

Mercury WinRunner
Customization Guide

Version 8.2

Mercury WinRunner Customization Guide, Version 8.2

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: United States: 5,511,185;
5,657,438; 5,701,139; 5,870,559; 5,958,008; 5,974,572; 6,137,782; 6,138,157; 6,144,962; 6,205,122;
6,237,006; 6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342;
6,587,969; 6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933; 6,754,701; 6,792,460
and 6,810,494. Australia: 763468 and 762554. Other patents pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury logo, the Mercury Interactive logo, LoadRunner,
WinRunner, SiteScope and TestDirector are trademarks of Mercury Interactive Corporation and may
be registered in certain jurisdictions. The absence of a trademark from this list does not constitute a
waiver of Mercury's intellectual property rights concerning that trademark.

All other company, brand and product names may be trademarks or registered trademarks of their
respective holders. Mercury disclaims any responsibility for specifying which marks are owned by
which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 1993-2005 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

WRCG8.2/01

iii

Table of Contents

Welcome to WinRunner Customization ...v
Using This Guide ...v
WinRunner Documentation Set...vi
Online Resources ..vi
Documentation Updates ... viii
Typographical Conventions...ix

PART I: CUSTOMIZING GUI CHECKS

Chapter 1: Introduction ..3

Chapter 2: Creating Custom GUI Checks for Standard Objects...........9
About Creating Custom GUI Checks for Standard Objects9
Creating a Capture Function...13
Creating a Comparison Function..16
Registering a New Property Check ..19
Associating a New Property Check with a GUI Object Class..............20
Modifying the Default Checks for a GUI Object Class22

Chapter 3: Creating GUI Checks for Custom Objects.........................25
About Creating GUI Checks for Custom Objects25
Adding a Custom GUI Object Class for Verification27
Defining a Custom Check for a Custom GUI Object Class31

Chapter 4: Creating GUI Checks: Advanced Topics............................33
About Advanced Topics in Creating GUI Checks33
Adding a New GUI Object Class for Verification................................34
Creating Capture and Comparison Functions....................................35
Registering the New Check ...36
Setting the Default Checks..37
Implementing Advanced GUI Checking...37

Table of Contents

iv

PART II : CUSTOMIZING RECORDING

Chapter 5: Customizing Recorded Statements45
About Customizing Recorded Statements...45
Understanding Custom Record Functions..46
Developing a Custom Record Function ..50
Associating a Custom Record Function with a GUI Object Class53
Developing a Custom Execution Function...54
Example of a Custom Record Function ..55

Chapter 6: Adding Custom Properties for GUI Objects61
About Adding Custom Properties for GUI Objects61
Developing a Query Function for a Custom Property62
Developing a Verification Function for a Custom Property...............63
Registering a Custom Property..65
Assigning a Custom Property to a GUI Object Class67
Example of a Custom Property Function..69

Chapter 7: Customizing Assigned Logical Names..............................73
About Customizing Assigned Logical Names73
Understanding Logical Name Functions ..75
Developing a Logical Name Function...76
Associating a Logical Name Function with a Custom

GUI Object Class ..76

PART III: USING THE WINRUNNER API

Chapter 8: The Mercury API Functions ...81
About API Functions ...81
MicFunctionProc ...82
mic_cp_from_string...83
mic_cp_to_string ...83
mic_destroy_buf ..84
mic_destroy_string ..84
mic_get_object...85
mic_init_buf ..85
mic_init_string ..86
mic_set_object ...86

Index..89

v

Welcome to WinRunner Customization

Welcome to WinRunner Customization. By customizing various aspects of
WinRunner, you extend WinRunner’s ability to meet your testing
requirements.

Using This Guide

This guide describes the main concepts behind customizing WinRunner. It
provides step-by-step instructions to help you extract the most out of
WinRunner, while ensuring that you meet the testing requirements of your
application.

This guide contains three parts:

 Part I Customizing GUI Checks

Describes how to develop and implement custom checks for custom GUI
objects.

 Part II Customizing Recording

Describes how to customize the way in which WinRunner records
operations on custom objects in order to improve test script readability.

 Part III Using the WinRunner API

Describes how to use WinRunner’s API functions to enable you to test
application functionality that is invisible at the level of the user interface,
and applications that have no user interface.

Welcome

vi

WinRunner Documentation Set

In addition to this guide, WinRunner comes with a complete set of printed
documentation:

WinRunner Installation Guide describes how to install WinRunner on a
single computer or a network.

WinRunner Tutorial teaches you basic WinRunner skills and shows you how
to start testing your application.

WinRunner Basic Features User’s Guide explains how to use WinRunner’s
most common features to create and run tests on your application.

WinRunner Advanced Features User’s Guide explains how to use
specialized features of WinRunnerto meet the special testing requirements
of your application.

TSL Reference Guide describes the WinRunner Test Script Language (TSL)
and the functions it contains.

Online Resources

WinRunner includes the following online resources:

Readme provides last-minute news and information about WinRunner.

What’s New in WinRunner describes the newest features in the latest version
of WinRunner.

Printer-Friendly Documentation displays links to the complete
documentation set in PDF format. Printer-Friendly documentation can be
read and printed using Adobe Acrobat Reader. You can download the latest
version of Adobe Acrobat Reader from www.adobe.com.

WinRunner Context-Sensitive Help provides immediate answers to
questions that arise as you work with WinRunner. It describes menu
commands and dialog boxes, and shows you how to perform WinRunner
tasks. Check the Mercury Interactive’s Customer Support Web site for
updates to WinRunner help files.

http://www.adobe.com

Welcome

vii

TSL Reference Help provides additional information on each function and
examples of usage. You can open the TSL Reference Help from the WinRunner
group in the Start menu or from WinRunner’s Help menu. To open the
online reference to a specific function, click the context-sensitive Help
button and then click a TSL statement in your test script, or place your
cursor on a TSL statement in your test script and then press the F1 key. .

WinRunner Sample Tests includes utilities and sample tests with
accompanying explanations.

Technical Support Online uses your default Web browser to open Mercury
Interactive’s Customer Support Web site.

Mercury Interactive on the Web uses your default Web browser to open
Mercury Interactive’s home page. This site provides you with the most up-
to-date information on Mercury Interactive, its products and services. This
includes new software releases, seminars and trade shows, customer support,
training, and more.

Welcome

viii

Documentation Updates

Mercury Interactive is continually updating its product documentation with
new information. You can download the latest version of this document
from the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Select Product Name, select WinRunner.

Note that if WinRunner does not appear in the list, you must add it to your
customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
recently updated, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

ix

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

> The greater-than sign separates menu levels (for example,
File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements (for example, the Run button) and other items
that require emphasis.

Bold Bold text indicates method or function names.

Italics Italic text indicates method or function arguments,
file names in syntax descriptions, and book titles.
It is also used when introducing a new term.

<> Angle brackets enclose a part of a file path or URL address
that may vary from user to user (for example, <MyProduct
installation folder>\bin).

Arial The Arial font is used for examples and text that is to be
typed literally.

Arial bold The Arial bold font is used in syntax descriptions for text
that should be typed literally.

SMALL CAPS The SMALL CAPS font indicates keyboard keys.

... In a line of syntax, an ellipsis indicates that more items of
the same format may be included. In a programming
example, an ellipsis is used to indicate lines of a program
that were intentionally omitted.

[] Square brackets enclose optional arguments.

| A vertical bar indicates that one of the options separated
by the bar should be selected.

Welcome

x

Part I

Customizing GUI Checks

2

3

1
Introduction

WinRunner offers an extensive array of features that you can use to test your
software. You can extend these capabilities by customizing WinRunner to
meet the particular requirements of your application. This guide provides
detailed information on how you can customize WinRunner to enhance
your testing capabilities.

You can customize WinRunner in the following areas:

➤ GUI checks

If WinRunner’s standard GUI checks do not completely meet your specific
testing requirements, you can extend your verification capabilities by
creating custom property checks.

➤ Recording test scripts

If your application contains custom objects, you can ensure that your test
scripts are easy to read and understand by customizing the functions that
WinRunner records into the scripts.

➤ Using the Mercury API

You can use the Mercury API (Application Programming Interface) to record
and execute functions in your application that are not connected to the user
interface.

Customizing GUI Property Checks

WinRunner provides a variety of property checks for checking the GUI
objects in your application. If WinRunner’s standard property checks do not
completely meet your testing requirements, you can extend your testing
capabilities by creating custom GUI property checks. With WinRunner, you
can customize GUI property checks in three ways:

Chapter 1 • Introduction

4

➤ Chapter 2, “Creating Custom GUI Checks for Standard Objects,” describes
how to develop custom property checks to perform on standard GUI
objects. For example, you can develop a property check for the size of the
font used in an editor. When you associate the new property check with the
standard edit class, it is displayed in the GUI checkpoint dialog boxes
whenever you create or edit a checkpoint for an edit class object.

The following Check GUI dialog box displays the standard property checks
for edit class objects:

Chapter 1 • Introduction

5

The following Check GUI dialog box displays a custom property check as
well as the standard property checks for edit class objects:

➤ Chapter 3, “Creating GUI Checks for Custom Objects,” describes what to do
if your application has GUI objects that do not belong to any of
WinRunner’s standard classes. You can create custom verification classes for
these objects, and then specify which property checks to include when
checking objects of these custom classes.

For example, you can create a custom class for verification called “pbTool.”
When you create a GUI checkpoint on a pbTool class object, the available
property checks are displayed in the Properties pane in either the Check GUI
dialog box or the Create GUI Checkpoint dialog box. You can also add
customized property checks for this new custom class. These customized
property checks are displayed in the GUI checkpoint dialog boxes whenever
you create or edit a GUI checkpoint on objects of that class.

The following Check GUI dialog box displays the standard property checks
on an object belonging to a custom class. A custom object is any object that
does not belong to one of the standard classes used by WinRunner.

Custom check

Chapter 1 • Introduction

6

These objects are assigned to the generic “object” class, which includes the
following checks:

You can also add custom checks to a custom class:

Custom class

Custom check

Custom class

Chapter 1 • Introduction

7

➤ Chapter 4, “Creating GUI Checks: Advanced Topics,” describes how to
create your own user interface for the GUI checkpoint dialog box that is
opened when you create a check on a GUI object belonging to a custom
object class. The chapter also describes how to implement a custom utility
to display the results of a custom check.

Customizing Recording

When you record operations on standard GUI objects, WinRunner creates
test scripts that are easy to read and understand. However, when you
operate on custom GUI objects, whose behavior differs significantly from
that of WinRunner’s standard objects, the resulting test script contains
generic obj_ TSL statements.

If your application contains custom objects, you can ensure that your test
scripts are easy to read and understand by customizing the functions that
WinRunner records into the scripts. WinRunner enables you to customize
recorded statements in three ways:

➤ Chapter 5, “Customizing Recorded Statements,” describes how to specify
the function calls that WinRunner records into your test scripts when you
operate on custom GUI objects.

➤ Chapter 6, “Adding Custom Properties for GUI Objects,” describes how to
add your own properties to any GUI object class to improve WinRunner’s
ability to uniquely identify the GUI objects in your application.

