests

399

 2 Use the DataDriver wizard (Table > Data Driver Wizard) to turn your script
into a data-driven test and parameterize the data values in the statements in
the test script. For additional information, see “Creating a Data-Driven Test
with the DataDriver Wizard,” on page 369. Alternatively, you can make
these changes to the test script manually. For additional information, see
“Creating a Data-Driven Test Manually,” on page 378.

In the example below, the data-driven test searches for several different
strings. WinRunner reads all these strings from the data table.

set_window ("Untitled - Notepad", 12);
menu_select_item ("Search;Find...");
table = "default.xls";
rc = ddt_open(table, DDT_MODE_READ);
if (rc!= E_OK && rc != E_FILE_OPEN)

pause("Cannot open table.");
ddt_get_row_count(table,RowCount);
for (i = 1; i <= RowCount; i++) {

ddt_set_row(table,i);
set_window ("Find", 5);
edit_set ("Find what:", ddt_val(table, "Str"));
button_press ("Find Next");
set_window("Notepad", 10);

The GUI checkpoint statement is not yet parameterized.
obj_check_gui("message", "list1.ckl", "gui1", 1);

The bitmap checkpoint statement is not yet parameterized.
win_check_bitmap("Notepad", "img1", 5, 30, 23, 126, 45);

The synchronization point statement is not yet parameterized.
obj_wait_bitmap("message", "img2", 13);
set_window ("Notepad", 5);
button_press ("OK");

}
ddt_close(table);
set_window ("Find", 4);
button_press ("Cancel");

Part III • Creating Tests—Basic

400

For example, the data table might look like this:

Note that the GUI and bitmap checkpoints and the synchronization point
in this data-driven test will fail on the 2nd and 3rd iteration of the test run.
The checkpoints and the synchronization point would fail because the
values for these points were captured using the "John" string, in the original
recorded test. Therefore, they will not match the other strings taken from
the data table.

 3 Create a column in the data table for each checkpoint or synchronization
point to be parameterized. For each row in the column, enter dummy
values. Each dummy value should be unique.

For example, the data table in the previous step might now look like this:

 4 Choose Table > Parameterize Data to open the Assign Parameter dialog box.
In the Existing Parameter box, change the expected values of each
checkpoint and synchronization point to use the values from the data table.
For additional information, see “Parameterizing Values in a Test Script” on
page 380. Alternatively, you can edit the test script manually.

Chapter 18 • Creating Data-Driven Tests

401

For example, the sample script will now look like this:

set_window ("Untitled - Notepad", 12);
menu_select_item ("Search;Find...");
table = "default.xls";
rc = ddt_open(table, DDT_MODE_READ);
if (rc!= E_OK && rc != E_FILE_OPEN)

pause("Cannot open table.");
ddt_get_row_count(table,RowCount);
for (i = 1; i <= RowCount; i++) {

ddt_set_row(table,i);
set_window ("Find", 5);
edit_set ("Find what:", ddt_val(table, "Str"));
button_press ("Find Next");
set_window("Notepad", 10);

The GUI checkpoint statement is now parameterized.
obj_check_gui("message", "list1.ckl",

ddt_val(table, "GUI_Check1"), 1);

The bitmap checkpoint statement is now parameterized.
win_check_bitmap("Notepad",

ddt_val(table, "BMP_Check1"), 5, 30, 23, 126, 45);

The synchronization point statement is now parameterized.
obj_wait_bitmap("message",

ddt_val(table, "Sync1"), 13);
set_window ("Notepad", 5);
button_press ("OK");

}
ddt_close(table);
set_window ("Find", 4);
button_press ("Cancel");

 5 Select Update in the run mode box to run your test in Update mode. Choose
a Run command to run your test.

Part III • Creating Tests—Basic

402

While the test runs in Update mode, WinRunner reads the names of the
expected values from the data table. Since WinRunner cannot find the
expected values for GUI checkpoints, bitmaps checkpoints, and bitmap
synchronization points in the data table, it recaptures these values from
your application and saves them as expected results in the exp folder for
your test. Expected values for GUI checkpoints are saved as expected results.
Expected values for bitmap checkpoints and bitmap synchronization points
are saved as bitmaps.

Once you have run your test in Update mode, all the expected values for all
the sets of data in the data table are recaptured and saved.

Later you can run your test in Verify mode to check the behavior of your
application.

Note: When you run your test in Update mode, WinRunner recaptures
expected values for GUI and bitmap checkpoints automatically. WinRunner
prompts you before recapturing expected values for bitmap synchronization
points.

Using TSL Functions with Data-Driven Tests

WinRunner provides several TSL functions that enable you to work with
data-driven tests.

You can use the Function Generator to insert the following functions in
your test script, or you can manually program statements that use these
functions. For information about working with the Function Generator,
refer to Chapter 8, “Generating Functions” in the Mercury WinRunner
Advanced Features User’s Guide. For more information about these functions,
refer to the TSL Reference.

Note: You must use the ddt_open function to open the data table before
you use any other ddt_ functions. You must use the ddt_save function to
save the data table, and use the ddt_close function to close the data table.

Chapter 18 • Creating Data-Driven Tests

403

Opening a Data Table

The ddt_open function creates or opens the specified data table. The data
table is a Microsoft Excel file or a tabbed text file. The first row in the
Excel/tabbed text file contains the names of the parameters. This function
has the following syntax:

ddt_open (data_table_name [, mode]);

The data_table_name is the name of the data table. The mode is the mode for
opening the data table: DDT_MODE_READ (read-only) or
DDT_MODE_READWRITE (read or write).

Saving a Data Table

The ddt_save function saves the information in the specified data table.
This function has the following syntax:

ddt_save (data_table_name);

The data_table_name is the name of the data table.

Note that ddt_save does not close the data table. Use the ddt_close
function, described below, to close the data table.

Closing a Data Table

The ddt_close function closes the specified data table. This function has the
following syntax:

ddt_close (data_table_name);

The data_table_name is the name of the data table.

Note that ddt_close does not save changes made to the data table. Use the
ddt_save function, described above, to save changes before closing the data
table.

Part III • Creating Tests—Basic

404

Exporting a Data Table

The ddt_export function exports the information of one table file into a
different table file. This function has the following syntax:

ddt_export (data_table_filename1, data_table_filename2);

The data_table_filename1 is the name of the source data table file. The
data_table_filename2 is the name of the destination data table file.

Displaying the Data Table Editor

The ddt_show function shows or hides the editor of a given data table. This
function has the following syntax:

ddt_show (data_table_name [, show_flag]);

The data_table_name is the name of the table. The show_flag is the value
indicating whether the editor should be displayed (default=1) or hidden (0).

Returning the Number of Rows in a Data Table

The ddt_get_row_count function returns the number of rows in the
specified data table. This function has the following syntax:

ddt_get_row_count (data_table_name, out_rows_count);

The data_table_name is the name of the data table. The out_rows_count is the
output variable that stores the total number of rows in the data table.

Changing the Active Row in a Data Table to the Next Row

The ddt_next_row function changes the active row in the specified data
table to the next row. This function has the following syntax:

ddt_next_row (data_table_name);

The data_table_name is the name of the data table.

Chapter 18 • Creating Data-Driven Tests

405

Setting the Active Row in a Data Table

The ddt_set_row function sets the active row in the specified data table.
This function has the following syntax:

ddt_set_row (data_table_name, row);

The data_table_name is the name of the data table. The row is the new active
row in the data table.

Setting a Value in the Current Row of the Table

The ddt_set_val function writes a value into the current row of the table.
This function has the following syntax:

ddt_set_val (data_table_name, parameter, value);

The data_table_name is the name of the data table. The parameter is the name
of the column into which the value will be inserted. The value is the value to
be written into the table.

Notes: You can only use this function if the data table was opened in
DDT_MODE_READWRITE (read or write mode).

To save the new contents of the table, add a ddt_save statement after the
ddt_set_val statement. At the end of your test, use a ddt_close statement to
close the table.

Setting a Value in a Row of the Table

The ddt_set_val_by_row function sets a value in a specified row of the
table. This function has the following syntax:

ddt_set_val_by_row (data_table_name, row, parameter, value);

Part III • Creating Tests—Basic

406

The data_table_name is the name of the data table. The row is the row
number in the table. It can be any existing row or the current row number
plus 1, which will add a new row to the data table. The parameter is the
name of the column into which the value will be inserted. The value is the
value to be written into the table.

Notes: You can only use this function if the data table was opened in
DDT_MODE_READWRITE (read or write mode).

To save the new contents of the table, add a ddt_save statement after the
ddt_set_val statement. At the end of your test, use a ddt_close statement to
close the table.

Retrieving the Active Row of a Data Table

The ddt_get_current_row function retrieves the active row in the specified
data table. This function has the following syntax:

ddt_get_current_row (data_table_name, out_row);

The data_table_name is the name of the data table. The out_row is the output
variable that stores the specified row in the data table.

Determining Whether a Parameter in a Data Table is Valid

The ddt_is_parameter function determines whether a parameter in the
specified data table is valid. This function has the following syntax:

ddt_is_parameter (data_table_name, parameter);

The data_table_name is the name of the data table. The parameter is the name
of the parameter in the data table.

Returning a List of Parameters in a Data Table

The ddt_get_parameters function returns a list of all parameters in the
specified data table. This function has the following syntax:

ddt_get_parameters (data_table_name, params_list, params_num);

Chapter 18 • Creating Data-Driven Tests

407

The data_table_name is the name of the data table. The params_list is the out
parameter that returns the list of all parameters in the data table, separated
by tabs. The params_name is the out parameter that returns the number of
parameters in params_list.

Returning the Value of a Parameter in the Active Row in a Data
Table

The ddt_val function returns the value of a parameter in the active row in
the specified data table. This function has the following syntax:

ddt_val (data_table_name, parameter);

The data_table_name is the name of the data table. The parameter is the name
of the parameter in the data table.

Returning the Value of a Parameter in a Row in a Data Table

The ddt_val_by_row function returns the value of a parameter in the
specified row of the specified data table. This function has the following
syntax:

ddt_val_by_row (data_table_name, row_number, parameter);

The data_table_name is the name of the data table. The parameter is the name
of the parameter in the data table. The row_number is the number of the row
in the data table.

Reporting the Active Row in a Data Table to the Test Results

The ddt_report_row function reports the active row in the specified data
table to the test results. This function has the following syntax:

ddt_report_row (data_table_name);

The data_table_name is the name of the data table.

Part III • Creating Tests—Basic

408

Importing Data from a Database into a Data Table

The ddt_update_from_db function imports data from a database into a
data table. It is inserted into your test script when you select the Import data
from a database option in the DataDriver wizard. When you run your test,
this function updates the data table with data from the database. This
function has the following syntax:

ddt_update_from_db (data_table_name, file,out_row_count
[, max_rows]);

The data_table_name is the name of the data table.

The file is an *.sql file containing a query defined by the user in Microsoft
Query or *.djs file containing a conversion defined by Data Junction. The
out_row_count is an out parameter containing the number of rows retrieved
from the data table. The max_rows is an in parameter specifying the
maximum number of rows to be retrieved from a database. If no maximum
is specified, then by default the number of rows is not limited.

Note: You must use the ddt_open function to open the data table in
DDT_MODE_READWRITE (read or write) mode. After using the
ddt_update_from_db function, the new contents of the table are not
automatically saved. To save the new contents of the table, use the ddt_save
function before the ddt_close function.

Chapter 18 • Creating Data-Driven Tests

409

Guidelines for Creating a Data-Driven Test

Consider the following guidelines when creating a data-driven test:

➤ A data-driven test can contain more than one parameterized loop.

➤ You can open and save data tables other than the default.xls data table. This
enables you to use several different data tables in one test script. You can use
the New, Open, Save, and Save As commands in the data table to open and
save data tables. For additional information, see “Editing the Data Table” on
page 384.

Note: If you open a data table from one test while it is open from another
test, the changes you make to the data table in one test will not be reflected
in the other test. To save your changes to the data table, you must save and
close the data table in one test before opening it in another test.

➤ Before you run a data-driven test, you should look through it to see if there
are any elements that may cause a conflict in a data-driven test. The
DataDriver and Parameterization wizards find all fixed values in selected
checkpoints and recorded statements, but they do not check for things such
as object labels that also may vary based on external input. There are two
ways to solve most of these conflicts:

➤ Use a regular expression to enable WinRunner to recognize objects based
on a portion of its physical description.

➤ Use the GUI Map Configuration dialog box to change the physical
properties that WinRunner uses to recognize the problematic object.

➤ You can change the active row during the test run by using TSL statements.
For more information, see “Using TSL Functions with Data-Driven Tests” on
page 402.

➤ You can read from a non-active row during the test run by using TSL
statements. For more information, see “Using TSL Functions with Data-
Driven Tests” on page 402.

Part III • Creating Tests—Basic

410

➤ You can add tl_step or other reporting statements within the parameterized
loop of your test so that you can see the result of the data used in each
iteration.

➤ It is not necessary to use all the data in a data table when running a data-
driven test.

➤ If you want, you can parameterize only part of your test script or a loop
within it.

➤ If WinRunner cannot find a GUI object that has been parameterized while
running a test, make sure that the parameterized argument is not
surrounded by quotes in the test script.

➤ You can parameterize statements containing GUI checkpoints, bitmap
checkpoints, and bitmap synchronization points. For more information, see
“Using Data-Driven Checkpoints and Bitmap Synchronization Points” on
page 397.

➤ You can parameterize constants as you would any other string or value.

➤ You can use the data table in the same way as an Excel spreadsheet,
including inserting formulas into cells.

➤ It is not necessary for the data table viewer to be open when you run a test.

➤ You can use the ddt_set_val and ddt_set_val_by_row functions to insert
data into the data table during a test run. Then use the ddt_save function to
save your changes to the data table.

Note: By default, the data table is stored in the test folder.

411

19
Synchronizing the Test Run

Synchronization compensates for inconsistencies in the performance of
your application during a test run. By inserting a synchronization point in
your test script, you can instruct WinRunner to suspend the test run and
wait for a cue before continuing the test.

This chapter describes:

➤ About Synchronizing the Test Run

➤ Waiting for Objects and Windows

➤ Waiting for Property Values of Objects and Windows

➤ Waiting for Bitmaps of Objects and Windows

➤ Waiting for Bitmaps of Screen Areas

➤ Tips for Synchronizing Tests

About Synchronizing the Test Run

Applications do not always respond to user input at the same speed from
one test run to another. This is particularly common when testing
applications that run over a network. A synchronization point in your test
script instructs WinRunner to suspend running the test until the application
being tested is ready, and then to continue the test.

There are three kinds of synchronization points: object/window
synchronization points, property value synchronization points, and bitmap
synchronization points.

➤ When you want WinRunner to wait for an object or a window to appear,
you create an object/window synchronization point.

Part III • Creating Tests—Basic

412

➤ When you want WinRunner to wait for an object or a window to have a
specified property, you create a property value synchronization point.

➤ When you want WinRunner to wait for a visual cue to be displayed, you
create a bitmap synchronization point. In a bitmap synchronization point,
WinRunner waits for the bitmap of an object, a window, or an area of the
screen to appear.

For example, suppose that while testing a drawing application you want to
import a bitmap from a second application and then rotate it. A human user
would know to wait for the bitmap to be fully redrawn before trying to
rotate it. WinRunner, however, requires a synchronization point in the test
script after the import command and before the rotate command. Each time
the test is run, the synchronization point tells WinRunner to wait for the
import command to be completed before rotating the bitmap.

In another example, suppose that while testing an application you want to
check that a button is enabled. Suppose that in your application the button
becomes enabled only after your application completes an operation over
the network. The time it takes for the application to complete this network
operation depends on the load on the network. A human user would know
to wait until the operation is completed and the button is enabled before
clicking it. WinRunner, however, requires a synchronization point after
launching the network operation and before clicking the button. Each time
the test is run, the synchronization point tells WinRunner to wait for the
button to become enabled before clicking it.

You can synchronize your test to wait for a bitmap of a window or a GUI
object in your application, or on any rectangular area of the screen. You can
also synchronize your test to wait for a property value of a GUI object, such
as “enabled,” to appear. To create a synchronization point, you choose a
Insert > Synchronization Point command indicate an area or an object in
the application being tested. Depending on which Synchronization Point
command you choose, WinRunner either captures the property value of a
GUI object or a bitmap of a GUI object or area of the screen, and stores it in
the expected results folder (exp). You can also modify the property value of a
GUI object that is captured before it is saved in the expected results folder.

Chapter 19 • Synchronizing the Test Run

413

A bitmap synchronization point is a synchronization point that captures a
bitmap. It appears as a win_wait_bitmap or obj_wait_bitmap statement in
the test script. A property value synchronization point is a synchronization
point that captures a property value. It appears as a _wait_info statement in
your test script, such as button_wait_info or list_wait_info. When you run
the test, WinRunner suspends the test run and waits for the expected
bitmap or property value to appear. It then compares the current actual
bitmap or property value with the expected bitmap or property value saved
earlier. When the bitmap or property value appears, the test continues.

Note: All wait and wait_info functions are implemented in milliseconds, so
they do not affect how the test runs.

Waiting for Objects and Windows

You can create a synchronization point that instructs WinRunner to wait for
a specified object or window to appear. For example, you can tell
WinRunner to wait for a window to open before performing an operation
within that window, or you may want WinRunner to wait for an object to
appear in order to perform an operation on that object.

WinRunner waits no longer than the default timeout setting before
executing the subsequent statement in a test script. You can set this default
timeout setting in a test script by using the timeout_msec testing option with
the setvar function. For more information, refer to Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner Advanced
Features User’s Guide. You can also set this default timeout setting globally
using the Timeout for checkpoints and CS statements box in the Run >
Settings category of the General Options dialog box. For more information,
see Chapter 23, “Setting Global Testing Options.”

Part III • Creating Tests—Basic

414

You use the obj_exists function to create an object synchronization point,
and you use the win_exists function to create a window synchronization
point. These functions have the following syntax:

obj_exists (object [, time]);

win_exists (window [, time]);

The object is the logical name of the object. The object may belong to any
class. The window is the logical name of the window. The time is the amount
of time (in seconds) that is added to the default timeout setting, yielding a
new maximum wait time before the subsequent statement is executed.

You can use the Function Generator to insert this function into your test
script or you can insert it manually. For information on using the Function
Generator, refer to Chapter 8, “Generating Functions” in the Mercury
WinRunner Advanced Features User’s Guide. For more information on these
functions and examples of usage, refer to the TSL Reference.

Waiting for Property Values of Objects and Windows

You can create a property value synchronization point, which instructs
WinRunner to wait for a specified property value to appear in a GUI object.
For example, you can tell WinRunner to wait for a button to become
enabled or for an item to be selected from a list.

The method for synchronizing a test is identical for property values of
objects and windows. You start by choosing Insert > Synchronization Point >
For Object/Window Property. As you pass the mouse pointer over your
application, objects and windows flash. To select a window, you click the
title bar or the menu bar of the desired window. To select an object, you
click the object.

A dialog box opens containing the name of the selected window or object.
You can specify which property of the window or object to check, the
expected value of that property, and the amount of time that WinRunner
waits at the synchronization point.

Chapter 19 • Synchronizing the Test Run

415

A statement with one of the following functions is added to the test script,
depending on which GUI object you selected:

During a test run, WinRunner suspends the test run until the specified
property value in a GUI object is detected. It then compares the current
value of the specified property with its expected value. If the property values
match, then WinRunner continues the test.

In the event that the specified property value of the GUI object does not
appear, WinRunner displays an error message, when the mismatch_break
testing option is on. For information about the mismatch_break testing
option, refer to Chapter 21, “Setting Testing Options from a Test Script” in
the Mercury WinRunner Advanced Features User’s Guide. You can also set this
testing option globally using the corresponding Break when verification fails
option in the Run > Settings category of the General Options dialog box. For
information about setting this testing option globally, see Chapter 23,
“Setting Global Testing Options.”

GUI Object TSL Function

button button_wait_info

edit field edit_wait_info

list list_wait_info

menu menu_wait_info

an object mapped to the
generic “object” class

obj_wait_info

scroll bar scroll_wait_info

spin box spin_wait_info

static text static_wait_info

status bar statusbar_wait_info

tab tab_wait_info

window win_wait_info

Part III • Creating Tests—Basic

416

If the window or object you capture has a name that varies from run to run,
you can define a regular expression in its physical description in the GUI
map. This instructs WinRunner to ignore all or part of the name. For more
information, see Chapter 7, “Editing the GUI Map,” and refer to Chapter 6,
“Using Regular Expressions” in the Mercury WinRunner Advanced Features
User’s Guide.

During recording, when you capture an object in a window other than the
active window, WinRunner automatically generates a set_window
statement.

To insert a property value synchronization point:

 1 Choose Insert > Synchronization Point > For Object/Window Property or
click the Synchronization Point for Object/Window Property button on the
User toolbar. The mouse pointer becomes a pointing hand.

 2 Highlight the desired object or window. To highlight an object, place the
mouse pointer over it. To highlight a window, place the mouse pointer over
the title bar or the menu bar.

 3 Click the left mouse button. Depending on whether you clicked an object or
a window, either the Wait for Object or the Wait for Window dialog box
opens.

Chapter 19 • Synchronizing the Test Run

417

 4 Specify the parameters of the property check to be carried out on the
window or object, as follows:

➤ Window or <Object type>: The name of the window or object you clicked
appears in a read-only box. To select a different window or object, click
the pointing hand.

➤ Property: Select the property of the object or window to be checked from
the list. The default property for the window or type of object specified
above appears by default in this box.

➤ Value: Enter the expected value of the property of the object or window
to be checked. The current value of this property appears by default in
this box.

➤ Time: Enter the amount of time (in seconds) that WinRunner waits at
the synchronization point in addition to the amount of time that
WinRunner waits specified in the timeout_msec testing option. You can
change the default amount of time that WinRunner waits using the
timeout_msec testing option. For more information, refer to Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide. You can also change the default timeout
value in the Timeout for checkpoints and CS statements box in the Run >
Settings category of the General Options dialog box. For more
information, see Chapter 23, “Setting Global Testing Options.”

Note: Any changes you make to the above parameters appear immediately
in the text box at the top of the dialog box.

 5 Click Paste to paste this statement into your test script.

The dialog box closes and a _wait_info statement that checks the property
values of an object is inserted into your test script. For example,
button_wait_info has the following syntax:

button_wait_info (button, property, value, time);

The button is the name of the button. The property is any property that is
used by the button object class. The value is the value that must appear
before the test run can continue.

Part III • Creating Tests—Basic

418

The time is the maximum number of seconds WinRunner should wait at the
synchronization point, added to the timeout_msec testing option. For more
information on _wait_info statements, refer to the TSL Reference.

For example, suppose that while testing the Flight Reservation application
you order a plane ticket by typing in passenger and flight information and
clicking Insert. The application takes a few seconds to process the order.
Once the operation is completed, you click Delete to delete the order.

In order for the test to run smoothly, a button_wait_info statement is
needed in the test script. This function tells WinRunner to wait up to 10
seconds (plus the timeout interval) for the Delete button to become enabled.
This ensures that the test does not attempt to delete the order while the
application is still processing it. The following is a segment of the test script:

button_press ("Insert");
button_wait_info ("Delete","enabled",1,"10");
button_press ("Delete");

Note: You can also use the Function Generator to create a synchronization
point that waits for a property value of a window or an object. For
information on using the Function Generator, refer to Chapter 8,
“Generating Functions” in the Mercury WinRunner Advanced Features User’s
Guide. For more information about working with these functions, refer to
the TSL Reference.

Chapter 19 • Synchronizing the Test Run

419

Waiting for Bitmaps of Objects and Windows

You can create a bitmap synchronization point that waits for the bitmap of
an object or a window to appear in the application being tested.

The method for synchronizing a test is identical for bitmaps of objects and
windows. You start by choosing Insert > Synchronization Point > For
Object/Window Bitmap. As you pass the mouse pointer over your
application, objects and windows flash. To select the bitmap of an entire
window, you click the window’s title bar or menu bar. To select the bitmap
of an object, you click the object.

During a test run, WinRunner suspends test execution until the specified
bitmap is redrawn, and then compares the current bitmap with the expected
one captured earlier. If the bitmaps match, then WinRunner continues the
test.

In the event of a mismatch, WinRunner displays an error message, when the
mismatch_break testing option is on. For information about the
mismatch_break testing option, refer to Chapter 21, “Setting Testing Options
from a Test Script” in the Mercury WinRunner Advanced Features User’s Guide.

You can also set this testing option globally using the corresponding Break
when verification fails option in the Run > Settings category of the General
Options dialog box. For information about setting this testing option
globally, see Chapter 23, “Setting Global Testing Options.”

During recording, when you capture an object in a window other than the
active window, WinRunner automatically generates a set_window
statement.

To insert a bitmap synchronization point for an object or a window:

 1 Choose Insert > Synchronization Point > For Object/Window Bitmap or click
the Synchronization Point for Object/Window Bitmap on the User toolbar.
Alternatively, if you are recording in Analog mode, press the SYNCHRONIZE
BITMAP OF OBJECT/WINDOW softkey. The mouse pointer becomes a pointing
hand.

 2 Highlight the desired window or object. To highlight an object, place the
mouse pointer over it. To highlight a window, place the mouse pointer over
its title bar or menu bar.

Part III • Creating Tests—Basic

420

 3 Click the left mouse button to complete the operation. WinRunner captures
the bitmap and generates an obj_wait_bitmap or a win_wait_bitmap
statement with the following syntax in the test script.

obj_wait_bitmap (object, image, time);

win_wait_bitmap (window, image, time);

For example, suppose that while working with the Flight Reservation
application, you decide to insert a synchronization point in your test script.
If you point to the Date of Flight box, the resulting statement might be:

obj_wait_bitmap ("Date of Flight:", "Img5", 22);

For more information on obj_wait_bitmap and win_wait_bitmap, refer to
the TSL Reference.

Note: The execution of obj_wait_bitmap and win_wait_bitmap is affected
by the current values specified for the delay_msec, timeout_msec and min_diff
testing options. For more information on these testing options and how to
modify them, refer to Chapter 21, “Setting Testing Options from a Test
Script” in the Mercury WinRunner Advanced Features User’s Guide. You may
also set these testing options globally, using the corresponding Delay for
window synchronization, Timeout for checkpoints and CS statements, and
Threshold for difference between bitmaps boxes in the Run >
Synchronization and Run > Settings categories of the General Options
dialog box. For more information about setting these testing options
globally, see Chapter 23, “Setting Global Testing Options.”

Chapter 19 • Synchronizing the Test Run

421

Waiting for Bitmaps of Screen Areas

You can create a bitmap synchronization point that waits for a bitmap of a
selected area in your application. You can define any rectangular area of the
screen and capture it as a bitmap for a synchronization point.

You start by choosing Insert > Synchronization Point > For Screen Area
Bitmap. As you pass the mouse pointer over your application, it becomes a
crosshairs pointer, and a help window opens in the top left corner of your
screen.

You use the crosshairs pointer to outline a rectangle around the area. The
area can be any size: it can be part of a single window, or it can intersect
several windows. WinRunner defines the rectangle using the coordinates of
its upper left and lower right corners. These coordinates are relative to the
upper left corner of the object or window in which the area is located. If the
area intersects several objects in a window, the coordinates are relative to
the window. If the selected area intersects several windows, or is part of a
window with no title (a popup menu, for example), the coordinates are
relative to the entire screen (the root window).

During a test run, WinRunner suspends test execution until the specified
bitmap is displayed. It then compares the current bitmap with the expected
bitmap. If the bitmaps match, then WinRunner continues the test.

In the event of a mismatch, WinRunner displays an error message, when the
mismatch_break testing option is on. For information about the
mismatch_break testing option, refer to Chapter 21, “Setting Testing Options
from a Test Script” in the Mercury WinRunner Advanced Features User’s Guide.
You may also set this option using the corresponding Break when
verification fails check box in the Run > Settings category of the General
Options dialog box. For information about setting this testing option
globally, see Chapter 23, “Setting Global Testing Options.”

Part III • Creating Tests—Basic

422

To define a bitmap synchronization point for an area of the screen:

 1 Choose Insert > Synchronization Point > For Screen Area Bitmap or click the
Synchronization Point for Screen Area Bitmap button on the User toolbar.
Alternatively, if you are recording in Analog mode, press the SYNCHRONIZE
BITMAP OF SCREEN AREA softkey.

