
HP Operations Orchestration
For the Windows ®, Solaris ®, and Linux operating systems

Software Version: 9.04

Software Development Kit Guide

Document Release Date: April 2012

Software Release Date: April 2012

Legal Notices
Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice
© Copyright 2005 - 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

This product includes an interface of the 'zlib' general purpose compression library, which is
Copyright © 1995-2002 Jean-loupGailly andMark Adler.

HP Operations Orchestration (9.04)Page 2 of 190

Software Development Kit Guide

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go
to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport
ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

The following table indicates changes made to this document since the last released edition.

HP Operations Orchestration (9.04)Page 3 of 190

Software Development Kit Guide

Support
Visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support
that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed tomanage your business. As a
valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest

l Submit and track support cases and enhancement requests

l Download software patches

l Manage support contracts

l Look up HP support contacts

l Review information about available services

l Enter into discussions with other software customers

l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Operations Orchestration (9.04)Page 4 of 190

Software Development Kit Guide

Contents
Software Development Kit Guide 1

Contents 5

Welcome to the Operations Orchestration SDK 14

In OO: How to find Help, PDFs, and tutorials 14

Download SDK 15

SDK Contents 15

About the SDK Guide 18

Style guidelines and best practices 19

How default OO content is organized in Studio 19

Best practices for flows 20

Best practices for steps 21

Best practices for operations 22

Naming convention guidelines 24

Authoring IActions 26

What is an IAction? 26

About RAS 26

Creating IActions 27

About the IAction interface 27

getActionTemplate method 28

RASBinding objects 35

executemethod 41

Guidelines for creating IActions 44

Important points for creating Java IActions 45

Important points for creating .NET IActions 45

Implementing Java IActions 45

Required development files for Java IActions 45

Loading Java IActions into Studio 46

HP Operations Orchestration (9.04)Page 5 of 190

Using third-party libraries for Java IActions 46

Debugging Java IActions 49

Java IAction code example 51

Implementing .NET IActions 54

Required development files for .NET IActions 54

Loading .NET IActions into Studio 54

Debugging .NET IActions 54

.NET IAction code example 55

Useful Java Commons Library classes 57

com.opsware.pas.content.commons.utilStringUtils class 57

Useful .NET Commons Library classes 57

Identities class 58

Password class 60

Finding and running flows from outside Central 62

About finding and running flows from outside Central 62

Running flows with URLs created in Central 62

Running a flow from a command line 64

Creating a URL for running a flow 64

Identifying the flow in the URL 64

Specifying the inputs for a flow in a URL 65

Running flows asynchronously using a URL 66

Finding and running flows with tools that access the REST service 67

Running flows usingWget 67

Finding and running flows using RSFlowInvoke or JRSFlowInvoke 70

Using RSFlowInvoke or JRSFlowInvoke from a command line 72

Using RSFlowInvoke or JRSFlowInvoke in a script or batch file 72

Searching for a flow using JRSFlowInvoke.jar 73

Creating an encrypted password 75

Registering RSFlowInvoke with the Global Assembly Cache 75

RSFlowInvoke and JRSFlowInvoke results 76

Finding and running flows using theWSCentralService SOAP API 77

Accessing theWSCentralServiceWSDL 77

HP Operations Orchestration (9.04)Page 6 of 190

Software Development Kit Guide
Contents

WS Central Service: Using the API documentation 78

How WSCentralServicemanages security and authentication 78

WS Central Service: Importing the SSLCertificate 78

WS Central Service: Sample client code 79

WSCentralService: Service stubs sample 79

Resuming runs from the command line 80

Resuming a run synchronously 83

Resuming a run asynchronously 84

Working with repositories from outside Studio 88

Using the Repository Tool 88

Primary RepoTool options 89

Secondary RepoTool options 90

Return codes 94

Publishing a repository 94

Updating from a repository 96

Publishing and updating a repository simultaneously 96

Exporting a repository 97

Verifying a repository 97

Upgrading a repository 98

Encrypting a repository 98

Decrypting a repository 99

Re-encrypting a repository 99

Setting default permissions for a repository 100

Exporting content to be localized 100

Importing a localization file 101

Setting flags 101

Deleting objects 103

Packaging content 104

Installing the content 104

Creating the XML configuration file 105

Using the Content Packager 105

The project element 106

HP Operations Orchestration (9.04)Page 7 of 190

Software Development Kit Guide
Contents

The ras element 107

The archive element 107

The repository element 108

XML configuration file example 110

Packaging, depackaging, and repackaging the content 112

Configuring the OO home directory structure 114

Inspecting a repository 115

Checking best practices 115

Checking version compatibility 117

Generating release notes 119

Listing repository contents 120

Automating flow testing 121

System properties 121

Parameters 121

Sample XML input files 123

Debugging OO client/server problems 128

OO SOAP API Reference 130

SOAP API: Constant field values 131

com.iconclude.* 131

SOAP API: Repository folders 133

createFolder 133

Exceptions 133

moveFolder 134

Exceptions 134

SOAP API: Flows 135

moveFlow 135

Exceptions 135

SOAP API: Runs 136

WSRunParameters 136

Direct Known Subclasses: 136

Constructor Summary 136

Method Summary 137

HP Operations Orchestration (9.04)Page 8 of 190

Software Development Kit Guide
Contents

Methods inherited from class java.lang.Object 137

Constructor Detail 137

Method Detail 137

Class WSRunParametersEx 139

Constructor Summary 139

Method Summary 140

Methods inherited from class
com.iconclude.dharma.services.wscentralservice.WSRunParameters 140

Methods inherited from class java.lang.Object 140

Constructor Detail 140

WSRunParametersEx() 140

Method Detail 140

boolean isStatusWanted() 140

void setStatusWanted(boolean statusWanted) 140

boolean isRawResultWanted() 141

void setRawResultWanted(boolean rawResultWanted) 141

boolean isPrimaryResultWanted() 141

void setPrimaryResultWanted(boolean primaryResultWanted) 141

WSRunHandle 141

Direct Known Subclasses: 141

Constructor Summary 142

Method Summary 142

Methods inherited from class java.lang.Object 142

Constructor Detail 142

Method Detail 143

SOAP API: Selection lists 144

createSelectionList 144

Inputs 144

Outputs 144

Exceptions 144

getSelectionList 145

Inputs 145

HP Operations Orchestration (9.04)Page 9 of 190

Software Development Kit Guide
Contents

Outputs 145

Exceptions 145

SOAP API: Clusters 146

getClusterNodes 146

Inputs 146

Outputs 146

Exceptions 146

SOAP API: Scheduler 147

Serialized form 147

Class com.iconclude.dharma.scheduler.web.ScheduleDisplayInfo extends
ScheduleInfo implements Serializable 147

Class com.iconclude.dharma.scheduler.web.ScheduleInfo extends
java.lang.Object implements Serializable 147

Serialized Fields 147

Class Pair 149

Constructor Summary 150

Method Summary 150

Methods inherited from class java.lang.Object 150

Constructor Detail 150

Method Detail 150

getFirst 150

setFirst 151

getSecond 151

setSecond 151

Class ScheduledFlowInfo 151

Constructor Summary 151

Method Summary 153

Methods inherited from class java.lang.Object 154

Constructor Detail 154

Method Detail 155

getDescription 155

setDescription 155

getEnabled 155

HP Operations Orchestration (9.04)Page 10 of 190

Software Development Kit Guide
Contents

setEnabled 155

getExecuting 156

setExecuting 156

getLastRunReportURL 156

setLastRunReportURL 156

getLastRunReturnCode 156

setLastRunReturnCode 157

getLastRunSuccessful 157

setLastRunSuccessful 157

getName 157

setName 158

getNextRuntime 158

setNextRuntime 158

getPrevRuntime 158

setPrevRuntime 158

getFlowName 159

setFlowName 159

getNextTriggerNames 159

setNextTriggerNames 159

getPrevTriggerNames 159

setPrevTriggerNames 159

getPaused 159

setPaused 160

Class ScheduleInfo 161

All Implemented Interfaces: 161

Constructor Summary 161

Method Summary 162

Methods inherited from class java.lang.Object 165

Constructor Detail 165

Method Detail 166

getDescription 166

setDescription 166

HP Operations Orchestration (9.04)Page 11 of 190

Software Development Kit Guide
Contents

getEnabled 166

setEnabled 167

getEndTime 167

setEndTime 167

getName 167

setName 168

getParams 168

setParams 168

getRepeatCount 168

setRepeatCount 169

getRepeatIntervalMilli 169

setRepeatIntervalMilli 169

getStartTime 169

setStartTime 169

getUnits 170

setUnits 170

getType 170

setType 170

getExecuting 171

setExecuting 171

getNextRuntime 172

setNextRuntime 172

getPrevRuntime 172

setPrevRuntime 172

getCronExpression 172

setCronExpression 173

getDayNumber 173

setDayNumber 173

getMonthNumber 174

setMonthNumber 174

getDayType 174

setDayType 174

HP Operations Orchestration (9.04)Page 12 of 190

Software Development Kit Guide
Contents

getDayOrder 175

setDayOrder 175

getTriggerName 175

setTriggerName 176

getPaused 176

setPaused 176

deleteSchedule 176

getSchedule 176

isSchedulePaused 177

pauseSchedule 177

resumeSchedule 177

pauseScheduledFlow 178

resumeScheduledFlow 178

scheduleFlow 178

getScheduledFlows 187

SOAP API: Get Attributes 188

WSAttribute[] getAttributes(String, String[]) 188

Attribute values: 188

Exceptions are thrown if: 189

HP Operations Orchestration (9.04)Page 13 of 190

Software Development Kit Guide
Contents

Welcome to the Operations Orchestration
SDK

TheOperations Orchestration Software Development Kit (SDK) contains documentation, tools,
libraries, and code samples for developers and IT professionals who want to:

l Learn best practices for designing flows, steps, and operations.

l Create IActions to run Operations Orchestration (OO) operations through a Remote Action
Service (RAS).

l Find and run flows from outside Central.

l Run repository functions from outside Studio.

l Package new and updated content for distribution on Central and RAS servers.

l Inspect a repository.

l Automate flow testing.

l DebugOO client/server problems.

In OO: How to find Help, PDFs, and tutorials
The HP Operations Orchestration Software (HP OO) documentation set is made up of:

l Help for Central

Central Help provides information to the following:

n Finding and running flows

n For HP OO administrators, configuring the functioning of HP OO

n Generating and viewing the information available from the outcomes of flow runs

The Central Help system is also available as a PDF document in the HP OO home directory, in
\Central\docs.

l Help for Studio

Studio Help instructs flow authors at varying levels of programming ability.

The Studio Help system is also available as a PDF document in the HP OO home directory, in
\Studio\docs directory.

l Animated tutorials for Central and Studio

HP OO tutorials can each be completed in less than half an hour and provide basic instruction on
the following:

HP Operations Orchestration (9.04)Page 14 of 190

n In Central, finding, running, and viewing information from flows

n In Studio, modifying flows

The tutorials are available in the Central and Studio subdirectories of the HP OO home directory.

l Self-documentation for HP OO operations, flows, and Accelerator Packs

Self-documentation is available in the descriptions of the operations and steps that are included
in the flows.

Download SDK
To locate and download the SDK Installation Package:

1. Go to https://hpln.hp.com/group/operations-orchestration

2. Click on “Other Files”

3. Expand “HP Operations Orchestration 9.00”

4. Expand “HP Operations Orchestration 9.03 SDK”

5. Then, open the zip file.

You can place the SDK in any location on a Central or RAS server. The code samples in this guide
can be placed anywhere and you can usemost development tools to point to the code and import
and use it as if it was on Central.

SDK Contents
In this guide, the folder in which you install the SDK is referred to as the OOSDK home directory.
The basic folder structure of the OOSDK home directory looks like this:

l docs\ folder

n javadocs\ folder

n SDKGuide.pdf

l lib\ folder

n ContentCommons-9.00.jar

n dharma-commons-9.00.jar

n JRAS-sdk-9.00.jar

n wscentral.dll

n WSCentralService.jar

l samples\ folder

l AutoTest.jar

l ContentPackager.jar

l JRSFlowInvoke.jar

l RepoInspector.jar

HP Operations Orchestration (9.04)Page 15 of 190

Software Development Kit Guide
Welcome to the Operations Orchestration SDK

l RepoTool.jar

l RSFlowInvoke.exe

l Sdk_contents.txt

The SDK contains the following components:

n SDKGuide.pdf

The documentation for the entire SDK. It includes conceptual information, descriptions of and
step-by-step instructions for using tools, command syntaxes, class andmethod syntaxes,
code examples, and code samples. The SDKGuide.pdf file is located in the OOSDK home
directory, in the docs\ folder.

n IAction interface, methods, and classes

IAction interface, methods, and classes that allow you to author Java and .NET IActions—
code that implements OO operations through a Remote Action Service (RAS). The IAction
interface, methods, and classes are located in the OOSDK home directory, in the lib\ folder.

n API documents

Javadocs for both the JRAS and Central. The javadocs are located in the OOSDK home
directory, in the docs\ folder.

n WSCentralService SOAP API

TheWSCentralService API Java and .NET classes and interfaces are located in the OO
SDK home directory in the lib\ folder. The certificates, keystore, WSDL, and sample code are
located in the OOSDK home directory, in the samples\ folder.

n Samples

IAction Java sample code andWS Central Service SOAP API sample code.

n AutoTest.jar

A utility allows you to run automated tests. AutoTest.jar is located in the OOSDK home
folder.

n ContentPackager.jar

Tools and commands that allow you to package and install OO content updates.
ContentPackager.jar is located in the OOSDK home directory.

n RepoInspector.jar

A utility that allows you to check the repository. RepoInspector.jar is located in the OOSDK
home directory.

n RepoTool.jar

A utility that allows you to perform a number of repository functions from outside Studio. The
RepoTool.jar utility is located in the OOSDK home directory.

n RSFlowInvoke.exe and JRSFlowInvoke.jar

HP Operations Orchestration (9.04)Page 16 of 190

Software Development Kit Guide
Welcome to the Operations Orchestration SDK

TheWindows and Java Versions of a utility with which you find and runOO flows outside of
Central from a command line, an application that uses a command line, a script, or a batch
file. RSFlowInvoke.exe and JRSFlowInvoke.jar are located in the OOSDK home directory.

HP Operations Orchestration (9.04)Page 17 of 190

Software Development Kit Guide
Welcome to the Operations Orchestration SDK

About the SDK Guide
The SDK Guide provides information on the following:

l The folder structure of the installed SDK and the SDK contents.

l How OO content is organized in Studio, provides guidelines for flow layout and naming
conventions, and best practices for creating flows, steps, and operations.

l How to use the IAction interface, methods, and classes to create Java and .NET IActions—OO
operations that are implemented through a RAS. It also explains how to load your IActions into
Studio and debug them.

l How you canmanage flows outside of Central using:

n URLS created in Central.

n Command-line tools that access the REST service—Wget.exe, RSFlowInvoke.exe, and
JRSFlowInvoke.jar.

n TheWSCentralService SOAP API.

l Working with repositories from outside Studio: How to use the RepoTool.jar utility to perform
repository functions from outside Studio.

l Packaging content: How to use the Content Packager utility to package updated content and
publish it to Central and RAS servers in your network.

l How to use the RepoInspector utility to check a repository.

l Automating flow testing: How to use the AutoTest utility to stress test your flows.

l Debugging OO client/servers problems: How to allow HTTP connections to Central and RAS for
debugging purposes.

HP Operations Orchestration (9.04)Page 18 of 190

Software Development Kit Guide
Welcome to the Operations Orchestration SDK

Chapter 1

Style guidelines and best practices
Following style guidelines and best practices for creating content—operations and flows—in
Hewlett-Packard Operations Orchestration (HP OO) enables content andQA engineers, field
engineers, and customers to create flows more quickly and efficiently. You should follow these
guidelines for any content that you create and submit to the OO content community.

How default OO content is organized in Studio
Default OO content consists of all the flows and operations that comewith your installation of OO.
These flows and operations are contained in folders in the Studio Library.

Folders in Studio Library

The following describes the Studio Library folders that contain default content.

Folder Folder Contents

Accelerator
Packs

Flows organized into subfolders by technologies, and are designed to solve
common IT problems. For most networks, these flows:

Perform complex health checks, triage, diagnosis, or remediation.

Gather one or more pieces of data and display it to the user, or simply
acknowledge alerts, gather data, and place it into a ticket.

The flows at the top level of an Accelerator Pack are usually full health check,
triage, diagnosis, and remediation flows.

Integrations Operations that can be used to integrate OOwith other enterprisemanagement
software products, such as Hewlett-Packard Network NodeManager and BMC
Remedy.

Because the enterprise software products used in your data center may be highly
customized, youmay need to create custom flows to use these operations.

HP Operations Orchestration (9.04)Page 19 of 190

Software Development Kit Guide
Chapter 1: Style guidelines and best practices

Folder Folder Contents

ITIL Flows that automate integrations with other enterprise-level software in
accordance with Information Technology Infrastructure Library (ITIL)
specifications, such as ChangeManagement.

Operations General-purpose operations and flows that work with common technologies. These
operations are sealed and cannot be changed once you have installed OOCentral.

The flows in the Operations folder and its subfolders aremeant to be used as
subflows. Flows that aremeant to be run on their own are in the Accelerator Packs
folder.

Templates Templates that provide steps for flows that perform certain frequently used tasks.
For example, the Restart Service template restarts a service, so you could use it in
a flow that includes this task.

Utility
Operations

Operations and subflows that gather and display data, replace simple command-
line operations, manipulate and analyze data, provide structure to flows, and
perform other tasks that are not specific to a technology.

Note: TheMy Ops Flows folder is empty when you install OO. When you create flows from
templates, OO automatically stores them here. You can also store flows that you create in this
folder.

Best practices for flows
The following best practices will make it easier for customers to use the flows you create.

l Best practices for flow inputs:

n Ideally, input values used by flow steps are supplied by flow inputs and passed to the steps
by flow variables.

This may not always be practical. For instance, a user might need to enter an input in
response to a prompt somewhere in the flow run. In general, though, flow authors should
assume that a user will begin a flow and then start another task while the flow is running.
Assigning as much data as possible to flow inputs also simplifies making changes to the
flow.

l Best practices for flow descriptions:

To help Central users who will use your flows and authors who will create other flows using them
as subflows, add the following information to the flow’s Description tab. (If you createmultiple
flows or operations that interact with the same technology, group them into a single folder and
provide this information in the folder’s Description tab. This is the practice for default HP OO
content.)

Putting this information on theDescription tabmakes it available to authors and Central users
through theGenerate Documentation feature. For more information on theGenerate
Documentation feature, see the Studio Authoring Guide (Studio_AuthorsGuide.pdf) or the Studio
online Help system.

HP Operations Orchestration (9.04)Page 20 of 190

Software Development Kit Guide
Chapter 1: Style guidelines and best practices

n A description of what the flow does and information needed for the flow user to successfully
use the flow and obtain useful information from its results:

o Any special requirements or changes that are necessary for the flow to run automatically
(on a schedule or started from outside Central).

o Limitations to the flow’s usage, such as:

Limitations:

This flow only works:

-- On Windows 2003 or later.

-- If the Windows Telnet Service is enabled.

-- If RAS is installed on a host running Microsoft Operations
Manager.

o Which of the flow's inputs are required, and information on where authors can find the data
that the inputs require and the required format for the data

o The flow's responses, including themeaning of each response

o Result fields, including a description of the data supplied in each result field

o Any additional implementation notes, such as:

o Supported platforms or applications, including version information

o Application orWeb service APIs that the flow interacts with (this can be particularly
important for flows that require an RAS to run, because the RAS operation can hide this
information from the author or user of the flow.

o Other environmental or usage requirements

Other best practices for flows

l A flow that performs triage, diagnosis, or remediation should first verify that a problem exists.

l A flow that sends a notification to the user should use notification subflows, which enable the
flow author to choose from several means of notifying the user.

For instance, theWeb site Health Check flow uses the Notify subflow. Once the user configures
theWeb site Health Check flow to his or her e-mail and ticketing systems, all flows that use this
flow will send notifications correctly.

l You should annotate (that is, supply a description for) all transitions in a top-level parent flow.

These transition descriptions should describe what happened in the step that preceded the
transition. In Central, the Results Summary for the run displays the description for each
transition, and so provides a running, high-level account of what took place in the flow run. You
need not annotate transitions in a subflow unless the data is critical to see during a run in
Central.

Best practices for steps
To streamline the steps in a flow, consider using the following best practices for steps.

HP Operations Orchestration (9.04)Page 21 of 190

Software Development Kit Guide
Chapter 1: Style guidelines and best practices

l Steps do not generally require descriptions, because (as described above) the transition
description of the step’s response tells what happened in the step.

l An operationmay providemany results. Only results that the flow needs should be assigned to
flow variables by the step.

l If a step or transition needs the exact error that came back from an operation, create a step
result that captures the error code, and assign the error code to a flow variable.

l To assign information to a flow variable, use the step’s Results tab. Filters on the results greatly
enhance your flexibility in obtaining data from step results.

l Any time a stepmakes amodification to the IT environment, consider recording the data for
Dashboard reporting in Central. If a change is made, reporting information should be recorded on
the next step following the success transition. This oftenmeans that reporting information is
recorded on flow return steps.

Best practices for operations
To help authors who will create flows using the operations you create, use the following best
practices for operations.

l Add the following information to the operation’s Description tab. (If you createmultiple flows or
operations that interact with the same technology, group them into a single folder and provide
this information in the folder’s Description tab. This is the practice for default HP OO content.)
Note that putting this information on the Description tabmakes it available to authors and
Central users through theGenerate Documentation feature. For more information onGenerate
Documentation, see the Studio Authoring Guide (Studio_AuthorsGuide.pdf) or Studio's online
Help system.

n A description of what the operation does

n Inputs that the operation requires, including where authors can find the data that the inputs
require and the required format for the data

n Responses, including themeaning of each response

n Result fields, including a description of the data supplied in each result field

n Any additional implementation notes, such as:

o Supported platforms or applications, including version information

o Application orWeb service APIs that the flow interacts with (this can be particularly
important for flows that require an RAS to run, because the RAS operation can hide this
information from the author or user of the flow.

o Other environmental or usage requirements

n Use the following template as the basis for your operation descriptions:

Description of what the operation does.

Inputs:

HP Operations Orchestration (9.04)Page 22 of 190

Software Development Kit Guide
Chapter 1: Style guidelines and best practices

Input1 - info about this input

Input2 - info about this input

Input3 - info about this input

Responses:

Response1 - info about this response

Response2 - info about this response

Result:

The primary result of the flow/operation

Extra Results:

Result1 - The first additional result

Result2 - The second additional result

n Do not make copies of sealed operations, such as those in the Operations folder. Instead,
make changes to the steps that you have created from sealed operations.

n By default, operations should use and set flow variables for inputs that are used repeatedly in
a particular flow. For example, multiple operations in a flow might need the host, username,
and password inputs to get information from a server or the port of a mail server. Assigning
those values to flow variables that are used in the various steps that require such data
simplifies maintenance of the flow andmakes it easier to adapt to different situations.

In contrast, the subject line of an e-mail is probably different for each step that requires an e-
mail subject line. Therefore, the subject line is probably not a good candidate for being
provided from a flow variable.

n Avoid creatingmultiple operations that run the same command. For example, you can get
both packet loss andmaximum latency from a ping operation. Rather than createmultiple
operations that use the ping command, a better practice is to capture both pieces of
information in one step by usingmultiple outputs of one ping operation.

Exceptions to this principle are operations that are extremely generic, such as an operation
that runs aWMI command. It is better to createWMI command operations that are specific to
particular functions, instead of a single operation that has a very generic input for theWMI
command and very generic outputs.

n For capturing data from the output stream of a command, using result filters is better than
using a scriptlet. There are several reasons:

o Result filters are accessible and immediately visible on the Results tab editor rather than
residing separately, as scriptlets do on the Scriptlets tab.

o Scriptlets aremore difficult for non-programmers tomaintain.

HP Operations Orchestration (9.04)Page 23 of 190

Software Development Kit Guide
Chapter 1: Style guidelines and best practices

o If one of the operation’s results is removed, the result filters are automatically invalidated.
Any scriptlets that the author fails to remove after deleting the result that the scriptlet
manipulates remain and can cause bugs in the flow.

o If you need a scriptlet for the desired processing of the result data, you can use a scriptlet
filter.

n Most operations should have only two responses—success and failure. Using a small
number of responses makes flows easier to create and understand. Multiple responses based
on different types of failures should only be used when there are obvious distinct paths to
follow or there are circumstances where an outcomemay only be a failure because of the
situation (such as a redirect response to an HTTP Get).

However, don’t force this principle when it doesn’t make sense. For example, an operation
that gets data and checks a thresholdmay require three responses (none of which is a
success response)—failure, over threshold, and under threshold.

n The default response for an operation should be failure. This way an incomplete operation
shows as a failure during flow debugging and points the author to the problem before the flow
goes into production.

Naming convention guidelines
Using the following naming conventions will significantly help authors debug or modify flows and
operations as necessary:

l Use Title Case (first letter capitalized for all except helper words like ‘a’, ‘the’, ‘and’, ‘by’, ‘for’)
for:

n Items in the Library (flows, folders, and operations, and items in the Configuration folder).

For example: “Reboot a Server”, “Check the Log Files”, and, in the Configuration\Domain
Terms\ folder, “CI Minor Type”.

n Step names.

l Use lower case for responses in an operation (spaces are permissible).

For example: failure, success, over threshold.

l Use camel case (first letter of the name is lower-case; subsequent first letters of words
contained in the name are upper-case) for:

n Input names, such as protocol andmessageNumber

n Output names, such as hopCountThreshold

n Result names, such as aclData

n Flow variable names, such as aclData and userId

No spaces or other non-alphanumeric characters are allowed in camel case names.

l Some common input names occur across many operations and steps. Tomake it as easy as
possible to author using operations that are available immediately upon installing OO, the
following input names are used in OO content:

HP Operations Orchestration (9.04)Page 24 of 190

Software Development Kit Guide
Chapter 1: Style guidelines and best practices

n host

ForWindows, the host is themachine on which the operation works (for example, the host
from which you are getting a performance counter or on which you are restarting a service).
For secure shell (SSH) operations, the host is themachine on which the command is running.

n username

The name of the account to use for logging on to themachine.

n password

The password to use to log on to themachine.

Use the following boilerplate to list these inputs in an operation description:

Inputs:

host: The host to run the command against

username: The user name to use when logging on to this machine

password: The password to use when logging on to this machine

l Other common input names include:

n mailHost

The host machine from which an e-mail is sent.

n target

When the host affects another system, the system that is affected by the host should be
called the target. For example, if you SSH to server1 to run a ping against server2, then the
host is server1 and the target is server2.

HP Operations Orchestration (9.04)Page 25 of 190

Chapter 2

Authoring IActions
This chapter defines IActions and Remote Action Service (RAS), and explains how to:

l Use the IAction interface andmethods to author Java and .NET IActions.

l Load your IActions into OOStudio.

l Debug your IActions.

It also provides code examples, and useful Java and .NET Commons Library classes that may help
you develop IActions.

What is an IAction?
Within a Remote Action Service (RAS) operation], an IAction is the code that implements an
operation through a RAS—a service that executes operations onmachines that are remote from the
Central server. You can use RAS operations to implement functionality that interacts with systems
throughout your network or over the Internet. A good example of this is using RAS operations to
integrate OOwith other applications, platforms, and services.

Using a RAS operation instead of a scriptlet or command-line operation, allows the operation to run
hosted on a RAS. The advantage of this is that you can havemultiple RASes running in different
network segments and run operations on any of them.

RAS operations are written in either Java or .NET. The RAS operations for Java are packaged in
.jar files and those for .NET are packaged in .dll files.

