
HP OpenView Select Identity

Connector Developer Guide

Software Version: 3.3.1
July 2005

© 2005 Hewlett-Packard Development Company, L.P.

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this document, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, performance, or use of
this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be
obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in
DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR
52.227-19(c)(1,2).

Copyright Notices

© 2005 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated into another language
without the prior written consent of Hewlett-Packard Company. The information contained in
this material is subject to change without notice.

This product includes software developed by the Apache Software Foundation (http://
www.apache.org/). Portions Copyright (c) 1999-2003 The Apache Software Foundation. All
rights reserved.

Select Identity uses software from the Apache Jakarta Project including:

• Commons-beanutils.

• Commons-collections.

• Commons-logging.

• Commons-digester.

• Commons-httpclient.
2

• Element Construction Set (ecs).

• Jakarta-poi.

• Jakarta-regexp.

• Logging Services (log4j).

Additional third party software used by Select Identity includes:

• JasperReports developed by SourceForge.

• iText (for JasperReports) developed by SourceForge.

• BeanShell.

• Xalan from the Apache XML Project.

• Xerces from the Apache XML Project.

• Java API for XML Processing from the Apache XML Project.

• SOAP developed by the Apache Software Foundation.

• JavaMail from SUN Reference Implementation.

• Java Secure Socket Extension (JSSE) from SUN Reference Implementation.

• Java Cryptography Extension (JCE) from SUN Reference Implementation.

• JavaBeans Activation Framework (JAF) from SUN Reference Implementation.

• OpenSPML Toolkit from OpenSPML.org.

• JGraph developed by JGraph.

• Hibernate from Hibernate.org.

• BouncyCastle engine for keystore management, bouncycastle.org.

This product includes software developed by Teodor Danciu http://
jasperreports.sourceforge.net). Portions Copyright (C) 2001-2004 Teodor Danciu
(teodord@users.sourceforge.net). All rights reserved.

Portions Copyright 1994-2004 Sun Microsystems, Inc. All Rights Reserved.

This product includes software developed by the Waveset Technologies, Inc.
(www.waveset.com). Portions Copyright © 2003 Waveset Technologies, Inc. 6034 West
Courtyard Drive, Suite 210, Austin, Texas 78730. All rights reserved.

Portions Copyright (c) 2001-2004, Gaudenz Alder. All rights reserved.
3

Trademark Notices

HP OpenView Select Identity is a trademark of Hewlett-Packard Development Company, L.P.

Microsoft, Windows, the Windows logo, and SQL Server are trademarks or registered
trademarks of Microsoft Corporation.

Sun™ workstation, Solaris Operating Environment™ software, SPARCstation™ 20 system,
Java technology, and Sun RPC are registered trademarks or trademarks of Sun
Microsystems, Inc. JavaScript is a trademark of Sun Microsystems, Inc., used under license
for technology invented and implemented by Netscape.

This product includes the Sun Java Runtime. This product includes code licensed from RSA
Security, Inc. Some portions licensed from IBM are available at http://oss.software.ibm.com/
icu4j/.

IBM, DB2 Universal Database, DB2, WebSphere, and the IBM logo are trademarks or
registered trademarks of International Business Machines Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group.

This product includes software provided by the World Wide Web Consortium. This software
includes xml-apis. Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts
Institute of Technology, Institute National de Recherche en Informatique et en Automatique,
Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the
United States, other countries, or both.

AMD and the AMD logo are trademarks of Advanced Micro Devices, Inc.

BEA and WebLogic are registered trademarks of BEA Systems, Inc.

VeriSign is a registered trademark of VeriSign, Inc. Copyright © 2001 VeriSign, Inc. All rights
reserved.

All other product names are the property of their respective trademark or service mark
holders and are hereby acknowledged.
4

Support

Please visit the HP OpenView web site at:

http://www.managementsoftware.hp.com/

This web site provides contact information and details about the products, services, and
support that HP OpenView offers.

You can also go directly to the support web site at:

http://support.openview.hp.com/

HP OpenView online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valuable support customer, you can benefit by using the support site to:

• Search for knowledge documents of interest

• Submit and track progress on support cases

• Manage a support contract

• Look up HP support contacts

• Review information about available services

• Enter discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and log in. Many
also require a support contract.

To find more information about access levels, go to:

http://support.openview.hp.com/access_level.jsp

To register for an HP Passport ID, go to:

https://passport2.hp.com/hpp/newuser.do
5

contents
Chapter 1 Introduction to Connectors . 8
Overview of Select Identity Connectors . 8
J2EE Connector Architecture (JCA) . 10
Development Phases. 10

Requirements Phase . 11
Design Phase . 13
Implementation . 15
Integration . 16
Packaging. 16
Documentation . 16

Product Documentation . 17

Chapter 2 Implementing a Connector. 19
Requirements . 22
Overview of the Select Identity Connector API . 24
Understanding the Resource Schema . 26
Gathering Connector Parameters . 27
Coding the Connector . 30

Interface, Class, and Method Implementations. 31
JCA Interfaces . 31
Select Identity Connector API Interfaces and Classes 32

Implementation of Reverse Synchronization. 44
SPML Request Examples . 47
XSL File for Parsing Reverse Synchronization SPML. 53

JNDI Registration of the Parameter Factory Implementation. 65
Mapping Select Identity Attributes to the Resource Schema 66
6

Contents
General Attribute Information . 67
Creating a Mapping File . 72

Installing a Connector . 75
On WebLogic . 75
On WebSphere . 76

Configuring a Connector in Select Identity. 77
Testing a Connector . 78

Chapter 3 LDAP Connector Example . 80
Description of the Connector Source Files . 81
Description of the Build Files . 85

Chapter 4 Dummy Connector Example . 87

Glossary. 91

Index . 100
7

1

Introduction to Connectors
HP OpenView Select Identity enables you to connect to enterprise
applications and resources to configure and manage users, groups, and
entitlements in those systems. The component that enables Select Identity to
access a resource is called a connector.

Overview of Select Identity Connectors

Select Identity supports two types of connectors:

• A one-way connector initiates communication with a resource. If a
resource is supported by a one-way connector, provisioning operations
initiated in Select Identity are synchronized with the resource through the
connector. The following diagram illustrates the flow of data:
8

Chapter 1
The connector resides on the Select Identity server and sends requests to
the resource. The resource defines the protocol that must be used by the
connector to issue the request. To create a one-way connector, you must
create the connector and install it on the Select Identity server.

• A two-way connector comprises the connector that resides on the Select
Identity server and an agent that resides on the resource. The connector
communicates with the agent and the agent executes the provisioning
operations. The agent also listens for changes on the host resource and
sends synchronization notifications to Select Identity. Thus, a two-way
connector enables data to flow in two directions, as illustrated in the
following diagram, and changes to users can occur on either system.

The connector must issue a request according to the resource’s
specifications. When the agent issues a request to Select Identity’s Web
Service, it must use the SOAP protocol to send an SPML payload over
HTTP or HTTPS.

The advantages of a two-way connector are as follows:

— Improved security — Some resources provide no secure transport and
some systems do not encrypt passwords. With a two-way connector,
HTTPS can be used to secure communications from the resource to
Select Identity.

— Availability — If Select Identity becomes unavailable, you can
configure the agent to retry failed requests sent to the server once the
server is available again.

— Change detection and reverse synchronization — Many resources do
not have a mechanism to easily detect changes and update the
resource or a central management system. An agent can detect
9

Chapter 1
changes made on the resource and securely propagate them to the
Select Identity server.

J2EE Connector Architecture (JCA)

Creating a Select Identity connector entails building a J2EE Connector
architecture (JCA) resource adapter. JCA provides a Java solution to the
problem of connectivity between application servers and enterprise
information systems (EISs). This architecture is based on technologies that
are defined and standardized as part of the Java 2 Platform, Enterprise
Edition (J2EE).

For a general overview of JCA, refer to the following page:

http://java.sun.com/j2ee/white/connector.html

You can download the specification from the following page:

http://java.sun.com/j2ee/connector/download.html

Note that Select Identity implements only the Connector Management portion
of the JCA specification. You can also refer to the following URL if you are
creating a WebLogic connector:

http://e-docs.bea.com/wls/docs81/jconnector/index.html

You must have an understanding of the Java Developer Kit (JDK), version
1.4, and you should be familiar with the JCA, version 1.0. In addition, Select
Identity has provided a Connector API that is used in conjunction with JCA to
create connectors. For information about the J2EE APIs, including those for
connectors, refer to http://java.sun.com/j2ee/1.4/docs/api/index.html.

Development Phases

This section outlines the steps that are typically involved in the development
of a connector. It is strongly recommended that you take the time to address
each phase and plan for the connector’s development carefully.
10

Chapter 1
Requirements Phase

Ensure that the resource supports a mechanism for user provisioning by
external clients, in a secure and reliable manner. You must have an
understanding of the underlying resource, including knowledge of the
resource’s tools and administration API. You may also need to obtain an
administrative account that has privileges to provision.

Collect requirements for development, as follows:

1 Determine the requirements based on the resource system.

— What identity information will be provisioned (users or other objects)?

— What are the entitlements supported by the resource? Typically,
resources support groups (groups or users), roles, access control levels
(ACLs), privileges, and so on.

— What are the supported attributes of the identity object based on the
schema in the resource?

— How is the schema retrieved from the resource?

— How is the identity object addressed on the resource? This could be a
DN (for LDAP-type of resources), an SSN,a user ID, hierarchical
naming, and so on. This will be used as the primary key to address the
identity object.

— How does the resource application support connectivity for external
systems to provision identity information? This might mean accessing
the system through API calls, RMI, JMS, a Web Service, a CLI such as
telnet, ssh, and so on.

— If the resource already supports a connector interface, how can you
develop the Select Identity connector leveraging the existing
connector?

— Does the resource support an SDK or a development toolkit for
administration, which might include JAR files or libraries for making
calls to access and provision information?

— Are there security requirements to consider? Is SSL or any
proprietary encryption/decryption information required between the
connector and the resource?
11

Chapter 1
— What are the performance requirements? How many objects can the
resource support? How may entitlements? How many users can the
connector create, read, update, or delete in a second, minute, or hour?

— What are the scalability requirements? How many connections does it
support? Can the same connector support similar resources through
configuration support for transactions?

— Does the resource support synchronous or asynchronous connectivity?
It is possible that the resource cannot finish provisioning immediately
and might finish the job at a later time. How does the connector know
when the resource operation is done and how does it handle the
response from the resource?

— Is the connector required to maintain state? If so, what is the required
schema?

2 Determine access requirements for the resource.

— What are the addressing parameters such as TCP/IP address, port
number, URL,and secure IDs?

— Is there authentication information (user ID and password)?

— Are there secure channel parameters?

— Does the connection pass through a proxy server or a firewall? If so,
what are the parameters involved?

3 Determine the requirements for error reporting.

— What errors are supported by the resource?

— What kind of exceptions are reported to Select Identity?

— What kind of errors in the resource are reported to Select Identity?

— What are the recoverable and non-recoverable exceptions?

4 Determine the requirements for reverse synchronization.

— What changes to identity objects on the resource must be
synchronized with Select Identity. For example, if a user's password or
address changes on the resource, is there a requirement that Select
Identity should be notified about this?

— How often do changes occur? Are they done in real time or as a batch
job at the end of the day?
12

Chapter 1
— How is information obtained from the resource? The resource might
support an audit log of all changes on the resource, or it might support
a log of all events that are triggered by someone like an administrator.
How is this information retrieved from the resource? Should the
connector support a pull model or a push model?

5 Detemine the requirements for child transactions.

— Is an operation invoked on the resource that might trigger child
operations within the resource?

— How should the connector notify Select Identity of the status of child
operations?

— What status information about child operations should be reported to
Select Identity?

— Is the operation is “atomic” or a “best-effort?”

— How does the connector determine when the operation is done?

— Does the resource automatically rollback all previous successful child
operations if one child operation fails?

6 Determine requirements for the policies supported by the resource.

— What are the policies for the identity objects? For example, the
primary key of the identity object must be obtained from another
external system.

— What are the attribute policies? For example, password policy might
restrict in the size, content (maximum lenght, minimum length,
maximum number of alphabetic characters, minimum number of
numeric charactrs, and so on), encryption (one-way or two-way), and
so on. What are the limitations on attribute size, masking, and other
parameters?

Design Phase

Design the connector you will implement following these guidelines:

1 Provide a high-level design of the approach taken for the provisioning
process. Provide the following:

— Mapping of functionality to be supported by the connector to the
functionality supported by the resource.
13

Chapter 1
— Mapping of the Select Identity schema to the schema (attribute
information) supported by the resource. This is also referred to as the
forward mapping.

— The Connector API methods that are supported by the connector
implementation.

— Reverse mapping of the attribute information at the time of reverse
synchronization.

— How the implementation solves the cyclic update problem. For
example, a change in object's information triggers an update on the
resource, which might in turn trigger a reverse synchronization with
Select Identity for the same object, and vice-versa.

— Use of the JCA framework in the design. Define how the connector
makes use of the framework to address some of the requirements.

— Resource product version. Provide any functionality changes between
versions of the resource application.

2 Provide information about how to address the various requirements:
synchronous versus asynchronous processing, scalability, performance,
security, and so on.

— Can the connector handle a large number of identity objects, such as
users?

— Can it handle large number of entitlements? Is caching, paging, batch
loading, or file loading is used by the connector?

— Can it handle large number of resources?

3 Define whether the connector is agent-based or agent-less.

— Agent-based requires that an agent is installed on the resource with
which the connector implementation interacts. The agent in turn
interacts with the resource or the operating system. Reverse
synchronization is generally possible with an agent-based solution. On
the other hand, an agent-based implementation requires an
installation effort and administration on the resource system.

— An agent-less connector requires complete out-of-box support for all
provisioning operations by the resource or through an SDK.

— Address the advantages and disadvantages for both solutions.
14

Chapter 1
Implementation

Specific information about how to implement the JCA and Connector API
methods is provided in Interface, Class, and Method Implementations on
page 31. This procedure provides a general overview.