➤ Chapter 7, “Customizing Assigned Logical Names,” describes how to
customize the way that WinRunner assigns logical names to custom GUI
objects in your application. By doing so, it is immediately apparent which
recorded statement refers to which GUI object.

Using the WinRunner API

Chapter 8, “The Mercury API Functions,” describes all the Mercury API
functions that you need for inside testing.

Chapter 1 • Introduction

8

9

2
Creating Custom GUI Checks for Standard
Objects

You can enhance WinRunner’s ability to check GUI objects in your
application by developing custom property checks to perform on standard
GUI objects.

This chapter describes:

➤ Creating a Capture Function

➤ Creating a Comparison Function

➤ Registering a New Property Check

➤ Associating a New Property Check with a GUI Object Class

➤ Modifying the Default Checks for a GUI Object Class

About Creating Custom GUI Checks for Standard Objects

By inserting a GUI checkpoint into a test script, you instruct WinRunner
how and when to check the status of your application. As part of the process
of inserting a checkpoint, you define which object properties WinRunner
will check. For each GUI object class, WinRunner has a set of standard
property checks from which you select. If the standard property checks do
not fulfill your testing requirements, you can develop your own custom
property checks. You add custom property checks to a GUI checkpoint
dialog box for the class of objects you want to check. For information about
standard checks on GUI objects and the GUI Checkpoint dialog boxes, refer
to the “Checking GUI Objects” chapter in the WinRunner User’s Guide.

Chapter 2 • Creating Custom GUI Checks for Standard Objects

10

For example, suppose you want to check the size of the font used in an edit
box. You can develop a property check to check this property. If you
associate the new check with the standard edit class, the edit object is
highlighted in the Objects pane and the customized font size property is
displayed along with the standard edit class properties in the Properties
pane.

The Check GUI dialog box below displays the standard edit class property
checks:

Chapter 2 • Creating Custom GUI Checks for Standard Objects

11

The Check GUI dialog box below displays both the custom font size
property check and the standard edit class property checks:

To add a custom property to a GUI Checkpoint dialog box for a standard
WinRunner GUI object class, you perform the following steps:

 1 Create a function to capture the expected and actual results of the custom
property.

 2 Create a function to compare the expected and the actual results.

 3 Register the property.

 4 Associate the property with a standard GUI object class.

 5 Set the new property as a default property for the GUI object class
(optional).

You can use WinRunner’s Function Generator to generate all the required
function calls, and then insert them directly into your test scripts. You can
find the functions in the “GUI verification” category of the Function
Generator. For more information on automatically generating and inserting
functions, refer to the “Generating Functions” chapter in the WinRunner
User’s Guide.

Custom check

Chapter 2 • Creating Custom GUI Checks for Standard Objects

12

Before using the capture and comparison functions, you must compile
them. Although you can do this by running the functions from a test script,
it is recommended that you include them in a compiled module and load
the module from a startup test. This makes the functions available for all
your WinRunner sessions. For more information on compiled modules, refer
to the “Creating Compiled Modules” chapter in the WinRunner User’s Guide.

You can add properties to the GUI Checkpoint dialog box for a standard
WinRunner GUI object class, as described in this chapter. Alternatively, if
your application has GUI objects that do not belong to any of WinRunner’s
standard classes, you can define a new custom GUI object class for
verification, and then:

➤ specify which properties are available to the new class. For more
information, see Chapter 3, “Creating GUI Checks for Custom Objects.”

➤ customize the GUI checkpoint dialog boxes with a custom user interface
and custom result display utility for the new class. For more information,
see Chapter 4, “Creating GUI Checks: Advanced Topics.”

Besides adding new property checks for a standard WinRunner class, you
can also add to or change the properties that are checked by default for a
class. For example, a standard check on a push button, by default, checks
only that the push button is enabled. You can specify any other standard or
custom properties that are checked by default for the push_button class. For
instance, you might want to include the button’s label as a default check.

Chapter 2 • Creating Custom GUI Checks for Standard Objects

13

Creating a Capture Function

You create a capture function to establish and store the expected and actual
results of a custom check. For example, if you develop a check for the size of
the font used in an edit box, it is the capture function that actually
determines and stores the font size.

The capture function has the following syntax:

public capture_function_name (in object, inout value [, in arg_list])

➤ capture_function_name is the name of your capture function.

➤ object is an in parameter that is assigned the description of the GUI object to
check.

➤ value is an inout parameter:

➤ If the result of the capture function is a number or a string, then the
capture function assigns the result of the function to the value parameter.
For example, in the above example you would assign the font size, say
“10”, to the value parameter.

➤ If the result of the capture function is either very long (greater than 2Kb),
or not in text format, then the capture function must store the result in a
file. You use the unique filename that WinRunner assigns to the value
parameter.

➤ arg_list is an optional in parameter that is passed from the ui_function
parameter. You use the ui_function parameter only if you use the
gui_ver_add_class function to creating a GUI checkpoint dialog box with a
custom user interface. For more information, see Chapter 4, “Creating GUI
Checks: Advanced Topics.”

To make your capture function available to all tests, declare the function as
public. You replace capture_function_name with the name of your capture
function. For more information on user-defined functions, refer to the
“Creating User-Defined Functions” chapter in the WinRunner User’s Guide.

Chapter 2 • Creating Custom GUI Checks for Standard Objects

14

Example 1: Checking the Absolute X-Coordinate of an Object

In the following example, the user-defined get_abs_x capture function
returns the x-coordinate of the top left corner of a GUI object, relative to the
screen origin. The obj_get_info TSL function is called to determine the
object’s screen coordinate, abs_x.

public function get_abs_x (in object, inout value)
{

return (obj_get_info (object, "abs_x", value));
}

The following example presents a mechanism for storing the results of a
capture function in a file.

public function get_abs_x(in object, inout file)
{

auto x_coord, rc;
rc=obj_get_info(object, "abs_x", x_coord);
file_open(file,FO_MODE_WRITE);
file_printf(file,”%s”,x_coord);
file_close(file);
return(rc);

}

Example 2: Checking Text Color

The following example verifies the color of the text in an edit field. The
edit_get_text_color capture function uses the Windows API function GetDC to
get the device context of the edit field. The GetPixel function is used, first to
find the background color of the edit box, and then to find the foreground
color. For more information on using API functions, refer to the “Calling
Functions from an External Library” chapter in the WinRunner User’s Guide.

load Windows API declarations
load("c:\\wrun\\lib\\win_api",1,1);

Capture Function
public function edit_get_text_color(in obj_name, inout rgb_val)
{

auto hWnd, hDc, ret, i, w, h, backcolor, rc;

Chapter 2 • Creating Custom GUI Checks for Standard Objects

15

get edit field’s width and height
rc=obj_get_info(obj_name, "handle", hWnd);
if(rc != E_OK)

return(rc);
rc=obj_get_info(obj_name,"height",h);
if(rc != E_OK)

return(rc);
rc=obj_get_info(obj_name,"width",w);
if(rc != E_OK)

return(rc);

get edit field’s device context
hDc=GetDC(hWnd);

find background color
backcolor=GetPixel(hDc,2,2);

find foreground color by scanning the edit field
for (i=1; i<w;i++)
{ ret=GetPixel(hDc,int(h/2),i);

if((ret != backcolor)|| (ret==0)) break;
}

release device context
ReleaseDC(hWnd, hDc);
rgb_val=ret;
return(E_OK);

}

Chapter 2 • Creating Custom GUI Checks for Standard Objects

16

Creating a Comparison Function

After the capture function has determined the expected and actual results
for a custom check, WinRunner verifies the results to determine whether the
check passed. To verify a check, you can either use WinRunner’s standard
comparison function, default_compare_func, or create your own
comparison function.

Using the Standard Comparison Function

The default_compare_func function compares the expected results to the
actual results. If the results match, the default_compare_func function
returns 0, otherwise the function returns 1. The function compares the
results according to their format—that is, either as a number or as a string.

The default_compare_func function works in all cases where there is a
simple comparison between expected and actual results. For example, you
would use the default_compare_func function if you were checking the
absolute x coordinate of an object. If the expected coordinate was 250, and
the actual coordinate was 200, then the default_compare_func function
would return 1, indicating a mismatch. If the expected and actual
coordinates were both 250, then the default_compare_func function
would return 0, indicating a successful check.

Creating Your Own Comparison Function

If a complicated comparison is required to determine the success of a check,
then you must develop your own comparison function. For example,
suppose you are comparing dates that can have different formats, such as 8
March 1996 or 08/03/1996. Because the default_compare_func function is
ineffective in this case, you must develop your own comparison function.

The comparison function has the following syntax:

public comparison_function_name (in expected, in actual [, in arg_list] [, inout
display_information])
{

...
return(Mercury_error_code);

}

Chapter 2 • Creating Custom GUI Checks for Standard Objects

17

➤ comparison_function_name is the name of your comparison function.

➤ expected is an in parameter. If the capture function assigned the expected
results to the value parameter, then the expected parameter is assigned the
value of the expected results. If the capture function stored its results in a
file, then the expected parameter is assigned the path and file name of the
results file.

➤ actual is an in parameter. If the capture function assigned the actual results
to the value parameter, then the actual parameter is assigned the value of the
actual results. If the capture function stored its results in a file, then the
actual parameter is assigned the path and file name of the results file.

➤ arg_list is an optional in parameter that is passed from the ui_function
parameter. You use the ui_function parameter only if you use the
gui_ver_add_class function to creating a GUI checkpoint dialog box with a
custom user interface. For more information, see Chapter 4, “Creating GUI
Checks: Advanced Topics.”

➤ display_information is an optional inout parameter that is used only if you
specify your own display function for the results of the check. WinRunner
assigns to the display_information parameter a unique file name. You can
store in this file information that you want to use when you call your
display function. For more information, see Chapter 4, “Creating GUI
Checks: Advanced Topics.”

To make your comparison function available to all tests, declare the
function as public. You replace comparison_function_name with the name of
your comparison function. For more information on user-defined functions,
refer to the “Creating User-Defined Functions” chapter in the WinRunner
User’s Guide.

The comparison function must return a Mercury error code: E_OK when the
expected and actual results match; E_DIFF when the results do not match.
E_DIFF is the error code for “GUI verification mismatch found.”

Chapter 2 • Creating Custom GUI Checks for Standard Objects

18

Example 1: Simple Comparison Function

In the following example, a user-defined comparison function called
compare_number checks whether the expected and actual results of the
check are the same. An if/else statement is used to return E_OK if the results
match, and E_DIFF if they do not. Note that you could use the
default_compare_func function in this scenario.

public function compare_number(in expected, in actual)
{

if (expected==actual)
return(E_OK);

else
return(E_DIFF);

}

Example 2: Retrieving Results from a File

This example assumes that the capture function stored the expected and
actual results in files. The file names are passed to the comparison function
as exp_file and act_file respectively.

public function compare_number(in exp_file, in act_file)
{

auto expected, actual;

file_open(exp_file,FO_MODE_READ);
file_getline(exp_file, expected);
file_close(exp_file);
file_open(act_file,FO_MODE_READ);
file_getline(act_file, actual);
file_close(act_file);
if (expected==actual)

return(0);
else

return(E_DIFF);
}

Chapter 2 • Creating Custom GUI Checks for Standard Objects

19

Registering a New Property Check

Once you have created and compiled the capture and comparison functions,
you must register the new check. This is done using the gui_ver_add_check
TSL function.