Note: RAS installed on aWindows server supports both Java and .NET RAS operations.
However, RAS installed on a Linux server only supports Java RAS operations—it does not
support .NET RAS operations.

About RAS
OOCentral is installed with a default RAS namedRAS_Operator_Path. You can also deploy OO
RAS standalone—that is, onmachines that are physically separate from the Central server. This
process is explained in the Installing HP Operations Orchestration Guide (InstallGuide.pdf).

TheOORAS contains the IAction interface which specifies how your action classes must be built.
For an operation to be accessible to the RAS for execution, the class that holds that operationmust
implement the IAction interface.

TheOO server uses HTTP over the Secure Socket Layer (HTTPS) protocol to initiate
communications between itself and the RAS, so you can deploy a RAS on the other side of a
firewall or domain boundary and have it execute code for OO.

HP Operations Orchestration (9.04)Page 26 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Currently the OORAS supports the platform and language combinations shown in the following
table.

Platform Java .NET

Windows 32-bit X X

Windows 64-bit X X

Linux 32-bit X

Linux 64-bit X

Creating IActions
To create an IAction you implement the IAction interface. This section explains how to use the
IAction interface and provides you with guidelines and important points for creating IActions.

About the IAction interface
The IAction interface specifies how to build your Action classes. These classes define the RAS
operations and are stored in the .jar or .dll files associated with the RAS.

The IAction interface uses the executemethod as well as methods that are specific to theWeb
application, standalone application, platform, or extension service for which you want the actions
performed. The IAction interfacemediates betweenOO and systems external to OO.

Syntax

Java

public interface IAction {

ActionTemplate getActionTemplate();

ActionResult execute(ISessionContext sessionContext, ActionRequest
actionRequest,
IActionRegistry actionRegistry)throws Exception;

}

.NET

public interface IAction

{

ActionTemplate GetActionTemplate();

ActionResult Execute(ActionRequest req, ISession s,
IActionRegistry reg);

}

HP Operations Orchestration (9.04)Page 27 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Thus the IAction interface defines the following public methods that are needed to create IActions:

l getActionTemplate method

l executemethod

getActionTemplate method
The getActionTemplate method returns the ActionTemplate object which describes the properties
of the IAction to OO. These properties are shown in the following table.

Property Description

The description
of your
operation.

Model the description after the operation descriptions included with the built-in
OORAS operations. The description should include the following information
for flow authors whomay use the operation:

l An explanation of what the operation does.

l Definitions of the inputs to the operation.

l Definitions of the responses that are returned by the operation.

l Definitions of any other results that are returned by the operation.

A map of the
inputs the
operation needs.

Set the key to the name of the input. You can leave the value as a blank string
or set it to a RASBinding object. A RASBinding object has properties that
correspond tomost of the options that are available on the Inputs tab of the
Inspector in Studio. The order in which you add inputs to themap is the order
in which they will appear in the operation once it is imported.

A map of the
responses the
operation
returns

Set the key to the text that each response transition will show. The value
must be the integer that is returned by the IAction’s returnCode which tells
Central the transition to follow when the operation has completed.

A map of any
other results
returned by the
IAction that are
available for use
in a flow.

Set the key to the name of the result; the valuemust be a blank string.

Syntax

Java

public class ActionTemplate {

private String description;

private String overrideRas = "${overrideJRAS}";

private Map parameters;

private Map resultFields;

HP Operations Orchestration (9.04)Page 28 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

private Map responses;

public ActionTemplate() { }

public ActionTemplate(String description, Map parameters,

Map resultFields, Map responses) {

this.description = description;

this.parameters = parameters;

this.resultFields = resultFields;

this.responses = responses;

}

/**

* Gets the description value for this ActionTemplate.

* @return description

*/

public String getDescription() {

return description;

}

/**

* Sets the description value for this ActionTemplate.

* @param description

*/

public void setDescription(String description) {

this.description = description;

}

/**

* Gets the parameters value for this ActionTemplate.

* @return parameters

HP Operations Orchestration (9.04)Page 29 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

*/

public Map getParameters() {

return parameters;

}

/**

* Sets the parameters value for this ActionTemplate.

* @param parameters

*/

public void setParameters(Map parameters) {

this.parameters = parameters;

}

/**

* Gets the resultFields value for this ActionTemplate.

* @return resultFields

*/

public Map getResultFields() {

return resultFields;

}

/**

* Sets the resultFields value for this ActionTemplate.

* @param resultFields

*/

public void setResultFields(Map resultFields) {

this.resultFields = resultFields;

}

/**

* Gets the responses value for this ActionTemplate.

* @return responses

HP Operations Orchestration (9.04)Page 30 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

*/

public Map getResponses() {

return responses;

}

/**

* Sets the responses value for this ActionTemplate.

* @param responses

*/

public void setResponses(Map responses) {

this.responses = responses;

}

/**

* Sets the overrideRas value for this ActionTemplate.

* @param overrideRas

*/

public String getOverrideRas() {

return overrideRas;

}

/**

* Gets the overrideRas value for this ActionTemplate.

* @param overrideRas

*/

public void setOverrideRas(String overrideRas) {

this.overrideRas = overrideRas;

}

}

HP Operations Orchestration (9.04)Page 31 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

.NET

public class ActionTemplate {

private String description;

private String overrideRas = "${overrideJRAS}";

private Map parameters;

private Map resultFields;

private Map responses;

public ActionTemplate () { }

public ActionTemplate (String description, Map parameters,

Map resultFields, Map responses) {

this.description = description;

this.parameters = parameters;

this.resultFields = resultFields;

this.responses = responses;

}

/**

* Gets the description value for this ActionTemplate

* @return description

*/

public String getDescription() {

return description;

}

/**

* Sets the description value for this ActionTemplate

* @param description

*/

HP Operations Orchestration (9.04)Page 32 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

public void setDescription(String description) {

this.description = description;

}

/**

* Gets the parameters value for this ActionTemplate.

* @return parameters

*/

public Map getParameters() {

return parameters;

}

/**

* Sets the parameters value for this ActionTemplate.

* @param parameters

*/

public void setParameters(Map parameters) {

this.parameters = parameters;

}

/**

* Gets the resultFields value for this ActionTemplate.

* @return resultFields

*/

public Map getResultFields() {

return resultFields;

}

/**

* Sets the resultFields value for this ActionTemplate.

* @param resultFields

*/

HP Operations Orchestration (9.04)Page 33 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

public void setResultFields(Map resultFields) {

this.resultFields = resultFields;

}

/**

* Gets the responses value for this ActionTemplate.

* @return responses

*/

public Map getResponses() {

return responses;

}

/**

* Sets the responses value for this ActionTemplate

* @param responses

*/

public void setResponses(Map responses) {

this.responses = responses;

}

/**

* Sets the overrideRas value for this ActionTemplate.

* @param overrideRas

*/

public String getOverrideRas() {

return overrideRas;

}

/**

* Gets the overrideRas value for this ActionTemplate.

* @param overrideRas

*/

HP Operations Orchestration (9.04)Page 34 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

public void setOverrideRas(String overrideRas) {

this.overrideRas = overrideRas;

}

}

RASBinding objects
RASBinding objects expand the inputs in an ActionTemplate method. RASBindings allow you to
identify exactly how the input is to be defined once it is imported into OO. This includes the default
settings shown on the Inputs tab of the Inspector in Studio as shown in the following figure.

Inputs tab of Studio Inspector

RASBindings have the properties shown in the following table.

Property Description

encrypted (Boolean, false) Determines whether the particular input should be encrypted.

required (Boolean, false) Determines whether the particular input should be required.

assignTo (Boolean, true) Determines whether the Assign to flow variable check box is
checked.

assignFrom (Boolean,
true)

Determines whether the Assign from flow variable check box is
checked.

assignFromText (String,
empty)

Determines the text in the Assign from flow variable field.

HP Operations Orchestration (9.04)Page 35 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

assignToText (String,
empty)

Determines the text in the Assign to flow variable field.

type (INPUT_TYPE,
INPUT_TYPE.Empty)

Determines the type of input:

l Empty

An empty binding that will become a prompt if not changed.

l Static

A static binding. Whatever is entered for the value property will
become the value of this input.

l Prompt

A prompt-user binding. Whatever is entered in the value property
will be the text that is used to prompt the user.

l value (String, empty)

The value that is assigned to either the static field or the prompt
user field depending on the type specified.

You can also use the RASBindingFactory method whosemain purpose is to quickly create
RASBindings with default style behaviors.

Syntax

Java

public class RASBindingFactory {

/*

* Empty Bindings

*/

public static RASBinding createEmptyRASBinding(){

return new RASBinding();

}

public static RASBinding createEmptyRASBinding(boolean required,

boolean encrypted){

return updateBinding(createEmptyRASBinding(), required,
encrypted);

}

/*

HP Operations Orchestration (9.04)Page 36 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

* Prompts

*/

public static RASBinding createPromptBinding(String value){

return createBinding(value, RASBinding.INPUT_TYPE.Prompt);

}

public static RASBinding createPromptBinding(String value,
 boolean required){

return updateBinding(createPromptBinding(value), required,
false);

}

public static RASBinding createPromptBinding(String value,
boolean required,boolean encrypted){

return updateBinding(createPromptBinding(value), required,
encrypted);

}

/*

* Statics

*/

public static RASBinding createStaticBinding(String value){

return createBinding(value, RASBinding.INPUT_TYPE.Static);

}

public static RASBinding createStaticBinding(String value,
boolean required){

return updateBinding(createStaticBinding(value), required,
false);

}

public static RASBinding createStaticBinding(String value,
boolean required,boolean encrypted){

return updateBinding(createStaticBinding(value), required,
encrypted);

HP Operations Orchestration (9.04)Page 37 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

}

/*

* Private section

*/

private static RASBinding createBinding(String value,

RASBinding.INPUT_TYPE type){

RASBinding r = new RASBinding();

r.type = type;

r.value = value;

return r;

}

private static RASBinding updateBinding(RASBinding b,
boolean required,boolean encrypted){

b.required=required;

b.encrypted=encrypted;

return b;

}

}

.NET

public class RASBindingFactory

{

public static RASBinding createEmptyRASBinding()

{

return createGenericRASBindingWithValue(null,
RASBinding.BindingType.Empty);

}

public static RASBinding createEmptyRASBinding
(Boolean required, Boolean encrypted)

{

HP Operations Orchestration (9.04)Page 38 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

return createGenericRASBindingWithValue(null,
 required, encrypted, RASBinding.BindingType.Empty);

}

public static RASBinding createPromptBinding(String value)

{

return
RASBindingFactory.createGenericRASBindingWithValue(value,

RASBinding.BindingType.Prompt);

}

public static RASBinding createPromptBinding(String value,
 Boolean required)

{

 return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, RASBinding.BindingType.Prompt);

}

public static RASBinding createPromptBinding(String value,
Boolean required, Boolean encrypted)

{

 return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, encrypted, RASBinding.BindingType.Prompt);

}

public static RASBinding createStaticBinding(String value)

{

return RASBindingFactory.createGenericRASBindingWithValue(
 value, RASBinding.BindingType.Static);

}

public static RASBinding createStaticBinding
(String value, Boolean required)

{

return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, RASBinding.BindingType.Static);

HP Operations Orchestration (9.04)Page 39 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

}

public static RASBinding createStaticBinding(String value,
 Boolean required, Boolean encrypted)

{

return RASBindingFactory.createGenericRASBindingWithValue(
 value, required, encrypted, RASBinding.BindingType.Static);

}

protected static RASBinding createGenericRASBindingWithValue(
 String value, RASBinding.BindingType type)

{

RASBinding r = new RASBinding();

r.Binding = type;

r.Value = (null != value ? value : "");

return r;

}

protected static RASBinding createGenericRASBindingWithValue(
String value, Boolean required, RASBinding.BindingType type)

{

RASBinding r = new RASBinding();

r.Required = required;

r.Binding = type;

r.Value = (null != value ? value : "");

return r;

}

protected static RASBinding createGenericRASBindingWithValue(
 String value, Boolean required, Boolean encrypted,

RASBinding.BindingType type)

{

RASBinding r = new RASBinding();

r.Encrypted = encrypted;

HP Operations Orchestration (9.04)Page 40 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

r.Required = required;

r.Binding = type;

r.Value = (null != value ? value : "");

return r;

}

}

execute method
The executemethod returns the ActionResult object from an IAction to Central after the code has
been executed. The ActionResult object can return the results shown in the following table.

Result Description

exception
(String,
empty)

This result should be the stack trace for any exception that your operation
encounters. This result is most often used inside of the try/catch block for the
operation. It should be left blank if no exception is encountered.

returnCode
(int, 0)

This result indicates which transition Central should follow after the operation has
completed. It should be set to values that can bemapped to the responses in the
ActionTemplate for this operation. See the getActionTemplate method section for
more information.

Results This is amap of the results that are sent back to central. These results are
available on the Result tab in of Studio. They can be filtered or used as flow
variables or flow results by other operations or flows.

The ActionResult object extends theMap object, so any other results that you have defined in the
ActionTemplate can also be returned to Central. The key field is the result name and the value field
is a string value.

Syntax

Java

public class ActionResult extends Map {

private String exception;

private int returnCode;

private String sessionId;

public ActionResult() {

}

HP Operations Orchestration (9.04)Page 41 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

public ActionResult(String exception, MapEntry[] entries,

int returnCode, String sessionId) {

super(entries);

this.exception = exception;

this.returnCode = returnCode;

this.sessionId = sessionId;

}

/**

* Gets the exception value for this ActionResult.

* @return exception

*/

public String getException() {

return exception;

}

/**

* Sets the exception value for this ActionResult.

* @param exception

*/

public void setException(String exception) {

this.exception = exception;

}

/**

* Gets the returnCode value for this ActionResult.

* @return returnCode

*/

public int getReturnCode() {

return returnCode;

}

HP Operations Orchestration (9.04)Page 42 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

/**

* Sets the returnCode value for this ActionResult.

* @param returnCode

*/

public void setReturnCode(int returnCode) {

this.returnCode = returnCode;

}

/**

* Gets the sessionId value for this ActionResult.

* @return sessionId

*/

public String getSessionId() {

return sessionId;

}

/**

* Sets the sessionId value for this ActionResult.

* @param sessionId

*/

public void setSessionId(String sessionId) {

this.sessionId = sessionId;

}

}

}

HP Operations Orchestration (9.04)Page 43 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

.NET

public class ActionResult : Map

{

public int code = (int)ResultCode.SUCCESS;

public string sessionId = "new session";

public string exception;

public ActionResult () {}

public int GetReturnCode() { return code; }

public void SetReturnCode(int c) { code = c; }

public string GetException() { return exception; }

public void SetException(string ex) { exception = ex; }

public string GetSessionId() { return sessionId; }

public void SetSessionId(string sid) { sessionId = sid; }

}

Guidelines for creating IActions
When you create a Java or .NET IAction, you should adhere to the following guidelines:

l Create any static constants you need.

l Define your ActionTemplate. (This defines the inputs, outputs, and responses for the IAction. If
an input, output, or response does not appear when you open the IAction in Studio, then you
havemade an error in the ActionTemplate.)

l Add an executemethod, andmake sure that it uses a try/catch block.

l Convert the inputs from the ActionTemplate to variables in your code and run the code.

l Make sure every result has a value defined, even if that value is an empty string. This is
necessary in case an exception is thrown.)

l Set a value for the return code. The response (return code) for success is always 0 and for failure
it is always -1.

l When possible, write ameaningful error message in case your operation fails.

l Only the inputs, responses, and results defined in the ActionTemplate are created automatically
(see the getActionTemplate method section for more information).

l Make sure to handle system accounts properly. For Java IActions, use the
StringUtils.resolveStringmethod; for .NET IActions, use the Identities methods.

HP Operations Orchestration (9.04)Page 44 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Important points for creating Java IActions
When creating a Java IAction, keep the following important points in mind:

l Check inputs to make sure that they have non-null values. (If you use the
com.opsware.pas.content.commons.util.StringUtils.resolveString method, null inputs are
automatically converted into empty strings). See the Useful Java Commons Library class
section for more information. Optional inputs may be strings of length zero.

l Use the StringUtils.resolveStringmethod, as it will handle system accounts for you. See the
Useful Java Commons Library class section for more information.

l Any results you want the user to have access tomust be included in the ActionTemplate.

l Do not use an instance variable in an IAction if it is unique to a given run of the IAction.

l Do not write to an instance variable.

Important points for creating .NET IActions
When creating a .NET IAction, keep the following important points in mind:

l Use the .NET Convert.ToString() method for handling all inputs except system accounts.

l Handle system accounts by using the Identity methods in Commons.dll. See the Identities
class section for more information.

l Any results you want the user to have access tomust be included in the ActionTemplate.

l Do not use an instance variable in the IAction if it is unique to a given run of the IAction.

l Do not write to an instance variable.

Implementing Java IActions
Java IActions are Java classes that can be imported into and used by OO. This section explains:

l The files you will need to implement your Java IActions.

l How to load your Java IActions into OOStudio.

l Using third-party libraries for Java IActions.

l How to debug your Java IActions.

This section also contains a complete example of the code needed to create a Java IAction.

Required development files for Java IActions
The following files are required for developing Java IActions:

l JRAS-sdk-9.00.jar

l ContentCommons-9.00.jar

These files are included in the OOSDK home directory, in the lib\ folder.

HP Operations Orchestration (9.04)Page 45 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Loading Java IActions into Studio
To import Java IActions into Studio

1. Create a .jar file with your IAction classes in it (you can createmore than one IAction .jar file).

2. Stop the RSJRAS service (theWindows service that runs the RAS).

3. Copy your .jar file to the RAS\Java\Default\repository\ folder in the OO home directory.

4. Copy any additional libraries that your IActions use to the
RAS\Java\Default\repository\lib\<jarName>\ folder (where <jarName> is the name of the .jar
file without the .jar extension) in the OO home directory.

For more information on IAction .jar files and third-party libraries, see Using third-party libraries
for Java IActions.

5. Restart the RSJRAS service.

6. In Studio, create a folder for the IActions.

7. Select the folder and then, from the File menu, click Create Operations from RAS.

8. In the RAS import dialog box, select RAS_Operator_Path (assuming you put the .jar file into
the default RAS) and then click OK. The IActions are imported.

Note: Code in one IAction .jar file cannot use code in another IAction jar file. Reimporting the
IAction .jar file will generate different UUIDs for the operations.

Using third-party libraries for Java IActions
You can havemultiple IAction .jar files that each reference different versions of third-party libraries.
The JRAS service looks for third-party Java libraries in the following folders in the in the OO home
directory:

l RAS\Java\Default\repository\lib\<jarName>\ where jarName is the name of the .jar file without
the .jar extension.

l RAS\Java\Default\repository\lib\

l RAS\Java\Default\webapp\WEB_INF\lib\

In addition to these paths, if an IAction .jar file has amainmanifest attribute namedCustom-
Libraries, the value of this attribute will be processed as a comma-delimited list of additional folders
to load. These folders are relative to the RAS\Java\Default\repository\lib\ folder. Libraries
referenced this way will be loaded between the RAS\Java\Default\repository\lib\<jarName>\ and
RAS\Java\Default\repository\lib\ folders.

Important: The folder RAS\Java\Default\repository\lib\ is shared by all IAction .jar files. Do
NOT put your own third-party libraries in this folder. Adding libraries to this folder may break
out-of-the-box content.

HP Operations Orchestration (9.04)Page 46 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

The folder RAS\Java\Default\webapp\WEB_INF\lib\ is intended to be used by the RAS service
itself. IAction libraries should NOT put their own third-party libraries into this folder. Adding libraries
to this folder may break out-of-the-box content, or the RAS service.

The PREFERRED method is for each author of an IAction .jar file to add a folder named
RAS\Java\Default\repository\lib\<jarName>\ where jarName is the name of the IAction .jar file,
without the .jar file extension. Third party libraries should go into this folder.

For example, if you have an integration called TestApp, your IAction will be in a .jar file called
TestApp.jar. Assume that you need integration library TestLib.jar and third party libraries
TestThirdPartyLib1.jar and TestThirdPartyLib2.jar for TestApp to run.

The layout of the TestApp integration .jar files will be like the following:

l RAS\Java\Default\repository\lib\TestApp\TestLib.jar

l RAS\Java\Default\repository\lib\TestApp\TestThirdPartyLib1.jar

l RAS\Java\Default\repository\lib\TestApp\TestThirdPartyLib2.jar

l RAS\Java\Default\repository\TestApp.jar

If multiple IAction.jar files need to share a custom set of libraries, you canmake one or more
specifically named subfolders of the \RAS\Java\Default\repository\lib\ folder, and explicitly
reference them through the Custom-Libraries manifest attribute. However, we do not recommend
this unless there is no choice. Please use the preferredmethodmentioned above so your
integration libraries will be in one place instead of all over the place.

For example, for TestApp IActions you also want to use different set of libraries, say
AnotherSetLib1.jar, AnotherSetLib2.jar. Youmust put theses libraries in different directory. Create
a directory called RAS\Java\Default\repository\lib\TestApp2\ and put AnotherSetLib1.jar and
AnotherSetLib2.jar in it. Themanifest file of TestApp.jar must include the Custom-Libraries to point
to RAS\Java\Default\repository\lib\TestApp2\AnotherSetLib1.jar and AnotherSetLib2.jar.

Custom-Libraries: RAS\Java\Default\repository\lib\TestApp2\AnotherSetLib1.jar
RAS\Java\Default\repository\lib\TestApp2\AnotherSetLib2.jar

HP Operations Orchestration (9.04)Page 47 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

How the RAS resolves third-party Java libraries at run time

HP Operations Orchestration (9.04)Page 48 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Debugging Java IActions
To enable remote RAS debugging for Java IActions

1. Stop the RSJRAS service.

2. Copy your .jar file to the RAS\Java\Default\repository\ folder in the OO home directory.

3. Copy any additional libraries youmay be using for the IActions to the
RAS\Java\Default\repository\lib\ folder in the OO home directory.

4. Open the RAS\Java\Default\webapp\conf\wrapper.conf file in the OO home directory using
your preferred text editor.

5. Uncomment the following debug line:

(#wrapper.java.additional.2=-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,address=8070,server=y,suspend=y

This suspends the RSJRAS service startup until a remote debugger is configured to use port
8070.

6. Find the debug line

wrapper.java.additional.2

and change it to

wrapper.java.additional.3

or

wrapper.java.additional.n

where n is the last number you used, incremented by one.

7. Restart the RSJRAS service.

8. Configure your remote debugger to use the port specified in the wrapper.conf file. Port 8070 is
the default, but you can change it to any unused port.

9. Set a breakpoint in your Java source code at which you would like to stop and connect to the
remote debug session listening on the port specified in step 8.

10. Execute a flow that uses your operation.

11. Debug the IAction code.

To disable remote RAS debugging for Java IActions

1. Stop the RSJRAS service.

2. Open the RAS\Java\Default\webapp\conf\wrapper.conf file in the OO home directory.

3. Comment out the following debug line:

(#wrapper.java.additional.2=-Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,address=8070,server=y,suspend=y)

4. Find the debug line

HP Operations Orchestration (9.04)Page 49 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

wrapper.java.additional.2

and change it to

wrapper.java.additional.3

or

wrapper.java.additional.n

where n is the last number you used plus one.

5. Start the RSJRAS service.

HP Operations Orchestration (9.04)Page 50 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Java IAction code example
The following is an example of a Java IAction that reads a file and returns the contents.

public class ReadFile implements IAction {

 private static final String RETURNRESULT = "returnResult";

 public static final int PASSED = 0;

 public static final int FAILED = 1;

 @Override

 public ActionTemplate getActionTemplate() {

 ActionTemplate actionTemplate = new ActionTemplate();

 actionTemplate.setDescription(ReadFile.DESCRIPTION);

 RASBinding arg1 = RASBindingFactory.createPromptBinding (
 "Source File:", true);

 Map parameters = new Map();

 parameters.add("source", arg1);

 actionTemplate.setParameters(parameters);

 Map resultFields = new Map();

 resultFields.add("fileContents", "");

 resultFields.add(RETURNRESULT, "");

 actionTemplate.setResultFields(resultFields);

 Map responses = new Map();

 responses.add("success", String.valueOf(PASSED));

 responses.add("failure", String.valueOf(FAILED));

 actionTemplate.setResponses(responses);

HP Operations Orchestration (9.04)Page 51 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

 return actionTemplate;

 }

 @Override

 public ActionResult execute(ISessionContext session,

 ActionRequest request, IActionRegistry registry)

 throws Exception {

 ActionResult result = new ActionResult();

 String separator = (System.getProperty("line.separator") !=
null)

 ? System.getProperty("line.separator") : "\n" ;

 String line = null;

 File file = null;

 FileReader fReader = null;

 BufferedReader bReader = null;

 try {

 file = new File ActionRequestUtils.resolveStringParam(

 request, "source"));

 StringBuilder fileContents = new StringBuilder();

 fReader = new FileReader(file);

 bReader = new BufferedReader(fReader);

 while ((line = bReader.readLine()) != null) {

 fileContents.append(line);

 fileContents.append(separator);

 }

 result.add("fileContents", fileContents.toString());

HP Operations Orchestration (9.04)Page 52 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

 result.add(RETURNRESULT, "successfully read file");

 result.setReturnCode(PASSED);

 } catch (Exception e) {

 result.setReturnCode(FAILED);

 result.setException(StringUtils.toString(e));

 result.add(RETURNRESULT, e.getMessage());

 } finally {

 if (bReader != null)

 bReader.close();

 if (fReader != null)

 fReader.close();

 }

 return result;

 }

 private static String DESCRIPTION = ""

 +"<pre>Reads the contents of a file and returns it\n"

 +"Inputs:\n"

 +"source - path to file to read\n"

 +"\n"

 +"Responses:\n"

 +"success - successfully read file"

 +"failure - failed to read the file\n"

 +"\n"

 +"Extra Results:\n"

 +"fileContents - the contents of the file\n\n</pre>";

}

HP Operations Orchestration (9.04)Page 53 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Implementing .NET IActions
.NET IActions are .NET assemblies that can be imported into and used by OO. This section
explains:

l Which files you will need to implement your .NET IActions.

l How to load your .NET IActions into OOStudio.

l How to debug your .NET IActions.

This section also contains a complete example of the code needed to create a .NET IAction.

Required development files for .NET IActions
The following files are required for developing .NET IActions:

l IAction.dll

l RCAgentLib.dll

l Commons.dll

These files are included in the OO home directory, in the RAS\Java\Default\repository\ folder.

Loading .NET IActions into Studio
To import .NET IActions into Studio

1. Create a .dll file with your IAction classes in it.

2. Stop the RSJRAS service (theWindows service that runs the RAS).

3. Copy your .dll file to the RAS\Java\Default\repository\ folder in the OO home directory.

4. Copy any additional .dll libraries youmay be using for the IActions to the same folder.

5. Restart the RSJRAS service.

6. In Studio, create a folder for the IActions.

7. Select the folder and then, from the Filemenu, click Create Operations from RAS.

8. In theRAS import dialog box, select RAS_Operator_Path (assuming that you put the .dll file
into the default RAS) and then click OK. The IActions are imported.

Debugging .NET IActions
To enable remote RAS debugging for .NET IActions

1. Stop the RSJRAS service.

2. Copy your .dll and .pdb (.NET debug files) files to the RAS\Java\Default\repository\ folder in
the OO home directory.

3. Copy any additional libraries youmay be using for the IActions to the same folder.

4. Restart the RSJRAS service.

HP Operations Orchestration (9.04)Page 54 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

5. Configure your debugger to use the java.exe process that hosts the RSJRAS service.

6. Set a breakpoint in your .NET source code at which you would like to stop.

7. Run a flow that uses your operation.

8. Debug the IAction code.

To disable remote RAS debugging for .NET IActions

1. Disconnect the debugger from the java.exe process.

2. Stop the RSJRAS service.

3. Remove the .pdb files.

4. Restart the RSJRAS service.

.NET IAction code example
The following is an example of a .NET IAction that reads a file and returns the contents.