1 Start with a sample application that can provision identity objects and
perform entitlement assignment s on the identity objects in the resource.

2 Implement all of the required Select Identity Connector methods to create,
read, update, and identity objects, leveraging the sample application.

— The main interface to implement is TAConnector interface.

— Implement the connector parameter factory, which creates instances
of connection parameter beans.

3 Implement all entitlement association and dissociation methods.

4 Implement all required interfaces in the JCA CCI framework, which
enables the connector as a Resource Adapter.

5 If necessary, implement an agent to run on the resource machine.

6 Implement a secure way of communication between the connector and
resource, and vice versa. If necessary, use certificates.

7 Implement modules to send SOAP messages containing SPML to the
Select Identity Web Service for reverse synchronization (password
synchronization and identity object reverse synchronization).

8 If necessary, install the EJB driver for unit testing the connector.

9 If necessary, install the client driver for testing the connector.

10 Use IDEs for the development and ANT for build tools.

11 Use the JDK, J2EE, and third-party libraries for further development.

12 Implement junit test cases.
15

Chapter 1
Integration

Verify the connector’s integration with Select Identity as follows:

1 Verify that Select Identity is loading and using the connector as a resource
adapter to communicate with the new resource.

2 Create a Service that uses this resource.

3 Provision users in the Service, verifying that they are successfully created
in the resource.

4 Associate and disassociate entitlements with users.

5 Verify integration with the Select Identity Web Service for user
provisioning through SPML payloads.

Packaging

Detailed information about packaging the connector is described in Coding the
Connector on page 30. This provides a general overview:

1 Include all libraries required by the connector in a RAR file.

2 Test the client for unit testing.

3 Determine any schema information (ddl, dml) needed by the connector.

4 Obtain all third-party software licenses and their installation procedures.

Documentation

For future maintenance and distribution, compile the following information
about the connector:

• Detailed documentation on the requirements and design

• User guides

• Configuration guides

• Functionality mapping document

• Schema (or attribute) mapping document

• Installation guides, for agent-less and agent-based solutions
16

Chapter 1
• Javadoc

• Documentation of encryption/decryption used, port numbers of agent, size
of agent foot print, and so on

• Requirements on the system administrator to install the agent on the
resource

• Administration documents

Product Documentation

The Select Identity product documentation includes the following:

• Release notes are provided in the top-level directory of the HP OpenView
Select Identity CD. This document provides important information about
new features included in this release, known defects and limitations, and
special usage information that you should be familiar with before using
the product.

• For installation and configuration information, refer to the HP OpenView
Select Identity Installation and Configuration Guide. All installation
prerequisites, system requirements, and procedures are explained in
detail in this guide. Specific product configuration and logging settings are
included. This guide also includes uninstall and troubleshooting
information.

• An HP OpenView Connector Installation and Configuration Guide is
provided for each resource connector. These are located on the Select
Identity Connector CD.

• The HP OpenView Select Identity Attribute Mapping Utility User’s Guide
describes how to access the Attribute Mapping Utility, provides an
overview to the utility’s user interface, and describes how to define user
and entitlements mappings. This guide is provided on the Select Identity
Connector CD and is for use with the SQL and SQL Admin connectors
only.

• Detailed procedures for deployment and system management are
documented in the HP OpenView Select Identity Administrator Guide and
Select Identity online help system. This guide provides detailed concepts
17

Chapter 1
and procedures for deploying and configuring the Select Identity system.
In the online help system, tasks are grouped by the administrative
functions that govern them.

• The HP OpenView Select Identity Workflow Studio Guide provides
detailed information about using Workflow Studio to create workflow
templates. It also describes how to create reports that enable managers
and approvers to check the status of account activities.

• The HP OpenView Select Identity External Call Developer Guide provides
detailed information about creating calls to third-party applications.
These calls can then be deployed in Select Identity to constrain attribute
values or facilitate workflow processes. In addition, JavaDoc is provided
for this API. To view this help, extract the javadoc.jar file in the docs/
api_help/external_calls/Javadoc directory on the HP OpenView
Select Identity CD.

• If you need to develop connectors, which enable you to connect to external
systems for provisioning, refer to the HP OpenView Select Identity
Connector Developer Guide. This document provides an overview of the
Connector API and the steps required to build a connector. The audience
of this guide is developers familiar with Java.

JavaDoc is also provided for the Connector API. To view this help, extract
the javadoc.jar file in the docs/api_help/connectors/Javadoc
directory on the HP OpenView Select Identity CD.

• The HP OpenView Select Identity Web Service Developer Guide describes
the Web Service, which enables you to programmatically provision users
in Select Identity. This guide provides an overview of the operations you
can perform through use of the Web Service, including SPML examples for
each operation.

An independent, web-based help system is available for this API. To view
this help, double-click the index.htm file in the docs/api_help/
web_service/help directory on the HP OpenView Select Identity CD.
18

2

Implementing a Connector
To implement a connector, follow this general procedure. Details are provided
in subsequent sections of this chapter. You may also find it useful to refer to
LDAP Connector Example on page 80 or Dummy Connector Example on
page 87 for an overview of those connectors.

1 If you have not done so, review Development Phases on page 10 in
preparation for this procedure. Also, refer to Requirements on page 22 for
a list of tools and information necessary to implement a connector, and
refer to Overview of the Select Identity Connector API on page 24 to
understand the packages provided by Select Identity.

2 Gather the parameters needed to code the connector and create the
properties filesbefore building it. See Gathering Connector Parameters on
page 27 for more information.

3 Code the Java classes and implement the interfaces that will comprise the
connector. See Coding the Connector on page 30 for details.

4 Create a mapping file that maps each attribute on the physical resource to
an attribute on the connector. See Understanding the Resource Schema on
page 26 and Creating a Mapping File on page 72 before creating the file.

To support a connector on a non-US resource, an internationalized resource
provider interface must be available. Thus, support for internationalization is
provided by the resource, not the connector.
19

Chapter 2
5 Build the connector. Select Identity provides all of the base classes you
need to build a connector in a file named clientintf.jar, which resides
on the Select Identity CD. Use the contents of this file to build your
connector. See Description of the Build Files on page 85 for a listing of
build files created to build the LDAP connector.

Also, the Dummy Connector example provides build files: build.xml
and build_rar.xml. It also provides a properties file called
build.properties. You can edit these files to match your build
environment, which requires you to find out where all the required JAR
files are located. The outcome of the build are these files:

— RAR file — The resource adapter archive that is packaged in a file
named MyResourceConnector.rar. It contains the complete code of
the connector along with the connection parameter information.

— Schema JAR file — Includes the schema XML mapping file.

6 Two-way connector only
Code the file(s) that will comprise the agent. The resource type will dictate
the programming language and APIs you use. Typically, if the agent is
made up of multiple files, the files are bundled in a file called
connectorAgent.zip for Windows and connectorAgent.tar.gz for
UNIX. If an installer is also provided (for Windows), the files are bundled
in a file called connectorSetup.zip.

When the agent sends data to the Select Identity server, it must send a
Service Provisioning Markup Language (SPML) compliant message. It
must also send the data using SOAP. Refer to the Web Service help and
guide for more information about the SPML-compliant message.

7 Define the deployment descriptor by creating an XML file called ra.xml.
This file contains deployment specific information; you must specify the
interface class names and implementation class names of the connector
here. Here is an example of the "resourceadapter" section of the descriptor
taken from LDAP connector:

<resourceadapter>
<managedconnectionfactory-class>com.trulogica.truaccess.
 connector.ldap.ldapv3.LDAPManagedConnectionFactory
</managedconnectionfactory-class>
<connectionfactory-interface>com.trulogica.truaccess.
 connector.TAConnectorFactory
</connectionfactory-interface>
<connectionfactory-impl-class>com.trulogica.truaccess.
 connector.ldap.ldapv3.LDAPConnectorFactory
</connectionfactory-impl-class>
20

Chapter 2
<connection-interface>com.trulogica.truaccess.connector.
 TAConnector
</connection-interface>
<connection-impl-class>com.trulogica.truaccess.connector.ldap.
 ldapv3.LDAPConnector
</connection-impl-class>
<transaction-support>NoTransaction</transaction-support>
<reauthentication-support>false</reauthentication-support>

</resourceadapter>

Create this XML file according to the JCA specification.

8 If deploying the connector on WebLogic, create the WebLogic-specific
deployment descriptor by creating a file called weblogic-ra.xml. You
must register the JNDI name for the connector (eis/connector) here.
The following is an example:

<weblogic-connection-factory-dd>
<connection-factory-name>

LDAPConnectorFactory
</connection-factory-name>
<jndi-name>eis/LDAPv3</jndi-name>
<pool-params>

<initial-capacity>0</initial-capacity>
</pool-params>

</weblogic-connection-factory-dd>

9 If deploying the connector on WebSphere, create the Manifest.mf file
that includes details on the classpath, which references all of the JAR files
used by the connector. The following is an example script that creates the
Manifest.mf file:

<jar basedir="${class.dir}" destfile="${class.dir}/
_connectorModule.jar" includes="META-INF" >

<metainf dir="${basedir}/META-INF">
<include name="*.xml"/>

</metainf>
<manifest >

<attribute name="Built-by" value="${user.name}" />
<attribute name="Class-Path" value="${depend.jars}" />
<section name="${connector.name}">

<attribute name="Implementation-Version"
 value="${connector.version} ${env.DATE}"/>

</section>
</manifest>

</jar>
21

Chapter 2
10 If deploying on WebSphere, create a file called _connectorModule.jar
that contains the ra.xml and Manifest.mf files.

11 Bundle all other files in a RAR file called connector.rar ,as follows:

— If deploying on WebLogic:
Bundle all connector class files, library JAR files, the ra.xml file, and
the weblogic-ra.xml file in the RAR file.

— If deploying on WebSphere:
Bundle all connector class files, library JAR files, and the
_connectorModule.jar file in the RAR file.

After completing these steps, typically the following files will be available for
deployment:

• connector.rar — Contains the resource adapter (connector binary files)

• connectorschema.jar — Contains the mapping file(s)

• connectorAgent.zip or connectorSetup.zip — Contains the agent
files, if an agent is created

You can then install the connector on the Select Identity server. See Installing
a Connector on page 75 for general steps; specific details will depend on how
the connector was implemented. Then, deploy the connector in Select Identity,
using the Select Identity console, as described in Configuring a Connector in
Select Identity on page 77. Finally, to verify that the connector is installed
correctly and connect to the resource, see Testing a Connector on page 78.

Requirements

You must have an understanding of the Java Developer Kit (JDK), version
1.4, and be familiar with the JCA, version 1.0. In addition, Select Identity
provides a Connector API that is used with JCA to create connectors. You can
download the JCA specification from the following page:

http://java.sun.com/j2ee/connector/download.html

Also, refer to http://e-docs.bea.com/wls/docs81/jconnector/index.html if
you are creating a WebLogic connector:

For information about the J2EE APIs, including those for connectors, refer to
http://java.sun.com/j2ee/1.4/docs/api/index.html.
22

Chapter 2
When implementing a connector using the J2EE Connector APIs and the APIs
described here, it is expected that the operations on the connector instances
are called within transactions and from multiple threads. Also, the connectors
must implement adequate synchronization to prevent data corruption.

For the development environment, the following tools are necessary:

• Java Integrated Development Environment (IDE) — Any Java IDE
supporting JDK 1.4.1 or later, such as Eclipse 3.0, is required.

• Build tool — It is recommended that you use Apache Ant 1.6 or later.

The following is a list of the required library JAR files (packages) that are
used in the development process:

• Provided by Select Identity:

— connector.jar — The Select Identity connector interface

— genConnectorImpl.jar — Generic implementation of the JCA part
of the connector and the TAConnector interface

— utils-log.jar — Utility classes

— connectorimpl.jar — Select Identity connector user model classes

• External packages:

— jakarta-regexp-1.2.jar

— commons-beanutils.jar

— commons-collections.jar

— commons-logging.jar
23

Chapter 2
Overview of the Select Identity Connector API

The following diagram illustrates the Select Identity API architecture,
showing the relationship of the Connector API to Select Identity and the other
APIs:

The following classes and interfaces are provided by the Connector API.
Online help (Javadoc) is provided for this API on the Select Identity CD, in the
docs/api_help/connectors/Javadoc directory:

• EntitySupport

Defines the actions that can be performed on an entity, which is an object
that is managed by Select Identity, such as a user, group, role, or stage.

• GroupModel

Represents an entitlement on a resource.

• RelationSupport

Specifies an association between identity object types, such as between a
user and entitlement and vice versa.
24

Chapter 2
• TAConnector or SIConnectorInterface

TAConnector is the top-level interface that maps identity information to a
resource type. This is a generic connector interface that extends the JCA
CCI Connection interface.

SIConnectorInterface also maps identity information to a resource type,
but it also helps you focus on the efforts involved in provisioning to the
resource while avoiding the details of JCA and the Select Identity user
model.

• TAConnectorFactory

Creates instances of connections handles for resources. The connection
handle is an implementation of TAConnector.

• TAConnectorParamBean

Describes a configuration parameter needed by the connector. Examples
of such parameters include URLs or configuration parameters like wait
time. Select Identity retrieves a list of these beans to create a user
interface to obtain values from the user.

• TAConnectorParameterFactory

Obtains connection-specific beans that contain connection parameter
values.

• TAConnectorParamValueBean

An abstract class that represents the connection parameter values needed
to establish a connection to a resource. It also contains all parameters
needed to access the resource for user provisioning.

• TAFilter

Enables you to issue search requests.

• UserEntitySupport

Shows the level of support for user objects in the repository. In addition to
supporting create, read, update, and delete tasks, UserEntitySupport
specifies whether the password can be reset or changed in the resource.