The gui_ver_add_check function has the following syntax:

gui_ver_add_check (check_name, capture_function, comparison_function
[,display_function] [,type]);

➤ check_name defines the name of the check. Note that the name of the check
cannot contain spaces. The check_name will appear at the bottom of the
appropriate check dialog box. See “Associating a New Property Check with a
GUI Object Class” on page 20.

➤ capture_function is the name of the capture function that you developed for
the check.

➤ comparison_function is either the default_compare_func function, or the
name of the comparison function that you developed for the check.

➤ display_function is an optional parameter that enables you to use your own
display utility to view the results of a check. You use the display_function
parameter only if you use the gui_ver_add_class function to creating a GUI
checkpoint dialog box with a custom user interface. For more information,
see Chapter 4, “Creating GUI Checks: Advanced Topics.”

➤ type is an optional parameter that indicates whether the check is for a
window (1) or for any other GUI object (0). If no type is declared, the default
(0) is assumed.

In the following example, the gui_ver_add_check function registers a check
for an object’s absolute x-coordinate.

gui_ver_add_check("Absolute_x","get_abs_x","compare_number", "",0);

The following example shows how to specify the default_compare_func
function when you register a check.

gui_ver_add_check("Absolute_x","get_abs_x","default_compare_func", "",0);

For additional information about the gui_ver_add_check function, refer to
the TSL Online Reference.

Chapter 2 • Creating Custom GUI Checks for Standard Objects

20

Associating a New Property Check with a GUI Object Class

Once you have registered the new property check, you must associate it with
a GUI object class. By associating the new property check with a class, you
add the property check to the bottom of the list of properties displayed for
that class in the GUI checkpoint dialog boxes.

You associate a property check with a class using the
gui_ver_add_check_to_class TSL function. This function has the following
syntax:

gui_ver_add_check_to_class (class, property_check_name);

➤ class is the name of either the MSW_class or the standard class with which
the check is associated.

➤ property_check_name is the name of the property check you defined using the
gui_ver_add_check TSL function. The new property check will appear at
the bottom of the list of properties displayed for the class in the GUI
checkpoint dialog boxes.

Note that you can associate the same property check with more than one
class by repeating the gui_ver_add_check_to_class function for each GUI
object class.

Example

In the following example, the Absolute_x check is added for the
push_button class:

gui_ver_add_check_to_class ("push_button", "Absolute_x");

The push_button parameter defines the GUI object class, while Absolute_x
defines the custom property check associated with it.

Chapter 2 • Creating Custom GUI Checks for Standard Objects

21

The following Check GUI dialog box displays the standard checks for
push_button class objects:

The following Check GUI dialog box displays a custom check as well as the
standard checks for push_button class objects:

Custom check

Chapter 2 • Creating Custom GUI Checks for Standard Objects

22

For additional information about the gui_ver_add_check and the
gui_ver_add_check_to_class functions, refer to the TSL Reference.

Modifying the Default Checks for a GUI Object Class

You can modify the default property checks for a GUI object class. Similarly,
you can define your custom property checks as default checks for a GUI
object class. For example, by default, WinRunner checks only whether a
push button is enabled. You can modify the default checks for the
push_button class to include your custom check, Absolute_x.

To define a custom property check as a default property check, you use the
TSL function gui_ver_set_default_checks. This function overwrites all
previous default property checks; when using it, you must include all the
property checks that you want to set as defaults for the GUI object class.
Note that you can define additional standard property checks as default
property checks using the same function.

The gui_ver_set_default_checks function has the following syntax:

gui_ver_set_default_checks (class, check_name1...check_namen);

➤ class is the name of either the MSW_class or the standard class for which
you want to set the default checks.

➤ check_name1-n are the names of the property checks to be set as defaults.

Example

In the following example, the Enabled and Absolute_x checks are set as the
default checks for the push_button class.

gui_ver_set_default_checks ("push_button", "Enabled Absolute_x");

Chapter 2 • Creating Custom GUI Checks for Standard Objects

23

In the following dialog box, the custom Absolute_x property check is added.
The standard default property check for the push_button class, Enabled, is
selected:

In the following dialog box, both the custom Absolute_x property check and
the standard Enabled check are default property checks, i.e., they are
selected by default:

Standard
default check

Custom check

Custom check

Chapter 2 • Creating Custom GUI Checks for Standard Objects

24

Note that when you define more than one default property check, separate
the default property checks with spaces, as in the example above.

For additional information about the gui_ver_set_default_checks function,
refer to the TSL Online Reference.

25

3
Creating GUI Checks for Custom Objects

You can create custom GUI object classes for verification, and develop
checks for each custom class.

This chapter describes:

➤ Adding a Custom GUI Object Class for Verification

➤ Defining a Custom Check for a Custom GUI Object Class

About Creating GUI Checks for Custom Objects

Many applications contain GUI objects that do not belong to any of
WinRunner’s standard GUI object classes. By default, WinRunner recognizes
these objects as belonging to the generic object class. If your application
contains such objects, you can enhance your capability to check these
objects by creating custom verification classes for them. You then develop
property checks and GUI checkpoint dialog boxes for the new custom
classes.

You use the standard WinRunner GUI checkpoint dialog boxes to check the
custom objects. You can add custom property checks to the standard dialog
boxes, as required. For example, you may have objects in your application
that are classified by WinRunner as belonging to the generic “object” class.
You can create a custom class called “pbTool” for these objects. The pbTool
class will then have its own set of property checks which will be displayed in
the standard GUI checkpoint dialog boxes.

Chapter 3 • Creating GUI Checks for Custom Objects

26

Initially, the property checks displayed in these dialog boxes are the same as
those displayed as for objects of the generic “object” class. Once you
associate custom property checks with a custom class, these property checks
are displayed whenever you create or edit a GUI checkpoint on objects
belonging to this custom class.

When WinRunner does not recognize the class of a GUI object, in this case
an object of the “pbTool” class, it assigns it to the generic “object” class. The
GUI checkpoint dialog boxes display the property checks associated with
the generic object class. For a list of property checks associated with the
generic object class, refer to the “Checking GUI Objects” chapter in the
WinRunner User’s Guide.

You can add custom checks for this custom class, as described in this
chapter. Develop your own GUI checkpoint dialog boxes with a customized
user interface. For more information, see Chapter 4, “Creating GUI Checks:
Advanced Topics.”

To add a new GUI object class for verification, and then develop and specify
the checks for it, you perform the following steps:

 1 Add a new custom GUI object class for verification.

 2 Create a capture function to establish the expected and actual results of the
check.

 3 Create a comparison function to compare the expected and the actual
results.

 4 Register the check that is defined by the capture and comparison functions.

 5 Associate the new check with the new custom class.

 6 Set the default checks for the new class.

The capture and comparison functions that you develop must be compiled
before they can be used. Although you can do this by running the functions
from a test script, it is recommended that you include all of them in a
compiled module and load the module from a startup test. This makes the
functions available in all your WinRunner sessions. For more information
on compiled modules, refer to the “Creating Compiled Modules” chapter in
the WinRunner User’s Guide.

Chapter 3 • Creating GUI Checks for Custom Objects

27

You can use WinRunner’s Function Generator to generate all the required
function calls, and then insert them directly into your test scripts. You can
find the functions in the “GUI verification” category of the Function
Generator. For more information on automatically generating and inserting
functions, refer to the “Generating Functions” chapter in the WinRunner
User’s Guide.

Adding a Custom GUI Object Class for Verification

If you are implementing property checks for an object that does not belong
to a standard WinRunner GUI object class, you must first define a new
verification class for the object and then specify the property checks for the
object class. You define a new class using the gui_ver_add_class function.
This function has the following syntax:

gui_ver_add_class (class_name [,ui_function] [,default_check_function]);

➤ class_name is either the MSW_class property or the standard class property
of the object. Use the GUI Spy to find the MSW_class property. For
information on using the GUI Spy, refer to the “Configuring the GUI Map”
chapter in the WinRunner User’s Guide.

➤ The optional ui_function parameter enables you to develop and display the
GUI checkpoint dialog boxes with a customized user interface. You create
your own check dialog box only if this will enable you to more easily select
the checks for a given checkpoint. For more information, see Chapter 4,
“Creating GUI Checks: Advanced Topics.”

You can use the Property List button in the GUI checkpoint dialog boxes to
call the ui_function parameter. Note that this button is displayed only if at
least one object in the Objects pane of the dialog box belongs to a class for
which the ui_function parameter has been defined using the
gui_ver_add_class function.

If you do not specify a ui_function, the set of property checks displayed for
the new class will have the same checks as those displayed for the generic
“object” class. For information on associating property checks with a class,
see “Associating a New Property Check with a GUI Object Class” on page 20.

Chapter 3 • Creating GUI Checks for Custom Objects

28

➤ The optional default_check_function parameter enables you to specify the
runtime default checks for the new class. You use the default_check_function
parameter only if you specify a ui_function, and you want to override the
default checks. For more information, see Chapter 4, “Creating GUI Checks:
Advanced Topics.”

Note that by default, the property checks displayed in the GUI checkpoint
dialog boxes for a custom class are the same as those displayed for the
generic object class. You can add your own custom checks for the custom
class, so that they will be displayed for that class in the GUI checkpoint
dialog boxes.

The Check GUI dialog box below displays the default checks for any custom
object, which is associated with the generic “object” class:

Chapter 3 • Creating GUI Checks for Custom Objects

29

You can add a custom check for this custom class, as shown in the dialog
box below:

You can also map custom objects to standard object classes. For additional
information, refer to the “Configuring the GUI Map” chapter in the
WinRunner User’s Guide.

Custom check

Chapter 3 • Creating GUI Checks for Custom Objects

30

Example: Adding a New GUI Object Class for Verification

You can use WinRunner’s GUI Spy to see the properties of the toolbar in the
Paint application. For information on using the GUI Spy, refer to the
“Configuring the GUI Map” chapter in the WinRunner User’s Guide.
WinRunner recognizes the toolbar as belonging to the generic “object” class.
The MSW_class property of the toolbar is “pbTool.” You can create a custom
class for the toolbar using the following statement:

gui_ver_add_class ("pbTool");

By default, the property checks displayed in the GUI checkpoint dialog
boxes for the “pbTool” class are the same as those displayed for the generic
“object” class.

Chapter 3 • Creating GUI Checks for Custom Objects

31

Defining a Custom Check for a Custom GUI Object Class

Once you have created a custom class for verification, you can add property
checks to the custom class.

To add the property checks to a custom class, perform the tasks listed below.
For details of each of these tasks, see Chapter 2, “Creating Custom GUI
Checks for Standard Objects.”

 1 Create a capture function.

The capture function establishes and stores the expected and actual results
for the property check.

 2 Create a comparison function.

After the capture function has determined the expected and actual results
for a property check, WinRunner verifies the results to determine whether
the check passed. To verify a check, you can either create your own
comparison function, or use WinRunner’s standard comparison function,
default_compare_func.