.NET IAction code example

using System;
using System.IO;
using System.Text;
using System.Collections;
using System.Diagnostics;
using System.Globalization;
using com.iconclude.agent;
using System.Text.RegularExpressions;

using DiskServices;
using dotNET_Commons;

namespace com.hp.oo.content.sdk
{

public class ReadFile : IAction
{

public ActionResult Execute(ActionRequest request,
ISession session, IActionRegistry registry)

{
ActionResult result = new ActionResult();
StreamReader sReader = null;
String line = null;

try
{

string strSource = Convert.ToString(
request.parameters["source"]);

StringBuilder fileContents = new StringBuilder();

HP Operations Orchestration (9.04)Page 55 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Identities.ChangeUserContext(request);

sReader = File.OpenText(strSource);

while ((line = sReader.ReadLine()) != null)
fileContents.AppendLine(line);

}
catch (Exception e)
{

ret.SetReturnCode(ReturnCodes.FAILED,
e.Message);

ret.SetException(e.ToString());
}
finally
{

Identities.UnchangeUserContext(req);
}

return ret.GetActionResult();

}

public ActionTemplate GetActionTemplate()
{

ActionTemplateEx template = new ActionTemplateEx();
 template.SetDescription("WriteToFile");

RASBinding arg1 = RASBindingFactory.createPromptBinding(
"FileName:");

arg1.AssignFrom(true);
arg1.AssignTo(true);

RASBinding arg2 = RASBindingFactory.createPromptBinding(
 "Text To Write:");

arg2.AssignFrom(true);
arg2.AssignTo(true);

RASBinding arg3 = RASBindingFactory.createPromptBinding(
"Alternate Credentials - UserName:",

false, false);

arg3.AssignFrom(true);
arg3.AssignTo(true);

RASBinding arg4 = RASBindingFactory.createPromptBinding(
"Alternate Credentials - Password:", false, true);

arg4.AssignFrom(true);
arg4.AssignTo(true);

template.AddParameter("File", arg1);
template.AddParameter("Contents", arg2);

HP Operations Orchestration (9.04)Page 56 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

template.AddParameter("user", arg3);
template.AddParameter("password", arg4);

template.AddResponse("success", (int)ReturnCodes.PASSED);
template.AddResponse("failure", (int)ReturnCodes.FAILED);

return template.GetActionTemplate();
}

}
}

Useful Java Commons Library classes
The com.opsware.pas.content.commons.util StringUtils class is available for general use andmay
be helpful as you develop content. It is located in the ContentCommons.jar file in the OO home
directory, in the RAS\Java\Default\repository\lib\ folder. This class will bemaintained, for
backward compatibility.

com.opsware.pas.content.commons.util
StringUtils class

This is a helper class in Java for handling system account inputs and inputs that are null or
missing.

Properties

Name Description

None

Constructors

Name Description

None All methods are static.

Methods (all are static)

Name Description

isNull(String) Boolean specifying whether the value passed is null.

resolveString (ActionRequest,
String)

Resolves the value of String from the input map in
ActionRequest.

Useful .NET Commons Library classes
The classes described in this section are available for general use andmay be helpful as you
develop content. They are located in the Commons.dll file in the OO home directory, in the

HP Operations Orchestration (9.04)Page 57 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

RAS\Java\Default\repository\ folder. These classes will bemaintained to allow for backward
compatibility.

Identities class
The Identities class allows you to deal with user permissions (system accounts) and to perform
user impersonation for some operations.

There are two impersonation styles:

l The first (and the one that is attempted first) is an inter-process communication (IPC) connection
to the remotemachine.

l If this fails or if the authentication is performed against the local machine instead of the RAS,
then local thread impersonation is attempted.

In most cases the Identities class uses an ActionRequest method and handles system accounts.

Properties

Name Description

DestinationHost (Internal) Themachine host value when dealing with copying files.

File (Internal) The file path for impersonation purposes.

Host The remote host to connect to.

Password The password to use for the connection.

SourceHost (Internal) Themachine host for dealing with copying files.

UserName The username to use for the connection.

Constructors

Name Description

Identities() Default.

Methods

Name Description

ChangeUserContext(ActionRequest) Assuming that ActionRequest has the proper inputs
defined, this method will impersonate the user. If you use
this method, youmust use the
UnchangeUserContext(ActionRequest) method when the
impersonation is finished.

ChangeUserContext(string host, string
user, string password)

Attempts tomake the connection and impersonate the user
specified. If you use this method, youmust use the
UnchangeUserContext(string) when the impersonation is
finished.

HP Operations Orchestration (9.04)Page 58 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

GetUserPass(ActionRequest, string
username key, string password key)

This is a useful method if you have inputs that are system
accounts but aren't valid input names. ActionRequest
must contain the inputs username key and password key
which are passed in to tell which input to use to pull the
actual username and password values. These values can
then be read back using the UserName and Password
properties.

GetUserPass(ActionRequest) This method is the same as GetUserPass(ActionRequest,
string username key, string password key), except that the
username key and password key inputs are passed
automatically

UnchangeUserContext(ActionRequest) If you used the ChangeUserContext(ActionRequest)
method, use this method with the ActionRequest used
during the call to reverse the impersonation.

UnchangeUserContext(string
hostname)

If you used the ChangeUserContext(string) method, use
this method with the hostname used during the call to
reverse the impersonation.

If you use the ChangeUserContext(ActionRequest) method, the names of the inputs mapped in the
ActionRequest have to conform to the inputs shown in the following table (the inputs are case
sensitive).

Input Type Valid Input Names

Host l host

l hostname

Username l username

l user

l User

l F5Username

l altuser

Password l password

l Password

l altpass

l pass

l F5Password

l Pass

If the inputs do not conform to these specifications, youmust use the ChangeUserContext(string
host, string user, string password) impersonationmethod.

HP Operations Orchestration (9.04)Page 59 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Important: If you use any of the impersonation functions, make sure you have the
unimpersonation area wrapped in a finally block. That way you can always roll back your
impersonation.

Remarks

Themost flexible and secure way to communicate betweenWindows servers is by making
authenticated IPC connections. This can be done on the command line by using net use
\\machinename\ipc$ and supplying the necessary credentials. Basically, this is how the Identities
class does it as well. However, only one IPC connection can exist between any twomachines.
Therefore, only one IPC connection can exist between the RAS and a given server at any given
time. Because of this the RAS is designed as follows:

1. The RAS receives a request to impersonate a user. To check the request to see whether a
remotemachine is requested, the RAS examines the hostname, the fully qualified domain
name (FQDN), and all of the IP addresses registered on themachine. If the requestedmachine
isn't remote, the RAS attempts thread elevation. If the requestedmachine is remote, the RAS
continues to the next step.

2. The RAS searches on the hostname to see whether an IPC connection with the same
username and password is currently mapped. If it is, the RAS adds a flag to indicate that
another operation is using the same connection, and the impersonation class returns.

If a connection doesn't exist:

n A new request to map the remotemachine’s IPC share is sent using the standardWindows
API.

n The RAS adds the first flag for this machine.

n The impersonation class returns.

3. Once the operation has completed and called the unimpersonationmethod in this class, the
RAS checks to see whether it used a thread impersonation or an IPC connection.

n If the RAS used a thread impersonation, it restores the thread to its old credential set.

n If the RAS used an IPC connection, the connection use count is decremented. If the use
count is now at zero, the IPC connection with the remotemachine is closed and the class
returns. If the use count is not zero, the class just returns.

Password class
This class generates random passwords.

Properties

Name Description

None

Constructors

HP Operations Orchestration (9.04)Page 60 of 190

Software Development Kit Guide
Chapter 2: Authoring IActions

Name Description

None

Methods

Name Description

static GenerateRandom(int length, int
numberOfNonAlphaNumericCharacters)

A static method to generate random
passwords.

HP Operations Orchestration (9.04)Page 61 of 190

Chapter 3

Finding and running flows from outside
Central

In most cases, you use Central to run the flows you create in Studio. Theremay be situations
however, when you want to find or run flows without using Central. For instance, youmay want to
run a flow from an external application, such as Microsoft System Center Operations Manager, or
from a script or batch file.

About finding and running flows from outside
Central

Ways in which you can find and run flows from outside Central include:

l Creating a URL in Central that can run aGuided or Run all flow from aWeb browser.

l From a command line or from an application that can use a command line.

l Using tools that access the REST (representational state transfer) service so you can run flows
using the Internet.

l Using theWSCentralService SOAP API to access Central features programmatically.

Important: Although you do not use it for managing flows externally, Central must be running
when you do so.

Running flows with URLs created in Central
In Central, you can obtain a valid URL and use it to run aGuided or Run all flow from aWeb
browser.

To use a URL created in Central

1. In Central, click the Flow Library tab, navigate to the flow, and then click the flow name to
open the preview of the flow.

2. In the left pane, underExecution Links, select and copy the URL in the box below the desired
type of run—Guided Run orRun All.

HP Operations Orchestration (9.04)Page 62 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

HP Operations Orchestration (9.04)Page 63 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

Execution Links

3. Open a new browser window and paste the URL in the address box.

4. If the flow has any required inputs, modify the URL by adding input parameters and values for
the inputs.

For more information, see Specifying the inputs for a flow in a URL.

Note:You can also paste the URL in a document or e-mail, but if you paste it into an e-mail you
cannot pass input parameters in the URL.

Running a flow from a command line
You can run a flow from a command line using a correctly formatted URL.

For information on creating the flow's URL, see Creating a URL for running a flow.

When running a flow from a command line, be sure to follow these guidelines:

l The flow must be self-contained—it cannot contain user prompts.

l You can pass input parameters and values to the flow in the URL.

l If an input requires a flow variable, the variable does not have to be defined when you create the
flow in Studio. You can create and pass the flow variable to the input by using an input parameter
in the URL.

Creating a URL for running a flow
The format for a URL that runs a flow from a command line is as follows:

https://<hostname>:<port>/<path>/<flow>

Themain points to be aware of when creating a URL are:

l There are two ways to identify the flow—by its name or by its universally unique ID (UUID). For
information on how to identify the flow in the URL, see Identifying the flow in the URL.

l The initial inputs (flow input values) that are required for the flow to runmust be included in the
URL. For information on specifying initial input values, see Specifying the inputs for a flow in a
URL

l You canmodify the URL to provide a result from the flow asynchronously—that is, without
waiting for the flow to complete its run. Running flows asynchronously using a URL

Identifying the flow in the URL
In a URL that runs a flow, either of the following identifies the flow:

l The name of the flow

The following URL identifies the flow by its name (TestFlow):

https://localhost:8443/PAS/services/rest/run/Library/MyFolder/TestFlow

l The flow’s Universally Unique Identifier (UUID).

HP Operations Orchestration (9.04)Page 64 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

The following URL identifies the flow by its UUID (503c2500-7aae-11dd-a3b5-0002a5d5c51b):

https://localhost:8443/PAS/services/rest/run/503c2500-7aae-11dd-a3b5-
0002a5d5c51b

Specifying the inputs for a flow in a URL
You can specify the inputs for a flow by using input parameters (also known as “init params”) in the
URL. This allows you to run the flow without any user interaction.

Any init params are separated from the flow identifier by a questionmark (?). Each init param takes
the form name=value. If you usemore than one init param, separate the init params with an
ampersand (&).

Example

The URL in this example runs the flow MyFlow, passing the input parameter name0with a value of
val0 and the init param input1 with a value of yes.

https://localhost:8443/PAS/services/rest/run/Library/MyFolder/
MyFlow?name0=val0?input1=yes

When naming init params:

l Do not name init params “service” or “sp”, as these are reserved names.

l If a flow uses one of the reserved names for an input, protect your flows from errors that can
result from using these reserved names, by defining a prefix for all init param names used in the
URL. As long as a required init param prefix is specified, youmust use it for all the init params
for flows started by means of a URL in Central, including those that do not use the reserved
names.

To define a prefix for init param names

1. Log on to Central with an account that has OO administrative rights.

2. On theAdministration tab, click theSystem Configuration tab.

3. In theGeneral Settings area, in theValue box of thePrefix for init params for flow
invocation through URLs using the GUI row, type the prefix that you want to use for the
input parameters in a URL.

4. Click Save General Settings.

5. Restart Central.

When defining a prefix for input parameters, avoid using the types of characters shown in the
following table.

Types of characters to avoid using Examples

Characters that are reserved in URLs. ; / ? : @ = &

Characters that can bemisunderstood in URLs. { } | \ ^ ~ [] `

If the flow you are starting has amulti-instance step or for any other reason has an input whose
value is a list of values, use the separator character defined by the flow’s author in Studio (by

HP Operations Orchestration (9.04)Page 65 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

default, a comma) to separate the values for the input that has multiple values. You should also do
this if your flow has an input that is a list of values.

The following sample URL shows how to use a prefix for initial inputs in a URL and how to specify a
list of values for a single input:

https://localhost:8443/PAS/services/rest/run/Library/MyFolder/TestFlow?
_xx_input1=10.0.0.100,10.0.0.101&_xx_input2=8443&_xx_input2=8443

In this example:

l The prefix for the init params has been defined as _xx.

l The flow specified in the URL has amulti-instance step with the separator character defined as
an ampersand (&).

l The init param _xx_input1 has two values—the IP addresses 10.0.0.100 and 10.0.0.101 (with
the default value-list separator character of comma [,]).

Notes:
l You only have to specify values for inputs that get their values from user prompts or that

have not been assigned a value (or a way to get a value).

l You do not have to specify a value for an input that has a specific value assigned to it (or a
set of values, as in multi-instance steps or steps that get their values from an Iterator
operation).

l You do not have to specify a value for an input that gets its value from a system account or
from the logged-in user’s credentials.

Running flows asynchronously using a URL
You can obtain a result from a flow without waiting for it to finish by running the flow
asynchronously. This can be very useful if you run flows with multi-instance steps or multiple input
values.

To run a flow asynchronously

l In the URL that runs the flow, replace

/run/

with

/run_async/

For example, the following URL runs the flow Connectivity Test asynchronously using the run_
async parameter. This flow has amulti-instance step with multiple values for the target input.

https://localhost:8443/PAS/services/http/run_
async/Library/MyFolder/Connectivity
Test?&host=localhost&target=55.55.0.47,55.55.0.49

HP Operations Orchestration (9.04)Page 66 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

Finding and running flows with tools that
access the REST service

REST (representational state transfer) is an architectural style that uses existing Internet
technology and protocols such as HTTP and XML. This section describes two command-line tools
that access the REST service, allowing you to find and run flows using the Internet:

l TheWget tool allows you to send a username and password in the command line, but does not
provide feedback as to whether your call worked correctly.

l With RSFlowInvoke.exe or JRSFlowInvoke.jar, you can send encrypted passwords over the
Internet. In addition, RSFlowInvoke and JRSFlowInvoke return XML or HTML feedback that
verifies whether your call worked.

Important:Wget, RSFlowInvoke.exe, and JRSFlowInvoke.jar can take command-line
parameters or URLS to specify the flows you want to manage with them. If you use a URL,
youmust enclose it with quotationmarks.

Running flows using Wget
Wget is a command-line tool that you can use to download and run flows from the Internet. You can
downloadWget from theGNU WgetWeb page.

The basic syntax of Wget is:

wget {<options>} {<URL>}

Wget downloads and runs flows specified in the URL contained on the command line. It can use the
HTTP, HTTPS, and FTP protocols. TheWget options are explained in theGNU Wget Manual.

Important:Enclose the URL on the command line with quotationmarks.

The following examples show how to download and run flows using a URL in aWget command line.

Example 1

To download the flows in theMyFolder folder, you would use the command

wget --http-user=rsadmin --http-password=iconclude
"https://localhost:8443/PAS/services/rest/list/MyFolder/"

l TheWget –O option specifies that all error messages should be logged to the default log file
wget.log.

l TheWget http-user=user and http-password=password options specify a username
of rsadmin and a password of iconclude for the HTTP server.

Example 2

This example uses theWget no-check-certificate option to skip Secure Sockets Layer
(SSL) checking.

HP Operations Orchestration (9.04)Page 67 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

wget --no-check-certificate --http-user=rsadmin --http-
passwd=iconclude

"https://localhost:8443/PAS/services/rest/list/MyFolder/"

Example 3

This example runs the flow specified in the URL and passes the input variable name0 with a value
of val0.

wget --http-user=rsadmin --http-passwd=iconclude
"https://localhost:8443/PAS/services/rest/run/Library
/MyFolder/MyFlow?name0=val0"

The next examples work with an XML file that has the following basic layout.

XML file layout

<?xml version="1.0"?>

<run>

<request>

<arg name="name1">value1</arg>

<arg name="name2">value2</arg>

</request>

</run>

Example 4

This example uses POST as themethod to run an XML-encoded flow from the file C:\run-
config.xml.

wget --http-user=rsadmin --http-passwd=iconclude --post-file="C:\run-
config.xml"--header “Content-Type: text/xml”

"https://localhost:8443/PAS/services/rest/run/Library/MyFolder/MyFlow"

Example 5

This example runs an XML-encoded flow from a command line using theWget post-
data=string option.

wget --http-user=rsadmin --http-passwd=iconclude --post-data=
"<?xml version=\"1.0\" ?><run><request>
<arg name=\"name0\">value0</arg><arg name=\"name1\">value1</arg>
<arg name=\"name2\">value2</arg></request></run>" --header
"Content-Type: text/xml"
"https://localhost:8443/PAS/services/rest/run/Library/MyFolder/MyFlow"

The following shows the XML format that is returned.

Example returned XML format

HP Operations Orchestration (9.04)Page 68 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

<?xml version="1.0" encoding="UTF-8"?>

<runResponse>

<runReturn>

<item>

<name>runId</name>

<value>23</value>

</item>

<item>

<name>runReportUrl</name>

<value>https://localhost:8443/PAS/app?service=
 RCLinkService/ReportLinkDispatch

 &sp=SINDIVIDUAL_REPAIR_LEVEL&sp=
Sc2bcb72f-6d6b-4a2d-a678-de21a1feac81&sp=l0&

 amp;sp=l23</value>

</item>

<item>

<name>runStartTime</name>

<value>09/17/08 13:00:54</value>

</item>

<item>

<name>runEndTime</name>

<value>09/17/08 13:00:54</value>

</item>

<item>

<name>runHistoryId</name>

<value>23</value>

</item>

<item>

<name>flowResponse</name>

<value>success</value>

</item>

<item>

<name>flowResult</name>

HP Operations Orchestration (9.04)Page 69 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

<value>{Field 1=value0;Field 2=value1;
FailureMessage=;TimedOut=;Result=;}</value>

</item>

<item>

<name>flowReturnCode</name>

<value>Resolved</value>

</item>

</runReturn>

Finding and running flows using
RSFlowInvoke or JRSFlowInvoke

RSFlowInvoke.exe, or the Java version, JRSFlowInvoke.jar, is a command-line utility that you can
use to list, run, and search for flows outside of Central.

The following sections describe show you how to use RSFlowInvoke and JRSFlowInvoke in a
number of ways:

l UseRSFlowInvoke or JRSFlowInvoke from a command line.

l UseRSFlowInvoke or JRSFlowInvoke in a script or batch file.

l Search for a flow using JRSFlowInvoke.jar

l Create an encrypted password for sending over the Internet

You can run RSFlowInvoke or JRSFlowInvoke on any machine from which you can log on to
Central (using HTTPS to the default port 8443). This makes RSFlowInvoke and JRSFlowInvoke
useful for starting a flow from an external system or application that can use a command—for
example, amonitoring program such as Microsoft System Center Operations Manager.

To use RSFlowInvoke, you will need to register it with the .NET Global Assembly Cache.

Note: For information on the return codes that tell you what happened when RSFlowInvoke or
JRSFlowInvoke was run, see RSFlowInvoke and JRSFlowInvoke results

RSFlowInvoke and JRSFlowInvoke are available in the OOSDK home directory, in the tools\
folder. They are also available in the HP OO home directory, in the Studio\tools\ folder. Run
RSFlowInvoke and JRSFlowInvoke from this subfolder or from a path that includes this subfolder.

The basic syntax of RSFlowInvoke.exe is:

RSFlowInvoke.exe {–host <hostname>:<port number> –flow <flow name> |
<URL>} [-inputs <input name>=<value>] [-u <user>] -p <password>|-ep
<encrypted password>] [-async] [-rc <number of retries>] [-rw <number
of seconds>] [-t <timeout>] [-v]

The basic syntax of JRSFlowInvoke.jar is:

HP Operations Orchestration (9.04)Page 70 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

java –jar JRSFlowInvoke.jar {–host <hostname>:<port> –flow <flow
name>| <URL>} [-inputs <input name>=<value>] [-u <user>] [-p
<password>|-ep <encrypted password>] [-async] [-rc <number of
retries>] [-rw <number of seconds>]

You can reference the flow in RSFlowInvoke or JRSFlowInvoke using:

l The –host and –flow options.

l A URL. The URLmust have the correct format for managing a flow and be enclosed in quotation
marks. For information on building a correctly-formatted URL, see Creating a URL for managing
a flow.

Option Syntax

Following are the syntax and descriptions of the RSFlowInvoke and JRSFlowInvoke options.

l -async

Specifies that the flow runs asynchronously—in other words, that it returns a result before
completing its run.

l -ep <encrypted password>

Specifies the encrypted password for the host. If you use the –p option to specify a
nonencrypted password, do not use this option. For information about creating an encrypted
password from within RSFlowInvoke, see Creating an encrypted password.

l -flow <flow name>

Specifies the flow name or UUID.

l -host <hostname>:<port number>

Specifies the hostname and port number, separated by a colon.

l -inputs <input name>=<value>

Specifies the inputs for the flow, using the format name=value&name2=value2.If any of the
inputs or their values contain a space, then the name=value&name2=value2 argument should be
wrapped in quotes ("name=value&name2=values").

Note: To be used with RSFlowInvoke or JRSFlowInvoke, an input must have a flow
variable assigned to it in the Assign to Variable drop-down box on the Input Summary tab in
Studio. This option is used when you specify host and flow options.

l -p <password>

Specifies the password for the host. If you use the –ep option to specify an encrypted password,
do not use this option.

l -rc <number of retries>

Specifies the number of times to retry a flow that fails. The default is 0; themaximum is 30.

l -rw <number of seconds>

Specifies the number of seconds to wait between retries. The default is 5 seconds.

HP Operations Orchestration (9.04)Page 71 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

l -t <timeout>

Specifies the timeout, in seconds. The default value is 100 seconds.

l -u <username>

Specifies the username for the host.

l -v

-verbose

Specifies that all output is to be written to the screen.

Using RSFlowInvoke or JRSFlowInvoke from a
command line

The following examples demonstrate how to list and run flows using RSFlowInvoke or
JRSFlowInvoke from a command line or from any application that can take input from a command
line.

l This example lists the flows specified in the URL.

java –jar JRSFlowInvoke.jar
“https://localhost:8443/PAS/services/rest/list/MyFolder/” -u rsadmin
-ep BKmIQF6o0dItQkcUYNEeGw==

l This example runs the flow with input names and values specified in the URL.

java –jar JRSFlowInvoke.jar
“https://localhost:8443/PAS/services/rest/run/Library/MyFolder/
TestFlow?inputName1=inputValue1&inputName2=inputValue2” -u admin -ep
BKmIQF6o0dItQkcUYNEeGw==

l This example lists the flows specified using the –host and –flow options.

java –jar JRSFlowInvoke.jar –host localhost:8443 –flow
/PAS/services/rest/list/MyFolder/ -u admin -ep
BKmIQF6o0dItQkcUYNEeGw==

l This example runs the flow with input names and values specified using the –host and –flow
options.

java –jar JRSFlowInvoke.jar –host localhost:8443 –flow
/PAS/services/rest/run/Library/MyFolder/TestFlow -u rsadmin -ep
BKmIQF6o0dItQkcUYNEeGw== -inputs
“inputName1=inputValue1&inputName2=inputValue2”

Using RSFlowInvoke or JRSFlowInvoke in a script
or batch file

In a script or batch file, the syntax for using RSFlowInvoke.exe is the same as it is for using it in a
command line. The syntax for JRSFlowInvoke.jar is slightly different.

HP Operations Orchestration (9.04)Page 72 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

l The syntax of RSFlowInvoke.exe in a script or batch file is:

RSFlowInvoke.exe {–host <hostname>:<port number> –flow <flow
name>|<URL>} [-inputs <input name>=<value>] [-u <user>] -p
<password>|-ep <encrypted password>] [-rc <number of retries>] [-rw
<number of seconds>] [-t <timeout>] [-v]

l The syntax of JRSFlowInvoke.jar in a script or batch file is:

java -jar JRSFlowInvoke.jar {–host <hostname>:<port> –flow <flow
name>|<URL>} [-inputs <input name>=<value>] [-u <user>] [-p
<password>|-ep <encrypted password>] [-rc <number of retries>] [-rw
<number of seconds>]

To find the usage of the tool, type java –jar JRSFlowInvoke.jar.

Searching for a flow using JRSFlowInvoke.jar
You can use JRSFlowInvoke.jar to search for a flow outside of Central. The search uses the
Apache Lucene search syntax. For more information on this syntax, see the Apache Software
Foundation Query Parser Syntax Web page.

Use the following syntax, which includes a properly formatted query string:

java -jar JRSFlowInvoke.jar
“https://{<host>:<port>}/PAS/services/http/search? queryString =
{<sequence_of_term_expressions>}” [-u <user>] [-p <password>]

The options and their syntax are:

l <host>

Specifies the Central server on which the search is to be performed.

l <port>

Specifies the port number on the Central server which Central uses to communicate with the
client.

l <sequence_of_term_expressions>

A search string, which can be one of the following:

n A single term expression of the form:

<fieldname>:<term>

n A sequence of terms of the form:

<fieldname>:<term> + (<operator> + <sequence_of_term_expressions>)

In which:

o <fieldname> specifies one of the fields shown in the following table (these are not case-
sensitive).

HP Operations Orchestration (9.04)Page 73 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

Field Description

Category The category that has been assigned to the flow.

Description The flow’s description.

Domain A domain term that has been associated with the flow.

ID The flow’s UUID.

Input An input to an operation used in the flow.

Name The flow’s name.

Type The type of an operation used in the flow. The terms that you can
match in this field and the operation types that they represent
include:

o cmd

Command

o flow

An operation that is a flow

o http

Http (also known as shell)

o other

Scriptlet

o script.perl

Perl script

o ssh

SSH (Secure Shell)

o telnet

Telnet

o lock

Acquire Lock

o unlock

Release Lock

Stepdescription The description of one of the flow’s steps.

Stepname The name of one of the flow’s steps.

o <term>

HP Operations Orchestration (9.04)Page 74 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

Specifies the particular value of the field that may find the desired flow.

o <operator>

Is one of the operators supported in the Apache Lucene search syntax:

AND, +, OR, NOT, and -

n -u <user>

Specifies a user account that has the permissions to view and start a flow.

n -p <password>

Specifies the password for the user account.

n -ep <encrypted password>

Specifies the encrypted password for the user account. See Creating an encrypted password
for more information.

Example

This example searches for flows that have the field Namewith a value of John’s flow.

java -jar JRSFlowInvoke.jar
“https://{localhost:8443}/PAS/services/http/search? queryString =
Name:John’s Flow” -u admin -ep BKmIQF6o0dItQkcUYNEeGw==

To use the example, delete the text strings in the sample that don't fit your particulars and replace
them with appropriate values.