• UserModel

The interface of a class that contains information about the user that is
being provisioned in or retrieved from a resource. All connectors must
create a class that implements this interface.
25

Chapter 2
Understanding the Resource Schema

The basic assumption is that the target resource for which you are building
the connector supports users (or accounts). It may also support entitlements,
which are the privileges or roles that can be assigned or unassigned to and
from users. A “schema” refers to the definition of the users and their
attributes and entitlements on the resource.

Before building the connector, you must determine what user attributes and
entitlements are supported on on the resource. A user is defined by a set of
attributes. For example, a user may be assigned an ID, an email address, a
password, a physical (home or office) address, a social security number, an
employee number, and so on. The resource may support and store attributes
in one of many ways. Here are some examples:

• Physical attributes — The resource may support physical attributes that
can be set with values. Resources that support physical attributes include
LDAP servers and SQL databases. In this case, connector can directly
assign the Select Identity attribute value to the resource attribute value.

• An abstraction of attributes — Some resources do not support physical
attributes, such as UNIX and Windows systems. For these resources, the
connector can define an intermediate attribute that is used to store the
values defined by Select Identity.

• API — The resource may support an API to perform provisioning
operations. Such resources include IBM Tivoli Access Manager and
Netegrity SiteMinder. In this case, the connector must call the
appropriate API method and pass the attribute value to the method.

“Entitlements” are defined as anything that can be assigned or unassigned to
or from a user, and the result of this process authorizes or unauthorizes the
user to perform certain operations on the resource. For example, if the
Administrators entitlement is assigned to a user, the user has all the power on
the system. You must determine if the resource supports entitlements.
26

Chapter 2
Gathering Connector Parameters

Gather the following connector parameters before coding the connector. In
particular, you will need some of the values if you implement the
SIConnectorInterface interface. You must also create several properties files
before building the connector. Collect the following parameters:

• Connection parameters — These parameters are required to establish a
connection and perform all provisioning operations on the resource. Store
these parameters in the MyResourceParamResources.properties file
along with the following details about each connection parameter:

— Name — Name of the parameter

— displayName — Display name of the connection parameter

— defaultValue — Default value of the parameter

— helpString — Help text for the parameter that is displayed on the
Select Identity console

— minLength — Minimim length of the value of this parameter

— maxLength — Maximum length of the value

— pattern — Regular expression of the value pattern

— required — Whether this parameter is required; specify true or false

— tipString — Not used currently

— type — The parameter type (typically java.lang.String)

— encryptValue — Whether the value is encrypted; this is typically set
to true for password parameters and false for all others

Here is an example of the file:

hostName-displayName=Host
hostName-defaultValue=16.73.17.100
hostName-helpString=Host name or IP address of the server
hostName-minLength=1
hostName-maxLength=255
hostName-pattern=[.]+
hostName-required=true
hostName-tipString=Host name/IP of the Server
hostName-type=java.lang.String
hostName-encryptValue=false
27

Chapter 2
• Resource adapter parameters — These parameters define the properties
of the JCA resource adapter. This information is stored in a file called
ra.xml that is packaged as part of the RAR, which is the deployment
descriptor of the connector being developed. Here are some of the
parameters:

— display-name — Display name of the connector

— vendor-name — Name of the developer of this connector

— spec-version — Version of the JCA specification (should be 1.0)

— eis-type — Type of the resource

— version — Resource version

— Configuration properties — Some of the properties are fixed, as in the
sample ra.xml file. The following are the configuration properties
that must be changed:

– pfJndiName — The JNDI name of the connector parameter
factory, which is usually derived from the name of the connector,
prefixed with eis/, and suffixed with -ParamFactory, as in this
example:
eis/MyResourceConnector-ParamFactory

– conImplClsName — The name of the class that implements
SIConnectorInterface, such as x.y.z.MyResourceConnector
(this implies there is a file called MyResourceConnector.java
implementing the interface); also, see DummyConnector.java
that is provided in the Dummy Connector code example

– paramResFileName — The name of the file that stores the
connection parameters, such as
x.y.z.MyResourceParamResources.properties; for an
example, see com/hp/ovsi/connector/dummy/
DummyParamResources.properties provided with the Dummy
Connector example

– jndi-name — The JNDI name of the connector factory, such as eis/
MyResourceConnector; make sure this is the same as the first part
of the value of the pfJndiName property

Edit the META-INF/ra.xml file provided in the ZIP file in the
docs/api_help/connectors/dummyConnector directory on
the Select Identity CD and change the following parameters. Let
the others remain the same.
28

Chapter 2
Here is a snapshot of an example ra.xml file:

You can also refer to the weblogic-ra.xml file that contains information
about the Dummy Connector if it is deployed in BEA WebLogic
application server. Here is a snapshot of this file:

29

Chapter 2
Coding the Connector

Code the Java classes and implement the interfaces that will comprise the
connector. This entails implementing JCA and Select Identity Connector
APIs. You must also register the parameter factory implementation with
JNDI. See Interface, Class, and Method Implementations on page 31 for
details.

If you are implementing a one-way connector (no agent), it may be possible to
code a change detection utility that will track changes made on the resource,
create a “differences” file that contains the changed data, and send the file to
the Select Identity server. The ability to create this utility is dependant on the
tools available on the resource. A code example is provided in the ZIP file in
the docs/api_help/connectors/LDAPv3_v3 directory on the Select
Identity CD. When unzipped, the source resides in the com/trulogica/
truaccess/agent directory. This change detection utility is provided for the
iPlanet LDAP connector.

If you are implementing a two-way connector, see Implementation of Reverse
Synchronization on page 44 for information about implementing reverse
synchronization.
30

Chapter 2
Interface, Class, and Method Implementations

The following illustrates the connector architecture and the relationship
between connector classes, Select Identity, and the resource:

The following provides guidelines that you must follow when coding the
connector.

JCA Interfaces

Implement the JCA interfaces; refer to the J2EE specification for details.
Connectors must support both local and distributed transaction protocols. If a
resource does not support transactions, the adapter must record transactions
so that compensating transactions can be applied on rollback. Regarding
security, JAAS is used to authenticate inbound communication.

Here are the interfaces you must implement:

• java.resource.cci.Connector extended by TAConnector

• javax.resource.spi.ManagedConnection

• javax.resource.spi.ManagedConnectionFactory (implement only one
instance of this interface)

• javax.resource.spi.ManagedConnectionMetaData
31

Chapter 2
Select Identity Connector API Interfaces and Classes

Implement the following Select Identity Connector API interfaces and classes.
Refer to the API online help (on the Select Identity CD, in the docs/
api_help/connectors/Javadoc directory) for more information.

• TAConnector interface — the main interface to implement. Select Identity
calls on the methods in this interface to perform provisioning operations.
In particular, you must implement these methods:

Method Comment

add(UserModel) To implement: Build attributes by
taking the values from UserModel and
creating a user on the resource.

Consider that the user may exist on the
resource, such as if the user exists in
another Service using the same resource
or if the user was created by an
application other than Select Identity.
Thus, if the user exists, modify the user
(for example, using update(UserModel))
and return the user ID to Select Identity,
as you would for a successful add request.

After a succesfully adding the user, set
the key field value by calling
UserModel.setUserId(). Also, you can call
UserModel.set() to return user attributes
to Select Identity after the connector sets
them on the resource.

Usage: add(UserModel) is called to
provision a new user on the resource.

changePassword(UserModel) To implement: Use the new password in
UserModel to update the password on the
resource.

Usage: This method is called to change a
user's password.

expirePassword(UserModel,
Boolean)

Usage: This method expires a password
for the specified user.
32

Chapter 2
get(UserModel) To implement: The connector should
construct the key field value of the user
on the resource and check the existence of
user in the resource.

If the user does not exist in the resource,
the connector should throw
ObjectNotFoundException.

Usage: This method is called to verify the
existence of user in the resource.

getGroupAttributes() To implement: The implementation can
return one attribute to represent the ID of
the entitlement.

Usage: This method must return the
schema supported by the resource for
group and entitlement provisioning.

getGroups() To implement: Return all entitlements
in the resource without using the filter
(same as getGroups(TAFilter)).

getGroups(TAFilter) To implement: Build and return a set of
Strings that identify the entitlement.
Using TAFilter, you can filter out the list
returned.

Usage: This is called by Select Identity to
get a list of all entitlements on the
resource. TAFilter is used to filter out the
entitlements retrieved from the resouce
and is passed in from the filter.

Method Comment
33

Chapter 2
getUserAttributes() To implement: Return a list of
TAConnectorParamBean instances that
contain details about each attribute
supported by the connector. These
attributes are the Select Identity resource
attributes, not the attributes on the
physical resource. The mapping between
the Select Identity resource attributes
and the physical resource attributes is
done by the connector. For example, the
LDAP connector uses an XML mapping
file to map attributes. In the mapping file,
"tafield" is the Select Identity resource
attribute and "resfield" is the physical
resource attribute.

Usage: Select Identity calls this method
to get the schema supported by the
connector for the user object.

isPasswordValid(password) To implement: Check the validity of the
password on the resource.

Usage: This method is called before
adding a new user or resetting the
password of an existing user.

isSupported(entity1) To implement: Return the support for
UserModel and GroupModel. GroupModel
is a generic container that represents any
type of entitlement on the resource.
Examples include user groups, access
control levels, privileges, roles, and so on.

Usage: This method is called on the
connector to get the level of support for
the object.

isSupported(entity1, entity2) Usage: This method is called to get the
level of support for the association of
entitlements to users.

Method Comment
34

Chapter 2
link(UserModel,
GroupModel)

To implement: Select Identity first
makes a call to getGroups(TAFilter) to get
a list of all entitlements on the resource.
Then, GroupModel passed in references to
the entitlements returned by getGroups().
Call getGroupId() to identify the
entitlement and use it as the key to
associate a user with the entitlement on
the resource.

You can also call UserModel.set() to
return attributes to Select Identity after
the connector sets them on the resource.

When adding entitlements to a user on a
resource, consider that the user may have
the entitlement you are attempting to
add, such as if another Service added the
entitlement. Thus, if the entitlement
exists, do not throw an exception.

Usage: This method is used to assign
entitlements to an existing user. Select
Identity calls this method once for each
entitlement to be assigned.

remove(UserModel) To implement: Delete the user account
on the resource.

When removing a user from a resource,
consider that the user have been removed
by another Service or application. Thus, if
the user has been removed, do not throw
an exception.

Usage: Call this method to remove a user
from a resource.

resetPassword(UserModel) To implement: Use the new password in
UserModel to update the password on the
resource.

Usage: Call this to reset a user password.

Method Comment
35

Chapter 2
setStatus(UserModel, int) To implement: Depending on the
resource support that is appropriate, the
implementation could disable or enable
the user on the resource. For example, on
a resource that does not support this
feature, you can set an attribute to reflect
that the user is disabled or enabled.

Also, you can call UserModel.set() to
return user attributes to Select Identity
after the connector sets them on the
resource.

If the connector implementation does not
support this operation, throw
NotImplementedException. When the
connector throws this exception, Select
Identity will call back on the connector to
add or delete all of the entitlements on
the user (using the link or unlink
methods). This feature is provided to
support those resources where the
meaning of disable or enable is to remove
or add entitlements of the user,
respectively.

Usage: This method is called when user
is being disabled or enabled for all
Services.

Method Comment
36

Chapter 2
test() To implement: This method tests the
connectivity of the physical resource
using the connection parameter values in
TAConnectorParamValueBean. This
method can also implement the logic that
validates the connection parameters.

Usage: Select Identity calls this method
on the connector when a new resource is
deployed or an existing resource is
modified. Select Identityexpects the
connector to verify connectivity with the
resource and validate the connection
parameters.

unlink(UserModel,
GroupModel)

To implement: Disassociate the user
from the entitlement referred to by
GroupModel.getGroupId(). You can also
call UserModel.set() to return user
attributes to Select Identity after the
connector sets them on the resource.

When removing entitlements from a user
on a resource, consider that the
entitlement may have been removed by
another Service or application. Thus, if
the entitlement does not exist, do not
throw an exception.

Usage: This is called when a user's
Service membership is modified or when
user is disabled for a given Service.

update(UserModel) To implement: Update the attributes of
the user on the resource. You can also call
UserModel.set() to return user attributes
to Select Identity after the connector sets
them on the resource.

Usage: This method is called to update
the attributes of a user. Select Identity
sends all attributes of the user.

Method Comment
37

Chapter 2
• SIConnectorInterface interface — Instead of implementing TAConnector,
you can implement SIConnectorInterface. If you implement this interface,
Select Identity calls on the methods in this interface to perform
provisioning operations. In particular, you must implement these method.

Method Comment

setBean(TAConnectorParam
ValueBean)

Stores all the connection parameters and
their values. This method must save this
bean for use during the other methods.

openSession() Keeps a session open with the resource,
which can then be put in this instance.

closeSession() Closes the session, if opened earlier.

setSchema(TASchema) Copies of the XML mapping schema.

doTest() Uses the connection parameter
information in
TAConnectorParamValueBean to check if
the resource is up and accessible. It also
validates the connection parameters. This
is called when the resource is deployed in
Select Identity and the Test and Submit
button is clicked. It is also called when
the resource is modified.
38

Chapter 2
createUser (keyField,
keyValue, attrList)

Creates a new user in Select Identity.
keyField refers to the concero:resfield
value in the mapping file that has the
concero:isKey set to "true". keyValue is
the value of the above keyField. attrList
contains a name/value pair attribute
information to be pushed when a user is
created.
Only mappings in the mapping file that
are marked with concero:init="true" will
be part of attrList. Use the keyValue and
the attributes to create a new user in
resource. If the user exists, catch the
appropriate exception and perform the
modify operation by calling the
updateUser() method.
The identifier of the user in the resource
may be derived from one or more of the
attribute values passed or the resource
may return the actual ID of the user. This
must be returned at the end of this
method. Successive calls on the connector
will have this as the keyValue.

isUserExists (keyField,
keyValue, keyExistsFlg)

Verifies if the user exists. This is called
when Select Identity wants to check if a
user exists in the resource. Use the
keyValue to see if the user is exists.
keyExistsFlg will be false if this is called
for the first time on a new user. If this is
not the first time, this flag will be true.

findUser (keyField,
keyValue, attrList,
keyExistsFlg)

Gets the details of the user from the
resource and populates all attributes in
the attrList map.