 3 Register the new check.

Once you have created a new GUI object class for verification and developed
and compiled the capture and comparison functions, you must register the
new check that the functions define. This is done using the
gui_ver_add_check TSL function.

 4 Associate the new property check with a class.

Having registered the new property check, you associate it with a custom
GUI object class for verification. By associating the new property check with
a class, you add the property check to the list of property checks displayed
for that class in the GUI checkpoint dialog boxes. You associate the property
check with a class using the gui_ver_add_check_to_class TSL function.

 5 Set the default checks.

You set the default checks for a custom GUI object class using the
gui_ver_set_default_checks TSL function.

For additional information about the TSL functions described above, refer to
the TSL Online Reference.

Chapter 3 • Creating GUI Checks for Custom Objects

32

33

4
Creating GUI Checks: Advanced Topics

You can create your own user interface for the GUI checkpoint dialog boxes
for objects of a custom GUI object class. In addition, you can implement
your own results display utility for the check.

This chapter describes:

➤ Adding a New GUI Object Class for Verification

➤ Creating Capture and Comparison Functions

➤ Registering the New Check

➤ Setting the Default Checks

➤ Implementing Advanced GUI Checking

About Advanced Topics in Creating GUI Checks

If your application contains objects that do not belong to a standard
WinRunner GUI object class, you can create a custom class in order to check
them. For each custom class, you can either:

➤ Use the standard WinRunner GUI checkpoint dialog boxes, which include
the standard checks for the generic “object” class, as well as any custom
checks you add. For more information, see Chapter 3, “Creating GUI Checks
for Custom Objects.”

➤ Develop your own GUI checkpoint dialog boxes with a customized user
interface and an associated results display facility, as described in this
chapter.

Chapter 4 • Creating GUI Checks: Advanced Topics

34

To add a new GUI object class, and then develop a custom user interface
and custom results display utility, you perform the following steps:

 1 Define a new custom GUI object class, and develop GUI checkpoint dialog
boxes with a customized user interface.

 2 Create a capture function to establish the expected and actual results of the
check.

 3 Create a comparison function to compare the expected and the actual
results.

 4 Register the property check that is defined by the capture and comparison
functions.

 5 Set the default checks for the new class.

Adding a New GUI Object Class for Verification

You define a new GUI object class for verification using the function
gui_ver_add_class. For details on defining a new class for verification, see
Chapter 3, “Creating GUI Checks for Custom Objects.”

Note that when you use the gui_ver_add_class function, the ui_function
parameter is the name of the user-defined function that enables you to
develop and display the GUI checkpoint dialog boxes with a customized
user interface. The Check GUI dialog box is displayed when you double-
click a GUI object when creating a GUI checkpoint. You create GUI
checkpoint dialog boxes with a customized user interface to enable you to
more effectively select the checks for a given checkpoint. For example,
suppose you have a custom class for tables. You could develop GUI
checkpoint dialog boxes with a customized user interface that enable you to
easily select which columns of the table to compare, and on what basis to
compare the columns.

The ui_function parameter has the following syntax:

function ui_function (in window, in object, inout check_list, inout arg_list);

➤ window is the description of the window in which the object exists.

➤ object is the description of the object selected by the user.

Chapter 4 • Creating GUI Checks: Advanced Topics

35

➤ check_list serves two functions: The default checklist for the object is passed
to the function when the function is called. The function must pass a new
checklist as output. The checklist consists of one or more check names,
separated by spaces or commas.

➤ arg_list is a string that you want to return as an output. It is passed as a
parameter to each property check’s capture and comparison functions. You
can store the arg_list parameter in a file using the file name supplied by the
arg_list parameter.

You can use the Property List button in the GUI checkpoint dialog boxes to
call the ui_function parameter. Note that this button is displayed only if at
least one object in the Objects pane of the dialog box belongs to a class for
which the ui_function parameter has been defined using the
gui_ver_add_class function.

The default_check_function parameter has the following syntax:

function default_check_function (in window, in object, inout check_list, inout
arg_list);

The parameters of default_check_function are the same as those for
ui_function, described above.

For an example of how to use the gui_ver_add_class function to develop
customized GUI checkpoint dialog boxes, see “Implementing Advanced GUI
Checking” on page 37.

Creating Capture and Comparison Functions

You create a capture function to establish and store the expected and actual
results for the custom property check. After the capture function has
determined the expected and actual results for a check, WinRunner verifies
the results to determine whether or not the check passed. To verify a check,
you can either create your own comparison function, or use WinRunner’s
standard comparison function, default_compare_func.

For details on capture and comparison functions, see Chapter 2, “Creating
Custom GUI Checks for Standard Objects.”

Chapter 4 • Creating GUI Checks: Advanced Topics

36

For an example illustrating the use of capture and comparison functions, see
“Implementing Advanced GUI Checking” on page 37.

Registering the New Check

Once you have created the capture and comparison functions, you register
the new property check that the functions define. For details on registering
the check, see Chapter 2, “Creating Custom GUI Checks for Standard
Objects.”

Note that when you use the gui_ver_add_check function, the
display_function parameter enables WinRunner to use a custom display
utility to view the results of the check. For example, if you select a property
check in the GUI Checkpoint Results dialog box that has an associated
display function, the Display button is enabled, as shown below. You click
the Display button to display the results of the check using your display
function. If you do not enter a display_function, then WinRunner uses its
default result display facilities.

Note that since “check2” has an associated display function, the Display
button is enabled.

Chapter 4 • Creating GUI Checks: Advanced Topics

37

The display_function parameter has the following syntax:

function display_function (in expected, in actual, in result, in diff);

➤ expected is the expected result string or filename.

➤ actual is the actual result string or filename.

➤ result is the result of the compare function: 0 for a successful comparison,
any other value for a mismatch.

➤ diff is a string, received from the comparison function and may contain a
filename or any other information needed by the display function.

Setting the Default Checks

To set the default checks for the new check, you use the
gui_ver_set_default_checks function. For details on setting the default
checks, see Chapter 2, “Creating Custom GUI Checks for Standard Objects.”

Implementing Advanced GUI Checking

The following example illustrates the use of most GUI verification
customization features. For the sake of simplicity, all the checks simply
return random numbers. The example adds a custom class, AfxWnd, and
then adds the checks for the class. The ui_function parameter uses
WinRunner’s pause_test function to create a simple output/input dialog
box, as shown below.

Dialog box with
custom user interface
developed using
WinRunner’s
pause_test function

Chapter 4 • Creating GUI Checks: Advanced Topics

38

This example presents a mechanism that can be used for GUI verification
customization. Using external DLLs, you can implement more sophisticated
output/input screens based on this prototype.

This test is designed to operate on WinBurger, a sample application supplied
with WinRunner. The Reset button in WinBurger belongs to the “AfxWnd”
custom class, the class that is customized in this example. You can locate
WinBurger in your installation_directory\samples\bin\winbur folder.

load user-defined functions
reload("udf_gui");

Add new verification class, "AfxWnd"
rc=gui_ver_add_class("AfxWnd", "reset_ui_func"); # adds class “AfxWnd"

Register check1
rc=gui_ver_add_check("check1","check1_capt","compare1");

#Add check1 to class
gui_ver_add_check_to_class(“AfxWnd”,”check1”);

Register check2
rc=gui_ver_add_check("check2","check2_capt","compare2","display_func2");

#Add check2 to class
gui_ver_add_check_to_class(“AfxWnd”,”check2”);

Set default checks for new class
rc=gui_ver_set_default_checks("AfxWnd","check1");

udf_gui
function reset_ui_func(window, object, inout checklist, out arglist)
{

auto res=pause_test("GUI Verification Sample UI_function Display\nPlease
choose a check name.\nCurrent checks:" & checklist, "check1", "check2", "Both"
);

if (res==0) {
checklist = "check1";
arglist = "User selected check1";

}
else
if (res==1) {

Chapter 4 • Creating GUI Checks: Advanced Topics

39

checklist = "check2";
arglist = "User selected check2";

}
else
if (res==2) {

checklist = "check1 check2";
arglist = "User selected check1 & check2";

}
else

return -1;
return 0;

}

Capture Function #1

function check1_capture(object, inout value)
{

value = 100*rand();
return 0;

}

Capture Function #2

function check2_capture(object, inout file)
{

file_open(file,FO_MODE_WRITE);
file_printf(file, “%"S”,””The result of check2 was sent to a file.\n\nThe result of

check2 is: " & 100*rand())”);
file_close(file);
return 0;

}

Chapter 4 • Creating GUI Checks: Advanced Topics

40

Comparison Function #1

function compare1(exp_val, act_val, arglist, inout diff_file)
{

diff_file = "";
if (exp_val != act_val) {

return E_DIFF;
}
return E_OK;

}

Comparison Function #2

function compare2(exp_file, act_file, arglist, inout diff_file)
{

auto exp_buf, act_buf;
read_file(exp_file, exp_buf);
read_file(act_file, act_buf);
if (exp_buf != act_buf || arglist != "") {

file_open(diff_file,FO_MODE_WRITE);
file_printf(diff_file,"Difference forced !");
file_close(diff_file);
return 1;

}
diff_file = "";
return E_DIFF;

}

Display Function

function display_func2(exp_file, act_file, result, diff_file)
{

auto exp_buf, act_buf, diff_buf;
read_file(exp_file, exp_buf);
read_file(act_file, act_buf);
read_file(diff_file, diff_buf);
pause_test("\nExpected: " & exp_buf & "\nActual: " & act_buf & "\n\nResult: "

& result & "\nDiff: " & diff_buf, "OK", "Cancel", "Close");
return 0;

}

Chapter 4 • Creating GUI Checks: Advanced Topics

41

function read_file(name, out buf)
{

auto tmp;
buf = "";
file_open(name,FO_MODE_READ);
if (name != "") {

while (file_getline(name,tmp)) {
buf = buf & tmp;

}
file_close(name);

}
}

Chapter 4 • Creating GUI Checks: Advanced Topics

42

Part 2

Customizing Recording

44

45

5
Customizing Recorded Statements

When you record operations on custom GUI objects, the resulting test script
contains generic obj_ TSL statements. You can make the test script easier to
read by creating custom record functions.

This chapter describes:

➤ Understanding Custom Record Functions

➤ Developing a Custom Record Function

➤ Associating a Custom Record Function with a GUI Object Class

➤ Developing a Custom Execution Function

➤ Example of a Custom Record Function

About Customizing Recorded Statements

Many applications contain custom GUI objects—objects that do not belong
to any of WinRunner’s standard GUI object classes. Because WinRunner is
not familiar with the behavior of such custom objects, whenever you
operate one of them, WinRunner records a generic obj_mouse statement
into your test script. Because these obj_mouse statements are generic, two
problems can arise:

➤ The recorded statements are not descriptive, and the test script is therefore
difficult to read and analyze.

➤ The recorded statements do not fully describe the operations that were
performed. When you run the test, WinRunner does not correctly duplicate
the recorded operations.

Chapter 5 • Customizing Recorded Statements

46

By implementing custom record functions, you can resolve both these
problems.

Custom record functions enable you to specify the statements that
WinRunner records in place of generic obj_ statements. That is, you specify
the statement to be recorded when you perform a specific operation on a
GUI object belonging to a custom object class.