Creating an encrypted password
RSFlowInvoke and JRSFlowInvoke allow you to send encrypted passwords over the Internet.

To create an encrypted password for use with RSFlowInvoke or JRSFlowInvoke

1. In a commandwindow, type and run one of the following commands:

RSFlowInvoke.exe –cp

OR

java –jar JRSFlowInvoke.jar –cp

2. At theEnter password prompt, type the password.

3. At theEnter password again prompt, retype the password.

RSFlowInvoke or JRSFlowInvoke encrypts the password. When you run RSFlowInvoke or
JRSFlowInvoke with the encrypted password, use the -ep option instead of the usual –p option for
the password.

Registering RSFlowInvoke with the Global
Assembly Cache

TheGlobal Assembly Cache (GAC) is a store on a local .NET machine for assemblies of .NET
code. If you register RSFlowInvoke.exe with GAC, you can start a flow from within a .NET

HP Operations Orchestration (9.04)Page 75 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

application, using any .NET-compatible language, such as C#.

To register or unregister RSFlowInvoke in GAC

1. On a .NETmachine, open a command-line window and type the following command:

gacutil.exe [/i|/u] RSFlowInvoke.exe

Option syntax

n /i

Registers RSFlowInvoke.exe with GAC.

n /u

Unregisters RSFlowInvoke.exe with GAC.

2. Once RSFlowInvoke.exe is registered with GAC, type the following to view the assembly
(compiled code) information:

RSFlowInvoke.exe –s

The following is an example of the output of the RSFlowInvoke.exe –s command:

Example output from RSFlowInvoke.exe –s command

Assembly Name:

 RSFlowInvoke, Version=1.0.3098.16154, Culture=neutral,
PublicKeyToken=4c09181d83b84dbc

Fully Qualified Type Name:

 RepairSystem.RSFlowInvoke

Method Name:

 ExecuteHeadlessFlow(

 System.String url,

 System.String username,

 System.String password,

 System.String authType,

 System.Boolean encryptedPassword)

RSFlowInvoke and JRSFlowInvoke results
RSFlowInvoke and JRSFlowInvoke use the return codes shown in the following table to tell you
what happened when they were run.

HP Operations Orchestration (9.04)Page 76 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

Return
Code Description

0 The flow was run. This code is not related to the flow's response.

1 Central responded with HTTP code 503. This usually means that Central lacked the
resources needed to run the flow.

2 An unknown internal server error occurred in Central.

3 RSFlowInvoke was unable to authenticate against Central.

4 The specified URL or flow was not found.

5 A socket timeout occurred. A socket is a software object that connects an application
to a network protocol.

6 An unknown socket (communication) error occurred.

7 An unknown error occurred.

Finding and running flows using the
WSCentralService SOAP API

TheWSCentralService service basically does two things—search and execution. The
WSCentralService service provides a SOAP API with which you can:

l Search for a flow by querying the flow library using criteria provided by a query string. Query
strings are based on an Apache Lucene indexed search. For more information on the Lucene
search, see the Apache LuceneWeb page.

l Control flow execution—this includes running, pausing, resuming, and canceling a flow, and
viewing the status of a flow run.

TheWSCentralService SOAP API Java and .NET classes and interfaces are located in the OO
SDK home directory, in the lib\ folder. The certificates, keystore, WSDL, and sample code are
located in the OOSDK home directory, in the samples\ folder.

Accessing the WSCentralService WSDL
TheWSCentralServiceWSDL describes theWSCentralService service and the operations it can
perform. You can access theWSCentralServiceWSDL at the following URL:

https://central_server:8443/PAS/services/WSCentralService?wsdl

where central_server is the name of the server running Central. Samples included in the OOSDK
home directory, in the samples\client\ subfolder, demonstrate using the service with Java and
.NET.

HP Operations Orchestration (9.04)Page 77 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

WS Central Service: Using the API documentation
TheWSCentralService SOAP API reference documentation is included in the OOSDK home
directory, in the docs\javadocs\WSCentralService\ subfolder. The reference documentation covers
theWSCentralService API and objects plus the wrapper class WSCentralServiceSession that
implements the service public interface.

How WSCentralService manages security and
authentication

WSCentralService supports HTTP basic authentication. The client must provide the username and
password of a user account that can run andmanage flows started outside of Central. The
message context associated with a client sessionmust include the username and password, or the
session will fail and a security violation will be issued to the client. For examples, see the test client
code Util.java in the samples\client\java\src\ subfolder.

The service also supports Kerberos single sign-on authentication based on theOasis Web Services
Security Kerberos Token Profile. The format of the BinarySecurityToken node in the header
security node is shown below.

Format of BinarySecurityToken node

<soapenv:Header
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <wsse:Security xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:BinarySecurityToken

 EncodingType="wsse:Base64Binary"

 ValueType="wsse:Kerberosv5_AP_REQ"

 Id="CentralKrbSSOToken">YIIJAQYJKoZIhvcSAQICAQBuggjwMIII....

 </wsse:BinarySecurityToken>

 </wsse:Security>

</soapenv:Header>

The Id attribute of <wsse:BinarySecurityToken>must be included andmust be set to
“CentralKrbSSOToken”. The name and value of the Id attribute are case sensitive.

WS Central Service: Importing the SSL Certificate
To enable the service to handle the SSL handshake that begins an SSL session, you can import the
central.crt security certificate included in the OOSDK home directory in the
samples\client\java\resources\ folder, into any keystore you choose, or you can use the sample
keystore provided in samples\client\java\resources\cacerts.sample. A keystore is a file containing

HP Operations Orchestration (9.04)Page 78 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

keys, certificates, and trusted roots. The root certificates of signing authorities are kept in a file
called a cacert.

To import the certificate into the default keystore provided with the Java Runtime Environment
(JRE), open a commandwindow and change directories to the lib\security\ subfolder in the Java
home directory and run the following command under $(java.home)\lib\security:

keytool -import -alias pas -file central.crt –keystore cacerts

When prompted for the password for the JRE cacert, type the following:

changeit

WS Central Service: Sample client code
Sample client code forWSCentralService is included in the OOSDK home directory, in the
samples\client\.Net\src\ and samples\client\java\src\ folder. The lib\WSCentralService.jar file
contains a wrapper forWSCentralService service namedWSCentralServiceSession. You can use
this class in developing your client. It wraps the service API stubs and includes additional
functionality for Java and .NET.

WSCentralService: Service stubs sample
The following sample .cmd file generates the Java service stubs, which you can use if you choose
not to use the suppliedWSCentralService.jar file.

Sample .cmd file

@echo off

Rem replace %axis-1_4% and %wsdl_path% with the actual paths on your
machine.

Rem your path statement must include the folder where java.exe
exist.

set JLIBS=%axis-1_4%\lib

set SERVICE_ADDRESS=%wsdl_path%\WSCentralService.wsdl

set SERVICE_
PACKAGE=com.iconclude.dharma.services.wscentralservice.client

set BUILD_PATH=.

set CLASS_PATH=.

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\axis.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\jaxrpc.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-codec.jar

HP Operations Orchestration (9.04)Page 79 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-httpclient.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-logging-1.0.4.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\commons-discovery.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\wsdl4j-1.5.1.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\activation.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\saaj.jar

set CLASS_PATH=%CLASS_PATH%;%JLIBS%\mail.jar

set command1=java -classpath %CLASS_PATH%
org.apache.axis.wsdl.WSDL2Java -a -p %SERVICE_PACKAGE% -v -o %BUILD_
PATH% %SERVICE_ADDRESS%

%command1%

Resuming runs from the command line
When a flow run has been handed off, you can resume it from a command line. You can resume the
run so that it completes either synchronously or asynchronously.

l Resuming a run synchronously means that after resuming the run, the Central service waits for
it to complete before starting other runs.

For information on resuming a run synchronously, see Resuming a run synchronously.

l Resuming a run asynchronously means that after resuming the run, the Central service does not
wait for it to complete before starting other runs.

For information on resuming a run asynchronously, see Resuming a run asynchronously.

Notes:
l Although you can resume a run that has not been paused, it is strongly recommended that

you not do so.

l When you resume a run, you identify it by its run ID, rather than by its run history ID. If you
don’t know what the run’s run ID is, you can obtain it from OOCentral on theCurrent Runs
tab.

Suppose you have a flow that contains a couple of transitions that aremarked for hand off.

Flow with transitions marked for handoff

The following example is of a command that starts a run of such a flow.

HP Operations Orchestration (9.04)Page 80 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

$ java -jar JRSFlowInvoke.jar
http://localhost:8080/PAS/services/http/run/Library/test/handoff/flow-
that-hands-off -u myuser -p *****

This action returns the following XML, in the block as presented below:

<?xml version="1.0" encoding="UTF-8"?>
<runResponse><runReturn>< item><name>runId
</name><value>718032</value></item>
<item><name>runHistoryId</name>
<value>718031</value></item>
<item><name>runReportUrl</name>
<value>http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&
sp=S368a860a-a54a-4901-83d7-
11193ce2ca64&sp=l0&sp=l718031</value></item>
<item><name>displayRunReportUrl</name><value>
<![CDATA[http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&sp=S368a860a-a54a-
4901-83d7-11193ce2ca64&
sp=l0&sp=l718031]]></value></item>
<item><name>runStartTime</name><value>03/01/10 10:11</value></item>
<item><name>runEndTime</name><value>03/01/10 10:11</value></item>
<item><name>flowResponse</name><value>HANDOFF</value></item>
<item><name>flowResult</name><value>{}</value></item>
<item><name>flowReturnCode</name><value>Not a
Return</value></item></runReturn></runResponse>

To clarify its structure and improve its readability, we’ll format the above XML conventionally.

<?xml version="1.0" encoding="UTF-8"?>

<runResponse>

 <runReturn>

 <item>

 <name>runId</name>

 <value>718032</value>

 </item>

 <item>

 <name>runHistoryId</name>

 <value>718031</value>

 </item>

 <item>

 <name>runReportUrl</name>

 <value>http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&

HP Operations Orchestration (9.04)Page 81 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

sp=S368a860a-a54a-4901-83d7-11193ce2ca64&
 sp=l0&sp=l718031</value>

 </item>

 <item>

 <name>displayRunReportUrl</name>

 <value><![CDATA[http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&
sp=S368a860a-a54a-4901-83d7-11193ce2ca64&sp=l0&

 sp=l718031]]></value>

 </item>

 <item>

 <name>runStartTime</name>

 <value>03/01/10 10:11</value>

 </item>

 <item>

 <name>runEndTime</name>

 <value>03/01/10 10:11</value>

 </item>

 <item>

 <name>flowResponse</name>

 <value>HANDOFF</value>

 </item>

 <item>

 <name>flowResult</name>

 <value>{}</value>

 </item>

 </item>

 <item>

 <name>flowReturnCode</name>

 <value>Not a Return</value>

 </item>

 </runReturn>

</runResponse>

Observations about the preceding XML:

HP Operations Orchestration (9.04)Page 82 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

l The run ID (the value for the first item element within the runReturn element) is in this case
718032.

l The flowResponse item shows us that the run was stopped in a HANDOFF state because a
handoff transition was followed.

l The flowReturnCode item has the value Not a Return because no return step was ever
reached and thus the flow run is not complete.

Resuming a run synchronously
The following is the command to resume the run headlessly in synchronous mode:

$ java -jar JRSFlowInvoke.jar
http://localhost:8080/PAS/services/http/resume/718032
-u myuser -p *****

Note: In the above, resume is the verb that determines that the flow is resumed in
synchronous mode. In the section on resuming a flow asynchronously, you will see the verb
that is used to resume it asynchronously.

The following XML is returned:
<resumeResponse><resumeReturn><item><name>runId
</name><value>718032</value></item>
<item><name>runHistoryId</name>
<value>718031</value></item>
<item><name>runReportUrl</name>
<value>http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&&
sp=S368a860a-a54a-4901-83d7-11193ce2ca64&&
sp=l0&&sp=l718031</value></item>
<item><name>displayRunReportUrl</name><value>
<![CDATA[http://localhost:8080/PAS/app?service=
RCLinkService/ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&
sp=S368a860a-a54a-4901-83d7-11193ce2ca64&
sp=l0&sp=l718031]]></value></item>
<item><name>runStartTime
</name><value>03/01/10 10:11</value>
</item><item><name>runEndTime</name>
<value>03/01/10 10:12</value></item>
<item><name>flowResponse</name>
<value>HANDOFF</value></item>
<item><name>flowResult</name>
<value>{}</value></item>
<item><name>flowReturnCode</name><value>Not a
Return</value></item></resumeReturn></resumeResponse>
The XML returned is very similar to that from the initiation of the run, and that the flowResponse
item shows us that the run was stopped again in a HANDOFF state, due to the second handoff
transition being followed.

Let's resume the run once again:

HP Operations Orchestration (9.04)Page 83 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

$ java -jar JRSFlowInvoke.jar
http://localhost:8080/PAS/services/http/resume/718032 -u myuser -p

The following XML is returned:

<?xml version="1.0" encoding="UTF-8"?>

<resumeResponse><resumeReturn>
<item><name>runId</name><value>718032</value>
</item>
<item><name>runHistoryId</name>
<value>718031</value></item>
<item><name>-
runReportUrl</name><value>http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&sp=S368a860a-a54a-4901-
83d7-11193ce2ca64&sp=l0&
sp=l718031</value></item>
<item><name>displayRunReportUrl</name>
<value><![CDATA[http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&sp=S368a860a-a54a-4901-83d7-
11193ce2ca64&sp=l0&
sp=l718031]]></value></item>
<item><name>runStartTime</name><value>03/01/10 10:11</value></item>
<item><name>runEndTime</name><value>03/01/10 10:14</value></item>
<item><name>flowResponse</name><value>success</value></item><item>
<name>flo-
wResult</name><value>{FailureMessage=;TimedOut=;Result=;}</value></item>
<item><name>flowReturnCode</name><value>Resolved</value></item></resumeReturn>
</resumeResponse>

This time the flow has finished, the response is success and the return code is Resolved.

Resuming a run asynchronously
To resume a run asynchronously, the links are very similar, the only difference being that the
resume verb is replaced with resume_async. Let's conduct the experiment again:

Initial invocation of the run:

$ java -jar JRSFlowInvoke.jar
http://localhost:8080/PAS/services/http/run/Library/test/handoff/flow-
that-hands-off -u myuser -p *****

The run encounters the first “handoff” transition, and returns the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<run-
Response><r-
unReturn><item><name>runId</name><value>718067</value></item>
<item><name>runHistoryId</name><value>718066</value></item>
<item><name>runReportUrl</name><value>
http:/-
/localhost:8080/PAS/app?service=RCLinkService/ReportLinkDispatch&
sp=SINDIVIDUAL_REPAIR_LEVEL&sp=S368a860a-a54a-4901-83d7-
11193ce2ca64&

HP Operations Orchestration (9.04)Page 84 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

sp=l0&sp=l718066</value><-
/item><item><name>displayRunReportUrl</name>
<value><![CDATA[http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&
sp=SINDIVIDUAL_REPAIR_LEVEL&sp=S368a860a-a54a-4901-83d7-
11193ce2ca64&sp=l0&sp=l718066]]>
</value></item>
<item><name>runStartTime</name><value>03/01/10 10:16</value></item>
<item><name>runEndTime</name><value>03/01/10 10:16</value></item>
<item><name>flowResponse</name><value>HANDOFF</value></item>
<item><name>flowResult</name><value>{}</value></item>
<item><name>flowReturnCode</name><value>Not a Return</value></item>
</runReturn></runResponse>
In this case, the run ID is 718067.

Now we resume the run asynchronously, using the resume_async verb:

$ java -jar JRSFlowInvoke.jar
http://localhost:8080/PAS/services/http/resume_async/718067 -u myuser
-p *****

Return XML:

<?xml version="1.0" encoding="UTF-8"?>
<resumeResponse><resumeReturn>
<item><name>runId</name><value>718067</value></item>
<item><name>runHistoryId</name><value>718066</value></item>
<item><name>runReportUrl</name>
<value>http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&
sp=SINDIVIDUAL_REPAIR_LEVEL&sp=S368a860a-a54a-4901-83d7-
11193ce2ca64&
sp=l0&sp=l718066</value></item>
<item><name>displayRunReportUrl</name>
<value><![CDATA[http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&sp=SINDIVIDUAL_REPAIR_LEVEL&
sp=S368a860a-a54a-4901-83d7-11193ce2ca64&
sp=l0&sp=l718066]]></value></item>
<item><name>runStartTime</name><value>03/01/10 10:16</value></item>
<item><name>flowResponse</name><value></value></item>
<item><name>flowResult</name><value></value></item>
<item><name>flowReturnCode</name><value>Not a Return</value></item>
</resumeReturn></resumeResponse>
The response is very similar to the synchronous resumption of the run, with the following
differences:

l There is no runEndTime item (because the end time is unknown)

l The flowResponse item is empty.

Let’s run the asynchronous resumptionmore time:

$ java -jar JRSFlowInvoke.jar http://localhost:8080/PAS
/services/http/resume_async/718067
-u myuser -p *****

HP Operations Orchestration (9.04)Page 85 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

The return XML is:

<?xml version="1.0" encoding="UTF-8"?>
<resumeResponse><resumeReturn>
<item><name>runId</name><value>718067</value></item><
item><name>runHistoryId</name><value>718066</value></item><
item><name>runReportUrl</name>
<value>http:-
//localhost:8080/PAS/app?service=RCLinkService/ReportLinkDispatch&
sp=SINDIVIDUAL_REPAIR_LEVEL&sp=S368a860a-a54a-4901-83d7-
11193ce2ca64&sp=l0&
sp=l718066</value></item>
<item><name>displayRunReportUrl</name><value>
<![CDATA[http://localhost:8080/PAS/app?service=RCLinkService/
ReportLinkDispatch&
sp=SINDIVIDUAL_REPAIR_LEVEL&
sp=S368a860a-a54a-4901-83d7-
11193ce2ca64&sp=l0&sp=l718066]]></value></item>
<item><name>runStartTime</name><value>03/01/10 10:16</value></item>
<item><name>flowResponse</name><value></value></item>
<item><name>flowResult</name><value></value></item>
<item><name>flowReturnCode</name><value>Not a Return</value></item>
</resumeReturn></resumeResponse>
Again, we get the same answer.

If we were to resume the flow a third time, the flow should have finished in the background, so
running it should produce an error:

$ java -jar JRSFlowInvoke.jar
http://localhost:8080/PAS/services/http/resume_async/718067 -u myuser
-p *****

The error looks like the following:

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<title>Error 404 request=/PAS/services/http/resume_async/718067,
error=path not found: Run: 718067 not found, either finished or
deleted., host=127.0.0.1</title>

</head>

<body><h2>HTTP ERROR: 404</h2><pre>request=/PAS/services/http/resume_
async/718067,
error=path not found: Run: 718067 not found, either finished or
deleted., host=127.0.0.1</pre>

<p>RequestURI=/PAS/services/http/resume_async/718067</p><p><i>
<small>Powered by
LaunchJetty6://
</small></i></p>

HP Operations Orchestration (9.04)Page 86 of 190

Software Development Kit Guide
Chapter 3: Finding and running flows from outside Central

</body>

</html>

Note that resuming the flow in synchronous mode would obtain the same response:

$ java -jar JRSFlowInvoke.jar
http://localhost:8080/PAS/services/http/resume/718067
-u myuser -p *****

Here is the error:

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<title>Error 404 request=/PAS/services/http/resume/718067,
error=path not found: Run: 718067 not found, either finished or
deleted., host=127.0.0.1</title>

</head>

<body><h2>HTTP ERROR
404</h2><pre>request=/PAS/services/http/resume/718067,
error=path not found: Run: 718067 not found, either finished or
deleted., host=127.0.0.1</pre>

<p>RequestURI=/PAS/services/http/resume/718067</p><p><i><small>
Powered by
LaunchJetty6://</small></i></p>

</body>

</html>

HP Operations Orchestration (9.04)Page 87 of 190

Chapter 4

Working with repositories from outside
Studio

As someone whoworks with OO repositories frequently, youmay occasionally find it easier and
less time-consuming to perform commonOO repository functions outside of Studio.

TheOOSDK Repository Tool (RepoTool) is a thin wrapper that includes all java dependencies and
configuration files. It is a jar file called RepoTool.jar. A java JRE is required to run it. You can use it
to perform the following repository functions outside of Studio:

l Publish new or changedOO objects, including flows and operations, from a source repository to
a target repository.

l Update a source repository with new or changedOO objects from a target repository.

l Publish and update in one operation.

l Export a repository.

l Verify a repository, finding problems with the OO objects in it, and optionally fixing them.

l Upgrade a repository to the latest version.

l Encrypt, decrypt, and re-encrypt a repository.

l Set default permissions for a repository.

l Import a file of localized content.

l Export content to be localized to a file.

l Set the sealed, hidden, and content flags for objects in a specified path.

l Delete objects in a specified path.

Note: The target repository is always a Central public repository.

Using the Repository Tool
You run the Repository Tool, also known as RepoTool, from a command line using one of the
RepoTool primary options. RepoTool has ten primary options, each of which tells RepoTool which
repository function to perform. RepoTool also has secondary options that provide information that is
required by the primary options.

l For information on the primary options, see Primary RepoTool options.

l For information on the secondary options, see Secondary RepoTool options.

Syntax

java jar RepoTool.jar [<primary option>] [<secondary options>]

HP Operations Orchestration (9.04)Page 88 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

The RepoTool.jar file is located in the OOSDK home directory, where it is entirely self-contained.

To see the list of parameters, run it with no arguments as follows:

java –jar RepoTool.jar

Primary RepoTool options
The primary RepoTool options specify the repository functions to be performed. In the following
table, you can click an option to seemore information on the action that it causes to be performed.

Primary Option Description

-publish Publishes changes from a source repository to a target repository.

-update Updates from a target repository to a source repository.

-publishupdate Combination of –publish and –update.

-export Exports a source repository, making flows andOO objects
available to users who do not share the same public repository as
you.

-verify Verifies the structural integrity of a repository, then lists and
optionally fixes any problems. The repository must be a local
repository.

-upgrade Upgrades a repository to the latest version.

-encrypt Encrypts a repository using an encryption password and saves it to
another repository. The repository must be a local repository.

-decrypt Decrypts an encrypted repository using an encryption password
and saves it to another repository. The repository must be a local
repository.

-reencrypt Re-encrypts a local repository using an encryption password and
encrypts it to another repository using another encryption
password. The repository must be a local repository.

-defaultperms Sets default permissions for a repository. The repository must be a
local repository.

-localizeimport Reads a localization file and places the strings into the content.
The repository must be a local repository.

-localizeexport Exports localizable content to a file.

-setflags Sets flags based on the settings of the -seal, -hide, and –content
secondary options. The repository must be a local repository.

-delete Deletes objects based on the specified -includepath. The repository
must be a local repository.

HP Operations Orchestration (9.04)Page 89 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Secondary RepoTool options
Most of the secondary RepoTool options work with more than one primary option. If a secondary
option works with only one primary option, it is described in the section that explains how to use the
primary option.

The rest of the secondary RepoTool options and the primary options they work with are shown in
the following table:

Secondary Option Description Used With

-1 <repository1> Specifies the path and name of
<repository1>.
For most of the primary RepoTool options, this
is the
source repository.

For the following options, <repository1>
can only be a local repository:

-verify

-upgrade

-encrypt

-decrypt

–reencrypt

-delete

-localizeimport

-localizeexport

For the following options, <repository1>
can be a local or Central repository:

–publish

-update

-publishupdate

-export

-defaultperms

A local repository is specified by a path, for
example, c:\MyFolder\MyRepository.

A Central repository is specified with a URL,
for example,
https://central-host2:8443.

-publish

-update

-publishupdate

-export

-verify

-upgrade

-encrypt

-decrypt

-reencrypt

-defaultperms

-localizeexport

-localizeimport

-setflags

-delete

-2 <repository2> Specifies the path and name of -publish

HP Operations Orchestration (9.04)Page 90 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Secondary Option Description Used With

<repository2>.
For most of the primary RepoTool options, this
is the target repository.

For the following options, <repository2>
can only be a local repository:

-encrypt

-decrypt

–reencrypt

For the following options, <repository2>
can be a local or Central repository:

-publishupdate

-export

A local repository is specified by a path,
such as c:\MyFolder\MyRepository.

A Central repository is specified with a URL,
such as
https://central-host2:8443

-update

-publishupdate

-export

-encrypt

-decrypt

-reencrypt

-c <value> Specifies how conflicts are resolved. A conflict
can occur if changes have
beenmade to the same object in both the target
and
source repositories.
The <value> is one of the following:

Value Effect

0 Skips the conflicts.

r1 Conforms <repository1>
to <repository2>.

r2 Conforms <repository2>
to <repository1>.

See Publishing a repository for more
information about using the -c option.

-publish

-update

-publishupdate

-children Used with the -delete secondary option,
-children deletes only the children of the
paths specified by -includepath.

-delete

-content
<true|false>

All objects specified by -includepath
will have their content flag set to the selected
value <true|false>.
Folders are recursive.

-setflags

HP Operations Orchestration (9.04)Page 91 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Secondary Option Description Used With

-excludepath <path> Specifies a path in <repository1> to
exclude when
publishing or updating (for example,
-excludepath “/Library/My
Repairs”).
The pathmust be enclosed in quotationmarks.
The flows and objects in
the excluded path will not be
published or updated.

-publish

-update

-publishupdate

-hide <true|false> All folders and flows specified by -
includepath
will have their hidden flag set to this value. If
set to
true, the objects are hidden in Central. Folders
are not
recursive.

-setflags

-includepath <path> Specifies the only path in <repository1> to
include
when publishing or updating (for example,
-includepath “/Library/My
Repairs”).
Only the path specified in <repository1>
will
be published or updated.

-publish

-update

-publishupdate

-includereferences You can only use this option when you use the
-includepath.
The
-includereferences option specifies that
any
flows or operations used by the flows in the
path
specified in the -includepath option will
also be published.

-publish

-update

-publishupdate

-localizationfile
<localizationfile>

Specifies the file to read from or write to for
localization.

-localizeimport

-localizeexport

-loginurl
<loginurl>

Specifies the URL of the Central server with
which to authenticate if <repository1>
or <repository2> is remote.

-publish

-update

-publishupdate

-export

-localizeexport

-localizeimport

HP Operations Orchestration (9.04)Page 92 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Secondary Option Description Used With

-n Specifies that RepoTool should not perform the
–publish,
-update, -publishupdate, or -export
option with which the –n option is used, but
instead should
print the results that would occur if the option
was performed.

-publish

-update

-publishupdate

-export

-p <password> Specifies the password for the Central or
remote server.

-publish

-update

-publishupdate

-export

-upgrade

-encrypt

-decrypt

-defaultperms

-localizeexport

-localizeimport

-q <repo2password> Specifies the encryption password for
<repository2>. It is ignored
if <repository2> is a remote repository or if
it is not encrypted.

-publish

-encrypt

-decrypt

-reencrypt

-r <repo1password> Specifies the encryption password for
<repository1>. It is ignored if
<repository1> is a remote repository
or if it is not encrypted.

-publish

-update

-publishupdate

-export

-verify

-upgrade

-decrypt

-reencrypt

-defaultperms

-localizeexport

-localizeimport

-seal <true|false> All folders specified by -includepath will -setflags

HP Operations Orchestration (9.04)Page 93 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Secondary Option Description Used With

have their sealed flag set to the
selected value <true|false>.
If set to true, the folders are sealed.
When a folder is sealed, it cannot be
changed. Folders are recursive. The
repository must be a local repository.

-u <username> Specifies the username for the Central or
remote server.

Note: The usernamemust belong to an
administrator for the options shown in
the UsedWith column except for the
–publish option, where the username
can belong to amember of the
PROMOTER group.