Method Comment
39

Chapter 2
updateUser (keyField,
keyValue, attrList)

Updates the user's attributes in the
resource with the new ones given in the
attrList map. Select Identity passes all
user attributes, even if they are not
changed. Therefore, make sure you
handle any errors thrown by the resource
if replacing with the same value.

deleteUser (keyField,
keyValue)

Deletes a user.

setUserStatus (keyField,
keyValue, attrList, status)

Sets the user’s status. This is called when
all Services are disabled or enabled for a
user in Select Identity. Use the keyField
and keyValue to disable or enable the
user. This might mean different things on
different resources; it might mean
blocking the user from access,
temporarily terminating his account, and
so on.

isPasswordValid (passwd) Validates a password.

expirePassword(keyField,
keyValue, flg)

Expires the user's password if flg is true
and unexpire on false. Expiring a
password might mean that the user will
not be able to use his existing password to
access the resource.

resetPassword(keyField,
keyValue, passwd)

Changes the password of the user to the
new one specified in passwd.

getAllUsers(keyField, idList) Gets the list of IDs of all users and
populates the idList collection.

getUsers(userKeyField,
groupKeyField,
groupKeyValue, idList)

Retrieves a list of users.

Method Comment
40

Chapter 2
getAllEntitlements(keyField,
TAFilter, idList)

Retrieves the IDs of all entitlements
present in the resource. Select Identity
will use this to link or unlink to or from
the user to assign or unassign. The
entitlement filter contains criteria to
match the result entitlements. If null, it
returns all entitlements. If not null, and
filter.getName() is populated, this might
mean a Search Connector operation is
defined on one of the user attributes. In
this case, it returns all possible values for
this attribute in the resource. If
filter.getValue() is not null, use this as
the matching criteria along with
filter.getOperation(), which could be
EQUALITY, BEGINS_WITH,
ENDS_WITH, or CONTAINS. For
example, if filter.getValue() is "AA" and
filter.getOperation() is
TAFilter.BEGINS_WITH, this returns all
values that start with the string "AA".

getEntitlements(keyField,
keyValue, idList)

Retrieves a list of entitlements.

Method Comment
41

Chapter 2
• TAConnectorFactory interface — creates instances of connection handles
for the connector. The connection handle is an implementation of the
TAConnector interface. For the TAConnectorFactory interface, you must
implement the following method:

link(userKeyField,
userKeyValue,
groupKeyField,
groupKeyValue)

Assigns a user to one entitlement. You
can perform a two-way or one-way
assignment depending on resource
support. For example, you could add a
user to a members field of an entitlement
or add an entitlement as a memberOf
field of the user. The groupKeyField
parameter is the keyField as defined in
the XML mapping file for the
objectClassDefinition of the group. The
groupKeyValue parameters is the ID of
the entitlement as returned by the
connector in getAllEntitlements()
method.

unlink(userKeyField,
userKeyValue,
groupKeyField,
groupKeyValue)

Unassigns a user from one entitlement.

Method Comment

getConnection(connParam) Usage: This is called to return the
implementation of the TAConnector
interface.

Method Comment
42

Chapter 2
• TAConnectorParameterFactory interface — obtains connector-specific
beans that hold connection parameter values. In particular, you must
implement these methods:

• TAConnectorParamValueBean class — an abstract class that represetns
the connection parameter values needed to establish a connection with the
resource. It also holds all parameters needed to access the resource for
user provisioning. In particular, you must implement these methods:

Method Comment

createParamValueBean() Usage: This is called to create a bean
to pass to the parameter values.

getParamBeans() Usage: This is called to return a
collection of
TAConnectorParamBean classes if
the connector needs configuration
values from the user.

Method Comment

getTAInstallDirectory() Usage: This is called to return the
path of the Select Identity
installation directory.

setTAInstallDirectory(path) Usage: This is called to set the path
of the Select Identity installation
directory.

getParamNames To implement: Return all
connection parameter names.

Usage: This method returns the
connection parameter namess that
are used to establish a connection
with the resource.
43

Chapter 2
You can also implement the following Select Identity Connector API
interfaces and classes (this is a subset of all interfaces and classes provided by
the API), as needed:

• UserModel

• GroupModel

• EntitySupport

• RelationSupport

Finally, implement an authentication mechanism for the connection. For
example, you may implement simple username/password authentication
using an administrative account that has the necessary authority.

Implementation of Reverse Synchronization

The Select Identity Web Service listens for reverse synchronization requests
from resources. These requests are sent as SPML SOAP messages. The
messages propagate user changes that were made on the resource to Select

get To implement: Return the value of
the connector parameter.

Usage: This gets the value of the
connection parameter.

set To implement: Save the value of the
connector parameter.

Usage: The set method sets the
connection parameter value. Select
Identity will pass the values
provided when the resource was
deployed using this method. The
bean implementation should store
the value for later use.

Method Comment
44

Chapter 2
Identity. The following events are captured on the resource and a
corresponding SPML request must be sent to Select Identity:

• Adding a user
A new user is added on the resource. To propogate this change back to
Select Identity, an SPML <addRequest> request must be sent that
includes all of the user’s attributes.

• Changing user attributes
User attributes are modified on the resource. An SPML <modifyRequest>
request must be sent to the Select Identity server to synchronize these
changes.

• Adding entitlement to a user or removing entitlements from a user
Entitlements are associated or disassociated with an existing user on the
resource. An SPML <modifyRequest> request must be sent with the new
entitlements added or removed.

• Changing a user’s password
A user’s password is changed or reset on the resource. An SPML
<extendedRequest> request must be sent containing the new password.

• Deleting a user
A user is deleted from the resource. An SPML <deleteRequest> request
must be sent for the deleted user.

• Enabling or disabling a user
A user is enabled or disabled on the resource. A SPML <modifyRequest>
request containing all of the user attributes must be sent to propogate the
change(s) to Select Identity.

How the changes are captured and how the SPML request is generated are
resource specific. Each generated SPML request is parsed by Select Identity
using an XSL file that corresponds to the XML mapping file that enables
Select Identity to push data to the resource.

The SPML request that is generated for reverse synchronization includes the
following information:

• Operational attributes — Relate to the properties of the Select Identity
instance to which the reverse synchronization request is being sent.

• Resource attributes — Define user attributes on the resource.
45

Chapter 2
The following is an example of the operational attributes section of an SPML
request:

<operationalAttributes>
<attr name='urn:trulogica:concero:2.0#reverseSync'>
<value>true</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceId'>
<value>AD</value>

</attr>
<attr name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<value>sisa</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceType'>
<value>activedirectory</value>

</attr>
<attr name='urn:trulogica:concero:2.0#password'>
<value>abc123</value>

</attr>
</operationalAttributes>

The <attr> elements in this block are as follows:

urn:trulogica:concero:2.0#reverseSync

Whether this request is a reverse synchronization request. The value is a
boolean set to true if the request is a reverse synchronization request.

urn:trulogica:concero:2.0#resourceId

The name of the resource (in Select Identity) to which this request is sent.

urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName

The username of an administrative user in Select Identity.

urn:trulogica:concero:2.0#password

The password of the administrative user.

urn:trulogica:concero:2.0#resourceType

The name of the XSL file (without the .xsl extension) that is associated
with the resource and that parses the reverse synchronization request.
46

Chapter 2
SPML Request Examples

The following are SPML examples that were generated for each type of user
change on the resource:

• Adding a new user (no entitlements)

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/
envelope/'>

<soap:Body>
<addRequest xmlns='urn:oasis:names:tc:SPML:1:0'
 requestID='1'
 execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
<operationalAttributes>
<attr name='urn:trulogica:concero:2.0#reverseSync'>
<value>true</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceId'>
<value>AD</value>

</attr>
<attr
name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<value>sisa</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceType'>
<value>activedirectory</value>

</attr>
<attr name='urn:trulogica:concero:2.0#password'>
<value>abc123</value>

</attr>
</operationalAttributes>
<attributes>
<attr name='UserName'>
<value>rvcs2002</value>

</attr>
<attr name='FirstName'>
<value>Test User</value>

</attr>
<attr name='LastName'>
<value>Last name</value>

</attr>
<attr name='mail' >
<value>asdf@adf.com</value>

</attr>
</attributes>
47

Chapter 2
</addRequest>
</soap:Body>
</soap:Envelope>

• Adding a new user (with multiple entitlements)

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/
envelope/'>

<soap:Body>
<addRequest xmlns='urn:oasis:names:tc:SPML:1:0' requestID='1'
 execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
<operationalAttributes>
<attr name='urn:trulogica:concero:2.0#reverseSync'>
<value>true</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceId'>
<value>AD</value>

</attr>
<attr
 name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<value>sisa</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceType'>
<value>activedirectory</value>

</attr>
<attr name='urn:trulogica:concero:2.0#password'>
<value>abc123</value>

</attr>
</operationalAttributes>
<attributes>
<attr name='UserName'>
<value>rvcs2002</value>

</attr>
<attr name='FirstName'>
<value>Test User</value>

</attr>
<attr name='LastName'>
<value>Last name</value>

</attr>
<attr name='mail' >
<value>asdf@adf.com</value>

</attr>
<attr name='urn:trulogica:concero:2.0#groups'
 operation='add'>
<value>Administrator</value>
<value>Guest</value>
48

Chapter 2
<value>Backup Operator</value>
</attr>

</attributes>
</addRequest>

</soap:Body>
</soap:Envelope>

• Modifying a user by adding new entitlements

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/
envelope/'>

<soap:Body>
<modifyRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
 xmlns:spml="urn:oasis:names:tc:SPML:1:0"
 xmlns="urn:oasis:names:tc:SPML:1:0" requestID="1"
 execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
<operationalAttributes xmlns="">
<attr name="urn:trulogica:concero:2.0#reverseSync">
<value>true</value>

</attr>
<attr name="urn:trulogica:concero:2.0#resourceId">
<value>AD</value>

</attr>
<attr
 name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
<value>sisa</value>

</attr>
<attr name="urn:trulogica:concero:2.0#resourceType">
<value>activedirectory</value>

</attr>
<attr name="urn:trulogica:concero:2.0#password">
<value>abc123</value>

</attr>
<attr name="urn:trulogica:concero:2.0#keyFields">
<value>UserId</value>

</attr>
</operationalAttributes>
<identifier xmlns=""
 type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
<id>rvcs2002</id>

</identifier>
<modifications xmlns="">
<modification name="urn:trulogica:concero:2.0#groups"
 operation="add">
<value>Replicator</value>
<value>Guest</value>
49

Chapter 2
</modification>
</modifications>

</modifyRequest>
</soap:Body>
</soap:Envelope>

• Modifying a user by deleting entitlements

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/
envelope/'>

<soap:Body>
<modifyRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
 xmlns:spml="urn:oasis:names:tc:SPML:1:0"
 xmlns="urn:oasis:names:tc:SPML:1:0" requestID="1"
 execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
<operationalAttributes xmlns="">
<attr name="urn:trulogica:concero:2.0#reverseSync">
<value>true</value>

</attr>
<attr name="urn:trulogica:concero:2.0#resourceId">
<value>AD</value>

</attr>
<attr
 name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
<value>sisa</value>

</attr>
<attr name="urn:trulogica:concero:2.0#resourceType">
<value>activedirectory</value>

</attr>
<attr name="urn:trulogica:concero:2.0#password">
<value>abc123</value>

</attr>
<attr name="urn:trulogica:concero:2.0#keyFields">
<value>UserId</value>

</attr>
</operationalAttributes>
<identifier xmlns=""
 type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
<id>rvcs2002</id>

</identifier>
<modifications xmlns="">
<modification name="urn:trulogica:concero:2.0#groups"
 operation="delete">
<value>Replicator</value>
<value>Guest</value>

</modification>
50

Chapter 2
</modifications>
</modifyRequest>

</soap:Body>
</soap:Envelope>

• Modifying a user by adding and deleting entitlements

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/
envelope/'>

<soap:Body>
<modifyRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"
 xmlns:spml="urn:oasis:names:tc:SPML:1:0"
 xmlns="urn:oasis:names:tc:SPML:1:0" requestID="1"
 execution="urn:oasis:names:tc:SPML:1:0#asynchronous">
<operationalAttributes xmlns="">
<attr name="urn:trulogica:concero:2.0#reverseSync">
<value>true</value>

</attr>
<attr name="urn:trulogica:concero:2.0#resourceId">
<value>AD</value>

</attr>
<attr
 name="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
<value>sisa</value>

</attr>
<attr name="urn:trulogica:concero:2.0#resourceType">
<value>activedirectory</value>

</attr>
<attr name="urn:trulogica:concero:2.0#password">
<value>abc123</value>

</attr>
<attr name="urn:trulogica:concero:2.0#keyFields">
<value>UserId</value>

</attr>
</operationalAttributes>
<identifier xmlns=""
 type="urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName">
<id>rvcs2002</id>

</identifier>
<modifications xmlns="">
<modification name="urn:trulogica:concero:2.0#groups"
 operation="add">
<value>Replicator</value>
<value>Guest</value>

</modification>
<modification name="urn:trulogica:concero:2.0#groups"
51

Chapter 2
 operation="delete">
<value>Administrator</value>
<value>Backup Operator</value>

</modification>
</modifications>

</modifyRequest>
</soap:Body>
</soap:Envelope>

• Deleting a user

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/
envelope/'>

<soap:Body>
<deleteRequest requestID='12345'
 execution='urn:oasis:names:tc:SPML:1:0#asynchronous'>
<operationalAttributes>
<attr
 name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<value>sisa</value>

</attr>
<attr name='urn:trulogica:concero:2.0#password'>
<value>abc123</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceId'>
<value>AD</value>