To implement a custom record function, you perform the following tasks:

 1 Develop a custom record function.

 2 Associate the custom record function with a custom GUI object class.

 3 Implement a custom execution function, if required.

Note: You can combine a custom record function with a logical name
function for a given GUI object class, thereby further improving the
readability of the statements that WinRunner records into your test scripts.
Logical name functions enable WinRunner to assign descriptive logical
names to custom GUI objects. For more information, see Chapter 7,
“Customizing Assigned Logical Names.”

Understanding Custom Record Functions

To illustrate the use of a custom record function, consider the following
scenario:

Note: The scenario assumes that you have not installed WinRunner with
support for Visual Basic. If you have the Visual Basic support installed, then
custom record function described in the scenario will already be
implemented for the spinbutton class.

Chapter 5 • Customizing Recorded Statements

47

Assume that your application contains a custom “spinbutton.” If you click
on the upper arrow of the spinbutton, the associated counter is incremented
by one. If you click on the lower arrow, the counter is decremented by one.
If you click on either arrow and hold down the mouse button, the counter is
incremented or decremented continuously, as long as the button is held
down.

Because this spinbutton does not belong to a standard GUI object class, you
create a custom class for the spinbutton, called simply “spinbutton.”
Suppose you record three different mouse clicks on the spinbutton.
WinRunner records statements similar to the following into your test script:

Improving the Readability of Recorded Statements

The above recorded statements are identical, except for the coordinates of
the mouse click. It is therefore difficult to distinguish what operation is
recorded with each statement. That is, was the increment arrow pressed, or
the decrement arrow? Was there a simple click, or was the mouse button
held down for a period of time?

Operation
Performed

Recorded Test Script
Statement

Counter
Before

Counter
After

click on upper
arrow

obj_mouse_click
("SpinButton", 50, 22, LEFT); 1 2

click on lower
arrow

obj_mouse_click
("SpinButton", 50, 58, LEFT); 2 1

click on upper
arrow, mouse
button held down

obj_mouse_click
("SpinButton", 50, 22, LEFT); 1 6

Increment arrow

Decrement arrow

Counter

Chapter 5 • Customizing Recorded Statements

48

You can make the recorded test script easier to read and analyze by
implementing a custom record function—thereby enabling WinRunner to
record more descriptive statements.

From the above “customized” statements, it is immediately apparent that
the spin_up statement indicates a mouse click on the upper (increment)
arrow, and that the spin_down statement indicates a mouse click on the
lower (decrement) arrow.

Improving Execution Accuracy

WinRunner executes the first two “simple” mouse clicks as required.
However, the third statement, which represents the mouse button being
pressed and held down, is not executed correctly. The third mouse click is
recorded with a generic obj_mouse_click statement which contains no
information describing how many times the arrow was activated while the
mouse button was held down. WinRunner therefore executes a simple
mouse click, and the counter increments from 1 to 2, and not from 1 to 6, as
is required.

By implementing a custom record function you can resolve the execution
difficulty. Custom record functions ensure that the statements that
WinRunner records fully describe the operations that you perform. This
enables WinRunner to execute the recorded statements as required.

Recorded Test Script Statement Operation Performed

spin_up ("SpinButton", 50, 22, LEFT); click on upper arrow

spin_down ("SpinButton", 50, 58, LEFT); click on lower arrow

Chapter 5 • Customizing Recorded Statements

49

The table below shows modified spin_up and spin_down statements. The
modification includes a parameter that defines how many times each arrow
was activated while the mouse button was held down.

Note that custom record functions generate functions that are not standard
to WinRunner. A custom execution function is required to execute a non-
standard function. For more information, see “Developing a Custom
Execution Function” on page 54.

Combining a Custom Record Function with a Logical Name
Function

You can further improve the readability of your test scripts by implementing
a custom record function together with a logical name function. Logical
name functions enable WinRunner to assign descriptive logical names to
custom GUI objects. For more information, see Chapter 7, “Customizing
Assigned Logical Names.”

Operation Performed Recorded Test Script Statement
Counter
Before

Counter
After

click on upper
arrow

spin_up ("SpinButton", 1); 1 2

click on lower arrow spin_down ("SpinButton", 1); 2 1

click on upper
arrow, mouse
button held down

spin_up ("SpinButton", 5);
1 6

Chapter 5 • Customizing Recorded Statements

50

Developing a Custom Record Function

In order to customize recorded statements in a test script, you create a
custom record function that returns a string when you perform a specific
operation on an object in a custom object class. WinRunner uses this string
as the basis of the statement it records into the test script.

For example, suppose you implement a custom record function that returns
a string when you click on a custom spinbutton. Before implementing the
function, WinRunner records a statement similar to the following:

obj_mouse_click("spinbutton",50,100);

After implementing the record function, WinRunner records a statement
similar to the following:

spin_up("spinbutton", 1);

Writing the Custom Record Function

You write the custom record function in C-language, and compile and link it
into a DLL. You supply the name of the DLL when you associate the custom
record function with a GUI object class. See “Associating a Custom Record
Function with a GUI Object Class” on page 53.

The custom record function has the following prototype:

int function (HWND FAR* phWnd, UINT msg, WPARAM wParam, LPARAM
lParam, char* str, int size);

Parameters

phWnd The pointer to the handle of the GUI object that is
being acted upon. You can modify the contents of the
pointer to record an operation on a different GUI
object.

msg The Windows message received.

wParam The first message parameter.

lParam The second message parameter.

Chapter 5 • Customizing Recorded Statements

51

str A buffer allocated by WinRunner. The record function
assigns the string to be recorded into the test script to
the allocated buffer.

size The size of the str buffer, in bytes.

The record function assigns the string that WinRunner will record into the
test script, to the str parameter. You use WinRunner’s “%m” format to create
the string, by substituting "%%m" for the GUI object’s logical name. For
example, the custom record function could assign the following string to
the str parameter:

spin_up ("%%m", 1)

Do not include a semicolon (;) at the end of the string—WinRunner adds a
semicolon when it records the statement into the test script. WinRunner
replaces “%m” with the logical name of the GUI object when the statement
is recorded into the test script.

Returning a Value

The record function returns a value that describes the sending mode of the
function. For example, the following statement could be included in a
custom record function:

return(SEND_LINE);

The various sending mode options that you can return are described below:

➤ SEND_LINE

Instructs WinRunner to record the string returned in the str parameter into
the test script. If a string has been previously stored, WinRunner records
that string first into the test script.

Chapter 5 • Customizing Recorded Statements

52

➤ KEEP_LINE

Instructs WinRunner to store the string returned in the str parameter, and
start the timer. If a string has been previously stored, WinRunner records it
into the test script. If time-out occurs and no further mouse input is
detected, WinRunner records the new string into the test script. Use
KEEP_LINE after detecting a single mouse click. WinRunner waits to
establish if the single mouse will be followed by another click during the
time-out period, thereby producing a double-click.

➤ KEEP_LINE_NO_TIMEOUT

Instructs WinRunner to store the string returned in the str parameter. If
WinRunner has previously stored a string, then WinRunner records that
string into the test script.

➤ REPLACE_AND_SEND_LINE

Instructs WinRunner to record the string returned in the str parameter into
the test script. If a string has been previously stored, WinRunner deletes that
string.

➤ REPLACE_AND_KEEP_LINE

Instructs WinRunner to store the string returned in the str parameter, and
start the timer. If a string has been previously stored, WinRunner deletes it.
If time-out occurs and there is no further mouse input, WinRunner records
the string into the test script.

➤ CLEAN_UP

Instructs WinRunner to record the string stored in the str parameter into the
test script, if a stored string exists.

➤ NO_PROCESS

If the str parameter is empty, NO_PROCESS instructs WinRunner to record
the default function for the GUI object.

If the str parameter is not empty, NO_PROCESS instructs WinRunner not to
record any function.

Chapter 5 • Customizing Recorded Statements

53

Adding Windows Messages

Although WinRunner monitors all Windows messages, only a small number
of the many Windows messages are actually processed. That is, WinRunner
ignores all but a few messages. The record functions that you implement
may require that WinRunner process additional messages. You use the
add_record_message TSL function to specify which additional messages to
include. The add_record_message function has the following syntax:

add_record_message (message_number);

➤ message_number is the number or identifier of the additional Windows
message that you want WinRunner to process.

For example, the following statement instructs WinRunner to add the
WM_MOUSEMOVE message to the list of messages that it processes.

add_record_message(512);

For an example of a custom record function, see “Example of a Custom
Record Function” on page 55.

Associating a Custom Record Function with a GUI Object
Class

You use the add_cust_record_class function to associate the custom record
functions with a GUI object class. The add_cust_record_class function has
the following syntax:

add_cust_record_class (MSW_class, dll_name [, rec_func]
[, log_name_func]);

➤ MSW_class is the MSW_class of the custom objects with which the custom
record function is associated.

➤ dll_name is the full path and filename of the DLL in which you compiled
and linked the custom record function. If a logical name function also exists
for the GUI object class, that function is also contained in this DLL. For
more information, see Chapter 7, “Customizing Assigned Logical Names.”

Chapter 5 • Customizing Recorded Statements

54

➤ rec_func is the name of the record function in the DLL. The record function
returns the string that WinRunner records into the test script.

➤ log_name_func is the name of the logical name function (if one exists) that is
included in the DLL. The log_name_func function supplies a custom logical
name for a custom GUI object in class MSW_class. For more information, see
Chapter 7, “Customizing Assigned Logical Names.”

In the following example, the add_cust_record_class function adds a
custom record function, SpinHighLevelRec, for the SpinButton class.

add_cust_record_class("SpinButton", "c:\\arch\\vb_util.dll",
"SpinHighLevelRec", " ");

Developing a Custom Execution Function

If you implement a custom record function that generates a custom
statement, you must develop a custom execution function to enable
WinRunner to execute the recorded statement. For example, assume you
develop a custom record function that records the following function into
your test script:

custom_function(2,2);

Because custom_function is a call to a user-defined function, WinRunner
does not recognize it, and consequently cannot execute the function. You
develop a user-defined function that defines what WinRunner must do each
time it executes a custom_function statement.

Custom execution functions obtain information from your application
about the custom object, such as its state or position, and then move the
mouse cursor to the required location and enter mouse or keyboard input. A
number of TSL functions, such as obj_get_info, can be used to retrieve
information about the object. Other TSL functions such as click,
obj_mouse_drag, and move_locator_abs can be used to execute the
function.