-publish

-update

-publishupdate

-export

-upgrade

-encrypt

-decrypt

-defaultperms

-localizeexport

-localizeimport

Return codes
The following are the Repository Tool's return codes and what they mean.

Return code Meaning

0 Success

1 An exception happened during publish

2 Repository changed while publishing

3 Bad command line options were given

4 There are no differences between the source and target repositories

Publishing a repository
The –publish option copies new or changed objects—such as flows and operations—from a
source repository (<repository1>) to a target repository (<repository2>).

Syntax

java –jar RepoToo.jar -publish -loginurl <loginurl> -u <username> -p <password>
-1 <repository1> [-r <repo1password>] -2 <repository2>
[-q <repo2password>] -c 0|r1|r2 [-n] [-excludepath <path>] [-includepath <path>]
[-includereferences]

HP Operations Orchestration (9.04)Page 94 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Both <repository1> and <repository2> stand for paths to local repositories or URLs of
Central repositories.

The –c option tells RepoTool what to do if a conflict is reported due to changes having beenmade
to an object with the same name in the target and source repositories.

-c option Effect

0 Skip the conflicts.

r1 Conform <repository1> to <repository2>.

r2 Conform <repository2> to <repository1>.

The following scenario illustrates how this works. Suppose that:

1. Local repository <repository1> and Central repository <repository2> contain a flow
named testflow and are synchronized.

2. You import a new version of testflow to <repository1>.

3. From a second local repository, you publish another version of testflow to <repository2>.
Now testflow has changed in both <repository1> and <repository2>. A conflict will be
reported for testflow1 when you preview publishing from <repository1> to
<repository2>.

4. Use the –c <value> option to specify how you want to resolve a potential conflict.

The values for the –c option and descriptions of the other secondary options used in the -publish
syntax, are shown in Secondary RepoTool options.

To learn how to publish a repository using Studio, see thematerial on publishing a repository in the
Studio Authoring Guide (Studio_AuthorsGuide.pdf) or the online Studio Help system.

The following examples show some of the ways you can use the RepoTool
–publish option.

Example 1

This example publishes the contents of the exported repository at c:\MyFolder\export to the Central
server central-host2. The option –c r2 tells RepoTool that if conflicts occur, it should change
central-host2 to resolve them.

java –jar RepoTool.jar -publish -loginurl https://central-host2:8443 -u admin
-p iconclude -1 c:\MyFolder\export -2 https://central-host2:8443 -c r2

Note: This is comparable to connecting Studio to central-host2 and to the repository at
c:\MyFolder\export.

Example 2

This example publishes the contents of the folder /Library/My Ops Flows/Network Flows/ from the
Central host central-host1 to the Central host central-host2.

java –jar RepoTool.jar -publish -loginurl https://central-host1:8443 -u admin -p iconclude -1
https://central-host1:8443 -2 https://central-host2:8443 -c r2 -includepath "/Library/My Ops
Flows/Network Flows"

HP Operations Orchestration (9.04)Page 95 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Updating from a repository
The –update option is the opposite of the –publish option. When you update a source repository
(<repository2>) to a target repository (<repository1>), any flows and objects that are new or
have changed in the source repository are copied to the target repository.

Syntax

java –jar RepoTool.jar -update -loginurl <loginurl> -u <username> -p
<password>
-1 <repository1> [-r <repo1password>] -2 <repository2> -c 0|r1|r2 [-n]
[-excludepath <path>] [-includepath <path>] [-includereferences]

The parameter <repository1> represents the repository from which you initiate the update. Both
<repository1> and <repository2> can be paths to local repositories or URLs of Central
repositories.

The secondary options used in the -update syntax are described in Secondary RepoTool options.

To learn how to update a repository using Studio, see thematerial on updating from a repository in
the Studio Authoring Guide (Studio_AuthorsGuide.pdf).

Example

In this example, RepoTool updates the path /Library/My Ops Flows/TestFlow/ in the central2
repository from the local repository My Repository. The -includereferences option tells
RepoTool to include all references to the flows and operations used by TestFlow. The –c option
tells RepoTool to change the central2 repository to resolve conflicts if they occur.

java –jar RepoTool.jar -update -1 https://central2:8443
-2 c:\MyFolder\My Repository -includepath "/Library/My Ops Flows/TestFlow" –includereferences
–cr1

Publishing and updating a repository
simultaneously

The –publishupdate option copies objects that are new or have changed from a source
repository (<repository1>) to a target repository (<repository2>) and copies flows and
objects that are new or have changed from a target repository (<repository1>) to a source
repository (<repository2>).

Syntax

java –jar RepoTool.jar -publishupdate -loginurl <loginurl> -u
<username> -p <password> -1 <repository1> [-r <repo1password>] -2
<repository2> -c 0|r1|r2 [-n] [-excludepath <path>][-includepath
<path>]
[-includereferences]

The secondary options used in the -publishupdate syntax, are described in Secondary
RepoTool options.

HP Operations Orchestration (9.04)Page 96 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Exporting a repository
Tomake flows andOO objects available to authors with whom you do not share a public repository,
you can use the –export option to export one repository (<repository1>), which can be a local
repository or a Central repository, to a target location (<repository2>), which specifies a
directory on the local file system. Other Studio authors can then import the repository from that
location.

Note: The RepoTool –export option creates <repository2>. The <repository2>
directory should not exist prior to exporting <repository1>.

Syntax

java –jar RepoTool.jar -export -loginurl <loginurl> -u <username> -p
<password>
-1 <repository1> [-r <repo1password>] -2 <repository2> [-x <path1>
-x <path2>] [-n]

The -x <path> option sets the path in the repository or library to be exported (for example, -x
“/Library/My Repairs/”). The path specified in the –x optionmust be enclosed in quotation
marks. You can specify multiple paths usingmore than one –x option. The default is –x
“/Library” -x “/Configuration/”.

The other secondary options used in the -export syntax, are described in Secondary RepoTool
options.

To learn how to export a repository using Studio, see thematerial on exporting a repository in the
Studio Authoring Guide (Studio_AuthorsGuide.pdf) or the online Studio Help System.

Example

This example exports the folders /Library/My Ops Flows/Network Flows/ and /Library/My Ops
Flows/Database Flows/ from the repository of the Central host central-host1 to a new local
repository namedMy Repository.

java –jar RepoTool.jar -export -loginurl https://central-host1:8443 -u
admin -p iconclude -1 https://central-host1:8443 -2 c:\MyFolder\My Repository -x "/Library/My
Ops Flows/Network Flows/" -x "/Library/My Ops Flows/Database Flows/"

Note: This is comparable to connecting Studio to central-host1, selecting the folders
Library/My Ops Flows/Network Flows/ and Library/My Ops Flows/Database Flows/, and
exporting them to c:\MyFolder\My Repository.

Verifying a repository
The –verify option allows you to verify the structural integrity of a local repository.

Syntax

java –jar RepoTool.jar -verify [-f] -1 <repository1> [-r
<repo1password>]

HP Operations Orchestration (9.04)Page 97 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

The –f option specifies that RepoTool will attempt to fix any structural integrity problems it
encounters in <repository1>.

The other secondary options used in the -verify syntax, are described in Secondary RepoTool
options.

Example

This example verifies the repository at C:\MyFolder\MyRepo, lists any problems that exist in the
flows and other objects in the repository, and then attempts to fix the problems.

java –jar RepoTool.jar -verify -f -1 C:\MyFolder\MyRepo

Upgrading a repository
The –upgrade option upgrades a local repository to the latest version. This option is designed to
be usedmainly by OO authors, since upgrades are normally done automatically in a production
environment.

Syntax

java –jar RepoTool.jar -upgrade -u <username> -p <password> -1
<repository1>
[-r <repo1password>]

The secondary options used in the -upgrade syntax are described in Secondary RepoTool options.

Example

This example upgrades the repository C:\MyFolder\MyRepo to the latest version that is associated
with the RepoTool.jar.

java –jar RepoTool.jar -upgrade -1 C:\MyFolder\MyRepo

Encrypting a repository
The –encrypt optionmakes a copy of a local repository (<repository1>), encrypts it, and
then saves it as <repository2>. You can use encryption to protect your repository from
unauthorized users.

Syntax

java –jar RepoTool.jar -encrypt [-u <username> -p <password>] -1
<repository1>
[-r <repo1password>] -2 <repository2> -q <repo2password>

If youmodify, publish to, update from, import to, or export <repository2>, youmust use the
<repo2password> password.

The secondary options used in the -encrypt syntax are described in Secondary RepoTool options.

To learn how to encrypt a repository using Studio, see thematerial on encrypting a repository in the
Studio Authoring Guide (Studio_AuthorsGuide.pdf) or the online Help system for Studio.

HP Operations Orchestration (9.04)Page 98 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Example

This example copies the repository My Repository, encrypts it, and then saves it as My Encrypted
Repository.

java –jar RepoTool.jar -encrypt -1 c:\MyFolder\My Repository -r
iconclude -2 c:\MyFolder\My Encrypted Repository -q iconclude2

Decrypting a repository
The –decrypt option decrypts an encrypted repository (<repository1>) and saves it as a
decrypted repository (<repository2>).

Syntax

java –jar RepoTool.jar -decrypt [-u <username> -p <password>] -1
<repository1>
-r <repo1password> -2 <repository2>

For <repo1password>, use the password you set when you encrypted the repository. See
Encrypting a repository for more information.

The secondary options used in the -decrypt syntax are described in Secondary RepoTool
options.

To learn how to decrypt a repository using Studio, see thematerial on decrypting a repository in
Studio Authoring Guide (Studio_AuthorsGuide.pdf) or the online Help system for Studio.

Example

This example decrypts My Encrypted Repository using the password iconclude2 and saves it as
the decrypted repository My Decrypted Repository.

java –jar RepoTool.jar -decrypt -1 c:\MyFolder\My Encrypted Repository
-q iconclude2 -2 c:\MyFolder\My Decrypted Repository

Re-encrypting a repository
The –reencrypt option allows you to create a second encrypted copy of a repository with a
different password.

Syntax

java –jar RepoTool.jar -reencrypt -1 <repository1> -r <repo1password>
-2 <repository2> -q <repo2password>

Using –reencrypt, RepoTool makes and encrypts a second copy of the encrypted repository
<repository1> named <repository2> and re-encrypts it with a new password specified in
<repo2password>.

The secondary options used in the -reencrypt syntax are described in Secondary RepoTool
options.

To learn how to re-encrypt a repository using Studio, see thematerial on creating a second
encrypted copy of a repository in the Studio Authoring Guide (Studio_AuthorsGuide.pdf) or the
online Help system for Studio.

HP Operations Orchestration (9.04)Page 99 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Example

This example creates a second copy of the encrypted repository My Encrypted Repository named
My Second Encrypted Repository with the new password iconclude4.

java –jar RepoTool.jar -reencrypt -1 c:\MyFolder\My Encrypted
Repository –r iconclude2 -2 c:\MyFolder\My Second Encrypted Repository
-q iconclude4

Setting default permissions for a repository
The –defaultperms option allows you to set the default access permissions for
<repository1>. This applies the default permissions to all of the contents of <repository1>.
The default permissions for a newly created object are Read, Write, Execute, and Link To for the
group EVERYBODY.

Syntax

java –jar RepoTool.jar -defaultperms -u <username> -p <password> -1
<repository1>
[-r <repo1password>]

To learnmore about access permissions in Studio, see thematerial on setting default access
permissions for groups in the Studio Authoring Guide (Studio_AuthorsGuide.pdf) or the online Help
system for Studio.

The secondary options used in the -defaultperms syntax are described in Secondary RepoTool
options.

Example

This example sets default permissions for My Repository, so that all of the users in the group
EVERYBODY have read, write, execute, and link permissions for it.

java –jar RepoTool.jar -defaultperms -1 “My Repository”

Exporting content to be localized
The –localizeexport option exports values in the specified repository to the file specified in the
–localization file secondary output so that it can be localizedmanually. This localized content can
then be imported into the repository using the –localizeimport option.

Syntax

java –jar RepoTool.jar -localizeexport [-loginurl <loginurl>] [-u
<username> -p <password>] -1 <repository1> [-r <repo1password>]
-localizationfile <localizationfile>

The secondary options used in the -localizeexport syntax are described in Secondary
RepoTool options.

Example

This example exports the localizable content in the central-host1 repository to the localization file
Localfile.

HP Operations Orchestration (9.04)Page 100 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

java –jar RepoTool.jar -localizeexport -loginurl https://central-
host1:8443 -u admin -p iconclude -1 https://central-host1:8443
-localizationfile Localfile

Importing a localization file
The –localizeimport option reads a localization file and places the localized strings into the
Studio repository specified in the -1 secondary option. The localization file contains OO content that
has been translated into another language. This option replaces the content in the specified
repository with the localized content.

Syntax

java –jar RepoTool.jar -localizeimport [-loginurl <loginurl>]
[-u <username> -p <password>] -1 <repository1> [-r <repo1password>]
-localizationfile <localizationfile>

The secondary options used in the - localizeimport syntax are described in Secondary
RepoTool options.

Example

This example reads the localization file Localfile and places the localized strings in the Studio
repository central-host1.

java –jar RepoTool.jar -localizeimport
-loginurl https://central-host1:8443
-u admin -p iconclude -1 https://central-host1:8443
-localizationfile Localfile

Setting flags
The –setflags option sets flags for all objects specified by the –includepath secondary
option based on the settings of the -seal, -hide, and –content secondary options. The
repository must be a local repository.

Syntax

java –jar RepoTool.jar -setflags -1 <repository1> -includepath <path>
[-includepath <path>] [-seal <true|false>] [-hide <true|false>]
[-content <true|false>]

The secondary options used in the -setflags syntax are described in Secondary RepoTool
options.

Example

This example sets the flags shown below for the Library/My Ops Flows/Network Flows/ repository.

l -seal true specifies that all objects in the path have their sealed flag set to true.

l -hide false specifies that all files and folders in the path have their hidden flag set to false.

l -content true specifies that all objects in the path have their content flag set to true.

HP Operations Orchestration (9.04)Page 101 of 190

https://central-host1:8443/
https://central-host1:8443/
https://central-host1:8443/
https://central-host1:8443/

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Java –jar RepoTool.jar -setflags -1 c:\MyFolder\My Repository
-includepath "/Library/My Ops Flows/Network Flows" -seal true -hide
false -content true

HP Operations Orchestration (9.04)Page 102 of 190

Software Development Kit Guide
Chapter 4: Working with repositories from outside Studio

Deleting objects
The –delete option deletes the objects specified in the -includepath secondary option.

Syntax

java –jar RepoTool.jar -delete -1 <repository1> -includepath <path>
[-includepath <path>] [-children]

The secondary options used in the -delete syntax are described in Secondary RepoTool options.

Example

This example deletes only the children of the Library/My Ops Flows/Network Flows/ path.

java –jar RepoTool.jar -delete -1 c:\MyFolder\My Repository
-includepath "/Library/My Ops Flows/Network Flows" -children

HP Operations Orchestration (9.04)Page 103 of 190

Chapter 5

Packaging content
The HP OOContent Packager allows you to package content—repositories and RAS libraries—
into content modules, then install the packaged content on Central and Remote Action Service
(RAS) servers in your network. ContentPackager.jar can be found in the /SDK subfolder.

Important: RAS installed on aWindows server supports both Java and .NET RAS operations.
However, RAS installed on a Linux server only supports Java RAS operations—it does not
support .NET RAS operations.

Installing the content
When you install the content, the Content Packager extracts the packaged libraries and
repositories from the ContentInstaller.jar file into the OO home directory, in the
updates\content\module\version\ folder on the target server. It then updates the Central server
repository, local repository, or RAS specified in the arguments passed to it. By default, the Central
repository at https://localhost:8443 is updated, as are all RASes referenced by it.

To install the content

l In a commandwindow, type:

java -jar <name>-ontentInstaller.jar [-ep encrypted repository
<password>] [-centralURL url] [-centralUsername <username>]
-centralPassword <password> | -ras RAS URL [-home iconclude_home]
[-repo localRepo]

The options are:

n -ep

Specifies the encrypted password to the target repository.

n -centralURL

Specifies the URL of the Central repository to be updated. The default URL is
https://localhost:8443

n -centralUsername

Specifies the user name for accessing Central. The default is admin.

n -centralPassword

Specifies the password for accessing Central.

n -ras

HP Operations Orchestration (9.04)Page 104 of 190

Software Development Kit Guide
Chapter 5: Packaging content

Specifies the URL of the RAS to be updated. If you don’t specify a RAS URL, the content is
installed on all RASes that are registered in the target repository.

n -home

Specifies the path of your OO installation. This defaults to the value of the ICONCLUDE_
HOME environment variable.

n -repo

Specifies the path of the repository to update. This defaults to the centralURL repository.

You can specify a local repository, but it is a best practice to update a Central repository and then
have the authors who use that Central repository update their local repositories. For more
information, see thematerial on publishing to and updating from the public repository in the Studio
Authoring Guide (Studio_AuthorsGuide.pdf).

Example

Java –jar ExampleInstalleration-OO9.0-ContentInstaller.jar -centralUrl
https://localhost:8443 –centralUsername admin –centralPassword
password

Creating the XML configuration file
The first step in packaging content is to create an XML configuration file that contains the
information needed to package and install the content. This includes the location of the repository
that contains the content on the source server and the path in the repository or library to be
published to Central or a RAS.

The XML configuration file requires the following XML elements:

l A project element that defines the properties of content module.

l A ras element that specifies the location on the source server of the libraries to be updated on
the target RAS servers.

l An archive element that provides information about how and where to install the updated content
on the RAS servers.

l A repository element that specifies the location on the source server of the repositories to be
updated and where to install them on the target Central servers.

These elements are described in the following sections. For an example, see XML configuration file
example.

Using the Content Packager
The process of packaging content for distribution involves the following steps:

HP Operations Orchestration (9.04)Page 105 of 190

https://localhost:8443/

Software Development Kit Guide
Chapter 5: Packaging content

1. Create an XML configuration file that defines:

n The content to be installed on the target Central or RAS servers.

n The RAS libraries to be updated on the target RAS servers.

n The repositories to be updated on the target Central servers.

To learn how to create the XML configuration file, see Creating the XML configuration file.

2. Package the content.

The Content Packager uses the information in the XML configuration file to incorporate the
content into a content module. It then creates a file named <name>-ContentInstaller.jar which
contains the content module and the classes needed to install it.

For instructions on using the Content Packager, see Packaging, depackaging, and
repackaging the content.

The <name> is specified in <project>.

3. Create the OO home directory folder structure on the target server where you plan to install the
content. If the target server has Studio installed on it, you can skip this step.

For the necessary folder structure, see Configuring the OO home directory folder structure.

4. Install the packaged content.

The Content Packager extracts the content into the OO home directory, in the
updates\content\module\version\ folder on the target server and then updates the Central
repository, the local repository, or a RAS, depending on the arguments you use when you
install the package. See Installing the content for instructions.

When you update a Central repository, it is important to let the authors who access that repository
know that they should update their local repositories. For information about updating from aCentral
repository, see thematerial on publishing to and updating from the public repository in the Studio
Authoring Guide (Studio_AuthorsGuide.pdf) or the online Help system for Studio.

The project element
The project element contains information about the content module that the Content Packager
creates from your content.

Syntax

The syntax is:

<project schema_version="value" name="value" version="value"
fullname="value"></project>

Following are the project element attributes and their values:

Attribute Value

schema_
version

Always set this attribute to a value of 2.

This attribute is reserved for future use.

HP Operations Orchestration (9.04)Page 106 of 190

Software Development Kit Guide
Chapter 5: Packaging content

name A short name for the content package. The name cannot contain spaces or special
characters such as quotationmarks (“), asterisks (*), slashmarks (/ and \), colons
(:), angle brackets (< or >), questionmarks (?), vertical bars (|), apostrophes (�),
ampersands (&), semicolons (;), and number sign (#).

fullname The full display name of the content package. The full name can contain spaces, but
not special characters, and should be understandable and reflect the contents of the
package.

version The content package version number. The version number is unique to the content
package, and does not need to be related to the HP OO version numbering scheme.

Example

<project schema_version="2" name="ExampleIntegration-OO"
version="1.0.0" fullname="HP OO Example Integration Content
Installer"></project>

The ras element
The ras element defines the RAS libraries (.jar or .NET files) to be updated on the target RAS
servers. The ras elements must be nested inside project elements.

Syntax

<ras type="value" dir=”path” description=”value” ></ras>

Following are the ras element attributes and their values:

Attribute Value

type The language in which the RAS libraries are written—Java or .NET. Valid
values are java and dot_net.

dir The path where the libraries are located on the source server, relative to the path
from which you are running the Content Packager. Subfolders in this path will be
packaged if they include at least one file.

description The description of the RAS libraries.

Example

<ras type="java" dir="../dist/JRAS" description="Example Integration
Java RAS Libraries"> </ras>

The archive element
The archive element provides information needed to install the RAS libraries on the target RAS
servers and determine which files should be packaged for installation on the RAS. Each archive
element must be nested inside a ras element.

Syntax

<archive isLib="value" [libFolderName=”value”]>path</archive>

HP Operations Orchestration (9.04)Page 107 of 190

Software Development Kit Guide
Chapter 5: Packaging content

where path is the path to the archive relative to the dir established in the ras element, using an
asterisk (*) as a wildcard character.

The following describes the archive element attribute isLib and its value:

Attribute Attribute value

isLib Set this attribute to a value of false if the library contains IActions.

Set it to a value of true if the library does not contain libraries IActions.

libFolderName The subfolder of the content lib\ folder where the libraries are installed. If the
isLib attribute is set to true, the libFolderName attributemust be specified.

Examples

<archive isLib=”false” >ExampleIntegration.jar</archive>

<archive isLib=”true”
libFolderName="ExampleIntegration">lib/*.jar</archive>

The second example installs the specified libraries into the HP OO home folder, in the
RAS\Java\Default\repository\lib\ExampleIntegration\ folder.

The repository element
The repository element tells the Content Packager where to find the repository on the source
server and which path to publish to Central. The repository element must be nested inside a
project element.

Syntax

<repository path="value" desctiption="value">

<include>path</path>

</repository>

where <include> path is the source repository directory. The path attribute should be the path for
the whole repository directory. Only relative paths are supported.

Following are the repository element attributes and their values:

Attribute Value

path The path of the source content within the source repository, relative to the path
from which you are running the Content Packager. It can also be the path of the
target content within the target repository.

description The description for the repository

Example

The following example of the repository element instructs the packager to package all of the
repository information under “../dist/Repository/ExampleIntegrationRepo ”, and to install or update
all of the contents under source /Library to target /Library.

HP Operations Orchestration (9.04)Page 108 of 190

Software Development Kit Guide
Chapter 5: Packaging content

<repository path="../dist/Repository/ExampleIntegrationRepo
description=”ExampleIntegraton Respository”>
<include>/Library</include>
</repository>

HP Operations Orchestration (9.04)Page 109 of 190

Software Development Kit Guide
Chapter 5: Packaging content

XML configuration file example
The following is an example of the XML configuration file you need to create for use with the
Content Packager.

XML configuration file example

<?xml version="1.0" ?>

<project schema_version="2" name="ExampleIntegration-OO9.0"
version="1.0.0" fullname="HP OO Example Integration Content
Installer">

<ras type="java" dir="../dist/JRAS" description="Example Integration
Java RAS Libraries">

<archive isLib=”false” >ExampleIntegration.jar</archive>

<archive isLib=”true”
libFolderName="ExampleIntegration">lib/*.jar</archive>

</ras>

<ras type="dot_net" dir="../dist/NRAS"description="Example
Integration .NET RAS Libraries">

<archive>*.dll</archive>

</ras>

<repository path="../dist/Repository/ExampleIntegrationRepo”
description=”ExampleIntegraton Repository”>

<include>/Library</include>

</repository>

</project>

You can also incorporate the packaging process into automated build process.

Example of incorporating packaging into an automated build

<project name="Sample Ant Buildfile"

xmlns:oo="antlib:com.hp.oo.content.utilities.packager.ant"

xmlns="antlib:org.apache.tools.ant">

HP Operations Orchestration (9.04)Page 110 of 190

Software Development Kit Guide
Chapter 5: Packaging content

<taskdef uri="antlib:com.hp.oo.content.utilities.packager.ant"

resource="com/hp/oo/content/utilities/packager/ant/antlib.xml"

classpath="/path/to/ContentPackager.jar" />

<oo:packager outputFolder="${build.dir}/OO-Packages"

property="acme.installer"

name="Acme"

version="${version}"

fullname="My Acme 10.0 Integration"

description="Example Content Installer">

<ras type="java"

dir="${dist.dir}/"

description="Blah">

<archive>ACME.jar</archive>

<archive libFolderName="ACME">ACME-lib.jar</archive>

<archive libFolderName="ACME">

<include name="*-commons.jar" />

<exclude name="*test*.jar" />

</archive>

</ras>

<repository path="${dist.dir}/repo"

description="Acme Repository content for ASGARD
OO release">

<include name="/Library/Integrations/Acme/" />

<exclude name="/Library/Integrations/Acme/Deprecated/"
/>

</repository>

</oo:packager>

</package>

HP Operations Orchestration (9.04)Page 111 of 190

Software Development Kit Guide
Chapter 5: Packaging content

Packaging, depackaging, and repackaging the
content

The Content Packager/Depackager uses the XML configuration file to:

l Package your content into a content module.

l Generate the content installer jar file which contains the content module and installation classes.

l Depackage the content installer jar file.

l Repackage the old content andmake an installer for a newer version of OO based on the
ContentPackager.jar’s version. For example, if you have a content installer for OO 7.51, it
cannot be used to install the content on OO 9.00. You can use repackagemode to package the
content to an installer that works for OO 9.00.

For information about themakeup of the XML configuration file, see Creating the XML configuration
file.

To package the content

l In a commandwindow, type the following command:

java -jar ContentPackager.jar [-mode package] –configFile <file>
[-outputFolder <dir>]

The options are:

n -mode

Indicates that the action is to package the contents. The default is to package.

n -outputFolder

Specifies the directory where the Content Packager will generate the content installer .jar file.

n -configFile

Specifies the path of the XML configuration file.

Example

java –jar tools/ContentPakcager.jar –mode package –configFile
config/package.xml –outputFolder output

To depackage the content

l In a commandwindow, type the following:

java -jar ContentPackager.jar -mode depackage –installerJar <file>
[-outputFolder <dir>]

The options are:

n -mode

Indicates that the action is to depackage the contents. For depackaging, use depackage.

HP Operations Orchestration (9.04)Page 112 of 190

Software Development Kit Guide
Chapter 5: Packaging content

n -outputFolder

Specifies the directory where the Content Depackager will generate the content files.

n -installerJar

Specifies the path of the content installer file.

Example

java –jar tools/ContentPakcager.jar –mode depackage –installerJar
output/ExampleIntegration-OO9.0-ContentInstaller.jar –outputFolder
output/depackage

To repackage the content

l In a commandwindow, type the following:

java -jar ContentPackager.jar -mode repackage –installerJar <file>
[-outputFolder <dir>]

The options are the following:

n -mode

Indicates that the action is to depackage the contents. For repackaging, use repackage.

n -outputFolder

Specifies the directory where the Content Depackager will generate the new content installer.

n -installerJar

Specifies the path of the old content installer file.

Example

java –jar tools/ContentPakcager.jar –mode repackage –installerJar
output/ExampleIntegration-OO7.51-ContentPackager.jar –outputFolder
output/repackage

HP Operations Orchestration (9.04)Page 113 of 190

Software Development Kit Guide
Chapter 5: Packaging content

Configuring the OO home directory structure
TheOO home directory is the folder where HP OO is installed. By default, this is C:\Program
Files\Hewlett-Packard\Operations Orchestration\.