</attr>
<attr name='urn:trulogica:concero:2.0#reverseSync'>
<value>true</value>

</attr>
<attr name='urn:trulogica:concero:2.0#resourceType'>
<value>activedirectory</value>

</attr>
</operationalAttributes>
<identifier
 type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<id>pk22</id>

</identifier>
</deleteRequest>

</soap:Body>
</soap:Envelope>

• Changing (resetting) a user password

<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/
envelope/'>

<soap:Body>
52

Chapter 2
<extendedRequest requestID='1769'
 execution='urn:oasis:names:tc:SPML:1:0#synchronous'>
<operationalAttributes>
<attr

 name='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<value>sisa</value>

</attr>
<attr name='urn:trulogica:concero:2.0#password'>
<value>abc123</value>

</attr>
<!-- Name of deployed resource in SI for this machine -->
<attr name='urn:trulogica:concero:2.0#resourceId'>
<value>AD</value>

</attr>
<attr name='urn:trulogica:concero:2.0#reverseSync'>
<value>true</value>

</attr>
</operationalAttributes>
<identifier
 type='urn:oasis:names:tc:SPML:1:0#UserIDAndOrDomainName'>
<id>pk27_7</id>

</identifier>
<providerIdentifier
 providerIDType='urn:oasis:names:tc:SPML:1:0#URN'>
<providerID>urn:trulogica:concero:2.0</providerID>

</providerIdentifier>
<operationIdentifier
 operationIDType='urn:oasis:names:tc:SPML:1:0#URN'>
<operationID>urn:trulogica:concero:2.0#changePassword
</operationID>

</operationIdentifier>
<attributes>
<attr name='urn:trulogica:concero:2.0#newPassword'>
<value>Welcome1</value>

</attr>
</attributes>

</extendedRequest>
</soap:Body>
</soap:Envelope>

XSL File for Parsing Reverse Synchronization SPML

The SPML request received by Select Identity contains resource-specific
attribute names. These must be converted to the attribute names defined by
the resource (XML) mapping file. To do this, the SPML request is parsed
53

Chapter 2
using an XSL file, which must be provided with the connector. Any change to
attribute names in the XML mapping file must be propagated to the XSL file
for the reverse synchronization to work correctly.

The XSL file given below is an XSL translator template, followed by an
explanation. Use this template for generating your XSL files.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- Reverse Synchronization for Select Identity

Translator template for SPML messages received
from physical resources

-->

<!-- **
Reverse Mapper for SPML sync messages from agents on Physical
resource

NOTE: This file depends on the mappings in the mapping XML file
used by the connector and if the mapping XML changes, this XSL
needs to be updated

-->

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:spml='urn:oasis:names:tc:SPML:1:0'
 xmlns:dsml='urn:oasis:names:tc:DSML:2:0:core' >

<!-- Initial password for new users/if not coming in from
 resource -->
<xsl:variable name="DEFAULT_PASSWORD" select="'abc123'"/>

<!-- Physical resource user id and password attribute names.
 Replace USERID with the user id attribute name from
 physical resource as defined in the mapping file -->
<xsl:variable name="RES_USERID" select="'USERID'"/>

<!-- Replace PASSWORD with the password attribute name from
 physical resource as defined in the mapping file -->
<xsl:variable name="RES_PASSWORD" select="'PASSWORD'"/>

<!-- User ID and Password SI Attribute names
 Replace UserId with the user id attribute name as in SI -->
<xsl:variable name="SI_USERID" select="'UserId'"/>

<!-- Replace Password with the password attribute name as
 mapped onto SI -->
<xsl:variable name="SI_PASSWORD" select="'Password'"/>
54

Chapter 2
<!-- **
 Attribute name mappings
 **
 RES_ATTR : Name of the attribute on the physical resource -
 resfield in forward xml (lowercase)
 SI_ATTR : Name of SI resource attribute - tafield in forward
 xml
 The AttributeMapper below maps RES_ATTRxx -> SI_ATTRxx
 **
 -->

<!-- Example mappings ($RES_ATTR0 and $RES_ATTR1). Replace
 xxxxxx with the attribute names
 Add more as needed and add them in the AttributeMapper
 template -->
<xsl:variable name="RES_ATTR0" select="'xxxxxxxxxxx'"/>
<xsl:variable name="SI_ATTR0" select="'xxxxxxxxxxx'"/>
<xsl:variable name="RES_ATTR1" select="'xxxxxxxxxxxx'"/>
<xsl:variable name="SI_ATTR1" select="'xxxxxxxxxxxx'"/>

<!-- **
 There generally should not be any change in this file below
 this line
 **
 -->

<!-- ***************************************
 Handler for addRequest elements

 -->
<xsl:template name="AddRequestHandler" match="spml:addRequest">
<xsl:text>
</xsl:text>
<xsl:element name="addRequest"
 namespace="urn:oasis:names:tc:SPML:1:0">
<!-- Add the two attributes -->
<xsl:attribute name="requestID">
<xsl:value-of select="'1'" />
<!-- <xsl:value-of select="./@requestID" /> has some
 problem -->

</xsl:attribute>
<xsl:attribute name="execution">
<xsl:value-of
 select="'urn:oasis:names:tc:SPML:1:0#asynchronous'" />
<!-- <xsl:value-of select="./@execution" /> has some
 problem -->

</xsl:attribute>
55

Chapter 2
<xsl:text>
</xsl:text>
<xsl:call-template name="OperationalAttrHandler">
<xsl:with-param name="ADDREQFLAG" select="'true'"/>

</xsl:call-template>
<xsl:element name="attributes">
<xsl:text>
</xsl:text>
<!-- Convert the attribute names -->
<xsl:for-each select="spml:attributes/spml:attr">
<xsl:choose>
<xsl:when
 test="@name='urn:trulogica:concero:2.0#groups'">
<xsl:element name="attr" >
<xsl:attribute name="name">
<xsl:value-of select="@name" />

</xsl:attribute>
<xsl:text>
</xsl:text>
<xsl:for-each select="spml:value">
<xsl:element name="value" >
<xsl:value-of select="." />

</xsl:element>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:element>
<xsl:text>
</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:call-template name="AttributeMapper">
<xsl:with-param name="DSMLELEMENT"
 select="'attr'"/>
<xsl:with-param name="ATTRNAME"
 select="translate(@name,
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 'abcdefghijklmnopqrstuvwxyz')"/>
<xsl:with-param name="ATTRVALUE"
 select="spml:value"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>
<!-- add default password to newly created users -->
<xsl:variable name="lPasswd"
56

Chapter 2
 select="spml:attributes/spml:attr[@name =
 $RES_PASSWORD]"/>
<xsl:choose>
<xsl:when test="$lPasswd != ''"/>
<xsl:otherwise>
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="'attr'"/>
<xsl:with-param name="ATTRNAME"
 select="$SI_PASSWORD"/>
<xsl:with-param name="ATTRVALUE"
 select="$DEFAULT_PASSWORD"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:element> <!-- attributes -->
<xsl:text>
</xsl:text>

</xsl:element> <!-- addRequest -->
<xsl:text>
</xsl:text>

</xsl:template>

<!-- **************************************
 Handler for modifyRequest elements

 -->
<xsl:template name="ModifyRequestHandler"
 match="spml:modifyRequest">
<xsl:text>
</xsl:text>
<xsl:element name="modifyRequest"
 namespace="urn:oasis:names:tc:SPML:1:0">
<!-- Add the two attributes -->
<xsl:attribute name="requestID">
 <!-- <xsl:value-of select="./@requestID" /> has some
 problem -->
<xsl:value-of select="'1'" />

</xsl:attribute>
<xsl:attribute name="execution">
<!-- <xsl:value-of select="./@execution" /> has some
 problem -->
<xsl:value-of
 select="'urn:oasis:names:tc:SPML:1:0#asynchronous'" />

</xsl:attribute>
<xsl:text>
</xsl:text>
57

Chapter 2
<xsl:call-template name="OperationalAttrHandler">
<xsl:with-param name="ADDREQFLAG" select="'false'"/>

</xsl:call-template>
<xsl:element name="identifier" >
<xsl:attribute name="type">
<xsl:value-of select="spml:identifier/@type" />

</xsl:attribute>
<xsl:call-template name="IdentityHandler">
<xsl:with-param name="DSMLELEMENT" select="'id'"/>
<xsl:with-param name="IDVALUE"
 select="spml:identifier/spml:id"/>

</xsl:call-template>
</xsl:element> <!-- identifier -->
<xsl:text>
</xsl:text>
<xsl:element name="modifications">
<xsl:text>
</xsl:text>
<!-- Convert the attribute names -->
<xsl:for-each
 select="spml:modifications/spml:modification">
<xsl:choose>
<xsl:when
 test="@name='urn:trulogica:concero:2.0#groups'">
<xsl:element name="modification" >
<xsl:attribute name="name">
<xsl:value-of select="@name" />

</xsl:attribute>
<xsl:attribute name="operation">
<xsl:value-of select="@operation" />

</xsl:attribute>
<xsl:text>
</xsl:text>
<xsl:for-each select="spml:value">
<xsl:element name="value" >
<xsl:value-of select="." />

</xsl:element>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:element>
<xsl:text>
</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:call-template name="AttributeMapper">
58

Chapter 2
<xsl:with-param name="DSMLELEMENT"
 select="'modification'"/>
<xsl:with-param name="ATTRNAME"
 select="translate(@name,
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 'abcdefghijklmnopqrstuvwxyz')"/>
<xsl:with-param name="ATTRVALUE"
 select="spml:value"/>
<xsl:with-param name="MODIFYFLAG"
 select="spml:operation"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>

</xsl:element> <!-- modifications -->
<xsl:text>
</xsl:text>

</xsl:element> <!-- modifyRequest -->
<xsl:text>
</xsl:text>

</xsl:template>

<!-- ***************************************
 Handler for deleteRequest elements

 -->
<xsl:template name="DeleteRequestHandler"
 match="spml:deleteRequest">
<xsl:text>
</xsl:text>
<xsl:element name="deleteRequest"
 namespace="urn:oasis:names:tc:SPML:1:0">
<!-- Add the two attributes -->
<xsl:attribute name="requestID">
<!-- <xsl:value-of select="./@requestID" /> has some
 problem
 -->
<xsl:value-of select="'1'" />

</xsl:attribute>
<xsl:attribute name="execution">
<!-- <xsl:value-of select="./@execution" /> has some
 problem
 -->
<xsl:value-of
 select="'urn:oasis:names:tc:SPML:1:0#asynchronous'" />

</xsl:attribute>
59

Chapter 2
<xsl:text>
</xsl:text>
<xsl:call-template name="OperationalAttrHandler">
<xsl:with-param name="ADDREQFLAG" select="'false'"/>

</xsl:call-template>
<xsl:element name="identifier" >
<xsl:attribute name="type">
<xsl:value-of select="spml:identifier/@type" />

</xsl:attribute>
<xsl:call-template name="IdentityHandler">
<xsl:with-param name="DSMLELEMENT" select="'id'"/>
<xsl:with-param name="IDVALUE"
 select="spml:identifier/spml:id"/>

</xsl:call-template>
</xsl:element> <!-- identifier -->

</xsl:element> <!-- deleteRequest -->
<xsl:text>
</xsl:text>

</xsl:template>

<!-- ***************************************
 Handler to convert the identifier value

 -->
<xsl:template name="IdentityHandler">
<xsl:param name="DSMLELEMENT" />
<xsl:param name="IDVALUE" />
<xsl:text>
</xsl:text>
<xsl:element name="{$DSMLELEMENT}" >
<xsl:value-of select="$IDVALUE" />

</xsl:element>
<xsl:text>
</xsl:text>

</xsl:template>

<!-- ***************************************
 Handler to output attr name/value pairs

 -->
<xsl:template name="AttributeBuilder">
<xsl:param name="DSMLELEMENT" />
<xsl:param name="ATTRNAME" />
<xsl:param name="ATTRVALUE" />
<xsl:param name="MODIFYFLAG" />
<xsl:variable name="ATTRVAL"
 select="normalize-space($ATTRVALUE)" />
60

Chapter 2
<xsl:if test="$ATTRVAL != ''">
<xsl:element name="{$DSMLELEMENT}" >
<xsl:attribute name="name">
<xsl:value-of select="$ATTRNAME" />

</xsl:attribute>
<xsl:if test="$MODIFYFLAG != ''" >
<xsl:attribute name="operation">
<xsl:value-of select="$MODIFYFLAG" />

</xsl:attribute>
</xsl:if>
<xsl:element name="value">
<xsl:value-of select="$ATTRVAL" />

</xsl:element>
</xsl:element>
<xsl:text>
</xsl:text>

</xsl:if>
</xsl:template>

<!-- Handler to generate operationalAttributes section -->
<xsl:template name="OperationalAttrHandler">
<xsl:param name="ADDREQFLAG" />
<xsl:element name="operationalAttributes">
<xsl:text>
</xsl:text>
<xsl:for-each select="spml:operationalAttributes/spml:attr">
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="'attr'"/>
<xsl:with-param name="ATTRNAME" select="@name"/>
<xsl:with-param name="ATTRVALUE" select="spml:value"/>

</xsl:call-template>
</xsl:for-each>
<!-- keyFields: Name of the key field from the resource -->
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="'attr'"/>
<xsl:with-param name="ATTRNAME"
 select="'urn:trulogica:concero:2.0#keyFields'"/>
<xsl:with-param name="ATTRVALUE" select="$SI_USERID"/>

</xsl:call-template>
<xsl:if test="$ADDREQFLAG='true'">
<!-- taUserName: Value of the key field from the resource
 -->
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="'attr'"/>
<xsl:with-param name="ATTRNAME"
 select="'urn:trulogica:concero:2.0#taUserName'"/>
61

Chapter 2
<xsl:with-param name="ATTRVALUE"
 select="spml:attributes/spml:attr[@name = $RES_USERID]"
 />