Chapter 5 • Customizing Recorded Statements

55

The following example shows the TSL implementation of the spin_up
execution function. You may want to base the implementation of your
execution functions on the example below.

public function spin_up(win, times){
auto hWnd;
auto res;

get GUI object handle to send to DLL
res = obj_get_info(win, "handle", hWnd);
if(res != E_OK)

return(res);

call DLL, _spin_up
res = _spin_up(hWnd, times);

internal TSL function, called if _spin_up fails
if(res != E_OK)

process_return_value(res);
return(res);

}

Example of a Custom Record Function

The following example illustrates the implementation of a custom record
function for the Visual Basic control, ThunderlistBox. You may want to base
the implementation of your custom record functions on this example. The
file cust_rec.h is included to set the return values for the record function.

filename: cust_rec.h

// Return values for recording function
#define SEND_LINE 0
#define KEEP_LINE 1
#define REPLACE_AND_SEND_LINE 2
#define REPLACE_AND_KEEP_LINE 3
#define CLEAN_UP 4
#define KEEP_LINE_NO_TIMEOUT 5
#define NO_PROCESS 6

Chapter 5 • Customizing Recorded Statements

56

filename: cust_rec.c

#define EXPORTED _far _pascal __export
#include <windows.h>
#include "cust_rec.h"
#include <windowsx.h> // Windows Messages Cracker

#define MAXKEYS 9
BOOL isMouseUponObject(HWND hwin, LPARAM lParam);
WORD GetListKey (HWND hwin, WPARAM wParam);

// Custom Recording for ThunderListBox
//---
// ThunderListBox
//
// Implementation of the Visual Basic ListBox
// All the ListBox commands are written by the Windows Messages Cracker's
// format
//
// NOTE:
// WM_KEY* messages are received not as in the Windows documentation,
// rather:
// wParam = scan code; and for extended keys, top most bit is set.
// lParam does not contain interesting information.
//---

int EXPORTED ThunderListBox(HWND FAR* pwin, UINT msg,
 WPARAM wParam, LPARAM lParam,
 LPSTR rec_str, int len)
{
 static bMouseDown = FALSE;
 static bPushKeyDown = FALSE;
 WORD wVirtKey;
 int nReturn = SEND_LINE;
 int nItemSel;
 char szBuff[255];

 UINT ss;

 HWND win = *pwin;

Chapter 5 • Customizing Recorded Statements

57

 switch (msg) {
 case WM_LBUTTONDBLCLK:
 nItemSel = ListBox_GetCurSel(win);
 if (nItemSel != LB_ERR) {
 // if something is being selected - get the selected string
 ListBox_GetText(win, nItemSel, szBuff);
 // and send the command line
 wsprintf(rec_str,
 "ActivateThunderListItem (\"%%m\", \"%s\")", (LPSTR)szBuff);
 // replacing the previous one which was "SelectThunderListItem"
 nReturn = REPLACE_AND_SEND_LINE;
 }
 break;

 // set the bMouseDown Flag
 case WM_LBUTTONDOWN:
 if (isMouseUponObject(win, lParam))
 bMouseDown = TRUE;
 break;

 case WM_LBUTTONUP:
 if (bMouseDown) { // if the bMouseDown flag has been set
 bMouseDown = FALSE;
 nItemSel = ListBox_GetCurSel(win);
 if (nItemSel != LB_ERR) {
 // and something is being selected - get the selected string
 ListBox_GetText(win, nItemSel, szBuff);
 // and send the command line
 wsprintf(rec_str,
 "SelectThunderListItem (\"%%m\", \"%s\")",
 (LPSTR)szBuff);
 // and keep it for the DBLCLICK case
 nReturn = KEEP_LINE;
 }
 }
 break;

 case WM_KEYDOWN:
 // get the real VirtKey value

Chapter 5 • Customizing Recorded Statements

58

 // and if it's valid - set the bPushKeyDown flag
 ss = HIWORD(lParam);
 ss = LOBYTE(ss);
 ss = MapVirtualKey(ss, 1);

 if (GetListKey (win, wParam) != 0xFFFF)
 bPushKeyDown = TRUE;
 break;

 case WM_KEYUP:
 // get the real VirtKey value
 wVirtKey = GetListKey (win, wParam);
 if (bPushKeyDown && (wVirtKey != 0xFFFF)) {
 // if it's valid and the bPushKeyDown flag has been set -
 // reset the flag
 bPushKeyDown = FALSE;

 nItemSel = ListBox_GetCurSel(win);
 if (nItemSel != LB_ERR) {
 // if something is being selected - get the selected string
 ListBox_GetText(win, nItemSel, szBuff);
 // and send the appropriate command line
 // - Activate or Select
 if (wVirtKey == VK_RETURN)
 wsprintf(rec_str,
 "ActivateThunderListItem (\"%%m\", \"%s\")",
 (LPSTR)szBuff);
 else
 wsprintf(rec_str,
 "SelectThunderListItem (\"%%m\", \"%s\")",
 (LPSTR)szBuff);
 }
 }
 break;

 default:
 break;
 }

Chapter 5 • Customizing Recorded Statements

59

 return (nReturn);
}

//---
// isMouseUponObject
// Check if the Mouse is placed upon the hwin Window Rectangle
//---

BOOL isMouseUponObject(HWND hwin, LPARAM lParam)
{
 RECT rect;
 POINT ptMouse;
 BOOL bResult;

 // Get the local mouse coordinates
 ptMouse.x = LOWORD(lParam);
 ptMouse.y = HIWORD(lParam);

 // Get the Object's Window coordinates
 GetWindowRect(hwin, (RECT FAR*)&rect);

 // Convert the local mouse coordinates to the Window one
 ClientToScreen(hwin, (POINT FAR*)&ptMouse);

 // test if the mouse upon the Object Window's rectangle
 bResult = PtInRect((const RECT FAR*)&rect, ptMouse);

 return bResult;
}

//---
// GetListKey
// Recognize if the Key message corresponds to any of the Virtual Keys:
// VK_RETURN, VK_UP, VK_RIGHT, VK_LEFT, VK_DOWN, VK_HOME,
// VK_END, VK_PRIOR, VK_NEXT,
//
// Assume that wParam and lParam have been changed and for some reason
// for the Keyboard’s keys (except the ENTER) and for KeyPad's ENTER there
// is a topmost bit being added to the wParam value

Chapter 5 • Customizing Recorded Statements

60

//---

WORD GetListKey(HWND hwin, WPARAM wParam)
{
 int i;
 BOOL bKeyPad,
 bNumLock;

 // regular movement & executive keys
 WORD wVirtKeys[MAXKEYS] =
 {VK_RETURN, VK_UP, VK_RIGHT, VK_LEFT,
 VK_DOWN, VK_HOME, VK_END, VK_PRIOR, VK_NEXT};

 // KeyPad's key values have been recognized by debugging
 bKeyPad = ((wParam >= 0x47) && (wParam <= 0x51));

 // check the NUMLOCK key's toggle - test the lowest bit
 bNumLock = 0x01 & GetKeyState(VK_NUMLOCK);

 if (!bKeyPad || (bKeyPad && !bNumLock)) {
 // process all the keys but the <NUMLOCK<->KEYPAD> case
 // (except the KeyPad's ENTER)
 for (i = 0; i < MAXKEYS; i++) {
 // reset the wParam's topmost bit and test the Virtual Keys.
 if ((wParam & 0x7F) == MapVirtualKey(wVirtKeys[i], 0))
 // return the current Virtual Key's value
 return wVirtKeys[i];
 }
 }

 // return "nothing"
 return 0xFFFF;
}

61

6
Adding Custom Properties for GUI
Objects

You can add your own properties to any GUI object class to improve
WinRunner’s ability to uniquely identify the GUI objects in your
application.

This chapter describes:

➤ Developing a Query Function for a Custom Property

➤ Developing a Verification Function for a Custom Property

➤ Registering a Custom Property

➤ Assigning a Custom Property to a GUI Object Class

➤ Example of a Custom Property Function

About Adding Custom Properties for GUI Objects

WinRunner uniquely identifies each GUI object in your application by
developing a physical description for the object. This physical description is
made up of a list of the object’s obligatory properties. When the obligatory
properties do not provide unique identification, WinRunner includes
optional properties into the physical description. If this still does not
uniquely identify the object, then WinRunner includes a selector as well. See
your WinRunner User’s Guide for more information on how WinRunner
identifies GUI objects.

Chapter 6 • Adding Custom Properties for GUI Objects

62

The inclusion of optional properties and selectors can lead to long and
complex physical descriptions. To improve the efficiency with which
WinRunner identifies GUI objects, you can register your own user-defined
or custom properties. For example, every GUI object created using Visual
Basic is assigned the vb_name property. Within a given window, the vb_name
property is always unique. If you have installed WinRunner with Visual
Basic support, then the vb_name property is automatically added as a custom
property. This enables WinRunner to more efficiently identify the GUI
objects in your Visual Basic applications.

Like Visual Basic, most other development environments also assign
properties to their GUI objects. By defining these properties as custom
WinRunner properties, you enhance WinRunner’s ability to uniquely
identify GUI objects in your applications.

To add a custom property, you perform the following tasks:

 1 Develop a query function to obtain the value of the custom property,
whenever the value is required.

 2 Develop or specify a function that verifies whether the custom property of a
given GUI object has the required value.

 3 Register the custom property.

 4 Assign the custom property to a GUI object class.

Developing a Query Function for a Custom Property

You create a query function to evaluate and return the value of a custom
property of a GUI object. For example, suppose you add the custom property
new_property. It is the query function that actually evaluates and returns the
value of new_property for a given GUI object, whenever the value is required.

You write the query function in C-language, and compile and link it into a
DLL. You supply the name of the DLL when you register the custom
property. See “Registering a Custom Property” on page 65.

Chapter 6 • Adding Custom Properties for GUI Objects

63

The query function has the following prototype:

void query_func (HWND hWnd, LPSTR str, int size)

Parameters

hWnd The handle of the GUI object for which the custom
property is being evaluated.

str A buffer allocated by WinRunner to which the query
function assigns the value of the custom property.

size The size of the str buffer in bytes.

The query_func function is a library-defined callback function that
WinRunner calls whenever the value of a custom property is required. The
query_func function is a placeholder for the library-defined function name.
The actual name must be exported by including it in an EXPORTS statement
in the library’s module-definition (.DEF) file.

For an example of a query function for a custom property, see “Example of a
Custom Property Function” on page 69.

Developing a Verification Function for a Custom Property

WinRunner uses a verification function to identify GUI objects in your
application whose custom property has the required value.

Understanding the Verification Function

To understand the role of a verification function, consider the following
scenario. Suppose that you open the GUI Map Editor, and select a custom
object. The object is uniquely identified by the class property, object, and its
custom property, new_property. Suppose that the value of new_property is
Object1. The physical description of the object is therefore:

{class:"object", new_property:"Object1"}

When you click the Show button in the GUI Map Editor, WinRunner
attempts to highlight the selected object. But first it must locate it.

Chapter 6 • Adding Custom Properties for GUI Objects

64

To locate the required object, WinRunner systematically examines each
object in your application, and enquires: Does this object belong to the
“object” class? If not, WinRunner queries the next object. If that object
belongs to the “object” class, WinRunner calls the query function to
establish the value of the object’s custom property, new_property. Having
established the value of new_property, WinRunner calls the verification
function to determine if this value matches the required value, Object1. If
the verification function indicates a mismatch, WinRunner continues
searching for the required object. When the query function returns a value
of “Object1”, the verification function indicates that the correct object is
found, and WinRunner highlights the object.

Using Standard and Custom Verification Functions

The function that you use to verify the value of a custom property can be
one of WinRunner’s standard property verification functions, or your own
custom verification function.

The standard property verification functions are:

➤ string_verify, which compares the value of the custom property as a string.

➤ num_verify, which compares the value of the custom property as a number.