Before you can install the packaged content, the OO home directory structuremust be in place on
the target server. If the server has Studio installed on it, the structure is already in place. If not,
configure the OO home directory structure on the target server as shown in the following figure. The
conf\ and plugins\ folders should contain all of the files from the version of Studio that was used to
develop the content.

OO home directory structure

After you create the needed folder structure, set the operating system environment variable
ICONCLUDE_HOME to the OO home directory.

HP Operations Orchestration (9.04)Page 114 of 190

Chapter 6

Inspecting a repository
The RepoInspector utility is a tool that inspects a repository. RepoInspector.jar can be found in the
SDK home directory.

When an inspection fails, a warningmessage is issued that contains valuable information including:

l The UUID and path of the repository

l A description of the problem

l Any impacts to users

l Suggested remedies

This information enables content developers of all levels, both OO developers and third-party
content developers, to understand, diagnose, and fix problems in their content.

RepoInspector.jar does the following:

l Perform best practices checks and reports violations.

l Perform version compatibility checks and detects compatibility violations with previously-
released snapshots of the same repository

l Generate release notes.

l List repository contents.

Checking best practices
RepoInspector checks for violations of best practices, and writes violations to a file. It performs the
following best practice checks:

l Deprecated Usage

Checks for flows that use deprecated operations—any operations in a folder named
/Deprecated. Deprecated flows are not subject to this check.

l Description Exists

Verifies that all objects have descriptions.

l PRE Tags in Description

Checks that the text on Studio Description tabs are surrounded with <pre> and </pre> tags.
These tags are required tomake flow descriptions appear correctly in Central.

l Consistent Input Bindings

Checks for problems in input bindings, such as usernames (or passwords or hostnames) bound
to specific values, unencrypted passwords, and empty prompts.

HP Operations Orchestration (9.04)Page 115 of 190

Software Development Kit Guide
Chapter 6: Inspecting a repository

l Obsolete References

Flags the terms "JRAS" or "NRAS" in descriptions. Only the term "RAS" should be used.

l Description Consistency

Checks that operation descriptions document all inputs, responses, and results. This check is
required because of a deficiency in the IAction interface used to communicate between
infrastructure and content.

l Response Type Consistency

Verifies that response types (success, diagnosed, failure/failed) are consistent with their Java
enumeration values (Type.RESOLVED, Type.DIAGNOSED, Type.ERROR).

l Questionable Deprecation

Finds operations that appear to have been deprecated for no reason—the new version of the
operation has no new required inputs and does not lack any outputs that the original operation
had.

Syntax

Java –jar RepoInspector.jar -repo1 <path to repo1> -bestpractices
[-outputFolder <path>][-includePaths <repo path>][-excludePaths
<repo path>][-exemptionFile <path>]

The options are:

l -repo1 <repository URL>

The value of <repository URL> can be:

n Strings in the following form:

<user>:<password>:<encPassword>@host:port

n Folder paths to local repositories.

The path has to be relative to where RepoInspector is run.

n The path to a content installer.

n The path to a local .zip file.

n The URL to a remote .zip file.

l -bestpractices

Specifies to run a best practices check for the repository.

l -outputFolder

Specifies the folder where the output of the Best Practice Violations results files.

l -includePaths

Specifies the repository paths for best practice checking. The repository paths should be in a
quoted, comma-delimited list. The default is includePaths: /Library,/Configuration.

l -excludePaths

HP Operations Orchestration (9.04)Page 116 of 190

Software Development Kit Guide
Chapter 6: Inspecting a repository

Specifies which repository paths should be excluded for best practice checking. The repository
paths should be in a quoted, comma-delimited list. The default is excludePaths:
/Repository,/Configuration/Groups, /Configuration/System Properties, /Configuration/System
Accounts, /Configuration/System Filters

l -exemptionFile

The path of the properties file of exemptions to tests. The format of the properties file is:

UUID|Library Path = <comma separated list of tests>

The following is an example of an exemption property file:

! /Library/..., done because...

905742c8-2412-4476-a7d3-49d0acfa4b40 = InputTest

! Done because...

/Library/Integrations/My Integration/Add Stuff =
DeprecatedUsageTest,InputBindingTest

Sample command that starts the repository inspector

Java –jar RepoInspector.jar –repo1 ../ExampleIntegrationRepo
–bestPractices

Checking version compatibility
RepoInspector can verify compatibility between a new repository and old (released) repository. The
purpose is to identify any changes to content that may break customer's flows. RepoInspector
performs the following version compatibility checks:

l Existence

Every object (UUID) in the old repository must be present in the new repository. If this test fails,
all further compatibility checking is skipped.

l Inputs

Every required input in the new repository must be required in the old repository. Compatibility is
broken if you introduce a new required input or change an existing input to be required.

l Version

If an object in the new repository is present in the old one, then it must be based on the latest
version of the old one. In other words, if the new repository object is based on an object in the old
repository that has been subsequently changed, then it is flagged as a violation. Conversely, if
the embedded version numbers of the object have not changed from the old to the new
repository yet the objects really have undergone some changes (normally only possible by
manually manipulating the repository XML object outside of Studio), then it is also flagged.

Syntax

Java –jar RepoInspector.jar -repo1 <path to repo1> -repo2 <path to
repo2> -compatibility [-outputFolder <path>] [-includePaths <repo
path>] [-excludePaths <repo path>] [-exemptionFile <path>]

The options are:

HP Operations Orchestration (9.04)Page 117 of 190

Software Development Kit Guide
Chapter 6: Inspecting a repository

l -repo1 <repository URL>

The value of <repository URL> can be:

n Strings in the following form:

<user>:<password>:<encPassword>@host:port

n Folder paths to local repositories. The path has to be relative to where RepoInspector is run.

n The path to a content installer.

n The path to a local .zip file.

n The URL to a remote .zip file.

l -repo2 <repository URL>

The value of <repository URL> can be:

n Strings in the following form:

<user>:<password>:<encPassword>@host:port

n Folder paths to local repositories. It has to be relative to where RepoInspector is run.

n The path to a content installer.

n The path to a local .zip file.

n The URL to a remote .zip file.

l -compatibility

Specifies to run a compatibility check for the repository.

l -outputFolder

The path to the Compatibility folder that contains the results files.

l -includePaths

Specifies which repository paths to include for the compatibility checking. The repository paths
should be in a quoted, comma-delimited list. The default is includePaths: /Library,/Configuration.

l -excludePaths

Specifies which repository paths to exclude for the compatibility checking. The repository paths
should be in a quoted, comma-delimited list. The default is excludePaths:
"/Repository,/Configuration/Groups,/Configuration/System
Properties,/Configuration/System Accounts,/Configuration/System
Filters"

l -exemptionFile

The path of the properties file for exemptions to tests.

Example

Java –jar RepoInspector.jar –repo1 ../ExampleIntegrationRepo –repo2
../AnotherExampleIntegrationRepo -compatibility

HP Operations Orchestration (9.04)Page 118 of 190

Software Development Kit Guide
Chapter 6: Inspecting a repository

Generating release notes
RepoInspector can generate release notes for specified repositories.

Syntax

Java –jar RepoInspector.jar -repo1 <path to repo1> -releasenotes
[-outputFolder <path>] [-includePaths <repo path>] [-excludePaths
<repo path>]

The options are:

l -repo1 <repository URL>

The value of <repository URL> can be:

n Strings in the following form:

<user>:<password>:<encPassword>@host:port

n Folder paths to local repositories. The path has to be relative to where RepoInspector is run.

n The path to a content installer.

n The path to a local .zip file.

n The URL to a remote .zip file.

l -releasenotes

Specifies to generate release notes for the repository.

l -outputFolder

The path to the ReleaseNotes folder that contains the results files.

l -includePaths

Specifies which repository paths to include for the release notes generation. The repository
paths should be in a quoted, comma-delimited list. The default is includePaths:
/Library,/Configuration.

l -excludePaths

Specifies which repository paths to exclude for the release notes generation. The repository
paths should be in a quoted, comma-delimited list. The default is excludePaths:
/Repository,/Configuration/Groups,/Configuration/System Properties,/Configuration/System
Accounts,/Configuration/System Filters.

Example

Java –jar RepoInspector.jar –repo1 ../ExampleIntegrationRepo
–releasenotes

HP Operations Orchestration (9.04)Page 119 of 190

Software Development Kit Guide
Chapter 6: Inspecting a repository

Listing repository contents
RepoInspector can list the contents of specified repositories.

Syntax

Java –jar RepoInspector.jar -repo1 <path to repo1> -listing
[-outputFolder <path>] [-includePaths <repo path>] [-excludePaths
<repo path>]

The options are:

l -repo1 <repository URL>

The value of <repository URL> can be:

n Strings in the following form:

<user>:<password>:<encPassword>@host:port

n Folder paths to local repositories. The path has to be relative to where RepoInspector is run.

n The path to a content installer.

n The path to a local .zip file.

n The URL to a remote .zip file.

l -listing

Specifies to generate a listing of the contents of the repository.

l -outputFolder

The path to the Listing folder that contains the results files.

l -includePaths

Specifies which repository paths to include for the repository listing. The repository paths should
be in a quoted, comma-delimited list. The default is includePaths: /Library,/Configuration.

l -excludePaths

Specifies which repository paths to exclude for the repository listing. The repository paths
should be in a quoted, comma-delimited list. The default is excludePaths:
"/Repository,/Configuration/Groups,/Configuration/System
Properties,/Configuration/System Accounts,/Configuration/System
Filters".

Example

Java –jar RepoInspector.jar –repo1 ../ExampleIntegrationRepo
–listing

HP Operations Orchestration (9.04)Page 120 of 190

Chapter 7

Automating flow testing
The AutoTest utility is an automatedOO content tester with stress testing capabilities. AutoTest.jar
is found in the SDK home directory. The tool invokes the flows in OOCentral, so the Central
servicemust be available.

Syntax

java [system properties] -jar AutoTest.jar [parameters] <xmlFilePath>

Example

Java –Dlogfile=output.log –jar AutoTest.jar –dbpass iconclude
input.xml

System properties
Use the following syntax to specify system properties for the AutoTest utility:

–D<property>=<value>

For example:

–Dlogfile=output.log

The following table describes the properties and the aspects of the system that they regulate.

This property Affects this

Logfile The path to output log file.

stress.conn.timeout The connection timeout in seconds.

stress.read.timeout The read timeout in seconds.

-threaddelay The delay before each thread begins. The default is 0.

-threaddelayevery Apply ‘threaddelay’ everything n-th trhead to run. The default is 1.

-threads Themaximum number of concurrent threads. The default is 1.

-varxml The XML file of “variable” overrides.

-xmlfile The XML file of “central” and “variable” overrides.

Parameters
Use the following syntax to specify parameters for the AutoTest utility:

–name <value>

HP Operations Orchestration (9.04)Page 121 of 190

Software Development Kit Guide
Chapter 7: Automating flow testing

For example:

–dbpass iconclude

The parameters are:

l -dbhost

TheOOCentral database host. The default is the same host as OO central.

l -dbname

TheOOCentral database name. The default is dharma.

l -dbpass

TheOOCentral database password.

l -dbport

TheOOCentral database port.

l -dbtype

TheOOCentral database type. The valid values are oracle, mysql, and mssql.

l -dbuser

TheOOCentral database user.

l -helpxml

Displays help information in the format of an XML file.

l -host

TheOOCentral host.

l -https

Specifies whether to use SSL. The valid values are true and false. The default is true.

l -user

TheOOCentral username.

l -pass

TheOOCentral password.

l -port

TheOOCentral port.

l -quiet

Specifies minimal logging to the console.

l -runcount

The number of times to repeat each runnable element. The default is 1.

Note: Most of the above options can be specified in an XML input file. Values that you specify

HP Operations Orchestration (9.04)Page 122 of 190

Software Development Kit Guide
Chapter 7: Automating flow testing

in a command line take precedence over values contained in XML files, with the exception of -
xmlfile FILENAME, which loads an entire XML file of overrides.

Sample XML input files
The following is the example of an all-in-one XML configuration file:

<?xml version="1.0"?>

<stress-run>

<!-- Main config block -->

<central>

<!-- Central config -->

<host>myhost.battleground.ad</host>

<user>admin</user>

<pass>secret</pass>

<https>true</https>

<port>8443</port>

<!-- Database config -->

<dbhost>myhost.battleground.ad</dbhost>

<dbname>dharma</dbname>

<dbuser>dharma_user</dbuser>

<dbpass>secret</dbpass>

<dbtype>mssql</dbtype>

<!-- Stress tool config -->

<runcount>1</runcount>

<threads>5</threads>

</central>

<!-- Definitions -->

<variables>

<myhost>myhost.battleground.ad</myhost>

<myip>192.168.5.55</myip>

</variables>

HP Operations Orchestration (9.04)Page 123 of 190

Software Development Kit Guide
Chapter 7: Automating flow testing

<!-- Flows -->

<flow>

<description>Connectivity Step1 Test</description>

<name>/Library/Accelerator Packs/
Network/ConnectivityTest</name>

<input name="host">${myhost}</input>

<input name="lossThreshold">5</input>

<input name="latencyThreshold">300</input>

<response>success</response>

<rule>

<key>FailureMessage</key>

<value></value>

<comparator>contains</comparator>

</rule>

</flow>

<flow>

<description>JRAS Test 01</description>

<name>/Library/Stress/JRAScommand</name>

<input name="hostname">${myhost}</input>

<response>success</response>

</flow>

<!-- Operations -->

<operation>

<description></description>

<name>/Library/Operation/Some Operation</name>

<input name="myhost" />

<response>success</response>

</operation>

</stress-run>

The following is an example of a separate Central\variables sample XML
configuration file.

Main input XML file:

HP Operations Orchestration (9.04)Page 124 of 190

Software Development Kit Guide
Chapter 7: Automating flow testing

<?xml version="1.0"?>

<anything>

<central>

<runcount>1</runcount>

<threads>1</threads>

<xmlfile>opsforceenv.xml</xmlfile>

</central>

<variables>

<xmlfile>Input Variables.xml</xmlfile>

</variables>

<!-- *** -
->

<!-- Operation Name: Library/Integrations/Hewlett-Packard

 <!-- /Universal CMDB/Add Object -->

<!-- *** -
->

<!-- DL1 -->

<flow>

<description>Regression Test 01</description>

<name>/Library/Havok_Regression/Integrations/
 Hewlett-Packard/Universal_CMDB/OP_Add_Object_HVK01</name>

<input name="cmdbHost">${cmdbHostName}</input>

<input name="cmdbPort">${cmdbPortValue}</input>

<input name="username">${cmdbUsername}</input>

<input name="password">${cmdbPassword}</input>

<input name="objectType">${AddcmdbObjecttype}</input>

<input name="prop">${AddcmdbProp}</input>

<input name="cmdbVersion">${cmdbVersion}</input>

<response>success</response>

</flow>

<!-- DL2a -->

HP Operations Orchestration (9.04)Page 125 of 190

Software Development Kit Guide
Chapter 7: Automating flow testing

<flow>

<description>Regression Test 02</description>

<name>/Library/Havok_Regression/Integrations/
Hewlett-Packard/Universal_CMDB/OP_Add_Object_HVK01</name>

<input name="cmdbHost">${badcmdbHostName}</input>

<input name="cmdbPort">${cmdbPortValue}</input>

<input name="username">${cmdbUsername}</input>

<input name="password">${cmdbPassword}</input>

<input name="objectType">${cmdbObjecttype}</input>

<input name="prop">${cmdbProp}</input>

<input name="cmdbVersion">${cmdbVersion}</input>

<response>Failure</response>

</flow>

...

...

</stress-run>

Central Xml file:

<?xml version="1.0"?>

<anything>

<central>

<host>16.93.12.44</host>

<port>8443</port>

<user>admin</user>

<pass>admin</pass>

<https>true</https>

<dbhost>16.93.12.44</dbhost>

<dbname>oo</dbname>

<dbuser>admin</dbuser>

HP Operations Orchestration (9.04)Page 126 of 190

Software Development Kit Guide
Chapter 7: Automating flow testing

<dbpass>admin</dbpass>

<dbtype>mssql</dbtype>

</central>

</anything>

Variables Xml file;

<?xml version="1.0"?>

<anything>

<variables>

<!-- *** -->

<!-- uCMDB Variables -->

<!-- *** -->

<cmdbHostName>15.23.143.2</cmdbHostName>

<cmdbPortValue>8080</cmdbPortValue>

<cmdbUsername>admin</cmdbUsername>

<cmdbPassword>admin</cmdbPassword>

<cmdbVersion>8</cmdbVersion>

<!-- /Library/Havok_Regression_Ros/uCMDB_ros/Add_Object_HVK01
-->

<AddcmdbObjecttype>unix</AddcmdbObjecttype>

<AddcmdbProp>host_key=Test</AddcmdbProp>

...

...

</variables>

</anything>

HP Operations Orchestration (9.04)Page 127 of 190

Chapter 8

Debugging OO client/server problems
Communication betweenOO components is accomplished using SSL (Secure Sockets Layer),
which encrypts data that is transmitted between clients and servers through the Internet. When a
client/server problem occurs with OO—such as a call to the Central Web Service not working
correctly—SSL does not allow you to capture the data packets transmitted between the client and
the server to validate that data is being sent properly.

The solution is to enable HTTP access, which allows you to capture live data packets, and inspect
or compare them. This is usually the best way to debugOO client/server problems.

Following are two procedures that you can use for debugging:

l The first procedure allows HTTP access to Central.

l The second procedure does the same thing for RAS.

To allow HTTP access to Central

1. Stop the RSCentral service.

2. In a text editor, open the file applicationContext.xml, which is located in the Central\WEB-INF\
folder of the OO home directory.

3. Comment out every line in any sections that begin with <!-- HTTPS_SECTION_BEGIN -->
and end with <!-- HTTPS_SECTION_END -->, and then save the file.

4. Open the file web.xml, which is located in the Central\WEB-INF\ folder of the OO home
directory.

5. Comment out every line in any sections that begin with <!-- HTTPS_SECTION_BEGIN -->
and end with <!-- HTTPS_SECTION_END -->, and then save the file.

6. Restart the RSCentral service.

7. Connect to port 8080 using HTTP rather than port 8443 using HTTPS.

To allow HTTP access to RAS

1. Stop the RSJRAS service.

2. In a text editor, open the file jetty.xml, which is located in the RAS\Java\Default\webapp\conf\
folder of the OO home directory.

3. Comment out the line:

<New class="org.mortbay.jetty.security.SslSelectChannelConnector">

4. Add the following line directly under the line you commented out in the previous step:

<New class="org.mortbay.jetty.nio.SelectChannelConnector">

5. Comment out the lines starting with:

HP Operations Orchestration (9.04)Page 128 of 190

Software Development Kit Guide
Chapter 8: Debugging OO client/server problems

n <Set name="Keystore">

n <Set name="Password">

n <Set name="KeyPassword">

n <Set name="NeedClientAuth">

6. Save the file.

7. Open the file applicationContext.xml, which is located in the RAS\Java\Default\webapp\WEB-
INF\ folder of the OO home directory.

8. Comment out every line in any sections that begin with <!-- HTTPS_SECTION_BEGIN -->
and end with <!-- HTTPS_SECTION_END -->, and then save the file.

9. Open the file web.xml, which is located in the RAS\Java\Default\webapp\WEB-INF\ folder in
the OO home directory.

10. Comment out every line in any sections that begin with <!-- HTTPS_SECTION_BEGIN -->
and end with <!-- HTTPS_SECTION_END -->, and then save the file.

11. Restart the RSJRAS service.

12. Connect to port 9004 using HTTP instead of HTTPS.

To turn off the allowance of HTTP connections for either procedure, reverse the procedure.

HP Operations Orchestration (9.04)Page 129 of 190

Chapter 9

OO SOAP API Reference
The SOAP API, which is primarily documented in the SOAP API Javadocs document, includes the
methods that are documented in these sections:

l SOAP API: Repository folders

l SOAP API: Flows

l SOAP API: Selection lists

l SOAP API: Clusters

l SOAP API: Scheduler

l SOAP API: Get Attributes

HP Operations Orchestration (9.04)Page 130 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Constant field values
com.iconclude.*

com.iconclude.dharma.services.wscentralservice.WSCentralService

public static final int INPUT_LIST_TYPE_ERROR -1

public static final int INPUT_LIST_TYPE_FREE_FORM 0

public static final int INPUT_LIST_TYPE_MULTIPLE_SELECTION 2

public static final int INPUT_LIST_TYPE_SINGLE_SELECTION 1

public static final int WS_RUN_HISTORY_MAX_ROWS 100

com.iconclude.dharma.services.wscentralservice.WSInputValueEvaluation

public static final int BEGINS_WITH_STRING 10

public static final int CONTAINS_STRING 7

public static final int ENDS_WITH_STRING 11

public static final int EQUAL 1

public static final int EXACT_STRING_MATCH 8

public static final int GREATER_THAN 5

public static final int GREATER_THAN_OR_EQUAL 6

public static final int LESS_THAN 3

public static final int LESS_THAN_OR_EQUAL 4

public static final int MATCH_ALL_WORDS 12

public static final int MATCH_ALWAYS 16

public static final int MATCH_AT_LEAST_ONE_WORD 13

public static final int MATCH_NONE_OF_WORDS 14

public static final int MATCH_ONLY_ONE_WORD 15

public static final int NOT_EQUAL 2

public static final int NOT_EXACT_STRING_MATCH 9

public static final int REGEX_AWK 19

public static final int REGEX_GLOB 20

HP Operations Orchestration (9.04)Page 131 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

public static final int REGEX_JAVA 17

public static final int REGEX_PERL5 18

public static final int SCRIPTLET 21

com.iconclude.dharma.services.wscentralservice.WSInputValueType

public static final int CREDENTIALS_VALUE_TYPE 4

public static final int LIST_VALUE_TYPE 2

public static final int STRING_VALUE_TYPE 1

com.iconclude.dharma.services.wscentralservice.WSScheduleType

public static final int TYPE_CRON 2

public static final int TYPE_INTERVAL 1

public static final int TYPE_UNKNOWN 0

com.iconclude.dharma.services.wscentralservice.WSScheduleUnitType

public static final int UNIT_HOURS 2

public static final int UNIT_MINUTES 1

public static final int UNIT_UNKNOWN 0

HP Operations Orchestration (9.04)Page 132 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Repository folders
Themethods documented in this section enable you to work with folders:

l createFolder

l moveFolder

createFolder
The createFolder function enables you to create a folder within a repository.

The completemethod is:

Boolean createFolder(String)

Inputs

Input Meaning and comments

path The full path of the new folder. If sections of the path aremissing, they will be created. If
the folder exists, nothing happens. Folders can be created only in the /Library section.
The specified pathmust start with ‘/Library’ or ‘Library’.

Outputs

Output Meaning and comments

true The folder was created.

false The folder already existed.

Exceptions
Exceptions are thrown if:

l The path is invalid.

A path is invalid if it’s null or blank, contains illegal characters, has a section which is a reserved
word or has a section which is longer than 255 characters.

Legal characters are alphanumeric, spaces or the following characters: _,＿ , -,－ , :,：, ., ･,．,
｡,。, ・, ·, (,), (,) , [,],［,］, {, },｛,｝

Reserved words are:

n ".attic"

n ".section"

n ".section.xml"

n ".xml"

l The user is not allowed to create the folder.

HP Operations Orchestration (9.04)Page 133 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

moveFolder
ThemoveFolder function enables you tomove a folder within a repository.

The completemethod is:

String moveFolder(String sourcePath, String destinationPath, Boolean
overwrite)

Inputs

Input Meaning and comments
Possible
values

sourcePath The path of the folder to bemoved.

destinationPath The path of the destination for the folder.

overwrite Specifies whether to continue if there is a folder at the
destinationPath location with the same name as the folder you are
moving.

"true" or
"false"

Outputs

Output Meaning and comments

Result The function returns the new path of themoved folder.

Exceptions
Exceptions (RemoteException) are thrownwhen:

l The sourcePath input does not refer to a folder.

l The destinationPath input contains a folder with the same name as the source folder and
overwrite is false.

l The destination contains an object other than folder with the same name as the source folder.

l The user does not have permissions.

HP Operations Orchestration (9.04)Page 134 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Flows
Themethods documented in this section enable you to work with flows:

l moveFlow

moveFlow
ThemoveFlow() function enables you tomove a flow.

The completemethod is:

String moveFlow(String identifier, String destinationPath, Boolean
overwrite)

Inputs

Input Meaning and comments
Possible
values

identifier The source path, including the name, or the UUID of the object to be
moved.

destinationPath The location where the object is to bemoved to.

overwrite Specifies whether, if there is a flow of the same name at the
destinationPath location, the object beingmoved should be added as a
copy of the existing one at the destination location (for instance, if the
name of the flow is “Flow”, themoved flow will be named “Flow (Copy 1)”).

"true" or
"false"

Outputs

Output Meaning and comments

Result moveFlow() returns the new path of themoved flow.

Exceptions
Exceptions are thrownwhen:

l The identifier input value does not refer to a flow or operation.

l The destination contains a flow/operation with the same name and the value of the overwrite
input is "false".

l The destination contains an object other than the flow/operation that has the same name as the
flow/operation beingmoved.

l The user does not have permissions.

HP Operations Orchestration (9.04)Page 135 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Runs
The following classes andmethods treat OO runs:

l RunParameters

l RunParametersEx

l RunHandle

WSRunParameters
com.iconclude.dharma.services.wscentralservice

Class WSRunParameters

java.lang.Object
|-com.iconclude.dharma.services.wscentralservice.WSRunParameters

--

Direct Known Subclasses:
WSRunParametersEx

--

public class WSRunParameters
extends java.lang.Object

This object is a wrapper for the parameters needed by the service to run a flow. The client compiles
this object as parameter to the service api call 'runFlow'.

--

Constructor Summary
WSRunParameters()

HP Operations Orchestration (9.04)Page 136 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Method Summary

Output Method

WSFlowInput[] getFlowInputs()

java.lang.String getRunName()

java.lang.String getUuid()

boolean isAsync()

boolean isStartPaused()

boolean isTrackStatus()

void setAsync(boolean async)

void setFlowInputs(WSFlowInput[] flowInputs)

void setRunName(java.lang.String runName)

void setStartPaused(boolean startPaused)

void setTrackStatus(boolean trackStatus)

void setUuid(java.lang.String uuid)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail
WSRunParameters()

Method Detail
getUuid()

Returns:

String representing the flow's UUID.

--

void setUuid(String uuid)

Parameters:

uuid - Of the flow to run.

--

HP Operations Orchestration (9.04)Page 137 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

String getRunName()

Returns:

String representing the run name.

--

void setRunName(string runName)

Parameters:

runName - The name of the run. If you don’t set the run name (or set it to be an empty string) the run
namewill be: “flowName_${runID}”.

--

WSFlowInput[] getFlowInputs()

Returns:

Array of WSFlowInput that wraps the flow parameters.

--

void setFlowInputs(WSFlowInput[] flowInputs)

Parameters:

flowInputs - Is an array of inputs/parameters to the flow to be run.

--

boolean isAsync()

Returns:

If true, run asynchronously, returning immediately; otherwise, run to completion before returning.

--

void setAsync(boolean async)

Parameters:

async - If true, run asynchronously returning immediately; otherwise, run to completion before
returning.

--

boolean isTrackStatus()

Returns:

If true, the live run will be cached for status monitoring. Otherwise, run status will be retrieved from
history. If the client needs to track the status of its runs, it should set this parameter to true in order
to reduce database access and speed up the response time. If monitoring is not required, set to
false to eliminate unnecessary memory allocations for caching.