</xsl:call-template>
<!-- taResourceKey: Value of the key field from the
 resource -->
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="'attr'"/>
<xsl:with-param name="ATTRNAME"
 select="'urn:trulogica:concero:2.0#taResourceKey'"/>
<xsl:with-param name="ATTRVALUE"
 select="spml:attributes/spml:attr[@name = $RES_USERID]"
 />

</xsl:call-template>
</xsl:if>

</xsl:element> <!-- operationalAttributes -->
<xsl:text>
</xsl:text>

</xsl:template> <!-- OperationalAttrHandler -->

<!-- **
 Handler to convert the attribute names
 Use the file aduser.properties and reverse map the attributes
 onto the names on the left side
 NOTE: The incoming attribute names are converted to lowercase
 by the caller
 **
 -->
<xsl:template name="AttributeMapper">
<xsl:param name="DSMLELEMENT" />
<xsl:param name="ATTRNAME" />
<xsl:param name="ATTRVALUE" />
<xsl:param name="MODIFYFLAG" />
<xsl:if test="$ATTRNAME != ''" >
<xsl:choose>
<!--
 Block for mapping attribute defined $RES_ATTRxx defined
 earlier. Add similar blocks as required for any new
 attributes. Example here shows the mapping for $RES_ATTR0
 and $RES_ATTR1 defined earlier.
 -->
<xsl:when test="$ATTRNAME = $RES_ATTR0">
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT"
 select="$DSMLELEMENT"/>
<xsl:with-param name="ATTRNAME" select="$SI_ATTR0"/>
62

Chapter 2
<xsl:with-param name="ATTRVALUE" select="$ATTRVALUE"/>
<xsl:with-param name="MODIFYFLAG" select="$MODIFYFLAG"
 />

</xsl:call-template>
</xsl:when>
<xsl:when test="$ATTRNAME = $RES_ATTR1">
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT"
 select="$DSMLELEMENT"/>
<xsl:with-param name="ATTRNAME" select="$SI_ATTR1"/>
<xsl:with-param name="ATTRVALUE" select="$ATTRVALUE"/>
<xsl:with-param name="MODIFYFLAG" select="$MODIFYFLAG"
 />

</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<!-- ignore the attribute -->

</xsl:otherwise>
</xsl:choose>

</xsl:if>
</xsl:template>

</xsl:stylesheet>

Many of the XML and resource fields are configurable variables. The code
snippets below explain how to configure this template for any mapping file:

• RES_USERID is the resource attribute that represents the user ID of the
user on the resource. The RES_PASSWORD is the resource attribute that
represents the password on the resource. The following shows the use of
these variables in the XSL template:

<!-- Physical resource user id and password attribute names -->

<!-- Replace USERID with the user id attribute name from
physical resource as defined in the mapping file -->

<xsl:variable name="RES_USERID" select="'USERID'"/>

<!-- Replace PASSWORD with the password attribute name from
physical resource as defined in the mapping file -->

<xsl:variable name="RES_PASSWORD" select="'PASSWORD'"/>

The following is an example from the XSL file for the SQL Server
connector:

<!-- Physical resource user id and password attribute names -->

<xsl:variable name="RES_USERID"
select="'schema=dbo,table=USERINFO_1,column=USERID'"/>
63

Chapter 2
<xsl:variable name="RES_PASSWORD"
select="'schema=dbo,table=USERINFO_1,column=PASSWORD'"/>

• SI_USERID is the Select Identity attribute that represents the user ID,
and SI_PASSWORD is the Select Identity attribute that represents the
password. The following shows the use of these variables in the XSL
template:

<!-- User ID and Password SI Attribute names -->

<!-- Replace UserId with the user id attribute name as mapped
onto SI -->
<xsl:variable name="SI_USERID" select="'UserId'"/>

<!-- Replace Password with the password attribute name as mapped
onto SI -->
<xsl:variable name="SI_PASSWORD" select="'Password'"/>

The following is an example from the XSL file for the SQL Server
connector:

<!-- User ID and Password SI Attribute names -->

<xsl:variable name="SI_USERID" select="'UserId'"/>

<xsl:variable name="SI_PASSWORD" select="'Password'"/>

• For each of the resource attributes, the following blocks of code are
defined:

<!-- Example mappings ($RES_ATTR0 and $RES_ATTR1). Replace
xxxxxx with the attribute names. Add more as needed and add
them in the AttributeMapper template -->

<xsl:variable name="RES_ATTR0" select="'xxxxxxxxxxx'"/>
<xsl:variable name="SI_ATTR0" select="'xxxxxxxxxxx'"/>

and

<!-- Block for mapping attribute defined $RES_ATTRxx defined
earlier. Add similar blocks as required for any new attributes
Example here shows the mapping for $RES_ATTR0 and $RES_ATTR1
defined earlier.
-->

<xsl:when test="$ATTRNAME = $RES_ATTR0">
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="$DSMLELEMENT"/>
<xsl:with-param name="ATTRNAME" select="$SI_ATTR0"/>
<xsl:with-param name="ATTRVALUE" select="$ATTRVALUE"/>
64

Chapter 2
<xsl:with-param name="MODIFYFLAG" select="$MODIFYFLAG"/>
</xsl:call-template>

</xsl:when>

Resource attribute names are definted by RES_ATTR0, RESATTR1,
RES_ATTR2, and so on. For each RES_ATTRx variable, there is a
corresponding SI_ATTRx variable, which defines the Select Identity
attribute to which the resource attribute is mapped. An example from the
XSL file for the SQL Server connector is provided here:

<xsl:variable name="RES_ATTR0"
select="'schema=dbo,table=userinfo_1,column=userid'"/>

<xsl:variable name="SI_ATTR0" select="'UserId'"/>

<xsl:variable name="RES_ATTR1"
select="'schema=dbo,table=userinfo_1,column=address'"/>

<xsl:variable name="SI_ATTR1" select="'Address'"/>

and

<xsl:when test="$ATTRNAME = $RES_ATTR0">
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="$DSMLELEMENT"/>
<xsl:with-param name="ATTRNAME" select="$SI_ATTR0"/>
<xsl:with-param name="ATTRVALUE" select="$ATTRVALUE"/>
<xsl:with-param name="MODIFYFLAG" select="$MODIFYFLAG"/>

</xsl:call-template>
</xsl:when>

<xsl:when test="$ATTRNAME = $RES_ATTR1">
<xsl:call-template name="AttributeBuilder">
<xsl:with-param name="DSMLELEMENT" select="$DSMLELEMENT"/>
<xsl:with-param name="ATTRNAME" select="$SI_ATTR1"/>
<xsl:with-param name="ATTRVALUE" select="$ATTRVALUE"/>
<xsl:with-param name="MODIFYFLAG" select="$MODIFYFLAG"/>

</xsl:call-template>
</xsl:when>

These blocks are defined for every RES_ATTRx variable that is defined.

JNDI Registration of the Parameter Factory Implementation

You must register the parameter factory implementation with JNDI. Select
Identity will look up the parameter factory when creating instances of
TAConnectorParamValueBeans.
65

Chapter 2
The following sample code illustrates how you could register the parameter
factory implementation with the JNDI on the application server. Select
Identity will reference this factory and use it to create instances of
ParamValueBean in which it passes the connection information.

private void registerParamFactory(String connectorJndiName)
throws Exception
{
String lFuncName = "registerParamFactory()";
LDAPParamFactory paramFactory = new LDAPParamFactory();
InitialDirContext initCtx = new InitialDirContext();

// Initialize the factory
paramFactory.initialize();

try {
initCtx.lookup("eis");

} catch (NameNotFoundException e) {
initCtx.createSubcontext("eis");

}

// Register param factory with JNDI
// Example: eis/LDAPv3-ParamFactory
String lPfJndiName = connectorJndiName +
TAConnectorParameterFactory.JNDI_PARAMFACTORY_SUFFIX;

try {
initCtx.lookup(lPfJndiName);
catch (NameNotFoundException e) {
initCtx.bind(lPfJndiName, paramFactory);

} finally {
initCtx.rebind(lPfJndiName, paramFactory);

}
}

Mapping Select Identity Attributes to the
Resource Schema

As described in Coding the Connector on page 30, you must create a file that
maps the Select Identity fields defined for a user to the fields used by the
resource. The connector will reference this mapping file to understand the
target fields on the resource for each user value. This section provides an
overview of the mapping file.
66

Chapter 2
The LDAP connector provides three mapping files: one for an Active Directory
server (ActiveDir.xml), one for an iPlanet server (iPlanet.xml), and one
for ETrust (CAEtrust.xml). The files are created in XML, according to SPML
standards, and are bundled in a JAR file called schema.jar. In general, all
connectors that provide XML mapping files must provide the following
content.

General Attribute Information

The following operations can be performed in the mapping file:

• Add a new attribute mapping

• Delete an existing attribute mapping

• Modify attribute mappings

Here is an explanation of the elements in the XML mapping files provided by
the LDAP connectors:

• <Schema>, <providerID>, and <schemaID>

Provides standard elements for header information.

• <objectClassDefinition>

Defines the actions that can be performed on the specified object as
defined by that name attribute (in the <properties> element block) and
the Select Identity-to-resource field mappings for the object (in the
<memberAttributes> block). In general, the XML mapping file supports
two types of entities: users and groups . These entities are defined in the
mapping file by an <objectClassDefinition> block.

• <properties>
Defines the operations that are supported on the object. This can be
used to control the operations that are performed through Select
Identity. The following operations can be controlled:

— Create (CREATE)

— Read (READ)

— Update (UPDATE)

This mapping file is always stored in the com/trulogica/truaccess/
connector/schema/spml directory and the parent folder is packaged in the
schema JAR file.
67

Chapter 2
— Delete (DELETE)

— Enable (ENABLE)

— Disable (DISABLE)

— Reset password (RESET_PASSWORD)

— Change password (CHANGE_PASSWORD)

— Assign entitlements (LINK)

— Unassign entitlements (UNLINK)

— Retrieve entitlements (GETALL)

The operation is assigned as the name of the <attr> element and
access to the operation is assigned to a corresponding <value>
element. You can set the values as follows:

— true — the operation is supported by the connector

— false — the operation is not supported by the connector and will
throw a permission exception

— bypass — the operation is not supported by the connector but will
not throw an exception; the operation is simply bypassed

Here is an example:

<objectClassDefinition name="User" description="Oracle ERP
User">
 <properties>
<attr name="GETCHILDREN">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
<attr name="EXPIREPASSWORD">
<value>false</value>

</attr>
<attr name="GETALL">
<value>true</value>

</attr>
...

• <memberAttributes>
Defines the attribute mappings. This element contains
<attributeDefinitionReference> elements that describe the mapping
68

Chapter 2
for each attribute. Each <attributeDefinitionReference> can be
followed by an <attributeDefinition> element that specifies details
such as minimum length, maximum length, and so on.

Each <attributeDefinitionReference> element contains the following
attributes:

— Name — the name of the attribute definition reference. Make sure
this fis ollowed by an <attributeDefinition> block whose name
attribute matches this name.

— Required— whether this attribute is required in the provisioning
process (set to true or false).

— Concero:tafield — the name of the attribute in Select Identity. In
general, the attribute assigned to tafield should be the same as the
physical resource attribute, or at least the connector attribute. For
example, it is recommended to have the following:

<attributeDefinitionReference name="FirstName"
required="false" concero:tafield="[givenname]"
concero:resfield="givenname" concero:init="true"
concero:isMulti="true"/>

instead of this:

<attributeDefinitionReference name="FirstName"
required="false" concero:tafield="[FirstName]"
concero:resfield="givenname" concero:init="true"
concero:isMulti="true"/>

— Concero:resfield — the name of the attribute from the resource
schema. If the resource does not support physical attributes, this
can be a tag field that indicates a resource attribute mapping.

Also, the attribute name may be case-sensitive; for example, if the
attribute is defined in all uppercase letters on the resource, be
sure to specify it in all uppercase letters here.

— Concero:isKey — An optional attribute that, when set to true,
specifies that this is the key field to identify the object on the
resource. Only one <attributeDefinitionReference> can be
specified where isKey="true". This key field does not need to be
the same as the key field of the identity object in Select Identity.
69

Chapter 2
Note that for a key field mapping where isKey=”true” and tafield
is not assigned the UserName attribute, UserName should not be
used in any other mapping. That is, UserName can be assigned to
tafield only in cases where it is mapped to the key field in the
resource. Example:

<attributeDefinitionReference name="UserName"
required="true" concero:tafield="[UserName]"
concero:resfield="uid" concero:isKey="true"
concero:init="true"/>

— Concero:init — Set this to true if this attribute needs to be passed
as part of the creation of the user. You can use this parameter to
control which attributes must be specified during creation and
which must be specified when a user is modified.

Here is an example:

<memberAttributes>
<attributeDefinitionReference name="ATTR_UserName"
required="true" concero:tafield="UserName"
concero:resfield="[x_user_name][USER_NAME][][VARCHAR]"
concero:isKey="true" concero:init="true"/>

...

The interpretation of the mapping between the connector field (as
specified by the Concero:tafield attribute) and the resource field (as
specified by the Concero:resfield attribute) is determined by the
connector.

• <attributeDefinition>

Defines the properties of each object’s attribute. For example, the
attribute definition for the Directory attribute defines that it must be
between one and 50 characters in length and can contain the following
letters, numbers, and characters: a-z, A-Z, 0-9, @, +, and a space.

Here is an example:

<attributeDefinition name="ATTR_ResponsibilityKey"
description="Responsibility Key" type="xsd:string" >
<properties>
<attr name="minLength">
<value>1</value>

</attr>
<attr name="maxLength">
<value>128</value>

</attr>
70

Chapter 2
<attr name="pattern">
<value><![CDATA[[a-zA-Z0-9@]+]]> </value>

</attr>

</properties>
</attributeDefinition>

• <concero:entitlementMappingDefinition>

Defines how entitlements are mapped to users. Defining this element for
each entitlement enables you to control the entitlements from the XML
mapping file, instead of the requiring that the connector retrieve a list of
entitlements from the resource. Using this element may not be
appropriate in all cases, but this is one way to do it:

<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Administrators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Backup Operators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Guests" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Network Config Operators" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Power Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Remote Desktop Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Replicator" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Users" />

</concero:entitlementMappingDefinition>

<concero:entitlementMappingDefinition>
<concero:entitlementMap name="Debugger Users" />

</concero:entitlementMappingDefinition>
<concero:entitlementMappingDefinition>
<concero:entitlementMap name="HelpServicesGroup" />

</concero:entitlementMappingDefinition>
71

Chapter 2
• <concero:objectStatus>

Defines how to assign status to a user.