➤ bool_verify, which compares the value of the custom property as a boolean
expression.

You use a standard function whenever a simple comparison of property
values can verify a custom property. For example, suppose you are checking
the custom property new_property, and that the value is always a string such
as “Object1” or “Object2”. You can use the standard string_verify function
to verify the new_property property.

Developing a Custom Verification Function

If your custom property requires complex comparison for verification, then
the standard verification functions are inadequate, and you must develop
your own custom verification function.

Chapter 6 • Adding Custom Properties for GUI Objects

65

The verification function has the following prototype:

BOOL verify_func (HWND hWnd, LPSTR str);

Parameters

hWnd The handle of the window or GUI object for which the
property is being verified.

str A buffer containing the value of the custom property.
The value is established by the query function. The
verification function compares this value to the
required value of the custom property.

The verification function must return TRUE if the check passes, and FALSE if
the check fails.

As with the query function, the verification function is written in C-
language, and is compiled and linked into the same DLL as the query
function.

For an example of a verification function for a custom property, see
“Example of a Custom Property Function” on page 69.

Registering a Custom Property

In order to make a new custom property available to WinRunner, you must
name the property and register it. You use the add_record_attr function to
register a new custom property. This function has the following syntax:

add_record_attr (attr_name, dll_name, query_func_name, verify_func_name);

➤ attr_name is the name of the custom property that is being registered.

➤ dll_name is the full path and filename of the DLL in which the query and
verification functions are defined.

➤ query_func_name is the name of the query function that is included in the
DLL.

Chapter 6 • Adding Custom Properties for GUI Objects

66

➤ verify_func_name is one of WinRunner’s standard property verification
functions, or the name of the verification function that is included in the
DLL.

The following example registers the custom new_property property.

add_record_attr("new_property", "c:\\arch\\vb_util.dll", "new_property_query",
"string_verify");

After executing the add_record_attr function, the new custom property,
new_property, appears in the Available Properties list in the Configure Class
dialog box. The new property is available to all standard and custom GUI
object classes—you must assign it to the appropriate classes.

The new custom
property,
new_property, was
added using the
add_record_attr
function.

Chapter 6 • Adding Custom Properties for GUI Objects

67

Assigning a Custom Property to a GUI Object Class

After registering a custom property, you must assign the property to the
appropriate custom class, usually as an obligatory property. You assign a
property using the set_record_attr function. It is recommended that you
use the Configure Class dialog box to generate the required set_record_attr
function, and paste it into your test script.

The following example assigns the custom new_property property to the
custom cust_object class.

set_record_attr("cust_object","class, new_property","MSW_id","location");

For additional information about the set_record_attr function, refer to the
TSL Online Reference.

To assign a custom property to a GUI object class using the Configure Class
dialog box:

 1 Click Tools > GUI Map Configuration. The GUI Map Configuration dialog
box opens.

 2 From the Class List, highlight the class with which you will associate the
new custom property. Because your class is a custom class, you will find it at
the bottom of the list, marked with a U (for user-defined) against the left
border of the list.

Chapter 6 • Adding Custom Properties for GUI Objects

68

 3 Click the Configure button. The Configure Class dialog box opens.

 4 Locate and select your new custom property in the Available Properties list.

 5 Click the Insert button below the list of obligatory properties. The new
custom property is added to the list of obligatory properties. Examine the
set_record_attr function in the Generated TSL Script box. Note that the
new property is added to the list of obligatory properties.

 6 Locate and select any property in the obligatory list which WinRunner no
longer requires for unique identification.

 7 Click the Insert button below the list of optional properties or below the list
of available properties, as required. The selected property moves to the
appropriate list.

Chapter 6 • Adding Custom Properties for GUI Objects

69

 8 Repeat steps 6 and 7 to remove all the obligatory properties that are no
longer required.

Note: Although the class property may not be needed for unique
identification, do not remove it from the list of obligatory properties.

 9 Click Paste to paste the generated TSL statements into your test script.

 10 Click OK to close the Configure Class dialog box.

Example of a Custom Property Function

The example below illustrates the structure and implementation of a custom
property function. You may want to base the implementation of your
custom property functions on this example.

In the example, the property query function is called vb_name_query. The
vb_name property is equivalent to the "Name" property for controls in a
Visual Basic application.

The value of the property is retrieved by calling the VBAPI function,
VBGetControlName. VBGetControlName must be called on the stack of the
task that owns the window “hWnd”. This is done by means of window
‘subclassing’. The window procedure of “hWnd” via SetWindowLong is
changed to “VbCtrlProc”. Then a (special) message is sent to “hWnd”. This
message is picked up by VbCtrlProc in the context of the task that created
'hWnd'. VbCtrlProc processes the message by calling VBGetControlName.
The cust_att.h file sets the return values for the custom property function.

Chapter 6 • Adding Custom Properties for GUI Objects

70

Filename: cust_att.h

#define WR_VB_SERVICE_STRING "MY_MESSAGE_IDENTIFIER_1"
enum {

VB_GET_CTRL_NAME_IND,
VB_GET_CTRL_INDEX_IND,

};

typedef struct {
HWND hWnd;
LPSTR value;

} VB_GET_CTRL_NAME_STRUCT;

typedef VB_GET_CTRL_NAME_STRUCT FAR* LPVBGCNS;

Filename: cust_att.c

#define EXPORTED _far _pascal __export

#include <windows.h>

#include <vbapi.h> // for VBGetHwndControl and VBGetControlName

#include "cust_att.h"

LRESULT EXPORTED VbCtrlProc(HWND hWnd,UINT message,WPARAM
wParam,LPARAM lParam);

HANDLE hmodDLL;

static UINT WR_VB_SERVICE_MSG = 0;

static FARPROC def_proc;

int FAR PASCAL LibMain
(
 HANDLE hModule,
 WORD wDataSeg,
 WORD cbHeapSize,
 LPSTR lpszCmdLine
)
{

Chapter 6 • Adding Custom Properties for GUI Objects

71

 hmodDLL = hModule;
WR_VB_SERVICE_MSG =

RegisterWindowMessage(WR_VB_SERVICE_STRING);
 return 1;
}

void EXPORTED vb_name_query(HWND hWnd, LPSTR value, int length)
{

VB_GET_CTRL_NAME_STRUCT name_struct = {hWnd, value};

def_proc = (FARPROC)SetWindowLong(hWnd, GWL_WNDPROC,
(LONG)VbCtrlProc);

SendMessage(hWnd, WR_VB_SERVICE_MSG,
(WPARAM)VB_GET_CTRL_NAME_IND,
(LPARAM)(LPVBGCNS)&name_struct);

SetWindowLong(hWnd, GWL_WNDPROC,(LONG)def_proc);
}

LRESULT EXPORTED VbCtrlProc(
HWND hWnd,
UINT message,
WPARAM wParam,
LPARAM lParam

)
{

if(message == WR_VB_SERVICE_MSG) {
switch(wParam) {

case VB_GET_CTRL_NAME_IND:
{

LPVBGCNS p_name_struct = (LPVBGCNS)lParam;
HCTL hctl = VBGetHwndControl(p_name_struct->hWnd);
if(hctl)

VBGetControlName(hctl,p_name_struct->value);
return((LRESULT)TRUE);

}
default:

return((LRESULT)TRUE);
}

Chapter 6 • Adding Custom Properties for GUI Objects

72

}
return(CallWindowProc(def_proc, hWnd, message, wParam, lParam));

}

int EXPORTED vb_tag_query(HWND win, LPSTR value, int len)
{

vb_name_query(win, value, len);
if(value[0] == '\0')

return(FALSE);
return(TRUE);

}

73

7
Customizing Assigned Logical Names

You can customize the way that WinRunner assigns logical names to custom
GUI objects.

This chapter describes:

➤ Understanding Logical Name Functions

➤ Developing a Logical Name Function

➤ Associating a Logical Name Function with a Custom GUI Object Class

About Customizing Assigned Logical Names

By implementing logical name functions, you can control the logical names
that WinRunner assigns to custom GUI objects in your application. For
example, suppose that your application contains a spinbutton that does not
belong to any of WinRunner’s standard GUI object classes. The spinbutton
operates a counter for the quantity of tickets sold in a theater. When you
click the spinbutton, WinRunner records a statement similar to the
following:

obj_mouse_click ("SpinButton_2", 150, 300, LEFT);

Chapter 7 • Customizing Assigned Logical Names

74

The logical name, SpinButton_2, provides little indication of which GUI
object is being acted on, especially if your application contains numerous
spinbuttons. By implementing a logical name function you can improve the
descriptiveness of the logical name that WinRunner assigns to the counter.
In place of “SpinButton_2” your logical name function could return the
logical name “Tickets_Sold_(spin)”, resulting in the following recorded
statement:

obj_mouse_click ("Tickets_Sold_(spin)", 150, 300, LEFT);

From the customized logical name, it is immediately apparent to which GUI
object the recorded statement is referring.

To implement a logical name function, you perform the following steps:

 1 Develop a logical name function that generates logical names for a custom
GUI object class.

 2 Associate the logical name function with a custom GUI object class.

Note that although you can modify the logical name of any GUI object
using the GUI Map Editor:

➤ You can use the GUI Map Editor only after WinRunner has already
assigned a logical name.

➤ When using the GUI Map Editor, you must manually modify each logical
name, as required.

In contrast, a logical name function actually generates logical names the
first time that WinRunner requires them, and a single logical name function
can generate logical names for all the GUI objects in a given custom class.

You can combine a custom record function with a logical name function for
a custom GUI object class. This combination ensures that the statements
that WinRunner records into your test scripts are intuitive. That is, that the
recorded statements describe both the actions performed, and the objects
being acted upon. For more information, see Chapter 5, “Customizing
Recorded Statements.”

Chapter 7 • Customizing Assigned Logical Names

75

Understanding Logical Name Functions

When a GUI object is added to the GUI map, or when you use the GUI Spy
to view the properties associated with a GUI object, WinRunner attempts to
assign a descriptive logical name to the object. Therefore, if a GUI object has
associated text, such as the label on a push button, WinRunner uses this text
as the basis of the logical name. In most instances, this produces a logical
name which is sufficiently descriptive of the GUI object.

If a GUI object has no associated text, WinRunner uses the MSWclass
property as the basis of the logical name. This can result in a logical name
that is not descriptive of the object which it represents. This, in turn, results
in recorded test script statements that do not clearly describe the GUI
objects with which they are associated. By implementing logical name
functions, you enable WinRunner to establish and record more intuitive
logical names for your custom GUI objects.

The logical names functions that you implement can employ various
approaches to generate the required descriptive logical names. The approach
you choose depends on the application being developed and the
development environment used. The simplest approach is provided by
those programmers who create databases containing descriptive details of all
the GUI objects used in an application, as they develop the application. If
you can find and access such a database, it may be the ideal source for all
your custom logical names.

Chapter 7 • Customizing Assigned Logical Names

76

Developing a Logical Name Function

You write the logical name function in C-language format, and compile and
link it into a DLL. You supply the name and location of the DLL when you
associate the logical name function with a GUI object class. For more
information, see “Associating a Logical Name Function with a Custom GUI
Object Class” on page 76.