--

void setTrackStatus(boolean trackStatus)

HP Operations Orchestration (9.04)Page 138 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Parameters:

trackStatus - If true, the live run will be cached for status monitoring. Otherwise, run status will
be retrieved from history. If the client needs to track the status of its runs, it should set this
parameter to true in order to reduce database access and speed up the response time. If monitoring
is not required, set to false to eliminate unnecessary memory allocations for caching.

--

boolean isStartPaused()

Returns:

boolean - If true, flow run will start paused, otherwise will execute immediately. Ignored if run is
synchronous.

--

void setStartPaused(boolean startPaused)

Parameters:

startPaused - If true, flow run will start paused, otherwise will execute immediately. Ignored if
run is synchronous.

Class WSRunParametersEx
com.iconclude.dharma.services.wscentralservice

Class WSRunParametersEx

java.lang.Object
|-com.iconclude.dharma.services.wscentralservice.WSRunParameters
|-com.iconclude.dharma.services.wscentralservice.WSRunParametersEx

--

public class WSRunParametersEx
extends WSRunParameters

This object is an extended wrapper for the parameters needed by the service to run a flow. The
client compiles this object as a parameter to the service api call 'runFlowEx'.

Constructor Summary
WSRunParametersEx()

HP Operations Orchestration (9.04)Page 139 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Method Summary

Type Method

boolean isPrimaryResultWanted()

boolean isRawResultWanted()

boolean isStatusWanted()

void setPrimaryResultWanted(boolean primaryResultWanted)

void setRawResultWanted(boolean rawResultWanted)

void setStatusWanted(boolean statusWanted)

Methods inherited from class
com.iconclude.dharma.services.wscentralservice.WSRunParameters

getFlowInputs, getRunName, getUuid, isAsync, isStartPaused, isTrackStatus, setAsync,
setFlowInputs, setRunName, setStartPaused, setTrackStatus, setUuid

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

WSRunParametersEx()

Method Detail

boolean isStatusWanted()

Returns:

The statusWanted boolean.

--

void setStatusWanted(boolean statusWanted)

Parameters:

statusWanted - The statusWanted boolean.

--

HP Operations Orchestration (9.04)Page 140 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

boolean isRawResultWanted()

Returns:

The rawResultWanted boolean.

--

void setRawResultWanted(boolean rawResultWanted)

Parameters:

rawResultWanted - The rawResultWanted boolean.

--

boolean isPrimaryResultWanted()

Returns:

The primaryResultWanted boolean.

--

void setPrimaryResultWanted(boolean primaryResultWanted)

Parameters:

primaryResultWanted - The primaryResultWanted boolean.

WSRunHandle
com.iconclude.dharma.services.wscentralservice

Class WSRunHandle

java.lang.Object
|-com.iconclude.dharma.services.wscentralservice.WSRunParameters

Direct Known Subclasses:
WSRunHandleEx

--

public classWSRunHandle
extends java.lang.Object

WSRunHandle is a wrapper object for the run id andWSRunStatusCursor. Its main use is in
retrieving the run status, pauseRun, cancelRun, and resumeRun.

See also:

HP Operations Orchestration (9.04)Page 141 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

resumeRun, , pauseRun, , cancelRun, , getRunStatus ,
WSCentralServiceSession

--

Constructor Summary
WSRunHandle()

WSRunHandle(java.lang.String runID, WSRunStatusCursor statusCursor)

WSRunHandle(java.lang.String runID, WSRunStatusCursor statusCursor,
java.lang.String runName)

Method Summary

java.lang.String getRunID()

java.lang.String getRunName()

WSRunStatusCursor getStatusCursor()

void setRunID(java.lang.String runID)

void setRunName(java.lang.String runName)
Set the run name.

void setStatusCursor(WSRunStatusCursor statusCursor)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructor Detail
WSRunHandle()

--

WSRunHandle(String runID, WSRunStatusCursor statusCursor)

Parameters:

runID - String representing Central's unique run id, uuid.

statusCursor - WSRunStatusCursor representing current or desired step index into run's
history.

--

WSRunHandle(String runID,

WSRunStatusCursor statusCursor, String runName)

HP Operations Orchestration (9.04)Page 142 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Parameters:

runID - String representing Central's unique run id, uuid.

runName - String representing Central's unique run name.

statusCursor - WSRunStatusCursor representing current or desired step index into run's
history.

Method Detail
String getRunID()

Returns:

String representing the run id.

--

void setRunID(String runID)

Parameters:

runID - String representing the run id.

--

WSRunStatusCursor getStatusCursor()

Returns:

WSRunStatusCursor represents the current step index into run history.

--

void setStatusCursor(WSRunStatusCursor statusCursor)

Parameters:

statusCursor - represents the desired step index into run history.

--

String getRunName()

Returns:

String representing the run name.

--

void setRunName(String runName)

Set the run name.

Parameters:

runName - String representing Central's unique run name.

HP Operations Orchestration (9.04)Page 143 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Selection lists
Themethods documented in this section enable you to work with selection lists:

l createSelectionList

l getSelectionList

createSelectionList
Use this method to create or update a Selection List object. The Selection Lists objects are located
in the /Configuration/Selection Lists folder. This method creates a selection list with the name,
description, and values populated from the inputs under the path /Configuration/Selection Lists in
the repository. If the list already exists, then it is updated with the new values (description and
values).

This method is:

String createSelectionList(String name, String description, String[]
values)

Inputs

Input What it is

name The name of the selection list

description The description of the selection list

values The values of the selection list

Outputs

Output What it is

Result Returns the UUID of the created / updated Selection List object.

Exceptions
Exceptions are thrown if:

l The name input is empty or if it contains illegal characters.

Legal characters are alphanumeric, spaces or the following characters: _,＿ , -,－ , :,：, ., ･,．,
｡,。, ・, ·, (,), (,) , [,],［,］, {, },｛,｝

l The user does not have necessary permissions.

l The values input:

HP Operations Orchestration (9.04)Page 144 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

n Is null or contains no elements.

n Contains null elements.

n Contains duplicate elements.

getSelectionList
Use this method to get information about a Selection List object. The selection list objects are
located in the /Configuration/Selection Lists folder.

Themethod returns information about the specified selection list, including the following:

Element What it tells you

UUID The selection list's universally unique identifier.

name The name of the selection list.

description The description.

values An array with the list’s values.

version The version number of the selection list.

comment A comment.

lastModifiedBy The last person tomodify the selection list.

lastModified The last date the list was modified.

This method is:

WSListDetails getSelectionList(String name)

Inputs

Input What it is

name The name or UUID of the selection list

Outputs

Output What it is

Result Returns aWSListDetails object containing information about the selected selection list
object.

Exceptions
Exceptions are thrown if the selection list does not exist, i.e., a selection list with the name or UUID
equal to the name input cannot be found in the /Configuration/Selection Lists folder.

HP Operations Orchestration (9.04)Page 145 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Clusters
Themethods documented in this section enable you to work with OO clusters:

l getClusterNodes

getClusterNodes
This method is:

WSClusterNodeDetails[] getClusterNodes()

This method returns information about all the cluster's member nodes. Themethod returns an array
with information about eachmember in the cluster, including:

l Url (in the array element "url")

l State (in the array element "state")

l Number of studioSessions (in the array element "studioSessions")

l Number of centralSessions (in the array element "centralSessions")

l Number of activeRuns (in the array element "activeRuns")

l Number of pendingRuns (in the array element "pendingRuns")

Themethod is located in theWSCentralService class. Themethod is exposed in the
WSCentralService.wsdl file.

Inputs
No input is necessary; all members in the cluster know about each other.

Outputs

Output Meaning and comments

Result Returns an array of WSClusterNodeDetails containing information about eachmember
from the cluster (WSClusterNodeDetails[])

Exceptions
An exception is thrown if:

l The user does not have required permissions.

HP Operations Orchestration (9.04)Page 146 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Scheduler
The classes documented in this section enable you to work with the OOCentral Scheduler:

l Serialized form

l Class Pair

l Class ScheduledFlowInfo

l Class ScheduleInfo

You can use the followingmethods to work with Scheduler:

l deleteSchedule

l getSchedule

l isSchedulePaused

l pauseSchedule

l resumeSchedule

l pauseScheduledFlow

l resumeScheduledFlow

l scheduleFlow

Serialized form
Package com.iconclude.dharma.scheduler.web

Class
com.iconclude.dharma.scheduler.web.ScheduleDisplayInfo
extends ScheduleInfo implements Serializable
serialVersionUID: 4831491792586889129L

Class
com.iconclude.dharma.scheduler.web.ScheduleInfo
extends java.lang.Object implements Serializable

Serialized Fields
description

java.lang.String description

--

HP Operations Orchestration (9.04)Page 147 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

enabled

java.lang.Boolean enabled

--

endTime

java.util.Calendar endTime

--

name

java.lang.String name

--

params

Pair[] params

--

repeatCount

int repeatCount

--

repeatIntervalMilli

long repeatIntervalMilli

--

startTime

java.util.Calendar startTime

--

units

java.lang.String units

--

type

int type

--

executing

java.lang.Boolean executing

--

nextRuntime

java.util.Calendar nextRuntime

--

HP Operations Orchestration (9.04)Page 148 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

prevRuntime

java.util.Calendar prevRuntime

--

cronExpression

java.lang.String cronExpression

--

dayNumber

int dayNumber

--

monthNumber

int monthNumber

--

dayType

int dayType

--

dayOrder

int dayOrder

--

paused

java.lang.Boolean paused

--

triggerName

java.lang.String triggerName

The name of the current trigger

--

Class Pair
com.iconclude.dharma.scheduler.web

Class Pair

java.lang.Object
|-com.iconclude.dharma.scheduler.web.Pair

--

public class Pair
extends java.lang.Object

HP Operations Orchestration (9.04)Page 149 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

This object is used to hold flow parameters as pairs of name and value.

Constructor Summary
Pair()

Pair(java.lang.Object first, java.lang.Object second)

Method Summary

Type Method What it does

java.lang.Object getFirst() Gets the first value for this pair.

java.lang.Object getSecond() Gets the second value for this pair.

void setFirst(java.lang.Object
first)

Sets the first value for this pair.

void setSecond(java.lang.Object
second)

Sets the second value for this pair.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail
Pair

public Pair()

Pair

public Pair(java.lang.Object first,
java.lang.Object second)

Method Detail

getFirst

public java.lang.Object getFirst()

Gets the first value for this Pair.

Returns:

first

--

HP Operations Orchestration (9.04)Page 150 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

setFirst

public void setFirst(java.lang.Object first)

Sets the first value for this Pair.

Parameters:

first -

--

getSecond

public java.lang.Object getSecond()

Gets the second value for this Pair.

Returns:

second

--

setSecond

public void setSecond(java.lang.Object second)

Sets the Second value for this Pair.

Parameters:

second -

Class ScheduledFlowInfo
com.iconclude.dharma.scheduler.web

Class ScheduledFlowInfo

java.lang.Object
|-com.iconclude.dharma.scheduler.web.ScheduledFlowInfo

--

public class ScheduledFlowInfo
extends java.lang.Object

This object holds information about the current status of the scheduled flow and its scheduler.

Constructor Summary
ScheduledFlowInfo()

HP Operations Orchestration (9.04)Page 151 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

ScheduledFlowInfo(java.lang.String description, java.lang.Boolean
enabled, java.lang.Boolean executing, java.lang.String
lastRunReportURL, java.lang.String lastRunReturnCode,
java.lang.Boolean lastRunSuccessful, java.lang.String name,
java.util.Calendar nextRuntime, java.util.Calendar prevRuntime,
java.lang.Boolean paused)

HP Operations Orchestration (9.04)Page 152 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Method Summary

Type Method What it does

java.lang.String getDescription() Gets the description value for this
ScheduledFlowInfo.

java.lang.Boolean getEnabled() Gets the enabled value for this
ScheduledFlowInfo.

java.lang.Boolean getExecuting() Gets the executing value for this
ScheduledFlowInfo.

java.lang.String getFlowName()

java.lang.String getLastRunReportURL() Gets the lastRunReportURL value
for this ScheduledFlowInfo.

java.lang.String getLastRunReturnCode() Gets the lastRunReturnCode value
for this ScheduledFlowInfo.

java.lang.Boolean getLastRunSuccessful() Gets the lastRunSuccessful value
for this ScheduledFlowInfo.

java.lang.String getName() Gets the name value for this
ScheduledFlowInfo.

java.util.Calendar getNextRuntime() Gets the nextRuntime value for this
ScheduledFlowInfo.

java.util.List
<java.lang.String>

getNextTriggerNames()

java.lang.Boolean getPaused()

java.util.Calendar getPrevRuntime() Gets the prevRuntime value for this
ScheduledFlowInfo.

java.util.List
<java.lang.String>

getPrevTriggerNames()

void setDescription
(java.lang.String description)

Sets the description value for this
ScheduledFlowInfo.

void setEnabled
(java.lang.Boolean enabled)

Sets the enabled value for this
ScheduledFlowInfo.

void setExecuting
(java.lang.Boolean executing)

Sets the executing value for this
ScheduledFlowInfo.

void setFlowName
(java.lang.String name)

void setLastRunReportURL Sets the lastRunReportURL

HP Operations Orchestration (9.04)Page 153 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Type Method What it does

(java.lang.String
lastRunReportURL)

value for this ScheduledFlowInfo.

void setLastRunReturnCode
(java.lang.String
lastRunReturnCode)

Sets the lastRunReturnCode
value for this ScheduledFlowInfo.

void setLastRunSuccessful
(java.lang.Boolean
lastRunSuccessful)

Sets the lastRunSuccessful
value for this ScheduledFlowInfo.

void setName(java.lang.String name) Sets the name value for this
ScheduledFlowInfo.

void setNextRuntime
(java.util.Calendar nextRuntime)

Sets the nextRuntime value for this
ScheduledFlowInfo.

void setNextTriggerNames
(java.util.List<java.lang.String>
nextTriggerNames)

void setPaused
(java.lang.Boolean paused)

void setPrevRuntime
(java.util.Calendar prevRuntime)

Sets the prevRuntime value for this
ScheduledFlowInfo.

void setPrevTriggerNames
(java.util.List<java.lang.String>
prevTriggerNames)

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail
ScheduledFlowInfo

public ScheduledFlowInfo()

ScheduledFlowInfo

public ScheduledFlowInfo(java.lang.String description,
java.lang.Boolean enabled,
java.lang.Boolean executing,
java.lang.String lastRunReportURL,
java.lang.String lastRunReturnCode,
java.lang.Boolean lastRunSuccessful,
java.lang.String name,
java.util.Calendar nextRuntime,

HP Operations Orchestration (9.04)Page 154 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

java.util.Calendar prevRuntime,
java.lang.Boolean paused)

Method Detail

getDescription

public java.lang.String getDescription()

Gets the description value for this ScheduledFlowInfo.

Returns:

description

--

setDescription

public void setDescription(java.lang.String description)

Sets the description value for this ScheduledFlowInfo.

Parameters:

description -

--

getEnabled

public java.lang.Boolean getEnabled()

Gets the enabled value for this ScheduledFlowInfo.

Returns:

enabled

--

setEnabled

public void setEnabled(java.lang.Boolean enabled)

Sets the enabled value for this ScheduledFlowInfo.

Parameters:

enabled

--

HP Operations Orchestration (9.04)Page 155 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

getExecuting

public java.lang.Boolean getExecuting()

Gets the executing value for this ScheduledFlowInfo.

Returns:

executing

--

setExecuting

public void setExecuting(java.lang.Boolean executing)

Sets the executing value for this ScheduledFlowInfo.

Parameters:

executing

--

getLastRunReportURL

public java.lang.String getLastRunReportURL()

Gets the lastRunReportURL value for this ScheduledFlowInfo.

Returns:

lastRunReportURL

--

setLastRunReportURL

public void setLastRunReportURL(java.lang.String lastRunReportURL)

Sets the lastRunReportURL value for this ScheduledFlowInfo.

Parameters:

lastRunReportURL -

--

getLastRunReturnCode

public java.lang.String getLastRunReturnCode()

Gets the lastRunReturnCode value for this ScheduledFlowInfo.

HP Operations Orchestration (9.04)Page 156 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Returns:

lastRunReturnCode

--

setLastRunReturnCode

public void setLastRunReturnCode(java.lang.String lastRunReturnCode)

Sets the lastRunReturnCode value for this ScheduledFlowInfo.

Parameters:

lastRunReturnCode -

--

getLastRunSuccessful

public java.lang.Boolean getLastRunSuccessful()

Gets the lastRunSuccessful value for this ScheduledFlowInfo.

Returns:

lastRunSuccessful

--

setLastRunSuccessful

public void setLastRunSuccessful(java.lang.Boolean lastRunSuccessful)

Sets the lastRunSuccessful value for this ScheduledFlowInfo.

Parameters:

lastRunSuccessful -

--

getName

public java.lang.String getName()

Gets the name value for this ScheduledFlowInfo.

Returns:

name

--

HP Operations Orchestration (9.04)Page 157 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

setName

public void setName(java.lang.String name)

Sets the name value for this ScheduledFlowInfo.

Parameters:

name -

--

getNextRuntime

public java.util.Calendar getNextRuntime()

Gets the nextRuntime value for this ScheduledFlowInfo.

Returns:

nextRuntime

--

setNextRuntime

public void setNextRuntime(java.util.Calendar nextRuntime)

Sets the nextRuntime value for this ScheduledFlowInfo.

Parameters:

nextRuntime -

--

getPrevRuntime

public java.util.Calendar getPrevRuntime()

Gets the prevRuntime value for this ScheduledFlowInfo.

Returns:

prevRuntime

--

setPrevRuntime

public void setPrevRuntime(java.util.Calendar prevRuntime)

Sets the prevRuntime value for this ScheduledFlowInfo.

HP Operations Orchestration (9.04)Page 158 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Parameters:

prevRuntime -

--

getFlowName

public java.lang.String getFlowName()

--

setFlowName

public void setFlowName(java.lang.String name)

--

getNextTriggerNames

public java.util.List<java.lang.String> getNextTriggerNames()

--

setNextTriggerNames

public void setNextTriggerNames(java.util.List<java.lang.String>
nextTriggerNames)

--

getPrevTriggerNames

public java.util.List<java.lang.String> getPrevTriggerNames()

--

setPrevTriggerNames

public void setPrevTriggerNames(java.util.List<java.lang.String>
prevTriggerNames)

--

getPaused

public java.lang.Boolean getPaused()

--

HP Operations Orchestration (9.04)Page 159 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

setPaused

public void setPaused(java.lang.Boolean paused)

HP Operations Orchestration (9.04)Page 160 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Class ScheduleInfo
com.iconclude.dharma.scheduler.web

Class ScheduleInfo

java.lang.Object
|-com.iconclude.dharma.scheduler.web.ScheduleInfo

All Implemented Interfaces:

java.io.Serializable

--

public class ScheduleInfo
extends java.lang.Object
implements java.io.Serializable

This object holds the scheduled trigger info and flow name as well as flow parameters if needed.

See also Serialized form.

Constructor Summary
ScheduleInfo()

ScheduleInfo (java.lang.String description, java.lang.Boolean enabled, java.util.Calendar endTime,
java.lang.String name, Pair[] params, int repeatCount, long repeatIntervalMilli, java.util.Calendar
startTime, java.lang.String units, int type, java.lang.Boolean executing, java.util.Calendar
nextRuntime, java.util.Calendar prevRuntime, java.lang.String cronExpression, int dayNumber, int
monthNumber, int dayType, int dayOrder, java.lang.String triggerName, java.lang.Boolean paused)

HP Operations Orchestration (9.04)Page 161 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Method Summary

Type Method What it does

java.lang.String getCronExpression() Gets the
cronExpression
value for this
ScheduleInfo.

int getDayNumber() Gets the
dayNumber value
for this
ScheduleInfo.

int getDayOrder() Gets the dayOrder
value for this
ScheduleInfo.

int getDayType() Gets the dayType
value for this
ScheduleInfo.

java.lang.String getDescription() Gets the
description value
for this
ScheduleInfo.

java.lang.Boolean getEnabled() Gets the enabled
value for this
ScheduleInfo.

java.util.Calendar getEndTime() Gets the endTime
value for this
ScheduleInfo.

java.lang.Boolean getExecuting() Gets the executing
value for this
ScheduleInfo.

ing getMonthNumber() Gets the
monthNumber
value for this
ScheduleInfo.

java.lang.String getName() Gets the name
value for this
ScheduleInfo.

java.util.Calendar getNextRuntime() Gets the
nextRuntime value
for this
ScheduleInfo.

HP Operations Orchestration (9.04)Page 162 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Type Method What it does

Pair getParams() Gets the params
value for this
ScheduleInfo.

java.lang.Boolean getPaused() Returns whether
the schedule state
is PAUSED or not.

java.util.Calendar getPrevRuntime() Gets the
prevRuntime value
for this
ScheduleInfo.

int getRepeatCount() Gets the
repeatCount value
for this
ScheduleInfo.

long getRepeatIntervalMilli() Gets the
repeatIntervalMilli
value for this
ScheduleInfo.

java.util.Calendar getStartTime() Gets the StartTime
value for this
ScheduleInfo.

java.lang.String getTriggerName() Gets the
triggerName value
for this
ScheduleInfo.

int getType() Gets the type
value for this
ScheduleInfo.

java.lang.String getUnits() Gets the units
value for this
ScheduleInfo.

void setCronExpression(java.lang.String
cronExpression)

Sets the schedule
trigger info using
quartz con
expression string
format, currently
not supported.

HP Operations Orchestration (9.04)Page 163 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Type Method What it does

void setDayNumber(int dayNumber)() Sets the
dayNumber value
for this
ScheduleInfo.

void setDayOrder(int dayOrder) Sets the dayOrder
value for this
ScheduleInfo and
used for type
”TYPE _
MONTHLY” and
“TYPE_YEARLY”.

void setDayType(int dayType) Sets the dayType
value for this
schedule Info.

void setDescription(java.lang.String
description)

Sets the
description value
for this
ScheduleInfo.

void setEnabled(java.lang.Boolean
enabled)

Set false to create
the schedule
disabled;
otherwise, set to
true.

void setEndTime(java.util.Calendar
endTime)

Sets the endTime
value for this
ScheduleInfo.

void setExecuting(java.lang.Boolean
executing)

Sets the executing
value for this
ScheduleInfo.

void setMonthNumber(int monthNumber) Sets the
monthNumber
value for this
ScheduleInfo.

void setName(java.lang.String name) Sets the name of
the created
schedule.

void setNextRuntime(java.util.Calendar
nextRuntime)

Sets the
nextRuntime value
for this
ScheduleInfo.

void setParams(Pair[] params) Sets the params
value for flow the

HP Operations Orchestration (9.04)Page 164 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Type Method What it does

schedule is going
to invoke.

void setPaused(java.lang.Boolean
paused)

Not relevant as
input.

void setPrevRuntime(java.util.Calendar
prevRuntime)

Sets the
prevRuntime value
for this
ScheduleInfo.

void setRepeatCount(int repeatCount) Sets the repeat
count value for this
Schedule trigger of
type Interval only.

void setRepeatIntervalMilli(long
repeatIntervalMilli)

Sets the repeat
count value for this
Schedule schedule
of type ” TYPE_
INTERVAL” only.

void setStartTime(java.util.Calendar
startTime)

Sets the endTime
value for this
ScheduleInfo.

void setTriggerName(java.lang.String
triggerName)

Sets the trigger
name for the
schedule.

void setType(int type) Sets the type
value for this
ScheduleInfo.

void setUnits(java.lang.String units) Sets the units
value for this
ScheduleInfo.

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail
ScheduleInfo

public ScheduleInfo()

ScheduleInfo

HP Operations Orchestration (9.04)Page 165 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

public ScheduleInfo(java.lang.String description,
java.lang.Boolean enabled,
java.util.Calendar endTime,
java.lang.String name,
Pair[] params,
int repeatCount,
long repeatIntervalMilli,
java.util.Calendar startTime,
java.lang.String units,
int type,
java.lang.Boolean executing,
java.util.Calendar nextRuntime,
java.util.Calendar prevRuntime,
java.lang.String cronExpression,
int dayNumber,
int monthNumber,
int dayType,
int dayOrder,
java.lang.String triggerName,

java.lang.Boolean paused)

Method Detail

getDescription

public java.lang.String getDescription()

Gets the description value for this ScheduleInfo.

Returns:

description

--

setDescription

public void setDescription(java.lang.String description)

Sets the description for this Pair.

Parameters:

description -

--

getEnabled

public java.lang.Boolean getEnabled()

HP Operations Orchestration (9.04)Page 166 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Gets the enabled for this ScheduleInfo. The schedule counted as enabled when it is state is
NORMAL or BLOCKED:

l NORMAL

l BLOCKED: schedule is currently executing/running

Returns:

return true if schedule state enabled

--

setEnabled

public void setEnabled(java.lang.Boolean enabled)

Set false to create the schedule disabled otherwise set to true.

Parameters:

enabled -

--

getEndTime

public java.util.Calendar getEndTime()

Gets the endTime for this ScheduleInfo.

Returns:

endTime

--

setEndTime

public void setEndTime(java.util.Calendar endTime)

Sets the endTime value for this ScheduleInfo. determine the end time the schedule will be stopped
from being triggered. When using SOAP UI tools the date time format is “MM/DD/YYYY
HH:MM:SS AM/PM” . For example "12/19/2011 9:35:38 AM".

Parameters:

endTime - Calendar instance

--

getName

public java.lang.String getName()

Gets the name for this ScheduleInfo.

HP Operations Orchestration (9.04)Page 167 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Returns:

name

--

setName

public void setName(java.lang.String name)

Sets the name of the created schedule. If you intended to create a new schedule then the name you
choose should not be used before otherwise an already existed schedule will be updated.

Parameters:

name -

--

getParams

public Pair[] getParams()

Gets the params value for this ScheduleInfo.

Returns:

params

--

setParams

public void setParams(Pair[] params)

Gets the params value for this ScheduleInfo.

Parameters:

params -

--

getRepeatCount

public int getRepeatCount()

Gets the repeatCount value for this ScheduleInfo.

Returns:

repeatCount

--

HP Operations Orchestration (9.04)Page 168 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

setRepeatCount

public void setRepeatCount(int repeatCount)

Sets the repeat count value for this Schedule trigger of type Interval only. The actual repeat times of
the created schedule will be the repeatCount value + 1.

Parameters:

repeatCount -

--

getRepeatIntervalMilli

public long getRepeatIntervalMilli()

Gets the repeatIntervalMilli value for this ScheduleInfo.

Returns:

repeatIntervalMilli

--

setRepeatIntervalMilli

public void setRepeatIntervalMilli(long repeatIntervalMilli)

Sets the repeat count value for this Schedule schedule of type ” TYPE_INTERVAL” only. The
actual repeat times of the created schedule in scheduler will be the repeatCount value + 1.

Parameters:

repeatIntervalMilli -

--

getStartTime

public java.util.Calendar getStartTime()

Gets the startTime value for this ScheduleInfo.

Returns:

startTime

--

setStartTime

public void setStartTime(java.util.Calendar startTime)

HP Operations Orchestration (9.04)Page 169 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Sets the endTime value for this ScheduleInfo. determine the end time the schedule will be stopped
from being triggered. When using SOAP UI tools the date time format is “MM/DD/YYYY
HH:MM:SS AM/PM”. For example "12/19/2011 9:35:38 AM".

Parameters:

startTime -Calendar instance

--

getUnits

public java.lang.String getUnits()

Gets the units value for this ScheduleInfo.

Returns:

units

--

setUnits

public void setUnits(java.lang.String units)

Sets the units value for this ScheduleInfo. Used for schedule of type “TYPE_INTERVAL”.valid
values:”minutes”,"hours" .

Parameters:

units -

--

getType

public int getType()

Gets the type value for this ScheduleInfo.