• <concero:relationshipDefinition>

Defines how to create relationships between users and groups
(entitlements). Here is an example:

<concero:relationshipDefinition>
<properties>
<attr name="CREATE">
<value>true</value>

</attr>
<attr name="NAVIGATE">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
</properties>
<concero:party concero:entity="User"
 concero:cardinality="ZERO_OR_MORE" concero:start="false" />
<concero:party concero:entity="Group"
 concero:cardinality="ZERO_OR_MORE" concero:start="false" />

</concero:relationshipDefinition>

This example defines that it is allowed to create a user-to-group link, the
connector and resource support this operation, the user-to-group link may
be deleted, and a user can be unassigned from an entitlement.

Creating a Mapping File

Create a mapping file that maps each attribute on the physical resource to an
attribute on the connector. (To complete this mapping, attributes must be
created using the Select Identity client to map a name on the server to this
name on the connector.) For example, the connector may store the user ID in a
field called userID and the resource may store the ID in a field called
user_id. The connector will reference the mapping file to understand the
target field on the resource for each user value.
72

Chapter 2
The following illustrates the relationship between the fields in Select Identity,
the connector, and the resource:

Instances of UserModel and GroupModel are populated and provided by
Select Identity when it calls the TAConnector methods. Obtain user and group
attributes from here and map them to the resource using map file.

You determine the format of the mapping file. The connector may require only
a simple mapping stored in a text file. Here is a simple text file example where
the Select Identity field is specified first and a pipe (|) separates the fields:

User Name|UserId
Password|Password
User Name|cn
First Name|givenName
Last Name|sn
[First Name] [Last Name]|displayName
Title|Title
73

Chapter 2
Directory|homeDirectory
Email|Mail
Address 1|streetAddress

Or, the connector may require a format that supports robust mapping, such as
an XML file. XML mapping files are used by all connectors built and provided
by HP. Here is an excerpt from the iPlanet.xml file, which is provided with
the LDAP connector. Refer to Mapping Select Identity Attributes to the
Resource Schema on page 66 for a full description of the file.

<objectClassDefinition name="User" description="LDAP User">
<properties>
<attr name="CREATE">
<value>true</value>

</attr>
<attr name="READ">
<value>true</value>

</attr>
<attr name="UPDATE">
<value>true</value>

</attr>
<attr name="DELETE">
<value>true</value>

</attr>
<attr name="ENABLE">
<value>true</value>

</attr>
<attr name="DISABLE">
<value>true</value>

</attr>
<attr name="RESET_PASSWORD">
<value>true</value>

</attr>
<attr name="EXPIRE_PASSWORD">
<value>false</value>

</attr>
<attr name="CHANGE_PASSWORD">
<value>true</value>

</attr>
</properties>
<memberAttributes>
<!-- For iPlanet -->
<attributeDefinitionReference name="UserName" required="true"
 concero:tafield="[UserName]" concero:resfield="uid"
 concero:isKey="true" concero:init="true"/>
<attributeDefinitionReference name="Password" required="false"
 concero:tafield="[Password]" concero:resfield="userpassword"
 concero:init="true" />
74

Chapter 2
Installing a Connector

To deploy the connector on the Select Identity server, you must copy the
connector files to the target locations and configure the application server.
The following procedures provide general guidelines for installing a connector
on the supported application servers; the details will depend on how the
connector was implemented and the type of application server.

On WebLogic

Complete the following steps to install the connector on the WebLogic Server:

1 Create a subdirectory in the Select Identity home directory where the
connector’s RAR file will reside.

2 Copy the RAR file to the connector subdirectory.

3 Create a schema subdirectory in the Select Identity home directory where
the connector’s mapping file(s) will reside.

4 Extract the contents of the JAR file to the schema subdirectory.

5 Ensure that the CLASSPATH environment variable in the WebLogic
server startup script references the schema subdirectory.

6 Modify the mapping file to reflect the attribute names in Select Identity
and on the resource, if necessary.

7 Start the application server if it is not currently running.

8 Log on to the WebLogic Server Console.

9 Navigate to My_domain → Deployments → Connector Modules.

10 Click Deploy a New Connector Module.

11 Locate and select the RAR file from the list. It is stored in the connector
subdirectory.

12 Click Target Module.

13 Select the My Server (your server instance) check box.

14 Click Continue. Review your settings.

15 Keep all default settings and click Deploy. The Status of Last Action
column should display Success.
75

Chapter 2
If the connector is a two-way connector and uses an agent, install and
configure the agent on the resource with which the connector communicates to
provision users. The agent may also be used to synchronize changes to the
identity objects, pushing the changes from the resource to Select Identity.

On WebSphere

Complete the following steps to install the connector on WebSphere
Application Server:

1 Stop the application server.

2 Create a subdirectory in the Select Identity home directory on the
application server.

3 Copy the RAR file to the subdirectory in the Select Identity home
directory.

4 Extract the contents of the JAR file to the
WebSphere\AppServer\lib\ext directory.

5 Modify the mapping file to reflect the attribute names in Select Identity
and on the resource, if necessary.

6 Start the application server.

7 Log on to the WebSphere Application Server Console.

8 Navigate to Resources → Resource Adapters.

9 Click Install RAR.

10 In the Server path field, enter the path to the RAR file.

11 Click Next.

12 In the Name field, enter a name for the connector.

13 Click OK.

14 Click the Save link (at the top of the page).

15 On the Save to Master Configuraton dialog, click the Save button.

16 Click Resources → Resource Adapters.

17 Click the new connector.

18 Click J2C Connection Factories in the Additional Properties table.
76

Chapter 2
19 Click New.

20 In the Name field, enter the name of the factory (enter eis/ess_name) for
the connector.

21 Click OK.

22 Click the Save link.

23 On the Save to Master Configuraton dialog, click the Save button.

24 Restart WebSphere.

Configuring a Connector in Select Identity

After you create a connector, you can configure it for use by Select Identity
using the Select Identity client (interface). The following provides an overview
of the procedures you must complete in order to deploy your connector:

1 After you build and install the connector, you must register it with Select
Identity. Do so on the home page of the Connectors tab by clicking the
Deploy New Connector button. Complete this procedure, referencing your
connector files, as described in the “Connectors” chapter of the HP
OpenView Select Identity Administrator Guide.

2 You must deploy the resource that uses the newly created connector. On
the home page of the Resources tab, click the Deploy New Resource button.
Complete the steps in this procedure, referencing the new connector
created in step 1, as described in the “Resources” chapter of the HP
OpenView Select Identity Administrator Guide.

3 Create attributes that link Select Identity to the connector. For each
mapping in the connector’s mapping file, create an attribute using the
Attributes capability on the Select Identity client. Refer to the
“Attributes” chapter in the HP OpenView Select Identity Administrator
Guide for more information.

4 Create a Service that will use the newly created resource. To do so, click
the Deploy New Service button on the home page of the Services tab.
Complete this procedure as described in “Services” of the HP OpenView
Select Identity Administrator Guide. You will reference your new resource
created in step 2 while creating this Service.
77

Chapter 2
Testing a Connector

To test a connector, verify that you can perform user provisioning tasks.
Perform each of the following tasks to thoroughly test the connector.

1 Verify provisioning operations using the Select Identity client. Go to the
Users home page and perform the following tasks, if applicable. Refer to
the HP OpenView Select Identity Administrator Guide for detailed
information.

• Add a user

• Modify the user attributes

• Delete an existing user from the resource

• Retrieve the details of user from the resource

• Disable the user on the resource

• Enable the user on the resource

• Change the user’s password

• Retrieve all entitlements present in the resource

• Associate entitlements with an existing user on the resource

• Remove entitlements from the user

• Synchronize passwords, which involves changing a user’s password on
the resource; the resource should then propagate to the existing user
in Select Identity

• With an agent-based connector, an SPML <extendedRequest>
request should be sent to the Select Identity Web Service with the
password information

• Reverse synchronization, which involves synchronizing Select Identity
with changes to identity information on the resource.
78

Chapter 2
2 Perform the following operations directly on the resource using its
interface. These tests verify the reconciliation in Select Identity. With an
agent-based connector, SPML requests should be sent back to the Select
Identity Web Service with the changes made on the resource.

• Add a new user on the resource. This should result in an SPML
<addRequest> request including all the attributes of the user.

• Modify the user attributes on the resource. This should result in an
SPML modifyRequest with the modified attribute information

• Delete an existing user from the resource. This should result in an
SPML deleteRequest with the id of the user

• Disable the user on the resource. This should result in an SPML
extendedRequest with all the attributes of the user

• Enable the user on the resource. This should result in an SPML
extendedRequest with all the attributes of the user

• Associate entitlements to an existing user on the resource. This should
result in an SPML modifyRequest with the new entitlements added.

• Dissociate entitlements from the user. This should result in an SPML
modifyRequest with the removal of entitlements

• Associate some and dissociate some entitlements on the user on the
resource. This should result in an SPML modifyRequest addition/
deletion of entitlements.

3 Verify changes made on the ID object in the Select Identity repository.
You can view user attribute or service membership information in the
repository.
79

3

LDAP Connector Example
The Active Directory LDAP connector enables HP OpenView Select Identity to
manage user data in LDAP. It is a one-way connector and pushes changes
made to user data in the Select Identity database to a target LDAP server.
This connector is generic and can be used to connect to any LDAP data source.
The mapping file controls how Select Identity fields are mapped to LDAP
fields.

The mapping file, source files, definition file, and build files are provided in a
ZIP file in the docs/api_help/connectors/LDAPv3_v3 directory on the
Select Identity CD. Extract this file to review the LDAP connector’s source
files.

This chapter provides an explanation of the source code that implements the
LDAP connector, the mapping file that Select Identity refers to when pushing
data, and the packaging. Use this example to help you build your own
connector.
80

Chapter 3
Description of the Connector Source Files

The following provides a description of the files extracted from the
connector_src.jar file:

• LDAPConnector.java

This is the implementation of TAConnector interface to provision users
onto the LDAP data store. This represents a physical connection to the
LDAP store.

The class uses the JNDI API for a directory interface to access and update
LDAP. Connection parameters should contain the URL to access the
LDAP store and the root directory name and password. This class uses the
SPML-based XML mapping file to map Select Identity resource fields to
LDAP attributes.

• LDAPManagedConnectionFactory.java

This is the implementation of the
javax.resource.spi.ManagedConnectionFactory interface. This class is
registered with the application server by specifying the
managedconnectionfactory-class in the ra.xml deployment descriptor file.

The application server calls on this implementation to create and return
an instance of ManagedConnection, which represents the connection to
the resource and matches existing managed connections with the given
one. Also, the connector parameter factory implementation is registered
with JNDI in this file.

• LDAPConnectorFactory.java

This is the implementation of TAConnectorFactory interface and
represents a factory to create managed connections. This class is
registered with the application server by specifying the factory under the
connectionfactory-impl-class in the ra.xml file.

The getConnection(TAConnectorParamValueBean connParam) method is
implemented and it calls on the application server connection manager to
allocate and return a new connection.

• LDAPManagedConnection.java

This is the implementation of the javax.resource.spi.ManagedConnection
interface and it represents the physical connection to the resource.
81

Chapter 3
The application server calls the getConnection() method in this class to get
a connection handle to the resource. The connection parameter value bean
is passed in by the application server. A local copy of this bean is created
and a new instance of LDAPConnector is created and returned.

A copy of the schema repository is maintained here for reference by
LDAPConnector. This repository is built from the mapping file.

• LDAPParamFactory.java

This is the implementation of TAConnectorParameterFactory interface. It
is instantiated and registered with the JNDI so that Select Identity can
lookup and call on this instance to create instances of beans that contain
the connection parameter values.

• LDAPParamValueBean.java

This is the derived class of the TAConnectorParamValueBean abstract
class. It contains the names of all of the connection parameters needed to
connect to and access the LDAP resource, as follows:

• accessURL — the URL to access the LDAP store

• suffix — the suffix of the domain name (DN) for all users and groups

• rootDN — the root DN to log in to the LDAP store

• rootPassword — the root password

• userSuffix — the user suffix, such as ou=Users

• userObjectClass — the Object class of all users

• groupSuffix — the group suffix, such as ou=Groups

• groupObjectClass — the Object class of all group objects

• mappingFile — the name of the file that contains the attribute
mappings

Each instance of this bean contains one set of information for the
connection parameters.

Also, the following method are implemented:

• getParamNames() returns all the above-listed connection parameters

• get(name) returns the value of the connection parameter
82

Chapter 3
• set(name, value) stores the value of the connection parameter. This
value is passed from the configuration at the time of resource
deployment

• LDAPManagedConnectionMetaData.java

This is the implementation of the
javax.resource.spi.ManagedConnectionMetaData interface and is used to
return the EIS product name, version, and maximum connections allowed
to the application server.

• LDAPRAMetaData.java

This is the implementation of the
javax.resource.cci.ResourceAdapterMetaData interface and is used to
return the resource adapter-specific information to the application server,
such as the adapter name, vendor name, and version.

• LDAPUtil.java

This is a utility class that implements some methods used by other parts
of the connector.

• LDAPParamResources.properties

This is a text file containing configuration properties for the connector and
has the default values for all of the connection parameters. This file is
read in during startup by LDAPUtil.java to return the default values of
the connection parameters. These are displayed in the Select Identity
client, on the Resources home page.

• ra.xml

This is the deployment descriptor for the resource adapter implementing
the connector. The interface and implementation class names are
registered here.

As described in Step 7 on page 20, this file contains the name of the
connector, the configuration, the interface names of the connector, and the
JNDI name for the connector. Refer to the ra.xml file provided by the
LDAP connector as an example when creating your own. Create this XML
file according to the JCA specification. Here is an explanation of the
elements in the ra.xml file:

• <display-name>, <vendor-name>, <spec-version>, <eis-type>,
<version>, and <license>

Provides general information about the connector.
83

Chapter 3
• <managedconnectionfactory-class>

Specifies the path to the class implementing the
ManagedConnectionFactory interface.

• <connectionfactory-interface>

Specifies the path to the TAConnectorFactory interface.

• <connectionfactory-impl-class>

Specifies the path to the class implementing the TAConnectorFactory
interface.

• <connection-interface>

Specifies the path to the TAConnector interface.

• <connection-impl-class>

Specifies the path to the class implementing the TAConnector
interface.

• <transaction-support>

Specifies whether the connector supports transactions.

• <config-property>

Defines a configuration property for the connector. For example, the
UserName property is defined. It is a string and its value is set to
cn=Directory Manager.

A <config-property> element is defined for each of the connector’s
configuration properties.

• <reauthentication-support>

Specifies whether the connector supports authentication after the
connector has communicated with Select Identity.

• weblogic-ra.xml

This is the WebLogic-specific deployment descriptor for the resource
adapter and contains the LDAP connector JNDI name.

• activedir.xml

This is the mapping file for Active Directory. It maps Select Identity
resource attributes to Active Directory attributes.
84

Chapter 3
• caetrust.xml

This is the mapping file for CA eTrust. It maps Select Identity resource
attributes to eTrust attributes.

• iplanet.xml

This is the mapping file for iPlanet. It maps Select Identity resource
attributes to iPlanet attributes.

Description of the Build Files

The following XML and property files are used by Apache Ant to build the
LDAP connector. Refer to the LDAP JAR file to view the contents.

• build_sa.xml

This is the main build file for the connector. It references the
build.sa.properties file and calls the build_rar_sa.xml file, which
contains information about building the .rar file.

• build_rar_sa.xml

This file contains information about building the .rar file.

• build.sa.properties

This file contains definitions used by the build files. Edit the following
entries in the sample file provided on the CD to reflect the name of the
folders in your environment:

folder containing common jars needed by all connectors
example: apache commons beanutils, collections etc

si.external.lib.dir=C:/SelectIdentity/external_lib

Folder containing SI connector interface jars

si.connector.lib.dir=C:/SelectIdentity/connector/lib

folder to place the built jars and files

connector.build.dir=C:/tmp/output

Make sure that the WL_HOME environment variable is set and points to
the WebLogic home directory. Also, ensure that the PATH environment
variable references the ant/bin folder. After editing the file, use
85

Chapter 3
build_sa.xml to build the connector by entering the following command
at the command prompt:

ant -v build_sa.xml

The TALDAPv3.rar and schema.jar files will be placed in the output
folder specified by the connector.build.dir entry in the
build.sa.properties file.
86

4

Dummy Connector Example
An example connector called the Dummy Connector is provided in a ZIP file in
the docs/api_help/connectors/dummyConnector directory on the Select
Identity CD. Extract this file to review the source files. This chapter provides
an snapshots of the source code that implements the Dummy Connector, the
build files used to build the connector, and the schema JAR and RAR files.
Use this example to help you build your own connector.
87

Chapter 4
The following snapshot shows the hierarchy of the Dummy Connector source:

Here is an explanation of the folders:

• The connector-related JAR files are in the connector_lib folder and the
external JAR files are in external_lib folder.

• ra.xml and weblogic-ra.xml are in the META-INF folder.

• Source code and the connection parameters properties file are in the src/
com/hp/ovsi/connector/dummy folder.

• The schema mapping file called DummyConnectorMapping.xml is in
src/com/trulogica/truaccess/connector/schema/spml (the file
must reside in this location when it is installed).
88

Chapter 4
• All build files are in the main folder:

— build.properties contains all properties needed to build the
connector including the connector-specific properties such as the
name, package name, RAR name, and so on.

— build.xml is the overall build file that invokes build_rar.xml.

— build_rar.xml compiles and builds the connector RAR and the
schema JAR containing the mapping XML.

Here are the contents of the RAR file that is built from the Dummy Connector
source:
89

Chapter 4
Here are the contents of the schema JAR file, which contains only one
mapping file called DummyConnectorMapping.xml:
90

glossary
A

Access Control List (ACL)

An abstraction that organizes entitlements and controls authorization. An
ACL is list of entitlements and users that is associated with a secured object,
such as a file, an operation, or an application. In an ACL-based security
system, protected objects carry their protection settings in the form of an ACL.

Access Management

The process of authentication and authorization.

Action

A task that can be performed within each Select Identity capability.

In Workflow Studio, an action invokes functions provided by the workflow
engine or external applications within an activity. For example, you can log
information to a file, set a property to be used later in the workflow, call an
external process, provision a user in Select Identity, or store data in a
database.

See also: Capability

Admin Role

A template that defines the administrative actions that can be performed by a
user. An Administrative Service is created to provide access to roles. Users are
then given access to the Service. Users with administrative roles can also
grant their set of roles to another administrator within their Service context.
91

Glossary
Approval Process

The process of approving the association, modification, or revocation of
entitlements for an identity. This process is automated of these through
workflow templates.

Approver

A Select Identity administrator who has been given approval actions through
an Admin Role.

Attribute

An individual field that helps define an identity profile. For each identity, an
attribute has a corresponding value. For example, an attribute could be
“department” with possible values of “IT,” “sales,” or “support.”

Audit Report

A report that provides regular account interaction information within the
Select Identity system.

Authentication

Verification of an identity’s credentials.

Authoritative Source

A resource that has been designated as the “authority” for identity
information. Select Identity accounts can be reconciled against accounts in an
authoritative source.

Authorization

Real-time enforcement of an identity’s entitlements. Authentication is a
prerequisite for authorization.

Auto Discovery

The process of adding user accounts to the Select Identity system for a
specified Service through the use of a data file.
92

Glossary
B

Business Relationship

A Select Identity abstraction that defines how a logical grouping of users will
access a Select Identity Service. The Select Identity Service is a superset of all
the identity management elements of a business service.

Business Service

A product or facility offered by, or a core process used by, a business in support
of its day-to-day operations. Example business services could include an
online banking service, the customer support process, and IT infrastructure
services such as email, calendaring, and network access.

See also: Service

C

Capability

Actions that can be performed within the Select Identity client are grouped by
capability, or link, in the interface.

See also: Action

Challenge and Response

A method of supplying alternate authentication credentials, typically used
when a password is forgotten. Select Identity challenges the end user with a
question and the user must provide a correct response. If the user answers the
question correctly, Select Identity resets the password to a random value and
sends email to the user. The challenge question can be configured by the
administrator. The valid response is stored for each user with the user’s
profile and can be updated by an authenticated user through the Self Service
pages.

Configurations

A capability that enables you to import and export Select Identity settings and
configurations. This is useful when moving from a test to a production
environment.
93

Glossary
Configuration Report

A report that provides current system information for user, administrator,
and Service management activities.

Connector

A J2EE connector that communicates with the system resources that contain
your identity profile information.

Context

A Select Identity concept that defines a logical grouping of users that can
access a Service.

Contextual Identity Management (CIM)

An organizational model that introduces new abstractions that simplify and
provide scale to the business processes associated with identity management.
These abstractions are modeled after elements that exist in businesses today
and include Select Identity Services and Business Relationships.

Credential

A mechanism or device used to verify the authenticity of an identity. For
example, a user ID and password, biometrics, and digital certificates are
considered credentials.

D

Data File

An SPML file that enables you to define user accounts to be added to Select
Identity through Auto Discovery or Reconciliation.

Delegated Administration

The ability to securely assign a subset of administrative roles to one or more
users for administrative management and distribution of workload. Select
Identity enables role delegation through the Self Service pages from one
administrator to another user within the same Service context.
94

Glossary
Delegated Registration

Registration performed by an administrator on behalf of an end user.

See also: Self Registration

E

End User

A role associated to every user in the Select Identity system that enables
access to the Self Service pages.

Entitlement

An abstraction of the resource privileges granted to an identity. Entitlements
are resource-specific and can be resource account IDs, resource role
memberships, resource group memberships, and resource access rights and
privileges. Entitlements are also considered privileges, permissions, or access
rights.

External Call

A programmatic call to a third-party application or system for the purpose of
validating accounts or constraining attribute values.

F

Form

An electronic document used to capture information from end users. Forms
are used by Select Identity in many business processes for information
capture and system operation.

I

Identity

The set of authentication credentials, profile information, and entitlements for
a single user or system entity. Identity is often used as a synonym for “user,”
although an identity can represent a system and not necessarily a person.
95

Glossary
Identity Management

The set of processes and technologies involved in creating, modifying, deleting,
organizing, and auditing identities.

M

Management

The ongoing maintenance of an object or set of objects, including creating,
modifying, deleting, organizing, auditing, and reporting.

N

Notifications

The capability that enables you to create and manage templates that define
the messages that are sent when a system event occurs.

P

Password Reset

The ability to set a password to a system-generated value. Select Identity uses
a challenge and response method to authenticate the user and then allow the
user to reset or change a password.

Policy

A set of regulations set by an organization to assist in managing some aspect
of its business. For example, policy may determine the type of internal and
external information resources that employees can access.

Process

A repeatable procedure used to perform a set of tasks or achieve some
objective. Whether manual or automated, all processes require input and
generate output. A process can be as simple as a single task or as complicated
a multi-step, conditional procedure.

See also: Approval Process
96

Glossary
Profile

Descriptive attributes associated with an identity, such as name, address,
title, company, or cost center.

Provisioning

The process of assigning authentication credentials to identities.

R

Reconciliation

The process by which Select Identity accounts are synchronized with a system
resource. Accounts can be added to the Select Identity system through the use
of an SPML data file.

Registration

The process of requesting access to one or more resources. Registration is
generally performed by an end user seeking resource access, or by an
administrator registering a user on a user’s behalf.

See also: Delegated Registration, Self Registration

Request

An event within the Select Identity system for the addition, modification, or
removal of a user account. Requests are monitored through the Request
Status capability.

Resource

Any single application or information repository. Resources typically include
applications, directories, and databases that store identity information.

Role

A simple abstraction that associates entitlements with identities. A role is an
aggregation of entitlements and users, typically organized by job function.

See also: Admin Role
97

Glossary
Rule

A programmatic control over system behavior. Rules in Select Identity are
typically used for programmatic assignment of Services. Rules can also be
used to detect changes in system resources.

S

Self Registration

Registration performed by an end user seeking access to one or more
resources.

See also: Delegated Registration

Self Service

The ability to securely allow end users to manage aspects of a system on their
own behalf. Select Identity provides the following self-service capabilities:
registration, profile management, and password management (including
password change, reset, and synchronization).

Service

A business-centric abstraction representing resources, entitlements, and other
identity-related entities. Services represent the products and services that you
offer to customers and partners.

Service Attribute

A set of attributes and values that are available for or required by a Service.
Attributes are created and managed through the Attributes pages.

See also: Attribute

Service View

A restricted view of a Service that is valid for a group of users. Views enable
you to define a subset of Service registration fields, change field names,
reorder fields, and mask field values for specific users.
98

Glossary
Single Sign-On (SSO)

A session/authentication process that permits a user to enter one set of
credentials (name and password) in order to access multiple applications. A
Web SSO is a specialized SSO system for web applications.

SPML Data File

See: Data File

U

Users

The Select Identity capability that provides consistent account creation and
management across Services.

W

Workflow Process

The tasks, procedural steps, organizations or people involved, and required
input and output information needed for each step in a business process. In
identity management, the most common workflows are for provisioning and
approval processes.

Workflow Studio

The Select Identity capability that enables you to create and manage
workflow templates.

Workflow Template

A model of the provisioning process that enables Select Identity to automate
the actions that approvers and systems management software must perform.
99

index
A
agent, 20

API overview, 10

B
build files, 85

C
connector.java, 20

connectors
API overview, 10
creating, 19
deploying, 77
installing, 75
introduction, 8, 19
LDAP example, 80
mapping file, 19, 72
one-way, 8
required Java classes and interfaces, 31
two-way, 9
types, 8

creating a connector, 19

D
deploying a connector, 77

documentation, 17

I
installing a connector, 75

J
Java classes and interfaces, 31

JCA, 10

L
LDAP connector

build files, 85
directory structure, 80
mapping file, 67
overview, 80
ra.xml file, 83
source files, 81 to ??

M
mapping file

ldap example, 66
overview, 19, 72
simple example, 73

O
one-way connector, 8

online help, 17
100

Index
R
ra.xml file

example, 83
overview, 20

S
source file examples, 81 to ??

T
two-way connector, 9

X
XML file, 20
101

	Connector Developer Guide
	contents
	Introduction to Connectors
	Overview of Select Identity Connectors
	J2EE Connector Architecture (JCA)
	Development Phases
	Requirements Phase
	Design Phase
	Implementation
	Integration
	Packaging
	Documentation

	Product Documentation

	Implementing a Connector
	Requirements
	Overview of the Select Identity Connector API
	Understanding the Resource Schema
	Gathering Connector Parameters
	Coding the Connector
	Interface, Class, and Method Implementations
	JCA Interfaces
	Select Identity Connector API Interfaces and Classes

	Implementation of Reverse Synchronization
	SPML Request Examples
	XSL File for Parsing Reverse Synchronization SPML

	JNDI Registration of the Parameter Factory Implementation

	Mapping Select Identity Attributes to the Resource Schema
	General Attribute Information
	Creating a Mapping File

	Installing a Connector
	On WebLogic
	On WebSphere

	Configuring a Connector in Select Identity
	Testing a Connector

	LDAP Connector Example
	Description of the Connector Source Files
	Description of the Build Files

	Dummy Connector Example
	glossary
	index