The WinRunner window is minimized to an icon, the mouse pointer
becomes a crosshairs pointer, and a help window opens in the top left
corner of your screen.

 2 Mark the area to be captured: press the left mouse button and drag the
mouse pointer until a rectangle encloses the area; then release the mouse
button.

 3 Click the right mouse button to complete the operation. WinRunner
captures the bitmap and generates a win_wait_bitmap or obj_wait_bitmap
statement with the following syntax in your test script.

win_wait_bitmap (window, image, time, x, y, width, height);

obj_wait_bitmap (object, image, time, x, y, width, height);

For example, suppose you are updating an order in the Flight Reservation
application. You have to synchronize the continuation of the test with the
appearance of a message verifying that the order was updated. You insert a
synchronization point in order to wait for an “Update Done” message to
appear in the status bar.

WinRunner generates the following statement:

obj_wait_bitmap ("Update Done...", "Img7”, 10);

For more information on win_wait_bitmap and obj_wait_bitmap, refer to
the TSL Reference.

Chapter 19 • Synchronizing the Test Run

423

Note: The execution of win_wait_bitmap and obj_wait_bitmap statements
is affected by the current values specified for the delay_msec, timeout_msec
and min_diff testing options. For more information on these testing options
and how to modify them, refer to Chapter 21, “Setting Testing Options from
a Test Script” in the Mercury WinRunner Advanced Features User’s Guide. You
may also set these testing options globally, using the corresponding Delay
for window synchronization, Timeout for checkpoints and CS statements,
and Threshold for difference between bitmaps boxes in the Run > Settings
and Run > Synchronization categories in the General Options dialog box.
For more information about setting these testing options globally, see
Chapter 23, “Setting Global Testing Options.”

Tips for Synchronizing Tests

➤ Stopping or pausing a test: You can stop or pause a test that is waiting for a
synchronization statement by using the PAUSE or STOP softkeys. For
information on using softkeys, see “Activating Test Creation Commands
Using Softkeys” on page 111.

➤ Recording in Analog mode: When recording a test in Analog mode, you
should press the SYNCHRONIZE BITMAP OF OBJECT/WINDOW or the SYNCHRONIZE
BITMAP OF SCREEN AREA softkey to create a bitmap synchronization point. This
prevents WinRunner from recording extraneous mouse movements. If you
are programming a test, you can use the Analog TSL function wait_window
to wait for a bitmap. For more information, refer to the TSL Reference.

➤ Data-driven testing: In order to use bitmap synchronization points in data-
driven tests, you must parameterize the statements in your test script that
contain them. For information on using bitmap synchronization points in
data-driven tests, see “Using Data-Driven Checkpoints and Bitmap
Synchronization Points,” on page 397.

Part III • Creating Tests—Basic

424

Part IV

Running Tests—Basic

426

427

20
Understanding Test Runs

Once you have developed a test script, you run the test to check the
behavior of your application.

This chapter describes:

➤ About Understanding Test Runs

➤ WinRunner Test Run Modes

➤ WinRunner Run Commands

➤ Choosing Run Commands Using Softkeys

➤ Running a Test to Check Your Application

➤ Running a Test to Debug Your Test Script

➤ Running a Test to Update Expected Results

➤ Running a Test to Check Date Operations

➤ Supplying Values for Input Parameters When Running a Test

➤ Controlling the Test Run with Testing Options

➤ Solving Common Test Run Problems

Part IV • Running Tests—Basic

428

About Understanding Test Runs

When you run a test, WinRunner interprets your test script, line by line. The
execution arrow in the left margin of the test script marks each TSL
statement as it is interpreted. As the test runs, WinRunner operates your
application as though a person were at the controls.

You can run your tests in three modes:

➤ Verify run mode, to check your application

➤ Debug run mode, to debug your test script

➤ Update run mode, to update the expected results

You choose a run mode from the list on the Test toolbar. The Verify mode is
the default run mode for tests.

Note: The Verify run mode is relevant only for tests and is not available
when working with components. When working with components, Debug
is the default mode.

Use WinRunner’s Test and Debug menu commands to run your tests. You
can run an entire test, or a portion of a test. Before running a Context
Sensitive test, make sure the necessary GUI map files are loaded. For more
information, see Chapter 5, “Working in the Global GUI Map File Mode.”

You can run individual tests or use a batch test to run a group of tests. A
batch test is particularly useful when your tests are long and you prefer to
run them overnight or at other off-peak hours. For more information, refer
to Chapter 14, “Running Batch Tests” in the Mercury WinRunner Advanced
Features User’s Guide.

Chapter 20 • Understanding Test Runs

429

WinRunner Test Run Modes

WinRunner provides three modes in which to run tests—Verify, Debug, and
Update. You use each mode during a different phase of the testing process.
You can set the default run mode in the General Options dialog box.

Verify

Use the Verify mode to check your application. WinRunner compares the
current response of your application to its expected response. Any
discrepancies between the current and expected responses are captured and
saved as verification results. When you finish running a test, by default the
Test Results window opens for you to view the verification results. For more
information, see Chapter 21, “Analyzing Test Results.”

You can save as many sets of verification results as you need. To do so, save
the results in a new folder each time you run the test. You specify the folder
name for the results using the Run Test dialog box. This dialog box opens
each time you run a test in Verify mode. For more information about
running a test script in Verify mode, see “Running a Test to Check Your
Application” on page 436.

Note: Before you run a test in Verify mode, you must have expected results
for the checkpoints you created. If you need to update the expected results
of your test, you must run the test in Update mode, as described on
page 431.

Debug

Use the Debug mode to help you identify bugs in a test script. Running a
test in Debug mode is the same as running a test in Verify mode, except that
debug results are always saved in the debug folder. Because only one set of
debug results is stored, the Run Test dialog box does not open automatically
when you run a test in Debug mode.

Part IV • Running Tests—Basic

430

When you finish running a test in Debug mode, the Test Results window
does not open automatically. To open the Test Results window and view the
debug results, you can click the Test Results button on the main toolbar or
choose Tools > Test Results.

Use WinRunner’s debugging facilities when you debug a test script:

➤ Use the Step commands to control how your tests run. For more
information, refer to Chapter 16, “Controlling Your Test Run” in the Mercury
WinRunner Advanced Features User’s Guide.

➤ Set breakpoints at specified points in the test script to pause tests while they
run. For more information, refer to Chapter 17, “Using Breakpoints” in the
Mercury WinRunner Advanced Features User’s Guide.

➤ Use the Watch List to monitor variables in a test script while the test runs.
For more information, refer to Chapter 18, “Monitoring Variables” in the
Mercury WinRunner Advanced Features User’s Guide.

➤ Use the Call Chain to follow and navigate the test flow. For more
information, refer to Chapter 9, “Calling Tests” in the Mercury WinRunner
Advanced Features User’s Guide.

➤ Use the Input Parameters option in the Run dialog box to check how your
test handles various parameter values before including the test in a call
chain. For more information, refer to Chapter 9, “Calling Tests” in the
Mercury WinRunner Advanced Features User’s Guide.

For more information about running a test script in Debug mode, see
“Running a Test to Debug Your Test Script” on page 437.

Tip: You should change the timeout variables to zero while you debug your
test scripts, to make them run more quickly. For more information on how
to change these variables, see Chapter 23, “Setting Global Testing Options,”
and refer to Chapter 21, “Setting Testing Options from a Test Script” in the
Mercury WinRunner Advanced Features User’s Guide.

Chapter 20 • Understanding Test Runs

431

Update

Use the Update mode to update the expected results of a test or to create a
new expected results folder. For example, you could update the expected
results for a GUI checkpoint that checks a push button, in the event that the
push button default status changes from enabled to disabled. You may want
to create an additional set of expected results if, for example, you have one
set of expected results when you run your application in Windows XP and
another set of expected results when you run your application in Windows
NT. For more information about generating additional sets of expected
results, see “Generating Multiple Expected Results” on page 439.

By default, WinRunner saves expected results in the exp folder, overwriting
any existing expected results.

You can update the expected results for a test in one of two ways:

➤ by globally overwriting the full existing set of expected results by running
the entire test using a Run command

➤ by updating the expected results for individual checkpoints and
synchronization points using the Run from Arrow command or a Step
command

For more information about running a test script in Update mode, see
“Running a Test to Update Expected Results” on page 438.

Setting the Run Mode for a Test

You use the Run mode toolbar button to set the run mode for a test.

To set the run mode for an open test:

 1 Click the arrow next to the Verify toolbar button in the Test toolbar.

 2 Select the run mode you want to use for the test. The icon and text in the
toolbar button changes according to the run mode you select.

Part IV • Running Tests—Basic

432

Setting the Default Run Mode

You can set the default run mode in the Run category of the General
Options dialog box. The mode set here determines the mode in which each
test opens.

For example, if you set Debug as the default run mode, then each test you
open, opens in the Debug run mode. If you change the run mode for a
particular test, that change remains in effect only while the test is open. If
you save and close the test and then reopen it, the test again opens in the
default run mode (Debug, in this example).

To set the default run mode:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Select the Run category.

Chapter 20 • Understanding Test Runs

433

 3 Select a mode in the Default run mode box.

 4 Click OK to save your changes and close the General Options dialog box.

Note: This option only applies to tests you open after you change the
setting. It does not affect tests already open in WinRunner.

WinRunner Run Commands

You use the Run commands to execute your tests. When a test is running,
the execution arrow in the left margin of the test script marks each TSL
statement as it is interpreted.

Run from Top

Choose the Run from Top command or click the corresponding From Top
button to run the active test from the first line in the test script. If the test
calls another test, WinRunner displays the script of the called test.
Execution stops at the end of the test script.

Run from Arrow

Choose the Run from Arrow command or click the corresponding From
Arrow button to run the active test from the line in the script marked by the
execution arrow. In all other aspects, the Run from Arrow command is the
same as the Run from Top command.

Run Minimized Commands

You run a test using a Run Minimized command to make the entire screen
available to the application being tested during test execution. The Run
Minimized commands shrink the WinRunner window to an icon while the
test runs. The WinRunner window automatically returns to its original size
at the end of the test, or when you stop or pause the test run. You can use
the Run Minimized commands to run a test either from the top of the test
script or from the execution arrow.

Part IV • Running Tests—Basic

434

The following Run Minimized commands are available:

➤ Run Minimized > From Top command

➤ Run Minimized > From Arrow command

Step Commands

You use a Step command or click a Step button to run a single statement in a
test script. For more information on the Step commands, refer to
Chapter 16, “Controlling Your Test Run” in the Mercury WinRunner Advanced
Features User’s Guide.

The following Step buttons are available:

Step button

Step Into button

The following Step commands are available:

➤ Step command

➤ Step Into command

➤ Step Out command

➤ Step to Cursor command

Stop

You can stop a test run immediately by choosing the Stop command or
clicking the Stop button. When you stop a test, test variables and arrays
become undefined. The test options, however, retain their current values.
See “Controlling the Test Run with Testing Options” on page 448 for more
information.

After stopping a test, you can access only those functions that you loaded
using the load command. You cannot access functions that you compiled
using the Run commands. Recompile these functions to regain access to
them. For more information, refer to Chapter 11, “Employing User-Defined
Functions in Tests” in the Mercury WinRunner Advanced Features User’s Guide.

Chapter 20 • Understanding Test Runs

435

Pause

You can pause a test by choosing the Pause command or clicking the Pause
button. Unlike Stop, which immediately terminates execution, a paused test
continues running until all previously interpreted TSL statements are
executed. When you pause a test, test variables and arrays maintain their
values, as do the test options. See “Controlling the Test Run with Testing
Options” on page 448 for more information.

To resume running a paused test, choose the appropriate Run command.
Test execution resumes from the point where you paused the test.

Choosing Run Commands Using Softkeys

You can activate several of WinRunner’s commands using softkeys.
WinRunner reads input from softkeys even when the WinRunner window is
not the active window on your screen, or when it is minimized. Note that
you can configure the default softkey configurations. For more information
about configuring softkeys, refer to Chapter 20, “Customizing the
WinRunner User Interface” in the Mercury WinRunner Advanced Features
User’s Guide.

The following table lists the default softkey configurations for running tests:

Command
Default Softkey
Combination

Function

RUN FROM TOP CTRL LEFT + F5 Runs the test from the beginning.

RUN FROM ARROW CTRL LEFT + F7 Runs the test from the line in the
script indicated by the arrow.

STEP F6 Runs only the current line of the
test script.

STEP INTO CTRL LEFT + F8 Like Step—however, if the current
line calls a test or function, the
called test or function appears in
the WinRunner window but is not
executed.

Part IV • Running Tests—Basic

436

Running a Test to Check Your Application

When you run a test to check the behavior of your application, WinRunner
compares the current results with the expected results. You specify the folder
in which to save the verification results for the test.

To run a test to check your application:

 1 If your test is not already open, choose File > Open or click the Open button
to open the test.

 2 Make sure that Verify is selected from the list of run modes on the Test
toolbar.

 3 Choose the appropriate Test menu command or click one of the Run
buttons.

STEP OUT CTRL LEFT + 7 Used in conjunction with Step
Into—completes the execution of a
called test or user-defined function.

STEP TO CURSOR CTRL LEFT + F9 Runs a test from the line executed
until the line marked by the
insertion point.

PAUSE TEST RUN PAUSE Stops the test run after all
previously interpreted TSL
statements have been executed.
Execution can be resumed from this
point.

STOP TEST RUN CTRL LEFT + F3 Stops the test run.

Command
Default Softkey
Combination

Function

Chapter 20 • Understanding Test Runs

437

The Run Test dialog box opens, displaying a default test run name for the
verification results.

 4 You can save the test results under the default test run name. To use a
different name, type in a new name or select an existing name from the list.

 5 To instruct WinRunner to display the test results automatically following
the test run (the default), select the Display test results at end of run check
box.

 6 To supply values for input parameters, click the Input Parameters button
and enter the values you want to use for this test run in the Input
Parameters dialog box. For more information, see “Supplying Values for
Input Parameters When Running a Test,” on page 447.

 7 Click OK. The Run Test dialog box closes and WinRunner runs the test. Test
results are saved with the test run name you specified.

Running a Test to Debug Your Test Script

When you run a test to debug your test script, WinRunner compares the
current results with the expected results. Any differences are saved in the
debug results folder. Each time you run the test in Debug mode, WinRunner
overwrites the previous debug results.

To run a test to debug your test script:

 1 If your test is not already open, choose File > Open to open the test.

 2 Select Debug from the drop-down list of run modes on the Test toolbar.

 3 Choose the appropriate Run or Debug menu command.

Part IV • Running Tests—Basic

438

To execute the entire test, choose Test > Run from Top or click the From Top
button. The test runs from the top of the test script and generates a set of
debug results.

To run part of the test, choose one of the following commands or click one
of the corresponding buttons:

Test > Run from Arrow

Test >Run Minimized > From Arrow

Debug > Step

Debug >Step Into

Debug >Step Out

Debug >Step to Cursor

The test runs according to the command you chose, and generates a set of
debug results.

Running a Test to Update Expected Results

When you run a test to update expected results, the new results replace the
expected results created earlier and become the basis of comparison for
subsequent test runs.

To run a test to update the expected results:

 1 If your test is not already open, choose File > Open to open the test.

 2 Select Update from the list of run modes on the Test toolbar.

 3 Choose the appropriate Test menu command.

To update the entire set of expected results, choose Test > Run from Top or
click the From Top button.

To update only a portion of the expected results, choose one of the
following commands or click one of the corresponding buttons:

Test > Run from Arrow

Test > Run Minimized > From Arrow

Chapter 20 • Understanding Test Runs

439

Debug >Step

Debug >Step Into

Debug >Step Out

Debug >Step to Cursor

WinRunner runs the test according to the Test menu command you chose
and updates the expected results. The default folder for expected results is
exp.

Generating Multiple Expected Results

You can generate more than one set of expected results for any test. You may
want to generate multiple sets of expected results if, for example, the
response of your application varies according to the time of day. In such a
situation, you would generate a set of expected results for each defined
period of the day.

To create a different set of expected results for a test:

 1 Choose File > Open or click the Open button. The Open Test dialog box
opens.

Part IV • Running Tests—Basic

440

 2 In the Open Test dialog box, select the test for which you want to create
multiple sets of expected results. In the Expected box, type in a unique
folder name for the new expected results.

Note: To create a new set of expected results for a test that is already open,
choose File > Open or click the Open button to open the Open Test dialog
box, select the open test, and then enter a name for a new expected results
folder in the Expected box.

 3 Click OK. The Open Test dialog box closes.

 4 Choose Update from the list of run modes on the Test toolbar.

 5 Choose Test > Run from Top or click the From Top button to generate a new
set of expected results.

WinRunner runs the test and generates a new set of expected results, in the
folder you specified.

Running a Test with Multiple Sets of Expected Results

If a test has multiple sets of expected results, you specify which expected
results to use before running the test.

To run a test with multiple sets of expected results:

 1 Choose File > Open or click the Open button. The Open Test dialog box
opens.

Note: If the test is already open, but it is accessing the wrong set of expected
results, you must choose File > Open or click the Open button to open the
Open Test dialog box again, next select the open test, and then choose the
correct expected results folder in the Expected box.

 2 In the Open Test dialog box, click the test that you want to run. The
Expected box displays all the sets of expected results for the test you chose.

Chapter 20 • Understanding Test Runs

441

 3 Select the required set of expected results in the Expected box, and click
Open. The Open Test dialog box closes.

 4 Select Verify from the drop-down list of run modes on the Test toolbar.

 5 Choose the appropriate Test menu command. The Run Test dialog box
opens, displaying a default test run name for the verification results—for
example, res1.

 6 To supply values for input parameters, click Input Parameters and enter the
values you want to use for this test run in the Input Parameters dialog box.
For more information, see “Supplying Values for Input Parameters When
Running a Test,” on page 447.

 7 Click OK to begin the test run, and to save the test results in the default
folder. To use a different verification results folder, type in a new name or
choose an existing name from the list.

The Run Test dialog box closes. WinRunner runs the test according to the
Test menu command you chose and saves the test results in the folder you
specified.

Part IV • Running Tests—Basic

442

Running a Test to Check Date Operations

Once you have created a test that checks date operations, as described in
Chapter 17, “Checking Dates,” you run your test to check how your
application responds to date information in your test.

Note that the Enable date operations option must be selected in the General
category of the Options dialog box when you run a test with date
checkpoints. Otherwise, the date checkpoints will fail.

When you run a test that checks date operations, WinRunner interprets the
test script line-by-line and performs the required operations on your
application. At each checkpoint in the test script, it compares the expected
dates with the actual dates in your application.

Before you run your test, you first specify date operations settings and the
general run mode of the script.

Date operations run mode settings specify:

➤ Date format, to determine whether to use the script’s original date formats or
to convert dates to new formats.

➤ Aging, to determine whether or not to age the dates in the script.

You can age dates incrementally (by specifying the years, months, and days
by which you want to age the dates) or statically (by defining a specific
date).

The general run mode settings, Verify, Debug, and Update, are described
earlier in this chapter. Note that during a test run in Update mode, dates in
the script are not aged or translated to a new format.

Setting the Date Operations Run Mode

Before you run a test that checks date operations, you set the date
operations run mode.

Chapter 20 • Understanding Test Runs

443

To set the date operations run mode:

 1 Choose Tools > Date > Run Mode (available only when the Enable date
operations check box is selected in the General category of the General
Options dialog box). The Date Operations Run Mode dialog box opens.

You can also open this dialog box from the Run Test dialog box by clicking
the Change button (only when the Enable date operations check box is
selected in the General category of the General Options dialog box). For
more information on the General Options dialog box, see Chapter 23,
“Setting Global Testing Options.” For more information on the Run Test
dialog box, see “Running Tests to Check Date Operations”.

 2 If you are running the test on an application that was converted to a new
date format, select the Convert to new date format check box.

Part IV • Running Tests—Basic

444

 3 If you want to run the test with aging, select the Apply Aging check box and
do one of the following:

➤ To increment all dates, click Add to recorded date and specify the years,
months or days. You can also align dates to a particular day by clicking
the Align to check box and specifying the day.

➤ To change all dates to a specific date, click Change all dates to and select
a date from the list.

 4 Click OK.

Note: When you run a test, you can override the options you specified in
the Date Operations Run Mode dialog box. For more information, see
“Overriding Date Settings” on page 358.

Running Tests to Check Date Operations

After you set the date operations run mode, you can run your test script.

To run a test that checks date operations:

 1 If the test is not already open, open it.

 2 Choose a general run mode (Verify, Debug, or Update) from the list of
modes on the Test toolbar.

 3 Choose the appropriate Test menu command or click one of the Run
buttons. For more information on Run commands, see “WinRunner Run
Commands” on page 433.

Note that in Update mode, dates in the script are not aged or translated to a
new format. In Debug mode the test script immediately starts to run using
the date operations run mode settings defined in the Date Operations Run
Mode dialog box.

Chapter 20 • Understanding Test Runs

445

If you selected Verify mode, the Run Test dialog box for date operations
opens.

 4 Assign a name to the test run. Use the default name appearing in the Test
Run Name field, or type in a new name.

 5 To supply values for input parameters, click Input Parameters and enter the
values you want to use for this test run in the Input Parameters dialog box.
For more information, see “Supplying Values for Input Parameters When
Running a Test” on page 447.

 6 If you want to change the date operations run mode settings, click Change
and specify the date operations run mode settings.

 7 Click OK to close the dialog box and run the test.

Changing Date Operations Run Mode Settings with TSL

You can set conditions for running a test checking date operations using the
following TSL functions:

➤ The date_align_day function ages dates to a specified day of the week or
type of day. It has the following syntax:

date_align_day (align_mode, day_in_week);

Part IV • Running Tests—Basic

446

➤ The date_disable_format function disables a date format. It has the
following syntax:

date_disable_format (format);

➤ The date_enable_format function enables a date format. It has the
following syntax:

date_enable_format (format);

➤ The date_leading_zero function determines whether to add a zero before
single-digit numbers when aging and translating dates. It has the following
syntax:

date_leading_zero (mode);

➤ The date_set_aging function ages the test script. It has the following syntax:

date_set_aging (format, type, days, months, years);

➤ The date_set_run_mode function sets the date operations run mode. It has
the following syntax:

date_set_run_mode (mode);

➤ The date_set_year_limits function sets the minimum and maximum years
valid for date verification and aging. It has the following syntax:

date_set_year_limits (min_year, max_year);

➤ The date_set_year_threshold function sets the year threshold (cut-year
point). If the threshold is 60, all years from 60 to 99 are recognized as 20th
century dates and all dates from 0 to 59 are recognized as 21st century dates.
This function has the following syntax:

date_set_year_threshold (number);

For more information on TSL date_ functions, refer to the TSL Reference.

Chapter 20 • Understanding Test Runs

447

Supplying Values for Input Parameters When Running a
Test

If your test has one or more input parameters defined, you can provide
values for those parameters when you start to run your test. These values are
used only for the current test run and are not saved with the test.

If you do not supply values for input parameters when you run your test,
the default values for the input parameters, if defined, are used. Otherwise,
your parameters will receive empty values. The test will run, but steps may
fail if they require non-empty values.

For more information on default parameter values, see “Managing Test
Parameters” on page 515.

To supply a value for an Input Parameter

 1 In the Run Test dialog box, click the Input Parameters button. The Input
Parameters dialog box opens.

 2 Click the Value cell in the row of the Input Parameter whose value you want
to supply. Enter the value in the displayed edit area.

Part IV • Running Tests—Basic

448

 3 Repeat step 2 for each input parameter whose value you want to supply.

 4 Click OK.

For more information about Input Parameters, refer to Chapter 9, “Calling
Tests” in the Mercury WinRunner Advanced Features User’s Guide.

Controlling the Test Run with Testing Options

You can control how a test is run using WinRunner’s testing options. For
example, you can set the time WinRunner waits at a bitmap checkpoint for
a bitmap to appear, or the speed that a test is run.

You set testing options in the General Options dialog box. Choose
Tools > General Options to open this dialog box. You can also set testing
options from within a test script using the setvar function.

Each testing option has a default value. For example, the default for the
threshold for difference between bitmaps option (that defines the minimum
number of pixels that constitute a bitmap mismatch) is 0. It can be set
globally in the Run > Settings category of the General Options dialog box.
For a more comprehensive discussion of setting testing options globally, see
Chapter 23, “Setting Global Testing Options.”

You can also set the corresponding min_diff option from within a test script
using the setvar function. For a more comprehensive discussion of setting
testing options from within a test script, refer to Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner Advanced
Features User’s Guide.

If you assign a new value to a testing option, you are prompted to save this
change to your WinRunner configuration when you exit WinRunner.

Chapter 20 • Understanding Test Runs

449

Solving Common Test Run Problems

When you run your Context Sensitive test, WinRunner may open the Run
wizard. Generally, the Run wizard opens when WinRunner has trouble
locating an object or a window in your application. It displays a message
similar to the one below.

There are several possible causes and solutions:

Possible Causes Possible Solutions

You were working with the
temporary GUI map, which you
did not save when you exited
WinRunner. Objects stored in a
temporary GUI map are not
necessarily saved from session to
session and you should not rely
on their existence in the GUI map
after you close WinRunner.

WinRunner should relearn your application,
so that the logical names and physical
descriptions of the GUI objects are stored in
the GUI map. When you are done, make
sure to save the GUI map file. When you
start your test, make sure to load your GUI
map file. These steps are described in
Chapter 5, “Working in the Global GUI Map
File Mode.”

Part IV • Running Tests—Basic

450

You saved the GUI map file, but it
is not loaded.

Load the GUI file for your test. You can load
the file manually each time with the GUI
Map Editor, or you can add a GUI_load
statement to the beginning of your test
script. For more information, see Chapter 5,
“Working in the Global GUI Map File
Mode.”

The object is not identified during
a test run because it has a
dynamic label. For example, you
may be testing an application that
contains an object with a varying
label, such as any window that
contains the application name
followed by the active document
name in the title. (In the sample
Flight Reservation application,
the “Fax Order” window also has
a varying label.)

Use a regular expression to enable
WinRunner to recognize objects based on a
portion of its physical description. For more
information on regular expressions, refer to
Chapter 6, “Using Regular Expressions” in
the Mercury WinRunner Advanced Features
User’s Guide.

Use the GUI Map Configuration dialog box
to change the physical properties that
WinRunner uses to recognize the
problematic object. For more information on
GUI Map configuration, refer to Chapter 2,
“Configuring the GUI Map” in the Mercury
WinRunner Advanced Features User’s Guide.

The physical description of the
object/window does not match
the physical description in the
GUI map.

 Modify the physical description in the GUI
map, as described in “Modifying Logical
Names and Physical Descriptions” on
page 77.

The logical name of the
object/window in the test script
does not match the logical name
in the GUI map.

Modify the logical name of the
object/window in the GUI map, as described
in “Modifying Logical Names and Physical
Descriptions” on page 77.

Modify the logical name of the
object/window manually in the test script.

Possible Causes Possible Solutions

Chapter 20 • Understanding Test Runs

451

Tip: WinRunner can learn your application systematically from the GUI
Map Editor before you start recording on objects within your application.
For more information, see Chapter 5, “Working in the Global GUI Map File
Mode.”

Note: For additional information on solving GUI map problems while
running a test, see “Guidelines for Working in the Global GUI Map File
Mode” on page 63.

The object/window has a different
number of obligatory or optional
properties (in the GUI map
configuration) than in the GUI
map.

In the Configure Class dialog box, configure
the obligatory or optional properties which
are learned by WinRunner for that class of
object, so they will match the physical
description in the GUI map, as described in
Chapter 2, “Configuring the GUI Map” in
the Mercury WinRunner Advanced Features
User’s Guide.

WinRunner should relearn the
object/window in the GUI map so that it will
learn the obligatory and optional properties
configured for that class of object, as
described in Chapter 5, “Working in the
Global GUI Map File Mode.”

Possible Causes Possible Solutions

Part IV • Running Tests—Basic

452

453

21
Analyzing Test Results

After you run a test or a component from WinRunner, you can view a report
of all the major events that occurred during the run in the Test Results
Window. You can view your results in the standard WinRunner report view
or in the Unified report view.

This chapter describes:

➤ About Analyzing Test Results

➤ Understanding the Unified Report View Results Window

➤ Customizing the Test Results Display

➤ Understanding the WinRunner Report View Results Window

➤ Viewing the Results of a Test Run

➤ Viewing Checkpoint Results

➤ Analyzing the Results of a Single-Property Check

➤ Analyzing the Results of a GUI Checkpoint

➤ Analyzing the Results of a GUI Checkpoint on Table Contents

➤ Analyzing the Expected Results of a GUI Checkpoint on Table Contents

➤ Analyzing the Results of a Bitmap Checkpoint

➤ Analyzing the Results of a Database Checkpoint

➤ Analyzing the Expected Results of a Content Check in a Database
Checkpoint

➤ Updating the Expected Results of a Checkpoint in the WinRunner Report
View

Part IV • Running Tests—Basic

454

➤ Viewing the Results of a File Comparison

➤ Viewing the Results of a GUI Checkpoint on a Date

➤ Reporting Defects Detected During a Test Run

About Analyzing Test Results

After you run a test, you can view the results in the Test Results window. The
appearance of this window depends on the Report View option you select in
the Run category of the General Options dialog box. The type of results that
are displayed depends on the run mode that is currently selected.

Understanding Test Result Views

There are two types of Test Results Views:

➤ WinRunner report view—Displays the test results in a Windows-style viewer.

If you run a test that includes a call to a QuickTest test, the WinRunner
report view displays only basic information about the results of the
QuickTest test.

When running tests that call QuickTest tests, it is recommended to use the
Unified report view.

➤ Unified report view—Displays the results in an HTML-style viewer.

The unified report viewer is identical to the style used for QuickTest
Professional test results.

If you run a test that includes a call to a QuickTest test (version 6.5 or later),
the unified report view enables you to view detailed results of each step in
the called QuickTest test.

Regardless of the selected report view, the test results window always
contains a description of the major events that occurred during the test run,
such as GUI, bitmap, or database checkpoints, file comparisons, and error
messages. It also includes tables and pictures to help you analyze the results.

Chapter 21 • Analyzing Test Results

455

Understanding Test Result Types

For WinRunner tests, you can view verification, debug, or expected results.
For WinRunner components, you can view debug or expected results.

For verification results, only the test name is displayed in the Test Results
titlebar. For debug results, [debug] is displayed next to the test or
component name. For expected results, [exp] is displayed next to the test or
component name.

When you open the Test Results window in the WinRunner report view,
window always displays the results of the most recent run. However, when
you open the Test Results window in the Unified report view, the type of
results that are displayed correspond to the run mode that is selected in the
main WinRunner window when you select to open the results, if such
results exist.

For example, if the currently selected test is set to Verify run mode, then
when you open the Unified report view, the most recent verification results
are displayed. If the currently selected component is set to Debug run mode,
then the debug results are displayed.

If no results exist for your test or component that correspond to the run
mode that is currently selected when you open the Unified report view, the
Open Test Results dialog box opens over the Test Results window, enabling
your to select other results to view.

Note: When working with components, you can view results of an
individual component only by opening the Test Results window while the
component is open in WinRunner. You cannot browse to results of an
individual component using the Open Test Results dialog box. You can use
the Open Test Results dialog box to browse for WinRunner test results or for
results of a complete business process test.

For more information on run modes, see “WinRunner Test Run Modes” on
page 429.

For more information on opening test results, see “Opening Test Results to
View a Selected Test Run” on page 477.

Part IV • Running Tests—Basic

456

Understanding the Unified Report View Results Window

If you are new to WinRunner, or you are integrating WinRunner and
QuickTest tests, it is recommended to use the Unified Report view. For
information on analyzing the results of a called QuickTest test, refer to
Chapter 25, “Integrating with QuickTest Professional” in the Mercury
WinRunner Advanced Features User’s Guide.

To view the unified report, choose Tools > General Options. In the Run
category, confirm that Unified report view is selected.

Note: You can display the unified report view for a test only if either the
Unified report view or the Generate unified report information option was
selected when you ran the test. If you ran a test with WinRunner report view
selected and Generate unified report information cleared, then you cannot
view the unified report for that test run.

Chapter 21 • Analyzing Test Results

457

To open the Test Results window, choose Tools > Test Results or click the
Test Results button. The WinRunner Test Results window opens in the
unified report view.

For more information on opening the test results window, see “Viewing the
Results of a Test Run” on page 474.

Test Name and Results Location

The Unified Report View titlebar displays the name of the test and the test
results folder.

Results tree

Test summary

Event summary

Test name and
results location

Menu bar
Toolbar

Part IV • Running Tests—Basic

458

Menu Bar and Toolbar

The menu bar contains the options that you can use to analyze the test
results. Several of these options can also be performed using the
corresponding Test Results toolbar button, as indicated below.

➤ File menu—Contains options for opening and printing test results, and
exiting the Test Results window.

➤ Open—Opens the Open Test Results dialog box, which enables you to
select a test and open the most recent results for that test.

➤ Print—Opens the Print dialog box, which enables you to select options
for what to print and how to format the printed results. You can also
select a user-defined XSL file with a customized design for the printed
report. For more information, see “Printing Test Results” on page 463.

➤ Print Preview—Opens the Print Preview dialog box, which enables you to
select options for what and how to display the results information. You
can also select a user-defined XSL file with a customized design for the
online preview. For more information, see “Previewing Test Results” on
page 464.

➤ Recent Files—Displays the four most recent files that were opened in the
Test Results window.

➤ Exit—Closes the Test Results window.

➤ View—Contains options for viewing test results window components and
analyzing specific elements of the test results

➤ Test Results Toolbar—Displays or hides the test results toolbar.

➤ Status Bar—Displays or hides the test results status bar.

➤ Filters—Opens the Filters dialog box, which enables you to choose which
types of test steps you want to view. For more information, see “Filtering
Test Results” on page 462.

➤ Expand All—Expands all step nodes in the test tree.

➤ Collapse All—Collapses all step nodes in the test tree.

➤ Tools—Contains options for connecting to and adding defects to Quality
Center and for navigating the test to find steps with a specified result status.

Chapter 21 • Analyzing Test Results

459

➤ Add Defect—If the Test Results window is already connected to Quality
Center, selecting this option opens the Quality Center Add Defect dialog
box, which enables you to add a defect to the Quality Center project.

If you are not yet connected, choosing this option opens the Quality
Center Connection dialog box. After you connect to Quality Center, the
Quality Center Add Defect dialog box opens.

➤ Quality Center Connection—Opens the Quality Center Connection
dialog box, which enables you to connect the Test Results window to a
Quality Center project.

Note: The unified report viewer is a standalone application. Therefore, even
if WinRunner is connected to Quality Center, you must still connect the
Test Results window to the Quality Center project in order to report bugs
from the Test Results window.

➤ Find—Opens the Find dialog box, which enables you to navigate up or
down through your test to find result steps with the selected status. For
more information, see “Finding Results Steps” on page 461.

Once you have set search criteria in the Find dialog box, you can use the
Find Previous and Find Next toolbar buttons to jump to the next or
previous step that matches the search criteria.

You can also use the Go to Previous Node and Go to Next Node toolbar
buttons to navigate through your test results report.

➤ Help—Contains options for accessing additional information about the Test
Results window.

➤ Contents and Index—Opens the Test Results Help file.

➤ About Test Results—Opens a window with summary information about
the Test Results application.

Part IV • Running Tests—Basic

460

Results Tree

The Results tree shows a hierarchical view of all events performed during the
test run. Selecting an event in the results tree displays additional details of
the event in the Event Summary pane. You can expand and collapse the tree
or individual nodes in the tree. You can also use the Filter and Find options
for easier navigation.

Test Summary

Contains overview information about the test run including the run start
time, run end time, total test run time, user name, and a summary of
checkpoint results.

Note: Unlike the WinRunner report view, the Unified report view counts
single-property checks in the GUI checkpoint summary. Therefore, the total
number of GUI checkpoints in the Unified report view may differ from the
number displayed in the WinRunner report view.

Event Summary

Contains summary information about the event that is currently selected in
the results tree, including the event type, status, line number, event time,
and a basic description of what was checked.

For checkpoints (including single-property checks), the Event Summary also
includes a link to the event details. For example, if you click the Show Event
Details link for a bitmap checkpoint, then the expected, actual, and
difference images open. If you click the link for a GUI Checkpoint, the GUI
Checkpoint Results window opens.

Note: To view checkpoint details, WinRunner must be installed on the Test
Results computer.

Chapter 21 • Analyzing Test Results

461

Finding Results Steps

The Find dialog box enables you to find specified steps such as errors or
warnings from within the Test Results. You can select a combination of
statuses to find, for example, steps that are Passed and Done.

The following options are available:

Option Description

Failed Finds a failed step in the test results.

Warning Find a step where a warning was issued.

Passed Finds a passed step in the test results.

Done Finds a step that has finished its run.

Direction Indicates whether to search Up or Down within the steps
of the test results.

Part IV • Running Tests—Basic

462

Filtering Test Results

The Filters dialog box enables you to filter which results are displayed in the
test results tree, according to their status.

Note: The Iterations and Content options are available only from the
QuickTest Test Results window. They are not available when viewing test
results in WinRunner.

The following options are available:

Option Description

Status • Fail—Displays the test results for the steps that failed.

• Warning—Displays the test results for the steps with
a Warning status (steps that did not pass, but did not
cause the test to fail).

• Pass—Displays the test results for the steps that
passed.

• Done—Displays the test results for the steps with a
Done status (steps that were performed successfully
but did not receive a pass, fail, or warning status).

Chapter 21 • Analyzing Test Results

463

Printing Test Results

You can print test results from the Test Results window. You can select the
type of report you want to print, and you can also create and print a
customized report.

To print the test results:

 1 Click the Print button or choose File > Print. The Print dialog box opens.

 2 Select a Print range option:

➤ All—Prints the results for the entire test or component.

➤ Selection—Prints test results information for the selected branch in the
test results tree.

 3 Specify the Number of copies that you want to print.

 4 Select a Print format option:

➤ Short—Prints a summary line (when available) for each item in the test
results tree. This option is available only if you selected All in step 2.

➤ Detailed—Prints all available information for each item in the test results
tree.

➤ User-defined XSL—Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the printed report, and the way it should appear. For more
information, see “Customizing the Test Results Display” on page 466.

Part IV • Running Tests—Basic

464

Note: The Print format options are available only for test results created
with WinRunner, version 8.0 and later.

 5 Click Print to print the selected test results information to your default
Windows printer.

Previewing Test Results

You can preview test results on screen before you print them. You can select
the type and quantity of information you want to view, and you can also
display the information in a customized format.

Note: The Print Preview option is available only for test results created with
WinRunner, version 8.0 and later.

To preview the test results:

 1 Choose File > Print Preview. The Print Preview dialog box opens.

Chapter 21 • Analyzing Test Results

465

 2 Select a Print range option:

➤ All—Previews the test results for the entire test or component.

➤ Selection—Previews test results information for the selected branch in
the test results tree.

 3 Select a Print format option:

➤ Short—Previews a summary line (when available) for each item in the
test results tree. This option is only available if you selected All in step 2.

➤ Detailed—Previews all available information for each item in the test
results tree.

➤ User-defined XSL—Enables you to browse to and select a customized .xsl
file. You can create a customized .xsl file that specifies the information to
be included in the preview, and the way it should appear. For more
information, see “Customizing the Test Results Display” on page 466.

 4 Click Preview to preview the appearance of your test results on screen.

Tip: If some of the information is cut off in the preview, for example, if
checkpoint names are too long to fit in the display, click the Page Setup
button in the Print Preview window and change the page orientation from
Portrait to Landscape.

Part IV • Running Tests—Basic

466

Customizing the Test Results Display

The results of each WinRunner run session are saved in an .xml file (called
results.xml). This .xml file stores information about each of the test result
nodes in the left pane of the display.

Each node in the test results tree is an element in the results.xml file. In
addition, there are different elements that represent different types of
information displayed in the test results. The sample results.xml shows the
basic structure of the results.xml file. In this image the Step element nodes
are collapsed. You can view the child elements and attributes of the Step
element by viewing the results.xml file of a test containing a variety of
different types of steps.

Note that if your test calls a QuickTest test, then the structure of the nodes
under the QuickTest call are somewhat different. For more information on
the QuickTest results xml structure, refer to the QuickTest Professional
documentation.

You can take test result information from the .xml file and use XSL to
display the information you require in a customized format, such as for
printing or viewing a print preview.

XSL provides you with the tools to describe exactly which test result
information to display and exactly where and how to display/print it. You
can also modify the .css file referenced by the .xsl file, to change the
appearance of the report (for example, fonts, colors, and so forth).

Chapter 21 • Analyzing Test Results

467

You may find it easier to modify the existing .xsl and .css files provided with
WinRunner, instead of creating your own customized files from scratch. The
files are located in <WinRunner Installation Folder>\UnifiedReport\dat, and
are named as follows:

➤ PShort.xsl—Specifies the content of the test results report printed when you
select the Short option in the Print dialog box.

➤ PDetails.xsl—Specifies the content of the test results report printed when
you select the Detailed option in the Print dialog box.

➤ PSelection.xsl—Specifies the content of the test results report printed when
you select the Selection option in the Print dialog box.

➤ PResults.css—Specifies the appearance of the test results print preview. This
file is referenced by all three .xsl files.

Understanding the WinRunner Report View Results
Window

If you have worked with previous versions of WinRunner, and you are not
analyzing the results of a called QuickTest test, you may feel more
comfortable using the WinRunner report view.

To view the WinRunner report, choose Tools > General Options. In the Run
category, confirm that WinRunner report view is selected.

Note: By default, the WinRunner report is displayed and unified report files
are created so that you can choose to view the Unified report for the test run
at a later time. If you do not want WinRunner to generate unified report
files, clear the Generate unified report information option.

Part IV • Running Tests—Basic

468

To open the Test Results window, choose Tools > Test Results or click the
Test Results button. The WinRunner Test Results window opens in the
WinRunner report view.

Note: You can customize the background of the Mercury Test Results
window. For more information, see “Setting Appearance Options,” on
page 585.

For more information on opening the Test Results window, see “Viewing the
Results of a Test Run” on page 474.

Test tree

Test summary

Results location

Test log

Test name

Menu bar and
Toolbar

Chapter 21 • Analyzing Test Results

469

Test Name

The Test Results title bar displays the full path of the test.

Menu Bar and Toolbar

The menu bar contains the options that you can use to analyze the test
results. Several of these options can also be performed using the
corresponding Test Results toolbar button, as indicated below.

➤ File menu—Contains options for opening, closing, and printing test results,
and exiting the Test Results window.

➤ Open—Enables you to select a test and open the most recent results for
that test.

➤ Close—Closes the active test results window.

➤ Print—Opens the Print dialog box, enabling you to print a text-only
version of the information displayed in the test summary and test log
panes.

➤ Exit—Exits the WinRunner Test Results viewer.

➤ Options menu—Contains options for viewing and analyzing specific
elements of the test results.

➤ Filters—Opens the Filters dialog box, which enables you to select which
events are included in the test log.

➤ Bitmap Controls—Opens the Bitmap Controls dialog box, which enables
you to select which images to include in the bitmaps display for bitmap
checkpoints. For more information, see “Analyzing the Results of a
Bitmap Checkpoint” on page 493.

➤ Show TSL—Opens the WinRunner test in the WinRunner window (if it is
not already open) and highlights the line in the WinRunner test
corresponding to the results line currently selected in the test log.

➤ Display—Opens the results details for the currently selected line in the
test log. Choosing this option is equivalent to double-clicking the line in
the test log.

Part IV • Running Tests—Basic

470

➤ Update—Updates the expected data for the selected bitmap, GUI, or
database checkpoint to match the actual results of the selected
checkpoint. Enabled only when a failed bitmap, GUI, or database
checkpoint is selected.

➤ Mismatches Only—Hides bitmap, database, and GUI checkpoint events
with Pass or OK status. This option does not affect property checks or
other non-checkpoint events.

➤ Tools menu—Contains options for generating text-only results files and
reporting defects to Quality Center.

➤ Text Report—Generates and displays a text-only version of the test
results for the active test results window.

➤ Report Bug—Reports a bug for the selected event in the test log to the
Quality Center project to which you are currently connected. (This
option is enabled only when you are connected to a Quality Center
project).

➤ Window menu—Contains options for opening additional test results
windows and arranging them within the main Test Results window.

➤ New Window—Opens a new Test Results window containing a copy of
the results of the currently active results window. To view the results for a
different run of the displayed results, select the results name from the
Results location box.

➤ Cascade—Displays all open Test Results windows in a cascading display.

➤ Tile—Horizontally tiles all open Test Results windows.

➤ Arrange Icons—Arranges minimized test results icons in the Test Results
window.

➤ Help—Click the Help toolbar button and then click anywhere in the Test
Results window to view WinRunner Test Results Help.

Results Location

The results location box enables you to choose which results to display for
the test. You can view the expected results (exp) or the actual results for a
specified test run.

Chapter 21 • Analyzing Test Results

471

Test Tree

The test tree shows all tests executed during the test run. The first test in the
tree is the calling test. Tests below the calling test are the called tests. To view
the results of a test, click the test name in the tree.

Test Summary

The following information appears in the test summary:

➤ Test Results

Indicates whether the test passed or failed. For a batch test, this refers to the
batch test itself and not to the tests that it called. Double-click the Test
Result branch in the tree to view the following details:

Total number of bitmap checkpoints: The total number of bitmap
checkpoints that occurred during the test run. Double-click to view a
detailed list of the checkpoints. Each listing contains important information
about the checkpoint. For example:

provides the following information:

Double-click the bitmap checkpoint listing to display the contents of the
bitmap checkpoint. For more information, see “Analyzing the Results of a
Bitmap Checkpoint” on page 493.

Total number of GUI checkpoints: The total number of GUI and database
checkpoints that occurred during the test run.

Element Description

Indicates that the checkpoint passed.

Img2 The name of the captured bitmap file.

:1 The first time this checkpoint was run in the script.

checkpt_loop The name of the test.

(19) The 19th line in the test script contains the obj_check_bitmap
or win_check_bitmap statement.

Part IV • Running Tests—Basic

472

Note: Unlike the Unified report view, the WinRunner report view does not
count single-property checks in the GUI checkpoint summary. Therefore,
the total number of GUI checkpoints in the WinRunner report view may
differ from the number displayed in the Unified report view.

Double-click to view a detailed list of the checkpoints. For example, the
elements in the listing

gui1:4 checkpt_loop (12)

have the following meanings:

Double-click the detailed description of the GUI checkpoint to display the
GUI Checkpoint Results dialog box for that checkpoint. For more
information, see “Analyzing the Results of a GUI Checkpoint” on page 484.

➤ General Information

Double-click the General Information icon to view the following test details:

Date: The date and time of the test run.

Operator Name: The name of the user who ran the test.

Expected Results Folder: The name of the expected results folder used for
comparison by the GUI and bitmap checkpoints.

Total Run Time: Total time (hr:min:sec) that elapsed from start to finish of
the test run.

Element Description

gui1 The name of the expected results file.

:4 The fourth time this checkpoint was run in the script.

checkpt_loop The name of the test.

(12) The12th line in the test script contains the obj_check_gui or
win_check_gui statement.

Chapter 21 • Analyzing Test Results

473

Test Log

The test log provides detailed information on every major event that
occurred during the test run. These include the start and termination of the
test, GUI and bitmap checkpoints, file comparisons, changes in the progress
of the test flow, changes to system variables, displayed report messages, calls
to other tests, and run time errors.

➤ A row describing a mismatch or failure appears in red; a row describing a
successful event appears in green.

➤ The Line column displays the line number in the test script at which the
event occurs.

➤ The Event column describes the event, such as the start or end of a
checkpoint or of the entire test.

➤ The Details column provides specific information about the event, such as
the name of the test (for starting or stopping a test), the name of the
expected results file (for a checkpoint), or a message (for a tl_step
statement).

➤ The Result column displays whether the event passed or failed, if applicable.

➤ The Time column displays the amount of time elapsed (in
hours:minutes:seconds) from when the test started running until the start of
the event.

Double-click the event in the log to view the following information:

➤ For a bitmap checkpoint, you can view the expected bitmap and the actual
bitmap captured during the run. If a mismatch was detected, you can also
view an image showing the differences between the expected and actual
bitmaps.

➤ For a GUI checkpoint, you can view the results in a table. The table lists all
the GUI objects included in the checkpoint and the results of the checks for
each object.

➤ For a file comparison, you can view the two files that were compared to each
other. If a mismatch was detected, the non-matching lines in the files are
highlighted.

Part IV • Running Tests—Basic

474

➤ For a call to another test in batch mode, you can view whether the call
statement passed. Note that even though a call statement is successful, the
called test itself may fail, based on the usual criteria for tests failing. You can
set criteria for failing a test in the Run > Settings category of the General
Options dialog box. For additional information, see Chapter 23, “Setting
Global Testing Options.”

Viewing the Results of a Test Run

After a test or component run, you can view results in the Test Results
window. The Test Results window opens and displays the most recent results
of the current test or component. You can view verification (for tests),
expected, and debug results in the Test Results window.

To view the results of a test run:

 1 Confirm that the report view you prefer is selected in the Run category of
the General Options dialog box. For more information, see “About
Analyzing Test Results” on page 454 and “Setting Test Run Options” on
page 562.

 2 To open the Test Results window, choose Tools > Test Results, or click the
Test Results button in the main WinRunner window.

To view the results of a non-active test, click the Open button or choose File
> Open. In the Open Test Results dialog box, select or browse to the test
whose results you want to view.

Note: If you are browsing to a test from the Unified report view, confirm
that WinRunner Tests is selected as the test type in the Files of type edit box.

Note that if you ran a test in Verify mode and the Display Test Results at End
of Run check box was selected (the default) in the Run Test dialog box, the
Test Results window automatically opens when a test run is completed. For
more information, see Chapter 20, “Understanding Test Runs.”

Chapter 21 • Analyzing Test Results

475

 3 By default, the Test Results window displays the results of the most recently
executed test run.

To view other test run results:

➤ In the Unified report view—Click the Open button or choose File > Open
and select a test run from the Open Test Results dialog box. For more
information, see “Opening Test Results to View a Selected Test Run” on
page 477.

➤ In the WinRunner report view—Click the Results location box and select
a test run.

 4 To view a text version of a report, display the WinRunner report view and
choose Tools > Text Report from the Test Results window. The report is
displayed in a Notepad window.

 5 To view only specific types of results in the events column in the test log,
choose Options > Filters or click the Filters button.

 6 To print test results directly from the Test Results window, choose File > Print
or click the Print button.

In the Print dialog box, choose the number of copies you want to print and
click OK. Test results print in a text format.

 7 To close the Test Results window, choose File > Exit.

To view the results of a test run from a Quality Center database:

 1 Choose Tools > Test Results or click the Test Results button in the main
WinRunner window.

The Test Results window opens, displaying the test results of the latest test
run of the active test.

 2 Connect to Quality Center:

➤ In the Unified report view—Click the Quality Center Connection button
or choose Tools > Quality Center Connection.

➤ In the WinRunner report view—Switch to the WinRunner main window
and choose Tools > Quality Center Connection.

Part IV • Running Tests—Basic

476

 3 Select the Quality Center test results:

➤ In the Unified report view—Choose File > Open. The Open Test Results
dialog box displays results for the test currently open in the Test Results
Window. If you want to view results for a different test, click Browse. The
Open Test Results from Quality Center Project dialog box opens and
displays the test plan tree.

➤ In the WinRunner report view—Choose File > Open. The Open Test
Results from Quality Center Project dialog box opens and displays the
test plan tree.

 4 In the Test Type box, select WinRunner Tests, WinRunner Batch Tests, or All
Tests.

 5 Select the relevant subject in the test plan tree. To expand the tree and view
a sublevel, double-click a closed folder. To collapse a sublevel, double-click
an open folder.

 6 Select a test run to view.

The Run Name column contains the names of the test runs and displays
whether your test run passed or failed. (If you open this dialog box from the
WinRunner report view, the Run Name of the selected run is also displayed
in the read-only Run Name edit box.)

Chapter 21 • Analyzing Test Results

477

The Test Set column contains the names of the test sets.

Entries in the Status column indicate whether the test passed or failed.

The Run Date column displays the date and time when the test set was run.

 7 Click OK to view the results of the selected test.

For more information on viewing the results of a test run from a Quality
Center database, refer to Chapter 26, “Managing the Testing Process” in the
Mercury WinRunner Advanced Features User’s Guide.

Opening Test Results to View a Selected Test Run

You can view the saved results for the current test or component, or you can
view the saved results for other WinRunner or business process tests. You
select the test results to open for viewing from the Open Test Results dialog
box.

Part IV • Running Tests—Basic

478

The results of test runs for the currently open test are listed. To view one of
the results sets, select it and click Open.

Tip: To update the results list after you change the specified test path, click
Refresh.

To view results of test runs for other tests, you can search by test within
WinRunner or by unified result (.qtp) files in your file system.

To search for results by test:

 1 In the Open Test Results dialog box, enter the path of the test folder, or click
Browse to open the Open Test dialog box.

 2 In the Files of type box, select WinRunner Tests or Business process test.

 3 Find and highlight the test whose results you want to view, and click Open.

 4 In the Open Test Results dialog box, highlight the test result set you want to
view, and click Open.

To search for results by test result files:

 1 From the Open Test Results dialog box, click the Open from File button to
open the Select Results File dialog box.

 2 Browse to the folder where the test results are stored. By default, the results
folder is named <TestName>\resX\Report, where X is the number ID of the
test results.

 3 Highlight the unified test results report (.qtp) file you want to view, and
click Open.

Chapter 21 • Analyzing Test Results

479

Connecting to Quality Center from the Test Results Window

To manually submit bugs to Quality Center from the Test Results window or
to view test results stored in Quality Center, you must be connected to
Quality Center.

The connection process has two stages. First, you connect the WinRunner
unified report to a local or remote Quality Center Web server. This server
handles the connections between WinRunner and the Quality Center
project.

Next, you choose the project in which you want to report the defects.

Note that Quality Center projects are password protected, so you must
provide a user name and a password.

To connect the WinRunner unified report to Quality Center:

 1 Choose Tools > Quality Center Connection. The Quality Center Connection
dialog box opens.

Part IV • Running Tests—Basic

480

 2 In the Server box, enter the URL address of the Web server where Quality
Center is installed.

Note: You can choose a Web server accessible via a Local Area Network
(LAN) or a Wide Area Network (WAN).

 3 Click Connect.

Once the connection to the server is established, the server name is
displayed in read-only format in the Server box.

 4 If you are connecting to a project in TestDirector 7.5 or later, or Quality
Center, select the domain which contains the TestDirector or Quality Center
project in the Domain box.

If you are connecting to a project in TestDirector 7.2, skip this step.

 5 In the Project box, select the desired project with which you want to work.

 6 In the User name box, type a user name for opening the selected project.

 7 In the Password box, type the password.

 8 Click Connect to connect the WinRunner unified report to the selected
project.

Once the connection to the selected project is established, the project name
is displayed in read-only format in the Project box.

 9 To automatically reconnect to the Quality Center server and the selected
project the next time you open WinRunner or the WinRunner unified
report, select the Reconnect on startup check box.

 10 If you select the Reconnect on startup check box, the Save password for
reconnection on startup check box is enabled. To save your password for
reconnection on startup, select the Save password for reconnection on
startup check box.

If you do not save your password, you will be prompted to enter it when
WinRunner connects to Quality Center on startup.

Chapter 21 • Analyzing Test Results

481

 11 Click Close to close the Quality Center Connection dialog box. The Quality
Center icon and the address of the Quality Center server are displayed in the
status bar to indicate that the WinRunner unified report is currently
connected to a Quality Center project.

Tip: You can open the Quality Center Connection dialog box by double-
clicking the Quality Center icon in the status bar.

You can disconnect from a Quality Center project and/or server. Note that if
you disconnect the WinRunner unified report from a Quality Center server
without first disconnecting from a project, the WinRunner unified report’s
connection to that project database is automatically disconnected.

Viewing Checkpoint Results

You can view the results of a specific checkpoint in your test. A checkpoint
helps you to identify specific changes in the behavior of objects in your
application.

The procedure for displaying checkpoint results details varies depending on
the report view you are using.

To display the results of a checkpoint from the Unified report view:

 1 Choose Tools > Test Results or click the Test Results button in the main
WinRunner window to open the Test Results window.

 2 In the results tree, look for the checkpoint you want to check.

➤ Failed checks are preceded by a red X; passed checks are preceded by a
green check mark.

➤ Each checkpoint node specifies the checkpoint type. All checkpoint
nodes except single-property checks also list the name and iteration of
the checkpoint, which helps you identify the node you want to view.

Part IV • Running Tests—Basic

482

For example:

end GUI checkpoint (gui3:2)

gui3 is the name of the expected results file for the checkpoint. The 2
after the colon indicates that this is the second time this checkpoint was
run in the script (for example, the second iteration in a loop).

 3 Click the node for the checkpoint you want to analyze. Basic details about
the checkpoint are displayed in the Event Summary pane.

 4 In the Event Summary pane, click the Show Event Details link. The relevant
dialog box opens.

 5 Click OK to close the dialog box.

The remaining sections in this chapter describe the results information that
is provided for various event types.

To display the results of a checkpoint from the WinRunner report view:

 1 Choose Tools > Test Results or click the Test Results button in the main
WinRunner window to open the Test Results window.

 2 In the test log, look for entries that list the checkpoint you want to check.

➤ Failed checks appear in red; passed checks appear in green.

➤ The Details column displays information about the checkpoint that
helps you identify each one. For example:

gui3:2

gui3 is the name of the expected results file for the checkpoint. The 2
after the colon indicates that this is the second time this checkpoint was
run in the script (for example, the second iteration in a loop).

 3 Double-click the appropriate entry in the test log. Alternatively, highlight
the entry and choose Options > Display or click the Display button. The
relevant dialog box opens.

 4 Click OK to close the dialog box.

The remaining sections in this chapter describe the results information that
is provided for various event types.

Chapter 21 • Analyzing Test Results

483

Analyzing the Results of a Single-Property Check

A property check helps you to identify specific changes in the properties of
objects in your application. For example, you can check whether a button is
enabled or disabled or whether an item in a list is selected.

The expected and actual results of a property check are displayed in the
Property dialog box that you open from the Test Results window.

For more information, see Chapter 9, “Checking GUI Objects.”

Part IV • Running Tests—Basic

484

Analyzing the Results of a GUI Checkpoint

A GUI checkpoint helps you to identify changes in the look and behavior of
GUI objects in your application. The results of a GUI checkpoint are
displayed in the GUI Checkpoint Results dialog box that you open from the
Test Results window.

The dialog box lists every object checked and the types of checks performed.
Each check is marked as either passed or failed and the expected and actual
results are shown. If one or more objects fail, the entire GUI checkpoint is
marked as failed in the test log.

You can update the expected value of a checkpoint, when working in the
WinRunner report view. For additional information, see “Updating the
Expected Results of a Checkpoint in the WinRunner Report View” on
page 499. For a description of other options in this dialog box, see “Options
in the GUI Checkpoint Results Dialog Box” on page 485.

For more information, see Chapter 9, “Checking GUI Objects.”

Failed check

Passed check

Chapter 21 • Analyzing Test Results

485

Options in the GUI Checkpoint Results Dialog Box

The GUI Checkpoint Results dialog box includes the following options:

Button Description

Edit Expected Value enables you to edit the expected value of
the selected property. For more information, see “Editing the
Expected Value of a Property” on page 170.

Specify Arguments enables you to specify the arguments for a
check on the selected property. For more information, see
“Specifying Arguments for Property Checks” on page 164.

Compare Expected and Actual Values opens the Compare
Values box, which displays the expected and actual values for
the selected property check. For a check on table contents,
opens the Data Comparison Viewer, which displays the
expected and actual values for the check.

Update Expected Value updates the expected value to the actual
value. Note that this overwrites the saved expected value. This
option is only available when working in the WinRunner report
view.

Show Failures Only displays only failed checks.

Show Standard Properties Only displays only standard
properties.

Show Nonstandard Properties Only displays only nonstandard
properties, such as Visual Basic, PowerBuilder, and ActiveX
control properties.

Show User Properties Only displays only user-defined property
checks. To create user-defined property checks, refer to the
WinRunner Customization Guide.

Show All Properties displays all properties, including standard,
nonstandard, and user-defined properties.

Part IV • Running Tests—Basic

486

Analyzing the Results of a GUI Checkpoint on Table
Contents

You can view the results of a GUI checkpoint on table contents. The results
of a GUI checkpoint are displayed in the GUI Checkpoint Results dialog box
that you open from the Test Results window. It lists each object included in
the GUI checkpoint and the type of checks performed. Each check is listed
as either passed or failed, and the expected and actual results are shown. If
one or more objects fail, the entire GUI checkpoint is marked as failed in the
test log. For more information on checking the contents of a table, see
Chapter 13, “Checking Table Contents.”

To display the results of a GUI checkpoint on table contents:

 1 Open the GUI Checkpoint Results dialog box as described in “Viewing
Checkpoint Results” on page 481.

 2 Highlight the table content checkpoint and click the Display button or
double-click the table content checkpoint. In the example above, the Table
content check is labeled Flight.

Chapter 21 • Analyzing Test Results

487

The Data Comparison Viewer opens, displaying both expected and actual
results. All cells are color coded, and all errors and mismatches are listed at
the bottom of the window.

Use the following color codes to interpret the differences that are
highlighted in your window:

➤ Blue on white background: Cell was included in the comparison and no
mismatch was found.

➤ Cyan on ivory background: Cell was not included in the comparison.

➤ Red on yellow background: Cell contains a mismatch.

➤ Magenta on green background: Cell was verified but not found in the
corresponding table.

➤ Background color only: Cell is empty (no text).

List of errors
and
mismatches.

Cell does not
contain a
mismatch.

Cell contains
a mismatch.

Cell was not
included in
the
comparison.

Part IV • Running Tests—Basic

488

 3 By default, scrolling between the Expected Data and Actual Data tables in
the Data Comparison Viewer is synchronized. When you click a cell, the
corresponding cell in the other table flashes red.

To scroll through the tables separately, clear the Utilities > Synchronize
Scrolling command or click the Synchronize Scrolling button to deselect it.
Use the scroll bar as needed to view hidden parts of the table.

 4 To filter a list of errors and mismatches that appear at the bottom of the
Data Comparison Viewer, use the following options:

➤ To view mismatches for a specific column only: Double-click a column
heading (the column name) in either table.

➤ To view mismatches for a single row: Double-click a row number in
either table.

➤ To view mismatches for a single cell: Double-click a cell with a
mismatch.

➤ To view the previous mismatch: Click the Previous Mismatch button.

➤ To view the next mismatch: Click the Next Mismatch button.

➤ To see all mismatches: Choose Utilities > List All Mismatches or click the
List All Mismatches button.

➤ To clear the list: Double-click a cell with no mismatch.

➤ To see the cell(s) that correspond to a listed mismatch: Click a
mismatch in the list at the bottom of the dialog box to see the
corresponding cells in the table flash red. If the cell with the mismatch is
not visible, one or both tables scroll automatically to display it.

Note: When working in the WinRunner report view, you can edit the data
in the Edit Check dialog box, which you open from the GUI Checkpoint
Results dialog box. To do so, highlight the table content property check, and
click the Edit Expected Value button. For information on working with the
Edit Check dialog box, see “Understanding the Edit Check Dialog Box” on
page 253.

 5 Choose File > Exit to close the Data Comparison Viewer.

Chapter 21 • Analyzing Test Results

489

Analyzing the Expected Results of a GUI Checkpoint
on Table Contents

You can view the expected results of a GUI checkpoint on table contents
either before or after you run your test. The expected results of a GUI
checkpoint are displayed in the GUI Checkpoint Results dialog box, which
you open from the Test Results window. When you view the expected results
of a GUI checkpoint on table contents from the Test Results window, you
must display the expected (“exp”).

Note that you can also view the expected results of a GUI checkpoint on a
table from the Edit Check dialog box. For additional information, see
Chapter 13, “Checking Table Contents.”

To display the expected results of a GUI checkpoint on table contents:

 1 Open the Test Results window and display the test for which you want to
view expected results. For more information, see “Viewing Checkpoint
Results” on page 481.

 2 Display the expected results:

➤ In the Unified report view—Click the Open button or choose File >
Open. The Open Test Results dialog box opens. Select exp and click
Open.

Part IV • Running Tests—Basic

490

➤ In the WinRunner report view—Select exp in the Results location box.

 3 Display the expected results:

➤ In the Unified report view—Click the results tree node for the check you
want to analyze. Basic details about the checkpoint are displayed in the
Event Summary pane. In the Event Summary pane, click the Show Event
Details link.

➤ In the WinRunner report view—Double-click an End GUI capture entry
for a table check in the test log. Alternatively, highlight the entry and
choose Options > Display or click the Display button.

Results
location box

Chapter 21 • Analyzing Test Results

491

The GUI Checkpoint Results dialog box opens and the expected results of
the selected GUI checkpoint are displayed.

Note: Since you are viewing the expected results of the GUI checkpoint, the
actual values are not displayed.

 4 Highlight the table content check and click the Display button, or double-
click the table content check.

Part IV • Running Tests—Basic

492

The Expected Data Viewer opens, displaying the expected results.

Note: When working in the WinRunner report view, you can edit the data
in the Edit Check dialog box, which you open from the GUI Checkpoint
Results dialog box. To do so, highlight the TableContent (or corresponding)
property check, and click the Edit Expected Value button. For information
on working with the Edit Check dialog box, see “Understanding the Edit
Check Dialog Box” on page 253.

 5 Choose File > Exit to close the Expected Data Viewer.

Chapter 21 • Analyzing Test Results

493

Analyzing the Results of a Bitmap Checkpoint

A bitmap checkpoint compares expected and actual bitmaps in your
application. In the Test Results window you can view pictures of the
expected and actual results. If a mismatch is detected by a bitmap
checkpoint during a test run in Verify or Debug mode, the expected, actual,
and difference bitmaps are displayed. For a mismatch during a test run in
Update mode, only the expected bitmaps are displayed.

When viewing results in the WinRunner report view, you can control which
types of bitmaps are displayed (expected, actual, difference) when you view
the results of a bitmap checkpoint. To set the controls, choose Options >
Bitmap Controls in the Test Results window.

Note: A bitmap checkpoint on identical bitmaps could fail if different
display drivers are used when you create the checkpoint and when you run
the test, because different display drivers may draw the same bitmap using
slightly different color definitions. For more information, see “Handling
Differences in Display Drivers” on page 324.

Expected Actual Difference

Part IV • Running Tests—Basic

494

Analyzing the Results of a Database Checkpoint

A database checkpoint helps you to identify changes in the contents and
structure of databases in your application. The results of a database
checkpoint are displayed in the Database Checkpoint Results dialog box
that you open from the Test Results window.

The dialog box displays the checked database and the types of checks
performed. Each check is marked as either passed or failed, and the expected
and actual results are shown. If one or more property checks on the database
fail, the entire database checkpoint is marked as failed in the test log.

You can update the expected value of a checkpoint, when working in the
WinRunner report view. For additional information, see “Updating the
Expected Results of a Checkpoint in the WinRunner Report View” on
page 499. For a description of other options in this dialog box, see “Options
in the Database Checkpoint Results Dialog Box” on page 495.

Failed check

Passed check

Chapter 21 • Analyzing Test Results

495

Note: When working in the WinRunner report view, you can edit the data
in the Edit Check dialog box, which you open from the Database
Checkpoint Results dialog box. To do so, highlight the Content check, and
click the Edit Expected Value button. For information on working with the
Edit Check dialog box, see “Understanding the Edit Check Dialog Box” on
page 291.

For more information, see Chapter 14, “Checking Databases.”

Options in the Database Checkpoint Results Dialog Box

The Database Checkpoint Results dialog box includes the following options:

Button Description

Edit Expected Value enables you to edit the expected value of
the selected property. For more information, see “Creating a
Custom Check on a Database” on page 280.

Compare Expected and Actual Values opens the Compare
Values box, which displays the expected and actual values for
the selected property check. For a Content check, opens the
Data Comparison Viewer, which displays the expected and
actual values for the check.

Update Expected Value updates the expected value to the actual
value. Note that this overwrites the saved expected value. This
option is only available when working in the WinRunner report
view.

Show Failures Only displays only failed checks.

Show Standard Properties Only displays only standard
properties.

Part IV • Running Tests—Basic

496

Analyzing the Expected Results of a Content Check in a
Database Checkpoint

You can view the expected results of a content check in a database
checkpoint either before or after you run your test. The expected results of a
database checkpoint are displayed in the Database Checkpoint Results
dialog box, which you open from the Test Results window. When you view
the expected results of a content check in a database checkpoint from the
Test Results window, you must choose the expected (exp) mode in the
Results location box.

Note that you can also view the expected results of a database content
checkpoint from the Edit Check dialog box. For additional information, see
Chapter 14, “Checking Databases.”

To display the expected results of a content check in a database checkpoint:

 1 Open the Test Results window and display the test for which you want to
add a defect. For more information, see “Viewing Checkpoint Results” on
page 481.

 2 Display the expected results:

➤ In the Unified report view—Click the Open button or choose File >
Open. The Open Test Results dialog box opens. Select exp and click
Open.

➤ In the WinRunner report view—Select exp in the Results location box.

Note that since you are viewing the expected results of a test, the total
number of database checkpoints performed is listed as zero.

Show Nonstandard Properties Only displays only nonstandard
properties, such as Visual Basic, PowerBuilder, and ActiveX
control properties.

Show All Properties displays all properties, including standard,
nonstandard, and user-defined properties.

Button Description

Chapter 21 • Analyzing Test Results

497

 3 Display the expected results:

➤ In the Unified report view—Click the results tree node for the database
check you want to analyze. Basic details about the checkpoint are
displayed in the Event Summary pane. In the Event Summary pane, click
the Show Event Details link.

➤ In the WinRunner report view—Double-click an End GUI capture entry
for a table check in the test log. Alternatively, highlight the entry and
choose Options > Display or click the Display button.

The Database Checkpoint Results dialog box opens and the expected results
of the selected database checkpoint are displayed.

Note that since you are viewing the expected results of the database
checkpoint, the actual values are not displayed.

 4 Highlight the database content check and click the Display button, or
double-click the database content check.

Part IV • Running Tests—Basic

498

The Expected Data Viewer opens, displaying the expected results.

Note: When working in the WinRunner report view, you can edit the data
in the Edit Check dialog box, which you open from the Database
Checkpoint Results dialog box. To do so, highlight the Content check, and
click the Edit Expected Value button. For information on working with the
Edit Check dialog box, see “Understanding the Edit Check Dialog Box” on
page 291.

 5 Choose File > Exit to close the Expected Data Viewer.

Chapter 21 • Analyzing Test Results

499

Updating the Expected Results of a Checkpoint in the
WinRunner Report View

If a bitmap, GUI, or database checkpoint fails because the actual data is
accurate but the expected data is incorrect, you can update the data in the
expected results folder (exp) using the WinRunner report view.

For GUI and database checkpoints, you can update the results for the entire
checkpoint, or update the results for a specific check within the checkpoint.

To update the expected results for an entire checkpoint:

 1 In the WinRunner report view of the Test Results window, highlight a
mismatched checkpoint entry in the test log.

 2 Choose Options > Update or click the Update button.

 3 A dialog box warns that overwriting expected results cannot be undone.
Click Yes to update the results.

To update the expected results for a specific check within a checkpoint:

 1 In the WinRunner report view of the Test Results window, double-click the
checkpoint entry in the log, choose Options > Display, or click the Display
button.

The relevant dialog box opens.

 2 In the Properties pane, highlight a failed check.

 3 Click the Update Expected Value button.

 4 A dialog box warns that if you replace the expected results with the actual
results, WinRunner will overwrite the saved expected values. Click Yes to
update the results.

 5 Click OK to close the dialog box.

Part IV • Running Tests—Basic

500

Viewing the Results of a File Comparison

If you used a file_compare statement in a test script to compare the
contents of two files, you can view the results using the WDiff utility. This
utility is accessed from the Test Results window.

To view the results of a file comparison:

 1 Open the Test Results window and display the test for which you want to
view the file comparison results. For more information, see “Viewing
Checkpoint Results” on page 481.

 2 Display the file comparison:

➤ In the Unified report view—Click the results tree node for the
file_compare event you want to analyze. Basic details about the
checkpoint are displayed in the Event Summary pane. In the Event
Summary pane, click the Show Event Details link.

➤ In the WinRunner report view—Double-click a file compare event in the
test log. Alternatively, highlight the event and choose Options > Display
or click Display.

The WDiff utility window opens.

Line contains
a mismatch

Line does not
contain a
mismatch

Chapter 21 • Analyzing Test Results

501

The WDiff utility displays both files. Lines in the file that contain a
mismatch are highlighted. The file defined in the first parameter of the
file_compare statement is on the left side of the window.

➤ To see the next mismatch in a file, choose View > Next Diff or press the
Tab key. The window scrolls to the next highlighted line. To see the
previous difference, choose View > Prev Diff or press the Backspace key.

➤ You can choose to view only the lines in the files that contain a
mismatch. To filter file comparison results, choose Options > View > Hide
Matching Areas. The window shows only the highlighted parts of both
files.

➤ To modify the way the actual and expected results are compared, choose
Options > File Comparison. The File Comparison dialog box opens.

Note that when you modify any of the options, the two files are read and
compared again.

➤ Ignore spaces on comparison: Tab characters and spaces are ignored on
comparison.

➤ Ignore trailing blanks (default): One or more blanks at the end of a line
are ignored during the comparison.

Part IV • Running Tests—Basic

502

➤ Expand tabs before comparison (default): Tab characters (hex 09) in the
text are expanded to the number of spaces which are necessary to reach
the next tab stop. The number of spaces between tab stops is specified in
the Tabsize parameter. This expand tabs before comparison option will
be ignored if the Ignore spaces on comparison option is selected at the
same time.

➤ Case insensitive compare: Uppercase and lowercase is ignored during
comparison of the files.

➤ Tabsize: The tabsize (number of spaces between tab stops) is selected
between 1 and 19 spaces. The default size is 8 spaces. The option
influences the file comparison if the expand tabs before comparison
option is also set. Tabs are always expanded to the given number of
spaces.

 3 Choose File > Exit to close the WDiff Utility.

Viewing the Results of a GUI Checkpoint on a Date

You can check dates in GUI objects in your application. When you run your
test, WinRunner compares the expected date with the actual date in the
application. The results of a GUI checkpoint are displayed in the GUI
Checkpoint Results dialog box that you open from the Test Results window.

Chapter 21 • Analyzing Test Results

503

To view detailed information about a check on a date, double-click the
check or click the Compare Expected and Actual Values button. The Check
Date Results dialog box opens.

The Check Date Results dialog box displays the original expected date, the
expected date after aging and translation, and the actual date appearing in
the object.

Reporting Defects Detected During a Test Run

Locating and repairing software defects efficiently is essential to the
development process. Software developers, testers, and end users in all
stages of the testing process can detect defects and add them to the defects
project. Using Mercury Interactive’s Quality Center Add Defect dialog box
you can report design flaws in your application, and track data derived from
defect reports.

For example, suppose you are testing a flight reservation application. You
discover that errors occur when you try to order an airline ticket. You can
open and report the defect. This includes a summary and detailed
description of the defect, where it was discovered, and if you are able to
reproduce it. The report can also include screen captures, Web pages, text
documents, and other files relevant to understanding and repairing the
problem.

If a test run detects a defect in the application under test, you can report it
directly from your Test Results window (when connected to a Quality
Center project).

Part IV • Running Tests—Basic

504

When you report a bug from the Test Results window, basic information
about the test and the selected checkpoint (if applicable) is automatically
included in the bug description. (The Add Defect option is supported only
when working with TestDirector 7.2 or Quality Center.)

Using the Add Defect Dialog Box

The Add Defect dialog box is a defect tracking component of Quality Center,
Mercury Interactive’s Web-based test management tool. You can report
application defects directly to a Quality Center project. You can then track
defects until the application’s developers and software testers determine that
they are resolved.

Setting Up the Add Defect Dialog Box

Before you can launch the Add Defect dialog box, you must ensure that Test
Director 7.2 or Quality Center is installed and that WinRunner is connected
to a Quality Center server and project. The connection process has two
stages. First, you connect WinRunner to the server. This server handles the
connections between WinRunner and the Quality Center project. Next, you
choose the project you want WinRunner to access. The project stores tests,
test run information, and defects information for the application you are
testing. For more information on connecting WinRunner to Quality Center,
see “Connecting to Quality Center from the Test Results Window” on
page 479.

For more information about installing Quality Center, refer to the Mercury
Quality Center Installation Guide.

Reporting Defects with the Add Defect Dialog Box

When you are connected to Quality Center, you can report defects detected
in your application directly from the WinRunner Test Results window.

To report a defect with the Add Defect dialog box:

 1 If you are working in the WinRunner report view, connect to Quality Center
from the main WinRunner window. For more information, see “Connecting
to Quality Center from the Test Results Window” on page 479.

If you are working in the Unified report view, you can connect to Quality
Center directly from the Test Results window as described in step 4.

Chapter 21 • Analyzing Test Results

505

 2 Open the Test Results window and display the test for which you want to
add a defect. For more information, see “Viewing Checkpoint Results” on
page 481.

 3 If applicable, select the line in the Test Results that corresponds to the bug
you want to report.

 4 Open the Add Defect dialog box:

➤ In the Unified report view—Click the Add Defect button or choose
Tools > Add Defect. If the Test Results window is not yet connected to
Quality Center, the Quality Center Connection dialog box opens.
Connect to Quality Center as described in “Connecting to Quality Center
from the Test Results Window” on page 479. When you are finished,
click Close to close the Quality Center Connection dialog box and open
the Add Defect Dialog box.

➤ In the WinRunner report view—Click the Report Bug button or choose
Tools > Report Bug.

The Add Defect dialog box opens. Information about the selected line in the
Test Results is included in the description.

 5 Type a short description of the defect in Summary.

 6 Enter information as appropriate in the rest of the defect text boxes. Note
that you must enter information in all the text boxes with red labels.

 7 Type a more in-depth description of the defect in the Description box.

If you want to clear the data in the Add Defect dialog box, click the Clear
button.

 8 You can add an attachment to your defect report:

➤ Click the Attach File button to attach a file to the defect.

➤ Click the Attach URL button to attach a Web page to the defect.

➤ Click the Attach Screen Capture button to capture an image and attach it
to the defect.

 9 Click the Find Similar Defects button to compare your defect to the existing
defects in the Quality Center project. This lets you know if similar defect
records already exist, and helps you to avoid duplicating them. If similar
defects are found, they are displayed in the Similar Defects dialog box.

Part IV • Running Tests—Basic

506

 10 Click the Submit button to add the defect to the database. Quality Center
assigns the new defect a Defect ID.

 11 Click Close.

For more information on using the Add Defect dialog box, refer to the
Mercury Quality Center User’s Guide.

Reporting Defects During a Test Run

You can insert qcdb_add_defect statements to your test to instruct
WinRunner to add a defect to a Quality Center project based on conditions
you define in your test script. Your statement can include data for the
summary and description fields, as well as any other field name and value
you specify.

For example, suppose your test begins by logging in to a flight reservation
application. If the login is unsuccessful, you can report a defect that specifies
the summary and description of the defect as well as the values for the
Detected by and Assigned to fields.

Use the following syntax when inserting qcdb_add_defect statements:

qcdb_add_defect (summary, description, defect_fields);

When entering defect fields, use the format:
"FieldName1=Value1;FieldName2=Value2;FieldNameN=ValueN".

Be sure to enter field names and not field labels. For example, use the field
name BG_DETECTED_BY for the field label Detected By. For more
information, refer to the Quality Center documentation.

If your test contains qcdb_add_defect statements, confirm that you are
connected to the appropriate Quality Center project before running your
test.

Part V

Configuring Basic Settings

508

509

22
Setting Properties for a Single Test

The Test Properties dialog box enables you to set properties for a single test.
You set test properties to store information about a WinRunner test and to
control how WinRunner runs that test.

This chapter describes:

➤ About Setting Properties for a Single Test

➤ Setting Test Properties from the Test Properties Dialog Box

➤ Documenting General Test Information

➤ Documenting Descriptive Test Information

➤ Managing Test Parameters

➤ Associating Add-ins with a Test

➤ Reviewing Current Test Settings

➤ Defining Startup Applications and Functions

About Setting Properties for a Single Test

You can set test properties to document information about a specific test, or
that specify your preferences for a specific test. For example, you can enter a
detailed description of the test or indicate the add-ins required for a test.

You can also set testing options that affect all tests. For more information,
see Chapter 23, “Setting Global Testing Options.”

Part V • Configuring Basic Settings

510

Setting Test Properties from the Test Properties Dialog Box

You can set test-specific properties for any open test in the Test Properties
dialog box.

To set test properties:

 1 Choose File > Test Properties.

The Test Properties dialog box opens. It is divided by subject into six tabbed
pages.

 2 To set the properties for your test, select the appropriate tab and set the
options, as described in the sections that follow.

 3 To apply your changes and keep the Test Properties dialog box open, click
Apply.

 4 When you are finished, click OK to save your changes and close the dialog
box.

Chapter 22 • Setting Properties for a Single Test

511

The Test Properties dialog box contains the following tabbed pages:

Tab Heading Description

General Enables you to set general information about the test.

Description Enables you to enter descriptive information about the test.

Parameters Enables you to define input and output test parameters.

Add-ins Enables you to indicate the add-ins required for the test.

Current Test Enables you to review the current folder and run mode
settings for the test.

Run Enables you to define startup applications and functions.

Part V • Configuring Basic Settings

512

Documenting General Test Information

You can document and view general information about a test in the General
tab of the Test Properties dialog box. For example, you can enter the name
of the test author and choose whether the test is a main test or a compiled
module. You can also specify a Microsoft Excel file to use for the test’s input
data and you can view other summary information.

This tab contains the following information:

Option Description

Displays the name of the test.

Location Displays the test’s location within the file system or
in the Quality Center tree.

Author Enables you to specify the test author’s name.

Created Displays the date and time that the test was created.

Chapter 22 • Setting Properties for a Single Test

513

Read/write
status

Indicates whether the test is read-only (either the
test folder or the script is marked as read-only in the
file system) or writable. If the test is read-only, all
editable property fields in the Test Properties dialog
box are disabled.

Test type Indicates whether the test is a Main Test (standard
test) or a Compiled Module. For more information
about compiled modules, refer to Chapter 11,
“Creating a Compiled Module” in the Mercury
WinRunner Advanced Features User’s Guide.

Main data
table

Indicates the main data table for the test. For more
information, see “Assigning the Main Data Table for
a Test,” on page 396.

File system
path

Displays the system file path of the test. This
information is displayed only when you are
connected to Quality Center and the current test is
opened from a Quality Center project.

Version
control

Displays version control information for the test.
This information is displayed only when you are
connected to Quality Center project that supports
version control.

Option Description

Part V • Configuring Basic Settings

514

Documenting Descriptive Test Information

You can document descriptive information about the test in the Description
tab of the Test Properties dialog box. You can enter a summary description
of the test, the application feature(s) you are testing, a reference to the
relevant functional specifications document(s), and additional details about
the purpose, contents, or requirements of the test.

This tab contains the following information:

Option Description

Description summary Enables you to specify a short summary of the test.

Tested functionality Enables you to specify a description of the application
functionality you are testing.

Chapter 22 • Setting Properties for a Single Test

515

Managing Test Parameters

You can manage test parameters by adding (declaring), modifying, and
deleting parameters in the Parameters tab of the Test Properties dialog box.

The Test Parameters list displays the existing test parameters. When your
test is called by another test, the input parameters that are listed in the
Parameters tab are assigned the values supplied by the calling test, and the
output parameters return values, generated within the current test, to the
calling test.

Functional specification Enables you to specify a reference to the application’s
functional specification(s) for the features you are
testing.

Details Enables you to enter a detailed description of the test.

Option Description

Part V • Configuring Basic Settings

516

You can assign default values for input parameters. The default value for an
input parameters is used if the calling test does not pass a value for the input
parameter in its test call.

You must declare your test parameters in this dialog box to receive input
parameter values from a calling test, and return output parameters to a
calling test. The order in which parameters are listed in this tab determines
the order in which a calling test must supply the parameters. In the test call,
input parameters come before output parameters.

Tip: If you add, delete, or modify the order of parameters for a test that is
already called by other WinRunner tests or by other Mercury products,
ensure that you adjust the parameters accordingly in the calling test or
product.

Note: Test parameters are used only in tests of type Main Test. They are not
used in compiled modules.

For more information about parameters, refer to Chapter 9, “Working with
Test Parameters” in the Mercury WinRunner Advanced Features User’s Guide.

Chapter 22 • Setting Properties for a Single Test

517

To define a new input or output parameter:

 1 In the Parameters tab of the Test Properties dialog box, click the Add button
corresponding to the parameter list (Input or Output) to which you want to
add a parameter.

The Input Parameters or Output Parameters dialog box opens. For input
parameters, the dialog box includes a text box to enter a Default Value.

For output parameters, there is no Default Value edit box in the dialog box.

 2 Enter a Name and a Description for the parameter. For input parameters,
you can specify a Default Value for the parameter.

Tip: It is recommended to use IN or OUT prefixes or suffixes for the
parameter names to indicate the parameter type. This makes your test more
readable and makes it easier for other test designers to determine what to
enter in call statements to your test.

 3 Click OK. The parameter is added to the appropriate Test parameters list.

Part V • Configuring Basic Settings

518

 4 Use the Up and Down arrow buttons to change the order of the parameters.

Note: Because parameter values are assigned sequentially, the order in which
parameters are listed in the Parameters tab determines the value that is
assigned to a parameter by the calling test. In test calls, input parameters
always come before output parameters.

 5 Click OK to close the dialog box.

To delete a parameter from the parameter list:

 1 In the Parameters tab of the Test Properties dialog box, select the name of
the parameter to delete.

 2 Click the Delete button corresponding to the parameter type you want to
delete.

 3 Click OK to close the dialog box.

To modify a parameter in the parameter list:

 1 In the Parameters tab of the Test Properties dialog box, select the name of
the parameter to modify.

 2 Click the Modify Parameter button or double-click the parameter name. The
Parameter Properties dialog box opens with the current name and
description of the parameter.

 3 Modify the parameter as needed.

 4 Click OK to close the dialog box. The modified parameter is displayed in the
Test parameters list.

Chapter 22 • Setting Properties for a Single Test

519

Associating Add-ins with a Test

You can indicate the WinRunner add-ins that are required for a test by
selecting them in the Add-ins tab of the Test Properties dialog box.

The Add-ins tab contains one check box for each add-in you currently have
installed. When you begin creating a new test, the add-ins that are loaded at
that time are automatically selected as the required add-ins. You can
indicate which add-ins the test actually requires by changing the selected
check boxes. This information reminds you or others which add-ins should
be loaded to successfully run this test. It also instructs Quality Center to
confirm that the required add-ins are loaded. For more information, see
“Running Tests with Add-ins from Quality Center” on page 520.

Note: You can see which add-ins are loaded at any time in the About
WinRunner dialog box (Help > About). Loaded add-ins are marked with a
“+”.

Part V • Configuring Basic Settings

520

To associate add-ins with a test:

 1 Choose File > Test Properties to open the Test Properties dialog box.

 2 Click the Add-ins tab.

 3 Select the add-in(s) that are required for the test.

Running Tests with Add-ins from Quality Center

In addition to providing information for people running your test from
WinRunner, the Add-ins tab instructs Quality Center to load the selected
add-ins when it runs WinRunner tests.

When you run a test from Quality Center, Quality Center loads the add-ins
selected in the Add-ins tab for the test. If WinRunner is already open, but
the required add-ins are not loaded, Quality Center closes and reopens
WinRunner with the proper add-ins. If one or more of the required add-ins
are not installed, Quality Center displays the error message,
Cannot open test.

For more information about running WinRunner tests from Quality Center,
refer to the Mercury Quality Center User’s Guide.

Chapter 22 • Setting Properties for a Single Test

521

Reviewing Current Test Settings

You can review the folder and run mode information for the current test in a
read-only view in the Current Test tab of the Test Properties dialog box.

Current line number

This box displays the line number corresponding to the current location of
the execution arrow in the test script.

You can use the getvar function to retrieve the value of the corresponding
line_no testing option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Part V • Configuring Basic Settings

522

Current folder

This box displays the current working folder for the test.

You can use the getvar function to retrieve the value of the corresponding
curr_dir testing option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Expected results folder

This box displays the full path of the expected results folder associated with
the current test run.

You can use the getvar function to retrieve the value of the corresponding
exp testing option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

You can also set this option using the corresponding -exp command line
option, described in Chapter 15, “Running Tests from the Command Line”
in the Mercury WinRunner Advanced Features User’s Guide.

Verification results folder

This box displays the full path of the verification results folder associated
with the current test run.

You can use the getvar function to retrieve the value of the corresponding
result testing option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Run mode

This box displays the current run mode: Verify, Debug, or Update.

You can use the getvar function to retrieve the value of the corresponding
runmode testing option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Chapter 22 • Setting Properties for a Single Test

523

Defining Startup Applications and Functions

Startup applications and functions are applications and functions that
WinRunner runs and executes before running a test. For example, you can
set the Flight Reservation application as your startup application and you
can define a startup function that logs in to the Flight Reservation
application before your test run begins.

You define startup applications and startup functions in the Run tab of the
Test Properties dialog box. You can define startup application and/or
function options while creating your test. You can also select whether or not
to run the startup application and/or function before running your test
without modifying the startup function or application definitions.

WinRunner implements Run tab settings only when you run the test from
the beginning, such as when you select Run From Top or Run Minimized >
From Top. For more information on these options, see “WinRunner Run
Commands” on page 433.

WinRunner implements the Run tab settings of a called test when the called
test runs, unless you use Step Into to open the called test. For more
information on calling a test, refer to Chapter 9, “Calling Tests” in the
Mercury WinRunner Advanced Features User’s Guide. For more information on
the Step Into option, refer to Chapter 16, “Controlling Your Test Run” in the
Mercury WinRunner Advanced Features User’s Guide.

Note: If you choose to run an application and execute a function before the
test begins, the startup application runs before the startup function
executes.

Defining a Startup Application

When defining a startup application, you specify the path to the
application, any required parameters, and the amount of time WinRunner
waits between invoking the application and running the test.

Part V • Configuring Basic Settings

524

Note that additional methods exist for running an application:

➤ You can use the invoke_application function to run an application at any
time from within a test script. Use this method to run an application during
a test run. For more information, refer to Chapter 7, “Enhancing Your Test
Scripts with Programming” in the Mercury WinRunner Advanced Features
User’s Guide.

➤ You can run an application when you run WinRunner from the command
line. Use this method to run the application before WinRunner starts. For
more information, refer to Chapter 15, “Running Tests from the Command
Line” in the Mercury WinRunner Advanced Features User’s Guide.

Note: If the application specified as the startup application is already
running when you run your test, WinRunner does not open a new instance
of the application at the beginning of the test.

Chapter 22 • Setting Properties for a Single Test

525

To define a startup application:

 1 Choose File > Test Properties to open the Test Properties dialog box.

 2 Click the Run tab.

 3 Select the Run application before running test check box if you want your
startup application to run in the next test run.

 4 In the Application path box, enter the application path or use the browse
button to navigate to the application that you want to run. Enter the full
path of the application. Do not use quotation marks.

You can specify only .exe and .com files. If you want to run a file with
another extension, specify the .exe or .com application that will contain the
file in the Application path box. Then specify the file name in the
Application parameters box.

For example, suppose you want to run an .htm file. Type in the path for
your browser in the Application path box – e.g. C:\Program Files\Internet
Explorer\IEXPLORE.EXE. Then type in the full path of the .htm file in the
Application parameters box.

Part V • Configuring Basic Settings

526

 5 Enter any required application parameters in the Application parameters
box, separated by commas (,). The text in the Application parameters box
may be in quotation marks. For information about application parameters,
refer to the application documentation.

 6 In the Run test after box, enter the amount of time you want the system to
wait between invoking the application and running the test, or accept the
default (0 milliseconds).

 7 In the Open window box, select how you want the application window to
open. The possible options are:

Option Description

SW_HIDE Hides the window and activates another window.

SW_SHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its
original size and position. Specify this flag when
displaying the window for the first time.

SW_SHOWMINIMIZED Activates the window and displays it as a minimized
window.

SW_SHOWMAXIMIZED Activates the window and displays it as a
maximized window.

SW_SHOWNOACTIVATE Displays a window in its most recent size and
position. The active window remains active.

SW_SHOW Activates the window and displays it in its current
size and position.

SW_MINIMIZE Minimizes the specified window and activates the
next top-level window in the z-order.

SW_SHOWMINNOACTIVE Displays the window as a minimized window. The
active window remains active.

SW_SHOWNA Displays the window in its current state. The active
window remains active.

SW_RESTORE Activates and displays the window. If the window is
minimized or maximized, Windows restores it to its
original size and position. Specify this flag when
restoring a minimized window.

Chapter 22 • Setting Properties for a Single Test

527

Note: You can also set this option using the -app_open_win command line
option. For more information, refer to Chapter 15, “Running Tests from the
Command Line” in the Mercury WinRunner Advanced Features User’s Guide.

Defining a Startup Function

A startup function can be either a TSL function or a user-defined function
contained in a compiled module. When defining a startup function, you
specify the name of the function, function parameters (if any), and the
compiled module name and type (for user-defined functions). For more
information on TSL functions, refer to Chapter 8, “Generating Functions” in
the Mercury WinRunner Advanced Features User’s Guide and the TSL Reference.
For more information on user-defined functions and compiled modules,
refer to Chapter 10, “Creating User-Defined Functions” and Chapter 11,
“Employing User-Defined Functions in Tests” in the Mercury WinRunner
Advanced Features User’s Guide.

Part V • Configuring Basic Settings

528

To define a startup function:

 1 Choose File > Test Properties to open the Test Properties dialog box.

 2 Click the Run tab.

 3 Select the Execute function before running test check box if you want your
startup function to execute the next time your test runs.

 4 In the Function name box, enter the name of the function.

Note: The function name can contain only alphanumeric characters and
underscores. It cannot begin with a number or contain parentheses.

 5 Enter any parameters required for the function in the Function parameters
box.

Chapter 22 • Setting Properties for a Single Test

529

 6 If the function is part of a compiled module, enter the name of the compiled
module containing the function in the Compiled module box, or use the
browse button to navigate to the compiled module.

Note: If both the calling test and the compiled module are saved in Quality
Center, you must use the full path when calling the function.

 7 If the function is part of a compiled module, select the compiled module
type in the Load module as a box. For more information on system and user
modules, refer to Chapter 11, “Employing User-Defined Functions in Tests”
in the Mercury WinRunner Advanced Features User’s Guide.

Part V • Configuring Basic Settings

530

531

23
Setting Global Testing Options

You can control how WinRunner records and runs tests by setting global
testing options from the General Options dialog box.

This chapter describes:

➤ About Setting Global Testing Options

➤ Setting Global Testing Options from the General Options Dialog Box

➤ Setting General Options

➤ Setting Folder Options

➤ Setting Recording Options

➤ Setting Test Run Options

➤ Setting Notification Options

➤ Setting Appearance Options

➤ Choosing Appropriate Timeout and Delay Settings

About Setting Global Testing Options

WinRunner testing options affect how you record test scripts and run tests.
The options also affect the way WinRunner opens and the way the main
window appears. For example, you can set the speed at which WinRunner
runs a test, determine how WinRunner records keyboard input, or select a
background style for the WinRunner main window.

You set these and other options for all tests using the General Options dialog
box.

Part V • Configuring Basic Settings

532

You can also set and retrieve some options during a test run using the setvar
and getvar functions. You can use these functions to set and view the
testing options for all tests, for a single test, or for part of a single test.

For more information about setting and retrieving testing options from
within a test script, refer to Chapter 21, “Setting Testing Options from a Test
Script” in the Mercury WinRunner Advanced Features User’s Guide.

Setting Global Testing Options from the General Options
Dialog Box

Before you record or run tests, you can use the General Options dialog box
to modify testing options. The values you set remain in effect for all tests in
the current testing session.

When you end a testing session, WinRunner prompts you to save the testing
option changes to the WinRunner configuration. This enables you to
continue to use the new values in future testing sessions.

The General Options dialog box is composed of an options tree and an options
pane. Clicking a category or subcategory in the options tree displays the
corresponding options in the options pane.

The General Options dialog box contains the following categories and
subcategories:

Category Subject

General Contains options for GUI map preferences, language
settings and other general testing options.

> Startup Contains options that control what happens when
WinRunner opens.

Folders Specifies the folder location of WinRunner files and
the search paths for resolving relative paths.

Record Contains options for recording tests.

> Selected Applications Contains options for choosing which applications
you want to record.

Chapter 23 • Setting Global Testing Options

533

> Script Format Contains options for controlling the appearance and
readability of your script.

> Text Recognition Contains options for recognizing text in your
application.

Run Contains options for running your test.

> Settings Contains settings for handling specific situations
during the test run.

> Synchronization Defines synchronization settings for your test run.

> Recovery Contains options for specifying recovery and Web
exception files.

Notifications Enables you to specify the criteria for sending e-mail
notifications.

> E-mail Contains options for specifying the mail server to use
and other e-mail preferences.

> Recipients Enables you to specify the recipients to receive e-mail
notifications.

Appearance Contains options for controlling the appearance of
WinRunner.

Category Subject

Part V • Configuring Basic Settings

534

To set global testing options:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click a category or subcategory in the options tree to display the
corresponding options in the options pane.

 3 Set the options you need, as described in the sections below.

 4 To apply your changes and keep the General Options dialog box open, click
Apply.

 5 When you are finished, click OK to save your changes and close the dialog
box.

Options Tree

Options Pane

Chapter 23 • Setting Global Testing Options

535

Setting General Options

The General category contains options for GUI map preferences, language
settings, and other general testing options.

In addition to the options in this category, you can set additional recording
options in the Startup subcategory.

Part V • Configuring Basic Settings

536

The General category contains the following options:

Option Description

Back up test script
automatically every __
minutes

Instructs WinRunner to create a backup file for your
script periodically, according to the specified interval.
When selected, WinRunner creates a backup file in your
test folder called script.sav, which is a simple text file of
the script. Each time WinRunner backs up your script, it
overwrites the previous script.sav file.

Default = Selected, 10 [minutes]

Enable date
operations

Enables date operation functionality and displays the
Tools > Date menu item.

Note: You must restart WinRunner for a change in this
setting to take effect.

Default = Cleared

Show Save Type
dialog

This option is displayed only when WinRunner is
connected to a Quality Center server.

Displays the Select Type dialog box that enables you to
save a new script as a WinRunner test or as a scripted
component.

Note: Clearing the Don’t show it again check box at the
bottom of the Select Type dialog box also clears
the selection in the General pane.

Default = Selected

Chapter 23 • Setting Global Testing Options

537

GUI map file mode Sets the GUI map file mode in WinRunner.

• Global GUI Map File—enables you to create a GUI
map file for your entire application, or for each
window in your application. Multiple tests can
reference a common GUI map file. For additional
information, see Chapter 5, “Working in the Global
GUI Map File Mode.”

• GUI Map File per Test— enables WinRunner to
automatically create a GUI map file for each test you
create. You do not need to worry about creating,
saving, and loading GUI map files. For additional
information, see Chapter 6, “Working in the GUI
Map File per Test Mode.”

Note: You must restart WinRunner for a change in this
setting to take effect.

If you are working with tests created in
WinRunner 6.02 or earlier, you must work in the
Global GUI Map File mode.

Default = Global GUI Map File

Load temporary GUI
map file

Automatically loads the temporary GUI map file when
starting WinRunner.

Note: This option is disabled when the GUI Map file per
Test option is selected, as there are no temporary
GUI map files when working with separate GUI
map files for each test.

You can set the location of the temporary GUI
map file in the Folders category of the General
Options dialog box.

Default = selected

Option Description

Part V • Configuring Basic Settings

538

Setting Startup Options

The Startup category contains options that control what happens when
WinRunner opens.

Keyboard file Designates the path of the keyboard definition file. This
file specifies the language that appears in the test script
when you type on the keyboard during recording.

Default =
<WinRunner installation folder>\dat\win_scan.kbd

Interface language If WinRunner is installed on a non-English operating
system, the Interface language option may be
displayed. This option enables you to select the
WinRunner interface language.

Option Description

Chapter 23 • Setting Global Testing Options

539

The Startup category contains the following options:

Option Description

Display Add-in
Manager on startup

Displays the Add-In Manager dialog box when starting
WinRunner.

For information about the Add-In Manager dialog box
and loading installed add-ins when starting WinRunner,
see “Loading WinRunner Add-Ins” on page 20.

Default = Selected

Hide Add-in Manager
after ___ seconds

Specifies how many seconds the Add-in Manager
remains open before it closes and automatically loads
the same add-ins that were loaded in the previous
WinRunner session.

Default = 10 seconds

Part V • Configuring Basic Settings

540

Display Welcome
screen on startup

Displays the Welcome screen when starting WinRunner.

Note: Clearing the Show on Startup check box at the
bottom of the Welcome screen also clears the
selection in the Startup pane.

Default = Selected

Startup test Specifies the location of your startup test.

You can use a startup test to perform operations such as
configuring recording, loading compiled modules, and
loading GUI map files when starting WinRunner.

For more information, refer to Chapter 23, “Initializing
Special Configurations” in the Mercury WinRunner
Advanced Features User’s Guide.

Note: You can also set the location of your startup test
from the RapidTest Script wizard.

A startup test can be used in addition to (and not
instead of) the initialization (tslinit) test.

You can specify a Quality Center script as your
startup test. If you do, ensure that Reconnect on
startup is selected in the Quality Center
Connection dialog box. For more information,
refer to Chapter 26, “Managing the Testing
Process” in the Mercury WinRunner Advanced
Features User’s Guide.

Default = <WinRunner installation folder>

Option Description

Chapter 23 • Setting Global Testing Options

541

Setting Folder Options

The Folders category enables you to specify the locations of WinRunner files
and to specify search paths for resolving relative paths.

Part V • Configuring Basic Settings

542

The Folders category contains the following options:

Option Description

Temporary files The folder containing temporary tests. Enter or browse to the
folder.

Notes: If you designate a new folder, you must restart
WinRunner in order for the change to take effect.

You can use the setvar and getvar functions to set and
retrieve the value of the corresponding tempdir testing
option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script”
in the Mercury WinRunner Advanced Features User’s Guide.

Default = <WinRunner installation folder>\tmp

Temporary GUI
map file

The folder containing the temporary GUI map file (temp.gui). If
you select the Load Temporary GUI Map File check box in the
General category of the General Options dialog box, this file
loads automatically when you start WinRunner. To enter a new
folder, type it in the text box or click Browse to locate it.

Note: If you designate a new folder, you must restart
WinRunner in order for the change to take effect.

Default = <WinRunner installation folder>\tmp

Chapter 23 • Setting Global Testing Options

543

Shared
checklists

The folder in which WinRunner stores shared checklists for
GUI and database checkpoints. In the test script, shared
checklist files are designated by SHARED_CL before the file
name in a win_check_gui, obj_check_gui, or db_check
statement. To enter a new path, type it in the text box or click
Browse to locate the folder. For more information on shared
GUI checklists, see “Saving a GUI Checklist in a Shared Folder”
on page 143. For more information on shared database
checklists, see “Saving a Database Checklist in a Shared Folder”
on page 297.

Notes: If you designate a new folder, you must restart
WinRunner in order for the change to take effect.

You can use the getvar function to retrieve the value of
the corresponding shared_checklist_dir testing option
from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the
Mercury WinRunner Advanced Features User’s Guide.

Default = <WinRunner installation folder>\chklist

Documentation
files

The folder in which documentation files are stored. To enter a
new path, type it in the text box or click Browse to locate the
folder.

Default = <WinRunner installation folder>\doc

Option Description

Part V • Configuring Basic Settings

544

Search path for
called tests

The paths that WinRunner searches for files or tests specified
with a relative path. If you define search paths in this pane, you
can specify relative paths when calling tests and specifying
other file names. The order of the search paths in the list
determines the order of locations in which WinRunner
searches for a file or test specified using a relative path.

For more information, refer to Chapter 9, “Calling Tests” in the
Mercury WinRunner Advanced Features User’s Guide.

• To add a search path, enter the path in the text box, and
click Add Path . The path appears in the list box, below
the text box.

• To delete a search path, select the path and click Remove
Path .

• To move a search path up one position in the list, select the
path and click Move Item Up .

• To move a selected path down one position in the list, select
the path and click Move Item Down .

When WinRunner is connected to Quality Center, you can
specify the paths in a Quality Center database that WinRunner
searches for called tests. Search paths in a Quality Center
database are preceded by [QC]. Note that you cannot use the
Browse button to specify search paths in a Quality Center
database.

Notes:You can use the setvar and getvar functions to set and
retrieve the value of the corresponding searchpath testing
option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script”
in the Mercury WinRunner Advanced Features User’s Guide.
You can also set this option using the corresponding
-search_path command line option, described in
Chapter 15, “Running Tests from the Command Line”
in the Mercury WinRunner Advanced Features User’s Guide.

Option Description

Chapter 23 • Setting Global Testing Options

545

Setting Recording Options

The Record category contains options for controlling how WinRunner
records tests.

In addition to the options in this category, you can set additional recording
options in the Selected Applications, Script Format, and Text Recognition
sub-categories.

Part V • Configuring Basic Settings

546

The Record category contains the following options:

Option Description

Default
recording
mode

Determines the default recording mode—Context Sensitive or
Analog. While you are recording your test, you can switch
between recording modes. For more information, see
Chapter 3, “Understanding How WinRunner Identifies GUI
Objects.”

Default = Context Sensitive

Consider child
windows

When selected, WinRunner recognizes any MSW_class window,
or any object mapped to this class, as a parent object. When
cleared, WinRunner recognizes only top-level windows and
MDI frames as parent objects.

Note that you can use the setvar and getvar functions to set
and retrieve the value of the corresponding
enum_descendent_toplevel testing option from within a test
script, as described in Chapter 21, “Setting Testing Options
from a Test Script” in the Mercury WinRunner Advanced Features
User’s Guide.

Default = selected

Chapter 23 • Setting Global Testing Options

547

Record Start
menu by index

Determines how WinRunner records on the Windows Start
menu in Windows NT.

When this option is selected, WinRunner records the index IDs
for each selected menu item. For example:

button_press ("Start");
menu_select_item ("item_2;item_0;item_4");

Select this option when the menu item position is constant,
but the name of the menu you want to select may change. For
example, if the name of the menu option is generated
dynamically.

When this option is cleared, WinRunner records the name of
the menu items in the start menu. For example:

button_press ("Start");
menu_select_item ("Programs;Accessories;Calculator");

Default = cleared

Option Description

Part V • Configuring Basic Settings

548

Record keypad
keys as special
keys

Determines how WinRunner records pressing keys on the
numeric keyboard.

When this option is selected, WinRunner records pressing the
NUM LOCK key. It also records pressing number keys and
control keys on the numeric keypad as unique keys in the
obj_type statement it generates. For example:

obj_type ("Edit","<kNumLock>")
obj_type ("Edit","<kKP7>")
When this option is cleared, WinRunner generates identical
statements whether you press a number or an arrow key on the
keyboard or on the numeric keypad. WinRunner does not
record pressing the NUM LOCK key. It does not record pressing
number keys or control keys on the numeric keypad as unique
keys in the obj_type statements it generates. For example:

obj_type ("Edit","7");
Note: This option does not affect how edit_set statements are

recorded. When recording using edit_set, WinRunner
never records keypad keys as special keys.

Default = cleared

Record shifted
keys as upper-
case when
CAPS LOCK on

Determines whether WinRunner records pressing letter keys
and the SHIFT key together as uppercase letters when
CAPS LOCK is activated.

When this option is selected, WinRunner records pressing letter
keys and the SHIFT key together as uppercase letters even when
CAPS LOCK is activated. Therefore, WinRunner ignores the
state of the CAPS LOCK key when recording and running tests.

When this option is cleared, WinRunner records pressing letter
keys and the SHIFT key together as lowercase letters when
CAPS LOCK is activated.

Default = cleared

Option Description

Chapter 23 • Setting Global Testing Options

549

Record single-
line edit fields
as edit_set

Determines how WinRunner records typing a string in a
single-line edit field.

When this option is selected, WinRunner records an edit_set
statement (so that only the net result of all keys pressed and
released is recorded). For example, if in the Name box in the
Flights Reservation application, you type H, press BACKSPACE,
and then type Jennifer, WinRunner generates the following
statement:

edit_set ("Name","Jennifer");
When this option is cleared, WinRunner generates an obj_type
statement (so that all keys pressed and released are recorded).
Using the previous example, WinRunner generates the
following statement:

obj_type ("Name","H<kBackSpace>Jennifer");
For more information about the edit_set and obj_type
functions, refer to the TSL Reference.

Default = selected

Record non-
unique list
items by name

Determines whether WinRunner records non-unique list box
and combo box items by name (selected) or by index (cleared).

Note: You can use the setvar and getvar functions to set and
retrieve the value of the corresponding rec_item_name
testing option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script”
in the Mercury WinRunner Advanced Features User’s Guide.
You can also set this option using the corresponding
-rec_item_name command line option, described in
Chapter 15, “Running Tests from the Command Line”
in the Mercury WinRunner Advanced Features User’s Guide.

Default = cleared

Option Description

Part V • Configuring Basic Settings

550

Record owner-
drawn buttons
as

Since WinRunner cannot identify the class of owner-drawn
buttons, it automatically maps them to the general Object class.
This option enables you to map all owner-drawn buttons to a
standard button class (push_button, radio_button, or
check_button).

Note that you can use the setvar and getvar functions to set
and retrieve the value of the corresponding rec_owner_drawn
testing option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script” in the
Mercury WinRunner Advanced Features User’s Guide.

Default = Object

Maximum
length of list
item to record

Defines the maximum number of characters that WinRunner
can record in a list item name.

If the maximum number of characters is exceeded in a list view
or tree view item, WinRunner records that item’s index
number.

If the maximum number of characters is exceeded in a list box
or combo box, WinRunner truncates the item’s name. The
maximum length can be 1 to 253 characters.

Default = 253 [characters]

Attached Text Determines how WinRunner searches for the text attached to a
GUI object. Proximity to the GUI object is defined by two
options—the radius that is searched, and the point on the GUI
object from which the search is conducted. The closest static
text object within the specified search radius from the specified
point on the GUI object is that object’s attached text.

Sometimes the static text object that appears to be closest to a
GUI object is not really the closest static text object. You may
need to use trial and error to make sure that the attached text
attribute is the static text object of your choice.

When you run a test, you must use the same values for the
attached text options that you used when you recorded the
test. Otherwise, WinRunner may not identify your GUI object.

Option Description

Chapter 23 • Setting Global Testing Options

551

Setting Selected Applications

The Selected Applications pane enables you to instruct WinRunner to record
your operations on selected programs while ignoring operations on other
programs. For example, you may not want to record operations you perform
on your e-mail client while recording a test.

When you enable selective recording, only actions on the selected programs
are recorded.

Note that even if you choose to record only on selected applications, you
can still create checkpoints and perform all other non-recording operations
on all applications.

Search radius The radius from the specified point on a GUI object that
WinRunner searches for the static text object that is its
attached text. The radius can be 3 to 300 pixels.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding attached_text_search_radius
testing option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script” in the
Mercury WinRunner Advanced Features User’s Guide.

Default= 35 [pixels]

Preferred
search area

Specifies the location on a GUI object from which WinRunner
searches for its attached text.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding attached_text_area testing option
from within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

In WinRunner, version 7.01 and earlier, you could not set the
preferred search area. WinRunner searched for attached text
based on what is now the Default setting for the preferred
search area. If backward compatibility is important, choose the
Default setting.

Default = Default

Option Description

Part V • Configuring Basic Settings

552

To enable selective recording:

 1 Choose Tools > General Options. The General Options dialog box opens.

 2 Click the Selected Applications category.

 3 Select Record only on selected applications.

 4 If you want to record operations on the Start menu and on Windows
Explorer, select Record on Start menu and Windows Explorer. The relevant
files are automatically added to the list.

 5 If you do not want to record on Internet Explorer and/or Netscape, clear the
options for iexplore.exe, netscape.exe, and/or netscp6.exe in the
applications list.

 6 To add a new application to the list, click an empty list item. Enter the
application process file name in the box, or use the browse button to find
and select the application process.

Chapter 23 • Setting Global Testing Options

553

Note: Be sure to enter the application process that you want to record. In
some cases the process file name is not the same as the name of the file
name you use to run the application.

Setting Script Format Options

The Script Format category contains options for controlling the appearance
and readability of your script.

Part V • Configuring Basic Settings

554

The Script Format category contains the following options:

Option Description

String indicating that
what follows is a
number

The string recorded in the test script to indicate that a
list item is specified by its index number.

Note that you can use the setvar and getvar functions
to set and retrieve the value of the corresponding
item_number_seq testing option from within a test script,
as described in Chapter 21, “Setting Testing Options
from a Test Script” in the Mercury WinRunner Advanced
Features User’s Guide.

Default = #

String for separating
ListBox or ComboBox
items

The string recorded in the test script to separate items in
a list box or a combo box.

You can use the setvar and getvar functions to set and
retrieve the value of the corresponding
list_item_separator testing option from within a test
script, as described in Chapter 21, “Setting Testing
Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Default = ,

String for separating
ListView or TreeView
items

The string recorded in the test script to separate items in
a list view or a tree view.

You can use the setvar and getvar functions to set and
retrieve the value of the corresponding
listview_item_separator testing option from within a test
script, as described in Chapter 21, “Setting Testing
Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Default = ,

Chapter 23 • Setting Global Testing Options

555

String for parsing a
TreeView path

The string recorded in the test script to separate items in
a tree view path.

You can use the setvar and getvar functions to set and
retrieve the value of the corresponding
treeview_path_separator testing option from within a test
script, as described in Chapter 21, “Setting Testing
Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Default = ;

Insert comments and
indent statements

Determines whether WinRunner automatically divides
your test script into sections while you record.

For more information, see “Inserting Comments and
Indent Statements” below.

Default = selected

Option Description

Part V • Configuring Basic Settings

556

Inserting Comments and Indent Statements

When you select the Insert comments and indent statements option,
WinRunner automatically:

➤ divides your test script into sections while you record, based on window
focus changes.

➤ inserts comments describing the current window.

➤ indents the statements under each comment.

Generate concise,
more readable ‘type’
statements

Determines how WinRunner generates type, win_type,
and obj_type statements in a test script.

When this option is selected, WinRunner generates
more concise type, win_type, and obj_type statements
that represent only the net result of pressing and
releasing input keys. This makes your test script easier to
read. For example:

obj_type (object, "A");
When this option is cleared, WinRunner records the
pressing and releasing of each key. For example:

obj_type (object, "<kShift_L>-a-a+<kShift_L>+");
Clear this option if the exact order of keystrokes is
important for your test.

For more information, refer to the type, win_type, and
obj_type functions in the TSL Reference.

You can use the setvar and getvar functions to set and
retrieve the value of the corresponding key_editing
testing option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script”
in the Mercury WinRunner Advanced Features User’s Guide.

Default = selected

Option Description

Chapter 23 • Setting Global Testing Options

557

This option enables you to group all statements related to the same window.

When this option is selected, WinRunner automatically divides your test
into sections while you record. A set_window statement, as well as any
win_* statement, can create a division. A new division also begins when you
switch from context sensitive to analog recording.

For each new section that WinRunner creates, it inserts a comment with the
window name. All of the statements that are recorded while the same
window remains in focus are indented under that comment. If you record in
Analog mode while this option is selected, the comment is always: Analog
Recording.

Part V • Configuring Basic Settings

558

Setting Text Recognition Options

The Text Recognition category options affect how WinRunner recognizes
text in your application.

Chapter 23 • Setting Global Testing Options

559

The Text Recognition category contains the following options:

Option Description

Use driver-based text
recognition

Uses your graphics driver to recognize text. This method
generally yields the most reliable text results. Only if
this method does not work well for the application your
are testing, select Use image-based text recognition.

Default = selected

Timeout for Text
Recognition

Sets the maximum interval (in milliseconds) that
WinRunner waits to recognize text when performing a
text checkpoint using the driver-based text recognition
method during a test run.

See “Choosing Appropriate Timeout and Delay Settings”
on page 589 for more information on when to adjust
this setting.

Default = 500 [milliseconds]

Use image-based text
recognition

Enables WinRunner to recognize text whose font is
defined in a font group. Choose this option only if you
find that the driver-based text recognition method does
not work well with the application you are testing.

Default = cleared

Part V • Configuring Basic Settings

560

Considerations for Using Text Recognition for Windows-Based
Applications

You use the WinRunner text recognition mechanism when:

➤ Inserting text checkpoints using Insert > Get Text > From Screen Area and
Insert > Get Text > From Object/Window

➤ Retrieving or checking the text property of GUI objects, using functions
ending with _get_info or _check_info

Font group Sets the active font group for image text recognition. For
more information on font groups, see “Teaching Fonts
to WinRunner” on page 342.

You can use the setvar and getvar functions to set and
retrieve the value of the corresponding fontgrp testing
option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script”
in the Mercury WinRunner Advanced Features User’s Guide.

You can also set this option using the corresponding
-fontgrp command line option, described in
Chapter 15, “Running Tests from the Command Line”
in the Mercury WinRunner Advanced Features User’s Guide.

Default = stand

Insert comment
containing recognized
text

When you create a text checkpoint, this option
determines how WinRunner displays the captured text
in the test script.

When selected, WinRunner inserts text captured by a
text checkpoint during test creation into the test script
as a comment. For example, if you choose Insert > Get
Text > From Object/Window, and then click inside the
Fly From text box when Portland is selected, the
following statement is recorded in your test script:

obj_get_text("Fly From:", text);# Portland
Default = selected

Option Description

Chapter 23 • Setting Global Testing Options

561

➤ Retrieving or checking text using functions ending with _get_text or
_check_text

➤ Performing other text-based operations using functions ending with
_find_text, _move_locator_text, or _click_on_text functions

When using the WinRunner text-recognition mechanism for
Windows-based applications, keep in mind that it may occasionally retrieve
unwanted text information (such as hidden text and shadowed text, which
appears as multiple copies of the same string).

Additionally, the text recognition may behave differently in different run
sessions depending on the operating system version you are using, service
packs you have installed, other installed toolkits, the APIs used in your
application, and so on.

Therefore, when possible, it is highly recommended to retrieve or check text
from your application window by inserting a standard GUI checkpoint and
selecting to check the object’s value (or similar) property. For example:

➤ Instead of choosing Insert > Get Text > From Object/Window, choose
Insert > GUI Checkpoint > For Single Property and select to check the value
property.

➤ Instead of edit_get_text("Edit", result); or edit_get_info("Edit", "text", result);, use
edit_get_info("Edit", "value", result);

➤ Instead of edit_check_text("Edit", exp_val); or edit_check_info("Edit", "text",
exp_val);, use edit_check_info("Edit", "value", expected_result);

Note: The above issues do not apply when working with Web-based
applications.

Part V • Configuring Basic Settings

562

Setting Test Run Options

The Run category options control how WinRunner runs tests.

In addition to the options in this category, you can set additional recording
options in the Settings, Synchronization, and Recovery subcategories.

Chapter 23 • Setting Global Testing Options

563

The Run category contains the following options:

Option Description

Run in batch
mode

Determines whether WinRunner suppresses messages during a
Verify test run so that a test can run unattended.

For example, if a set_window statement is missing from a test
script, WinRunner cannot find the specified window. If the test
runs in batch mode, WinRunner reports an error in the Test
Results window and proceeds to run the next statement in the
test script. If the test is not run in batch mode, WinRunner
pauses the test and opens the Run wizard to enable you to
locate the window.

Note: Messages are suppressed for a batch test only if you run
the test using the Verify run mode. If you use the Update
or Debug run mode to run the test, some messages may
be displayed even when the Run in batch mode option is
selected.

When selected, WinRunner saves the test results of called tests
both under the calling (main batch test) and under the test
folder of all first-level called tests. When cleared, the results of
all called tests are saved only under the calling test.

For more information on suppressing messages during a test
run, refer to Chapter 14, “Running Batch Tests” in the Mercury
WinRunner Advanced Features User’s Guide.

You can use the getvar function to retrieve the value of the
corresponding batch testing option from within a test script, as
described in Chapter 21, “Setting Testing Options from a Test
Script” in the Mercury WinRunner Advanced Features User’s Guide.

You can also set this option using the corresponding -batch
command line option, described in Chapter 15, “Running Tests
from the Command Line” in the Mercury WinRunner Advanced
Features User’s Guide.

Default = cleared

Part V • Configuring Basic Settings

564

Write test
results to a text
report

Instructs WinRunner to automatically write test results to a text
report, called report.txt, which is saved in the results folder.

You can also set this option using the corresponding
-create_text_report command line option, described in
Chapter 15, “Running Tests from the Command Line” in the
Mercury WinRunner Advanced Features User’s Guide.

Note: A text report of the test results can also be created from
the Test Results window (in the WinRunner report view)
by choosing Tools > Text Report.

Default = cleared

Allow other
Mercury
products to run
tests remotely

Enables other Mercury products to run WinRunner tests on
your computer from a remote machine.

For information on running WinRunner tests remotely from
other Mercury products, refer to the documentation for those
products.

WinRunner
report view

Displays the test results using the WinRunner test results
display.

Default = selected

Generate
unified report
information

Generates the necessary information for creating a unified
report so that you can choose to view the results of your tests in
the unified report view at a later time.

(Enabled only when WinRunner report view is selected.)

Default = selected

Unified report
view

Generates unified report information during the test run and
displays the test results using the unified report design. This
display enables you to view all WinRunner events and
QuickTest steps in a single report.

Note: The WinRunner report is always automatically generated
when you select this option, enabling you to switch to
the WinRunner report view at a later time.

Default = cleared

Option Description

Chapter 23 • Setting Global Testing Options

565

Default run
mode

Enables you to select the run mode that is used by default for
all tests.

• Update—Used to update the expected results of a test or to
create a new expected results folder.

• Verify—Used to test your application.

• Debug—Used to help you identify bugs in a test script.

Note: Verify mode is only relevant when running tests, not
components. When working with components, the
application is verified when the component is run as
part of a business process test in Quality Center.

For more information on run modes, see “WinRunner Test Run
Modes” on page 429.

Default = Verify

Run speed for
Analog mode

Determines the default run speed for tests run in Analog mode.

Normal—runs the test at the speed at which it was recorded.

Fast—runs the test as fast as the application can receive input.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding speed testing option from within
a test script, as described in Chapter 21, “Setting Testing
Options from a Test Script” in the Mercury WinRunner Advanced
Features User’s Guide.

You can also set this option using the corresponding -speed
command line option, described in Chapter 15, “Running Tests
from the Command Line” in the Mercury WinRunner Advanced
Features User’s Guide.

Default = Fast

Option Description

Part V • Configuring Basic Settings

566

Setting Run Setting Options

The Settings category contains options for handling specific situations
during the test run.

Chapter 23 • Setting Global Testing Options

567

The Settings category contains the following options:

Option Description

Timeout for
checkpoints
and CS
statements

Sets the global timeout (in milliseconds) that WinRunner uses
when performing checkpoints and Context Sensitive
statements. This value is added to the time parameter
embedded in GUI checkpoint or synchronization point
statements to determine the maximum amount of time that
WinRunner searches for the specified window or object. The
timeout must be greater than the delay for window
synchronization (as set in the Delay for Window
Synchronization option in the Synchronization category).

For example, when the delay is 2,000 milliseconds and the
timeout is 10,000 milliseconds, WinRunner checks the window
or object in the application under test every two seconds until
the check produces the desired results or until ten seconds have
elapsed.

Note: This option is accurate to within 20-30 milliseconds.

See “Choosing Appropriate Timeout and Delay Settings” on
page 589 for more information on when to adjust this setting.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding timeout_msec testing option
from within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

You can also set this option using the corresponding
-timeout_msec command line option, described in
Chapter 15, “Running Tests from the Command Line” in the
Mercury WinRunner Advanced Features User’s Guide.

Default = 10000 [milliseconds]

Part V • Configuring Basic Settings

568

Threshold for
difference
between
bitmaps

Defines the number of pixels that constitutes the threshold for
a bitmap mismatch. When this value is set to 0, a single pixel
mismatch constitutes a bitmap mismatch.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding min_diff testing option from
within a test script, as described in Chapter 21, “Setting Testing
Options from a Test Script” in the Mercury WinRunner Advanced
Features User’s Guide.

You can also set this option using the corresponding -min_diff
command line option, described in Chapter 15, “Running Tests
from the Command Line” in the Mercury WinRunner Advanced
Features User’s Guide.

Default = 0 (pixels)

Beep when
checking a
window

Determines whether WinRunner beeps when checking any
window during a test run.

Note that you can use the setvar and getvar functions to set
and retrieve the value of the corresponding beep testing option
from within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Note that you can also set this option using the corresponding
-beep command line option, described in Chapter 15,
“Running Tests from the Command Line” in the Mercury
WinRunner Advanced Features User’s Guide.

Default = selected

Option Description

Chapter 23 • Setting Global Testing Options

569

Fail test when
Context
Sensitive errors
occur

Determines whether WinRunner fails a test when Context
Sensitive errors occur. A Context Sensitive error is the failure of
a Context Sensitive statement during a test run. Context
Sensitive errors often occur when WinRunner cannot identify a
GUI object.

For example, a Context Sensitive error will occur if you run a
test containing a set_window statement with the name of a
non-existent window. Context Sensitive errors can also occur
when window names are ambiguous. For information about
Context Sensitive functions, refer to the TSL Reference.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding cs_fail testing option from
within a test script, as described in Chapter 21, “Setting Testing
Options from a Test Script” in the Mercury WinRunner Advanced
Features User’s Guide.

You can also set this option using the corresponding -cs_fail
command line option, described in Chapter 15, “Running Tests
from the Command Line” in the Mercury WinRunner Advanced
Features User’s Guide.

Default = cleared

Option Description

Part V • Configuring Basic Settings

570

Fail test when
single property
check fails

Determines whether WinRunner fails a test when _check_info
statements fail. It also writes an event to the Test Results
window for these statements.

(You can create _check_info statements using the Insert > GUI
Checkpoint > For Single Property command.)

For information about the check_info functions, refer to the
TSL Reference.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding single_prop_check_fail testing
option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury
WinRunner Advanced Features User’s Guide.

You can also set this option using the corresponding
-single_prop_check_fail command line option, described in
Chapter 15, “Running Tests from the Command Line” in the
Mercury WinRunner Advanced Features User’s Guide.

Default = selected

Option Description

Chapter 23 • Setting Global Testing Options

571

Break when
verification fails

Determines whether WinRunner pauses the test run and
displays a message whenever verification fails or whenever any
message is generated as a result of a Context Sensitive
statement during a test that is run in Verify mode. This option
should be used only when working interactively (not in batch
mode).

For example, if a set_window statement is missing from a test
script, WinRunner cannot find the specified window. If this
option is selected, WinRunner pauses the test and opens the
Run wizard to enable you to locate the window. If this option is
cleared, WinRunner reports an error in the Test Results window
and proceeds to run the next statement in the test script.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding mismatch_break testing option
from within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

You can also set this option using the corresponding
-mismatch_break command line option, described in
Chapter 15, “Running Tests from the Command Line” in the
Mercury WinRunner Advanced Features User’s Guide.

Default = selected

Capture bitmap
on verification
failure

Instructs WinRunner to capture an image of your application
each time a checkpoint fails. The bitmap is saved in your test
results folder.

Default = cleared

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding capture_bitmap testing option
from within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Option Description

Part V • Configuring Basic Settings

572

Captured area Specifies the area of your screen to capture when a checkpoint
fails.

Window—Captures the active window.

Desktop—Captures the entire desktop.

Desktop Area—Captures the specified area of the desktop.

Desktop area
coordinates

X—The x-coordinate of the top, left corner of the rectangle area
to capture.

Y—The y-coordinate of the top, left corner of the rectangle area
to capture.

Width—The width of the rectangle to capture.

Height—The height of the rectangle to capture.

(Enabled only when Desktop Area is the selected Captured
area.)

Option Description

Chapter 23 • Setting Global Testing Options

573

Setting Run Synchronization Options

The Synchronization category defines synchronization settings for your test
run.

Part V • Configuring Basic Settings

574

The Synchronization category contains the following options:

Option Description

Delay for
window
synchronization

Sets the sampling interval (in milliseconds) used to determine
that a window is stable before capturing it for a Context
Sensitive checkpoint or synchronization point. To be declared
stable, a window must not change between two consecutive
samplings. This sampling continues until the window is stable
or the timeout (as set in the Timeout for Checkpoints and CS
Statements in the Settings category) is reached.

In general, a smaller delay enables WinRunner to capture the
object or window more quickly so that the test can continue,
but smaller delays increase the load on the system.

This option is accurate to within 20-30 milliseconds.

See “Choosing Appropriate Timeout and Delay Settings” on
page 589 for more information on when to adjust this setting.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding delay_msec testing option from
within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

You can also set this option using the corresponding
-delay_msec command line option, described in Chapter 15,
“Running Tests from the Command Line” in the Mercury
WinRunner Advanced Features User’s Guide.

Default = 1000 [milliseconds]

Chapter 23 • Setting Global Testing Options

575

Delay between
execution of CS
statements

Sets the time (in milliseconds) that WinRunner waits before
executing each Context Sensitive statement when running a
test.

See “Choosing Appropriate Timeout and Delay Settings” on
page 589 for more information on when to adjust this setting.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding cs_run_delay testing option
from within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

You can also set this option using the corresponding
-cs_run_delay command line option, described in Chapter 15,
“Running Tests from the Command Line” in the Mercury
WinRunner Advanced Features User’s Guide.

Default = 0 [milliseconds]

Timeout for
waiting for
synchronization
message

Sets the timeout (in milliseconds) that WinRunner waits
before validating that keyboard or mouse input was entered
correctly during a test run.

If synchronization often fails during your test runs, consider
increasing the value of this option.

See “Choosing Appropriate Timeout and Delay Settings” on
page 589 for more information on when to adjust this setting.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding synchronization_timeout testing
option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury
WinRunner Advanced Features User’s Guide.

Default = 2000 [milliseconds]

Option Description

Part V • Configuring Basic Settings

576

Drop
synchronization
timeout if failed

Determines whether WinRunner minimizes the
synchronization timeout (as defined in the Timeout for
Waiting for Synchronization Message option above) after the
first synchronization failure.

See “Choosing Appropriate Timeout and Delay Settings” on
page 589 for more information on when to adjust this setting.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding drop_sync_timeout testing
option from within a test script, as described in Chapter 21,
“Setting Testing Options from a Test Script” in the Mercury
WinRunner Advanced Features User’s Guide.

Default = selected

Beep when
synchronization
fails

Determines whether WinRunner beeps when the timeout for
waiting for synchronization message fails.

This option is primarily for debugging test scripts.

If synchronization often fails during your test runs, consider
increasing the value of the Timeout for Waiting for
Synchronization Message option or the corresponding
synchronization_timeout testing option with the setvar function
from within a test script.

See “Choosing Appropriate Timeout and Delay Settings” on
page 589 for more information on when to adjust this setting.

You can use the setvar and getvar functions to set and retrieve
the value of the corresponding sync_fail_beep testing option
from within a test script, as described in Chapter 21, “Setting
Testing Options from a Test Script” in the Mercury WinRunner
Advanced Features User’s Guide.

Default = cleared

Option Description

Chapter 23 • Setting Global Testing Options

577

Setting Recovery Options

The Recovery category options specify the files to which WinRunner refers
for recovery scenario and Web exception information.

Part V • Configuring Basic Settings

578

The Recovery category contains the following options:

Option Description

Recovery
scenario file

Indicates the location of the recovery scenarios file, which
stores the details of the available recovery scenarios. You must
select a recovery scenarios file other than wrun.ini before you
can use the Recovery Manager to create or modify recovery
scenarios.

Recovery scenarios are defined and modified in the Recovery
Manager. For more information, refer to Chapter 4, “Defining
and Using Recovery Scenarios” in the Mercury WinRunner
Advanced Features User’s Guide.

Default = <Windows folder>\wrun.ini

Recovery
compiled
module

Indicates the location of the exceptions compiled module,
which is loaded automatically when WinRunner opens, and
contains the recovery and post-recovery functions used in
recovery scenarios. Enter a new module name, or enter the
name of an existing compiled module. For more information,
refer to Chapter 4, “Defining and Using Recovery Scenarios” in
the Mercury WinRunner Advanced Features User’s Guide.

Note: You can specify a Quality Center script as your recovery
compiled module. If you do, ensure that Reconnect on
startup is selected in the Quality Center Connection
dialog box. For more information, refer to Chapter 26,
“Managing the Testing Process” in the Mercury
WinRunner Advanced Features User’s Guide.

Web Exceptions
file

Indicates the location of the Web exceptions file, which stores
the details of the available Web exception handling
definitions.

Web exceptions are defined and modified in the Web
Exception Editor. For more information, refer to Chapter 5,
“Handling Web Exceptions” in the Mercury WinRunner
Advanced Features User’s Guide.

Default = <WinRunner installation folder>\arch\exception.inf

Chapter 23 • Setting Global Testing Options

579

Setting Notification Options

The Notifications category contains options for sending e-mail notifications
based on specified criteria.

In addition to the options in this category, you can set additional
notification options in the E-mail and Recipient subcategories.

Part V • Configuring Basic Settings

580

The Notifications category contains the following options:

Option Description

Send e-mail
notification for

Sends an e-mail for the selected conditions. You can select
one or more of the following:

• Bitmap checkpoint failure—Sends an e-mail to the
specified recipients each time a bitmap checkpoint fails.
The e-mail contains summary details about the test, the
checkpoint, and the file names for the expected, actual,
and difference images.

• Database checkpoint failure—Sends an e-mail to the
specified recipients each time a database checkpoint fails.
The e-mail contains summary details about the test, the
checkpoint, and details about the connection string and
SQL query used for the checkpoint.

• GUI checkpoint failure—Sends an e-mail to the specified
recipients each time a GUI checkpoint fails. The e-mail
contains summary details about the test, the checkpoint,
and details about the expected and actual values of the
property check.

• Test failure— Sends an e-mail to the specified recipients
each time a test run fails. The e-mail contains the
summary test results in text format.

For information on specifying recipients, see “Setting
Notification Recipients Options” on page 584.

Note: To enable the notification options, you must select to
Activate e-mail service option in the E-mail category.

Default = all check boxes are cleared

Send test results
report when test
run ends

Sends an e-mail to the specified recipients (see Recipients
category) at the end of each test run. The e-mail contains the
summary test results in text format.

Note: If you also select to send e-mail notifications for Test
failure, and the test run fails, then only the Test failure
e-mail is sent.

To enable the notification options, you must select to
Activate e-mail service option in the E-mail category.

Default = Selected

Chapter 23 • Setting Global Testing Options

581

Setting E-mail Notification Options

The E-mail category contains options for specifying the mail server to use
and other e-mail preferences.

Part V • Configuring Basic Settings

582

The E-mail category contains the following options:

Option Description

Activate e-mail
service

Instructs WinRunner to enable the e-mail notification
options that are set in the Notifications category as well as
any specified in the test script using the email_send_msg
function.

You can use the setvar and getvar functions to set and
retrieve the value of the corresponding email_service
testing option from within a test script, as described in
Chapter 21, “Setting Testing Options from a Test Script” in
the Mercury WinRunner Advanced Features User’s Guide.

Default = cleared

Server address The address of the outgoing mail server you want to use to
send the e-mail message.

Port The mail server port to use.

Default = 25

Sender address The e-mail address you want to display as the sender of the
e-mail notification. Choose one of the following:

• <User Name>@<Host Name>—Uses the login name and
host name of the WinRunner computer on which the
test was run as the sender address. For example:
Amy@MYCOMPUTER

• Custom—Enables you to specify any text or e-mail
address as the sender address.

Note: Many mail servers require that the sender name is a
valid e-mail address. If the outgoing mail server you
specified has such a requirement, use the Custom
option to specify a valid e-mail address. If you do not
specify a valid e-mail address for such a server,
WinRunner sends the e-mail to the mail server, but
the mail server will not send the e-mail to the
recipients.

Default = <User Name>@<Host Name>

Chapter 23 • Setting Global Testing Options

583

Use
authentication

Indicates that your outgoing mail server requires you to log
in to send e-mail. When this option is selected, you must
enter the login user name and password.

Default = cleared

Maximum e-mail
notifications per
test run

The maximum number of e-mail notifications you want to
send to the recipients (as specified in the Recipients
category) during a test run.

Note: This option applies only to the number of e-mail
messages that WinRunner sends according to the
options set in the Notifications category. Messages
sent using the email_send_msg function are
completely independent of this option. For more
information on the email_send_msg function, refer
to the TSL Reference.

Default = 25

Option Description

Part V • Configuring Basic Settings

584

Setting Notification Recipients Options

The Recipients category enables you to specify the recipients that you want
to receive e-mail notifications (according to the options selected in the
Notifications category).

➤ Click Add Recipient to add a new recipient to the list.

➤ Select a recipient from the list and click Remove Recipient to remove
the recipient from the list.

➤ Select a recipient from the list and click Modify Recipient Details to
modify the details of a recipient in the list.

Chapter 23 • Setting Global Testing Options

585

Note: Some mail servers (such as Microsoft Exchange, if configured to do so)
prevent mail clients other than Microsoft Outlook from sending e-mail
outside the organization. If the outgoing mail server you specified in the
E-mail category has configured such a limitation, confirm that you specify
only e-mail addresses with a domain name that matches your mail server's
domain name. If you specify external recipients, the WinRunner mail client
sends the e-mail message to the mail server, but the mail server will not send
the message to the recipients. In most cases, the mail server does not send
an error message to the sender in these situations.

Setting Appearance Options

The Appearance category contains options for controlling the appearance of
WinRunner.

Part V • Configuring Basic Settings

586

The Appearance category contains the following options:

Selecting a Theme

You can select a pre-configured style for your frame from the Theme list.
Alternatively, you can select a custom wallpaper as a background for your
frame. The theme you select is reflected in both the WinRunner window
and the WinRunner Test Results window.

Option Description

Display test tabs Displays a tab for each open test so that you can
display an open test by clicking its tab.

If this option is cleared, you can select a test to display
using the Window menu commands.

Default = selected

Show full path on test
tabs

When this option is selected, the full path of the test
is displayed on each test tab. When this option is
cleared, only the test name is displayed on the tab.

Default = cleared

Tab position

(Test tabs)

Indicates whether to display the test tabs at the Top or
Bottom of the page.

Tab position

(Debug Viewer)

Indicates whether to display the debug tabs at the Top
or Bottom of the Debug Viewer pane.

Display System Modules
(Function Viewer)

When this option is selected, loaded system modules
are displayed in the Function Viewer.

Theme Enables you to select a pre-configured style or a
background image for your frame. For more
information, see “Selecting a Theme” below.

Chapter 23 • Setting Global Testing Options

587

Note: The theme does not appear in the test results in the Unified report
view. For more information on selecting the report view, see “Setting Test
Run Options,” on page 562. For more information on the Unified report
view, see “Understanding the Unified Report View Results Window,” on
page 456.

To select a custom wallpaper background:

 1 From the Theme list, select Wallpaper. The Background Image button is
displayed.

Part V • Configuring Basic Settings

588

 2 Click Background Image. The Background Image dialog box opens.

 3 Select Internal to use the default WinRunner background image. Select From
File to use a custom image.

 4 If you chose From File in step 3, enter a file name or use the browse button
to select a bitmap (.bmp) file.

 5 If you want to adjust the brightness of the image you selected, use the
Brightness slider control.

 6 Click OK to close the Background Image dialog box. Note that your
background image appears in the WinRunner user interface only after you
click Apply or OK in the General Options dialog box.

Chapter 23 • Setting Global Testing Options

589

Choosing Appropriate Timeout and Delay Settings

The table below summarizes the timeout and delay settings available in the
General Options dialog box, and describes the situations in which you may
want to adjust each setting.

Setting Description
Adjustment
Recommendations

Default

Delay for
Window
Synchronization

The amount of time
WinRunner waits
between each
attempt to locate a
window or
object-enabled
window to stabilize.

A smaller delay enables
WinRunner to capture
the object or window
more quickly so that the
test can continue, but
smaller delays increase
the load on the system.
In most cases, when you
modify the Timeout for
Checkpoints and CS
Statements, you should
modify the Delay for
Window
Synchronization to
maintain a constant
ratio. To avoid
overloading your
system, you should not
exceed a timeout:delay
ratio of 50:1.

1000 (ms)

Part V • Configuring Basic Settings

590

Timeout for
checkpoint and
CS statements

The amount of time,
in addition to the
time parameter
embedded in a GUI
checkpoint or
synchronization
point, that
WinRunner waits for
an object or window
to appear.

You should increase this
setting if your
application takes longer
than the current timeout
value to successfully
display objects and
windows. If only one or
few objects have this
problem, however, it
may be preferable to add
a synchronization point
to the script for the
problematic objects.

10000
(ms)

Delay between
execution of CS
statements

Amount of time
WinRunner waits
before executing
each CS statement.

Increase this delay when
you need to slow down
the test run for reasons
not related to
synchronization issues.
For example, you may
want to increase the
delay so that you can
follow the test as it runs
step by step.

0 (ms)

Timeout for
waiting for
synchronization
message

The amount of time
WinRunner waits
before validating
that keyboard or
mouse input was
entered correctly
during a test run.

Increase this setting if
WinRunner runs the
script faster than the
application is capable of
executing the
statements.

2000 (ms)

Setting Description
Adjustment
Recommendations

Default

Chapter 23 • Setting Global Testing Options

591

Drop
synchronization
timeout if failed

Automatically
minimizes the
length of the
Timeout for waiting
for synchronization
message setting after
the first
synchronization
validation failure.
This increases the
likelihood that the
test will fail quickly,
as mouse and
keyboard entries will
not be complete.

Select this option to
prevent the test from
running for a long time
with incorrect data due
to an incomplete mouse
or keyboard entry.

Selected

Beep when
synchronization
fails

WinRunner beeps
each time the
Timeout for waiting
for synchronization
message setting is
exceeded.

You may want to select
this option while
debugging your script. If
you hear many beeps
during a single test run,
increase the Timeout for
waiting for
synchronization
message.

cleared

Setting Description
Adjustment
Recommendations

Default

Part V • Configuring Basic Settings

592

Timeout for text
recognition

The amount of time
that WinRunner
waits to recognize
text when
performing a text
checkpoint using the
standard Text
Recognition method
during a test run.

If text checkpoints fail
using the standard Text
Recognition method, try
increasing this timeout.
Alternatively you can try
using Image Text
Recognition. You may
also want to consider
using an alternative
method of checking text
that does not use text
recognition at all. For
more information, see
“Considerations for
Using Text Recognition
for Windows-Based
Applications” on
page 560.

500 (ms)

Setting Description
Adjustment
Recommendations

Default

593

Symbols

$ symbol in Range property check 167
\ character in regular expressions 167
_web_set_tag_attr function 180

A

Acrobat Reader xvii
activating an ActiveX control 229
ActiveX controls

activating 229
checking sub-object properties

232–234
overview 218–221
retrieving properties 226–229
setting properties 226–229
support for 217–235
viewing properties 223–226
working with TSL table functions 235

ActiveX Properties Viewer. See GUI Spy
ActiveX tab

ActiveX, pointer values 39
ActiveX_activate_method function 229
ActiveX_get_info function 39, 226
ActiveX_set_info function 228
Add All button

in the Check GUI dialog box 151
in the Create GUI Checkpoint dialog

box 153
in the Edit GUI Checklist dialog box

156
Add button

in the Create GUI Checkpoint dialog
box 153

in the Edit GUI Checklist dialog box
156

Add Defect dialog box 504
reporting defects 504
setup 504

Add dialog box (GUI Map Editor) 86
Add-In Manager dialog box 20
add-ins 519

loading while starting WinRunner
20–22

QuickTest. See the WinRunner
Advanced Features User’s Guide

Add-ins tab, Test Properties dialog box 519
Advanced Features User’s Guide, WinRunner

xvi
Advanced Settings dialog box 359
aging

definition 444
overriding 358–363

alignment, setting 444
Analog mode 5, 103

tests recorded in XRunner 103
appearance options 585
application being tested, illustration 28
applications, startup 523–529
Argument Specification dialog box 168
arguments, specifying 164–169

DateFormat property check 166
for Compare property check 165
from the Argument Specification

dialog box 168
Range property check 167
RegularExpression property check 167
TimeFormat property check 168

associating add-ins with a test 519
Attribute/ Notation 180
AutoFill List command, data table 388

Index

Index

594

B

Background Image dialog box 588
batch tests. See the WinRunner Advanced

Features User’s Guide
Bitmap Checkpoint > For Object/Window

326
Bitmap Checkpoint > For Screen Area 328
bitmap checkpoint commands 326–329
Bitmap Checkpoint for Object/Window

button 19, 326
Bitmap Checkpoint for Screen Area button

19, 328
bitmap checkpoints 321–329

Context Sensitive 326–327
in data-driven tests 323, 397–402
of an area of the screen 328–329
of windows and objects 326–327
options for failed checkpoints 324
overview 321–323
test results 473
viewing results 493

bitmap synchronization points
in data-driven tests 423
of objects and windows 419–420
of screen areas 421–423

bitmap verification. See bitmap checkpoints
bitmaps

capturing during the test run 324
breakpoints. See the WinRunner Advanced

Features User’s Guide
bugs. See defects
button_check_info function 130, 368
button_check_state function 368
button_wait_info function 415

C

calendar class 158
called tests

Run tab settings 523
calling functions from external libraries. See

the WinRunner Advanced Features
User’s Guide

calling tests. See the WinRunner Advanced
Features User’s Guide

Cannot Capture message
in Database Checkpoint dialog boxes

283
in GUI Checkpoint dialog boxes 149

Case Insensitive Ignore Spaces verification
databases 295
tables 210, 257

Case Insensitive verification
databases 295
tables 210, 257

Case Sensitive Ignore Spaces verification
databases 295
tables 210, 257

Case Sensitive verification
databases 295
tables 210, 257

changes in GUI discovered during test run.
See Run wizard

Check Arguments dialog box
for DateFormat Property check 166
for Range property check 167
for Regular Expression property check

167
for TimeFormat property check 168

CHECK BITMAP OF OBJECT/WINDOW softkey
112, 323, 326

CHECK BITMAP OF SCREEN AREA softkey 112,
323, 328

CHECK DATABASE (CUSTOM) softkey 112, 280
CHECK DATABASE (DEFAULT) softkey 112,

277, 279
Check Database dialog box 281

Cannot Capture message 283
Complex Value message 283

Check Date Results dialog box 503
Check GUI dialog box 150–152

Cannot Capture message 149
closing without specifying arguments

168
Complex Value message 149
for checking date operations 356
for checking tables 250
N/A message 149
No properties are available for this

object message 149

Index

595

CHECK GUI FOR MULTIPLE OBJECTS softkey
112, 135

CHECK GUI FOR OBJECT/WINDOW softkey
112, 132, 133, 138, 139, 238, 239,
240

CHECK GUI FOR SINGLE PROPERTY softkey
112, 131

Check Property dialog box 131
check_button class 159
check_window function 323
checking

all GUI objects in a window 137–139
all GUI objects in a window using

default checks 138
all GUI objects in a window while

specifying checks 139
dates 349–358
multiple GUI objects in a window

135–137
single GUI object 132–135
single GUI object using default checks

132–133
single GUI object while specifying

checks 133–135
checking databases 259

overview 260–262
See also databases and database

checkpoints
checking dates

in edit boxes 355–357
in static text fields 355–357
in table contents 355–357

checking tables 247–258
overview 247
See also tables

checklists
See also GUI checklists or database

checklists
checkpoints

bitmap 107, 321–329
database 259
GUI 107, 127–174
options for failed checkpoints

bitmap 324
database 262
GUI 129

checkpoints (continued)
overview 107
text 107, 331–348
updating expected results 499

Classes of Objects dialog box 151, 153, 154,
156

Clear All button
in the Check GUI dialog box 151
in the Create GUI Checkpoint dialog

box 154
in the Edit GUI Checklist dialog box

156
Clear All command, data table 387
Clear Contents command, data table 387
Clear Formats command, data table 387
clearing a GUI map file 87
click_on_text functions 337, 341
Close All command 125
Close command 125

for data table 386
closing the GUI Checkpoint dialog boxes

168
Collapse Tree command (GUI Map Editor) 74
column names for data tables 390
columns, computed 245
command line

running applications from 524
running tests from the. See the

WinRunner Advanced Features
User’s Guide

Comment command 115
comments

adding to physical description 79
Compare Expected and Actual Values button

in the Database Checkpoint Results
dialog box 495

in the GUI Checkpoint Results dialog
box 485

Compare property check, specifying
arguments 165

compare_text function 342
comparing files

test results 473
viewing results 500

compiled modules
in startup functions 529

Index

596

compiled modules. See the WinRunner
Advanced Features User’s Guide

Complex Value message
in Database Checkpoint dialog boxes

283
in GUI Checkpoint dialog boxes 149

computed columns 245
configurations, initializing. See the

WinRunner Advanced Features User’s
Guide

Content property check on databases
280–282

Context Sensitive
mode 4, 25, 97–100
recording, common problems

101–102
running tests, common problems

449–451
testing, introduction to 25–31

conversion file for a database checkpoint,
working with Data Junction 315–316

Copy command 114
for data table 387

copying descriptions of GUI objects from
one GUI map file to another 82

Create GUI Checkpoint dialog box 152–154
Cannot Capture message 149
closing without specifying arguments

168
Complex Value message 149
N/A message 149
No properties are available for this

object message 149
CRV icon 11
currency symbols, in Range property check

167
Currency(0) command, data table 389
Currency(2) command, data table 389
Current Folder box 522
Current Line box 521
current test settings 521–522
Current Test tab, Test Properties dialog box

521
custom checks on databases 280–282
custom classes 101
custom execution functions 101

Custom Number command, data table 389
custom objects 101
custom record functions 101
customizing

WinRunner’s user interface. See the
WinRunner Advanced Features
User’s Guide

customizing test scripts. See the WinRunner
Advanced Features User’s Guide

customizing the Function Generator. See the
WinRunner Advanced Features User’s
Guide

Cut command 114
for data table 387

cut-year points 352, 446

D

Data Bound Grid Control 235
Data Comparison Viewer 487
Data Junction

choosing a database for a database
checkpoint 315–316

default database check 279
TransliterationIn property 316
TransliterationOut property 316

Data menu commands, data table 388
data table

column definition 383
Data menu commands 388
declaration in manually created data-

driven tests 378
default 396
Edit menu commands 387
editing 384–389
File menu commands 386
Format menu commands 389
largest number 390
main 396
maximum column width 390
maximum formula length 390
maximum number of columns 390
maximum number of rows 390
maximum row height 390
number precision 390

Index

597

data table (continued)
preventing data from being

reformatted 385
row definition 383
saving to a new location 380
saving with a new name 380
smallest number 390
table format 390
technical specifications 390
valid column names 390
working with Microsoft Excel 386,

403
working with more than one data

table in a test script 380
Data Table command 385
database checklists

editing 299–302
modifying an existing query 302–307
sharing 297–299

Database Checkpoint > Custom Check
command, ODBC or Microsoft Query
280

Database Checkpoint > Default Check
command

for working with Data Junction 279
for working with ODBC or Microsoft

Query 277
Database Checkpoint > Runtime Record

Check command 264
Database Checkpoint Results dialog box

Cannot Capture message 283
Complex Value message 283
options 495

Database Checkpoint wizard 283–290
Data Junction screens 288–290
ODBC/Microsoft Query screens

284–288
selecting a Data Junction conversion

file 290
selecting a source query file 286
setting Data Junction options 289
setting ODBC (Microsoft Query)

options 284
specifying an SQL statement 287

database checkpoints
Database Checkpoint wizard 283–290
editing database checklists 299–302
modifying 297–307
modifying expected results 308–309
options for failed checkpoints 262
parameterizing 310–314
parameterizing queries 310
parameterizing SQL statements 310
parameterizing, guidelines 313
saving a database checklist to a shared

folder 297–299
See also runtime record checkpoints
test results 494
viewing expected results of a contents

check 496
databases

Case Insensitive Ignore Spaces
verification 295

Case Insensitive verification 295
Case Sensitive Ignore Spaces

verification 295
Case Sensitive verification 295
checking 259
choosing 314–316
connecting 317
creating a query in Data Junction

315–316
creating a query in ODBC/Microsoft

Query 314–315
custom checks 280–282
Database Checkpoint wizard 283–290
default check with Data Junction 279
default check with ODBC/Microsoft

Query 277–278
default checks 277–279
disconnecting 319
editing the expected data 296
importing data for data-driven tests

384
modifying an existing query 302–307
modifying checkpoints 297–307
Numeric Content verification 295
Numeric Range verification 295

Index

598

databases (continued)
overview 260–262
result set 260
retrieving information 318
returning the content and number of

column headers 318
returning the last error message of the

last operation for Data Junction
320

returning the last error message of the
last operation for ODBC 319

returning the row content 318
returning the value of a single field

318
running a Data Junction export file

320
runtime record checklists, editing

272–276
runtime record checkpoints 264–271
specifying which cells to check 292
TSL functions for working with

316–320
verification method for contents of a

multiple-column database 293
verification method for contents of a

single-column database 295
verification type 295
writing the record set into a text file

319
data-driven tests 365–410

analyzing test results 395
bitmap checkpoints 397–402
bitmap synchronization points

397–402
converting a test script manually

380–382
converting tests to 369–382
converting tests using the DataDriver

wizard 369–376
creating a data table manually

380–382
creating, manually 378–382
DataDriver wizard 369–378
ddt_func.ini file 374
editing the data table 384–389
GUI checkpoints 397–402

data-driven tests (continued)
guidelines 409–410
importing data from a database 384
overview 366
process 366–396
running 395
technical specifications for the data

table 390
using TSL functions with 402–408
with user-defined functions 374

DataDriver wizard 369–378
DataWindows

checking properties 241–243
checking properties of objects within

243–245
checking properties while specifying

checks 242
checking properties with default

checks 241
computed columns 245

Date (MM/dd/yyyy) command, data table
389

date field expansion 352
date formats

date operations run mode 442
overriding 359
setting 352

date formats supported by DateFormat
property check 166

Date Operation Run Mode dialog box 442
date operations run mode

date format 442
setting 442

date_age_string function 363
date_align_day function 363, 445
date_calc_days_in_field function 357
date_calc_days_in_string function 357
date_change_field_aging function 363
date_change_original_new_formats function

363
date_disable_format function 446
date_enable_format function 446
date_field_to_Julian function 357
date_is_field function 357
date_is_leap_year function 357
date_is_string function 357

Index

599

date_leading_zero function 446
date_month_language function 358
date_set_aging function 363, 446
date_set_run_mode function 446
date_set_system_date function 363
date_set_year_limits function 446
date_set_year_threshold function 446
date_string_to_Julian function 358
date_type_mode function 363

DateFormat property check
available date formats 166
specifying arguments 166

db_check function 261, 311
db_connect function 317
db_disconnect function 319
db_dj_convert function 320
db_execute_query function 318
db_get_field_value function 318
db_get_headers function 318
db_get_last_error function 319, 320
db_get_row function 318
db_record_check function 264
db_write_records function 319
ddt_close function 372, 403
ddt_export function 404
ddt_func.ini file 374
ddt_get_current_row function 406
ddt_get_parameters function 406
ddt_get_row_count function 372, 379, 404
ddt_is_parameter function 406
ddt_next_row function 404
ddt_open function 372, 379, 386, 403
ddt_report_row function 396, 407
ddt_save function 372, 380, 384, 403, 410
ddt_set_row function 379, 405
ddt_set_val function 405, 410
ddt_set_val_by_row function 405, 410
ddt_show function 404
ddt_update_from_db function 372, 380, 408
ddt_val function 373, 382, 407
ddt_val_by_row function 407
Debug mode 428, 429, 437
Debug results 429, 437
Debug toolbar 18
Debug Viewer pane 14

debugging test scripts. See the WinRunner
Advanced Features User’s Guide

declare transaction 108
Decrease Indent command 115
default checks

on a single GUI object 132–133
on all objects in a window 138
on databases 277–279
on standard objects 158–164

default database check
with Data Junction 279
with ODBC/Microsoft Query 277–278

Default Database Checkpoint button 19,
277, 279

defects
reporting during a test run 506
reporting from Test Results window

503
defining parameters 515
Delete button

in the Create GUI Checkpoint dialog
box 153

in the Edit GUI Checklist dialog box
156

Delete command 114
for data table 387

deleting objects from a GUI map file 86
Description tab, Test Properties dialog box

514
descriptions. See physical descriptions
descriptive test information 514
dialog boxes for interactive input

creating. See the WinRunner
Advanced Features User’s Guide

Display button, in Test Results window 499
documentation

updates xviii
documentation, printed

WinRunner Advanced Features User’s
Guide xvi

DropDown DataWindows. See DropDown
objects

DropDown lists. See DropDown objects

Index

600

DropDown objects
checking properties including

contents 238–241
checking properties while specifying

checks 239
checking properties with default

checks 239
drop-down toolbar, recording on a 106
DropDownListBoxContent property check

239
DWComputedContent property check 245
DWTableContent property check 241

E

Edit Check dialog box 205
editing the expected data 211, 258,

296
for a multiple-column database 291
for a multiple-column table 253
for a single-column database 294
for a single-column table 209, 256
for checking databases 291–297
for checking tables 253–258
specifying which cells to check 206,

254, 292
verification method 207, 255, 293
verification type 210, 257, 295

edit class 159
Edit Database Checklist command 298, 299
Edit Database Checklist dialog box 300, 303,

306
Modify button 304, 307

Edit Expected Value button 170–171
Edit GUI Checklist command 144, 145, 155
Edit GUI Checklist dialog box 155–157

closing without specifying arguments
168

No properties are available for this
object message 149

Edit menu commands, data table 387
Edit Runtime Record Checklist command

272
edit_check_info function 130, 368
edit_check_selection function 368
edit_wait_info function 415

editing
database checklists 299–302
expected property values 170–171
GUI checklists 144–148
GUI map 89
runtime record checklists 272–276
tests 114

end transaction 108
error handling. See the WinRunner Advanced

Features User’s Guide
Excel. See Microsoft Excel
execution arrow 16, 95
Expand Tree command (GUI Map Editor) 74
Expected Data Viewer 492, 498
expected results 431, 438, 439

creating multiple sets 439
specifying 440
updating 431
updating for bitmap, GUI, and

database checkpoints 499
Expected Results Folder box 522
expected results folder, location 522
expected results of a GUI checkpoint 140

editing 170–171
modifying 172–174

Export command, data table 386
exporting tests to zipped files 124
extracting WinRunner tests 124

F

FarPoint Spreadsheet Control 235
file management 116
File menu commands, data table 386
File toolbar 17
file_compare function 500
Fill Down command, data table 387
Fill Right command, data table 387
filtering results, unified report 462
Filters dialog box (GUI Map Editor) 88
filters in GUI Map Editor 88
Find command 115

for data table 387
Find in GUI Map command 41
Find Next command 115
Find Previous command 115

Index

601

find_text function 337–339
Fixed command, data table 389
floating toolbar 17
folder options 541
font group

creating 345–346
definition 343
designating the active 347

Font Groups dialog box 345
font library 343
fonts

learning 343–344
teaching to WinRunner 342–348

Fonts Expert 343
Format menu commands, data table 389
Fraction command, data table 389
frame object properties 181
Function Generator. See the WinRunner

Advanced Features User’s Guide
functions

calling from external libraries. See the
WinRunner Advanced Features
User’s Guide

defining startup 527
startup 523–529
user-defined. See the WinRunner

Advanced Features User’s Guide

G

General command, data table 389
General Options

Appearance 585
Folder 541
General 535

Startup 538
Notification 579
Record 545

General Options dialog box 522, 531
General tab

Test Properties dialog box 396, 512
generating functions. See the WinRunner

Advanced Features User’s Guide
generic object class 162
Get Text > From Object/Window command

334

Get Text from Object/Window button 19,
334

GET TEXT FROM OBJECT/WINDOW softkey
113, 334

Get Text from Screen Area button 19, 335
Get Text from Screen Area command 335
GET TEXT FROM SCREEN AREA softkey 113,

335
get_text function 333–336
Global GUI Map File mode 45–64, 537

guidelines 63–64
overview 45–47

global testing options. See setting global
testing options

Go To command, for data table 388
GUI

changes discovered during test run.
See Run wizard

learning 40, 48–54
teaching to WinRunner 40, 48–54

GUI checklists 140
editing 144–148
modifying 143–148
sharing 143–144
using an existing 141–143

GUI Checkpoint > For Single Property
command

with data-driven tests 367
GUI Checkpoint commands 132, 133, 135,

138, 139
GUI Checkpoint dialog boxes 148–157
GUI Checkpoint for Multiple Objects button

19, 135, 142, 152
See also GUI Checkpoint for Multiple

Objects command
GUI Checkpoint for Multiple Objects

command 135, 142, 152
GUI Checkpoint for Object/Window button

19, 132, 133, 138, 139, 150
See also GUI Checkpoint for

Object/Window command
GUI Checkpoint for Object/Window

command 132, 133, 138, 139, 150
GUI Checkpoint for Single Property

command 131
with data-driven tests 397

Index

602

GUI Checkpoint Results dialog box 484
Cannot Capture message 149
Complex Value message 149
N/A message 149
No properties are available for this

object message 149
options 485
Update Expected Value button 499

GUI checkpoints 127–174, 175–216
checking a single object 132–135
checking a single object using default

checks 132–133
checking a single object while

specifying checks 133–135
checking all objects in a window

137–139
checking all objects in a window using

default checks 138
checking all objects in a window

while specifying checks 139
checking multiple objects in a

window 135–137
checking text in Web objects 212–216
checking Web objects 175–216
default checks 158–164
editing expected property values

170–171
editing GUI checklists 144–148
GUI Checkpoint dialog boxes

148–157
in data-driven tests 397–402
modifying expected results 172–174
modifying GUI checklists 143–148
on dates 355–357
options for failed checkpoints 129
overview 128–129
property checks 158–164
saving a GUI checklist to a shared

folder 143–144
specifying arguments 164–169
test results 473, 484
using an existing GUI checklist

141–143
GUI checkpoints on dates 355–357

test results 502

GUI checks
on standard objects 158–164
specifying arguments for 164–169

GUI Files command (GUI Map Editor) 74
GUI map

configuring. See the WinRunner
Advanced Features User’s Guide

creating 48–56
finding objects or windows 41
introduction 25–31
loading 59
overview 33–34, 47–48
saving 57–59
understanding 33–43
viewing 30

GUI Map command (GUI Map Editor) 74
GUI Map Configuration

Web objects 177
GUI Map Editor 73–79

copying/moving objects between files
82

deleting objects 86
description of 74
expanded view 83
filtering displayed objects 88
introduction 30
learning the GUI of an application

48–56
loading GUI files 61

GUI Map File modes
comparison of 42–43
Global GUI Map File 537
Global GUI Map File mode 45–64
GUI Map File per Test 537
GUI Map File per Test mode 65–69

GUI Map File per Test mode 65–69, 537
guidelines 69
overview 65–66
setting option 67–68
updating a GUI map file 68

GUI map files
adding objects 86
clearing 87
copying/moving objects between files

82
deleting objects 86

Index

603

GUI map files (continued)
editing 89
finding a single object 84
finding multiple objects 85
guidelines 41
loading 59
loading using the GUI Map Editor 61
loading using the GUI_load function

59
merging. See the WinRunner

Advanced Features User’s Guide
saving 57–59
saving changes 89
saving temporary 57
sharing among tests 47–48
tracing objects between files 85
updating in GUI Map File per Test

mode 68
GUI object properties, viewing 34–39
GUI objects

checking 127–174
checking property values 130–132
identifying 25–31

GUI Spy 34–39
ActiveX tab 38, 223–226
All standard tab 35
Recorded tab 36

GUI Test Builder. See GUI Map Editor
GUI_close function 60
GUI_load function 59, 450
GUI_open function 60
GUI_unload function 60
GUI_unload_all function 60
gui_ver_add_class function 151, 154, 156
gui_ver_set_default_checks function 132,

137

H

html_check_button object 177
html_combobox object 177
html_edit object 177
html_frame object 177
html_listbox object 177
html_push_button object 177
html_radio_button object 177

html_rect object 177
html_text_link object 177
HWND window handle 177

I

Import command, data table 386
importing data from a database, for a data-

driven test 384
Microsoft Query file, existing 393
Microsoft Query file, new 392
Microsoft Query options 391
specifying SQL statement 394
using Microsoft Query 391–395

importing tests to zipped files 124
Increase Indent command 115
incremental aging 442
initialization tests. See the WinRunner

Advanced Features User’s Guide
input parameters 447, 515
Insert command, data table 387
Insert Function for Object/Window button

19
INSERT FUNCTION FOR OBJECT/WINDOW

softkey 113
Insert Function from Function Generator

button 19
INSERT FUNCTION FROM FUNCTION

GENERATOR softkey 112, 113
invoke_application function 105, 524

K

key assignments
default 111, 435

keyboard shortcuts 111, 435

L

labels, varying 79
Learn Font dialog box 344
learning the GUI of an application 48–56

by recording 54–55
with the GUI Map Editor 55–56
with the RapidTest Script wizard

49–54

Index

604

learning the GUI of your application 40,
49–54

lFPSpread.Spread.1 MSW_class. See FarPoint
Spreadsheet Control

list class 161
list_check_info function 130, 368
list_check_item function 368
list_check_selected function 368
list_wait_info function 415
load function 434
load testing. See the WinRunner Advanced

Features User’s Guide
loading add-ins 519

while starting WinRunner 20–22
loading the GUI map file 59

using the GUI Map Editor 61
using the GUI_load function 59

loading WinRunner add-ins 20–22
LoadRunner

description 10
LoadRunner. See the WinRunner Advanced

Features User’s Guide
location

current working folder 522
expected results folder 522
verification results folder 522

logical name
definition 29
for Web objects, setting properties for

180
modifying 43, 63, 77–79

M

main data table 396
managing the testing process. See the

WinRunner Advanced Features User’s
Guide

matching database fields
when creating runtime record

checkpoints 267
when editing runtime record

checklists 274
menu bar, WinRunner 14
menu_item class 161
menu_select_item function 106

menu_wait_info function 415
menu-like toolbar, recording on 106
merging GUI map files. See the WinRunner

Advanced Features User’s Guide
messages

in the Database Checkpoint dialog
boxes 283

in the GUI Checkpoint dialog boxes
149

Microsoft Excel, with data tables 386, 403
Microsoft Grid Control 235
Microsoft Query

and runtime record checkpoints 265
choosing a database for a database

checkpoint 314–315
default database check 277–278
importing data from a database

391–395
minimizing WinRunner, when recording a

test 105
Modify button, in Edit Database Checklist

dialog box 304, 307
Modify dialog box (GUI Map Editor) 78
Modify ODBC Query dialog box 304
modifying

expected results of a database
checkpoint 308–309

expected results of a GUI checkpoint
172–174

GUI checklists 143–148
logical names of objects 43, 63, 77–79
physical descriptions of objects 77–79

modules, compiled. See the WinRunner
Advanced Features User’s Guide

move_locator_text function 339–340
MSDBGrid.DBGrid MSW_class. See Data

Bound Grid Control
MSGrid.Grid MSW_class. See Microsoft Grid

Control

N

N/A message, GUI Checkpoint dialog boxes
149

names. See logical names
New button 116

Index

605

New command 116
for data table 386

New icon in Runtime Record Checkpoint
wizard 275

No properties are available for this object
message, in GUI Checkpoint dialog
boxes 149

No properties were captured for this object
message, in GUI Checkpoint dialog
boxes 149

nonstandard properties 154, 157
notification options 579
Numeric Content verification

databases 295
tables 210, 257

Numeric Range verification
databases 295
tables 210, 257

O

obj_check_bitmap function 327
in data-driven tests 397

obj_check_gui function 140–141, 355, 357
in data-driven tests 397

obj_check_info function 130, 368
obj_check_text function 337
obj_click_on_text 340–341
obj_exists function 414
obj_find_text function 338–339
obj_get_text function 333–336
obj_mouse function 101
obj_move_locator_text 339–340
obj_wait_bitmap function 420

in data-driven tests 397
obj_wait_info function 415
object class 162
object synchronization points 413–414
objects

finding in the GUI map 41
virtual. See the WinRunner Advanced

Features User’s Guide
OCX controls. See ActiveX controls
OCX Properties Viewer. See GUI Spy

ActiveX tab

ODBC
choosing a database for a database

checkpoint 314–315
default database check 277–278

OLE controls. See ActiveX controls
online resources xvii
Open button

in the Create GUI Checkpoint dialog
box 153

in the Edit GUI Checklist dialog box
156

Open Checklist dialog box
for database checklists 298, 300, 303,

306
for GUI checklists 142, 145

Open command
for data table 386

Open GUI File dialog box 61
Open GUI File from Quality Center Project

dialog box 62
Open or Create a Data Table dialog box 377,

384, 385
Open Test dialog box 120
Open Test from Quality Center Project dialog

box 121
opening test results, unified report 477
opening tests 116

from file system 120
options, global testing. See setting global

testing options
output parameters 515
Override Aging dialog box 360, 362
Override Object Settings dialog box 361
overriding

date formats 359
date objects 360
date settings 358–363

P

Parameterize Data command 381
Parameterize Data dialog box 381
parameterizing database checkpoints

310–314
guidelines 313

Index

606

parameterizing database checkpoints
(continued)

SQL statements 310
parameters

defining for a test 515, 517
input 515
managing for a test 515
output 515

Parameters tab, Test Properties dialog box
515

Paste command 114
for data table 387

Paste Values command, data table 387
Pause button 435
Pause command 435
PAUSE softkey 436

pausing test execution using breakpoints. See
the WinRunner Advanced Features
User’s Guide

Percent command, data table 389
physical descriptions

adding comments to 79
changing regular expressions in 81
definition 27–29
modifying 77–79

pointer values, ActiveX 39
PowerBuilder

DataWindows 241–243, 243–245,
245

DropDown objects 238–241
PowerBuilder applications 237–245

overview 238
previewing test results 464
Print command 125

for data table 386
Print Setup command, data table 386
printing, test results 463
problems

recording Context Sensitive tests
101–102

running Context Sensitive tests
449–451

programming in TSL. See the WinRunner
Advanced Features User’s Guide

properties
setting test 510
test 509–529

properties of ActiveX controls
retrieving 226–229
setting 226–229
viewing 223–226

properties of Visual Basic controls
retrieving 226–229
setting 226–229
viewing 223–226

property checks
checking property values 130–132
on standard objects 158–164
specifying arguments 164–169
test results 483

Property List button 151, 154, 156

property value synchronization points
414–418

property values, editing 170–171
push_button class

push button objects 162

Q

qcdb_add_defect function 503, 506
Quality Center 520

Add Defect dialog box 504
connecting from unified report 479
description 9
reporting defects during a test run 506
TdApiWnd icon 11
working with

Quality Center Connection dialog box 479
query file for a database checkpoint, working

with ODBC/Microsoft Query 314–315
QuickTest

loading associated add-ins
supported versions

quotation marks in GUI map files 75, 79

Index

607

R

radio_button class 159
Range property check

currency symbols 167
specifying arguments 167

RapidTest Script wizard
learning the GUI of an application

49–54
Read Me file xvii
reading text 333–336

from an area of an object or a window
335

in a window or an object 334
Recalc command, data table 388
Record - Analog command 100
Record - Context Sensitive button 18, 19
Record - Context Sensitive command 100
Record button 100
Record commands 100
RECORD softkey 112
Record/Run Engine icon 11
recording

options 545
problems while 101–102

recording tests
Analog mode 103
Context Sensitive mode 97–100
guidelines 97
with WinRunner minimized 105

recovery scenarios. See the WinRunner
Advanced Features User’s Guide

regular expressions
changing, in the physical description

81
character 167

regular expressions. See the WinRunner
Advanced Features User’s Guide

RegularExpression property check,
specifying arguments 167

Replace command 115
for data table 388

reporting defects from Test Results window
503

result set 260
results display, customizing 466

results folders
debug 437
expected 431, 439
verify 429, 436

results of tests. See test results
results of tests. See the WinRunner Basic

Features User’s Guide xvi
results schema 466
RTL-style windows

WinRunner support for applications
with 106

Run commands 433
Run from Arrow

button 18, 433
command 433

RUN FROM ARROW softkey 435
Run from Top

button 18, 433
command 433, 523

Run from Top command 523
RUN FROM TOP softkey 435
Run Minimized > From Arrow command 434
Run Minimized > From Top command 434,

523
Run Minimized commands 433
Run Mode

box 522
Run Mode button 18
run modes

Debug 428, 429, 437
displaying for current test 522
Update 428, 431
Verify 428, 429

Run tab, Test Properties dialog box 523
Run Test dialog box 429, 437, 441

for date operations 445
Run wizard 75–77
running tests 427–448

batch run. See the WinRunner
Advanced Features User’s Guide

checking your application 436
controlling with configuration

parameters 448
controlling with test options 448
debugging a test script 437

Index

608

running tests (continued)
for debugging. See the WinRunner

Advanced Features User’s Guide
from the command line. See the

WinRunner Advanced Features
User’s Guide

overview 428
problems while 449–451
run modes 428
setting global testing options

562–578
to check date operations 442–446
updating expected results 438

runtime database record checklists, editing
272–276

runtime database record checkpoints
264–271

runtime record checklists, editing 272–276
Runtime Record Checkpoint wizard 264–276

New icon 275
runtime record checkpoints 264–271

changing success conditions 276
comparing data in different formats

269
specify number of matching database

records 269

S

sample tests xvii
Save All command 116
Save As button

in the Create GUI Checkpoint dialog
box 153

in the Edit GUI Checklist dialog box
156

Save As command 116
for data table 386

Save button 116
Save Checklist dialog box

for database checklists 299
for GUI checklists 144

Save command 116
for data table 386

Save GUI File dialog box 57

Save GUI File to Quality Center Project
dialog box 58

Save Test dialog box 117
Save Test to Quality Center Project dialog

box 118
saving

GUI map files 57–59
temporary GUI map file 57

saving changes to the GUI map file 89
saving tests

in file system 116
in Quality Center project database

118
schema, for results 466
Scientific command, data table 389
Script wizard. See RapidTest Script wizard
scroll class 163
scroll_check_info function 130, 368
scroll_check_pos function 368
scroll_wait_info function 415
Section 508 94
Select All button

in the Check GUI dialog box 151
in the Create GUI Checkpoint dialog

box 153
in the Edit GUI Checklist dialog box

156
Select All command 114
Set Date Formats dialog box 353
set_window function 31
setting date formats 353
setting global testing options 531–592

current test settings 522
running a test 562–578
text recognition 558–560

setting test properties 509–529
add-ins 519
documenting descriptive test

information 514
documenting general test

information 512
parameters 515
test properties dialog box 510

setting test properties. See the WinRunner
Basic Features User’s Guide xvi

Index

609

setting testing options
globally 531–592
within a test script. See the

WinRunner Advanced Features
User’s Guide

setting the date operations run mode 442
setvar function 448
shared folder

for database checklists 297–299
for GUI checklists 143–144

sharing GUI map files among tests 47–48
Sheridan Data Grid Control 235
Show All Properties button

in the Check GUI dialog box 152
in the Create GUI Checkpoint dialog

box 154
in the Database Checkpoint Results

dialog box 496
in the Edit GUI Checklist dialog box

157
in the GUI Checkpoint Results dialog

box 485
Show Failures Only button

in the Database Checkpoint Results
dialog box 495

in the GUI Checkpoint Results dialog
box 485

Show Nonstandard Properties Only button
in the Check GUI dialog box 152
in the Create GUI Checkpoint dialog

box 154
in the Database Checkpoint Results

dialog box 496
in the Edit GUI Checklist dialog box

157
in the GUI Checkpoint Results dialog

box 485
Show Selected Properties Only button

in the Check GUI dialog box 151
in the Create GUI Checkpoint dialog

box 154
in the Edit GUI Checklist dialog box

157

Show Standard Properties Only button
in the Check GUI dialog box 152
in the Create GUI Checkpoint dialog

box 154
in the Database Checkpoint Results

dialog box 495
in the Edit GUI Checklist dialog box

157
in the GUI Checkpoint Results dialog

box 485
Show TSL button, in the WinRunner Test

Results window 173, 308
Show User Properties Only button

in the Check GUI dialog box 152
in the Create GUI Checkpoint dialog

box 154
in the Edit GUI Checklist dialog box

157
in the GUI Checkpoint Results dialog

box 485
softkeys

default settings 111, 435
Sort command, data table 388
Specify ‘Compare’ Arguments dialog box 165
Specify Arguments button 164–169
Specify Text dialog box 213, 215
specifying arguments 164–169

for DateFormat property check 166
for Range property check 167
for RegularExpression property check

167
for TimeFormat property check 168
from the Argument Specification

dialog box 168
specifying which checks to perform on all

objects in a window 139
specifying which properties to check for a

single object 133–135
spin_wait_info function 415
spying on GUI objects 34–39
SQL statements

and creating runtime record
checkpoints 266

creating result sets based on 318
executing queries from 318

Index

610

SQL statements (continued)
for editing runtime record checklists

273
parameterizing in database

checkpoints 310
specifying in the Database

Checkpoint wizard 287
SSDataWidgets.SSDBGridCtrl.1. See Sheridan

Data Grid Control
standard objects

default checks 158–164
property checks 158–164

standard properties 154, 157
Standard toolbar 17
start transaction 108
starting WinRunner, with add-ins 20–22
startup applications and functions 523–529
startup functions 527

compiled modules in 529
startup options 538
static aging 442
static_check_info function 130, 368
static_check_text function 368
static_text class 159
static_wait_info function 415
status bar, WinRunner 14
statusbar_wait_info function 415
Step button 434
Step command 434
Step Into button 434
Step Into command 434
STEP INTO softkey 435
Step Out command 434
STEP OUT softkey 436
STEP softkey 435
Step to Cursor command 434
STEP TO CURSOR softkey 436
Stop button 18, 19, 100, 104, 434
Stop command 434
Stop Recording command 100, 104
STOP softkey 113, 436
supplying values 447
synchronization

waiting for bitmaps of objects and
windows 419–420

synchronization (continued)
waiting for bitmaps of screen areas

421–423
waiting for objects 413–414
waiting for property values 414–418
waiting for windows 413–414

Synchronization Point for Object/Window
Bitmap button 19, 419

Synchronization Point for Object/Window
Bitmap command 419

Synchronization Point for Object/Window
Property button 19, 416

Synchronization Point for Object/Window
Property command 416

Synchronization Point for Screen Area
Bitmap button 19, 422

Synchronization Point for Screen Area
Bitmap command 422

synchronization points 108
in data-driven tests 397–402

SYNCHRONIZE BITMAP OF OBJECT/WINDOW
softkey 112, 419, 423

SYNCHRONIZE BITMAP OF SCREEN AREA
softkey 112, 422, 423

SYNCHRONIZE OBJECT PROPERTY (CUSTOM)
softkey 112

synchronizing tests 411–423
tips 423

system variables. See setting testing options

T

tab_wait_info function 415
TableContent property check 250–252
tables

Case Insensitive Ignore Spaces
verification 210, 257

Case Insensitive verification 210, 257
Case Sensitive Ignore Spaces

verification 210, 257
Case Sensitive verification 210, 257
checking 247–258
checking contents while specifying

checks 250–252
checking contents with default checks

249

Index

611

tables (continued)
editing the expected data 211, 258
Numeric Content verification 210,

257
Numeric Range verification 210, 257
overview 247
specifying which cells to check 206,

254
verification method for contents of a

single-column database 209, 256
verification method for multiple-

column tables 207, 255
verification type 210, 257
viewing expected results of a contents

check 489
viewing results of a contents check

486
tbl_activate_cell function 235
tbl_activate_header function 235
tbl_get_cell_data function 235
tbl_get_cols_count function 235
tbl_get_column_name function 235
tbl_get_rows_count function 235
tbl_get_selected_cell function 235
tbl_get_selected_row function 235
tbl_select_col_header function 235
tbl_set_cell_data function 235
tbl_set_selected_cell function 235, 238, 239,

240
tbl_set_selected_row function 235
TdApiWnd icon 11
tddb_functions. See qcdb_functions
teaching WinRunner the GUI of an

application 48–56
by recording 54–55
from the GUI Map Editor 55–56
overview 40, 47–54
with the RapidTest Script wizard

49–54
technical support online xviii
temporary GUI map file, saving 57
test editor window 16
test execution

See also running tests
test information 512
test log 473

test parameters 515
test properties 509–529
Test Properties dialog box

Add-ins 519
Current Test tab 521
Description tab 514
General tab 396, 512
Parameters tab 515
Run tab 523

test properties, setting 510
test results 453–506

bitmap checkpoints 473, 493
checkpoint results 481
database checkpoints 494, 496
file comparison 473
GUI checkpoints 473, 484
GUI checkpoints on dates 502
property checks 483
reporting defects 503
tables 486
unified report view 456
updating expected 499
viewing from a Quality Center project

database 475–477
viewing, overview 474–477
WinRunner report view 467

test results display, customizing 466
Test Results window 467–474, 475

Display button 499
test log 473
test summary 471
test tree 471

test run
viewing results 474–477

Test Script Language (TSL). See the
WinRunner Advanced Features User’s
Guide

test scripts 16, 95
customizing. See the WinRunner

Advanced Features User’s Guide
test settings

current 522
current, Test Properties dialog box

Current Test tab 521
test summary 471
Test toolbar 14, 18

Index

612

test tree 471
test window

WinRunner 95
test wizard. See RapidTest Script wizard
testing options 448

global. See setting global testing
options

within a test script. See the
WinRunner Advanced Features
User’s Guide

testing process
analyzing results 453–506
introduction 5
managing the
running tests 427–448

tests
calling. See the WinRunner Advanced

Features User’s Guide
checkpoints 107
creating 93–125
documenting descriptive test

information 514
documenting general test

information 512
editing 114
extracting 124
new 116
opening existing 116
planning 111
previewing results 464
printing results 463
programming 106
recording 97–103
synchronization points 108
zipping 124

TestSuite 9
text

checking 331–348
comparing 342
location 338–339
reading 333–336
searching for 337–341

text checkpoints 331–348
comparing text 342
creating a font group 345–346
overview 331–332

text checkpoints (continued)
reading text 333–336
searching for text 337–341
teaching fonts to WinRunner

342–348
text link properties 182
text recognition

options 558–560
risks and alternatives 560

text string
clicking a specified 340–341
moving the pointer to a 339–340

themes 586
threshold 352, 446
time formats supported by TimeFormat

property check 168
Time h mm AM/PM command, data table

389
TimeFormat property check

available time formats 168
specifying arguments 168

title bar, WinRunner 14
toolbar

creating a floating 17
Debug 18
File 17
Test 14, 18
User 14, 19

toolbar_select_item function 106
transactions 108
True DBGrid Control 235
TrueDBGrid50.TDBGrid MSW_class. See True

DBGrid Control
TrueDBGrid60.TDBGrid MSW_class. See True

DBGrid Control
TrueOleDBGrid60.TDBGrid MSW_class. See

True DBGrid Control
TSL functions

for working with a database 316–320
with data-driven tests 402–408

TSL Online Reference xvii
TSL Reference Guide xvii
typographical conventions xix

Index

613

U

Uncomment command 115
Undo command 114
unified report 456

connecting to Quality Center 479
filtering results 462
finding results 461
menu bar and toolbar 458
opening test results 477

unified report view, definition 454
unmapped classes. See object class
unzipping WinRunner tests 124
Update Expected Value button

in the Database Checkpoint Results
dialog box 495

in the GUI Checkpoint Results dialog
box 485, 499

Update mode 428, 431
updates, documentation xviii
user interface, customizing. See the

WinRunner Advanced Features User’s
Guide

User properties 152, 154, 157, 485
User toolbar 14, 19
user-defined functions

adding to the Function Generator. See
the WinRunner Advanced Features
User’s Guide

parameterizing for data-driven tests
374

user-defined functions. See the WinRunner
Advanced Features User’s Guide

user-defined properties 152, 154, 157, 485

V

valid column names for data tables 390
Validation Rule command, data table 389
variables

monitoring. See the WinRunner
Advanced Features User’s Guide

verification method
for databases 293
for tables 207, 255

verification results 429, 436
Verification Results Folder box 522

verification results folder, location 522
verification type

for databases 295
for tables 210, 257

verification, bitmap. See bitmap checkpoints
Verify mode 428, 429, 436
viewing test results

previewing test results 464
printing test results 463

viewing, GUI object properties 34–39
virtual objects. See the WinRunner Advanced

Features User’s Guide
Visual Basic controls

checking sub-object properties
232–234

overview 218–221
retrieving properties 226–229
setting properties 226–229
support for 217–235
viewing properties 223–226

W

wait_window function 423
wallpaper 586

setting custom background 587
Watch List. See the WinRunner Advanced

Features User’s Guide
WDiff utility 500
Web exception handling. See the WinRunner

Advanced Features User’s Guide
Web image properties 182
Web objects 175–216

check box object properties 185
checking 187–216
checking broken links 199–202
checking content of frames, cells,

links, or images 193–194
checking font or color of text links

198–199
checking number of columns and

rows 194–195
checking object count in frames

190–191
checking standard frame properties

188–190

Index

614

Web objects (continued)
checking structure of frames, tables,

and cells 191–192
checking table content 203–204
checking text 212–216
checking the URL of links 195–196
edit box object properties 185
frame object properties 181
list and combo box object properties

186
properties for all objects 179
radio button properties 184
text link properties 182
using properties in your test 178–187
viewing recorded properties 176
Web button object properties 187
Web image properties 182
Web table cell properties 183
Web table properties 183
working with 175–216

Web radio button properties 184
Web table cell properties 183
Web table properties 183
web_frame_get_text 212, 213
web_frame_text_exists 212, 214
web_obj_get_text 212, 213
web_obj_text_exists 212, 214
WebTest add-in 102

with GUI Map Configuration 177
Welcome to WinRunner window 13
What’s New in WinRunner help xvii
win_activate function 105
win_check_bitmap function 327, 329

in data-driven tests 397
win_check_gui function 140–141

in data-driven tests 397
win_check_info function 130, 368
win_check_text function 337
win_click_on_text 340–341
win_exists function 414
win_find_text function 338–339
win_get_text function 333–336
win_move_locator_text 339–340
win_wait_bitmap function 420

in data-driven tests 397
win_wait_info function 415

window class 163
window labels, varying 79
window synchronization points 413–414
windowing 352
WinRunner 16

introduction 3–10
main window 14
menu bar 14
online resources xvii
overview 11–22
starting 11–13
status bar 14
test editor window 16
test window 16
title bar 14

WinRunner Context-Sensitive Help xvii
WinRunner Customization Guide xvii
WinRunner Installation Guide xvi
WinRunner Quick Preview xvii
WinRunner Record/Run Engine icon 11
WinRunner report 467

menu bar and toolbar 469
test log 473
test summary 471

WinRunner report view
definition 454

WinRunner support for applications with
RTL-style windows 106

WinRunner Test Results window 467–474,
475

for expected results of a GUI
checkpoint 172

WinRunner Tutorial xvii

X

XR_GLOB_FONT_LIB 343
XRunner, tests recorded in Analog mode 103

Z

zipping WinRunner tests 124

	Mercury WinRunner Basic Features User's Guide
	Multi-Volume Chapter Summary
	Mercury WinRunner Basic Features User’s Guide
	Mercury WinRunner Advanced Features User’s Guide

	Table of Contents

	Welcome to Mercury WinRunner
	Using this Guide
	WinRunner Documentation Set
	Online Resources
	Documentation Updates
	Typographical Conventions

	Starting the Testing Process
	Introduction
	WinRunner Testing Modes
	The WinRunner Testing Process
	Sample Application
	Integrating with Other Mercury Interactive Products

	WinRunner at a Glance
	Starting WinRunner
	The Main WinRunner Window
	The Test Editor Window
	Using WinRunner Commands
	Loading WinRunner Add-Ins

	Introducing the GUI Map
	Understanding How WinRunner Identifies GUI Objects
	About Identifying GUI Objects
	How a Test Identifies GUI Objects
	Logical Names
	The GUI Map
	Setting the Window Context

	Understanding Basic GUI Map Concepts
	About the GUI Map
	Viewing GUI Object Properties
	Teaching WinRunner the GUI of Your Application
	Finding an Object or Window in the GUI Map
	General Guidelines for Working with GUI Map Files
	Deciding Which GUI Map File Mode to Use

	Working in the Global GUI Map File Mode
	About the Global GUI Map File Mode
	Sharing a GUI Map File among Tests
	Teaching WinRunner the GUI of Your Application
	Saving the GUI Map
	Loading the GUI Map File
	Guidelines for Working in the Global GUI Map File Mode

	Working in the GUI Map File per Test Mode
	About the GUI Map File per Test Mode
	Specifying the GUI Map File per Test Mode
	Working in the GUI Map File per Test Mode
	Guidelines for Working in the GUI Map File per Test Mode

	Editing the GUI Map
	About Editing the GUI Map
	The GUI Map Editor
	The Run Wizard
	Modifying Logical Names and Physical Descriptions
	How WinRunner Handles Varying Window Labels
	Using Regular Expressions in the Physical Description
	Copying and Moving Objects between Files
	Finding an Object in a GUI Map File
	Finding an Object in Multiple GUI Map Files
	Manually Adding an Object to a GUI Map File
	Deleting an Object from a GUI Map File
	Clearing a GUI Map File
	Filtering Displayed Objects
	Saving Changes to the GUI Map

	Creating Tests-Basic
	Designing Tests
	About Creating Tests
	Understanding the WinRunner Test Window
	Planning a Test
	Creating Tests Using Context Sensitive Recording
	Creating Tests Using Analog Recording
	Guidelines for Recording a Test
	Adding Checkpoints to Your Test
	Working with Data-Driven Tests
	Adding Synchronization Points to a Test
	Measuring Transactions
	Activating Test Creation Commands Using Softkeys
	Programming a Test
	Editing a Test
	Managing Test Files

	Checking GUI Objects
	About Checking GUI Objects
	Checking a Single Property Value
	Checking a Single Object
	Checking Two or More Objects in a Window
	Checking All Objects in a Window
	Understanding GUI Checkpoint Statements
	Using an Existing GUI Checklist in a GUI Checkpoint
	Modifying GUI Checklists
	Understanding the GUI Checkpoint Dialog Boxes
	Property Checks and Default Checks
	Specifying Arguments for Property Checks
	Editing the Expected Value of a Property
	Modifying the Expected Results of a GUI Checkpoint

	Working with Web Objects
	About Working with Web Objects
	Viewing Recorded Web Object Properties
	Using Web Object Properties in Your Tests
	Checking Web Objects

	Working with ActiveX and Visual Basic Controls
	About Working with ActiveX and Visual Basic Controls
	Choosing Appropriate Support for Visual Basic Applications
	Viewing ActiveX and Visual Basic Control Properties
	Retrieving and Setting the Values of ActiveX and Visual Basic Control Properties
	Activating an ActiveX Control Method
	Working with Visual Basic Label Controls
	Checking Sub-Objects of ActiveX and Visual Basic Controls
	Using TSL Table Functions with ActiveX Controls

	Checking PowerBuilder Applications
	About Checking PowerBuilder Applications
	Checking Properties of DropDown Objects
	Checking Properties of DataWindows
	Checking Properties of Objects within DataWindows
	Working with Computed Columns in DataWindows

	Checking Table Contents
	About Checking Table Contents
	Checking Table Contents with Default Checks
	Checking Table Contents while Specifying Checks
	Understanding the Edit Check Dialog Box

	Checking Databases
	About Checking Databases
	Creating a Runtime Database Record Checkpoint
	Editing a Runtime Database Record Checklist
	Creating a Default Check on a Database
	Creating a Custom Check on a Database
	Messages in the Database Checkpoint Dialog Boxes
	Working with the Database Checkpoint Wizard
	Understanding the Edit Check Dialog Box
	Modifying a Standard Database Checkpoint
	Modifying the Expected Results of a Standard Database Checkpoint
	Parameterizing Standard Database Checkpoints
	Specifying a Database
	Using TSL Functions to Work with a Database

	Checking Bitmaps
	About Checking Bitmaps
	Creating Bitmap Checkpoints
	Checking Window and Object Bitmaps
	Checking Area Bitmaps

	Checking Text
	About Checking Text
	Reading Text
	Searching for Text
	Comparing Text
	Teaching Fonts to WinRunner

	Checking Dates
	About Checking Dates
	Testing Date Operations
	Testing Two-Character Date Applications
	Setting Date Formats
	Using an Existing Date Format Configuration File
	Checking Dates in GUI Objects
	Checking Dates with TSL
	Overriding Date Settings

	Creating Data-Driven Tests
	About Creating Data-Driven Tests
	The Data-Driven Testing Process
	Creating a Basic Test for Conversion
	Converting a Test to a Data-Driven Test
	Preparing the Data Table
	Importing Data from a Database
	Running and Analyzing Data-Driven Tests
	Assigning the Main Data Table for a Test
	Using Data-Driven Checkpoints and Bitmap Synchronization Points
	Using TSL Functions with Data-Driven Tests
	Guidelines for Creating a Data-Driven Test

	Synchronizing the Test Run
	About Synchronizing the Test Run
	Waiting for Objects and Windows
	Waiting for Property Values of Objects and Windows
	Waiting for Bitmaps of Objects and Windows
	Waiting for Bitmaps of Screen Areas
	Tips for Synchronizing Tests

	Running Tests-Basic
	Understanding Test Runs
	About Understanding Test Runs
	WinRunner Test Run Modes
	WinRunner Run Commands
	Choosing Run Commands Using Softkeys
	Running a Test to Check Your Application
	Running a Test to Debug Your Test Script
	Running a Test to Update Expected Results
	Running a Test to Check Date Operations
	Supplying Values for Input Parameters When Running a Test
	Controlling the Test Run with Testing Options
	Solving Common Test Run Problems

	Analyzing Test Results
	About Analyzing Test Results
	Understanding the Unified Report View Results Window
	Customizing the Test Results Display
	Understanding the WinRunner Report View Results Window
	Viewing the Results of a Test Run
	Viewing Checkpoint Results
	Analyzing the Results of a Single-Property Check
	Analyzing the Results of a GUI Checkpoint
	Analyzing the Results of a GUI Checkpoint on Table Contents
	Analyzing the Expected Results of a GUI Checkpoint on Table Contents
	Analyzing the Results of a Bitmap Checkpoint
	Analyzing the Results of a Database Checkpoint
	Analyzing the Expected Results of a Content Check in a Database Checkpoint
	Updating the Expected Results of a Checkpoint in the WinRunner Report View
	Viewing the Results of a File Comparison
	Viewing the Results of a GUI Checkpoint on a Date
	Reporting Defects Detected During a Test Run

	Configuring Basic Settings
	Setting Properties for a Single Test
	About Setting Properties for a Single Test
	Setting Test Properties from the Test Properties Dialog Box
	Documenting General Test Information
	Documenting Descriptive Test Information
	Managing Test Parameters
	Associating Add-ins with a Test
	Reviewing Current Test Settings
	Defining Startup Applications and Functions

	Setting Global Testing Options
	About Setting Global Testing Options
	Setting Global Testing Options from the General Options Dialog Box
	Setting General Options
	Setting Folder Options
	Setting Recording Options
	Setting Test Run Options
	Setting Notification Options
	Setting Appearance Options
	Choosing Appropriate Timeout and Delay Settings

	Index