The logical name function has the following prototype:

int function (HWND hWnd, char* str, int size);

hWnd The handle of the GUI object for which a logical name
is being established.

str A buffer allocated by WinRunner for the logical name.
The logical name function stores the generated logical
name in the str parameter.

size The size of the str buffer, in bytes.

For an example of a logical name function for a custom object, see the
example at the end of Chapter 6, “Adding Custom Properties for GUI
Objects.”

Associating a Logical Name Function with a Custom GUI
Object Class

You use the add_cust_record_class function to associate a logical name
function with a GUI object class. The add_cust_record_class function has
the following syntax:

add_cust_record_class (MSW_class, dll_name [, rec_func]
[, log_name_func]);

➤ MSW_class is the custom class with which the logical name function is
associated. The custom class must have already been defined.

Chapter 7 • Customizing Assigned Logical Names

77

➤ dll_name is the full path and filename of the DLL in which you included the
logical name function. If a custom record function exists for the GUI object
class, then that function will be included in the same DLL. For more
information, see Chapter 5, “Customizing Recorded Statements.”

➤ rec_func is the name of the record function (if it exists) that is included in
the DLL. The record function returns the string that will be recorded into
the test script. For more information, see Chapter 5, “Customizing Recorded
Statements.”

➤ log_name_func is the name of the logical name function that you included in
the DLL. The log_name_func function supplies custom logical names for
custom GUI objects in the MSW_class class.

In the following example, the add_cust_record_class function associates
the logical name function, vb_log_name, with the custom SpinButton class.

add_cust_record_class ("SpinButton", "c:\\winrun\\arch\\vb_util.dll", " ",
"vb_log_name");

Combining a Custom Record Function with a Logical Name
Function

You can further improve the readability of your test scripts by implementing
a custom record function together with a logical name function. You use the
add_cust_record_class function to combine a custom record function with
a logical name function for a custom GUI object class. This combination
ensures that the statements that WinRunner records into your test scripts
describe both the actions performed, and the objects being acted upon. For
more information, see Chapter 5, “Customizing Recorded Statements.”

For more information and an example of a logical name function combined
with a custom property function, see Chapter 6, “Adding Custom Properties
for GUI Objects.”

Chapter 7 • Customizing Assigned Logical Names

78

Part 3

Using the WinRunner API

80

81

8
The Mercury API Functions

This chapter contains all of the WinRunner API (Application Programmer
Interface) functions that you need. This chapter includes:

➤ Type definitions for API functions

➤ Macros

The functions appear in the above order. Within the macro group, functions
are arranged alphabetically. Some of the functions return or refer to
WinRunner error codes. For more information on error codes, see the TSL
Online Reference.

About API Functions

There are several types of functions in the API.

A type declaration defines how the execution functions you implement in
the application are structured. The only type definition you need for inside
testing is MicFunctionProc.

Macros can be used in the functions you implement in the application. The
macros are:

➤ mic_cp_from_string

➤ mic_cp_to_string

➤ mic_destroy_buf

➤ mic_destroy_string

➤ mic_get_object

➤ mic_init_buf

Chapter 8 • The Mercury API Functions

82

➤ mic_init_string

➤ mic_set_object

You use the following types in macros:

➤ MicString

➤ MicObjectBuf

➤ MicObject

MicFunctionProc

Describes the prototype of any playback function (function type).

typedef int (MIC_PROTOTYPE *MicFunctionProc)(MicArgList args);

Registered with mic_if by MicRegisterFunction.

Argument

args MicArgList is a pointer to a structure containing all of
the parameters that are passed to the function.

Description

MicFunctionProc is the type for any playback function implemented by the
toolkit that corresponds to a TSL playback command.(The toolkit is the
development environment used to develop the application you are testing.)
The function can have any number of input/output parameters. The
parameters are passed in a data structure. In order to retrieve the parameters,
the toolkit must use MicExtractArgs.

Return Value

This function returns MIC_E_OK for success or one of the WinRunner error
codes for failure. For a list of error codes, refer to the TSL Online Reference.

Chapter 8 • The Mercury API Functions

83

mic_cp_from_string

Copies a MicString to a string (macro).

#include <mic_if.h>

mic_cp_from_string (str, str_name);

Parameters

str A string to which MicString is copied.

str_name The MicString.

Description

This macro copies a MicString to a string.

mic_cp_to_string

Copies a string to a MicString (macro).

#include <mic_if.h>

mic_cp_to_string (str_name, str);

Parameters

str_name A MicString.

str The string to be copied to the MicString.

Description

This macro copies a string to a previously initialized MicString.

Chapter 8 • The Mercury API Functions

84

mic_destroy_buf

Frees an object buffer of type MicObjectBuf (macro).

#include <mic_if.h>

mic_destroy_buf (buf_name);

Parameters

buf_name A buffer to be freed.

Description

This macro frees an object buffer.

mic_destroy_string

Frees a string of type MicString (macro).

#include <mic_if.h>

mic_destroy_string (str_name);

Parameters

str_name A string to be freed.

Description

This macro frees a string.

Chapter 8 • The Mercury API Functions

85

mic_get_object

Returns an object from an object buffer of type MicObjectBuf (macro).

#include <mic_if.h>

mic_get_object (buf_name, index);

Parameters

buf_name The buffer from which the GUI object is retrieved.

index The zero-based index of the GUI object in the buffer.

Description

This macro returns a GUI object from zero-based location index in an object
buffer.

mic_init_buf

Initializes a buffer of type MicObjectBuf (macro).

#include <mic_if.h>

mic_init_buf (buf_name);

Parameters

buf_name A buffer to initialize.

Description

This macro allocates a buffer named buf_name. To manage the buffer, you
can use the following additional macros: mic_set_object, mic_get_object,
mic_destroy_buf.

Chapter 8 • The Mercury API Functions

86

mic_init_string

Initializes a string of type MicString (macro).

#include <mic_if.h>

mic_init_string (str_name);

Parameters

str_name The string to be initialized.

Description

This macro allocates a string. To manage the string, you can use the
following additional macros: mic_cp_to_string, mic_cp_from_string,
mic_destroy_string.

mic_set_object

Sets an object of type MicObject in an object buffer of type MicObjectBuf (macro).

#include <mic_if.h>

mic_set_object (buf_name, index, object);

Parameters

buf_name The buffer in which the object is filled.

index The index of the object in the buffer.

object The object to be set.

Chapter 8 • The Mercury API Functions

87

Description

This macro fills an object at zero-based location index in an object buffer. To
manage the buffer, you can use the following additional macros:
mic_set_object, mic_get_object, mic_destroy_buf.

Chapter 8 • The Mercury API Functions

88

89

A

Acrobat Reader vi
add_cust_record_class function 53, 76
add_record_attr function 65
add_record_message function 53
API functions 81–87

C

Capture functions
creating 13, 31, 35
syntax 13

Comparison functions
creating 16, 31, 35
syntax 16

conventions. See typographical conventions
custom objects, creating checks for 25–31

D

default_check_function, syntax 35
Display button, in GUI checkpoint dialog

boxes 36
display_function, syntax 37
documentation

updates viii

G

GUI checks, advanced 33–41
adding a new object class 34
creating a capture function 35
creating a comparison function 35
registering a new check 36
sample test script 37
setting default checks 37

GUI checks, for custom objects 25–31
adding a new class 27
associating a check with a class 31
creating a capture function 31
creating a comparison function 31
registering a new check 31
setting default checks 31

GUI checks, for standard objects
adding a function to a category 20
creating capture functions 13
creating comparison functions 16
modifying default checks 22
registering a new check 19

gui_ver_add_check function 19
gui_ver_add_check_to_class function 20
gui_ver_add_class function 27
gui_ver_set_default_checks function 22

L

logical name functions 73–77
associating with a GUI object class 76
combining with record function 77
developing 76

M

Mercury API 81–87
mic_cp_from_string function 83
mic_cp_to_string function 83
mic_destroy_buf function 84
mic_destroy_string function 84
mic_get_object function 85
mic_init_buf function 85
mic_init_string function 86
mic_set_object function 86
MicFunctionProc function 82

Index

Index

90

MicObject type 82, 86
MicObjectBuf type 82, 84, 85, 86
MicString type 82, 83, 84, 86

O

online help vi
online resources vi

P

properties, custom 61–69
assigning to a GUI object class 67
developing query functions 62
developing verify functions 63
registering 65

Property List button in the GUI checkpoint
dialog boxes 27, 35

R

Readme file vi
record functions, customizing 45–60

adding Windows messages 53
associating with a GUI object class 53
developing 50
developing an execution function 54
return values 51

S

sample tests vii
set_record_attr function 67
standard objects, creating checks for 9–24

T

technical support online vii
tests, sample vii
TSL Online Reference vii
TSL Reference Guide vi
typographical conventions ix
typographical conventions in this guide viii

U

ui_function, syntax 34

updates, documentation viii

W

What’s New in WinRunner help vi
WinRunner

context-sensitive help vi
online resources vi
sample tests vii

WinRunner Advanced Features User’s Guide
vi

WinRunner Basic Features User’s Guide vi
WinRunner Installation Guide vi
WinRunner Tutorial vi

	Mercury WinRunner Customization Guide
	Table of Contents

	Welcome to WinRunner Customization
	Using This Guide
	WinRunner Documentation Set
	Online Resources
	Documentation Updates
	Typographical Conventions

	Customizing GUI Checks
	Introduction
	Creating Custom GUI Checks for Standard Objects
	About Creating Custom GUI Checks for Standard Objects
	Creating a Capture Function
	Creating a Comparison Function
	Registering a New Property Check
	Associating a New Property Check with a GUI Object Class
	Modifying the Default Checks for a GUI Object Class

	Creating GUI Checks for Custom Objects
	About Creating GUI Checks for Custom Objects
	Adding a Custom GUI Object Class for Verification
	Defining a Custom Check for a Custom GUI Object Class

	Creating GUI Checks: Advanced Topics
	About Advanced Topics in Creating GUI Checks
	Adding a New GUI Object Class for Verification
	Creating Capture and Comparison Functions
	Registering the New Check
	Setting the Default Checks
	Implementing Advanced GUI Checking

	Customizing Recording
	Customizing Recorded Statements
	About Customizing Recorded Statements
	Understanding Custom Record Functions
	Developing a Custom Record Function
	Associating a Custom Record Function with a GUI Object Class
	Developing a Custom Execution Function
	Example of a Custom Record Function

	Adding Custom Properties for GUI Objects
	About Adding Custom Properties for GUI Objects
	Developing a Query Function for a Custom Property
	Developing a Verification Function for a Custom Property
	Registering a Custom Property
	Assigning a Custom Property to a GUI Object Class
	Example of a Custom Property Function

	Customizing Assigned Logical Names
	About Customizing Assigned Logical Names
	Understanding Logical Name Functions
	Developing a Logical Name Function
	Associating a Logical Name Function with a Custom GUI Object Class

	Using the WinRunner API
	The Mercury API Functions
	About API Functions
	MicFunctionProc
	mic_cp_from_string
	mic_cp_to_string
	mic_destroy_buf
	mic_destroy_string
	mic_get_object
	mic_init_buf
	mic_init_string
	mic_set_object

	Index