Returns:

type

--

setType

public void setType(int type)

Sets the type value for this ScheduleInfo. Valid types and themust set schedule info properties:

HP Operations Orchestration (9.04)Page 170 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

l TYPE_OLD_UI = 0:

n repeatIntervalMilli & unit[”minutes”,"hours"]

l TYPE_INTERVAL = 1: make Interval trigger each RepeatIntervalMilli property value

l TYPE_EVERY_DAY = 2: make daily trigger

l TYPE_EVERY_WEEKDAY = 3: make every week day trigger, only working days - MON-FRI

l TYPE_WEEKLY = 4: make weekly trigger, property DayNumber have to be set to one of the
week days.

n dayNumber[Sun=1,Mon=2,Tue=4,Wed=8,Thu=16,Fri=32,Sat=64]

l TYPE_MONTHLY = 5: makemonthly trigger, property DayNumber have to be set to one of:

n dayNumber[1 to 31]

n dayType[0,1,2,3,4,5,6,7] & dayOrder[0,1,2,3,4]

l TYPE_YEARLY = 6: make yearly trigger

n monthNumber[0 to 11] & dayNumber[1 to 31]

n monthNumber[0 to 11] & dayType[0,1,2,3,4,5,6,7] &
dayOrder[0,1,2,3,4]

l TYPE_CRON = 7: currently not supported

Parameters:

type -

--

getExecuting

public java.lang.Boolean getExecuting()

Gets the executing value for this ScheduleInfo.

Returns:

executing

--

setExecuting

public void setExecuting(java.lang.Boolean executing)

Sets the executing value for this ScheduleInfo.

Parameters:

executing -

--

HP Operations Orchestration (9.04)Page 171 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

getNextRuntime

public java.util.Calendar getNextRuntime()

Gets the nextRuntime value for this ScheduleInfo.

Returns:

nextRuntime

--

setNextRuntime

public void setNextRuntime(java.util.Calendar nextRuntime)

Sets the nextRuntime value for this ScheduleInfo.

Parameters:

nextRuntime -

--

getPrevRuntime

public java.util.Calendar getPrevRuntime()

Gets the prevRuntime value for this ScheduleInfo.

Returns:

prevRuntime

--

setPrevRuntime

public void setPrevRuntime(java.util.Calendar prevRuntime)

Sets the prevRuntime value for this ScheduleInfo.

Parameters:

prevRuntime -

--

getCronExpression

public java.lang.String getCronExpression()

Gets the cronExpression value for this ScheduleInfo.

HP Operations Orchestration (9.04)Page 172 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Returns:

cronExpression

--

setCronExpression

public void setCronExpression(java.lang.String cronExpression)

Sets the schedule trigger info using quartz con expression string format, currently not supported.
For example con expression “0 15 10 ? * *v” meaning “Fire at 10:15am every day”. read quartz
documentation on how to create com expression.

Parameters:

cronExpression -

--

getDayNumber

public int getDayNumber()

Sets the dayNumber value for this ScheduleInfo.
Sun=1,Mon=2,Tue=4,Wed=8,Thu=16,Fri=32,Sat=64. To set a combination such Sun andMon set
the dayNumber to 3 which was calculated by executing binary OR operation between Sun andMon
result 1 OR 2 = 3. dayNumber also could be used for schedule of type ”TYPE ”MONTHLY” and
“TYPE_YEARLY”and then the valid of values dayNumber are from 1 to 31.

Returns:

dayNumber -

--

setDayNumber

public void setDayNumber(int dayNumber)

Sets the dayNumber value for this ScheduleInfo.
Sun=1,Mon=2,Tue=4,Wed=8,Thu=16,Fri=32,Sat=64 to set a combination you should exec OR
binary operation between desired days of week for sample a combination of Sun andMon = 1OR 2
in binary 01OR 10 = 11 = in decimal 3. also it could be used for TypeMonthly and then the values
are 1-32.

Parameters:

dayNumber -

--

HP Operations Orchestration (9.04)Page 173 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

getMonthNumber

public int getMonthNumber()

Gets themonthNumber value for this ScheduleInfo.

Returns:

monthNumber

--

setMonthNumber

public void setMonthNumber(int monthNumber)

Sets themonthNumber value for this schedule Info. used for schedule of type ”TYPE _MONTHLY”
and “TYPE_YEARLY”.Valid values are 0 – 11. sample "every day of the 3 of january".

Parameters:

monthNumber -

--

getDayType

public int getDayType()

Gets the dayType value for this ScheduleInfo.

Returns:

dayType

--

setDayType

public void setDayType(int dayType)

Sets the dayType value for this schedule Info. Used for schedule of type ” TYPE _MONTHLY” and
“TYPE_YEARLY”. Valid values are:
Day = 0
SUNDAY = 1
MONDAY = 2
TUESDAY = 3
WEDNESDAY = 4
THURSDAY = 5
FRIDAY = 6
SATURDAY = 7

HP Operations Orchestration (9.04)Page 174 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

The dayType property requires the dayOrder property to be set and you will have to set dayNumber
value to -1 if you want work with dayOrder and dayType.

Parameters:

dayType -

--

getDayOrder

public int getDayOrder()

Gets the dayOrder value for this ScheduleInfo.

Returns:

dayOrder

--

setDayOrder

public void setDayOrder(int dayOrder)

Sets the dayOrder value for this ScheduleInfo and used for type ”TYPE _MONTHLY” and “TYPE_
YEARLY”. Valid values are:
first = 0
second = 1
third = 2
fourth = 3
last = 4.

For example "first day of month" = "dayType=0 and dayOrder=0" or "first sunday of month" =
"dayType=1 and dayOrder=0".

Parameters:

dayOrder -

--

getTriggerName

public java.lang.String getTriggerName()

Gets the trigger name value for this ScheduleInfo.

Returns:

triggerName

--

HP Operations Orchestration (9.04)Page 175 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

setTriggerName

public void setTriggerName(java.lang.String triggerName)

Gets the trigger name value for this ScheduleInfo.

Parameters:

triggerName -

--

getPaused

public java.lang.Boolean getPaused()

Return tells whether the schedule state is PAUSED or not.

Returns:

True if paused otherwise false.

--

setPaused

public void setPaused(java.lang.Boolean paused)

Not relevant as input.

Parameters:

paused -

deleteSchedule
Use this method to delete a particular schedule.

This method is:

void deleteSchedule(String schedule)

l schedule:String is the schedule's unique name.

To find the schedule name, use getSchedulesOfFlow(flowUuid) to retrieve the
schedule's name. Themethod getSchedulesOfFlow references the property name of the return
ScheduleInfo object.

getSchedule
Use this method to retrieve information about a particular schedule.

This method is:

ScheduleInfo getSchedule(String schedule)

HP Operations Orchestration (9.04)Page 176 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

l schedule:String is the schedule's unique name.

To find the schedule name, use getSchedulesOfFlow(flowUuid) to retrieve the
schedule's detailed information.

isSchedulePaused
Use this method to check whether a particular schedule is paused. Themethod returns true or
false.

This method is:

boolean isSchedulePaused(String schedule)

l schedule:String is the schedule's unique name.

To find the schedule name, use getSchedulesOfFlow(flowUuid) to retrieve the
schedule's name. Use themethod getSchedulesOfFlow to retrieve the schedule's detailed
information.

Returns true or false.

pauseSchedule
Use this method to pause a particular schedule. (To resume the schedule, use
resumeSchedule.)

This method is:

void pauseSchedule(String schedule)

l schedule:String is the schedule's unique name.

To find the schedule name, use getSchedulesOfFlow(flowUuid) to retrieve the
schedule's name. Use themethod getSchedulesOfFlow to retrieve the schedule's detailed
information.

resumeSchedule
Use this method to resume a particular schedule that is paused. (To pause the schedule, use
pauseSchedule.)

This method is:

void resumeSchedule(String schedule)

where:

l schedule:String is the schedule's unique name.

To find the schedule name, use getSchedulesOfFlow(flowUuid) to retrieve the
schedule's name. Use themethod getSchedulesOfFlow to retrieve the schedule's detailed
information.

HP Operations Orchestration (9.04)Page 177 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

pauseScheduledFlow
Use this method to pause all the schedules for a specified flow. (To resume the schedules, use
resumeScheduledFlow.)

This method is:

void pauseScheduledFlow(String flowUuid)

l flowUuid:String is the flow's name.

flowUuid can also be the flow's path.

resumeScheduledFlow
Use this method to resume all the schedules for a specified flow.

This method is:

void resumeScheduledFlow(String flowUuid)

l flowUuid:String is the flow's name.

flowUuid can also be the flow's path.

To resume all the schedules for a flow, use the following syntax:

void resumeScheduledFlow(String flowUuid)

where:

flowUuid:String is the UUID of the flow. You can also supply a pathname to identify the
flow.

scheduleFlow
Use this method to schedule a flow based on the data specified by ScheduleInfo input.

This method is:

public void ScheduleFlow(java.lang.String flowUuid,
 ScheduleInfo info)
 throws AxisFault

Parameters:

l flowUuid:String is the flow's UUID.

flowUuid can also be the flow's path.

l info proivides the schedule information, such as start time and type of schedule, as follows:

n name:String

HP Operations Orchestration (9.04)Page 178 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Sets the name of the created schedule. If you intended to create a new schedule then the
name you choose should not be used before otherwise an already existed schedule will be
updated.

n triggerName:String

triggerName, startTime, endTime, and enabled, related to the display in Central of a
flow's schedule

triggerName sets the trigger name for the schedule

n description:String

Sets the description of the schedule, for display only.

n enabled:Boolean

To have the the schedule disabled when it is first created, set false; otherwise, set to true.

n endTime:dateTime

Sets the endTime value for this ScheduleInfo. determine the end time the schedule will be
stopped from being triggered. The date time format “MM/DD/YYYY HH:MM:SS AM/PM”
when using SOAP UI tools. For example "12/19/2011 9:35:38 AM".

n params: Pair[] - array of Pairs (input parameters)

Pair: This object holds flow parameters as a name-value pair.

o First:Object - use it to set flow input parameter name

o Second:Object - use it to set flow input parameter value

For an example of how to use params with SOAP UI tools see samples described at the end
of the spec.

n Type:int

Sets the ScheduleInfo type. Valid types and themust set schedule information properties are:

o TYPE_INTERVAL = 1

Sets the TYPE_INTERVAL trigger each RepeatIntervalMilli property value (that is,
quantity) of unit.

HP Operations Orchestration (9.04)Page 179 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

o repeatIntervalMilli

TYPE_INTERVAL, repeatIntervalMilli, and units, related to the Recurrence
pattern dialog

repeatIntervalMilli specifies the quantity of units to set the interval between triggers for.

o unit

The possible values are minutes and hours.

For example, if you set TYPE_INTERVAL = 1, repeatIntervalMilli to 1, and
unit to minutes, the schedule will run once aminute.

o TYPE_EVERY_DAY = 2

TYPE_EVERY_DAY and the option in the Recurrence pattern dialog that it
controls

TYPE_EVERY_DAY Sets the frequency of the trigger to daily, seven days a week.

o TYPE_EVERY_WEEKDAY = 3

HP Operations Orchestration (9.04)Page 180 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

TYPE_EVERY_WEEKDAY and the option in the Recurrence pattern dialog that it
controls

TYPE_EVERY_WEEKDAY Sets the frequency of the trigger to every weekday, that is,
only Monday through Friday.

o TYPE_WEEKLY = 4

Sets the frequency of the trigger to weekly.

Set the property DayNumber to one of the days of the week. The weekdays are specified
by the following numerical values:

Weekday Numerical value

Sunday 1

Monday 2

Tuesday 4

Wednesday 8

Thursday 16

Friday 32

Saturday 64

TYPE_WEEKLY and dayNumber, with the Recurrence pattern dialog options they
control

In this example, the flow will run on Sunday andMonday every week.

o TYPE_MONTHLY = 5

Sets the frequency of the trigger to monthly.

o dayNumber

Specifies the ordinal of the day of themonth that the flow should run eachmonth.

Possible values are 1 through 31.

HP Operations Orchestration (9.04)Page 181 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

TYPE_MONTHLY and dayNumber, with the Recurrence pattern dialog options
they control

In this example, the flow will run the first day of every month.

o dayType

In combination with the dayOrder property, specifies the weekday that the flow
should run on amonthly basis.

The possible values for dayType are the following:

Value Day

0 Day, not specific to a day of the week. If you specify a dayOrder of 1, then
the flow runs the first day of every month. If you specify a dayOrder of 3,
then the flow runs the third day of every month.

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

o dayOrder

In specifying the schedule, the ordinal of the day specified by dayType. This property
specifies which of amonth's multiple days of a given dayType the flow should run on.
So if the dayType is specified as 7 and dayOrder is specified as 3, the flow will run
on the third Saturday of every month.

o TYPE_YEARLY = 6

Sets the frequency of the trigger to yearly.

HP Operations Orchestration (9.04)Page 182 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

When using this recurrence type, you can use the following properties to specify which
day of the year the flow should run.

o monthNumber

Themonth of the year that the flow should run, identified by the numbers 0 (January)
to 11 (December).

o dayNumber

The day of themonth (identified by monthNumber) that the flow should run,
identified by the numbers 1 to 31.

TYPE_YEARLY, monthNumber, and dayNumber, with the Recurrence
pattern dialog options they control

In this example, the flow will run every January first, every year.

o dayOrder

In combination with monthNumber) and dayType, the day that flow should run
each year.

o dayType

In combination with monthNumber) and dayOrder, the day that flow should run
each year.

o monthNumber represents themonth.

Possible values are 0 through 11, with 0 representing January and 11
representing December.

HP Operations Orchestration (9.04)Page 183 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

dayOrder, dayType, and monthNumber, with the Recurrence pattern
dialog options they control

In this example, the flow will run the first day of January every year.

o dayType represents the day of the week.

Possible values are 0 through 7, with 0 representing "day" and 1 through 7
representing Sunday through Saturday, respectively.

o dayOrder represents an instance in themonth of the day specified by
dayType.

The possible values are 0 through 4, for the first through fifth instances of the day
in themonth.

For example, setting the monthNumber to 3, dayType to 7, and dayOrder to 4
would specify that the flow would run the fourth Saturday of March every year.

o TYPE_CRON = 7

This type is not supported.

o repeatCount:int

Sets the repeat count value for this Schedule schedule of type ” TYPE_INTERVAL”
only. The actual repeat times of the created schedule in scheduler will be the
repeatCount value + 1.

Note: repeatCount has priority over endTime. This means that if repeat time is not
configured to '-1' and there is endTime configured as well - the repeat time will be
configured.

o repeatIntervalMilli:Long

Sets the time Interval in milliseconds between schedule triggering. Valid only when
using schedule of type “TYPE_INTERVAL”.

Note: The result of dividing repeatIntervalMilli by units (hours=60*60*1000,
minutes=60*1000) must be an integer.

o startTime:dateTime

Sets the startTime value for this schedule to start triggering and invoking the flow.
The date time format is MM/DD/YYYY HH:MM:SS AM/PM (for example, "12/19/2011
9:35:38 AM) when you use theWSWizard to invoke the scheduleflow operation.

o endTime:dateTime

Sets the endTime value for this Schedule to end triggering and invoking the flow. The
date time format is MM/DD/YYYY HH:MM:SS AM/PM (for example, "12/19/2011
9:35:38 AM) when you use theWSWizard to invoke the scheduleFlow operation.

HP Operations Orchestration (9.04)Page 184 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

Note: you will not be able to set schedule with “no end date” when using wsWizard
Operation.

o units:String

Sets the units value for this ScheduleInfo. Used for schedule of type “TYPE_
INTERVAL” at display time. valid values:”minutes”,"hours".

o Executing:Boolean

This property is not used, so you can leave it empty. When using SOAP UI tools set it
false or true.

o nextRuntime:dateTime

This property is not used, so you can leave it empty. The date time format is
MM/DD/YYYY HH:MM:SS AM/PM (for example, "12/19/2011 9:35:38 AM) when you
use theWSWizard to invoke the scheduleFlow operation.

o prevRuntime:dateTime

This property is not used, so you can leave it empty. The date time format is
MM/DD/YYYY HH:MM:SS AM/PM (for example, "12/19/2011 9:35:38 AM) when you
use theWSWizard to invoke the scheduleFlow operation.

o cronExpression:String

Sets the schedule trigger info using quartz con expression string format. For example
con expression “0 15 10 ? * *v” meaning “Fire at 10:15am every day”. For on how to
create com expression, readQuartz documentation.

o dayNumber:int

Sets the dayNumber value for this ScheduleInfo. Possible values are as follows:

Value Day

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

To set a combination of days, such Sunday andMonday, set the dayNumber to 3,
which was calculated by executing binary OR operation between Sun andMon result 1
OR 2 = 3.

HP Operations Orchestration (9.04)Page 185 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

You can also use dayNumber for a schedule of type ”TYPE ”MONTHLY” and “TYPE_
YEARLY”. In those uses, the valid of values dayNumber are from 1 to 31.

Note: Note: To schedule a flow without using dayNumber you will have to disable
it by setting it is value to “-1” because by default if the it values > “0” then the
scheduler will use it for scheduling for types “TYPE_WEEKLY, TYPE MONTLY
and TYPE_YEARLY”.

o monthNumber:int

Sets the monthNumber value for this schedule Info. Used for schedule of type ”TYPE
_MONTHLY” and “TYPE_YEARLY”. Valid values are 0 through 11. Example: "every
third of January".

o dayOrder:int

Sets the dayOrder value for this ScheduleInfo and used for type ”TYPE _MONTHLY”
and “TYPE_YEARLY”. Valid values are: first = 0,second = 1,third = 2,fourth = 3, last =
4. For example, "first day of month" is indicated by "dayType=0 and dayOrder=0”; "first
sunday of month" is indicated by "dayType=1 and dayOrder=0". You will have to set
the dayNumber value to “-1” if you want work with dayOrder and dayType.

o dayType:int

Sets the dayType value for this schedule info. Used for schedule of type ”TYPE _
MONTHLY” and “TYPE_YEARLY”. Valid values are Day = 0,SUNDAY = 1,MONDAY
= 2,TUESDAY = 3, WEDNESDAY = 4,THURSDAY = 5,FRIDAY = 6, SATURDAY =
7. The dayType property requires dayOrder property to be set. To work with
dayOrder and dayType, set dayNumber value to “-1”.

Note: It is recommended that you check the scheduled flow correctness after using SOAP
API by login to Central UI web application.

HP Operations Orchestration (9.04)Page 186 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

getScheduledFlows
Use this method to retrieve information about all the flows that have been scheduled.

This method is:

public ScheduledFlowInfo[] getScheduledFlows()
throws AxisFault

Returns:

ScheduledFlowInfo

HP Operations Orchestration (9.04)Page 187 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

SOAP API: Get Attributes
Themethods documented in this section enable you to retrieve attributes of a flow, operation or
folder.These attributes include: uuid, path, type, description, hidden (if the object is set to hidden),
version, changedby, lastmodified, and permissions. The uuid and path attributes enable you to
retrieve the object’s path for the uuid and vice-versa.

Themethods documented in this section, include:

l WSAttribute[] getAttributes(String, String[])

WSAttribute[] getAttributes(String, String[])
WSAttribute {

String name, // name of the attribute
String value // value of the attribute

}

Inputs

Input Meaning and comments

identifier Path of the object or uuid

attributes An array of strings, the attributes to retrieve.
Available values (case insensitive) are: type,
description, hidden, version, changedby,
lastmodified, and permissions.

Outputs

Output Meaning and comments

Result an array of pairs (name of the attribute, value), an item for each requested attribute.

Attribute values:
l uuid uuid of the object

l path path in the repository to the object.

l type Flow, Operation or Folder.

l hidden true, if the object is hidden or false, otherwise.

l description the description of the object.

l changedby the last user namewho changed this object.

l lastmodified the timestamp (in milliseconds since January 1, 1970 UTC) of the latest
change.

l permissions a list of permissions for this object formatted as group1 permissions1, group2

HP Operations Orchestration (9.04)Page 188 of 190

Software Development Kit Guide
Chapter 9: OOSOAP API Reference

permissions2.

l permissionsX a 4 characters string indicating the permissions in the order: read, write,
execute, link. ‘r’ – read, ‘w’ – write, ‘x’ – execute, ‘l’ – link, ‘-‘ – no permission

For example:

“EVERYBODY” “r-x-“ “ADMINISTRATOR” “rwxl”

n Users from group EVERYBODY can read and execute on the object;

n Users from group ADMINISTRATOR can read, write, execute and link on the object.

Exceptions are thrown if:
AxisFault is thrown if:

l The identifier is null;

l The list of attributes is invalid (null, empty list, contains an invalid attribute or contains an
attributemultiple times);

l The object does not exist or is not a flow, operation or folder;

l The user does not have read permissions for the object – the actual error will be “Object not
found”, the user does not see the object.

HP Operations Orchestration (9.04)Page 189 of 190

	Software Development Kit Guide
	Contents
	Welcome to the Operations Orchestration SDK
	In OO: How to find Help, PDFs, and tutorials
	Download SDK
	SDK Contents
	About the SDK Guide

	Style guidelines and best practices
	How default OO content is organized in Studio
	Best practices for flows
	Best practices for steps
	Best practices for operations
	Naming convention guidelines

	Authoring IActions
	What is an IAction?
	About RAS
	Creating IActions
	About the IAction interface
	getActionTemplate method
	RASBinding objects

	execute method
	Guidelines for creating IActions
	Important points for creating Java IActions
	Important points for creating .NET IActions

	Implementing Java IActions
	Required development files for Java IActions
	Loading Java IActions into Studio
	Using third-party libraries for Java IActions
	Debugging Java IActions
	Java IAction code example

	Implementing .NET IActions
	Required development files for .NET IActions
	Loading .NET IActions into Studio
	Debugging .NET IActions
	.NET IAction code example

	Useful Java Commons Library classes
	com.opsware.pas.content.commons.utilStringUtils class

	Useful .NET Commons Library classes
	Identities class
	Password class

	Finding and running flows from outside Central
	About finding and running flows from outside Central
	Running flows with URLs created in Central
	Running a flow from a command line
	Creating a URL for running a flow
	Identifying the flow in the URL
	Specifying the inputs for a flow in a URL
	Running flows asynchronously using a URL

	Finding and running flows with tools that access the REST service
	Running flows using Wget
	Finding and running flows using RSFlowInvoke or JRSFlowInvoke
	Using RSFlowInvoke or JRSFlowInvoke from a command line
	Using RSFlowInvoke or JRSFlowInvoke in a script or batch file
	Searching for a flow using JRSFlowInvoke.jar
	Creating an encrypted password
	Registering RSFlowInvoke with the Global Assembly Cache
	RSFlowInvoke and JRSFlowInvoke results

	Finding and running flows using the WSCentralService SOAP API
	Accessing the WSCentralService WSDL
	WS Central Service: Using the API documentation
	How WSCentralService manages security and authentication
	WS Central Service: Importing the SSL Certificate
	WS Central Service: Sample client code
	WSCentralService: Service stubs sample

	Resuming runs from the command line
	Resuming a run synchronously
	Resuming a run asynchronously

	Working with repositories from outside Studio
	Using the Repository Tool
	Primary RepoTool options
	Secondary RepoTool options
	Return codes

	Publishing a repository
	Updating from a repository
	Publishing and updating a repository simultaneously
	Exporting a repository
	Verifying a repository
	Upgrading a repository
	Encrypting a repository
	Decrypting a repository
	Re-encrypting a repository
	Setting default permissions for a repository
	Exporting content to be localized
	Importing a localization file
	Setting flags
	Deleting objects

	Packaging content
	Installing the content
	Creating the XML configuration file
	Using the Content Packager
	The project element
	The ras element
	The archive element
	The repository element
	XML configuration file example

	Packaging, depackaging, and repackaging the content
	Configuring the OO home directory structure

	Inspecting a repository
	Checking best practices
	Checking version compatibility
	Generating release notes
	Listing repository contents

	Automating flow testing
	System properties
	Parameters
	Sample XML input files

	Debugging OO client/server problems
	OO SOAP API Reference
	SOAP API: Constant field values
	com.iconclude.*

	SOAP API: Repository folders
	createFolder
	Exceptions

	moveFolder
	Exceptions

	SOAP API: Flows
	moveFlow
	Exceptions

	SOAP API: Runs
	WSRunParameters
	Direct Known Subclasses:
	Constructor Summary
	Method Summary
	Methods inherited from class java.lang.Object
	Constructor Detail
	Method Detail

	Class WSRunParametersEx
	Constructor Summary
	Method Summary
	Methods inherited from class com.iconclude.dharma.services.wscentralservice.W...
	Methods inherited from class java.lang.Object

	Constructor Detail
	WSRunParametersEx()

	Method Detail
	boolean isStatusWanted()
	void setStatusWanted(boolean statusWanted)
	boolean isRawResultWanted()
	void setRawResultWanted(boolean rawResultWanted)
	boolean isPrimaryResultWanted()
	void setPrimaryResultWanted(boolean primaryResultWanted)

	WSRunHandle
	Direct Known Subclasses:
	Constructor Summary
	Method Summary
	Methods inherited from class java.lang.Object
	Constructor Detail
	Method Detail

	SOAP API: Selection lists
	createSelectionList
	Inputs
	Outputs
	Exceptions

	getSelectionList
	Inputs
	Outputs
	Exceptions

	SOAP API: Clusters
	getClusterNodes
	Inputs
	Outputs
	Exceptions

	SOAP API: Scheduler
	Serialized form
	Class com.iconclude.dharma.scheduler.web.ScheduleDisplayInfo extends Schedule...
	Class com.iconclude.dharma.scheduler.web.ScheduleInfo extends java.lang.Objec...
	Serialized Fields

	Class Pair
	Constructor Summary
	Method Summary
	Methods inherited from class java.lang.Object

	Constructor Detail
	Method Detail
	getFirst
	setFirst
	getSecond
	setSecond

	Class ScheduledFlowInfo
	Constructor Summary
	Method Summary
	Methods inherited from class java.lang.Object

	Constructor Detail
	Method Detail
	getDescription
	setDescription
	getEnabled
	setEnabled
	getExecuting
	setExecuting
	getLastRunReportURL
	setLastRunReportURL
	getLastRunReturnCode
	setLastRunReturnCode
	getLastRunSuccessful
	setLastRunSuccessful
	getName
	setName
	getNextRuntime
	setNextRuntime
	getPrevRuntime
	setPrevRuntime
	getFlowName
	setFlowName
	getNextTriggerNames
	setNextTriggerNames
	getPrevTriggerNames
	setPrevTriggerNames
	getPaused
	setPaused

	Class ScheduleInfo
	All Implemented Interfaces:
	Constructor Summary
	Method Summary
	Methods inherited from class java.lang.Object

	Constructor Detail
	Method Detail
	getDescription
	setDescription
	getEnabled
	setEnabled
	getEndTime
	setEndTime
	getName
	setName
	getParams
	setParams
	getRepeatCount
	setRepeatCount
	getRepeatIntervalMilli
	setRepeatIntervalMilli
	getStartTime
	setStartTime
	getUnits
	setUnits
	getType
	setType
	getExecuting
	setExecuting
	getNextRuntime
	setNextRuntime
	getPrevRuntime
	setPrevRuntime
	getCronExpression
	setCronExpression
	getDayNumber
	setDayNumber
	getMonthNumber
	setMonthNumber
	getDayType
	setDayType
	getDayOrder
	setDayOrder
	getTriggerName
	setTriggerName
	getPaused
	setPaused

	deleteSchedule
	getSchedule
	isSchedulePaused
	pauseSchedule
	resumeSchedule
	pauseScheduledFlow
	resumeScheduledFlow
	scheduleFlow
	getScheduledFlows

	SOAP API: Get Attributes
	WSAttribute[] getAttributes(String, String[])
	Attribute values:
	Exceptions are thrown if:

