HP Universal CMDB

For the Windows and Red Hat Enterprise Linux operating systems

Software Version: 9.05

Developer Reference Guide

Document Release Date: March 2012

Software Release Date: March 2012

Developer Reference Guide

Legal Notices
Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice

© Copyright 2002 - 2012 Hewlett-Packard Development Company, L.P.
Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Page 2 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Documentation Updates

The title page of this document contains the following identifying information:

¢ Software Version number, which indicates the software version.

+ Document Release Date, which changes each time the document is updated.

o Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go
to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport
ID, goto:

http://h20229.www2.hp.com/passport-registration.htmi
Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

Page 3 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Support

Visit the HP Software Support Online web site at:
http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support
that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed to manage your business. As a
valued support customer, you can benefit by using the support web site to:

o Search for knowledge documents of interest

o Submit and track support cases and enhancement requests
o Download software patches

« Manage support contracts

e Look up HP support contacts

¢ Review information about available services

¢ Enterinto discussions with other software customers

o Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.htmi
To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

Page 4 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Disclaimer for PDF Version of Online Help

This document is a PDF version of the online help. This PDF file is provided so you can easily print
multiple topics from the help information or read the online help in PDF format.

Note: Some topics do not convert properly to PDF, causing format problems. Some elements
of online help are completely removed from the PDF version. Those problem topics can
be successfully printed from within the online help.

Page 5 of 281 HP Universal CMDB (9.05)

Contents

Creating Discovery and Integration Adapters.................................... 13
Adapter Development and Writing. il 14
Adapter Development and Writing Overview. 14
Content Creation.l 14
The Adapter Development Cycle. 15
Startup and Preparation of Copy. 16
Development and Testing lll.. 16

Cleanup and Document ...l 17

Create Package. o oL 17

Data Flow Management and Integration 17
Associating Business Value with Discovery Development............................ 18
Researching Integration Requirements. 19
Developing Integration Content 21
Developing Discovery Content. 23
Discovery Adapters and Related Components. 23
Separating Adapters. 24
Implement a Discovery Adapter. L 25
Step 1: Create an Adapter 27
Step 2: AssignaJobtothe Adapter...... 34
Step 3: Create Jython Code. 36
Configure Remote Process Execution 36
Discovery Content Migration Guidelines............ ... i, 38
Discovery Content Migration Guidelines Overview., 38
Version 9.0x New Infrastructure Features........ 38
Guidelines for Developing Cross-Data Model Scripts......... ... 41
Implementation Tips. ..l 41

Page 6 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Contents
Access Universal Data Model (UDM) Documentation Online. . .._.___.................... 41
Package Migration Utility. 42
Troubleshooting and Limitations. 42
Developing Jython Adapters. 43
HP Data Flow Management APl Reference........ 43
Create Jython Code. 43
Use External Java JAR Files withinJython 44
Execution of the Code. 44
Modifying Out-of-the-Box Scripts. 44
Structure of the Jython File. 45
PO, < . 45
Main Function —DiscoveryMain. 46
Functions Definition i 46
Results Generation by the Jython Script 47
The ObjectStateHolder Syntax. 48
The Framework Instance. ... 49
Finding the Correct Credentials (for Connection Adapters)...__........................ 52
Handling Exceptions fromJava........ 53
Support Localization in Jython Adapters. 54
Add Support foraNew Language. 54
Changethe Default Language.o 55
Determine the Character Set for Encoding 55
Define a New Job to Operate With LocalizedData_......................... 56
Decode Commands Without a Keyword. 57
Work with Resource Bundles........... i 57
APIReference. oo L 58
Fields. il 59
ArQUMENTS. . . 60
ATGUMIENES. e 60
ATQUMENTS. . . 60
Work with Discovery Analyzer. e 61
Tasksand Records. 61

Page 7 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Contents

oo 61
Run Discovery Analyzerfrom Eclipse.o i 67
Record DFM Code. o L 76
Jython Libraries and Utilities. 77
ErrOr MeSSages. 81
Error Messages OVerView. 81
Error-Writing Conventions. i 81
Error Severity Levels. .., 84
Developing Generic Database Adapters. 85
Generic Database Adapter Overview. 86
TQL Queries for the Generic Database Adapter. 86
Reconciliation.. 87
Hibernate as JPA Provider. ... o 87
Prepare for Adapter Creation. ll... 89
Prepare the Adapter Package. 94
Upgrade the Generic DB Adapter from 9.00 or 9.01to9.02and Later. 97
Configure the Adapter —Minimal Method. 97
Configure the Adapter —Advanced Method.......... 100
Implement a PIUgin. L 105
Deploy the Adapter . . 107
Edit the Adapter ... 107
Create an Integration Point. ... 107
Create a VieW. 108
Calculatethe Results. 108
View the Results. 108
VW REPOMS. . 109
Enable Log Files. ... oo 109
Use Eclipse to Map Between CIT Attributes and Database Tables....._.............._. 109
Adapter Configuration Files. 115
The adapter.conf File. 116
The simplifiedConfiguration.xml File........ 117
The orm.xml File .. 119

Page 8 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Contents

The reconciliation_types.txtfile 128
The reconciliation_rules.txt File (for backwards compatibility)_............. 128
The transformations.txt File. 130
The discriminator.properties File. 131
The replication_config.txt File. 132
Thefixed values.txt File. 132
The persistence. xml File .. . 132
Out-of-the-Box Converters. L 133
PIUGINS. L 137
Configuration Examples. ...l 137
Simplified Definition. 138
Advanced Definition. il 139
Simplified Definition. 140
Advanced Definition. 142
Simplified Definition. 143
Advanced Definition. 143
Simplified Definition. 145
Advanced Definition. il 145
Adapter Log Files. ... o 146
External References. L 147
Troubleshooting and Limitations.l 147
Developing Java Adaplers. . ..o 149
Federation Framework Overview. i 149
SourceDataAdapter FIoW. . .. 152
SourceChangesDataAdapter FIow. 153
PopulateDataAdapter FIow. 153
PopulateChangesDataAdapter FIOw. e 153
Adapter and Mapping Interaction with the Federation Framework........................ 153
Federation Framework for Federated TQL Queries......... ..., 154

Interactions between the Federation Framework, Server, Adapter, and Mapping.......
ENGING. 155
Federation Framework Flow for Population............ 163

Page 9 of 281

HP Universal CMDB (9.05)

Developer Reference Guide

Contents
Adapter INterfaces. 164
OneNode Interfaces. oo 165
Data Adapter Interfaces. 165
Pattern Topology Interfaces (Deprecated as of UCMDB 9.00)....................... 166
Additional Interfaces. e 166
Adapter Interfaces for Synchronization....... 166
Debug Adapter Resources. il 166
Add an Adapter foraNew External DataSource. 166
Implement the Mapping Engine. 173
Create a Sample Adapter. L 175
XML Configuration Tags and Properties. 176
Developing Push Adapters. o . 178
Developing Push Adapters Overview. 178
Differential Synchronization. 178
Prepare the Mapping Files. 179
Write JYython SCriptS. 181
Support Differential Synchronization. 184
Buildan Adapter Package. 186
Mapping File Schema. 188
Mapping Results Schema. 200
USIiNg APIS. o 203
Introduction tO AP IS, ... e 204
APIS OVeIVIeW. . 204
HP Universal CMDB AP ... 205
COoNVENtIONS. 205
Usingthe HP Universal CMDB AP, 205
General Structure of an Application. L 206
Put the APl Jar Fileinthe Classpath. 208
Createan Integration User. 208
HP Universal CMDB APIReference.o i, 210
USE CaSes. ... 210
EXAMIPIES. . . . 211

Page 10 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Contents

HP Universal CMDB Web Service API. 212
COoNVENtIONS. 212
HP Universal CMDB Web Service APl Overview. 213
HP Universal CMDB Web Service APIReference.. 214
Callthe Web Service. e 214
Query the CMD B, L 215
Update the UCM D B, e 217
Query the UCMDB Class Model. L 219
GetClasSANCESTONS. 219
getAllClassesHierarchy. 219
getCmdbClassDefinition L. 220
Query forImpact Analysis. 220
UCMDB General Parameters. o i 220
UCMDB Output Parameters. o e 223
UCMDB Query Methods.l 224
executeTopologyQueryByNameWithParameters. 224
executeTopologyQueryWithParameters. 225
getChangedCls. . il 226
getCINEIgGNbOUNS. 226
GEtCISBY I D, 227
getCISBY TYPe .. 227
getFilteredCIsBY TYPe . ..o, 228
getQueryNameOfView. .. 231
getTopologyQueryExistingResultByName. 231
getTopologyQueryResultCountByName. 232
pullTopologyMapChunks. 232
releaseChunks. 234
UCMDB Update Methods. 234
addClIsANdReElatioNs. o e 234
addCustomer. . . . 235
deleteCIsAndRelations. 236
removeCUStOMEN. i 236

Page 11 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Contents

updateCIsANdRElatioNs. L 236
UCMDB Impact Analysis Methods. 237
calculatelmpact. 237
getimpactPath. . . 237
getimpactRulesByNamePrefix 238
Actual State Web Service AP ... 238
oW, - 239
Manipulating the Result Using Transformations. 239
Logs for the Actual State Web Service API. 239
USE CaSeS. ..o 239
EXAMIPIES. . . . 240
The Example Base Class. 241
Query Example. 242
Update EXample. ... 254
Class Model Example. oo 258
Impact Analysis Example. L 259
Adding Credentials Example. 262
Data Flow Management AP ... 266
Data Flow Management AP1 Overview. 266
COoNVENtiONS. 266
Data Flow Management Web Service............. ... 266
Callthe Web Service.o 267
Data Flow Management Methods. 267
Data Structures. L 268
Managing Discovery Job Methods. 268
Managing Trigger Methods. 270
Domain and Probe DataMethods. 271
Credentials DataMethods. 274
Data RefreshMethods. oo 276
Code SamIPle. L 277

Page 12 of 281 HP Universal CMDB (9.05)

Creating Discovery and Integration Adapters

Page 13 of 281 HP Universal CMDB (9.05)

Chapter 1

Adapter Development and Writing

This chapter includes:

Adapter Development and Writing Overview. 14
Content Creation. i 14
Developing Integration Content 21
Developing Discovery Content 23
Implement a Discovery Adapter. ... il 25
Step 1: Create an Adapter. 27
Step 2: Assign aJob to the Adapter. 34
Step 3: Create Jython Code. 36
Configure Remote Process Execution. 36

Adapter Development and Writing Overview

Prior to beginning actual planning for development of new adapters, it is important for you to
understand the processes and interactions commonly associated with this development.

The following sections can help you understand what you need to know and do to successfully
manage and execute a discovery development project.

This chapter:

o Assumes a working knowledge of HP Universal CMDB and some basic familiarity with the
elements of the system. It is meant to assist you in the learning process and does not provide a
complete guide.

o Covers the stages of planning, research, and implementation of new discovery content for HP
Universal CMDB, together with guidelines and considerations that need to be taken into
account.

o Provides information on the key APls of the Data Flow Management Framework. For full
documentation on the available APls, see the HP Universal CMDB Data Flow Management AP
Reference. (Other non-formal APls exist but even though they are used on out-of-the-box
adapters, they may be subject to change.)

Content Creation
This section includes:

o "The Adapter Development Cycle" on next page

o "Data Flow Management and Integration" on page 17

Page 14 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

e "Associating Business Value with Discovery Development" on page 18

o "Researching Integration Requirements" on page 19

The Adapter Development Cycle

The following illustration shows a flowchart for adapter writing. Most of the time is spent in the
middle section, which is the iterative loop of development and testing.

A s Production
Use Case <= Hﬁj"jmr-. Sume FUNEE_, Enviranment
Sers slpports 5 B "
Preparation \S, i S &EF N
Ph ase ._I- :_ IT:\:E.'/-' :(.-;N. ; ,'._' ; e N -n.__.
.* ‘._, By ‘,.- s __.L.L
- oefires 1 28t Environment
Requirements _Usires -
. - Justiies —— Aygilghle to Use ™. \.‘
~— .
Adapter Compare . Observe_ Activate . Make
Development Results Results Adapter Changes /
and Testing ogge A yd
Phase Comphes ~ Cong £ /
. | e
Productization| Cleanup & | Create | Stage to —//
Phase Document Package Production

Each phase of adapter development builds on the last one.

Once you are satisfied with the way the adapter looks and works, you are ready to package it.
Using either the UCMDB Package Manager or manual exporting of the components, create a
package *.zip file. As a best practice, you should deploy and test this package on another UCMDB
system before releasing it to production, to ensure that all the components are accounted for and
successfully packaged. For details on packaging, see "Package Manager" in the HP Universal
CMDB Administration Guide.

The following sections expand on each of the phases showing the most critical steps and best
practices:

o "Research and Preparation Phase" below

o "Adapter Development and Testing" on next page

o "Adapter Packaging and Productization " on next page

Research and Preparation Phase

Production

Use Case <290, Sponsor iz, Funde -
ks And USEI’S* TS ...;Ept;lw,ggnment

. oo
Freparation \ Defines efines
F'hEISE I\"\.I\‘\I digtifies
|

Requirements _ Defines Tes’;Enernment
Justifies © Aveailable to use

zimilar adapter

Page 15 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

The Research and Preparation phase encompasses the driving business needs and use cases,
and also accounts for securing the necessary facilities to develop and test the adapter.

1. When planning to modify an existing adapter, the first technical step is to make a backup of
that adapter and ensure you can return it to its pristine state. If you plan to create a new
adapter, copy the most similar adapter and save it under an appropriate name. For details, see
"Resources Pane" (on page 1) in the HP Universal CMDB Data Flow Management Guide.

2. Research how the adapter should collect data:
= Use External tools/protocols to obtain the data
= Develop how the adapter should create Cls based on the data
= You now know what a similar adapter should look like
3. Determine most similar adapter based on:
= Same Cls created
= Same Protocols used (SNMP)
= Same kind of targets (by OS type, versions, and so on)
4. Copy entire package.
5. Unzip into work space and rename the adapter (XML) and Jython (.py) files.

Irplementation Corrpare Ohserve Activate b alke
FPhase Reswlts Results Adapter Changes

X [oes not Complhy ‘l’ /

Adapter Development and Testing

The Adapter Development and Testing phase is a highly iterative process. As the adapter
begins to take shape, you begin testing against the final use cases, make changes, test again, and
repeat this process until the adapter complies with the requirements.

Startup and Preparation of Copy

o Modify XML parts of the adapter: Name (id) in line 1, Created CI Types, and Called Jython script
name.

o Get the copy running with identical results to the original adapter.

« Comment out most of the code, especially the critical result-producing code.
Development and Testing

¢ Use other sample code to develop changes
o Test adapter by running it
¢ Use adedicated view to validate complex results, search to validate simple results

Adapter Packaging and Productization

The Adapter Packaging and Productization phase accounts for the last phase of development.

Page 16 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

As a best practice, a final pass should be made to clean up debugging remnants, documents, and
comments, to look at security considerations, and so on, before moving on to packaging. You
should always have at least a readme document to explain the inner workings of the adapter.
Someone (maybe even you) may need to look at this adapter in the future and will be aided greatly
by even the most limited documentation.

Cleanup and Document

« Remove debugging
o Comment all functions and add some opening comments in the main section

o Create sample TQL and view for the user to test

Create Package

o Export adapters, TQL, and so on with the Package Manager. For details, see "Package
Manager" in the HP Universal CMDB Administration Guide.

o Check any dependencies your package has on other packages, for example, if the Cls created
by those packages are input Cls to your adapter.

o Use Package Manager to create a package zip. For details, see "Package Manager" in the HP
Universal CMDB Administration Guide.

o Test deployment by removing parts of the new content and redeploying, or deploying on another
test system.

Data Flow Management and Integration

DFM adapters are capable of integration with other products. Consider the following definitions:
o DFM collects specific content from many targets.
o Integration collects multiple types of content from one system.

Note that these definitions do not distinguish between the methods of collection. Neither does
DFM. The process of developing a new adapter is the same process for developing new integration.
You do the same research, make the same choices for new vs. existing adapters, write the
adapters the same way, and so on. Only a few things change:

o The final adapter's scheduling. Integration adapters may run more frequently than discovery, but
it depends on the use cases.

e Input Cls:

= Integration: non-ClI trigger to run with no input: a file name or source is passed through the
adapter parameter.

= Discovery: uses regular, CMDB Cls for input.

For integration projects, you should almost always reuse an existing adapter. The direction of the
integration (from HP Universal CMDB to another product, or from another product to HP Universal
CMDB) may affect your approach to development. There are field packages available for you to
copy for your own uses, using proven techniques.

Page 17 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

From HP Universal CMDB to another project:

¢ Create a TQL that produces the Cls and relations to be exported.

o Use a generic wrapper adapter to execute the TQL and write the results to an XML file for the
external product to read.

Note: For examples of field packages, contact HP Software Support.

To integrate another product to HP Universal CMDB, depending on how the other product exposes
its data, the integration adapter acts differently:

Integration Type Reference Example to Be Reused

Access the product's database directly HP ED
Read in a csv or xml file produced by an export HP ServiceCenter
Access a product's API BMC Atrium/Remedy

Associating Business Value with Discovery Development

The use case for developing new discovery content should be driven by a business case and plan
to produce business value. That is, the goal of mapping system components to Cls and adding
them to the CMDB is to provide business value.

The content may not always be used for application mapping, although this is a common
intermediate step for many use cases. Regardless of the end usage of the content, your plan should
answer these questions of this approach:

o Who s the consumer? How should the consumer act on the information provided by the Cls
(and the relationships between them)? What is the business context in which the Cls and
relationships are to be viewed? Is the consumer of these Cls a person or a product or both?

o Once the perfect combination of Cls and relationships exists in the CMDB, how do | plan on
using them to produce business value?

o What should the perfect mapping look like?
= What term would most meaningfully describe the relationships between each C1?
= What types of Cls would be most important to include?
= What is the end usage and end user of the map?

« What would be the perfect report layout?

Once the business justification is established, the next step is to embody the business valueina
document. This means picturing the perfect map using a drawing tool and understanding the impact
and dependencies between Cls, reports, how changes are tracked, what change is important,
monitoring, compliance, and additional business value as required by the use cases.

This drawing (or model) is referred as the blueprint.

For example, if it is critical for the application to know when a certain configuration file has changed,
the file should be mapped and linked to the appropriate Cl (to which it relates) in the drawn map.

Page 18 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Work with an SME (Subject Matter Expert) of the area, who is the end user of the developed
content. This expert should point out the critical entities (Cls with attributes and relationships) that
must exist in the CMDB to provide business value.

One method could be to provide a questionnaire to the application owner (also the SME in this
case). The owner should be able to specify the above goals and blueprint. The owner must at least
provide a current architecture of the application.

You should map critical data only and no unnecessary data: you can always enhance the adapter
later. The goal should be to set up a limited discovery that works and provides value. Mapping large
quantities of data gives more impressive maps but can be confusing and time consuming to
develop.

Once the model and business value is clear, continue to the next stage. This stage can be revisited
as more concrete information is provided from the next stages.

Researching Integration Requirements

The prerequisite of this stage is a blueprint of the Cls and relationships needed to be discovered by
DFM, which should include the attributes that are to be discovered. For details, see "Adapter
Development and Writing Overview" on page 14.

This section includes the following topics:

¢ "Modifying an Existing Adapter" below

o "Writing a New Adapter" below

o "Model Research" on next page

e "Technology Research" on next page

o "Guidelines for Choosing Ways to Access Data" on next page

e "Summary" on page 21

Modifying an Existing Adapter

You modify an existing adapter when an out-of-the-box or field adapter exists, but:

o it does not discover specific attributes that are needed

« aspecific type of target (OS) is not being discovered or is being incorrectly discovered
o aspecific relationship is not being discovered or created

If an existing adapter does some, but not all, of the job, your first approach should be to evaluate the
existing adapters and verify if one of them almost does what is needed; if it does, you can modify
the existing adapter.

You should also evaluate if an existing field adapter is available. Field adapters are discovery
adapters that are available but are not out-of-the-box. Contact HP Software Support to receive the
current list of field adapters.

Writing a New Adapter

A new adapter needs to be developed:

Page 19 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

o Whenitis faster to write an adapter than to insert the information manually into the CMDB
(generally, from about 50 to 100 Cls and relationships) or it is not a one-time effort.

o When the need justifies the effort.
o If out-of-the-box or field adapters are not available.
o If the results can be reused.

« When the target environment or its data is available (you cannot discover what you cannot see).

Model Research

« Browse the UCMDB class model (Cl Type Manager) and match the entities and relations from
your blueprint to existing CITs. It is highly recommended to adhere to the current model to
avoid possible complications during version upgrade. If you need to extend the model, you
should create new CITs since an upgrade may overwrite out-of-the-box CITs.

« If some entities, relations, or attributes are lacking from the current model, you should create
them. It is preferable to create a package with these CITs (which will also later hold all the
discovery, views, and other artifacts relating to this package) since you need to be able to
deploy these CITs on each installation of HP Universal CMDB.

Technology Research

Once you have verified that the CMDB holds the relevant Cls, the next stage is to decide how to
retrieve this data from the relevant systems.

Retrieving data usually involves using a protocol to access a management part of the application,
actual data of the application, or configuration files or databases that are related to the application.
Any data source that can provide information on a system is valuable. Technology research
requires both extensive knowledge of the system in question and sometimes creativity.

For home-grown applications, it may be helpful to provide a questionnaire form to the application
owner. In this form the owner should list all the areas in the application that can provide information
needed for the blueprint and business values. This information should include (but does not have to
be limited to) management databases, configuration files, log files, management interfaces,
administration programs, Web services, messages or events sent, and so on.

For off-the-shelf products, you should focus on documentation, forums, or support of the product.
Look for administration guides, plug-ins and integrations guides, management guides, and so on. If
datais still missing from the management interfaces, read about the configuration files of the
application, registry entries, log files, NT event logs, and any artifacts of the application that control
its correct operation.

Guidelines for Choosing Ways to Access Data

Relevance: Select sources or a combination of sources that provide the most data. If a single
source supplies most information whereas the rest of the information is scattered or hard to access,
try to assess the value of the remaining information by comparison with the effort or risk of getting
it. Sometimes you may decide to reduce the blueprint if the value or cost does not warrant the
invested effort.

Reuse: If HP Universal CMDB already includes a specific connection protocol support it is a good
reason to use it. It means the DFM Framework is able to supply a ready made client and
configuration for the connection. Otherwise, you may need to invest in infrastructure development.

Page 20 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

You can view the currently supported HP Universal CMDB connection protocols: Data Flow
Management > Data Flow Probe Setup > Domains and Probes pane. For details, see
Domains and Probes Pane in the HP Universal CMDB Data Flow Management Guide.

You can add new protocols by adding new Cls to the model. For details, contact HP Software
Support.

Note: To access Windows Registry data, you can use either WMI or NTCMD.

Security: Access to information usually requires credentials (user name, password), which are
entered in the CMDB and are kept secure throughout the product. If possible, and if adding security
does not conflict with other principles you have set, choose the least sensitive credential or protocol
that still answers access needs. For example, if information is available both through JMX
(standard administration interface, limited) and Telnet, it is preferable to use JMX since it inherently
provides limited access and (usually) no access to the underlying platform.

Comfort: Some management interfaces may include more advanced features. For example, it
might be easier to issue queries (SQL, WMI) than to navigate information trees or build regular
expressions for parsing.

Developer Audience: The people who will eventually develop adapters may have an inclination
towards a certain technology. This can also be considered if two technologies provide almost the
same information at an equal cost in other factors.

Summary

The outcome of this stage is a document describing the access methods and the relevant
information that can be extracted from each method. The document should also contain a mapping
from each source to each relevant blueprint data.

Each access method should be marked according to the above instructions. Finally you should now
have a plan of which sources to discover and what information to extract from each source into the
blueprint model (which should by now have been mapped to the corresponding UCMDB model).

Developing Integration Content
Before creating a new integration, you must understand what the integration's requirements are:

« Should the integration copy data into the CMDB? Should the data be tracked by history? Is the
source unreliable?

Population is needed.

¢ Should the integration federate data on the fly for views and TQL queries? Is the accuracy of
changes to data critical? Is the amount of data too large to copy to the CMDB, but the requested
amount of data is usually small?

Federation is needed.
o Should the integration push data in to remote data sources?

Data Push is needed.

Page 21 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Note: Federation and Population flows may be configured for the same integration, for
maximum flexibility.

For details about the different types of integrations, see Integration Studio in the HP Universal
CMDB Data Flow Management Guide.

Four different options are available for creating integration adapters:
o Jython Adapter

» The classic discovery pattern

= Written in Jython

= Used for population

For details, see "Developing Jython Adapters" on page 43.

o Java Adapter
= An adapter that implements one of the adapter interfaces in the Federation SDK Framework.

= May be used for one or more of Federation, Population, or Data Push (depending on the
required implementation).

= Written from scratch in Java, which allows writing code that will connect to any possible
source or target.

= Suitable for jobs that each connect a single data source or target.

For details, see "Developing Java Adapters" on page 149.

o Generic DB Adapter
= An abstract adapter based on the Java Adapter and uses the Federation SDK Framework).
= Allows creation of adapters that connect to external data repositories.

= Supports both Federation and Population (with a Java plugin implemented for changes
support).

= Relatively easy to define, as it is based mainly on XML and property configuration files.

= Main configuration is based on an orm.xml file that maps between UCMDB classes and
database columns.

= Suitable for jobs that each connect a single data source.

For details, see "Developing Generic Database Adapters" on page 85.

o Generic Push Adapter

= An abstract adapter based on the Java Adapter (the Federation SDK Framework) and the
Jython Adapter.

= Allows creation of adapters that push data to remote targets.

= Relatively easy to define, as you need only to define the mapping between UCMDB classes
and XML, and a Jython script that pushes the data to the target.

Page 22 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

= Suitable for jobs that each connect a single data target.
= Used for Data Push.

For details, see "Developing Push Adapters" on page 178.

The following table displays the capabilities of each adapter:

Flow/Adapter Jython Java GDB Push
Adapter Adapter Adapter Adapter

Population X X X

Federation X X

Data Push X X

Developing Discovery Content
This section includes:

o "Discovery Adapters and Related Components " below

o "Separating Adapters" on next page

Discovery Adapters and Related Components

The following diagram shows an adapter's components and the components they interact with to
execute discovery. The components in green are the actual adapters, and the components in blue

are components that interact with adapters.

and companents

Package Manager

SchedulingOperation
Ciomain Configuration

Sterage & Deployment

Domain) LS]
/| Config *x\ . T S
! | N, Trigger TCQL (input ©1)
/ PRangs Y “ | System-supplied S b
Pratocals \ Variablas And Relations
4 Cradantials A | ¥
/ Probe List i | | Discovery Adapter
g,
J Componeants
Discovery |, . =Jython Script
Ul ik -
::::;:;I.Sfﬁ?itsgmﬂ. Doesn't run’, only defines Code that Runs in Probe

Adapter MName

Input Cl Type (trigger)
Farameters

Jython Scripts used
G| Types Created list

Exposed parameters,
system=supplied vars.
Discovery logic
Connections to targets
Creation of Cls and links

Note that the minimum notion of an adapter is two files: an XML document and a Jython script. The
Discovery Framework, including input Cls, credentials, and user-supplied libraries, is exposed to
the adapter at run time. Both discovery adapter components are administered through Data Flow
Management. They are stored operationally in the CMDB itself; although the external package

Page 23 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

remains, it is not referred to for operation. The Package Manager enables preservation of the new
discovery and integration content capability.

Input Cls to the adapter are provided by a TQL, and are exposed to the adapter script in system-
supplied variables. Adapter parameters are also supplied as destination data, so you can configure
the adapter's operation according to an adapter's specific function.

The DFM application is used to create and test new adapters. You use the Discovery Control
Panel, Adapter Management, and Data Flow Probe Setup pages during adapter writing.

Adapters are stored and transported as packages. The Package Manager application and the JMX
console are used to create packages from newly created adapters, and to deploy adapters on new
systems.

Separating Adapters

Technically, an entire discovery could be defined in a single adapter. But good design demands that
a complex system be separated into simpler, more manageable components.

The following are guidelines and best practices for dividing the adapter process:

o Discovery should be done in stages. Each stage should be represented by an adapter that
should map an area or tier of the system. Adapters should rely on the previous stage or tier to be
discovered, to continue discovery of the system. For example, Adapter A is triggered by an
application server TQL result and maps the application server tier. As part of this mapping, a
JDBC connection component is mapped. Adapter B registers a JDBC connection component as
atrigger TQL and uses the results of adapter A to access the database tier (for example, through
the JDBC URL attribute) and maps the database tier.

« The two-phase connect paradigm: Most systems require credentials to access their data.
This means that a user/password combination needs to be tried against these systems. The
DFM administrator supplies credentials information in a secure way to the system and can give
several, prioritized login credentials. This is referred to as the Protocol Dictionary. If the
system is not accessible (for whatever reason) there is no point in performing further discovery.
If the connection is successful, there needs to be a way to indicate which credential set was
successfully used, for future discovery access.

These two phases lead to a separation of the two adapters in the following cases:

= Connection Adapter: This is an adapter that accepts an initial trigger and looks for the
existence of a remote agent on that trigger. It does so by trying all entries in the Protocol
Dictionary which match this agent's type. If successful, this adapter provides as its result a
remote agent Cl (SNMP, WMI, and so on), which also points to the correct entry in the Protocol
Dictionary for future connections. This agent Cl is then part of a trigger for the content adapter.

= Content Adapter: This adapter's precondition is the successful connection of the previous
adapter (preconditions specified by the TQLs). These types of adapters no longer need to look
through all of the Protocol Dictionary since they have a way to obtain the correct credentials
from the remote agent Cl and use them to log in to the discovered system.

« Different scheduling considerations can also influence discovery division. For example, a
system may only be queried during off hours, so even though it would make sense to join the
adapter to the same adapter discovering another system, the different schedules mean that you
need to create two adapters.

Page 24 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

o Discovery of different management interfaces or technologies to discover the same system
should be placed in separate adapters. This is so that you can activate the access method
appropriate for each system or organization. For example, some organizations have WMI
access to machines but do not have SNMP agents installed on them.

Implement a Discovery Adapter

A DFM task has the aim of accessing remote (or local) systems, modeling extracted data as Cls,
and saving the Cls to the CMDB. The task consists of the following steps:

1. Create an adapter.

Y ou configure an adapter file that holds the context, parameters, and result types by selecting
the scripts that are to be part of the adapter. For details, see "Step 1: Create an Adapter" on

page 27.
2. Create a Discovery job.

You configure a job with scheduling information and a trigger query. For details, see "Step 2:
Assign a Job to the Adapter" on page 34.

3. Edit Discovery code.

You can edit the Jython or Java code that is contained in the adapter files and that refers to the
DFM Framework. For details, see "Step 3: Create Jython Code" on page 36.

To write new adapters, you create each of the above components, each one of which is
automatically bound to the component in the previous step. For example, once you create a job and
select the relevant adapter, the adapter file binds to the job.

Adapter Code

The actual implementation of connecting to the remote system, querying its data, and mapping it as
CMDB data is performed by the Jython code. For example, the code contains the logic for
connecting to a database and extracting data from it. In this case, the code expects to receive a
JDBC URL, auser name, a password, a port, and so on. These parameters are specific for each
instance of the database that answers the TQL query. You define these variables in the adapter (in
the Trigger Cl data) and when the job runs, these specific details are passed to the code for
execution.

The adapter can refer to this code by a Java class name or a Jython script name. In this section we
discuss writing DFM code as Jython scripts.

An adapter can contain a list of scripts to be used when running discovery. When creating a new

adapter, you usually create a new script and assign it to the adapter. A new script includes basic

templates, but you can use one of the other scripts as a template by right-clicking it and selecting
Save as:

Page 25 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Fezources

XaAgo

o
& External_source_impart -]
&§ F5_BIGIP_LTM

& FileManitaring

& Host_Resources_Basic

& Host_Resources_By_MTC
& Host_Resources_By_SHM
& Host_Resources_By_TTY
& Host_Resources_By_ il

Ej bricjpeRact Cica

|-|-||

g ZhIM Save Az
o ShN 3 Delete

Open in Frame

| External resooree

] Dizcowery Wizard
2l Mainframe

Eﬂ—‘ﬁ hicrozoft_Exchande_Ser

For details on writing new Jython scripts, see "Step 3: Create Jython Code" on page 36. You add

scripts through the Resources pane:

Resources

o

MNews adapter
Mewy Jython Script -
Mew Corfiguration File _pac

Impart external rezource

itch

Mewy Dizcovery Wizard

aF Lpisdapter

AutoDiscovery Content

AutoDiscowvery nfra

af Cisco_C5s

crdb-adapter—package

aF CmdbEx-tdapter

Cridb ChangesAdapter

aF CmdbHistorySdapter

aF CmdbRmitdspter

Credertial_Lesz_Dizcowver
s

The list of scripts are run one after the other, in the order in which they are defined in the adapter:

Page 26 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Fezources
g ;
Xo Details
=P FileManitaring -)
Di=pl :
= Host_Fesources_Basic el |
o Adapters o Thiz adapter fetche
':L_I Diz_App Cormponer Lk sululs i agents
=
Soripts Type: iwthan

Corfiguration Files
External resources
] Dizcowery Wizard

=p Host_Resources_By MTC It
=F Host_Resources_By_ SHM
=p Host_Resources_By_TTv
=p Host_Resources_By_ Wl
=p |BM_HTTP_Server

a IIs

¥
-:' J2EE g processdbutils py
=y Layer2

aF Mainframe host_processes py

ﬁ Microzoft_Exchange_Serw:
=p Micrasoft_MQ

=p Micrasoft_MLE_Cluster
=P MS_cluster

[Used as Irtegration Adapter

Uzed Scriptz

<k

Note: A script must be specified even though it is being used solely as a library by another
script. In this case, the library script must be defined before the script using it. In this example,
the processdbutils.py scriptis a library used by the last host processes. py script.
Libraries are distinguished from regular runable scripts by the lack of the DiscoveryMain ()
function.

Step 1: Create an Adapter

An adapter can be considered as the definition of a function. This function defines an input
definition, runs logic on the input, defines the output, and provides a resullt.

Each adapter specifies input and output: Both input and output are Trigger Cls that are specifically
defined in the adapter. The adapter extracts data from the input Trigger Cl and passes this data as
parameters to the code. (Data from related Cls is sometimes passed to the code too. For details,
see "Related Cls Window" in the HP Universal CMDB Data Flow Management Guide.) An
adapter's code is generic, apart from these specific input Trigger Cl parameters that are passed to

the code.

For details on input components, see "Data Flow Management Concepts" in the HP Universal

CMDB Data Flow Management Guide.
This section includes the following topics:

o "Define Adapter Input (Trigger CIT and Input Query)" on next page

o "Define Adapter Output" on page 31

Page 27 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

o "Override Adapter Parameters" on page 32

o " Override Probe Selection - Optional" on page 33

o "Configure a classpath for a remote process - Optional" on page 34

1.

Define Adapter Input (Trigger CIT and Input Query)

You use the Trigger CIT and Input Query components to define specific Cls as adapter input:

The Trigger CIT defines which CIT is used as the input for the adapter. For example, for an
adapter that is going to discover IPs, the input CIT is Network.

The Input query is a regular, editable query that defines the query against the CMDB. The
Input Query defines additional constraints on the CIT (for example, if the task requires a
hostIDorapplication_ip attribute), and can define more Cl data, if needed by the
adapter.

If the adapter requires additional information from the Cls that are related to the Trigger Cl, you
can add additional nodes to the input TQL. For details, see "Example of Input Query Definition"
on next page below and "Add Query Nodes and Relationships to a TQL Query" in the HP
Universal CMDB Modeling Guide.

The Trigger Cl data contains all the required information on the Trigger Cl as well as
information from the other nodes in the Input TQL, if they are defined. DFM uses variables to
retrieve data from the Cls. When the task is downloaded to the Probe, the Trigger Cl data
variables are replaced with actual values that exist on the attributes for real Cl instances.

Example of Trigger CIT Definition:
In this example, a Trigger CIT defines that IP Cls are permitted in the adapter.

a. Access Data Flow Management > Adapter Management. Select the
HostProcesses adapter (Packages > Host Resources_Basic > Adapters >
HostProcesses).

b. Locate the Input Cl Type box. For details, see "Adapter Definition Tab" in the HP
Universal CMDB Data Flow Management Guide.

c. Click the button to open the Choose Discovered Class dialog box. For details, see
"Choose Discovered Class Dialog Box" in the HP Universal CMDB Data Flow
Management Guide

d. Selectthe CIT.

Page 28 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

In this example, the IP CI (Host) is permitted in the adapter:

— Configuration Files

[External resources

'-_ Dizcovery Wizard

FH—Zf Host_Resources_By_MTC
FH—Zf Host_Resources_By_ Shihd
FH—Z§ Host_Resources_By TTv
F—Z§ Host_Resources_Ey_ WM
FH—ZF IEM_HTTP_Server
FH—Zp 115
2§ J2EE
2§ Layer2

Example of Input Query Definition

Rezources
. X Q0 ;
g d ro_piaiF_Lim B DEtaIIs
&F FileMonitoring Display hame: |
=0 Host_Resources_Basic '
ES Sdlapters Thiz adapter fetches processes information 1
— Description: TTY agents
':L_l Diz_App Componer
|_| HoztzProceszes Type: Ch
] Scripts e lethon

[Used as Irtegration Adapter

IrpLt

Input I Type:

Made El

Input Query: &

Triggered Cl Dats

Sl

&

In this example, the Input TQL query defines that the TpAddress Cl (configured in the
previous example as the Trigger CIT) must be connected to a Node ClI.

a. Access Data Flow Management > Adapter Management. Locate the Input TQL
box. Click the Edit button to open the Input TQL Editor. For details, see "Input Query
Editor Window" in the HP Universal CMDB Data Flow Management Guide.

b. Inthe Input TQL Editor, name the Trigger Cl node SOURCE: right-click the node and
choose Query Node Properties. In the Element Name box, change the name to

SOURCE.

c. AddaNode Cl and aContainment relationship tothe IpAddress Cl. For details on
working with the Input TQL Editor, see "Input Query Editor Window" in the HP
Universal CMDB Data Flow Management Guide.

(d

Mode

Containment

E

SOURCE

Page 29 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

The IpAddress Cl is connected to a Node CI. The input TQL consists of two nodes,
Node and IpAddress, with a link between them. The IpAddress Cl is named SOURCE.

Example of Adding Variables to the Input TQL Query:

In this example, you add DIRECTORY and CONFIGURATION_FILE variables to the
Input TQL query created in the previous example. These variables help to define what
must be discovered, in this case, to find the configuration files residing on the hosts that
are linked to the IPs you need to discover.

a. Display the Input TQL created in the previous example.

Access Data Flow Management > Adapter Management. Locate the Triggered ClI

Data pane. For details, see "Adapter Definition Tab" in the HP Universal CMDB Data
Flow Management Guide.

b. Add variables to the Input TQL. For details, access Data Flow Management >
Adapter Management. Locate the Triggered Cl Data pane. For details, see the

Variables field in "Adapter Definition Tab" in the HP Universal CMDB Data Flow
Management Guide.

BA Parameter Editor x|

Mame |

Value

Description

Example of Replacing Variables with Actual Data:

In this example, variables replace the IpAddress Cl data with actual values that exist on
real IpAddress Cl instances in your system.

The Triggered Cl data for the IpAddress Cl includes a f£i1eName variable. This variable
enables the replacement of the CONFIGURATION_DOCUMENT node in the Input TQL
with the actual values of the configuration file located on a host:

Page 30 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Triggered C| data
+ X 7
Name | Value

Protocol $ISOURCE credentials_jd}

credentialzld $ISOURCE credentials_id}

file Marme ${CONFIGURATION_DOCUMENT name}

hostID ${HOST root_id}

ip_address $ISOURCE.ip_addreszs)

path FICONFIGURATION_DOCUMENT rezource_path}

The Trigger Cl data is uploaded to the Probe with all variables replaced by actual values.
The adapter script includes a command to use the DFM Framework to retrieve the actual
values of the defined variables:

Framework.getTriggerCIData ('ip address')

The fileName and path variables use the data name and document path attributes
from the CONFIGURATION_DOCUMENT node (defined in the Input Query Editor — see
previous example).

Click here to see anillustration.

The Protocol, credentialsId, and ip address variables use the root class,
credentials id,andapplication_ ip attributes:

+ & ¥ OV
|Kev | MName | Display Name | Type | Description | Default alue Wisikble

ack_cleared_time ack_cleared_time lang
ack_id ack_id string

% BODY_ICOM BODY _ICOM string host
city City string City location v
codepage CodePage string System su...
contextmenu Context Menu string_list Context me... #Cls
country Courtry string Courntry loc... v
credertials_id Reference to the cre... string Reference ...
data_adminstate Aclmin State acminstate... Admin State Managed

2. Define Adapter Output

The output of the adapter is a list of discovered Cls (Data Flow Management > Adapter
Management > Adapter Definition tab > Discovered CITs) and the links between them:

Page 31 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Dizcovered ClTs

4 e
ATM Switch
Composition
Cortainment
CnsServer
Imterface
pAddress
Ip Subnet
Mermberzhip
WNTCMD
Mode

You can also view the CITs as a topology map, that is, the components and the way in which
they are linked together (click the View Discovered CITs as Map button):

inhaeritz - Nnde inherits
mhent
cnntamed

= 4 : r..

I"et Printer Wmdnws IP Unm

The discovered Cls are returned by the DFM code (that is, the Jython script) in the format of
UCMDB's ObjectStateHolderVector. Fordetails, see "Results Generation by the
Jython Script" on page 47.

Example of Adapter Output:

In this example, you define which CITs are to be part of the IP Cl output.

a. Access Data Flow Management > Adapter Management.

b. Inthe Resources pane, select Network > Adapters > NSLOOKUP_on_Probe.
c. Inthe Adapter Definition tab, locate the Discovered CITs pane.

d. The CITs that are to be part of the adapter output are listed. Add CITs to, or remove
from, the list. For details, see "Adapter Definition Tab" in the HP Universal CMDB
Data Flow Management Guide.

3. Override Adapter Parameters

To configure an adapter for more than one job, you can override adapter parameters. For
example, the adapter SOL. NET Dis Connection is used by both the MSSQL
Connection by SQLandtheOracle Connection by SQL jobs.

Page 32 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Example of Overriding an Adapter Parameter:

This example illustrates overriding an adapter parameter so that one adapter can be used
to discover both Microsoft SQL Server and Oracle databases.

a. Access Data Flow Management > Adapter Management.

b. Inthe Resources pane, select Database Basic > Adapters > SQL_NET _Dis_
Connection.

c. Inthe Adapter Definition tab, locate the Discovery Pattern Parameters pane. The
protocolType parameter has a value of all:

Acapter Parameters E|

+ X 72

MName Yalue
pratocal Type all

d. Right-click the SQL_NET_Dis_Connection_MsSql adapter and choose Go to
Discovery Job > MSSQL Connection by SQL.

e. Display the Properties tab. Locate the Parameters pane:

Parameters
Override Hame Value

v protocolType MicrosoftSQLServer

The al1l value is overwritten with the MicrosoftSQLServer value.

Note: The Oracle Connection by SQL job includes the same parameter but the value is
overwritten with an Oracle value.

For details on adding, deleting, or editing parameters, see "Adapter Definition Tab" in the
HP Universal CMDB Data Flow Management Guide.

DFM begins looking for Microsoft SQL Server instances according to this parameter.

4. Override Probe Selection - Optional

Inthe UCMDB server there is a dispatching mechanism that takes the trigger Cls received by
the UCMDB and automatically chooses which probe should run the job for each trigger CI
according to one of the following options.

Page 33 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

= For the IP address Cl type: take the probe that is defined for this IP.

= For the running software CI type:use the attributes application_ip and application_ip_
domain and choose the probe that is defined for the IP in the relevant domain.

= For other Cl types: take the node’s IP according to the CI’s related node (if it exists).

The automatic probe selection is done according to the Cl’s related node. After obtaining the
CI’s related node, the dispatching mechanism chooses one of the node’s IPs and chooses the
probe according to the probe’s network scope definitions.

In the following cases, you need to specify the probe manually and not use the automatic
dispatching mechanism :

= You already know which probe should be run for the adapter and you do not need the
automatic dispatching mechanism to select the probe (for example if the trigger Cl is the
probe gateway).

= The automatic probe selection might fail. This can happen in the following situations:
o Atrigger Cl does not have a related node (such as the network CIT)
o Atrigger Cl's node has multiple IPs, each belonging to a different probe.
Toresolve these issues, you can specify which probe to use with the adapter as follows:

a. Inthe Probe selection section, select Override default probe selection as shown below.

HAdapter Definiion || Adapter Configuration]_

Probe Selection

Override default probe selection | ${SOURCE.name}

“Execution Options

Create communication log: | On failure |v |
Include results in communication log: () Yes ® No

Manc. threads: | |
Max. execttion time: [7200000 |

b. Inthe Probe box, type the probe to use for the task.

5. Configure a classpath for a remote process - Optional

For details, see "Configure Remote Process Execution" on page 36.

Step 2: Assign a Job to the Adapter

Each adapter has one or more associated jobs that define the execution policy. Jobs enable
scheduling the same adapter differently over different sets of Triggered Cls and also enable
supplying different parameters for each set.

The jobs appear in the Discovery Modules tree, and this is the entity that the user activates, as
shown in the picture below.

Page 34 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Bazic Mode || Advanced Mode Detailz || Properties || Deper
* X Q ﬁ df:’ Parameters

bk Dizcovery Modules Override Name | alue

8% Cluster and Load Balancing Solutions

) custom Jobs

5_'5 Database

) Discovery-Based Product Irtegrations
5_'5 Erterprize Applications

5_'5 J2EE Application Servers

B Metwork Connections

= 5_'5 Metwork Discowery

ﬁﬁdvanced

5_'5 Basic

1) Credentisless Discovery 5 - —
= 5_'5 Host Resources and Spplications fliisosadlicries

E’/"_‘; Host Resources and Spplications by Shell + K 7];;[

discoverDizks true
discoverinstalled Software falze
discoverProcesses falze

NERER

discover Services falze
discover Users true

!?_‘; Host Rezources and Applications by SMNMP
!/"_", Host Resources and Spplications by Wil
A Software Elernert CF by Shell

5_']'_, Layer2

Query Name Probe Limit
Ehmp <=l Probes>>

S

Choose a Trigger TQL

Each job is associated with Trigger TQLs. These Trigger TQLs publish results that are used as
Input Trigger Cls for the adapter of this job.

A Trigger TQL can add constraints to an Input TQL. For example, if an input TQL's results are IPs
connected to SNMP, a trigger TQL's results can be IPs connected to SNMP within the range
195.0.0.0-195.0.0.10.

Note: A trigger TQL must refer to the same objects that the input TQL refers to. For example, if
an input TQL queries for IPs running SNMP, you cannot define a trigger TQL (for the same job)
to query for IPs connected to a host, because some of the IPs may not be connected to an
SNMP object, as required by the input TQL.

Set Scheduling Information

The scheduling information for the Probe specifies when to run the code on Trigger Cls. If the
Invoke on new triggered Cls Immediately check box is selected, the code also runs once on
each Trigger Cl when it reaches the Probe, regardless of future schedule settings.

Discovery Scheduler

Irterval, Every 1 days. | Edit scheduler |
Allowe the discovery to run et | <€ slways > |v |(T'\“

Ihvoke on new trigogered Cls immedistely

For each scheduled occurrence for each job, the Probe runs the code against all Trigger Cls
accumulated for that job. For details, see Discovery Scheduler Dialog Box in the HP Universal
CMDB Data Flow Management Guide.

Override Adapter Parameters

When configuring a job you can override the adapter parameters. For details, see "Override Adapter
Parameters" on page 32.

Page 35 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Step 3: Create Jython Code

HP Universal CMDB uses Jython scripts for adapter-writing. For example, the SNMP
Connection.py scriptis used by the SNMP NET Dis Connection adapter to try and connect
to machines using SNMP. Jython is a language based on Python and powered by Java.

For details on how to work in Jython, you can refer to these Web sites:
o http://www.jython.org
¢ http://www.python.org

For details, see "Create Jython Code" on page 43.

Configure Remote Process Execution

You can run discovery for a discovery job in a process separate from the Data Flow Probe's
process.

For example, you can run the job in a separate remote process if the job uses jar libraries that are a
different version to the Probe's libraries or that are incompatible with the Probe's libraries.

You can also run the job in a separate remote process if the job potentially consumes a lot of
memory (brings a lot of data) and you want to isolate the Probe from potential OutOMemory
problems.

To configure a job to run as a remote process, define the following parameters in its adapter's
configuration file:

Parameter Description

remoteJVMArgs JVM parameters for the remote Java process.

runinSeparateProcess | When set to true, the discovery job runs in a separate process.

Page 36 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 1: Adapter Development and Writing

Parameter Description

remoteJVMClasspath | (Optional) Enables customization of the classpath of the remote
process, overriding the default Probe classpath. This is useful if there
might be version incompatibility between the Probe's jars and custom
jars required for the customer-defined discovery.

If the remoteJVMClasspath parameter is not defined, or is left empty,
the default Probe classpath is used.

If you develop a new discovery job and you want to ensure that the
Probe jar library version does not collide with the job's jar libraries, you
must use at least the minimal classpath required to execute basic
discovery. The minimal classpath is defined in the
DiscoveryProbe.properties file in the basic_discovery_minimal_
classpath parameter.

Examples of remoteJVMClasspath customization:

e To prepend or append custom jars to the default Probe classpath.
customize the remoteJVMClasspath parameter as follows:

customl.jar;%classpath%;custom2.jar -

In this case, custom1.jar is placed before default Probe classpath,
and customz2.jar is appended to the Probe classpath.

e Touse the minimal classpath, customize the remoteJVMClasspath
parameter as follows:

customl.jar;%minimal classpath%;custom2.jar

Page 37 of 281 HP Universal CMDB (9.05)

Chapter 2

Discovery Content Migration Guidelines

This chapter includes:

Discovery Content Migration Guidelines Overview... 38
Version 9.0x New Infrastructure Features............. 38
Guidelines for Developing Cross-Data Model Scripts.. 41
Implementation TiPS.o L 41
Access Universal Data Model (UDM) Documentation Online..__.........__................. 41
Package Migration Utility. 42
Troubleshooting and Limitations. 42

Discovery Content Migration Guidelines Overview

In HP Universal CMDB version 9.0x, the data model has significantly evolved, forcing correlated
changes in the former Data Flow Management content code. Consequently, some core
mechanisms of the Data Flow Management content have changed. Thus, content developed for
UCMDB prior to version 9.0x has to be upgraded to correspond with the 9.0x data model (UDM:
Universal Data Model). This section guides you through the process of adopting Data Flow
Management content and aligning it with UDM.

For details on upgrading HP Universal CMDB, see the section about upgrading the HP Universal

C

MDB from Version 8.0x t0 9.05 in HP Universal CMDB Deployment Guide.

Version 9.0x New Infrastructure Features

Note: For details on accessing the UDM documentation online, see "Access Universal Data
Model (UDM) Documentation Online" on page 41.

This section includes:

"Differences between UCMDB 8.0x Class Model and UCMDB 9.0x Data Model" below

"New CIT ldentification Mechanism" on next page

"Running Software Mechanism" on next page

"Probe Side Identification" on next page

"Transformation Layer" on page 41

Differences between UCMDB 8.0x Class Model and UCMDB 9.0x Data
Model

Changes made between the UCMDB version 8.0x class model and UDM are downloaded to the
Probe in the following Discovery configuration file:

Page 38 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\
discoveryConfigFiles\flat-class-model-changes.xml.

bdm_changes.xml. This XML file holds information regarding changes made to class names,
attributes names, removed classes, attributes, qualifiers, and so on.

o For details on mapping between the UCMDB version 8.0x class model and UDM, see the
Mapping of UCMDB 9.0x (Universal Data Model) to UCMDB 8.0x Class Model document.

o For details on changes to the class model between version 8.0x and 9.0x, see the UCMDB
Class Model Changes Report document.

New CIT Identification Mechanism

In UCMDB versions prior to version 9.0x, key attributes are used to identify Cls. In UCMDB
version 9.0x, this concept has been generalized and the identification is now done in a server
component named Reconciliation Engine. The Reconciliation Engine is capable of identifying Cls
by logical rules called DDA (Data Definition Algorithm) rules.

This new mechanism is mostly useful for CITs where the related topology is important for their
identification (for example, the Node CIT—Host in prior versions—is identified by its name and the
related topology, such as the IP Address and Interface CITs). Some CITs are still identified by key
attributes; for those CITs, a DDA rule is not defined.

For details about the Reconciliation Engine, see "Reconciliation Overview " in the HP Universal
CMDB Data Flow Management Guide.

Running Software Mechanism

The version 8.0x Software Element Cl is called Running Software in version 9.0x UDM. This
CIT is identified in version 9.0x by a DDA rule and not by key attributes.

Say you have added a custom CIT derived from the Running Software CIT. In previous versions
this custom CIT was identified by its key attributes. However, in version 9.0x it is identified by an
inherited DDA rule, and thus defined key attributes are ignored.

Soif you add a derived CIT, consider the following:

o Toidentify the new CIT by the same DDA rule as all the Running Software CITs, you should
keep the current configuration.

o Toidentify the new CIT by key attributes, you should create a new DDA rule, defining the
identification by key attributes. Following is an example for such a DDA rule, defined for the
object CIT:

<identification-config type="object">
<identification-criteria>
<identification-criterion targetType="root">
<key-attributes-condition>
</identification-criterion>
</identification-criteria>
</identification-config>

Probe Side Identification
DDM_ID_ATTRIBUTE. The version 9.0x Data Flow Probe identifies Cls only by their key

Page 39 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

attributes (that is, ID_ATTRIBUTE). If a CIT includes a DDA rule (that is, a reconciliation rule), the
CIT may not include a key attribute. In this case, the CIT main attributes are marked witha DDM_
ID_ATTRIBUTE qualifier. Therefore, for the purposes of identifying a Cl, the Probe considers all
DDM_ID_ATTRIBUTE as well as ID_ATTRIBUTE qualifiers.

DDM_REQUIRED_TOPOLOGY. A DDA rule for a specific CIT may depend on different Cls
reported in the same bulk, together with the examined CI. For example, J2EE Domain CIT
identification is carried out not only by the domain name attribute but also by the J2EE Application
Server CIT connected to it with a membership link.

To ensure that all the required Cls are reported with the examined CI, you should mark each one of
the examined Cls with the DDM_REQUIRED_TOPOLOGY qualifier that contains a data item
specifying the required link type. For example, in the above example, the J2EE Domain CIT is
marked with the DDM_REQUIRED_TOPOLOGY qualifier and with a member link data item, so
that when Discovery reports a J2EE domain, the servers are also reported. Data item name which
specifies link types is LINK_TYPES.

As an example, to identify the Node CIT by interfaces and IPs connected to it, then the following
qualifier should be added to the Node CIT definition;

<Class-Qualifier name="DDM REQUIRED TOPOLOGY">
<Data-Items>
<Data-Item name="LINK TYPES"
type="string">containment, composition</Data-Item>
<Data-Item name="LINK ENDS" type="string">ip
address, interface</Data-Item>
<Data-Item name="LINK DIRECTIONS" type="string">OUT,OUT</Data-
Item>
<Data-Item name="APPLY TO CHILD TYPES"
type="string">true</Data-Item>
</Data-Items>
</Class-Qualifier>

where:
e LINK_TYPES (mandatory) indicates the link types of the current CIT topology.

o LINK_ENDS (optional) provides definitions for the CITs on the opposite ends of the specified
link types according to their appearance in the LINK_TYPES list. These "opposite" ends are
always applied hierarchically.

Omitting the LINK_ENDS data item or leaving one end as an empty string in the list means that
the opposite end can be of any CIT.

o LINK_DIRECTION (optional) indicates the link direction, "OUT", "IN" or "BOTH", to check from
the current CIT.

Omitting the LINK_DIRECTION data item or leaving an empty entry in the list means that both
directions are checked.

e APPLY_TO_CHILD_TYPES (optional) indicates that the qualifier will be applied recursively to
all children of the current CIT.

Page 40 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

Omitting the APPLY_TO_CHILD_TYPES data item means that the qualifier is applied only to
the current CIT.

If DDM_REQUIRED_TOPOLOGY is defined for a specific CIT, this will override the qualifier
defined for its parent.

For details on qualifiers, see Qualifiers Page in the HP Universal CMDB Modeling Guide.

Transformation Layer

To ensure backward compatibility, a new transformation mechanism is introduced in version 9.0x
on the Probe. The new mechanism is capable of converting version 8.0x topologies to 9.0x
topologies at runtime. It enables the Probe to continue running tasks, such as Jython scripts, which
report topologies compatible with version 8.0x.

The new transformation mechanism uses the data kept in the bdm_changes.xml file, and
performs the required changes (class and attributes name changes, attribute removal, hierarchy
changes, and so on) to make the 8.0x topologies compatible with the UDM. Concurrently (and
independently of the topologies reported by the tasks executed by the Probe), the UCMDB Server
receives topologies compatible with UDM.

Guidelines for Developing Cross-Data Model Scripts
The following guidelines are applicable for both version 8.0x and 9.0x.

Discovery Scripts API Library

The Discovery API library is fully backward compatible and therefore all version 8.0x libraries and
APIls are supported. For details, see "Jython Libraries and Utilities" on page 77.

The 9.0x APl includes more elements and methods. For example, a Jython script now reports an
error code (integer) instead of a string error message, thus enabling localized discovery error
messages. For details, see "Error-Writing Conventions" on page 81.

Implementation Tips

« Use the modeling module for creating a Running Software CIT or any descendant for which
the relevant method is present.

o Use HostBuilder for creating CIT of type Node.
¢ Use the modeling.createOshByCmdbldString to restore OSH by its ID.
o Use the ShellUtils instance of the shellutils module for all shell-based connections.

o Use the built-in mechanism to retrieve the UCMDB version:
logger.Version () .getVersion (framework). For example, if an additional attribute
application_ip is added only for UCMDB version 9.0x or later:

versionAsDouble = logger.Version () .getVersion (Framework)
if versionAsDouble >= 9:
appServerOSH.setAttribute ('application ip', ip)

o Use wmiutils for creating a WMI-based discovery.
o Use snmputils for creating a SNMP-based discovery.
Access Universal Data Model (UDM) Documentation Online

To access the UDM documentation:

Page 41 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 2: Discovery Content Migration Guidelines

1. Logonto HP Universal CMDB.
2. Click Help > UCMDB Help.

3. Onthe Home page, click the Modeling link under Applications to access the Modeling
portal.

4. Click the Data Model tab.

Package Migration Utility

The UCMDB 9.0x installation includes an external Package Migration Utility that enables content
developers to convert a content package from the 8.0x class model to the 9.0x data model. The
Package Migration Utility converts package resources, subsystem by subsystem, so that they are
compatible with the new class model. CIT definitions, queries, jobs, adapters, and modules are
transformed according to the data held in the bdm_changes.xml file. As a result, they can be
deployed and used by a UCMDB 9.0x Server.

For details, see the section on upgrading packages in HP Universal CMDB Deployment Guide.

Package Migration Utility Limitations

o Jython scripts are not upgraded by the Package Migration Utility. For supporting scripts that are
designed to correspond with the UCMDB version 8.0x class model, a new Transformation
layer module is introduced in UCMDB 9.0x. For details, see "Transformation Layer" on previous

page.

« Discovery Adapters of type Integration are not upgraded by the Package Migration Utility and
thus should be upgraded manually.

e The Layer 2 Topology discovery job (and its corresponding resources, such as Discovery
Adapter, TQL, and so on) has significantly changed and is removed by the Package Migration
Utility instead of being upgraded.

Troubleshooting and Limitations

o Theip_address value is not passed by default to the pattern. It should be added explicitly to the
pattern as Trigger Cl Data.

« If a non-out-of-the-box Jython script requires an external jar or resource in the classpath, it
should be located in the relevant package under a sub-folder named discoveryResources.

« While working with attributes of type List such as StringVector and IntegerVector (inherited
from BaseVector), you cannot use both the add element and remove element operations on
the same list object.

Page 42 of 281 HP Universal CMDB (9.05)

Chapter 3

Developing Jython Adapters

This chapter includes:

HP Data Flow Management APl Reference. 43
Create Jython Code 43
Support Localization in Jython Adapters. 54
Work with Discovery Analyzer 61
Run Discovery Analyzer from Eclipse 67
Record DFM Code.o o e 76
Jython Libraries and Utilities. 77

HP Data Flow Management APl Reference

For full documentation on the available APls, see HP Universal CMDB Data Flow Management
API Reference. These files are located in the following folder:

C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\DDM_
JavaDoc\index.html

Create Jython Code

HP Universal CMDB uses Jython scripts for adapter-writing. For example, the SNMP_
Connection.py scriptis used by the SNMP NET Dis Connection adapterto try and connect
to machines using SNMP. Jython is a language based on Python and powered by Java.

For details on how to work in Jython, you can refer to these Web sites:
¢ http://www.jython.org
o http://www.python.org

The following section describes the actual writing of Jython code inside the DFM Framework. This
section specifically addresses those contact points between the Jython script and the Framework
that it calls, and also describes the Jython libraries and utilities that should be used whenever
possible.

Note:

o Scripts written for DFM should be compatible with Jython version 2.1.

o For full documentation on the available APIs, see the HP Universal CMDB Data Flow
Management API Reference.

Page 43 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

This section includes the following topics:

e "Use External Java JAR Files within Jython" below

o "Execution of the Code" below

¢ "Modifying Out-of-the-Box Scripts" below

o "Structure of the Jython File" on next page

o "Results Generation by the Jython Script" on page 47

e "The Framework Instance" on page 49

o "Finding the Correct Credentials (for Connection Adapters)" on page 52

o "Handling Exceptions from Java" on page 53

Use External Java JAR Files within Jython

When developing new Jython scripts, external Java Libraries (JAR files) or third-party executable
files are sometimes needed as either Java utility archives, connection archives such as JDBC
Driver JAR files, or executable files (for example, nmap.exe is used for credential-less discovery).

These resources should be bundled in the package under the External Resources folder. Any
resource put in this folder is automatically sent to any Probe that connects to your HP Universal
CMDB server.

In addition, when discovery is launched, any JAR file resource is loaded into the Jython's
classpath, making all the classes within it available for import and use.

Execution of the Code

Afterajob is activated, a task with all the required information is downloaded to the Probe.
The Probe starts running the DFM code using the information specified in the task.

The Jython code flow starts running from a main entry in the script, executes code to discover Cls,
and provides results of a vector of discovered Cls.

Modifying Out-of-the-Box Scripts

When making out-of-the-box script modifications, make only minimal changes to the script and
place any necessary methods in an external script. You can track changes more efficiently and,
when moving to a newer HP Universal CMDB version, your code is not overwritten.

For example, the following single line of code in an out-of-the-box script calls a method that
calculates a Web server name in an application-specific way:

serverName = iplanet cspecific.PluglInProcessing(serverName,
transportHN, mam utils)

The more complex logic that decides how to calculate this name is contained in an external script:

implement customer specific processing for 'servername' attribute of
httpplugin
#
def PlugInProcessing(servername, transportHN, mam utils handle):
support application-specific HTTP plug-in naming

Page 44 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

if servername == "appsrv_instance":

servername is supposed to match up with the j2ee
server name, however some groups do strange things with their

iPlanet plug-in files. this is the best work-around
we could find. this join can't be done with IP address:port

because multiple apps on a web server share the same
IP:port for multiple websphere applications

logger.debug ('httpcontext webapplicationserver

attribute has been changed from [' + servername + '] to [' +
transportHN[:5] + '] to facilitate websphere enrichment')
servername = transportHN[:5]

return servername

Save the external script in the External Resources folder. For details, see Resources Pane in the
HP Universal CMDB Data Flow Management Guide. If you add this script to a package, you can

use this script for other jobs, too. For details on working with Package Manager, see "Package
Manager" in the HP Universal CMDB Administration Guide.

During upgrade, the change you make to the single line of code is overwritten by the new version of
the out-of-the-box script, so you will need to replace the line. However, the external script is not
overwritten.

Structure of the Jython File

The Jython file is composed of three parts in a specific order:
1. Imports
2. Main Function - DiscoveryMain
3. Functions definitions (optional)

The following is an example of a Jython script:

imports section
from appilog.common.system.types import ObjectStateHolder
from appilog.common.system.types.vectors import
ObjectStateHolderVector
Function definition
def foo:
do something
Main Function
def DiscoveryMain (Framework) :
OSHVResult = ObjectStateHolderVector ()
Write implementation to return new result CIs here...
return OSHVResult

Imports

Jython classes are spread across hierarchical namespaces. In version 7.0 or later, unlike in
previous versions, there are no implicit imports, and so every class you use must be imported

Page 45 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

explicitly. (This change was made for performance reasons and to enable an easier understanding
of the Jython script by not hiding necessary details.)

e Toimport a Jython script:
import logger
e Toimport a Java class:

from appilog.collectors.clients import ClientsConsts

Main Function — DiscoveryMain

Each Jython runable script file contains a main function: DiscoveryMain.

The DiscoveryMain function is the main entry into the script; it is the first function that runs. The
main function may call other functions that are defined in the scripts:

def DiscoveryMain (Framework) :

The Framework argument must be specified in the main function definition. This argument is used
by the main function to retrieve information that is required to run the scripts (such as information on
the Trigger Cl and parameters) and can also be used to report on errors that occur during the script
run.

You can create a Jython script without any main method. Such scripts are used as library scripts
that are called from other scripts.

Functions Definition

Each script can contain additional functions that are called from the main code. Each such function
can call another function, which either exists in the current script or in another script (use the
import statement). Note that to use another script, you must add it to the Scripts section of the
package:

Fesources
X A5
e Packages =
=F _federation_sanity_90_pack
=3 Active_Directory
= Adapters
= Scripts
E I active_directory_utils oy

I LDAP_Active_Directory_Connection py
I LDAP_Active_Directory_Discowery oy
| Corfiguration Files

| External resources

[Dizcowery Wizard

F@f Ateon_application_switch

F—@F fpacheTomost

FEl Apitcapter

Page 46 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Example of a Function Calling Another Function:

In the following example, the main code calls the doQuery0SUsers (. .) method which calls

an internal method do0OSUserOSH (. .):

def doOSUserOSH (name) :
sw_obj = ObjectStateHolder ('winosuser')

sw_obj.setAttribute('data name', name)
return the object
return sw_obj

def doQueryOSUsers(client, OSHVResult) :

_hostObj = modeling.createHostOSH(client.getIpAddress())

data name mib =

'1.3.6.1.4.1.77.1.2.25.1.1,1.3.6.1.4.1.77.1.2.25.1.2,string’

resultSet = client.executeQuery(data name mib)

while resultSet.next () :
UserName = resultSet.getString(2)
#4444 HE send object ##H#H#HFFFEEESSS
OSUserOSH = doOSUserOSH (UserName)
0OSUserOSH.setContainer (_hostObj)
OSHVResult.add (0SUserOSH)

def DiscoveryMain (Framework) :
OSHVResult = ObjectStateHolderVector ()
try:

client = Framework.getClientFactory(ClientsConsts.SNMP

PROTOCOL NAME) .createClient ()
except:

Framework.reportError ('Connection failed')

else:
doQueryOSUsers (client, OSHVResult)
client.close ()

return OSHVResult

If this script is a global library that is relevant to many adapters, you can add it to the list of scripts in
the jythonGlobalLibs.xml configuration file, instead of adding it to each adapter (Adapter
Management > Resources Pane > AutoDiscoveryContent > Configuration Files).

Results Generation by the Jython Script

Each Jython script runs on a specific Trigger Cl, and ends with results that are returned by the

return value of the Di scoveryMain function.

The script result is actually a group of Cls and links that are to be inserted or updated in the CMDB.
The script returns this group of Cls and links in the format of ObjectStateHolderVector.

The ObjectStateHolder class is a way to represent an object or link defined in the CMDB. The
ObjectStateHolder object contains the CIT name and a list of attributes and their values. The
ObjectStateHolderVector is avectorof ObjectStateHolder instances.

Page 47 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

The ObjectStateHolder Syntax

This section explains how to build the DFM results intoa UCMDB model.

Example of Setting Attributes on the Cls:

The ObjectStateHolder class describes the DFM result graph. Each Cl and link (relationship) is
placed inside an instance of the ObjectStateHolder class as in the following Jython code
sample:

siebel application server 1 appServerOSH = ObjectStateHolder('siebelappserver') 2
appServerOSH.setStringAttribute('data_name’, sbisviName) 3
appServerOSH.setStringAttribute (‘application_ip', ip) 4
appServerOSH.setContainer(appServerHostOSH)

e Line 1 creates a Cl of type siebelappserver.

e Line 2 creates an attribute called data_name with a value of sbisvrName which is a Jython
variable set with the value discovered for the server name.

e Line 3 sets anon-key attribute that is updated in the CMDB.

e Line4 is the building of containment (the result is a graph). It specifies that this application
server is contained inside a host (another ObjectStateHolder class in the scope).

Note: Each CI being reported by the Jython script must include values for all the key attributes
of the Cl's Cl Type.

Example of Relationships (Links):

The following link example explains how the graph is represented:
11linkOSH = ObjectStateHolder('route') 2 link OSH.setAttribute('link_end1', gatewayOSH) 3
linkOSH.setAttribute('link_end2', appServerOSH)

e Line 1 creates the link (that is also of the ObjectStateHolder class. The only difference
is that route is alink Cl Type).

o Lines 2 and 3 specify the nodes at the end of each link. This is done using the end1 and
end2 attributes of the link which must be specified (because they are the minimal key
attributes of each link). The attribute values are ObjectStateHolder instances. For
details on End 1 and End 2, see "Link" in the HP Universal CMDB Data Flow Management
Guide.

Caution: A link is directional. You should verify that End 1 and End 2 nodes correspond to valid
CITs at each end. If the nodes are not valid, the result object fails validation and is not reported
correctly. For details, see Cl Type Relationships in the HP Universal CMDB Modeling Guide.

Example of Vector (Gathering Cls):

After creating objects with attributes, and links with objects at their ends, you must now group
them together. You do this by adding them to an ObjectStateHolderVector instance, as
follows:

Page 48 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

oshvMyResult = ObjectStateHolderVector ()
oshvMyResult.add (appServerOSH)
oshvMyResult.add (1inkOSH)

For details on reporting this composite result to the Framework so it can be sent to the CMDB
server, see the sendObjects method.

Once the result graph is assembled in an ObjectStateHolderVector instance, it must be
returned to the DFM Framework to be inserted into the CMDB. This is done by returning the
ObjectStateHolderVector instance as the result of the DiscoveryMain () function.

Note: For details on creating OSH for common CITs, see "modeling.py" on page 79 in "Jython
Libraries and Utilities" on page 77.

The Framework Instance

The Framework instance is the only argument that is supplied in the main function in the Jython
script. This is an interface that can be used to retrieve information required to run the script (for
example, information on trigger Cls and adapter parameters), and is also used to report on errors
that occur during the script run. For details, see "HP Data Flow Management API Reference" on

page 43.

The correct usage of Framework instance is to pass it as argument to each method that uses it.

Example:

def DiscoveryMain (Framework) :
OSHVResult = helperMethod (Framework)

return OSHVResult

def helperMethod (Framework) :

probe name = Framework.getDestinationAttribute ('probe
name')

return result

This section describes the most important Framework usages:

o "Framework.getTriggerClData(String attributeName)" below

o "Framework.createClient(credentialsld, props)" on next page

o "Framework.getParameter (String parameterName)" on page 51

o "Framework.reportError(String message) and Framework.reportWarning(String message)" on
page 52

Framework.getTriggerClData(String attributeName)

This API provides the intermediate step between the Trigger Cl data defined in the adapter and the
script.

Page 49 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Example of Retrieving Credential Information:

You request the following Trigger Cl data information:

Triggered Cl data
+ X &
Mame Value

Protocaol $ISOURCE credentials_jd}

credertialzsld ${S0OURCE credentialz_id}

file Mame $ICONFIGURATION_DOCUMENT nama}

hostID $IHOST root_id}

ip_address $ISOURCE.ip_address]

path FICONFIGURATION_DOCUMENT resource_path}

To retrieve the credential information from the task, use this API:

credId = Framework.getTriggerCIData ('credentialsId')

Framework.createClient(credentialsid, props)

You make a connection to a remote machine by creating a client object and executing commands
on that client. To create a client, retrieve the C1ientFactory class. The getClientFactory()
method receives the type of the requested client protocol. The protocol constants are defined in the
ClientsConsts class. For details on credentials and supported protocols, see Domain Credential
References in the HP Universal CMDB Data Flow Management Guide.

Example of Creating a Client Instance for the Credentials ID:
To create a Client instance for the credentials ID:

properties = Properties|()

codePage = Framework.getCodePage ()

properties.put (BaseAgent.ENCODING, codePage)

client = Framework.createClient (credentailsID ,properties)

You can now use the C1ient instance to connect to the relevant machine or application.

Example of Creating a WMI Client and Running a WMI Query:

To create a WMI client and run a WMI query using the client:

wmiClient = Framework.createClient (credential)

resultSet = wmiClient. executeQuery ("SELECT TotalPhysicalMemory
FROM Win32 LogicalMemoryConfiguration")

Note: To make the createClient () API work, add the following parameter to the Trigger ClI
data parameters: credentialsld = ${SOURCE.credentials_id} in the Triggered C| Data pane.

Page 50 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Or you can manually add the credentials ID when calling the function:
wmiClient = clientFactory().createClient(credentials_id).

The following diagram illustrates the hierarchy of the clients, with their commonly-supported

APls:

BaseClient

getCredentialld()

getIpAddress()

getProtocol ()

ShellClient QueryClient
Wmi

S55H isWin05() executeCmd() Snmp
Telnet | isUnix0S() Sql
Ntcmd executeCmd()

For details on the clients and their supported APIs, see BaseClient, ShellClient, and
QueryClient in the HP Discovery and Dependency Mapping Schema Reference. These files
are located in the following folder:

<UCMDB root directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\DDM_
Schema\webframe.html

Framework.getParameter (String parameterName)

In addition to retrieving information on the Trigger Cl, you often need to retrieve an adapter
parameter value. For example:

Farameters
Override Hame Value

v protocolType MicrosoftSGLServer

Page 51 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Example of Retrieving the Value of the protocolType Parameter:

To retrieve the value of the protocolType parameter from the Jython script, use the
following API:

protocolType = Framework.getParameterValue ('protocolType')

Framework.reportError(String message) and
Framework.reportWarning(String message)

Some errors (for example, connection failure, hardware problems, timeouts) can occur during a
script run. When such errors are detected, Framework can report on the problem. The message that
is reported reaches the server and is displayed for the user.

Example of a Report Error and Message:

The following example illustrates the use of the reportError (<Error Msg>) API:

try:
client = Framework.getClientFactory(ClientsConsts.SNMP
PROTOCOL_NAME)

createClient ()
except:
strException = str(sys.exc info() [1]).strip()
Framework. reportError ('Connection failed: %$s' %
strException)

You can use either one of the APIs—Framework.reportError (String message),
Framework.reportWarning (String message)—to report on a problem. The difference
between the two APIs is that when reporting an error, the Probe saves a communication log file with
the entire session's parameters to the file system. In this way you are able to track the session and
better understand the error.

For details on error messages, see "Error Messages" on page 81.

Finding the Correct Credentials (for Connection Adapters)

An adapter trying to connect to a remote system needs to try all possible credentials. One of the
parameters needed when creating a client (through ClientFactory) is the credentials ID. The
connection script gains access to possible credential sets and tries them one by one using the
clientFactory.getAvailableProtocols () method. When one credential set succeeds,
the adapter reports a Cl connection object on the host of this trigger Cl (with the credentials 1D that
matches the IP) to the CMDB. Subsequent adapters can use this connection object Cl directly to
connect to the credential set (that is, the adapters do not have to try all possible credentials again).

The following example shows how to obtain all entries of the SNMP protocol. Note that here the IP
is obtained from the Trigger Cl data (# Get the Trigger CI data values).

The connection script requests all possible protocol credentials (# Go over all the
protocol credentials)and tries them inaloop until one succeeds (resultvector). For
details, see the two-phase connect paradigm entry in "Separating Adapters" on page 24.

Page 52 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

import logger
from appilog.collectors.clients import ClientsConsts
from appilog.common.system.types.vectors import
ObjectStateHolderVector
def mainFunction (Framework) :
resultVector = ObjectStateHolderVector ()
Get the Trigger CI data values
ip address = Framework.getDestinationAttribute ('ip address')
ip domain = Framework.getDestinationAttribute('ip domain')
Create the client factory for SNMP
clientFactory = framework.getClientFactory(ClientsConsts.SNMP
PROTOCOL_NAME)
protocols = clientFactory.getAvailableProtocols (ip_address,
ip domain)

connected = 0
Go over all the protocol credentials
for credentials _id in protocols:
client = None
try:
try to connect to the snmp agent
client = clientFactory.createClient (credentials_id)
// Query the agent

connection succeed
connected = 1
except:
if client != None:
client.close ()
if (not connected):
logger.debug('Failed to connect using all credentials')
else:
// return the results as OSHV
return resultVector

Handling Exceptions from Java

Some Java classes throw an exception upon failure. It is recommended to catch the exception and
handle it, otherwise it causes the adapter to terminate unexpectedly.

When catching a known exception, in most cases you should print its stack trace to the log and
issue a proper message to the Ul, for example:

try:

client = Framework.getClientFactory () .createClient ()
except Exception, msg:

Framework.reportError ('Connection failed')

logger.debugException ('Exception while connecting: $%$s' %
(msg))

return

Page 53 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

If the exception is not fatal and the script can continue, you should omit the call for the
reportError () method and enable the script to continue.

Support Localization in Jython Adapters

The multi-lingual locale feature enables DFM to work across different operating system (OS)
languages, and to enable appropriate customizations at runtime.

Previously, before Content Pack 3.00, DFM used statically-specified encoding to treat output from
all network targets. However, this approach does not suit a multi-lingual IT network: to discover
hosts with different OS languages, Probe administrators had to re-run DFM jobs manually several
times with different job parameters each time. This procedure produced a serious overhead on
network load but, even more, it avoided several key features of DFM, such as immediate job
invocation on a trigger Cl or automatic data refreshing in UCMDB by the Schedule Manager.

The following locale languages are supported by default: Japanese, Russian, and German. The
default locale is English.

This section includes:

o "Add Support for a New Language" below

o "Change the Default Language" on next page

o "Determine the Character Set for Encoding" on next page

o "Define a New Job to Operate With Localized Data" on page 56

¢ "Decode Commands Without a Keyword" on page 57

o "Work with Resource Bundles" on page 57

o "API Reference" on page 58

Add Support for a New Language
This task describes how to add support for a new language.
This task includes the following steps:

o "Add a Resource Bundle (*.properties Files)" below

o "Declare and Register the Language Object" on next page

1. Add a Resource Bundle (*.properties Files)

Add a resource bundle according to the job that is to be run. The following table lists the DFM
jobs and the resource bundle that is used by each job:

Base Name of Resource

Job Bundle

File Monitor by Shell langFileMonitoring

Host Resources and Applications by Shell langHost_Resources By
TTY, langTCP

Page 54 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Base Name of Resource

Job Bundle

Hosts by Shell using NSLOOKUP in DNS Server langNetwork
Host Connection by Shell langNetwork
Collect Network Data by Shell or SNMP langTCP

Host Resources and Applications by SNMP langTCP
Microsoft Exchange Connection by NTCMD, Microsoft msExchange
Exchange Topology by NTCMD

MS Cluster by NTCMD langMsCluster

For details on bundles, see "Work with Resource Bundles" on page 57.

2. Declare and Register the Language Object

To define a new language, add the following two lines of code to the shellutils.py script, that
currently contains the list of all supported languages. The script is included in the
AutoDiscoveryContent package. To view the script, access the Adapter Management
window. For details, see Adapter Management Window in the HP Universal CMDB Data Flow

Management Guide.

a. Declare the language, as follows:

LANG RUSSIAN = Language (LOCALE RUSSIAN,

'Cpl251'), (1049,), 866)

'rus', ('Cp866',

For details on class language, see "AP| Reference" on page 58. For details on the Class

Locale object, see http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html. You can

use an existing locale or define a new locale.

b. Register the language by adding it to the following collection:

LANGUAGES = (LANG_ENGLISH, LANG GERMAN,

RUSSIAN, LANG JAPANESE)

Change the Default Language

LANG_SPANISH, LANG

If the OS language cannot be determined, the default one is used. The default language is specified

in the shellutils.py file.

#default language for fallback
DEFAULT LANGUAGE = LANG ENGLISH

To change the default language, you initialize the DEFAULT_LANGUAGE variable with a different
language. For details, see "Add Support fora New Language" on previous page.

Determine the Character Set for Encoding

The suitable character set for decoding command output is determined at runtime. The multi-lingual

solution is based on the following facts and assumptions:

Page 55 of 281

HP Universal CMDB (9.05)

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html

Developer Reference Guide
Chapter 3: Developing Jython Adapters

1. ltis possible to determine the OS language in a locale-independent way, for example, by
running the chep command on Windows or the locale command on Linux.

2. Relation Language-Encoding is well known and can be defined statically. For example, the
Russian language has two of the most popular encoding: Cp866 and Windows-1251.

3. One character set for each language is preferable, for example, the preferable character set for
Russian language is Cp866. This means that most of the commands produce output in this
encoding.

4. Encoding in which the next command output is provided is unpredictable, but it is one of the
possible encoding for a given language. For example, when working with a Windows machine
with a Russian locale, the system provides the ver command output in Cp866, but the
ipconfig command is provided in Windows-1251.

5. A known command produces known key words in its output. For example, the ipconfig
command contains the translated form of the IP-Address string. So the ipconfig command

output contains IP-Address for the English OS, IP-ALpeC for the Russian OS, IP-Adresse
for the German OS, and so on.

Once it is discovered in which language the command output is produced (# 1), possible character
sets are limited to one or two (# 2). Furthermore, it is known which key words are contained in this
output (#5).

The solution, therefore, is to decode the command output with one of the possible encoding by
searching for a key word in the result. If the key word is found, the current character set is
considered the correct one.

Define a New Job to Operate With Localized Data

This task describes how to write a new job that can operate with localized data.

Jython scripts usually execute commands and parse their output. To receive this command output
in a properly decoded manner, use the API for the ShellUtils class. For details, see "HP Universal
CMDB Web Service API Overview" on page 213.

This code usually takes the following form:

client = Framework.createClient (protocol, properties)

shellUtils = shellutils.ShellUtils(client)

languageBundle = shellutils.getLanguageBundle ('langNetwork',
shellUtils.osLanguage, Framework)

striWindowsIPAddress = languageBundle.getString('windows ipconfig str
ip address')

ipconfigOutput = shellUtils.executeCommandAndDecode ('ipconfig /all',
strWindowsIPAddress)

#Do work with output here

1. Create aclient:

client = Framework.createClient (protocol, properties)

2. Create aninstance of the ShellUtils class and add the operating system language to it. If the
language is not added, the default language is used (usually English):

shellUtils = shellutils.ShellUtils(client)

Page 56 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

During object initialization, DFM automatically detects machine language and sets preferable
encoding from the predefined L.anguage object. Preferable encoding is the first instance
appearing in the encoding list.

3. Retrieve the appropriate resource bundle from shellclient using the getLanguageBundle
method:

languageBundle = shellutils.getLanguageBundle ('langNetwork',
shellUtils.osLanguage, Framework)

4. Retrieve a keyword from the resource bundle, suitable for a particular command:

striindowsIPAddress = languageBundle.getString('windows ipconfig
str ip address')

5. Invoke the executeCommandAndDecode method and pass the keyword to it on the
ShellUtils object:

ipconfigOutput = shellUtils.executeCommandAndDecode ('ipconfig
/all', strWindowsIPAddress)

The ShellUtils object is also needed to link a user to the API reference (where this method is
described in detail).

6. Parse the output as usual.

Decode Commands Without a Keyword

The current approach for localization uses a keyword to decode all of the command output. For
details, see the step "Retrieve a keyword from the resource bundle, suitable for a particular
command:" in "Define a New Job to Operate With Localized Data" on previous page.

However, another approach uses a keyword to decode the first command output only, and then
decodes further commands with the character set used to decode the first command. To do this,
you use the getCharsetName and useCharset methods of the ShellUtils object.

The regular use case works as follows:
1. Invoke the executeCommandAndDecode method once.
2. Obtain the most recently used character set name through the getCharsetName method.

3. Make shellUtils use this character set by default, by invoking the useCharset method on the
ShellUtils object.

4. Invoke the execCmd method of ShellUtils one or more times. The output is returned with the
character set specified in the previous step. No additional decoding operations occur.

Work with Resource Bundles

A resource bundle is afile that takes a properties extension (*.properties). A properties file can be
considered a dictionary that stores data in the format of key = wvalue. Eachrow in a properties
file contains one key = value association. The main functionality of a resource bundle is to
return a value by its key.

Resource bundles are located on the Probe machine:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\discoveryConfigFiles. They are
downloaded from the UCMDB Server as any other configuration file. They can be edited, added, or

Page 57 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

removed, in the Resources window. For details, see Configuration File Pane in the HP Universal
CMDB Data Flow Management Guide.

Fesources
X A5
;F Met Link:s -

=8 Metwark

Corfiguration Files

—@ globalFitkering xoml *

—@ interface Type xml

—@ johTimeTemplstes xml

—@ lang Metwork: properties
—@ langMetwork:_chn properties
—@ langMetwork:_fra properties
—@ Iang Metwark_ger properties |
—@ lang Metwork:_ita properties

When discovering a destination, DFM usually needs to parse text from command output or file
content. This parsing is often based on a regular expression. Different languages require different
regular expressions to be used for parsing. For code to be written once for all languages, all
language-specific data must be extracted to resource bundles. There is a resource bundle for each
language. (Although it is possible that a resource bundle contain data for different languages, in
DFM one resource bundle always contains data for one language.)

The Jython script itself does not include hard coded, language-specific data (for example, language-
specific regular expressions). The script determines the language of the remote system, loads the
proper resource bundle, and obtains all language-specific data by a specific key.

In DFM, resource bundles take a specific name format: <base name> <language
identifier>.properties, forexample, langNetwork spa.properties.(The default
resource bundle takes the following format: <base name>.properties, forexample,
langNetwork.properties.)

Thebase name format reflects the intended purpose of this bundle. For example, langMsCluster
means the resource bundle contains language-specific resources used by the MS Cluster jobs.

The language identifier formatis a 3-letter acronym used to identify the language. For
example, rus stands for the Russian language and ger for the German language. This language
identifier is included in the declaration of the Language object.

API Reference

This section includes:

e "The Language Class" on next page

¢ "The executeCommandAndDecode Method" on next page

o "The getCharsetName Method" on page 60

e "The useCharset Method" on page 60

Page 58 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

e "The getLanguageBundle Method" on next page

o "The osLanguage Field" on page 61

The Language Class

This class encapsulates information about the language, such as resource bundle postfix, possible
encoding, and so on.

Fields

Name Description

locale

Java object which represents locale.

bundlePostfix

Resource bundle postfix. This postfix is used in resource bundle file names to
identify the language. For example, the langNetwork_ger.properties bundle
includes a ger bundle postfix.

charsets

Character sets used to encode this language. Each language can have several
character sets. For example, the Russian language is commonly encoded with
the Cp866 and Windows-1251 encoding.

wmiCodes

The list of WMI codes used by the Microsoft Windows OS to identify the
language. All possible codes are listed at http://msdn.microsoft.com/en-
us/library/aa394239(VS.85).aspx (the OSLanguage section). One of the
methods for identifying the OS language is to query the WMI class OS for the
OSLanguage property.

codepage

Code page used with a specific language. For example, 866 is used for Russian
machines and 437 for English machines. One of the methods for identifying the
OS language is to retrieve its default codepage (for example, by the chcp
command).

The executeCommandAndDecode Method

This method is intended to be used by business logic Jython scripts. It encapsulates the decoding
operation and returns a decoded command output.

Page 59 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Arguments

Name Description

cmd The actual command to be executed.

keyword The keyword to be used for the decoding operation.

framework The Framework object passed to every executable Jython script in DFM.
timeout The command timeout.

waitForTimeout | Specifies if client should wait when timeout is exceeded.

useSudo

Specifies if sudo should be used (relevant only for UNIX machine clients).

language

Enables specifying the language directly instead of automatically detecting a
language.

The getCharsetName Method

This method returns the name of the most recently used character set.

The useCharset Method

This method sets the character set on the She11Uti1s instance, which uses this character set for
initial data decoding.

Arguments

Description

charsetName | The name of the character set, for example, windows-1251 or UTF-8.

See also "The getCharsetName Method" above.

The getLanguageBundle Method

This method should be used to obtain the correct resource bundle. This replaces the following API:

Framework.getEnvironmentInformation () .getBundle(...)

Arguments

Name Description

baseName | The name of the bundle without the language suffix, for example, 1angNetwork.
language | Thelanguage object. The Shel1Utils.osLanguage should be passed here.
framework | The Framework, common object which is passed to every executable Jython script
in DFM.
Page 60 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

The osLanguage Field

This field contains an object that represents the language.

Work with Discovery Analyzer

The Discovery Analyzer tool is intended for debugging purposes when developing packages,
scripts, or any other content. The tool runs a job against a remote destination and returns logs
containing information, warning, and error details and results of discovered Cls.

Note that results are not always reported to the Ul. This is because the results are reported in two
ways and only one of them is supported. Also, the communication log is not supported from
Eclipse.

When executing the tool from Eclipse, the DiscoveryProbe.properties file
(C:\hp\UCMDB\DataFlowProbe\confiDiscoveryProbe.properties) must contain the following
parameter set to true:

appilog.agent.local.discoveryAnalyzerFromEclipse = true

For details, see "Run Discovery Analyzer from Eclipse" on page 67.

In all other cases (when the tool is executed from the emd file or while the Probe is running) this flag
must be set to false:

appilog.agent.local.discoveryAnalyzerFromEclipse = false

Tasks and Records

A task file contains data regarding a task to be executed. The task consists of information such as
the job's name and required parameters that define the trigger Cl, for example, the remote
destination address.

A record file contains task information as well as the results of a specific execution, that is, the
detailed communication (including a response) between the Probe or Discovery Analyzer
(whichever module executed the task) and the remote destination.

A task that is defined by a task file can be executed against a remote destination, whereas a task
that is defined by a record file (that contains extra data regarding a specific execution) can be
executed and can also be played back (that is, can reproduce the same execution documented in
the record file).

Logs
Logs provide information about the latest run, as follows:

¢ General Log. This log includes all information data, errors, and warnings that occurred during
the run.

o Communication Log. This log contains the detailed communication between the Discovery
Analyzer and the remote destination (including its response). After the execution, the log can be
saved as arecord file.

¢ Results Log. Displays a list of discovered Cls. The appearance time of each Cl depends on the
design of the adapters and scripts.

Page 61 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

You can save all logs together or each log separately. When you save all the logs, they are saved
together under one name.

If you replay a record file, the same data is displayed in the communication log, the only difference
being the time of execution.

This section includes the following steps:

1.

"Prerequisites" below

"Access Discovery Analyzer" below

"Define a Task" on next page

"Define a New Task" on next page

"Retrieve a Record" on page 64

"Open a Task File" on page 65

"Import a Task from the Database" on page 65

"Edit a Task" on page 65

"Save the Task and Logs" on page 65

"Run the Task" on page 65

"Send a Task Result to the Server" on page 66

"Import Settings" on page 66

"Breakpoints" on page 66

"Configure Eclipse" on page 66

Prerequisites

Limitation: The Communication and Results logs are not available when running Discovery
Analyzer through Eclipse.

= The Probe must be installed. (The Discovery Analyzer is installed as part of the Probe

installation process and shares resources with it.)

= The Probe does not need to be running while you are working with Discovery Analyzer.

However, if the Probe has already run against a UCMDB Server, all the required resources
are already downloaded to the file system. If the Probe has not run, you can upload resources
needed by Discovery Analyzer through the Settings menu. For details, see "Import Settings"

on page 66.

= The CMDB Server does not need to be installed.

2. Access Discovery Analyzer

You access Discovery Analyzer either:

Page 62 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

When working with Eclipse.

The Probe installation comes with a default Eclipse workspace located at
C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzerWorkspace. This workspace
includes a Jython script to start Discovery Analyzer (startDiscoveryAnalyzerScript.py) as
well as alink to all DFM scripts. If you start the tool in this way, you can locate breakpoints
within the Jython scripts for debugging purposes.

Directly, by double-clicking the file in the following folder:
C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzer.cmd. For details, see the
following section.

The Discovery Analyzer window opens:

i Discovery Analyzer
File Edit Run Tools Settings Help

+E |G B B w

General Log | Comrunication Log I Results Log

o o

3. Define a Task

You define a task using one of the following methods:

By defining a new task. For details, see "Define a New Task" below.

By importing a task from a record file. For details, see "Retrieve a Record" on next page.

By importing a saved task from a task file. For details, see "Open a Task File" on page 65.

By retrieving a job from the Probe's internal database. For details, see "Import a Task from
the Database" on page 65.

4. Define a New Task

Page 63 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

a. Display the Task Editor: click the New Task button

The Task Editor displays a list of jobs that currently exist in the file system. This list is
updated each time the Probe receives tasks from the server, or packages are deployed
manually from the Settings menu.

4. Task Editor

Select a Job Alkeon application switch by SHMP

FParameters Data

Pararmeter Yalue
ip_domain :l
oid
hioskId
ip_address
credentialsId
id

K Zancel |

b. Selectajob.
c. Entervalues for all parameters.

The parameters displayed here are DFM adapter parameters. They can be viewed in the
Discovery Pattern Parameters pane in the Pattern Signature tab. For details, see "Adapter
Definition Tab" in the HP Universal CMDB Data Flow Management Guide.

All fields are mandatory (unless ajob's script demands that the field be empty).

For parameters that require an ID or credentials ID input value, you can use randomly
created IDs: right-click the value box and select Generate random CMDB ID or
Credential Chooser.

The task is now active and the name of the open task is displayed in the title bar:

i.. Class C IPs by ICMP - Discovery Analyzer
File Edit Run Tools Settings Help

=Pral el il Bl - fuj
zeneral Log I Cormrunication Log I Results Log I

d. Continue with the procedure for defining a task. For details, see "Save the Task and Logs"
on next page.

5. Retrieve a Record

You can define a task by opening a record file containing data regarding a specific execution. If
atask is defined in this way, you can reproduce the specific execution by selecting the

Page 64 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

playback option. (If a task is replayed, responses are received from the data stored in the
record file and not from the remote destination.)

Select File > Open Record. Browse to the folder where you saved the record. The record is
now active and the name of the task is displayed in the title bar.

For details on acquiring a record file, see "Record DFM Code" on page 76.

6. Open a Task File

You can define a task from a task file: Select File > Open Task.

7. Import a Task from the Database

You can retrieve a task from the Probe database on condition that the Probe has already run
and has active tasks in its internal database. You can use the parameter values to define the
task.

a. Select File > Import Task from Probe Database.
b. Inthe dialog box that opens, select the task to run and click OK.

c. Continue with the procedure for defining a task. For details, see "Save the Task and Logs"
below.

8. Edita Task

After a task is defined, the name of the task (or the file) is displayed in the title bar. Now the file
can be edited.

a. Select Edit > Edit Task.

b. Make any changes to the task and click OK.
9. Save the Task and Logs
You can save task parameters: Select File > Save Task.
The following options are available only after a task is executed:

= Save arecord of the task. You can save the task parameters and the results of the task run:
Select File > Save Record.

= Save alog of the task: Select File > Save General Log.
= Saveresults: Select File > Save Results.

10. Run the Task
The next step in the procedure is to run the task you created.

a. Import the credentials/ranges configuration file. For details, see "Import Settings" on next
page.

b. To execute the task only against a remote destination, click the Run Task button.

Discovery Analyzer executes the job and displays information in the three log files:
General, Communication, and Results.

c. Youcansave the log files, either together or separately: Select File > Save General Log,

Page 65 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

11.

12.

13.

14.

Save Record, Save Results, or Save All Logs. For details on the log files, see "Logs" on
page 61.

d. Ifataskis retrieved from a record file, the execution that is documented in this file can be
reproduced by clicking the Playback button. The same Communication log is displayed,
but the execution time is updated.

Send a Task Result to the Server

If atask's execution ends with results (that is, the Results Log tab displays a list of discovered
Cls), you can send the results to the UCMDB Server. This is useful if, for example, you were
previously testing a script when the server was down.

Note: You can send results only to a UCMDB Server that receives tasks from the Probe
that is installed on the same machine as Discovery Analyzer.

Import Settings

To run tasks or the playback record file, you must import the domainScopeDocument.bin
file. During import, you enter a password.

a. Launch a Web browser and enter the following URL.: http://localhost:8080/jmx-console.
You may have to log in with a user name and password.

b. Click UCMDB:service=DiscoveryManager to open the JMX MBEAN View page.
c. Locate the exportCredentialsAndRangesinformation operation. Do the following:
o Enter the customer ID (the default is 1).
o Enter aname for the exported file.
o Enter the password.
o Set isEncrypted to False.
d. Click Invoke to export the domainScopeDocument.bin file.

When the export process completes successfully, the file is saved to the following location:
C:\hp\UCMDB\UCMDBServer\confidiscovery\<customer_dir>.

e. Copy the domainScopeDocument.bin file to the Data Flow Probe file system and import
it by selecting: Settings > Import domainScopeDocument.

Note: During the domainScopeDocument file import, you are requested to provide a
password. This request is also displayed following each Discovery Analyzer restart
and before the first task or record is executed.

Breakpoints
If you run Discovery Analyzer from the Python script, you can add breakpoints to your script.

Configure Eclipse

For details on running your Jython scripts in debug mode, see "Run Discovery Analyzer from

Page 66 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Eclipse" on next page.

Run Discovery Analyzer from Eclipse

This task explains how to configure Eclipse so that you can run your Jython scripts in debug mode,
thus enabling better visibility to job threads, trigger Cls, and results.

This section includes the following steps:

"Prerequisites" below

"Unpack Eclipse and start it" below

"Configure the default workspace" below

"Configure the PyDev Extensions" below

"Configure the Discovery Analyzer Workspace" on page 69

"Configure the classpath and interpreter" on page 73

"Run Discovery Analyzer" on page 75

Prerequisites

= Install the latest Eclipse version on your computer. The application is available at
www.eclipse.org.

= Verify that the Data Flow Probe is installed on the same computer.

= Verify that the appilog.agent.local.discoveryAnalyzerFromEclipse parameter in the
DiscoveryProbe.properties file is set to true.

Unpack Eclipse and start it

Configure the default workspace

Configure the default workspace where Eclipse saves and stores all projects and the related
data.

Y —

Select a workspace

Eclipse SDK stores your projects in a folder called a workspace.
Choose a workspace folderto use for this session.

Mol Usershschmitto\warkspace - Browse...

[] Usethis asthe default and do net ask again

4. Configure the PyDev Extensions

Page 67 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

a. Access Help > Install New Software, click Add, type a name for the PyDev plugin, and
in the Location field add the URL of the site where pydev can be downloaded:
http://pydev.org/updates. Click OK.

Available Software

Select a site or enter the location of a site,

Work with: type or select a site -

type filter text

Mame Version

[[]@) There is nosite selected.

Mame: PyDev

5 Locatiom: | http://pydev.org/updates

Details

@
Show onf|

Group items by category
Contact all update sites during install to find required software

@ < Back Ned> || Finish

Note: PyDev and PyDev Extensions are now merged into one plugin since PyDev
Extensions are now open source. For additional information visit http://pydev.org.

b. Inthe window that opens, select Pydev. The second plugin is a plugin for task-focused Ul.
Click Next, check the installation details, and click Next again.

c. Accept the license agreement and click Next.

d. Pydev is installed. If you are asked to install unsigned content, confirm by clicking OK.

Page 68 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

ﬁ-'\l The user operation is waiting for background work to complete
\._____f:

I I
Fetching org. python.pydev.customizations_1...n.pydev.customizations_1.5.6.2010033101 .jar

|:|§A|wa],rs run in background

83 Install (Blocked: The user operation is waiting for background work to complete]
—————————————— |

Fetching com.pythen.pydev_1.5.6.2010...om.python.pydev 1562000033101 jar

Aun in Eackgrwndl [Cancel] ’ << [Defails

e. Restart Eclipse.

PyDev is now installed in your Eclipse IDE. You have new perspectives in Eclipse and the

IDE is able to interpret Python scripts (text highlighting, additional configuration options,
and so on).

5. Configure the Discovery Analyzer Workspace

a. Import necessary files: Right-click in the white area in Package Explorer and click Import

to import the pre-configured discoveryAnalyzerWorkspace, included with the Probe
installation.

Page 69 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

& Java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Bun Window Help

| F5 - % -0 -Q- | BE G- |® - |
-
[¥ Package Explar EE\'E: Hieran:hﬂ = Eq(
=
0 5
e 3
Show In Bk+Shift+y *
oy el
Copy Gualified anme
% Paste Chel4+Y
[elete [Elete
|
i Export...
i Refresh F5

b. Under General, select Existing projects into Workspace to import the project into the
Eclipse workspace.

Page 70 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

& Import M=l E3

Select \
Create neve projects From an archive fle or direckory, g - 5

Select an import source;

|tv|:|e fiter bt

E-2 Genetal

I s Archive Fles

-1 E:isting Frojects into Werkspace

D_, Fie Swstem
L Preferences

R R

% EJB

- Java EE

-~ Plug-in Development

% RunDebug

[Team

[web

= Web services

= wML

@:‘ = Back I Next = I Fimish Cancel

c. Under Select root directory, select the Analyzer workspace, usually located under:
C:\hp\UCMDB\DataFlowProbe\tools\discoveryAnalyzerWorkspace.

d. Select Copy projects into workspace to create a real copy of the existing workspace.
This is an important step: In case of failure, you can re-import the original
discoveryAnalyserWorkspace.

e. Click Finish to start the import.

Page 71 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Import Projects e 8
Select a directory to search for existing Edipse projects.
' -
(%) Select root directory: | | [Browse... J
{1 select archive file: | | Browse. ..
Projects:

Browse For Folder

Select root directory of the projects to import

=3 ucMDE A
. =3 DataFlowProbe
i Eﬂlﬂ conf
E.Hﬁ content
&2 jython
& MysqL :
#5) runtime
=) tools

) dbscripts

3R] discoveryAnalyzerWorkspace
[ﬁ nmap_install
[E] Services |

Falder: |dismvery.ﬁ.nalyzer'v‘u'nrkspace

|:| Copy projects inij

o I ew)

Refresh

Page 72 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Import Projects T
Select a directary to search for existing Edipse projects. i .f
-
@ select roat directory: | C: hp\JCMDE\DataFlowProbe ool discoveryAnalyzerWorkspace | [_Browse...
() select archive file: | |
Projects:

discoveryanalyzer {C: '|,hp'|,L|CMDB'pétaFIowPrébe'n,h:nnls \discoveryanalyzerworkspace) Salect Al

Deselect Al

i Tl

Refresh

Copy projects into workspace

'L?;' =¥ Finish] [Cancel

6. Configure the classpath and interpreter

a. Right-click discoveryAnalyzerWorkspace and select Properties to display the Project
specific settings.

b. GotoPydev > Interpreter/Grammar and click Please configure an interpreter in the
related preferences before proceeding.

This step configures the same Jython interpreter as the Probe is using to ensure that
scripts are not interpreted by a different Jython version.

c. Click New, type a name for the interpreter, and select the file from the following folder:
C:\hp\UCMDB\DataFlowProbe\jython\jython.jar.

Page 73 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

= Preferences

itsfpe filter text | Jython Interpreters (R i

General
Ant

Data Management MName Location

i

Jython interpreters (e.g.: jython.jar)

Help

Instal/Update Auto Config

Java

JavaScript
JFormDesigner
Plug-in Developm|
Pydev Enter the name and executable of your interpreter Dawn
i Builders L

(- Debug
& Editor Interpreter Name: | uCMDE Probe Jython |

& Select interpreter : Up

- Interactive O Interpreter Executable: |C:'Ihp'n,UCMDB‘.DaiBFlowProbe‘ljymon'ljyﬁ'lon.jar | [Browse...] F—

-Interpreter - Mew Falder

-Interpreter -

i Interpreter - Mew Jar/Zip(s)
- Logging
- pyint Loc J[concd |

i Pyunit
- 5rripting Pydew
i Task Tags
Run/Debug
Server

Service Policies
Team

Validation

Web

Web Services |
XDodet -Dpython. cachedir | ’ Browse...]

XML

=

[F‘.estore Defaults] [Apply]

|

L OK ” Cancel]

d. Click OK. If awindow is displayed, asking you to select the folders that should be imported
into your Python system path, do not change anything (should be
C:\hp\UCMDB\DataFlowProbe\jython and C:\hp\UCMDB\DataFlowProbe\jython\lib)
and click OK.

e. Click Apply and then OK.

f. Click Interpreter and select the interpreter just created.

Page 74 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

& Properties for discoveryanalyzerWorkspace

|type filker ket

][5
(e e

- Resource

- Builders

- Jawa Build Path

- Java Code Style

- Java Compler

- Jawa Editar

- Javador Location
- Project References
- PyDev - Inkerpreter/Grammar
- PyDew - PYTHOMNPATH

Mi[=] E3
PyDev - InterpreterfGrammar = - -
Choase the project bype
lrr" Python @ Jython € Iron Python
Grammar Yersion
jz.1 |

Inkerpreter

LIi_MD3 Probe Pythor

- Refactoring Hiskary

- RunfDebug Settings

- Server

- Task Tags
- Yalidakion

Reskore Defaults appl

. " prass| oy _|
l:?j'l QK I Cancel |

g. Click Apply and then OK.

The Jython interpreter is now the same as the one the Probe is using.

7. Run Discovery Analyzer

a. Add abreakpoint in the Jython script to be debugged.

b. To start Discovery Analyzer, select startDiscoveryAnalyzerScript.py in the
discoveryAnalyzerWorkspace\src project. Right-click the file and choose Debug as >
Jython run.

Page 75 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

& Java - Eclipse SDK

File Edit Source Refactor Mavigate Search Project Run Window Help

: [- %0 Q- B W -

{# Package Explorer &7 'Eg Hierarchy =] q,:;; = =0
= TE‘J- discoveryanalyzer
=B arc

@ domainScopelocument. xml. sample
) star tDiscoveryAnalyzerScript. py
B, Referenced Libraries
|=| discoveryScriptsDebugger startDiscoveryAnalyzerScript. py. launch

Record DFM Code

It can be very useful to record an entire execution, including all parameters, for example, when
debugging and testing code. This task describes how to record an entire execution with all relevant
variables. Furthermore, you can view extra debug information that is usually not printed to log files

even at the debug level.

To record DFM code:

1. Access Data Flow Management > Discovery Control Panel. Right-click the job whose run
must be logged and select Edit adapter to open the Adapter Management application.

2. Locate the Execution Options pane in the Adapter Configuration tab, as shown below.

Page 76 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Discovery Resources

£ X QO

g Dizcovery Packages

“' Ateon_application_switch
&F AutoDiscovery

&P Cisco_CS5

ii Credential_Less_Dizcovery
=y DB2

‘=p Database_Basic

ii External_source_import
=p FB_BIGIP_LTM

=# FileMonitoring

=} Host_Resources_Basic
(= Patterns

= Diz_AppComponents_(

=
Ll Scripts
Ll Corfiguration Files
Ll External resources
Ll Dizcovery Wizard
Host_Resources_By_NTCMD
Host_Resources_By_SHMP
Host_Resources_By_TTY
Host_Resources_By_WMI
IEM_HTTP_Server
s
J2EE

s

-2
-y
-2y
g
-y
-2y
-y

Probe Selection
|_| Override default Probe selection

Probe:

General Options
Enable collecting Discovered by data

Execution Options
Enable Automatic Deletion | Only on Success RS
Create Communication Log | On failure |" |

|| Include Resutts in Communication Log
Max. Threads: | |

Max. Execttion Time: | |

3. Change the Create communication log box to Always. For details on setting logging options,
see "Execution Options Pane" in the HP Universal CMDB Data Flow Management Guide.

The following example is the XML log file that is created when the Host Connection by

Shell jobis run and the Create

Job name

communication logs box is set to Always or On Failure:

Triggelr Cl data

- zdestination=

<destinationData name="id"=0
</destination=

- <execution jobld="Host Connection by Shell" destinationid="0e9787433d65e4a68839bfa8b224c92d" >

<destinationData name="ip_domain"=DefaultDomain</destinationData=
<destinationData name="hostId" /=

<destinationData name="ip_address":>16.59.63.34</destinationData>

e9787433d65e4a68839bfa8b224c92d«/destinationData=

The following example shows the message and stacktrace parameters:

Stackirace

<result I$_NULL="Y" /=

- «stacktrace=

- <exec starf="18:41:55" duration="2062" type="ssh" credentialsld="f464999bdfe5ale1407b479b6f730d5b">
<cmd=[DATA: client_connect] </cmd=

- <error class="com.hp.ucmdb.discovery.probe.services.dynamic.agents.SSHAgentException"=
<messjge =[CDATA: Failed to connect: Error connecting: Connection refused: connect]</message=>

<frame class="com.hp.ucmdb.discovery.probe.services.dynamic.agents.SSHAgent" method="connect" file
=frame class="com.hp.ucmdb.discovery.probe.clients.shell.SSHClient" method="createWrapper" file="SSH{(
<frame class="com.hp.ucmdb.discovery.probe.clients.BaseClient" method="initPrivate" file="BaseClient.ja

Jython Libraries and Utilities

Several utility scripts are used widely
package and are located under:

in adapters. These scripts are part of the AutoDiscovery

C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\discoveryScripts with the other scripts

that are downloaded to the Probe.

Page 77 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

Note: The discoveryScript folderis created dynamically when the Probe begins working.

To use one of the utility scripts, add the following import line to the import section of the script:

import <script name>

The AutoDiscovery Python library contains Jython utility scripts. These library scripts are
considered DFM's external library. They are defined inthe jythonGlobalLibs.xml file (located

in the Configuration Files folder).

Dizcovery Rezources

Rezource dizcovery ConfigFilesfython GlobalLibs xmil

X Ao

e Dizcovery Packages
ﬁ Afteon_application_switch
—-—=§ AutoDiscovery
L Patterns
L Scripts
—l Configuration Files
I“_élc' global Settingz xml
5 jython GlobalLibs xmi
I“_élc' packageFixes xml
I“_élc' dizcovery Paolicy xml
—ll External resources
Fl Dizcovery Wizard

Q@& E

=globallibraries=
<library scriptFile="logger py" =
=library script File="netutilz py"/=
<library script File="modeling py"f=
=library scriptFile="shellutils py"f=
=library script File="dbutilz py"i=
=library scriptFile="dizcoverydbutilz py"/=
=library scriptFile="errormessages py"f>
<library scriptFile="snmputilz py" =
=library scriptFile="wmictils py" /=
=library script File="j2eeLtilz py"/=
=lgloballibraries>

Each script that appears in the jythonGlobalLibs.xml file is loaded by default at Probe
startup, so there is no need to use them explicitly in the adapter definition.

This section includes the following topics:

o "logger.py" below

o "modeling.py" on next page

o "netutils.py" on next page

o "shellutils.py" on next page

logger.py

The logger.py script contains log utilities and helper functions for error reporting. You can call its
debug, info, and error APIs to write to the log files. Log messages are recorded in
C:\hp\UCMDB\DataFlowProbe\runtime\log.

Messages are entered in the log file according to the debug level defined for the PATTERNS _
DEBUG appender in the C:\hp\UCMDB\DataFlowProbe\confilog\probeMgrLog4j.properties
file. (By default, the level is DEBUG.) For details, see "Error Severity Levels" on page 84.

TR AR AR R AR R R AR R R AR R R R R R R R R A
FHEFAR A AR AR PATTERNS DEBUG log

FHEFAEFA AR AR AES

S
log4j.category.PATTERNS DEBUG=DEBUG, PATTERNS DEBUG
log4dj.appender.PATTERNS DEBUG=org.apache.log4j.RollingFileAppender

Page 78 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

log4j.appender.PATTERNS
DEBUG.File=C:\hp\UCMDB\DataFlowProbe\runtime\log/probeMgr-
patternsDebug.log

log4j.appender.PATTERNS DEBUG.Append=true

log4j.appender.PATTERNS DEBUG.MaxFileSize=15MB
log4j.appender.PATTERNS DEBUG.Threshold=DEBUG
log4j.appender.PATTERNS DEBUG.MaxBackupIndex=10
log4j.appender.PATTERNS DEBUG.layout=org.apache.log4j.PatternLayout
log4j.appender.PATTERNS DEBUG.layout.ConversionPattern=<%d> [%-5p]
[$t] - %m%n

log4j.appender.PATTERNS DEBUG.encoding=UTF-8

The info and error messages also appear in the Command Prompt console.

There are two sets of APIs:

e logger.<debug/info/warn/error>

e logger.<debugException/infoException/warnException/errorException>

The first set issues the concatenation of all its string arguments at the appropriate log level and the
second set issues the concatenation as well as issuing the stack trace of the most recently-thrown
exception, to provide more information, for example:

logger.debug('found the result')
logger.errorException('Error in discovery')

modeling.py

The modeling.py script contains APls for creating hosts, IPs, process Cls, and so on. These APIs
enable the creation of common objects and make the code more readable. For example:

ipOSH= modeling.createIpOSH (ip)
host = modeling.createHostOSH (ip_ address)
memberl = modeling.createLinkOSH ('member', ipOSH, networkOSH)

netutils.py

The netutils.py library is used to retrieve network and TCP information, such as retrieving
operating system names, checking if a MAC address is valid, checking if an IP address is valid,
and so on. For example:

dnsName = netutils.getHostName (ip, ip)
isValidIp = netutils.isValidIp(ip_address)
address = netutils.getHostAddress (hostName)

shellutils.py

The shellutils.py library provides an API for executing shell commands and retrieving the end
status of an executed command, and enables running multiple commands based on that end
status. The library is initialized with a Shell Client, and uses the client to run commands and retrieve
results. For example:

ttyClient = clientFactory.createClient (Props)
clientShUtils = shellutils.ShellUtils(ttyClient)

Page 79 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 3: Developing Jython Adapters

if (clientShUtils.isWinOs{()):
logger.debug ('discovering Windows..')

Page 80 of 281 HP Universal CMDB (9.05)

Chapter 4

Error Messages

This chapter includes:

Error Messages OVervieW. L 81
Error-Writing Conventions. 81
Error Severity Levels. 84

Error Messages Overview

During discovery, many errors may be uncovered, for example, connection failures, hardware
problems, exceptions, time-outs, and so on. DFM displays these errors in Discovery Control Panel,
in both Basic and Advanced Mode, whenever the regular discovery flow does not succeed. You can
drill down from the Trigger CI that caused the problem to view the error message itself.

DFM differentiates between errors that can sometimes be ignored (for example, an unreachable
host) and errors that must be dealt with (for example, credentials problems or missing configuration
or DLL files). Moreover, DFM reports errors once, even if the same error occurs on successive
runs, and reports an error even it if occurs once only.

When creating a package, you can add appropriate messages as resources to the package. During
package deployment, the messages are also deployed in the correct location. Messages must
conform to conventions, as described in "Error-Writing Conventions" below.

DFM supports multi-language error messages. You can localize the messages you write so that
they appear in the local language.

For details on searching for errors, see "Discovery Overview/Status Pane" in the HP Universal
CMDB Data Flow Management Guide.

For details on setting communication logs, see "Execution Options Pane" in the HP Universal
CMDB Data Flow Management Guide.

Error-Writing Conventions

o Each error is identified by an error message code and an array of arguments (int, String[]). A
combination of a message code and an array of arguments defines a specific error. The array of
parameters can be null.

o Each error code is mapped to a short message which is a fixed string and a detailed message
which is a template string contains zero or more arguments. Matching is assumed between the
number of arguments in the template and the actual number of parameters.

Example of Error Message Code:
10234 may represent an error with the short message:

Connection Error

Page 81 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 4: Error Messages

and the detailed message:

Could not connect via {0} protocol due to timeout of {1} msec
where

{0} = the first argument: a protocol name

{1} = the second argument: the timeout length in msec

This section also includes the following topics:

o "Property File Content" below

o "Error Messages Property File" below

o "Locale Naming Conventions" below

o "Error Message Codes" below

o "Unclassified Content Errors" on next page

e "Changes in Framework" on next page

Property File Content
A property file should contain two keys for each error message code. For example, for error 45:
o DDM_ERROR_MESSAGE_SHORT_45. Short error description.

o DDM_ERROR_MESSAGE_LONG_45. Long error description (can contain parameters, for
example, {0},{1}).

Error Messages Property File

A property file contains a map between an error message code and two messages (short and
detailed).

Once a property file is deployed, its data is merged with existing data, that is, new message codes
are added while old message codes are overridden.

Infrastructure property files are part of the AutoDiscoverylnfra package.
Locale Naming Conventions

o Forthe default locale: <file name>.properties.errors

o Foraspecific locale: <file name>_xx.properties.errors

where xx is the locale (for example, infraerr_fr.properties.errors or infraerr_en_
us.properties.errors).

Error Message Codes

The following error codes are included by default with HP Universal CMDB. You can add your own
error messages to this list.

Page 82 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 4: Error Messages

Error

Error Name Code Description

Internal 100- | Mostly resolved from exceptions thrown during Jython script runs
199

Connection 200- | Connection failed, no agent on target machine, destination

299 unreachable, and so on

Credential 300- Permission denied, connection attempt blocked due to a lack of
Related 399 credentials
Timeout 400- | Time-out during connection/command

499

Unexpectedor | 500- [Missing configuration files, unexpected interruptions, and so on
Invalid Behavior | 599

Information 600- | Missinginformation on target machines, failure querying agent for
Retrieval 699 information, and so on
Resources 700- | Errors relating to out-of-memory or clients not released properly
Related 799
Parsing 800- | Error parsing text

899
Encoding 900 Error in input, unsupported encoding

SQL Related 901- | Errors received from SQL operations

903,
924
HTTP Related 904- | Errors generated during HTTP connections, parsed from HTTP error
909 codes.
Specific 910- | Error reported due to application-specific problems, for example,
Application 923 wrong LSOF version, No Queue Managers found, and so on

Unclassified Content Errors

To support old content without causing a regression, the application and SDK relevant methods
handle errors of message code 100 (that is, unclassified script error) differently.

These errors are not grouped (that is, they are not considered as being errors of the same type) by
their message code but are grouped by the content of the message. That is, if a script reports an
error by the old, deprecated methods (with a message string and without an error code), all
messages receive the same error code, but in the application orin the SDK relevant methods,
different messages are displayed as different errors.

Changes in Framework

(com.hp.ucmdb.discovery.library.execution.BaseFramework)

The following methods are added to the interface:

Page 83 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 4: Error Messages

e void reportError (int msgCode, String[] params);
e void reportWarning(int msgCode, String[] params);
e void reportFatal (int msgCode, String[] params);

The following old methods are still supported for backward compatibility purposes but are marked
as deprecated:

e void reportError (String message);
e void reportWarning (String message);

e void reportFatal (String message);

Error Severity Levels

When an adapter finishes running against a trigger Cl, it returns a status. If no error or warning is
reported, the status is Success.

Severity levels are listed here from the narrowest to widest scope:

Fatal Errors

This level reports serious errors such as a problem with the infrastructure, missing DLL files, or
exceptions:

o Failed generating the task (Probe is not found, variables are not found, and so on)
o Itis not possible to run the script
o Processing of the results fails on the Server and the data is not written to the CMDB

Errors

This level reports problems that cause DFM not to retrieve data. Look through these errors as they
usually require some action to be taken (for example, to increase time-out, to change a range, to
change a parameter, to add another user credential, and so on).

¢ Incases where user intervention may help, an error is reported, either a credentials or network
problem that may need further investigation. (These are not errors in discovery but in
configuration.)

o Internal failure, usually because of unexpected behavior from the discovered machine or
application, for example, missing configuration files, and so on

Warning

When a run is successful but there may be non-serious problems that you should be aware of, DFM
marks the severity as Warning. You should look at these Cls to see whether data is missing,
before beginning a more detailed debugging session. Warning can include messages about the
lack of an installed agent on a remote host, or that invalid data caused an attribute not to be properly
calculated.

e Missing connection agent (SNMP, WMI)

« Discovery succeeds, but not all available information is discovered

Page 84 of 281 HP Universal CMDB (9.05)

Chapter 5

Developing Generic Database Adapters

This chapter includes:

Generic Database Adapter Overview. 86
TQL Queries for the Generic Database Adapter. 86
Reconciliation. 87
Hibernate as JPA Provider. ... 87
Prepare for Adapter Creation 89
Prepare the Adapter Package ... il 94
Upgrade the Generic DB Adapter from 9.00 or 9.01to 9.02and Later...................... 97
Configure the Adapter — Minimal Method........... 97
Configure the Adapter — Advanced Method. 100
Implement a PIugin. L 105
Deploy the Adapter. 107
Edit the Adapter . L 107
Create an Integration Point i, 107
Create a VieW. e 108
Calculate the Results. 108
View the ResuUlts. 108
VieW RePOIS. . . L 109
Enable Log Files. 109
Use Eclipse to Map Between CIT Attributes and Database Tables........................ 109
Adapter Configuration Files. . .. 115
Out-of-the-Box Converters. 133
PIUGINS L 137
Configuration Examples. 137
Adapter Log Files. L 146
External References. 147
Troubleshooting and Limitations. 147

Page 85 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Generic Database Adapter Overview

The purpose of the generic database adapter platform is to create adapters that can integrate with
relational database management systems (RDBMS) and run TQL queries and population jobs
against the database. The RDBMS supported by the generic database adapter are Oracle,
Microsoft SQL Server, and MySQL.

This version of the database adapter implementation is based on a JPA (Java Persistence API)
standard with the Hibernate ORM library as the persistence provider.

TQL Queries for the Generic Database Adapter

For population jobs, every required layout of a Cl must be checked in the Layout Settings Dialog
Box in the Modeling Studio. For details, see Query Node/Relationship Properties Dialog Box in the
HP Universal CMDB Modeling Guide. 1t is important to note that a Cl might require an attribute to
be identified, and without those attributes the CI will fail to be added to UCMDB.

The following limitations exist on the TQL queries calculated by the Generic Database Adapter
only:

e Subgraphs are not supported
e Compound relationships are not supported
e Cycles orcycle parts are not supported

The following TQL query is an example of a cycle:

=

Mode

/ Managed Relationship

Managed Relationship

Managed Relationship s
] e

Frocess RunningSoftware

Function layout is not supported.

0..0 cardinality is not supported.

The Join relationship is not supported.

Qualifier conditions are not supported.

To connect between two Cls, a relationship in the form of a table or foreign key must exist in the

Page 86 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

external database source.

CMDB Part Federated Part

Reconciliation

Reconciliation is carried out as part of the TQL calculation on the adapter side. For reconciliation to
occur, the CMDB side is mapped to a federated entity called reconciliation CIT.

Mapping. Each attribute in the CMDB is mapped to a column in the data source.

Although mapping is done directly, transformation functions on the mapping data are also
supported. You can add new functions through the Java code (for example, lowercase, uppercase).
The purpose of these functions is to enable value conversions (values that are stored in the CMDB
in one format and in the federated database in another format).

Note:

e To connect the CMDB and external database source, an appropriate association must exist
in the database. For details, see "Prerequisites" on page 90.

¢ Reconciliation with the CMDB 1 d is also supported.

Hibernate as JPA Provider

Hibernate is an object-relational (OR) mapping tool, which enables mapping Java classes to tables
over several types of relational databases (for example, Oracle and Microsoft SQL Server). For
details, see "Functional Limitations" on page 148.

In an elementary mapping, each Java class is mapped to a single table. More advanced mapping
enables inheritance mapping (as can occur in the CMDB database).

Other supported features include mapping a class to several tables, support for collections, and
associations of types one-to-one, one-to-many, and many-to-one. For details, see "Associations"

on page 89 below.

For our purposes, there is no need to create Java classes. The mapping is defined from the CMDB
class model CITs to the database tables.

This section also includes the following topics:

Page 87 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

o "Examples of Object-Relational Mapping" below

o "Associations" on next page

o "Usability" on next page

Examples of Object-Relational Mapping

The following examples describe object-relational mapping:

Example of One CMDB Class Mapped to One Database Table:

Class M1, with attributes A1, A2, and A3, is mapped to table 1 columns c1, c2, and c3. This

means that any M1 instance has a matching row in table 1.

Cmdb class M1

Al
A2
A3

Example of One CMDB Class Mapped to Two Database Tables:

Table2

PK |ID

Table1

PK

ID

1
c2

(36

1 — [a3

Cmdb class M1 Table1
PK (1D

Al —— P el
a2 —- c2

Example of Inheritance:

This case is used in the CMDB, where each class has its own database table.

Table1
Cmdb class M1 ahe
PK |ID
Al — c1
2
A2 g ¢
Cmdb class M2 Table2
PK |ID
A3 __'. cl
Page 88 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Example of Single Table Inheritance with Discriminator:

An entire hierarchy of classes is mapped to a single database table, whose columns comprise
a super-set of all attributes of the mapped classes. The table also contains an additional
column (Discriminator), whose value indicates which specific class should be mapped to

this entry.

When you use discriminator capabilities, you cannot skip a class in the hierarchy; that is, since
C3 inherits from C2 and C2 inherits from C1, you cannot just define C1 and C3, you must
define all three classes.

CMDB Class M1 el |
PK |ID

Al ——— TP ct
— o2

A2 — 3

T dizgcr

CMDB Class M2

A3

Associations

There are three types of associations: one-to-many, many-to-one and many-to-many. To connect
between the different database objects, one of these associations must be defined by using a
foreign key column (for the one-to-many case) or a mapping table (for the many-to-many case).

Usability
As the JPA schema is very extensive, a streamlined XML file is provided to ease definitions.

The use case for using this XML file is as follows: Federated data is modeled into one federated
class. This class has many-to-one relations to a non-federated CMDB class. In addition, there is
only one possible relation type between the federated class and the non-federated class.

Prepare for Adapter Creation
This task describes the preparations that are necessary for creating an adapter.
Note: You can view samples for the Generic DB adapter in the UCMDB API. Specifically, the
DDMi Adapter sample contains a complicated orm.xml file, as well as the implementations for
some plugin interfaces.
This task includes the following steps:

o "Prerequisites" on next page

o "Createa Cl Type" on page 91

Page 89 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

o "Create a Relationship" on next page

1. Prerequisites
To validate that you can use the database adapter with your database, check the following:

= The reconciliation classes and their attributes (also known as multinodes) exist in the
database. For example, if the reconciliation is run by node name, verify that there is a table
that contains a column with node names. If the reconciliation is run according to node
cmdb_ id, verify that there is a column with CMDB IDs that matches the CMDB IDs of the
nodes in the CMDB. For details on reconciliation, see "Reconciliation " on page 87.

ID NAME IP_ADDRESS
31 BABA 16.59.33.60

33 ext3.devlab.ad 16.59.59.116
46 LABM1MAM15 16.59.58.188
72 cert-3-j2ee 16.59.57.100
102 labm1sun03.devlab.ad 16.59.58.45
114 LABM2PCOE73 16.59.66.79
116 CuT 16.59.41.214
117 labm1hp4.devlab.ad 16.59.60.182

= Tocorrelate two CITs with a relationship, there must be correlation data between the CIT
tables. The correlation can be either by a foreign key column or by a mapping table. For
example, to correlate between node and ticket, there must be a column in the ticket table
that contains the node ID, a column in the node table with the ticket ID that is connected to
it, or a mapping table whose end1 is the node ID and end?2 is the ticket ID. For details on
correlation data, see "Hibernate as JPA Provider" on page 87.

The following table shows the foreign key NODE_ID column:

NODE_ CARD_

ID ID CARD_TYPE CARD_NAME

2015 1 Serial Bus Controller | Intel 82801EB USB Universal Host
Controller

3581 2 System Intel 631xESB/6321ESB/3100 Chipset
LPC

3581 3 Display ATI ES1000

3581 4 Base System HP ProLiant iLO 2 Legacy Support

Peripheral Function

= Each CIT can be mapped to one or more tables. To map one CIT to more than one table,

Page 90 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 5:

Developing Generic Database Adapters

check that there is a primary table whose primary key exists in the other tables, and is a
unique value column.

For example, a ticket is mapped to two tables: ticket1 and ticket2. The first table has
columns c1 and c2 and the second table has columns c3 and c4. To enable them to be
considered as one table, both must have the same primary key. Alternatively, the first table
primary key can be a column in the second table.

In the following example, the tables share the same primary key called CARD ID:

1 Serial Bus Controller Intel 82801EB USB Universal Host Controller
2 System Intel 631xESB/6321ESB/3100 Chipset LPC
3 Display ATI ES1000

4 Base System Peripheral | HP ProLiant iLO 2 Legacy Support Function

1 Hewlett-Packard Company

2 (Standard USB Host Controller)

3 Hewlett-Packard Company

4 (Standard system devices)

5 Hewlett-Packard Company

2. Create a Cl Type

In this step you create a CIT that represents the data in the RDBMS (the external data source).

a.

In UCMDB, access the Cl Type Manager and create a new Cl Type. For details, see
Create a Cl Type in the HP Universal CMDB Modeling Guide.

Add the necessary attributes to the CIT, such as last access time, vendor, and so on.
These are the attributes that the adapter will retrieve from the external data source and
bring into CMDB views.

3. Create a Relationship

In this step you add a relationship between the UCMDB CIT and the new CIT that represents
the data from the external data source.

Add appropriate, valid relationships to the new CIT. For details, see Add/Remove Relationship
Dialog Box in the HP Universal CMDB Modeling Guide.

Page 91 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

) o UCMDB CIT

Mode

1.
|
i Compaosition
i

% "~~~ External

SW Lisence Adap Data CIT
ter

Note: At this stage, you cannot yet view the federated data or populate the external data,
as you have not yet defined the method for bringing in the data.

Page 92 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Example of Creating a Containment Relationship:

a. Inthe CIT Manager, select the two ClITs:

Cl Types

[CiTypes || & X & 2 €0

£ Managed Ohject (26555) -
—[@] ActivityLag (0
—[®] 2szet ()

— Mttachment (07
——(_) Configurstiontem (25555)

(,_:,'l Busineszs Elemert (0]

Il

(B Cicollection (1)
|8] InfrastructureElement (25565
Lpplication Resource (2990)
Anplication System (11
Cammunication Endpairt (20800
Metiwark Entity (1628
& nrade (1557

% Cluster RezourceGroup (27
= computer (1116
& het Device (2)
18I ModeElement (1 5855)
—I1B[Buffer (0]
—f:i Cpu
—&J Daeman (0]
—I1B DiskDevice ()
— Ervvironmertal Senzar (00
—1Bl Ewent Log ()
—I18f Fan ()
—[w_wl Fiber Channel
[File (0
— (&) File System (707 Ia SddiRemove Relationship

L]

o

My

Page 93 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

b. Create a Containment relationship between the two CITs:

EAdd!H emove Helationship Ed

Felationzhips

Relationship_.. | Node —> Fiber Ch___| Fiber Channel HB. ..

Composition

F

Connection
Cortainmert
DB Client
DE Link
Dependency

Deployed
ELAM-WLAR ..
ELIM Links=

1O00oOoogno

[OOooooosOn

Prepare the Adapter Package
In this step, you locate and configure the Generic DB adapter package.

1. Locate the db-adapter.zip package in the C:\hp\UCMDB\UCMDBServer\
content\adapters
folder.

2. Extract the package to a local temporary directory.

3. Edit the adapter XML file:
= Open the discoveryPatterns\db_adapter.xml file in a text editor.
» Locate the adapter id attribute and replace the name:

<pattern id="MyAdapter" displayLabel="My Adapter"
xsi:noNamespaceSchemalocation="../../Patterns.xsd"
description="Discovery Pattern Description"
schemaVersion="9.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
displayName="UCMDB API Population">

If the adapter supports population, the following capability should be added to the <adapter-
capabilities> element:

<support-replicatioin-data>
<source>
<changes-source>

Page 94 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

</source>
</support-replicatioin-data>

The display label or ID appears in the list of adapters in the Integration Point pane in HP
Universal CMDB.

If the plug-in for FcmdbPluginForSyncGetChangesTopology has not been implemented,
only the following should be added:

<support-replicatioin-data>
<source>
<!--<changes-source>-->
</source>
</support-replicatioin-data>

This will return the full topology and perform auto-delete according to the retured Cls.

For details about populating the CMDB with data, see "Integration Studio Page " on page 1
of the HP Universal CMDB Data Flow Management Guide.

» |f the adapter is using the mapping engine from version 8.x (meaning that it is not using the
new reconciliation mapping engine), replace the following element:

<default-mapping-engine>
with:

<default-mapping-
engine>com.hp.ucmdb.federation.mappingEngine.AdapterMappingEngine</default-
mapping-engine>

To revert to the new mapping engine, return the element to the following value:
<default-mapping-engine>
= Locate the category definition:

<category>Generic</category>

Change the Generic category name to the category of your choice.

Note: Adapters whose categories are specified as Generic are not listed in the
Integration Studio when you create a new integration point.

= The connection to the database can be described using a user name (schema), password,
database type, database host machine name, and database name or SID.

For this type of connection, parameters have the following elements in the parameter
section of the adapter's XML file:

<parameters>

<!--The description attribute may be written in simple text
or HTML.-->

<!--The host attribute is treated as a special case by UCMDB-

Page 95 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<!--and will automatically select the probe name (if
possible)-->

<!--according to this attribute's value.-->

<!--Display name and description may be overwritten by I18N

values-->

<parameter name="host" display-name="Hostname/IP"
type="string" description="The host name or IP address of the
remote machine" mandatory="false" order-index="10" />

<parameter name="port" display-name="Port" type="integer"
description="The remote machine's connection port"
mandatory="false" order-index="11" />

<parameter name="dbtype" display-name="DB Type"
type="string" description="The type of database" wvalid-
values="Oracle;SQLServer;MySQL;BO" mandatory="false" order-
index="13">0Oracle</parameter>

<parameter name="dbname" display-name="DB Name/SID"
type="string" description="The name of the database or its SID
(in case of Oracle)" mandatory="false" order-index="13" />

<parameter name="credentialsId" display-name="Credentials
ID" type="integer" description="The credentials to be used"
mandatory="true" order-index="12" />
</parameters>

Note: This is the default configuration. Therefore, the db_adapter.xml file, already
contains this definition.

There are situations in which the connection to the database cannot be configured in this way.
For example, connecting to Oracle RAC or connecting using a database driver other than the
one supplied with the CMDB.

For these situations, you can describe the connection using user name (schema), password,
and a connection URL string.

To define this, edit the adapter's XML parameters section as follows:

<parameters>

<!--The description attribute may be written in simple text or
HTML.-->

<!--The host attribute is treated as a special case by
CMDBRTSM-->

<!--and will automatically select the probe name (if
possible)-->

<!--according to this attribute's value.-->

<!--Display name and description may be overwritten by I18N

values-->

<parameter name="url" display-name="Connection String"
type="string" description="The connection string to connect to the
database"™ mandatory="true" order-index="10" />

<parameter name="credentialsId" display-name="Credentials
ID" type="integer" description="The credentials to be used"

Page 96 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

mandatory="true" order-index="12" />
</parameters>

An example of a URL that connects to an Oracle RAC using the out-of-the- box Data Direct
driveris:
jdbc:mercury:oracle://labm3amdb17:1521;ServiceName=RACQA;AlternateServers=
(labm3amdb18:1521);LoadBalancing=true.

In the temporary directory, open the adapterCode folder and rename GenericDBAdapter to
the value of adapter id that was used in the previous step.

This folder contains the adapter's configuration, for example, the adapter name, the queries
and classes in the CMDB, and the fields in the RDBMS that the adapter supports.

Configure the adapter as required. For details, see "Configure the Adapter — Minimal Method"
below.

Create a * . zip file with the same name as you gave to the adapter id attribute, as described
in the step "Edit the adapter XML file:" on page 94.

Note: The descriptor.xml file is a default file that exists in every package.

Save the new package that you created in the previous step. The default directory for adapters
is: C:\hp\UCMDB\UCMDBServer\content\adapters.

Upgrade the Generic DB Adapter from 9.00 or 9.01
to 9.02 and Later

1.
2.
3.

Copy your adapter package to a local temporary directory.
Extract the files.
Remove the following files from the adapterCode\<Your Adapter Name> folder:
= asm.jar
= asm-attrs.jar
= cglib.jar
= db-adapter.jar
= jboss-archive-browsing.jar
= saxon-b.jar
Recreate your adapter package.
Note: For any deployed Generic DB adapters that you may have, the UCMDB installer

will remove the necessary files from the UCMDB and Probe file system. However, you
still need to fix the package yourself, in order to re-deploy it when necessary.

Configure the Adapter — Minimal Method

The following procedure describes a method of mapping the class model in the CMDB to an
RDBMS.

Page 97 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

These configuration files are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDBServer\content\adapters folder that you extracted in the step "Extract the
package to a local temporary directory." on page 94 in "Prepare the Adapter Package" on page 94.

Note: The orm.xml file that is automatically generated as a result of running this method is a
good example that you can use when working with the advanced method.

You would use this minimal method when you need to:

o Federate/populate a single node such as a node attribute.
o Demonstrate the Generic Database Adapter capabilities.
This method:

o supports one-node federation\population only

e supports many-to-one virtual relationships only

This task includes the following steps:

o "Configure the adapter.conf File" below

o "Configure the simplifiedConfiguration.xml File" below

Configure the adapter.conf File

In this step, you change the settings inthe adapter. conf file so that the adapter uses the
simplified configuration method.

1. Open the adapter.conffile in a text editor.
2. Locate the following line: use.simplified.xml.config=<true/false>.
3. Change it to use.simplified.xml.config=true.

Configure the simplifiedConfiguration.xml File

In this step, you configure the simplifiedConfiguration.xml file by mapping the CIT in the CMDB
to the fields in the RDBMS table.

1. Open the simplifiedConfiguration.xml file in a text editor.
This file includes a template that you use for each entity to be mapped.
Note: Do not edit the simplifiedConfiguration.xml file in any version of Notepad from
Microsoft Corporation. Use Notepad++, UltraEdit, or some other third-party text editor.

2. Make changes to the following attributes:

n The CIT name in UCMDB (cmdb-class-name) and the corresponding table name in the
RDBMS (default-table-name):

<cmdb-class cmdb-class-name="node" default-table-name="Device">

The cmdb-class—-name attribute is taken from the node CIT:

Page 98 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Mode
efault-table-name attri i i :
The default-tabl attribute is taken from the Device table:
| B General | A4 Constraints |
Database: - ke
Schema: - [«
Marne: Device |
Calumn Mame | Data Type | Length | Allow mulls |
1 |Device_ID ink [4|
2 |Device_Discovered Enum [|
3|Device_ManagedCategory enum El
4 |Device_PreferredMacCaddress warchar 12 [w]
5 |Device_PreferredIPAddress wvarchar 15 [w]
6 |Device_LogicalSubMet warchar 50 [w]
7 |Device_Tag ket [w]
& |Device_Label warchar 255 [w]
9 |DeviceCateqary_ID ink [w]
10 |Devicelcon_ID int [w]
11 |Device_Descripkion kexk El
12 |Device_CbijectID ket [w]
13 |Device_Contact kext [w]
14|Device_Name kext [w]
15|Device_Lacatian kext [w]
16 |Device_MetBIOS wvarchar 255 [w]

= The unique identifier in the RDBMS:

<primary-key column-name="Device ID" />

= The reconciliation rule (reconciliation-by-two-nodes):

<reconciliation-by-two-nodes connected-node-cmdb-class-name="ip
address" cmdb-link-type="containment">

= The reconciliation attribute in UCMDB (cmdb-attribute-name)andin the RDBMS
(column-name):

<connected-node-attribute cmdb-attribute-name="name" column-
name="[column name]" />

» The name of the CIT (cmdb-c1ass-name) and the name of the corresponding table in the
RDBMS (default-table-name). Alsothe CMDB relationship (connected-cmdb-
class-name)and the CIT relationship (1ink-class-name):

<class cmdb-class-name="sw_sub component" default-table-
name="SWSubComponent" connected-cmdb-class-name="node" link-
class-name="composition">

= The primary key and the foreign key:

Page 99 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<foreign-primary-key column-name="Device ID" cmdb-class-primary-
key-column="Device ID" />

= The unique identifier in the RDBMS:

<primary-key column-name="Device ID" />

= The mapping between the CMDB attribute (cmdb-attribute-name)and the column
name in the RDBMS (column-name):

<attribute cmdb-attribute-name="last access time" column-
name="SWSubComponent LastAccess TimeStamp" />

3. Save thefile.

Configure the Adapter — Advanced Method

These configuration files are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDB Server\content\adapters folder that you extracted in the step "Extract the
package to a local temporary directory." on page 94 in "Prepare the Adapter Package" on page 94.

This task includes the following steps:

¢ "Configure the orm.xml File" below

o "Configure the reconciliation types.txt File" on page 104

o "Configure the reconciliation rules.txt File " on page 104

Configure the orm.xml File
In this step, you map the CITs and relationships in the CMDB to the tables in the RDBMS.
1. Open the orm.xml file in a text editor.
This file, by default, contains a template that you use to map as many CITs and relationships

as needed.

Note: Do not edit the orm.xml file in any version of Notepad from Microsoft Corporation.
Use Notepad++, UltraEdit, or some other third-party text editor.

2. Make changes to the file according to the data entities to be mapped. For details, see the
following examples.

The following types of relationships may be mapped in the orm.xml file:

Page 100 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

= Onetoone:

end]

Container

end?

SWlicenseddopter

The code for this type of relationship is:

<one-to-one name="endl" target-entity="node">
<join-column name="Device ID" >

</one-to-one>

<one-to-one name="end2" target-entity="sw_sub component">
<join-column name="Device ID" >
<join-column name="Version_ ID" >

</one-to-one>

= Many to one:

Node

end1

Composition

SWilicenseAdopter

SWiicenseAdapter SWolicenseAdopter

The code for this type of relationship is:

<many-to-one name="endl" target-entity="node">
<join-column name="Device ID" >

</many-to-one>

<one-to-one name="end2" target-entity="sw_sub_ component">
<join-column name="Device ID" >
<join-column name="Version ID" >

</one-to-one>

Page 101 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

= Many to many:

Composition

SWlicenseAdopter

The code for this type of relationship is:

<many-to-one name="endl" target-entity="node">
<join-column name="Device ID" >

</many-to-one>

<many-to-one name="end2" target-entity="sw_ sub component">
<join-column name="Device ID" >
<join-column name="Version_ ID" >

</many-to-one>

For details about naming conventions, see "Naming Conventions" on page 123.

Page 102 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Example of Entity Mapping Between the Data Model and the RDBMS:

Note: Attributes that do not have to be configured are omitted from the following
examples.

= The class of the CMDB CIT:
<entity class="generic db adapter.node">
= The name of the table in the RDBMS:
<table name="Device" />
= The column name of the unique identifier in the RDBMS table:
<column name="Device ID" />
= The name of the attribute in the CMDB CIT:
<basic name="name">
= The name of the table field in the external data source:

<column name="Device Name" />

= The name of the new CIT you created in "Create a Cl Type" on page 91:

<entity class="generic_ db adapter.MyAdapter">

= The name of the corresponding table in the RDBMS:

<table name="SW License" />

= The unique identity in the RDBMS:

= The attribute name in the CMDB CIT and the name of the corresponding attribute in
the RDBMS:

Page 103 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Example of Relationship Mapping Between the Data Model and the RDBMS:
m The class of the CMDB relationship:

<entity class="generic_db adapter.node containment
MyAdapter">

= The name of the RDBMS table where the relationship is performed:

<table name="MyAdapter" />

= The unique ID in the RDBMS:

<id name="idl">

<column updatable="false" insertable="false"
name="Device ID">

<generated-value strategy="TABLE" />
</id>
<id name="id2">

<column updatable="false" insertable="false"
name="Version ID">

<generated-value strategy="TABLE" />
</id>

= The relationship type and the CMDB CIT:

<many-to-one target-entity="node" name="endl">

= The primary key and foreign key fields in the RDBMS:

<join-column updatable="false" insertable="false"

referenced-column-name="[column name]" name="Device ID" />

Configure the reconciliation_types.txt File

Open the reconciliation_types.txt file in a text editor.

For details, see "The reconciliation types.txt file" on page 128.

Configure the reconciliation_rules.txt File

In this step you define the rules by which the adapter reconciles the CMDB and the RDBMS (only if
Mapping Engine is used, for backward compatibility with version 8.x):

1. Open META-INF\reconciliation_rules.txt in a text editor.

2. Make changes to the file according to the CIT you are mapping. For example, to map a node
CIT, use the following expression:

multinode[node] ordered expression[”name]

Page 104 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Note:
» If the datain the database is case sensitive, do not delete the control character (*).

= Check that each opening square bracket has a matching closing bracket.

For details, see "The reconciliation rules.txt File (for backwards compatibility)" on page 128.

Implement a Plugin

This task describes how to implement and deploy a Generic DB Adapter with plugins.

Note: Before writing a plugin for an adapter, make sure you have completed all the necessary
steps in "Prepare the Adapter Package" on page 94.

1. Copy the following jar files from the UCMDB server installation directory to your development
class path:

= Copy the db-interfaces.jar file and db-interfaces-javadoc.jar file from the tools\adapter-
dev-kit\db-adapter-framework folder.

= Copy the federation-api.jar file and federation-api-javadoc.jar file from the
\tools\adapter-dev-kit\SampleAdapters\production-lib folder.

Note: More information about developing a plugin can be found in the db-interfaces-
javadoc.jar and federation-api-javadoc.jar files and in the online documentation at:

o C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\DBAdapterFramework_JavaAPl\index.html

o C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\Federation_JavaAPN\index.html

2. Write a Java class implementing the plugin's Java interface. The interfaces are defined in the
db-interfaces.jar file. The table below specifies the interface that must be implemented for

each plugin:
Plugin Type Interface Name Method
Synchronize Full | FecmdbPluginForSyncGetFullTopology getFullTopology
Topology
Synchronize FcmdbPluginForSyncGetChangesTopology | getChangesTopology
Changes
Synchronize FemdbPluginForSyncGetlLayout getLayout
Layout
Retrieve FemdbPluginForSyncGetSupportedQueries | getSupportedQueries
Supported
Queries

Page 105 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Plugin Type Interface Name Method

Alter TQL query FecmdbPluginGetTopologyCmdbFormat getTopologyCmdbFormat
definition and

results

Alter layout FemdbPluginGetClsLayout getCisLayout

request for Cls

Alter layout FcmdbPluginGetRelationsLayout getRelationsLayout
request for links

The plugin's class must have a public default constructor. Also, all of the interfaces expose a
method called initPlugin. This method is guaranteed to be called before any other method and
is used to initialize the adapter with the containing adapter's environment object.

If FcemdbPluginForSyncGetChangesTopology is implemented, there are two different ways
to report the changes:

= Report the entire root topology at all times. According to this topology, the auto-delete
function finds which Cls should be removed. In this case, the auto-delete function should be
enabled by using the following:

<autoDeleteCITs isEnabled="true">
<CIT>1ink</CIT>
<CIT>object</CIT>
</autoDeleteCITs>

= Report each Cl instance that was removed/updated. In this case the auto-delete
mechanism should be disabled by using the following:

<autoDeleteCITs isEnabled="false">
<CIT>1ink</CIT>
<CIT>object</CIT>
</autoDeleteCITs>

3. Make sure you have the Federation SDK JAR and the Generic DB Adapter JARs in your class
path before compiling your Java code. The Federation SDK is the federation_api.jar file,
which can be found in the C:\hp\UCMDB\UCMDBServenr\lib directory.

4. Pack your class into a jar file and put it under the adapterCode\<Your Adapter Name> folder in
the adapter package, prior to deploying it.

The plug-ins are configured using the plugins.txt file, located in the \META-INF folder of the
adapter.

The following is an example of the file from the DDMi adapter:

mandatory plugin to sync full topology

[getFullTopology]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin
mandatory plugin to sync changes in topology
[getChangesTopology]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin

Page 106 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

mandatory plugin to sync layout

[getLayout]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin
plugin to get supported queries in sync. If not defined return
all tgls names

[getSupportedQueries]

internal not mandatory plugin to change tgl definition and tgl
result

[getTopologyCmdbFormat]

internal not mandatory plugin to change layout request and CIs
result

[getCisLayout]

internal not mandatory plugin to change layout request and
relations result

[getRelationsLayout]

Legend:
#- A comment line.
[<Adapter Type>] — Start of the definition section for a specific adapter type.

There can be an empty line under each [<Adapter Type>], meaning that there is no plugin class
associated, or the fully qualified name of your plugin class can be listed.

5. Pack your adapter with the new jar file and the updated plugins.xmilfile. The remainder of the
files in the package should be the same as in any adapter based on the Generic DB adapter.

Deploy the Adapter

1. InUCMDB, access the Package Manager. For details, see "Package Manager Page" in the
HP Universal CMDB Administration Guide.

2. Click the Deploy Packages to Server (from local disk)icon *3* and browse to your adapter
package. Select the package and click Open, then click Deploy to display the package in the

Package Manager.

3. Select your package in the list and click the View package resources icon [to verify that
the package contents are recognized by Package Manager.

Edit the Adapter

Once you have created and deployed the adapter, you can then edit it within UCMDB. For details,
see "Adapter Management" in the HP Universal CMDB Data Flow Management Guide.

Create an Integration Point

In this step you check that the federation is working. That is, that the connection is valid and that
the XML file is valid. However, this check does not verify that the XML is mapping to the correct
fields in the RDBMS.

1. InUCMDB, access the Integration Studio (Data Flow Management > Integration Studio).

2. Create an integration point. For details, see New Integration Point/Edit Integration Point Dialog

Page 107 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Box in the HP Universal CMDB Data Flow Management Guide.

The Federation tab displays all CITs that can be federated using this integration point. For
details, see Federation Tab in the HP Universal CMDB Data Flow Management Guide.

Create a View
In this step you create a view that enables you to view instances of the CIT.
1. InUCMDB, access the Modeling Studio (Modeling > Modeling Studio).

2. Create aview. For details, see Create a Pattern View in the HP Universal CMDB Modeling
Guide.

3. You can add conditions to the TQL, for example, the last access time is greater than six
months:

SWlicenseAdapter

B {n |Mode: | k Select : 3 Layout: | & Hierarchical : =

Maode
J'Cnntainerlink

L

SW License Adap
ter

T

Information Pane

% Attributes % Cardinality Qualifiers Selected Identities Grouging * Details

sw_license_required Equal true
AND last_access_time Less than or equal Sun Feb 3 2008 06:11 PM IST

Calculate the Results
In this step you check the results.
1. InUCMDB, access the Modeling Studio (Modeling > Modeling Studio).

2. Open aview.

3. Calculate results by clicking the Calculate Query Result Count button E .

4. Click the Preview button to view the Cls in the view.

View the Results

In this step you view the results and debug problems in the procedure. For example, if nothing is
shown in the view, check the definitions in the orm.xml file; remove the relationship attributes and
reload the adapter.

Page 108 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

1. InUCMDB, access the IT Universe Manager (Modeling > IT Universe Manager).
2. Select aCl. The Properties tab displays the results of the federation.
View Reports

In this step you view Topology reports. For details, see Topology Reports Overview in the HP
Universal CMDB Modeling Guide.

Enable Log Files

To understand the calculation flows, adapter lifecycle, and to view debug information, you can
consult the log files. For details, see "Adapter Log Files" on page 146.

Use Eclipse to Map Between CIT Attributes and Database Tables

Caution: This procedure is intended for users with an advanced knowledge of content
development. For any questions, contact HP Software Support.

This task describes how to install and use the JPA plugin, provided with the J2EE edition of
Eclipse, to:

« Enable graphical mapping between CMDB class attributes and database table columns.

o Enable manual editing of the mapping file (orm. xm1), while providing correctness. The
correctness check includes a syntax check as well as verification that the class attributes and
mapped database table columns are stated correctly.

« Enable deployment of the mapping file to the CMDB server and to view the errors, as a further
correctness check.

o Define a sample query on the CMDB server and run it directly from Eclipse, to test the mapping
file.

Version 1.1 of the plugin is compatible with UCMDB version 9.01 or later and Eclipse IDE for Java
EE Developers, version 1.2.2.20100217-2310 or later.

This task includes the following steps:

o "Prerequisites" on next page

o "Installation" on next page

o "Prepare the Work Environment" on next page

o "Create an Adapter" on page 111

o "Configure the CMDB Plugin" on page 111

o "Import the UCMDB Class Model" on page 111

o "Build the ORM File —Map UCMDB Classes to Database Tables" on page 112

e "Map IDs" on page 112

o "Map Attributes" on page 112

e "Map a Valid Link" on page 113

Page 109 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

o "Build the ORM File —Use Secondary Tables" on page 113

o "Define a Secondary Table" on page 114

o "Map an Attribute to a Secondary Table" on page 114

o "Use an Existing ORM File as a Base" on page 114

o "Importing an Existing ORM File from an Adapter" on page 114

e "Check the Correctness of the orm.xml File — Built-in Correctness Check" on page 115

o "Create a New Integration Point" on page 115

o "Deploy the ORM File to the CMDB" on page 115

e "RunaSample TQL Query" on page 115

1. Prerequisites

Install the latest update for Java Runtime Environment (JRE) 6 on the machine where you
will run Eclipse from the following site:
http://java.sun.com/javase/downloads/index.jsp.

2. Installation

a. Download and extract Eclipse IDE for Java EE Developers from
http://www.eclipse.org/downloadsto a local folder, for example, C:\Program
Files\eclipse.

b. Copy com.hp.plugin.import_cmdb_model_1.0.jar from
C:\hp\UCMDB\UCMDBServer\tools\db-adapter-eclipse-plugin\bin to
C:\Program Files\Eclipse\plugins.

c. Launch C:\Program Files\Eclipse\eclipse.exe. If a message is displayed that the Java
virtual machine is not found, launch eclipse.exe with the following command line:

"C:\Program Files\eclipseleclipse.exe" -vm "<JRE installation
folder>\bin"

3. Prepare the Work Environment
In this step, you set up the workspace, database, connections, and driver properties.

a. Extract the file workspaces_gdb.zip from C:\hp\UCMDB\
UCMDBServer\tools\db-adapter-eclipse-plugin\workspace into C:\Documents and
Settings\All Users.

Note: You must use the exact folder path. If you unzip the file to the wrong path or
leave the file unzipped, the procedure will not work.

b. InEclipse, choose File > Switch Workspace > Other:

If you are working with:

Page 110 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

o SQL Server, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_sqlserver.

o MySAQL, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_mysq|l.

o Oracle, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_oracle.

Click OK.

In Eclipse, display the Project Explorer view and select <Active project> > JPA Content
> persistence.xml > <active project name> > orm.xml.

In the Data Source Explorer view (the bottom left pane), right-click the database
connection and select the Properties menu.

In the Properties for <Connection name> dialog box, select Common and select the
Connect every time the workbench is started check box. Select Driver Properties and
fill in the connection properties. Click Test Connection and verify that the connection is
working. Click OK.

In the Data Source Explorer view, right-click the database connection and click Connect.
A tree containing the database schemas and tables is displayed under the database
connection icon.

4. Create an Adapter

Create an adapter using the guidelines in "Step 1: Create an Adapter" on page 27.

5. Configure the CMDB Plugin

a.
b.

C.

In Eclipse, click UCMDB > Settings to open the CMDB Settings dialog box.
If not already selected, select the newly created JPA project as the Active project.

Enter the CMDB host name, for example, localhost or labm1.itdep1. There is no need to
include the port numberor http: // prefix in the address.

Fill in the user name and password for accessing the CMDB API, usually admin/admin.
Make sure that the C:\hp folder on the CMDB server is mapped as a network drive.

Select the base folder of the relevant adapter under C:\hp. The base folder is the one that
contains the dbAdapter.jar file and the META-INF subfolder. Its path should be
C:\hp\UCMDB\UCMDBServer\runtime\

fcmdb\CodeBase\<adapter name>

. Verify that there is no backslash (\) at the end.

6. Import the UCMDB Class Model
In this step, you select the CITs to be mapped as JPA entities.

a.

Click UCMDB > Import CMDB Class Model to open the Cl Types Selection dialog
box.

Page 111 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

b.

Select the Cl types that you intend to map as JPA entities. Click OK. The Cl types are
imported as Java classes. Verify that they appear under the src folder of the active project.

7. Build the ORM File - Map UCMDB Classes to Database Tables

In this step, you map the Java classes (that you imported in the previous step) to the database
tables.

a.

Make sure the DB connection is connected. Right-click the active project (called
myProject by default) in Project Explorer. Select the JPA view, select the Override
default schema from connection check box, and select the relevant database schema.
Click OK.

b. Map a CIT: In the JPA Structure view, right-click the Entity Mappings branch and select
Add Class. The Add Persistent Class dialog box opens. Do not change the Map as field
(Entity).

c. Click Browse and select the UCMDB class to be mapped (all UCMDB classes belong to
the generic_db_adapter package).

d. Click OK in both dialog boxes. The selected class is displayed under the Entity Mappings
branch in the JPA Structure view.

Note: If the entity appears without an attribute tree, right-click the active project in the
Project Explorer view. Choose Close and then Open.

e. Inthe JPA Details view, select the primary database table to which the UCMDB class

should be mapped. Leave all other fields unchanged.
8. Map IDs

According to JPA standards, each persistent class must have at least one ID attribute. For
UCMDB classes, you can map up to three attributes as IDs. Potential ID attributes are called
id1, id2, and id3. To map an ID attribute:

a.

Expand the corresponding class under the Entity Mappings branch in the JPA Structure
view, right-click the relevant attribute (for example, id1), and select Add Attribute to XML
and Map....

The Add Persistent Attribute dialog box opens. Select Id in the Map as field and click
OK.

In the JPA Details view, select the database table column to which the ID field should be
mapped.

9. Map Attributes

In this step, you map attributes to the database columns.

a.

b.

Expand the corresponding class under the Entity Mappings branch in the JPA Structure
view, right-click the relevant attribute (for example, host_hostname), and select Add

Attribute to XML and Map....

The Add Persistent Attribute dialog box opens. Select Basic in the Map as field and

Page 112 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

click OK.

c. Inthe JPA Details view, select the database table column to which the attribute field
should be mapped.

10. Map a Valid Link

11.

Perform the steps described above in the step "Build the ORM File — Map UCMDB Classes to
Database Tables" on previous page for mapping a UCMDB class denoting a valid link. The
name of each such class takes the following structure: <end1 entity name>_<link name>_
<end 2 entity name>. For example, a Contains link between a host and a location is denoted
by a Java class whose name is generic_db_adapter.host_contains_location. For details,
see "The reconciliation rules.txt File (for backwards compatibility)" on page 128.

a. Map the ID attributes of the link class as described in "Map IDs" on previous page. For
each ID attribute, expand the Details check box group in the JPA Details view and clear
the Insertable and Updateable check boxes.

b. Map the end1 and end2 attributes of the link class as follows: For each of the end1 and
end2 attributes of the link class:

o Expand the corresponding class under the Entity Mappings branch in the JPA
Structure view, right-click the relevant attribute (for example, end1), and select Add
Attribute to XML and Map....

o Inthe Add Persistent Attribute dialog box, select Many to One or One to One in the
Map as field.

o Select Many to One if the specified end1 or end2 CI can have multiple links of this
type. Otherwise, select One to One. For example, for a host_contains_ip link the host
end should be mapped as Many to One, since one host can have multiple IPs, and the
ip end should be mapped as One to One, since one IP can have only a single host.

o Inthe JPA Details view, select Target entity, for example, generic_db_adapter.host.

o Inthe Join Columns section of the JPA Details view, check Override Default. Click
Edit. In the Edit Join Column dialog box, select the foreign key column of the link
database table that points to an entry in the end1/end2 target entity's table. If the
referenced column name in the end1/end2 target entity's table is mapped to its ID
attribute, leave the Referenced Column Name unchanged. Otherwise, select the
name of the column to which the foreign key column points. Clear the Insertable and
Updatable check boxes and click OK.

o |f the end1/end2 target entity has more than one ID, click the Add button to add
additional join columns and map them in the same way as described in the previous
step.

Build the ORM File — Use Secondary Tables

JPA enables a Java class to be mapped to more than one database table. For example, Host
can be mapped to the Device table to enable persistence of most of its attributes and to the
NetworkNames table to enable persistence of host_hostName. In this case, Device is the
primary table and NetworkNames is the secondary table. Any number of secondary tables can
be defined. The only condition is that there must be a one-to-one relationship between the

Page 113 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

12.

13.

14.

15.

entries of the primary and secondary tables.

Define a Secondary Table

Select the appropriate class in the JPA Structure view. In the JPA Details view, access the
Secondary Tables section and click Add. In the Add Secondary Table dialog box, select the
appropriate secondary table. Leave the other fields unchanged.

If the primary and the secondary table do not have the same primary keys, configure the join
columns in the Primary Key Join Columns section of the JPA Details view.

Map an Attribute to a Secondary Table
You map a class attribute to a field of a secondary table as follows:

a. Map the attribute as described above in "Map Attributes" on page 112.

b. Inthe Column section of the JPA Details view, select the secondary table name in the
Table field, to replace the default value.

Use an Existing ORM File as a Base

To use an existing orm.xml file as a basis for the one you are developing, perform the following
steps:

a. Verify that all CITs mapped in the existing orm.xml file are imported into the active Eclipse
project.

b. Select and copy all or part of the entity mappings from the existing file.
c. Select the Source tab of the orm.xml file in the Eclipse JPA perspective.

d. Paste all copied entity mappings under the <entity-mappings> tag of the edited orm.xml
file, beneath the <schema> tag. Make sure that the schema tag is configured as described
above in the step "Build the ORM File — Map UCMDB Classes to Database Tables" on
page 112. All pasted entities now appear in the JPA Structure view. From now on,
mappings can be edited both graphically and manually through the xml code of the
orm.xml file.

e. Click Save.

Importing an Existing ORM File from an Adapter

If an adapter already exists, the Eclipse Plugin can be used to edit its ORM file graphically.
Import the orm.xml file into Eclipse, edit it using the plugin and then deploy it back to the
UCMDB machine. To import the ORM file, press the button on the Eclipse toolbar. A
confirmation dialog is displayed. Click OK. The ORM file is copied from the UCMDB machine
to the active Eclipse project and all relevant classes are imported from the UCMDB class
model.

If the relevant classes do not appear in the JPA Structure view, right-click the active project in
the Project Explorer view, choose Close and then Open.

From now on, the ORM file can be edited graphically using Eclipse, and then deployed back to
the UCMDB machine as described below in "Deploy the ORM File to the CMDB" on next

page.

Page 114 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

16. Check the Correctness of the orm.xml File — Built-in Correctness
Check

The Eclipse JPA plugin checks if any errors are present and marks them in the orm.xml file.
Both syntax (for example, wrong tag name, unclosed tag, missing ID) and mapping errors (for
example, wrong attribute name or database table field name) are checked. If there are errors,
their description appears in the Problems view.

17. Create a New Integration Point

If no integration point exists in the CMDB for this adapter, you can create it in the Integration
Studio. For details, see Integration Studio in the HP Universal CMDB Data Flow Management
Guide.

Fill in the integration point name in the dialog box that opens. The orm.xml file is copied to the
adapter folder. An integration point is created with all the imported CI types as its supported
classes, except for multinode CITs, if they are configured in the reconciliation_rules.txt file.
For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 128.

18. Deploy the ORM File to the CMDB

Save the orm.xml file and deploy it to the UCMDB server by clicking UCMDB > Deploy
ORM. The orm.xml file is copied to the adapter folder and the adapter is reloaded. The
operation result is shown in an Operation Result dialog box. If any error occurs during the
reload process, the Java exception stack trace is displayed in the dialog box. If no integration
point has yet been defined using the adapter, no mapping errors are detected upon deployment.

19. Run a Sample TQL Query

a. Define a query (not a view) in the Modeling Studio. For details, see Modeling Studio in the
HP Universal CMDB Data Flow Management Guide.

b. Create an integration point using the adapter that you created in the step "Create a New
Integration Point" above. For details, see New Integration Point/Edit Integration Point
Dialog Box in the HP Universal CMDB Data Flow Management Guide.

c. During the creation of the adapter, verify that the Cl types that should participate in the
query are supported by this integration point.

d. When configuring the CMDB plugin, use this sample query name in the Settings dialog
box. For details, see the step above "Configure the CMDB Plugin" on page 111.

e. Click the Run TWL button to run a sample TQL and verify whether it returns the required
results using the newly created orm.xml file.

Adapter Configuration Files

The files discussed in this section are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDBServer\content\adapters folder.

This section includes the following topics:

o "The adapter.conf File" on next page

o "The simplifiedConfiguration.xml File" on page 117

e "The orm.xml File" on page 119

Page 115 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

"The reconciliation_types.txt file" on page 128

"The reconciliation_rules.txt File (for backwards compatibility)" on page 128

"The transformations.txt File" on page 130

"The discriminator.properties File" on page 131

"The replication _config.txt File" on page 132

"The fixed values.txt File" on page 132

"The persistence.xml File" on page 132

General Configuration

adapter.conf. The adapter configuration file. For details, see "The adapter.conf File" below.

Simple Configuration

simplifiedConfiguration.xml. Configuration file that replaces orm.xml, transformations.txt,
and reconciliation_rules.txt with less capabilities. For details, see "The
simplifiedConfiguration.xml File" on next page.

Advanced Configuration

orm.xml. The object-relational mapping file in which you map between CMDB CITs and
database tables. For details, see "The orm.xml File" on page 119.

reconciliation_types.txt. Contains the rules that are used to configure the reconciliation types.
For details, see "The reconciliation types.txt file" on page 128.

reconciliation_rules.txt. Contains the reconciliation rules. For details, see "The reconciliation
rules.txt File (for backwards compatibility)" on page 128.

transformations.txt. Transformations file in which you specify the converters to apply to
convert from the CMDB value to the database value, and vice versa. For details, see "The
transformations.txt File" on page 130.

Discriminator.properties. This file maps each supported Cl type to a comma-separated list of
possible corresponding values. For details, see "The discriminator.properties File" on page 131.

Replication_config.txt. This file contains a comma-separated list of Cl and relationship types
whose property conditions are supported by the replication plugin. For details, see "The
replication _config.txt File" on page 132.

Fixed_values.txt. This file enables you to configure fixed values for specific attributes of certain
CITs. For details, see "The fixed values.txt File" on page 132.

Hibernate Configuration

persistence.xml. Used to override out-of-the-box Hibernate configurations. For details, see
"The persistence.xml File" on page 132.

The adapter.conf File

This file contains the following settings:

Page 116 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

« use.simplified.xml.config=false.true: uses simplifiedConfiguration.xml.

Note: Using this file means that orm. xml, transformations.txt, and
reconciliation rules.txt arereplaced with fewer capabilities.

o dal.ids.chunk.size=300. Do not change this value.

o dal.use.persistence.xml=false. true: the adapter reads the Hibemnate configuration from
persistence.xml.

Note: It is not recommended to override the Hibernate configuration.

o performance.memory.id.filtering=true. When the GDBA executes TQLS, in some cases a
large number of IDs may be retrieved and sent back to the database using SQL. To avoid this
excessive work and improve performance, the GDBA attempts to read the entire view/table and
filters the results in-memory.

o id.reconciliation.cmdb.id.type=string/bytes. When mapping the Generic DB adapter using
ID Reconciliation (for information, see the step "Configure the reconciliation types.txt File (for
the UCMDB 9.0x default mapping engine) " in "Implement the Mapping Engine" on page 173,
you can either map the cmdb_id to a string or bytes/raw column type by changing the META-
INF/ adapter.conf property.

« performance.enable.single.sql=true. This is an optional parameter. If it does not appear in the
file, its default value is true. When true, the Generic Database Adapter tries to generate a single
SQL statement for each query being executed (either for population or a federated query). Using
a single SQL statement improves the performance and memory consumption of the Generic
Database Adapter. When false, the Generic Database Adapter generates multiple SQL
statements, which may take longer and consume more memory than a single one. Even when
this attribute is set to true, the adapter does not generate a single SQL statement in the following
scenarios:

= The database the adapter connects to is not on an Oracle or SQL Server.

= The TQL being executed contains a cardinality condition other than 0..* and 1..* (for example,
if there is a cardinality condition like 2..* or 0..2).

The simplifiedConfiguration.xml File

This file is used for simple mapping of UCMDB classes to database tables. To access the template
for editing the file, navigate to Adapter Management > db-adapter > Configuration files.

This section includes the following topics:

o "The simplifiedConfiguration.xml File Template" below

o "Limitations" on page 119

The simplifiedConfiguration.xml File Template

The CMDB-class-name property is the multinode type (the node to which federated CITs connect
inthe TQL):

Page 117 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<?xml version="1.0" encoding="UTF-8"7?>
<generic-DB-adapter-config
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../META-
CONF/simplifiedConfiguration.xsd">

<CMDB-class CMDB-class—-name="node" default-table-name="[table
name] ">

<primary-key column-name="[column name]" />

reconciliation-by-two-nodes. Reconciliation can be done using one node or two nodes. In this
case example, reconciliation uses two nodes.

connected-node-CMDB-class-name. The second class type needed in the reconciliation TQL.
CMDB-link-type. The relationship type needed in the reconciliation TQL.

link-direction. The direction of the relationship in the reconciliation TQL (from node to ip
addressorfromip addresstonode):

<reconciliation-by-two-nodes connected-node-CMDB-class-
name="1ip address" CMDB-link-type="containment" link-direction="main-
to-connected">

The reconciliation expression is in the form of ORs and each OR includes ANDs.
is-ordered. Determines if reconciliation is done in order form or by a regular OR comparison.

<or is-ordered="true">

If the reconciliation property is retrieved from the main class (the multinode), use the attribute tag,
otherwise use the connected-node-attribute tag.

ignore-case.true: when data in the UCMDB class model is compared with data in the RDBMS,
case does not matter:

<attribute CMDB-attribute-name="name" column-
name="[column name]" ignore-case="true" />

The column name is the name of the foreign key column (the column with values that point to the
multinode primary key column).

If the multinode primary key column is composed of several columns, there needs to be several
foreign key columns, one for each primary key column.

<foreign-primary-key column-name="[column name]" CMDB-class-
primary-key-column="[column name]" />

If there are few primary key columns, duplicate this column.

<primary-key column-name="[column name]" />

The from-CMDB-converter and to-CMDB-converter properties are Java classes that implement
the following interfaces:

e cCom.me-
rcury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDal TransformerFromExternalDB

Page 118 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

e com.me-
rcury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDal TransformerToExternalDB

Use these converters if the value in the CMDB and in the database are not the same.

In this example, GenericEnumTransformer is used to convert the enumerator according to the
XML file that is written inside the parenthesis (generic-enum-transformer-example.xml):

<attribute CMDB-attribute-name="[CMDB attribute name]" column-
name="[column name]" from-CMDB-

converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.

GenericEnumTransformer (generic-enum-transformer-example.xml)" to-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer (generic-enum-transformer-example.xml)" />
<attribute CMDB-attribute-name="[CMDB attribute name]" column-
name="[column name]" />
<attribute CMDB-attribute-name="[CMDB attribute name]" column-
name="[column name]" />
</class>

</generic-DB-adapter-config>

Limitations

o Can be used to map only TQL queries containing one node (in the database source). For
example, youcanrunanode > ticket andaticket TQL query. To bring the hierarchy of
nodes from the database, you must use the advanced orm.xml file.

« Only one-to-many relations are supported. For example, you can bring one or more tickets on
each node. You cannot bring tickets that belong to more than one node.

¢ You cannot connect the same class to different types of CMDB CITs. For example, if you define
that ticket is connected to node, it cannot be connected to application as well.

The orm.xml File

This file is used for mapping CMDB CITs to database tables.

A template to use for creating a new file is located in the
C:\hp\UCMDB\UCMDBServer\runtime\fcmdb\CodeBase\GenericDBAdapter\META-INF
directory.

To edit the XML file for a deployed adapter, navigate to Adapter Management > db-adapter >
Configuration files.

This section includes the following topics:

e "The orm.xml File Template" on next page

o "Multiple ORM files" on page 122

o "Naming Conventions" on page 123

e "The orm.xml File" above

e "The orm.xml Schema" on page 123

Page 119 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

The orm.xml File Template

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://Jjava.sun.com/xml/ns/persistence/orm"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" version="1.0"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm

http://java.sun.com/xml/ns/persistence/orm 1 0.xsd">
<description>Generic DB adapter orm</description>

Do not change the package name.
<package>generic db adapter</package>

entity. The CMDB CIT name. This is the multinode entity.

Make sure that class includes a generic_db_adapter. prefix.

<entity class="generic_db adapter.node">
<table name="[table name]" />

Use a secondary table if the entity is mapped to more than one table.

<secondary-table name="" />
<attributes>

For a single table inheritance with discriminator, use the following code:

<inheritance strategy="SINGLE TABLE" />
<discriminator-value>node</discriminator-value>
<discriminator-column name="[column name]" />

Attributes with tag id are the primary key columns. Make sure that the naming convention for these
primary key columns are idX (id1, id2, and so on) where X is the column index in the primary key.

<id name="idl">

Change only the column name of the primary key.

<column updatable="false" insertable="false"
name="[column name]" />
<generated-value strategy="TABLE" />
</id>

basic. Used to declare the CMDB attributes. Make sure to edit only name and column_name
properties.

<basic name="name">
<column updatable="false" insertable="false"
name="[column name]" />
</basic>

For a single table inheritance with discriminator, map the extending classes as follows:

<entity name="[cmdb class name]" class="generic db adapter.nt"
name="nt">

<discriminator-value>nt</discriminator-value>
<attributes>

Page 120 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

</entity>
<entity class="generic db adapter.unix" name="unix">
<discriminator-value>unix</discriminator-value>

<attributes>
</entity>
<entity name="[CMDB class name]" class="generic db
adapter. [CMDB[cmdb class name]">
<table name="[default table name]" />
<secondary-table name="" />
<attributes>

<id name="idl">
<column updatable="false" insertable="false"

name="[column name]" />
<generated-value strategy="TABLE" />
</id>

<id name="id2">
<column updatable="false" insertable="false"
name="[column namel]" />
<generated-value strategy="TABLE" />
</id>
<id name="id3">
<column updatable="false" insertable="false"
name="[column name]" />
<generated-value strategy="TABLE" />
</id>

The following example shows a CMDB attribute name with no prefix:

<basic name="[CMDB attribute name]">
<column updatable="false" insertable="false"
name="[column name]" />
</basic>
<basic name="[CMDB_attribute name]">
<column updatable="false" insertable="false"
name="[column name]" />
</basic>
<basic name="[CMDB attribute name]">
<column updatable="false" insertable="false"
name="[column namel]" />
</basic>
</attributes>
</entity>

This is a relationship entity. The naming convention is end1Type_linkType_end2Type. In this
example end1Type is node and the linkType is composition.

<entity name="node composition_ [CMDB class name]" class="generic_
db_adapter.node composition [CMDB class name]">
<table name="[default table name]" />
<attributes>
<id name="idl">

Page 121 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<column updatable="false" insertable="false"
name="[column namel]" />
<generated-value strategy="TABLE" />
</id>

The target entity is the entity that this property is pointing to. In this example, end1 is mapped to
node entity.

many-to-one. Many relationships can be connected to one node.
join-column. The column that contains end1 IDs (the target entity IDs).

referenced-column-name. The column name in the target entity (node) that contain the IDs that
are used in the join column.

<many-to-one target-entity="node" name="endl">
<join-column updatable="false" insertable="false"
referenced-column-name="[column name]" name="[column name]" />
</many-to-one>

one-to-one. One relationship can be connected to one [CMDB_class_name].

<one-to-one target-entity="[CMDB class name]" name="end2">
<join-column updatable="false" insertable="false"
referenced-column-name="" name="[column name]" />
</one-to-one>
</attributes>
</entity>

</entity-mappings>

node attribute. This is an example of how to add a node attribute.
<entity class="generic_db adapter.host node">
<discriminator-value>host node</discriminator-value>
<attributes/>

</entity>

<entity class="generic_db adapter.nt">
<discriminator-value>nt</discriminator-value>
<attributes>

<basic name="nt servicepack">

<column updatable="false" insertable="false" name="specific type
value"/>

</basic>
</attributes>
</entity>

Multiple ORM files

Multiple mapping files are supported. Each mapping file name should end with orm.xml. All

Page 122 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

mapping files should be placed under the META-INF folder of the adapter.

Naming Conventions

¢ Ineach entity, the class property must match the name property with the prefix of generic
db adapter.

o Primary key columns must take names of the form idX where X =1, 2, ..., according to the
number of primary keys in the table.

o Attribute names must match class attribute names even as regards case.
¢ The relationship name takes the form end1Type linkType end2Type.

o CMDB CITs, which are also reserved words in Java, should be prefixed by gdba_. For example,
for the CMDB CIT goto, the ORM entity should be named gdba_goto.

Using Inline SQL Statements Instead of Table Names

You can map entities toinline select clauses instead of to database tables. This is equivalent to
defining a view in the database and mapping an entity to this view. For example:

<entity class="generic_ db adapter.node">
<table name=" (select d.id as idl, d.name as name , d.os as
host os from
Device d)" />

In this example, the node attributes should be mapped to columns id1, name, and host_os, rather
than id, name, and os.

The following limitations apply:
o Theinline SQL statement is available only when using Hibernate as the JPA provider.
¢ Round brackets around the inline SQL select clause are mandatory.

e The <schema> element should not be present in the orm.xml file. In the case of Microsoft SQL
Server 2005, this means that all table names should be prefixed with dbo ., rather than defining
them globally by <schema>dbo</schema>

The orm.xml Schema

The following table explains the common elements of the orm.xml file. The complete schema can
be found at http://java.sun.com/xml/ns/persistence/orm_1_0.xsd. The list is not complete, and it
mainly explains the specific behavior of the standard Java Persistence API for the Generic
Database Adapter.

Element Name and
Path Description Attributes

entity-mappings The root element for the entity
mapping document. This
element should be exactly the
same as the one given in the
GDBA sample files.

Page 123 of 281 HP Universal CMDB (9.05)

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name and
Path

description (entity-

Description

A free text description of the

Attributes

classes. Should always contain
thetext generic db
adapter.

mappings) entity mapping document.
(Optional)
package (entity- The name of the Java package 1. Name: name
mappings) that will contain the mapping Description: The name of the

UCMDB CI type to which this
entity is mapped. If this is entity
is mapped to alink in the CMDB,
the name of the entity should be
in the format

<end 1> <link name>
<end_2>. Forexample, node
composition cpu defines an
entity that will be mapped to the
composition link between a node
and a CPU. If the name of the ClI
type is the same as the name of
the Java class without the
package prefix, this field can be
omitted.

Is required?: Optional

Type: String

Name: class

Description: The fully qualified
name of the Java class that will
be created for this DB entity. The
name of the Java class' package
should be the same as the name
given inthe package element.
You may not use Java reserved
words, such as interface or
switch, as the class name.
Instead, add the prefix gdba_ to
the name (so interface will be
generic_db
adapter.gdba_ interface.
Is required?: Required

Type: String

Page 124 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name and
Path

table

(entity-
mappings>entity)

Description

This element defines the primary
table of the DB entity. Can only
appear once. Required.

Attributes

Name: name

Description: The name of the
primary table. If the name of the table
does not contain the schema to which
it belongs, the table will be searched
only in the schema of the user that
was used to create the integration
point. This can also be any a valid
SELECT statement. If this is a
SELECT statement, it must be
encapsulated with parentheses.

Is required?: Required

Type: String

secondary-table

(entity-mappings >
entity)

This element may be used to
define a secondary table for the
DB entity. This table must be
connected to the primary table
with a 1-to-1 relationship. You
may define more than one
secondary table. Optional.

Name: name

Description: The name of the
secondary table. If the name of the
table does not contain the schema to
which it belongs, the table will be
searched only in the schema of the
user that was used to create the
integration point. This can also be any
avalid SELECT statement. If this is a
SELECT statement, it must be
encapsulated with parentheses.

Is required?: Required

Type: String

primary-key-join-
column
(entity-mappings >

entity >
secondary-table)

If the secondary table and
primary table are not connected
using fields with the same name,
this element defines the name of
the primary key field in the
secondary table that needs to be
connected to the primary key
field of the primary table.

Name: name

Description: The name of the
primary key field in the secondary
table. If this element does not exist, it
is assumed that the primary key field
has the same name as the primary
key field of the primary table.

Is required?: Optional

Type: String

Page 125 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name and
Path Description Attributes

inheritance If the current entity is the parent | Name: strategy

entity for a family of DB entities, | Description: Defines the way the
then use this element tomark it | inheritance is implemented in your
as such. Optional. DB.

Is required?: Required

Type: One of the following values:

(entity-mappings >
entity)

o SINGLE_TABLE: This entity and
all child entities exist in the same
table.

o JOINED: The child entities are in
joined tables.

e TABLE PER _CLASS: Each
entity is completely defined by a
separate table.

discriminator-column | If the inheritance is of type Name: name
SINGLE_TABLE, this element Description: The name of the
is used to define the name of the | discriminator column.

field used to determine the type | Is required?: Required

of entity for each row. Type: String

(entity-mappings >
entity)

discriminator-value This element defines the type of
the specific entity in the
inheritance tree. This name
needs to be the same as the
name defined in the
discriminator.properties file
for the value group of this
specific entity type.

(entity-mappings >
entity)

attributes The root element for all of the

. . attribute mappings for an entity.
(entity-mappings >

entity)
id This element defines the key Name: name

it . S field for the entity. There must be | Description: A string of type idX,
(entity-mappings at least one id field defined. If where X is a number between 1 and

entity attributes) more than one id element exists, | 9. The first id should be marked as

its fields create a compound key | id1, the second as id2 and so on. This
for the entity. You should try and | is NOT the name of the key attribute

avoid compound keys for Cl in UCMDB.
entities (not for links). Is required?: Required
Type: String

Page 126 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name and
Path

basic

(entity-mappings >

Description

This element defines a mapping
between afield in the table,
which is not part of the table's

Attributes

Name: name
Description: The name of the
UCMDB attribute to which the field is

entity atfributes) primary key, and a UCMDB mapped. This attribute must exist in
attribute. the UCMDB CI type to which the
current entity is mapped.
Is required?: Required
Type: String
column Defines the name of the column 1. Name: name

(entity-mappings >
entity > attributes >id

-OR-

(entity-mappings >
entity > attributes >
basic)

in the table for basic mapping or
anid field.

Description: The name of the
field.

Is required?: Required
Type: String

2. Name: table
Description: The name of the
table to which the field belongs.
This must be either the primary
table or one of the secondary
tables defined for the entity. If
this attribute is omitted, it is
assumed that the field belongs to
the primary table.
Is required: Optional
Type: String

one-to-one

(entity-mappings >
entity > attributes)

Defines a column whose value
is in another table, and the two
tables are connected using a
one-to-one relationship. This
element is only supported for link
entity mappings and not for other
Cl types. This is the only way to
define a mapping between a
table and a UCMDB link.

1. Name: name
Description: Which of the two
ends this field represents.
Is required?: Required
Type: Either end1 orend2

2. Name: target-entity
Description: The name of the
entity to which the end refers.
Is required?: Required
Type: One of the entity names
defined in the entity mapping
document.

Page 127 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

Element Name and
Path

join-column

(entity-mappings >
entity attributes >
one-to-one)

Description

Defines the way to join the
target-entity defined in the parent
one-to-one element and the
current entity.

Attributes

1.

Name: name

Description: The name of the
field in the current table that will
be used to perform the one-to-
one join.

Is required?: Required

Type: String

Name: name

Description: The name of a field
in the joint entity by which to
perform the join. If this attribute
is omitted, it is assumes that the
joint table has a column with the
same name as the field defined
in the name attribute.

Is required?: Optional

Type: String

The reconciliation_types.txt file

This file is used to configure the reconciliation types.

Each row in the file represents a CMDB CIT that is connected to a federated database CIT in the

TQL query.

The reconciliation_rules.txt File (for backwards compatibility)

This file is used to configure the reconciliation rules if you want to perform reconciliation when the
DBMappingEngine is configured in the adapter. If you do not use the DBMappingEngine, the
generic UCMDB reconciliation mechanism is used and there is no need to configure this file.

Each row in the file represents a rule. For example:

multinode [node]
type[node]

end2 type[ip address]

expression[”node.name OR ip address.name]

link typel[containment]

endl

The multinode is filled with the multinode name (the CMDB CIT that is connected to the federated
database CIT in the TQL query).

This expression includes the logic that decides whether two multinodes are equal (one multinode in
the CMDB and the other in the database source).

The expression is composed of ORs or ANDs.

The convention regarding attribute names in the expression part is
[className] . [attributeName]. Forexample, attributeName inthe ip address class
is written ip address.name.

Page 128 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

For an ordered match (if the first OR sub-expression returns an answer that the multinodes are not
equal, the second OR sub-expression is not compared), then use ordered expression instead
of expression.

To ignore case during a comparison, use the control (*) sign.

The parameters endl type, end2 type and link type are used only if the reconciliation TQL
query contains two nodes and not just a multinode. In this case, the reconciliation TQL query is
endl type > (link type) > end2 type.

There is no need to add the relevant layout as it is taken from the expression.

Types of Reconciliation Rules

Reconciliation rules take the form of OR and AND conditions. You can define these rules on
several different nodes (for example, node is identified by name from nodeAND/ORname from
ip address).

The following options find a match:

o Ordered match. The reconciliation expression is read from left to right. Two OR sub-
expressions are considered equal if they have values and they are equal. Two OR sub-
expressions are considered not equal if both have values and they are not equal. For any other
case there is no decision, and the next OR sub-expression is tested for equality.

name from node OR from ip_address. If both the CMDB and the data source include name
and they are equal, the nodes are considered as equal. If both have name but they are not equal,
the nodes are considered not equal without testing the name of ip address. If either the
CMDB or the data source is missing name of node, thename of ip address is checked.

o Regular match. If there is equality in one of the OR sub-expressions, the CMDB and the data
source are considered equal.

name from node OR from ip_address. If there is no matchonname of node, name of
ip address is checked for equality.

For complex reconciliations, where the reconciliation entity is modeled in the class model as
several CITs with relationships (such as node), the mapping of a superset node includes all
relevant attributes from all modeled CITs.

Note: As aresult, there is a limitation that all reconciliation attributes in the data source should
reside in tables that share the same primary key.

Another limitation states that the reconciliation TQL query should have no more than two nodes. For
example, the node > ticket TQL query has a node inthe CMDB and a ticket in the data source.
To reconcile the results, name must be retrieved from the node and/or ip address.

If the name inthe CMDB is in the format of * . m. com, a converter can be used from CMDB to the
federated database, and vice versa, to convert these values.

The node id column in the database ticket table is used to connect between the entities (the
defined association can also be made in a node table):

Page 129 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

DB Node DBIP_Address

PK node _id PK ip_id

name name

DB Ticket

PK ticket id

node_id

Note: The three tables must be part of the federated RDBMS source and not the CMDB
database.

The transformations.txt File

This file contains all the converter definitions.

The format is that each line contains a new definition.

The transformations.txt File Template

entity[[CMDB class name]] attribute[[CMDB attribute name]] to DB
class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.
transform.impl.GenericEnumTransformer (generic-enum-transformer-
example.xml)]

from DB
class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer (generic-enum-transformer-example.xml)]

entity. The entity name as it appears in the orm. xm1 file.
attribute. The attribute name as it appears in the orm. xm1 file.

to_DB_class. The full, qualified name of a class that implements the interface
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTransformerTo
ExternalDB. The elements in the parenthesis are given to this class constructor. Use this
converter to transform CMDB values to database values, for example, to append the suffix of .com
to each node name.

from_DB_class. The full, qualified name of a class that implements the
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.
FcmdbDalTransformerFromExternalDB interface. The elements in the parenthesis are given to
this class constructor. Use this converter to transform database values to CMDB values, for
example, to append the suffix of .com to each node name.

For details, see "Out-of-the-Box Converters" on page 133.

Page 130 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

The discriminator.properties File

This file maps each supported Cl type (that is also used as a discriminator value in orm.xml)to a
comma-separated list of possible corresponding values of the discriminator column, or a condition
to match possible values of the discriminator column.

If a condition is used, use the syntax: 1ike (condition), where condition is astring that can
contain the following wildcards:

o % (percent sign) - allows you to match any string of any length (including a zero length string)
e _ (underscore) - allows you to match a single character

Forexample, 1ike ($unix%) will match unix, linux, unix-aix, and so on. Like conditions may only
be applied to string columns.

You can also have a single discriminator value mapped to any value that does not belong to another
discriminator by stating 'all-other'.

If the adapter you are creating uses discriminator capabilities, you must define all the discriminator
values in the discriminator.properties file.

Example of Discriminator Mapping:

For example, the adapter supports the Cl types node, nt, and unix, and the database contains a
single table named t nodes that contains a column called type. If the type is 10001, the row
represents a node; if the type is 10004, it represents a unix machine, and so on. The
discriminator.properties file might look like this:

node=10001, 10005
nt=10002,10003
unix=2%
mainframe=all-other

The orm.xml file includes the following code:

<entity class="generic db adapter.node" >
<table name="t nodes" />

<inheritance strategy="SINGLE TABLE" />
<discriminator-value>node</discriminator-value>
<discriminator-column name="type" />

</entity>

<entity class="generic db adapter.nt" name="nt">
<discriminator-value>nt</discriminator-value>
<attributes>

</entity>

<entity class="generic db adapter.unix" name="unix">
<discriminator-value>unix</discriminator-value>
<attributes>

</entity>

The discriminator_column attribute is then calculated as follows:

Page 131 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

If type contains 10002 or 10003 for a certain entry, the entry is mapped to the nt CIT.

If type contains 10001 or 10005 for a certain entry, the entry is mapped to the node CIT.

If type starts with 2 for a certain entry, the entry is mapped to the unix CIT.

Any other value in the type column is mapped to the mainframe CIT.

Note: The node CIT is also the parent of nt and unix.

The replication_config.txt File

This file contains a comma-separated list of Cl and relationship types whose property conditions
are supported by the replication plugin. For details, see "Plugins" on page 137.

The fixed_values.txt File

This file enables you to configure fixed values for specific attributes of certain CITs. In this way,
each of these attributes can be assigned a fixed value that is not stored in the database.

The file should contain zero or more entries of the following format:
entity[<entityName>] attribute[<attributeName>] value[<value>]

For example:

entity[ip address] attribute[ip domain] value[DefaultDomain]

The file also supports a list of constants. To define a constants list, use the following syntax:

entity[<entityName>] attribute[<attributeName>] wvalue[{<Vall>, <Val2>,
<Val3>, ... }]

The persistence.xml File

This file is used to override the default Hibernate settings and to add support for database types that
are not out of the box (OOB database types are Oracle Server, Microsoft SQL Server, and MySQL).

If you need to support a new database type, make sure that you supply a connection pool provider
(the default is c3p0) and a JDBC driver for your database (put the * . jar files in the adapter folder).

To see all available Hibemate values that can be changed, check the
org.hibernate.cfg.Environment class (for details, refer to http://www.hibernate.org.)

Example of the persistence.xml File:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence 1 0.xsd"
version="1.0">

<!-- Don't change this wvalue -->
<persistence-unit name="GenericDBAdapter">
<properties>
<!-- Don't change this value -->

<property name="hibernate.archive.autodetection"

Page 132 of 281 HP Universal CMDB (9.05)

http://www.hibernate.org/

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

value="class,
hbm" />
<!--The driver class name"/-->

<property name="hibernate.connection.

value="com.mercury.
jdbc.MercOracleDriver" />
<!--The connection url"/-->

<property name="hibernate.connection.

value="jdbc:mercury:oracle:
//artist:1521;sid=cmdb2" />
<!--DB login credentials"/-->

<property name="hibernate.connection.

value="CMDB" />

<property name="hibernate.connection.

value="CMDB" />
<!--connection pool properties"/-->

driver class"

url"

username"

password"

<property name="hibernate.c3p0.min size" value="5" />

<property name="hibernate.c3p0.max size" value="20" />

<property name="hibernate.c3p0.timeout" value="300" />

<property name="hibernate.c3p0.max statements" value="50"

/>

<property name="hibernate.c3p0.idle test period"

value="3000" />

<!--The dialect to use-->

<property name="hibernate.dialect"
value="org.hibernate.dialect.

OracleDialect" />
</properties>
</persistence-unit>

</persistence>

Out-of-the-Box Converters

You can use the following converters (transformers) to convert federated queries and replication

jobs to and from database data.
This section includes the following topics:

o "Out-of-the-Box Converters" above

o "The SuffixTransformer Converter" on page 136

o "The PrefixTransformer Converter" on page 136

e "The BytesToStringTransformer Converter" on page 137

e "The StringDelimitedListTransformer Converter" on page 137

The enum-transformer Converter

This converter uses an XML file that is given as an input parameter.

The XML file maps between hard-coded CMDB values and database values (enums). If one of the
values does not exist, you can choose to return the same value, return null, or throw an exception.

Page 133 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

The transformer performs a comparison between two strings using a case sensitive, or a case
insensitive method. The default behavior is case sensitive. To define it as case insensitive use:
case-sensitive="false" inthe enum-transformer element.

Use one XML mapping file for each entity attribute.

Note: This converter can be used for boththe to DB class and from DB class fieldsin
the transformations. txt file.

Input File XSD:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="enum-transformer">
<xs:complexType>
<xs:sequence>

<xs:element ref="value" minOccurs="0"
maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="db-type" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="integer"/>
<xs:enumeration value="long"/>
<xs:enumeration value="float"/>
<xs:enumeration value="double"/>
<xs:enumeration value="boolean"/>
<xs:enumeration value="string"/>
<xs:enumeration value="date"/>
<xs:enumeration value="xml"/>
<xs:enumeration value="bytes"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="cmdb-type" use="required">
<xs:simpleType>

<xs:restriction base="xs:string">

Page 134 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<xs:enumeration value="integer"/>
<xs:enumeration value="long"/>
<xs:enumeration value="float"/>
<xs:enumeration value="double"/>
<xs:enumeration value="boolean"/>
<xs:enumeration value="string"/>
<xs:enumeration value="date"/>
<xs:enumeration value="xml"/>
<xs:enumeration value="bytes"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

<xs:attribute name="non-existing-value-action"
use="required">

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="return-null"/>
<xs:enumeration value="return-original"/>
<xs:enumeration value="throw-exception"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="case-sensitive" use="optional">
<xs:simpleType>
<xs:restriction base="xs:boolean">
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="value">

<xs:complexType>

Page 135 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<xs:attribute name="cmdb-value" type="xs:string"
use="required"/>

<xs:attribute name="external-db-value" type="xs:string"
use="required"/>

<xs:attribute name="is-cmdb-value-null" type="xs:boolean"
use="optional"/>

<xs:attribute name="is-db-value-null" type="xs:boolean"
use="optional"/>

</xs:complexType>
</xs:element>
</xs:schema>
Example of Converting 'sys' Value to 'System’ Value:

In this example, sys value in the CMDB is transformed into System value in the federated
database, and System value in the federated database is transformed into sys value in the
CMDB.

If the value does not exist in the XML file (for example, the string demo), the converter returns the
same input value it receives.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-
value-action="return-original"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../META-CONF/generic-enum-
transformer.xsd">

<value CMDB-value="sys" external-DB-value="System" />
</enum-transformer>

The SuffixTransformer Converter

This converter is used to add or remove suffixes from the CMDB or federated database source
value.

There are two implementations:

o com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
AddSuffixTransformer. Adds the suffix (given as input) when converting from federated
database value to CMDB value and removes the suffix when converting from CMDB value to
federated database value.

« com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
RemoveSuffixTransformer. Removes the suffix (given as input) when converting from
federated database value to CMDB value and adds the suffix when converting from CMDB
value to federated database value.

The PrefixTransformer Converter

This converter is used to add or remove a prefix from the CMDB or federated database value.

There are two implementations:

Page 136 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

« com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
AddPrefixTransformer. Adds the prefix (given as input) when converting from federated
database value to CMDB value and removes the prefix when converting from CMDB value to
federated database value.

o com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
RemovePrefixTransformer. Removes the prefix (given as input) when converting from
federated database value to CMDB value and adds the prefix when converting from CMDB
value to federated database value.

The BytesToStringTransformer Converter

This converter is used to convert byte arrays in the CMDB to their string representation in the
federated database source.

The converteris:
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.CmdbToAdapterBytes
ToStringTransformer.

The StringDelimitedListTransformer Converter
This converter is used to transform a single string list to an integer/string list in the CMDB.

The converter is: com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
StringDelimitedListTransformer.

Plugins
The generic database adapter supports the following plugins:

« An optional plugin for full topology synchronization.

¢ An optional plug-in for synchronizing changes in topology. If no plug-in for synchronizing
changes is implemented, it is possible to perform a differential synchronization, but that
synchronization will actually be a full one.

o An optional plugin for synchronizing layout.

« An optional plugin to retrieve supported queries for synchronization. If this plugin is not defined,
all TQL names are returned.

¢ Anintemal, optional plugin to change the TQL definition and TQL resullt.
« Aninternal, optional plugin to change a layout request and Cls result.
¢ Anintemnal, optional plugin to change a layout request and relationships result.

For details about implementing and deploying plugins, see "Implement a Plugin" on page 105.

Configuration Examples
This section gives examples of configurations.
This section includes the following topics:

o "Use Case" on next page

o "Single Node Reconciliation" on next page

Page 137 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

o "Two Node Reconciliation" on page 140

¢ "Using a Primary Key that Contains More Than One Column" on page 143

o "Using Transformations" on page 145

Use Case
Use case. A TQL query is:

node > (composition) > card

where:

« node is the CMDB entity

o card is the federated database source entity

e composition is the relationship between them

The example is run against the ED database. ED nodes are stored in the Device table and card
is stored in the hwCards table. In the following examples, card is always mapped in the same
manner.

Single Node Reconciliation

In this example the reconciliation is run against the name property.
Simplified Definition
The reconciliation is done by node and it is emphasized by the special tag CMDB-class.

<?xml version="1.0" encoding="UTF-8"7?>
<generic-DB-adapter-config
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../META-
CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device ID" />
<reconciliation-by-single-node>
<or>
<attribute CMDB-attribute-name="name" column-
name="Device Name" />
</or>
</reconciliation-by-single-node>
</CMDB-class>
<class CMDB-class-name="card" default-table-name="hwCards"
connected-CMDB-class—-name="node" link-class-name="composition">
<foreign-primary-key column-name="Device ID" CMDB-class-
primary-key-column="Device ID
<primary-key column-name="hwCards Seq" />
<attribute CMDB-attribute-name="card class" column-
name="hwCardClass" />
<attribute CMDB-attribute-name="card vendor" column-
name="hwCardvVendor" />
<attribute CMDB-attribute-name="card name" column-

Page 138 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

name="hwCardName" />
</class>
</generic-DB-adapter-config>

Advanced Definition

The orm.xml File

Pay attention to the addition of the relationship mapping. For details, see the definition section in
"The orm.xml File" on page 119.

Example of the orm.xml File:

<?xml version="1.0" encoding="UTF-8"7?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/
persistence/orm http://java.sun.com/xml/ns/persistence/orm 1 0.xsd"
version="1.0">
<description>Generic DB adapter orm</description>
<package>generic db adapter</package>
<entity class="generic db adapter.node" >
<table name="Device"/>
<attributes>
<id name="idl">
<column name="Device ID" insertable="false"
updatable="false"/>
<generated-value strategy="TABLE"/>
</id>
<basic name="name">
<column name="Device7Name"/>
</basic>
</attributes>
</entity>
<entity class="generic_db_ adapter.card" >
<table name="hwCards"/>
<attributes>
<id name="id1l">
<column name="hwCards Seq" insertable="false"
updatable="false"/>
<generated-value strategy="TABLE"/>
</id>
<basic name="card class">
<column name="hwCardClass" insertable="false"
updatable="false"/>
</basic>
<basic name="card vendor">
<column name="hwCardVendor" insertable="false"
updatable="false"/>
</basic>

Page 139 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<basic name="card name">
<column name="hwCardName" insertable="false"
updatable="false"/>
</basic>
</attributes>
</entity>
<entity class="generic_ db adapter.node composition card" >
<table name="hwCards"/>
<attributes>
<id name="id1l">
<column name="hwCards Seq" insertable="false"
updatable="false"/>
<generated-value strategy="TABLE"/>
</id>
<many-to-one name="endl" target-entity="node">
<join-column name="Device ID" insertable="false"
updatable="false"/>
</many-to-one>
<one-to-one name="end2" target-entity="card"
> <join-column name="hwCards_ Seqg"
referenced-column-name="hwCards_ Seq" insertable=
"false" updatable="false"/>
</one-to-one>
</attributes>
</entity>
</entity-mappings>

The reconciliation_types.txt File

For details, see "The reconciliation_types.txt file" on page 128.

node

The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 128.

multinode[node] expression[node.name]
The transformation.txt File
This file remains empty as no values need to be converted in this example.

Two Node Reconciliation

In this example, reconciliation is calculated according to the name property of node and of ip
address with different variations.

The reconciliation TQL query is node > (containment) > ip_address.
Simplified Definition

The reconciliation is by name of node ORof ip address:

Page 140 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<?xml version="1.0" encoding="UTF-8"7?>
<generic-DB-adapter-config
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../META-
CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device ID" />
<reconciliation-by-two-nodes connected-node-CMDB-class-
name="1ip address" CMDB-link-type="containment">
<or>
<attribute CMDB-attribute-name="name" column-
name="Device Name" />
<connected-node-attribute CMDB-attribute-name="name"
column-name="Device PreferredIPAddress" />
</or>
</reconciliation-by-two-nodes>
</CMDB-class>
<class CMDB-class-name="card" default-table-name="hwCards"
connected-CMDB-class-name="node" link-class-name="containment">
<foreign-primary-key column-name="Device ID" CMDB-class-
primary-key-column="Device ID" />
<primary-key column-name="hwCards Seqg" />
<attribute CMDB-attribute-name="card class" column-
name="hwCardClass" />
<attribute CMDB-attribute-name="card vendor" column-
name="hwCardVendor" />
<attribute CMDB-attribute-name="card name" column-
name="hwCardName" />
</class>
</generic-DB-adapter-config>

The reconciliation is name of node ANDof ip _address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../META-
CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device ID" />
<reconciliation-by-two-nodes connected-node-CMDB-class-
name="1ip address" CMDB-link-type="containment">
<and>
<attribute CMDB-attribute-name="name" column-
name="Device Name" />
<connected-node-attribute CMDB-attribute-name="name"
column-name="Device PreferredIPAddress" />
</and>
</reconciliation-by-two-nodes>
</CMDB-class>

Page 141 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<class CMDB-class-name="card" default-table-name="hwCards"
connected-CMDB-class-name="node" link-class-name="containment">
<foreign-primary-key column-name="Device ID" CMDB-class-
primary-key-column="Device ID" />
<primary-key column-name="hwCards Seq" />
<attribute CMDB-attribute-name="card class" column-
name="hwCardClass" />
<attribute CMDB-attribute-name="card vendor" column-
name="hwCardVendor" />
<attribute CMDB-attribute-name="card name" column-
name="hwCardName" />
</class>
</generic-DB-adapter-config>

The reconciliation is by name of ip address:

<?xml version="1.0" encoding="UTF-8"7?>
<generic-DB-adapter-config
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../META-
CONF/simplifiedConfiguration.xsd">
<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device ID" />
<reconciliation-by-two-nodes connected-node-CMDB-class-
name="1ip address" CMDB-link-type="containment">
<or>
<connected-node-attribute CMDB-attribute-name="name"
column-name="Device PreferredIPAddress" />
</or>
</reconciliation-by-two-nodes>
</CMDB-class>
<class CMDB-class-name="card" default-table-name="hwCards"
connected-CMDB-class-name="node" link-class-name="containment">
<foreign-primary-key column-name="Device ID" CMDB-class-
primary-key-column="Device ID" />
<primary-key column-name="hwCards Seq" />
<attribute CMDB-attribute-name="card class" column-
name="hwCardClass" />
<attribute CMDB-attribute-name="card vendor" column-
name="hwCardVendor" />
<attribute CMDB-attribute-name="card name" column-
name="hwCardName" />
</class>
</generic-DB-adapter-config>

Advanced Definition

The orm.xml File

Since the reconciliation expression is not defined in this file, the same version should be used for
any reconciliation expression.

The reconciliation_types.txt File

Page 142 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

For details, see "The reconciliation types.txt file" on page 128.

node
The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 128.

multinode[node] expression[ip address.name OR node.name] endl
typel[node] end2 type[ip address] link type[containment]

multinode[node] expression[ip address.name AND node.name] endl
typel[node] end2 typel[ip address] link type[containment]

multinode[node] expression[ip address.name] endl typel[node] end2
typelip_address] link type[containment]

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Using a Primary Key that Contains More Than One Column

If the primary key is composed of more than one column, the following code is added to the XML
definitions:

Simplified Definition
There is more than one primary key tag and for each column there is a tag.

<class CMDB-class-name="card" default-table-name="hwCards"
connected-CMDB-class—-name="node" link-class-name="containment">
<foreign-primary-key column-name="Device ID" CMDB-class-
primary-key-column="Device ID" />
<primary-key column-name="Device ID" />
<primary-key column-name="hwBusesSupported Seq" />
<primary-key column-name="hwCards Seqg" />
<attribute CMDB-attribute-name="card class" column-
name="hwCardClass" />
<attribute CMDB-attribute-name="card vendor" column-
name="hwCardvVendor" />
<attribute CMDB-attribute-name="card name" column-
name="hwCardName" />
</class>

Advanced Definition
The orm.xml File

A new id entity is added that maps to the primary key columns. Entities that use this id entity
must add a special tag.

If you use a foreign key (join-column tag) for such a primary key, you must map between each
column in the foreign key to a column in the primary key.

For details, see "The orm.xml File" on page 119.

Example of the orm.xml File:

Page 143 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

<entity class="generic_db_ adapter.card" >
<table name="hwCards" />
<attributes>
<id name="idl">
<column name="Device ID" insertable="false"
updatable="false" />
<generated-value strategy="TABLE" />
</id>
<id name="id2">
<column name="hwBusesSupported Seq" insertable="false"
updatable="false" />
<generated-value strategy="TABLE" />
</id>
<id name="id3">
<column name="hwCards Seq" insertable="false"
updatable="false" />
<generated-value strategy="TABLE" />
</id>

<entity class="generic_ db adapter.node containment card" >
<table name="hwCards" />
<attributes>
<id name="idl">
<column name="Device ID" insertable="false"
updatable="false" />
<generated-value strategy="TABLE" />
</id>
<id name="id2">
<column name="hwBusesSupported Seq" insertable="false"
updatable="false" />
<generated-value strategy="TABLE" />
</id>
<id name="id3">
<column name="hwCards_ Seq" insertable="false"
updatable="false" />
<generated-value strategy="TABLE" />
</id>
<many-to-one name="endl" target-entity="node">
<join-column name="Device ID" insertable="false"
updatable="false" />
</many-to-one>
<one-to-one name="end2" target-entity="card">
<join-column name="Device ID" referenced-column-
name="Device ID" insertable="false" updatable="false" />
<join-column name="hwBusesSupported Seq" referenced-
column-name="hwBusesSupported Seq" insertable="false"
updatable="false" />
<join-column name="hwCards_ Seq" referenced-column-
name="hwCards Seq" insertable="false" updatable="false" />
</one-to-one>

Page 144 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

</attributes>
</entity>
</entity-mappings>

Using Transformations

In the following example, the generic enum transformer is converted from values 1, 2, 3 to values
a, b, c respectively in the name column.

The mapping file is generic-enum-transformer-example.xml.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-
value-action="return-original"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="../META-CONF/generic-enum-
transformer.xsd">

<value CMDB-value="1" external-DB-value="a" />

<value CMDB-value="2" external-DB-value="b" />

<value CMDB-value="3" external-DB-value="c" />
</enum-transformer>

Simplified Definition

<CMDB-class CMDB-class-name="node" default-table-name="Device">
<primary-key column-name="Device ID" />
<reconciliation-by-two-nodes connected-node-CMDB-class-
name="1ip address"
CMDB-link-type="containment">
<or>
<attribute CMDB-attribute-name="name" column-
name="Device Name"
from-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.
transform.impl.GenericEnumTransformer (generic-enum-
transformer-example.
xml)" to-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.
transform.impl.GenericEnumTransformer (generic-enum-
transformer-example.
xml)" />
<connected-node-attribute CMDB-attribute-name="name"
column-name="Device PreferredIPAddress" />
</or>
</reconciliation-by-two-nodes>
</CMDB-class>

Advanced Definition
There is a change only to the transformation.txt file.
The transformation.txt File

Make sure that the attribute names and entity names are the same as in the orm. xm1 file.

Page 145 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

entity[node] attribute[name]

to DB _
class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer (generic-enum-transformer-example.xml)] from DB
class

[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer (generic-enum-transformer-example.xml)]

Adapter Log Files

To understand the calculation flows and adapter lifecycle, and to view debug information, you can
consult the following log files.

This section includes the following topics:

e "Log Levels" below

¢ "Log Locations" below

Log Levels

You can configure the log level for each of the logs.

In a text editor, open the C:\\hp\UCMDB\UCMDB Server\confillog\
femdb.gdba.properties
file.

The default log level is ERROR:

#loglevel can be any of DEBUG INFO WARN ERROR FATAL
loglevel=ERROR

e Toincrease the log level for all log files, change loglevel=ERROR to loglevel=DEBUG or
loglevel=INFO.

« To change the log level for a specific file, change the specific log4j category line accordingly.
For example, to change the log level of fcmdb.gdba.dal.sql.log to INFO, change:

log4j.category.fcmdb.gdba.dal.SQL=${loglevel}, fcmdb.gdba.dal.3QL.appender
to:

log4dj.category.fcmdb.gdba.dal.SQL=INFO, fcmdb.gdba.dal.SQL.appender

Log Locations
The log files are located in the C:\hp\UCMDB\UCMDB Server\runtime\logdirectory.
o Fcmdb.gdba.log

The adapter lifecycle log. Gives details about when the adapter started or stopped, and which
CITs are supported by this adapter.

Consult for initiation errors (adapter load/unload).
o fcmdb.log

Consult for exceptions.

Page 146 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

e cmdb.log
Consult for exceptions.
¢ Fcmdb.gdba.mapping.engine.log

The mapping engine log. Gives details about the reconciliation TQL query that the mapping
engine uses, and the reconciliation topologies that are compared during the connect phase.

Consult this log when a TQL query gives no results even though you know there are relevant Cls
in the database, or the results are unexpected (check the reconciliation).

¢ Fcmdb.gdba.TQL.log
The TQL log. Gives details about the TQL queries and their results.

Consult this log when a TQL query does not return results and the mapping engine log shows
that there are no results in the federated data source.

o Fcmdb.gdba.dal.log
The DAL lifecycle log. Gives details about CIT generation and database connection details.

Consult this log when you cannot connect to the database or when there are CITs or attributes
that are not supported by the query.

¢ Fcmdb.gdba.dal.command.log

The DAL operations log. Gives details about internal DAL operations that are called. (This log is
similarto cmdb.dal.command. log).

o Fcmdb.gdba.dal.SQL.log

The DAL SQL queries log. Gives details about called JPAQLs (object oriented SQL queries) and
their results.

Consult this log when you cannot connect to the database or when there are CITs or attributes
that are not supported by the query.

o« Fcmdb.gdba.hibrnate.log

The Hibernate log. Gives details about the SQL queries that are run, the parsing of each JPAQL
to SQL, the results of the queries, data regarding Hibernate caching, and so on. For details on
Hibernate, see "Hibernate as JPA Provider" on page 87.

External References

For details on the JavaBeans 3.0 specification, see
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html.

Troubleshooting and Limitations
This section describes troubleshooting and limitations for the generic database adapter.
General Limitations
e SQL Server NTLM authentication is not supported.

 When you update an adapter package, use Notepad++, UltraEdit, or some other third-party text

Page 147 of 281 HP Universal CMDB (9.05)

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

Developer Reference Guide
Chapter 5: Developing Generic Database Adapters

editor rather than Notepad (any version) from Microsoft Corporation to edit the template files.
This prevents the use of special symbols, which cause the deployment of the prepared package
tofail.

JPA Limitations

All tables must have a primary key column.

CMDB class attribute names must follow the JavaBeans naming convention (for example,
names must start with lower case letters).

Two Cls that are connected with one relationship in the class model must have direct
association in the database (for example, if node is connected to ticket there must be a
foreign key or linkage table that connects them).

Several tables that are mapped to the same CIT must share the same primary key table.

Functional Limitations

You cannot create a manual relationship between the CMDB and federated CITs. To be able to
define virtual relationships, a special relationship logic must be defined (it can be based on
properties of the federated class).

Federated CITs cannot be trigger CITs in an impact rule, but they can be included in an impact
analysis TQL query.

A federated CIT can be part of an enrichment TQL, but cannot be used as the node on which
enrichment is performed (you cannot add, update, or delete the federated CIT).

Using a class qualifier in a condition is not supported.

Subgraphs are not supported.

Compound relationships are not supported.

The external CI CMDB1id is composed from its primary key and not its key attributes.

A column of type bytes cannot be used as a primary key column in Microsoft SQL Server.

TQL query calculation fails if attribute conditions that are defined on a federated node have not
had their names mapped in the orm.xml file.

The Generic DB Adapter does not support Windows Authentication for SQL Server.

Page 148 of 281 HP Universal CMDB (9.05)

Chapter 6

Developing Java Adapters

This chapter includes:

Federation Framework Overview. 149
Adapter and Mapping Interaction with the Federation Framework_........ 153
Federation Framework for Federated TQL Queries. 154

Interactions between the Federation Framework, Server, Adapter, and Mapping

ENGiNe 155
Federation Framework Flow for Population.... 163
Adapter Interfaces. L 164
Debug Adapter ReSOUICes.l 166
Add an Adapter for a New External Data Source..................... ... 166
Implement the Mapping Engine 173
Create a Sample Adapter. 175
XML Configuration Tags and Properties........ 176

Federation Framework Overview

Note:

e The term relationship is equivalent to the term link.
o Theterm Cl is equivalent to the term object.

e A graphis a collection of nodes and links.

o Foraglossary of definitions and terms, see Glossary in the HP Universal CMDB
Administration Guide.

The Federation Framework functionality uses an API to retrieve information from federated
sources. The Federation Framework provides three main capabilities:

o Federation on the fly. All queries are run over original data repositories and results are built on
the fly in the CMDB.

o Population. Populates data (topological data and Cl properties) to the CMDB from an external
data source.

o Data Push. Pushes data (topological data and CI properties) from the local CMDB to a remote
data source.

Page 149 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 6: Developing Java Adapters

All action types require an adapter for each data repository, which can provide the specific
capabilities of the data repository and retrieve and/or update the required data. Every request to the
data repository is made through its adapter.

This section also includes the following topics:

o "Federation on the Fly" below

o "Data Push" on next page

o "Population" on page 152

Federation on the Fly

Federated TQL queries enables data retrieval from any external data repository without replicating

its data.

A federated TQL query uses adapters that represent external data repositories, to create
appropriate external relationships between Cls from different external data repositories and the

UCMDB Cls.

Example of Federation-on-the-Fly Flow:

1. The Federation Framework splits a federated TQL query into several subgraphs, where all
nodes in a subgraph refer to the same data repository. Each subgraph is connected to the
other subgraphs by a virtual relationship (but itself contains no virtual relationships).

FTQAL

Split to two
sub graphs

——

Split FTQL

2. After the federated TQL query is split into subgraphs, the Federation Framework
calculates each subgraph's topology and connects two appropriate subgraphs by creating
virtual relationships between the appropriate nodes.

Page 150 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

UCMDB sub graph
result

Service Center sub
graph result

The FTQL topolo

result

3. Afterthe federated TQL topology is calculated, the Federation Framework retrieves a

layout for the topology result.

TaL

CMDE

Service Center

MTraz it ::
ﬂ“

Mapping Engine

@H...‘.l.,
(i) = ()

Federated TQL Result

1 4
podm pode

Data Push

You use the data push flow to synchronize data from your current local CMDB to a remote service

or target data repository.

In data push, data repositories are divided into two categories: source (local CMDB) and target.
Data is retrieved from the source data repository and updated to the target data repository. The data

Page 151 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

push process is based on query names, meaning that data is synchronized between the source
(local CMDB) and target data repositories, and is retrieved by a TQL query name from the local
CMDB.

The data push process flow includes the following steps:
1. Retrieving the topology result with signatures from the source data repository.
2. Comparing the new results with the previous results.

3. Retrieving a full layout (that is, all Cl properties) of Cls and relationships, for changed results
only.

4. Updating the target data repository with the received full layout of Cls and relationships. If any
Cls orrelationships are deleted in the source data repository and the query is exclusive, the
replication process removes the Cls or relationships in the target data repository as well.

The CMDB has 2 hidden data sources (hiddenRMIDataSource and
hiddenChangesDataSource), which are always the “source' data source in data push flows. To
implement a new adapter for data push flows, you only have to implement the “target' adapter.

Population

You use the population flow to populate the CMDB with data from external sources.

The flow always uses one 'source' data source to retrieve the data, and pushes the retrieved data to
the Probe in a similar process to the flow of a discovery job.

To implement a new adapter for population flows, you only have to implement the source adapter,
sine the Data Flow Probe acts as the target.

The adapter in the population flow is executed on the Probe. Debugging and logging should be done
on the Probe and not on the CMDB.

The population flow is based on query names, that is, data is synchronized between the source
data repository and the Data Flow Probe, and is retrieved by a query name in the source data
repository. For example, in UCMDB, the query name is the name of the TQL query. However, in
another data repository the query name can be a code name that returns data. The adapter is
designed to correctly handle the query name.

Each job can be defined as an exclusive job. This means that the Cls and relationships in the job
results are unique in the local CMDB, and no other query can bring them to the target. The adapter
of the source data repository supports specific queries, and can retrieve the data from this data
repository. The adapter of the target data repository enables the update of retrieved data on this
data repository.

SourceDataAdapter Flow

o Retrieves the topology result with signatures from the source data repository.
o Compares the new results with the previous results.

o Retrieves afull layout (that is, all Cl properties) of Cls and relationships, for changed results
only.

o Updates the target data repository with the received full layout of Cls and relationships. If any

Page 152 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Cls orrelationships are deleted in the source data repository and the query is exclusive, the
replication process removes the Cls or relationships in the target data repository as well.

SourceChangesDataAdapter Flow

o Raetrieves the topology result that occurred since the last date given.

o Retrieves afull layout (that is, all Cl properties) of Cls and relationships, for changed results
only.

o Updates the target data repository with the received full layout of Cls and relationships. If any
Cls orrelationships are deleted in the source data repository and the query is exclusive, the
replication process removes the Cls or relationships in the target data repository as well.

PopulateDataAdapter Flow

« Retrieves the full topology with requested layout result.
o Uses the topology chunk mechanism to retrieve the data in chunks.
o The probe filters out any data that was already brought in earlier runs

« Updates the target data repository with the received layout of Cls and relationships. If any Cls or
relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the Cls or relationships in the target data repository as well.

PopulateChangesDataAdapter Flow

¢ Retrieves the topology with requested layout result that has changes since the last run.
¢ Uses the topology chunk mechanism to retrieve the data in chunks.
o The probe filters out any data that was already brought in earlier runs (including this flow).

o Updates the target data repository with the received layout of Cls and relationships. If any Cls or
relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the Cls or relationships in the target data repository as well.

Adapter and Mapping Interaction with the Federation Framework

An adapter is an entity in UCMDB that represents external data (data that is not saved in UCMDB).
In federated flows, all interactions with external data sources are performed through adapters. The
Federation Framework interaction flow and adapter interfaces are different for replication and for
federated TQL queries.

This section also includes the following topics:

o "Adapter Lifecycle" below

o "Adapter assist Methods" on next page

Adapter Lifecycle

An adapter instance is created for each external data repository. The adapter begins its lifecycle
with the first action applied to it (such as, calculate TQLorretrieve/update data). When
the start method is called, the adapter receives environmental information, such as the data
repository configuration, logger, and so on. The adapter lifecycle ends when the data repository is

Page 153 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

removed from the configuration, and the shutdown method is called. This means that the adapter is
stateful and can contain the connection to the external data repository if it is required.

Adapter assist Methods

The adapter has several assist methods that can add external data repository configurations.
These methods are not part of the adapter lifecycle and create a new adapter each time they are
called.

o The first method tests the connection to the external data repository for a given configuration.
testConnection can be executed either on the UCMDB server or the Data Flow Probe,
depending on the type of adapter.

o The second method is relevant only for the source adapter and returns the supported queries for
replication. (This method is executed on the Probe only.)

o The third method is relevant only for federation and population flows, and returns supported
external classes by the external data repository. (This method is executed on the UCMDB
server.)

All these methods are used when you create or view integration configurations.
Federation Framework for Federated TQL Queries
This section includes the following topics:

e "Definitions and Terms" below

o "Mapping Engine" on next page

o "Federated Adapter" on next page

See "Interactions between the Federation Framework, Server, Adapter, and Mapping Engine" on
next page for diagrams illustrating the interactions between the Federation Framework, UCMDB,
adapter, and Mapping Engine.

Definitions and Terms

Reconciliation data. The rule for matching Cls of the specified type that are received from the
CMDB and the external data repository. The reconciliation rule can be of three types:

« ID reconciliation. This can be used only if the external data repository contains the CMDB ID
of reconciliation objects.

« Property reconciliation. This is used when the matching can be done by properties of the
reconciliation Cl type only.

« Topology reconciliation. This is used when you need the properties of additional CITs (not
only of the reconciliation CIT) to perform a match on reconciliation Cls. For example, you can
perform reconciliation of the node type by the name property that belongs tothe ip
address CIT.

Reconciliation object. The object is created by the adapter according to received reconciliation
data. This object should refer to an external Cl and is used by the Mapping Engine to connect
between the external Cls and the CMDB Cls.

Reconciliation ClI type. The type of Cls that represent reconciliation objects. These Cls must be
stored in both the CMDB and in the external data repositories.

Page 154 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Mapping engine. A component that identifies relations between Cls from different data
repositories that have a virtual relationship between them. The identification is performed by
reconciling CMDB reconciliation objects and external Cl reconciliation objects.

Mapping Engine

Federation Framework uses the Mapping Engine to calculate the federated TQL query. The
Mapping Engine connects between Cls that are received from different data repositories and are
connected by virtual relationships. The Mapping Engine also provides reconciliation data for the
virtual relationship. One end of the virtual relationship must refer to the CMDB. This endis a
reconciliation type. Forthe calculation of the two subgraphs, a virtual relationship can start
from any end node.

Federated Adapter

The Federated adapter brings two kinds of data from external data repositories: external Cl data and
reconciliation objects that belong to external Cls.

o External Cl data. The external data that does not exist in the CMDB. It is the target data of the
external data repository.

« Reconciliation object data. The auxiliary data that is used by the federation framework to
connect between CMDB Cls and external data. Each reconciliation object should refer to an
External Cl. The type of reconciliation object is the type (or subtype) of one of the virtual
relationship ends from which data is retrieved. Reconciliation objects should fit the adapter
received to reconciliation data. The reconciliation object can be one of three types:
IdReconciliationObject, PropertyReconciliationObject, Or
TopologyReconciliationObject.

In the DataAdapter-based interfaces (DataAdapter, PopulateDataAdapter, and
PopulateChangesDataAdapter), the reconciliation is requested as part of the query definition.

Interactions between the Federation Framework, Server, Adapter,
and Mapping Engine

The following diagrams illustrate the interactions between the Federation Framework, UCMDB
Server, the adapter, and the Mapping Engine. The federated TQL query in the example diagrams
has only one virtual relationship, so that only the UCMDB and one external data repository are
involved in the federated TQL query.

This section includes the following topics:

e "Calculation Starts at the Server End" below

o "Calculation Starts at the External Adapter End" on page 158

o "Example of Federation Framework Flow for Federated TQL Queries" on page 159

In the first diagram the calculation begins in the UCMDB and in the second diagram in the external
adapter. Each step in the diagram includes references to the appropriate method call of the adapter
or mapping engine interface.

Calculation Starts at the Server End

The following sequence diagram illustrates the interaction between the Federation Framework,
UCMDB, the adapter, and the Mapping Engine. The federated TQL query in the example diagram

Page 155 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

has only one virtual relationship, so that only UCMDB and one external data repository are involved
in the federated TQL query.

| : FTOL client % | | Federation framework | | Mapping Engine | | UCMDB | | External Adapter |

I
2. analyze pattern l
|
|
|

3. run userTGL sub pattern

12 run adhoc FTgl (Tgl Patterng |

*
L _ _ _ _ _ _ ExternalTopologyResut _ _ | _ _ _ _ _ []
4: getReconciliationData() , ! I
|
le — — _— _ EBeconciligtonData _ _ _ _ _ 'U |
5. get required reconciliation data of Cls from step 3 |

P

|
e — — — — — — _— ExternalTopologyResult . | _ _ _ _ _

6. getReconcilistionDatalreconcilistion ohjects from step 5), | |
|
ReconciliationData |

7. getTopologyWithReconciligtionData(userTQL sub baﬂern, reconciliation datd from step 4) o

| |
e — — - - — E)Qerr@ng_:olg_!R?ﬁurl _____ — === 'U
& connect{result from step 5, result from step 7) -l
*

Map{ExternalCild, Callection{ExternalCild))

|

|

|

9. create instances of virtual relationships | |
| |

| |

|

|

i

|
10: get Pattern required layout for recieved TopologyCls and Topology relations
»

le _ Patternresut | |

The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for a federated TQL calculation.

2 The Federation Framework analyzes the adapter, finds the virtual relationship, and
divides the original TQL into two sub-adapters—one for UCMDB and one for the
external data repository.

3 The Federation Framework requests the topology of the sub-TQL from UCMDB.

Page 156 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Number Explanation

4 After receiving the topology results, the Federation Framework calls the appropriate
Mapping Engine for the current virtual relationship and requests reconciliation data.
The reconciliationObject parameteris empty at this stage, that is, no condition
is added to reconciliation data in this call. The returned reconciliation data defines
which data is needed to match the reconciliation Cls in UCMDB to the external data
repository. The reconciliation data can be one of the following types:

¢ IdReconciliationData. Cls are reconciled according to their ID.

o PropertyReconciliationData. Cls are reconciled according to the properties of
one of the Cls.

o TopologyReconciliationData. Cls are reconciled according to the topology (for
example, to reconcile node Cls, the IP address of IP is required too).

5 The Federation Framework requests reconciliation data for the Cls of the virtual
relationship ends that were received in step "3" on previous page from UCMDB.

6 The Federation Framework calls the Mapping Engine to retrieve the reconciliation
data. In this state (by contrast with step "3" on previous page), the Mapping Engine
receives the reconciliation objects from step "5" above as parameters. The Mapping
Engine translates the received reconciliation object to the condition on the
reconciliation data.

7 The Federation Framework requests the topology of the sub-TQL from the external
data repository. The external adapter receives the reconciliation data from step "6"
above as a parameter.

8 The Federation Framework calls the Mapping Engine to connect between the received
results. The firstResult parameter is the external topology result received from
UCMDB in step "5" above and the secondResult parameter is the external topology
result received from the External Adapter in step "7" above. The Mapping Engine
returns a map where External CI ID from the first data repository (UCMDB in this
case) is mapped to the External Cl IDs from the second (external) data repository.

9 For each mapping, the Federation Framework creates a virtual relationship.

10 After the calculation of the federated TQL query results (only at the topology stage),
the Federation Framework retrieves the original TQL layout for the resulting Cls and
relationships from the appropriate data repositories.

Page 157 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Calculation Starts at the External Adapter End

:FTOL client ;% | | Federation framework | | Mapping Engine |

| UCMDB | | External Adapter

I I I
il run achoc FTgl (Tl Pattern), |

2. analyze pattern
|

4 getReconcilistionDatalempty reconcilistion objects collection)|

ReconciliationData

|
3 getTopology(userTEL sub pattern)
T

3 getTopologyWithReconciliationData(pattern with id condition gn Cis from step 3, recong

F: getReconcilistionData(reconcilistion objects from step 5) |

ReconcilistionData

liation data from step4
|
- — - - - — —

9: create instances of virtual relationships

e — — — _ [DLeconclatonata
7 run userTOL sub pattern with reconcilistion datd from step S .
¥
ke — — — — _ _ E ExternalTopolgyResut e U
|
8. connect{result from step 5, result from step 7) .
le — Map(ExternalCid, Collection(ExternalCild)) _

10: get Pattern required layout for recieved TopologyCls arﬁ Topology relations
¥

ke — — — — — — s andReEtions wih layout - — -

11: getClsLayoutl) or getReIatllonsLayom(j

Pattern result

The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for an federated TQL calculation.

external data repository.

2 The Federation Framework analyzes the adapter, finds the virtual relationship, and
divides the original TQL into two sub-adapters — one for UCMDB and one for the

3 The Federation Framework requests the topology of the sub-TQL from the External
Adapter. The returned ExternalTopologyResult is not supposed to contain
any reconciliation object, since the reconciliation data is not part of the request.

Page 158 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Number Explanation

4

After receiving the topology results, the Federation Framework calls the appropriate
Mapping Engine with the current virtual relationship and requests reconciliation
data. The reconciliationObjects parameteris empty at this state, that is, no
condition is added to the reconciliation data in this call. The returned reconciliation
data defines what data is needed to match the reconciliation Cls in UCMDB to the
external data repository. The reconciliation data can be one of three following types:

+ IdReconciliationData. Cls are reconciled according to their ID.

« PropertyReconciliationData. Cls are reconciled according to the properties of
one of the Cls.

o TopologyReconciliationData. Cls are reconciled according to the topology (for
example, to reconcile node Cls, the IP address of IP is required too).

The Federation Framework requests reconciliation objects for the Cls that were
received in step 3 from the external data repository. The Federation Framework
calls the getTopologyWithReconciliationData() method in the External Adapter,
where the requested topology is a one-node topology with Cls received in step 3 as
the ID condition and reconciliation data from step 4.

The Federation Framework calls the Mapping Engine to retrieve the reconciliation
data. In this state (by contrast with step 3), the Mapping Engine receives the
reconciliation objects from step 5 as parameters. The Mapping Engine translates
the received reconciliation object to the condition on the reconciliation data.

The Federation Framework requests the topology of the sub-TQL with reconciliation
data from step 6 from UCMDB.

The Federation Framework calls the Mapping Engine to connect between the
received results. The firstResult parameteris the external topology result
received from the External Adapter at step 5 and the secondResult parameteris
the external topology result received from UCMDB at step 7. The Mapping Engine
returns a map where the External ClI ID from the first data repository (the external
data repository in this case) is mapped to the External ClI IDs from the second data
repository (UCMDB).

For each mapping, the Federation Framework creates a virtual relationship.

10

After the calculation of the federated TQL query results (only at the topology stage),
the Federation Framework retrieves the original TQL layout for the resulting Cls and
relationships from the appropriate data repositories.

Example of Federation Framework Flow for Federated TQL Queries

This example explains how to view all open incidents on specific nodes. The ServiceCenter data
repository is the external data repository. The node instances are stored in UCMDB, and the
incident instances are stored in ServiceCenter. It is assumed that to connect the incident instances
to the appropriate node, the node and ip address properties of the host and IP are needed.
These are reconciliation properties that identify the nodes from ServiceCenterin UCMDB.

Page 159 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Layout={noda)
Condition=(node like "Mode:’)

Layout={create_time.status)
Condition={status=open)

Application

Note: For attribute federation, the adapter's getTopology method is called. The reconciliation
data is adapted in the user TQL (in this case, the CI element).

1. After analyzing the adapter, the Federation Framework recognizes the virtual relationship
between Node and Incident and splits the federated TQL query into two subgraphs:

UCMDB sub-graph

Layout=(nodea) .
Condiion=(node like ‘Modet") Service center

sub-graph

Lavout=(create_time status)
Condition=(status=open)

lication Incident
App

2. The Federation Framework runs the UCMDB subgraph to request the topology, and receives
the following results:

Page 160 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

UCMDEB sub-graph results

Yy

3. The Federation Framework requests, from the appropriate Mapping Engine, the reconciliation
data for the first data repository (UCMDB) that contains the information to connect between
received data from two data repositories. The reconciliation data in this case is:

Reconciliation Data

Layout: node

Mode

Layout: IP_address

IP address

4. The Federation Framework creates a one-node topology query with the Node and ID conditions
on it from the previous result (node in H1, H2, H3), and runs this query with the required
reconciliation data on UCMDB. The result includes Node Cls that are relevant to the ID
condition and the appropriate reconciliation object for each Cl:

Page 161 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 6: Developing Java Adapters

Results of getTopology with Reconciliation Data

Reconciliation Object

Node=Mode1

Ip_address=1.1.2.3

N2

P2

Reconciliation Object

MNode=Node2

|p_address=11

4123

Reconciliation Object

Node=Moded

N1

Ip_address=212234

IP1

5. The reconciliation data for ServiceCenter should contain a condition for node and ip that is
derived from the reconciliation objects received from UCMDB:

Reconciliation Data

Layout: node

MNode

| |

Condition: node in (Mode 1, Mode 2, Node 3)

Layout; ip

|

Condition: ipin {1.1.23, 11.11.2.4, 21.22.33.4)

6. The Federation Framework runs the ServiceCenter subgraph with the reconciliation data to
request the topology and appropriate reconciliation objects, and receives the following results:

Page 162 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

ServiceCenter Result of getTopology with Reconciliation Data
Reconciliation Object Reconciliation Object
Mode=Mode1 Mode=Nade2
N1 N2
|p_address=11.2.3 |p_address=11.11.2.4
IP1 P2
Reconciliation Object Reconciliation Object
Mode=MNode3 Mode=MNode3
N3 N3
Ip_address=2122.33.4 Ip_address=21.22.33.4
IP3 1P1

7. The result after connection in Mapping Engine and creating virtual relationships is:

Topolegy result of original TQL guery

8. The Federation Framework requests the original TQL layout for received instances from
UCMDB and ServiceCenter.

Federation Framework Flow for Population

This section includes the following topics:

Page 163 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

o "Definitions and Terms" below

o "Flow Diagram" below

Definitions and Terms

Signature. Denotes the state of properties in the Cl. If changes are made to property values in a
Cl, the Cl signature must also be changed. The CI signature helps to detect whether a Cl has
changed without retrieving and comparing all Cl properties. Both the CI and the CI signature are
provided by the appropriate adapter. The adapter is responsible for changing the Cl signature when
the ClI properties are altered.

Flow Diagram

The following sequence diagram illustrates the interaction between the Federation Framework and
the source and target adapters in a population flow:

Federation framework | | data diff : DATA DIFF {CMDB store)g] | | source data adapter | | target data adapter
I I I

1: gt topogosgy weith signature -

e [
nil

|
3 get links|and objects that was changesd o

|
|
|
| 4. updste changed objects and links
|
|
|

5 zave newy topology

= |

1. The Federation Framework receives the topology for the query result from the source adapter.
The adapter recognizes the query by its name and runs it on the external data repository. The
topology result contains the ID and signature for each CI and relationship in the result. The ID
is the logical ID that defines the Cl as unique in the external data repository. The signature
should be maodified if the CI or relationship is modified.

2. The Federation Framework uses signatures to compare the newly received topology query
results with the saved ones, and to determine which Cls have changed.

3. After the Federation Framework finds the Cls and relationships that have changed, it calls the
source adapter with the IDs of the changed Cls and relationships as a parameter to retrieve
their full layout.

4. The Federation Framework sends the update to the target adapter. The target adapter updates
the external data source with the received data.

5. After the update, the Federation Framework saves the last query result.

Adapter Interfaces

This section includes the following topics:

Page 164 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

o "Definitions and Terms" below

o "Adapter Interfaces for Federated TQL Queries" below

Definitions and Terms

External Relation. The relation between two external Cl types that are supported by the same
adapter.

Adapter Interfaces for Federated TQL Queries

Use the appropriate adapter interface for each adapter, as follows.

« Aone Node topology interface is used when the adapter does not support any external
relations; that is, the adapter is never meant to receive a request with more than one external ClI.
All OneNode interfaces are created to simplify the workflow; for those cases where you need to
use a more extensive query, use the DataAdapter interface.

o A DataAdapter interface is used to define adapters that support complex federated queries.
The reconciliation request in these adapters is part of the single QueryDefinition parameter.
These adapters may also be used for Population.

o Pattern topology interface (Deprecated as of UCMDB 9.00)

OneNode Interfaces

The following interfaces have different types of reconciliation data:

« OneNodeTopologyldReconciliationDataAdapter. Use if the adapter supports a single-node
TQL and the reconciliation between data repositories is calculated by the ID.

« OneNodeTopologyPropertyReconciliationDataAdapter. Use if the adapter supports a
single-node TQL and the reconciliation between data repositories is done by the properties of
one ClI.

« OneNodeTopologyDataAdapter. Use if the adapter supports a single-node TQL and the
reconciliation between data repositories is done by topology.

Data Adapter Interfaces

« DataAdapter. Use this adapter to support complex federated TQL queries. Allows the most
diversity.

« PopulateDataAdapter. Use this adapter to support complex federated TQL queries and
population flows. In a population flow, this adapter retrieves the entire data set, and lets the
probe filter the difference since the last execution of the job.

« PopulateChangesDataAdapter. Use this adapter to support complex federated TQL queries
and population flows. In a population flow, this adapter supports the retrieval of only the changes
that occurred since the last execution of the job.

Note: When developing an adapter that may return large data sets of data, its important to
allow chunking by implementing the ChunkGetter Interface. See the Java document of the
specific adapter for more information.

Page 165 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Pattern Topology Interfaces (Deprecated as of UCMDB 9.00)

The following interfaces have different types of reconciliation data:

« PatternTopologyldReconciliationDataAdapter. Use if the adapter supports a complex TQL
and the reconciliation between data repositories is done by the ID.

« PatternTopologyPropertyReconciliationDataAdapter. Use if the adapter supports a
complex TQL and the reconciliation between data repositories is done by single-node
properties.

« PatternTopologyDataAdapter. Use if the adapter supports a complex TQL and the
reconciliation between data repositories is done by topology.

Additional Interfaces

« SortResultDataAdapter. Use if you can sort the resulting Cls in the external data repository.

« FunctionalLayoutDataAdapter. Use if you can calculate the functional layout in the external
data repository.

Adapter Interfaces for Synchronization

o SourceDataAdapter. Use for source adapters in population flows.

o TargetDataAdapter. Use for target adapters in data push flows.

Debug Adapter Resources

This task describes how to use the JMX console to create, view, and delete adapter state
resources (any resources created using the resource manipulation methods in the
DataAdapterEnvironment interface, which are saved in the UCMDB database or the Probe
database) for debugging and development purposes.

1. Launch the Web browser and enter the server address, as follows:

= Forthe UCMDB server: http://localhost:8080/jmx-console

m Forthe Probe: http://localhost:1977

You may have to log in with a user name and password (the defaults are sysadmin/sysadmin).
2. Toopenthe JMX MBEAN View page, do one of the following:

= Onthe UCMDB server: click
UCMDB:service=FCMDB Adapter State Resource Services

= Onthe Probe: click type=AdapterStateResources
3. Entervalues in the operations that you want to use, and click Invoke.
Add an Adapter for a New External Data Source
This task explains how to define an adapter to support a new external data source.

This task includes the following steps:

Page 166 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

e "Prerequisites" below

o "Define Valid Relationships for Virtual Relationships" below

o "Define an Adapter Configuration" on next page

o "Define Supported Classes" on page 171

o "Implement the Adapter" on page 172

o "Define Reconciliation Rules or Implement the Mapping Engine" on page 172

o "Add Jars Required for Implementation to the Class Path" on page 172

o "Deploy the Adapter" on page 172

o "Update the Adapter" on page 173

1. Prerequisites

Model-supported adapter classes for Cls and relationships in the UCMDB Data Model. As an
adapter developer, you should:

= have knowledge of the hierarchy of the UCMDB CI types to understand how external CITs
are related tothe UCMDB CITs

= model the external CITs in the UCMDB class model
= add the definitions for new Cl types and their relationships

= define valid relationships in the UCMDB class model for the valid relationships between
adapter inner classes. (The CITs can be placed at any level of the UCMDB class model
tree.)

Modeling should be the same regardless of federation type (on the fly or replication). For details
on adding new CIT definitions to the UCMDB class model, see Working with the Cl Selectorin
the HP Universal CMDB Modeling Guide.

For the adapter to support federated attributes on CITs, add this CIT to the supported classes
with supported attributes and the reconciliation rule for this CIT.

2. Define Valid Relationships for Virtual Relationships
Note: This section is relevant only for federation.
To retrieve federated CITs that are connected to local CMDB CITs, a valid link definition must
exist between the two CITs in the CMDB.

a. Create avalid links XML file that contains these links (if they do not already exist).

b. Add the links XML file to the adapter package in the \validlinks folder. For details, see
"Package Manager" in the HP Universal CMDB Administration Guide.

Page 167 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Example of Valid Relationship Definition:

In the following example, the relation of type containment between instances of
type node to instances of type myclass1 is a valid relationship definition.

<Valid-Links>
<Valid-Link>
<Class-Ref class-name="containment">
<Endl class-name="node">
<End2 class-name="myclassl">
<Valid-Link-Qualifiers>
</Valid-Link>
</Valid-Links>

3. Define an Adapter Configuration

a. Navigate to Adapter Management.

b. Click the Create new resource " button.
c. Inthe New adapter dialog box, select Integration and Java Adapter.

d. Right-click on the adapter that you created and select Edit Adapter Source from the
shortcut menu.

e. Edit the following XML tags:

<pattern xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
id="newAdapterIdName"
xsi:noNamespaceSchemalLocation="../../Patterns.xsd"
description="Adapter Description”" schemaVersion="9.0"
displayName="New Adapter Display Name">

<deletable>true</deletable>
<discoveredClasses>
<discoveredClass>link</discoveredClass>
<discoveredClass>object</discoveredClass>
</discoveredClasses>

<taskInfo
className="com.hp.ucmdb.discovery.probe.services.dynamic.core.
AdapterService">

<params
className="com.hp.ucmdb.discovery.probe.services.dynamic.core.
AdapterServiceParams" enableAging="true"
enableDebugging="false" enableRecording=

"false" autoDeleteOnErrors="success" recordResult="false"

Page 168 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

maxThreads="1" patternType="java adapter"
maxThreadRuntime="25200000">

<className>com.yourCompany.adapter.MyAdapter.MyAdapterClass
</className>

</params>

<destinationInfo
className="com.hp.ucmdb.discovery.probe.tasks.BaseDestinationData">

<!-- check -->

<destinationData name="adapterId"
description="">${ADAPTER.adapter id}</destinationData>

<destinationData name="attributeValues"
description="">${SOURCE.attribute values}</destinationData>

<destinationData name="credentialsId"
description="">${SOURCE.credentials id}</destinationData>

<destinationData name="destinationId"
description="">${SOURCE.destination id}</destinationData>

</destinationInfo>
<resultMechanism isEnabled="true">
<autoDeleteCITs isEnabled="true">
<CIT>1ink</CIT>

<CIT>object</CIT>
</autoDeleteCITs>
</resultMechanism>

</taskInfo>

<adapterInfo>
<adapter-capabilities>
<support-federated-query>

<!--<supported-classes/> <!—see the section about supported
classes——>

<topology>

<pattern-topology /> <!—or <one-node-topology> -->
</topology>

</support-federated-query>
<!--<support-replicatioin-data>

<source>

Page 169 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

<changes-source/>
</source>

<target/>
</adapter-capabilities>
<default-mapping-engine />
<queries />
<removedAttributes />

<full-population-days—-interval>-1</full-population-days-
interval>

</adapterInfo>

<inputClass>destination config</inputClass>
<protocols />

<parameters>

<!--The description attribute may be written in simple text or
HTML.-->

<!--The host attribute is treated as a special case by UCMDB-->

<!--and will automatically select the probe name (if possible)--
>
<!--according to this attribute’s value.-->

<parameter name="credentialsId" description="Special type of
property, handled by UCMDB for credentials menu" type="integer"
display-name="Credentials ID" mandatory="true" order-index="12"

/>

<parameter name="host" description="The host name or IP address
of the remote machine" type="string" display-name="Hostname/IP"
mandatory="false" order-index="10" />

<parameter name="port" description="The remote machine's
connection port" type="integer" display-name="Port"
mandatory="false" order-index="11" />

</parameters>

<parameter name="myatt" description="is my att true?"
type="string" display-name="My Att" mandatory="false" order-
index="15" valid-values="True;False”/>True</parameters>

<collectDiscoveredByInfo>true</collectDiscoveredByInfo>
<integration isEnabled="true">

<category >My Category</category>

Page 170 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

</integration>
<overrideDomain>${SOURCE.probe name}</overrideDomain>
<inputTQL>

<resource:XmlResourceWrapper
xmlns:resource="http://www.hp.com/ucmdb/1-0-
0/ResourceDefinition" xmlns:ns4="http://www.hp.com/ucmndb/1-0-
0/ViewDefinition" xmlns:tgl="http://www.hp.com/ucmdb/1-0-
0/TopologyQueryLanguage">

<resource xsi:type="tqgl:Query" group-id="2" priority="low" is-
live="true" owner="Input TQL" name="Input TQL">

<tgl:node class="adapter config" id="-11" name="ADAPTER" />
<tgl:node class="destination config" id="-10" name="SOURCE" />

<tgl:1link to="ADAPTER" from="SOURCE" class="fcmdb conf
aggregation" id="-12" name="fcmdb conf aggregation" />

</resource>
</resource:XmlResourceWrapper>
</inputTQL>

<permissions />

</pattern>

For details about the XML tags, see "XML Configuration Tags and Properties " on page 176.

4. Define Supported Classes

Define supported classed either the adapter code by implementing the getSupportedClasses()
method, or by using the pattern XML file.

<supported-classes>
<supported-class name="HistoryChange" is-derived="false" is-
reconciliation-supported="false" federation-not-supported="false"
is-id-reconciliation-supported="false">
<supported-conditions>
<attribute-operators attribute-name="change create time">
<operator>GREATER</operator>
<operator>LESS</operator>
<operator>GREATER OR_EQUAL</operator>
<operator>LESS OR EQUAL</operator>
<operator>CHANGED DURING</operator>
</attribute-operators>
</supported-conditions>
</supported-class>

name The name of the Cl type

Page 171 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

5.

is-derived Specifies whether this definition includes all inheriting children
is- Specifies whether this class is used for reconciliation
reconciliation-
supported
is-id- Specifies whether this class is used for id-reconciliation
reconciliation-
supported
federation-not- | Specifies whether this CIT should not be allowed for federation (blocking
supported certain CITs, for example, a CIT defined solely for federation)
<supported- Specifies the supported conditions on each attribute
conditions>

Implement the Adapter

Select the correct adapter implementation class according to its defined capabilities. The
adapter implementation class implements the appropriate interfaces according to defined
capabilities.

Define Reconciliation Rules or Implement the Mapping Engine

If your adapter supports federated TQL queries, you have three options for defining your
Mapping Engine:

» Use the default CMDB 9.0x default mapping engine, which uses the CMDB's internal
reconciliation rules for mapping. To use it, leave the <default-mapping-engine> XML tag
empty.

For details, see "The reconciliation _types.txt file" on page 128.

= Use the CMDB 8.0x mapping engine. To do this, use the following XML Tag: <default-
mapping-
engine>com.hp.ucmdb.federation.mappingEngine.AdapterMappingEngine</default-
mapping-engine>

For details, see "The reconciliation rules.txt File (for backwards compatibility)" on page
128.

= Write your own mapping engine by implementing the mapping engine interface and placing
the JAR with the rest of the adapter code. To do this, use the following XML tag: <default-
mapping-engine>com.yourcompany.map.MyMappingEngine</default-mapping-
engine>

Add Jars Required for Implementation to the Class Path

To implement your classes, add the federation_api.jar file to your code editor class path.

Deploy the Adapter

Deploy the adapter package. For general details on deploying a package, see "Package
Manager" in the HP Universal CMDB Administration Guide.

The package should contain the following entities:

Page 172 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

= New CIT definition (optional):

= Used only if the adapter supports new ClI types that do not yet exist in UCMDB.
» The new CIT definitions are located in the c1ass folder in the package.

= New data type definition (optional):

= Used only if the new CITs require new data types.

= The new data type definitions are located in the t ypede f folder in the package.
= New valid relationships definition (optional):

= Used only if the adapter supports the federated TQL.

= The new valid relationships definitions are located in the validlinks folderin the
package.

= The pattern configuration XML file should be located in the di scoveryPatterns folderin
the package.

= Descriptor. Defines the package definitions.

= Place your compiled classes (normally a jar file) in the package under the
adapterCode\<adapter id> folder.

Note: The adapter id folder name has the same value as in the adapter
configuration.

= If you create your own configuration file, you should place the file in the package under the
adapterCode\<adapter id> folder.

9. Update the Adapter

Changes to any of the adapter's non-binary files may be made in the Adapter Management
module. Making changes to configuration files in the Adapter management module causes the
adapter to reload with the new configurations.

Updates may also be made by editing the files in the package (both binary and non-binary
files), and then redeploying the package by using the Package Manager. For details, see
"Deploy a Package" in the HP Universal CMDB Administration Guide.

Implement the Mapping Engine
The configuration of the mapping engine depends on which mapping engine you are using.
This task includes the following steps:

o "Configure the reconciliation types.txt File (for the UCMDB 9.0x default mapping engine) "
below

o "Configure the reconciliation_rules.txt File (for the UCMDB 8.0x mapping engine)" on next page

1. Configure the reconciliation_types.txt File (for the UCMDB 9.0x defaulit
mapping engine)

The file is used to define which Cl types are used for reconciliation in the adapter.

Page 173 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

Write each Cl types used for reconciliation on a single line, as follows:

node
business _application

Place the file in the adapter package in the adapterCode\<AdapterID>\META-INF\ folder. To
support ID reconciliation (reconciliation based on ID mapping between the CMDB ID in the
CMDB to a value on the remote database), you should map a special CMDB attribute called
cmdb_id to a column in the database of either the string (char, varchar) or byte[] (raw/bytes)

type.
2. Configure the reconciliation_rules.txt File (for the UCMDB 8.0x
mapping engine)

This file is used to configure the reconciliation rules. Each row in the file represents a rule. For
example:

reconcilition type[node] expression[”node.name OR ip address.name]
endl type[node] end2 type[ip address] link type[containment]

The reconcilition_type parameter is filled with the type of Cl on which the reconciliation is
performed (the UCMDB class name that is connected to the federated class in the TQL).

The expression parameter is the logic that decides whether two reconciliation objects are
equal (one reconciliation object from the UCMDB side and the other from the Federated
adapter side).

The expression is composed of ORs and ANDs.

The convention regarding attributes names in the expression part is
[className].[attributeName]. For example, the attribute ip_address in the ip class is written
ip.ip_address.

You can define ordered matches. The ordered match checks the first OR sub expression. If
two reconciliation objects have the value on the attributes of the sub expression and it returns
that false (the reconciliation objects are not equal) then the second OR sub expression is not
compared.

For an ordered match, use ordered expression instead of expression.
The circumflex sign (*) is used to ignore case during comparisons.

The other parameters (end1_type, end2_type, and link_type) are used only if the
reconciliation data contains two nodes and not just the node of the reconciliation type (the
topological reconciliation data). In this case, the reconciliation data is end1_type -(link_type)>
end2_type.

There is no need to add the relevant layout as it is retrieved from the expression.
To perform reconciliation by UCMDB ID, use emdb_id as the attribute name in expression.

Place the file in the adapter package in the adapterCode\<AdapteriD>\
META-INF\ folder.

Examples:

Page 174 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

= You can add a reconciliation rule for a node CIT only. This is because only node CITs have
valid relationships with external CITs. For example, a node Cl in the CMDB is matched to a
node Cl in ServiceCenter through the node . name attribute or through the ip
address.name attribute.

= The reconciliation rule in this case is a topology rule and the expression is ordered. The rule
performs the following checks on the Cls under comparison:

o Ifthe node.name attribute is equal, the rule matches the nodes.
o Ifthe node.name attribute is not equal, the rule does not match the nodes.

o Ifthe node . name attribute is null in one of the compared Cls, the rule checks the ip
address.name attribute. If the ip address.name attribute is equal, the rule matches
the nodes.

Create a Sample Adapter
This example illustrates how to create a sample adapter. This task includes the following steps:

o "Select Adapter Logic" below

o "Load the Project" below

1. Select Adapter Logic

When you implement an adapter, you must choose how to handle the condition logic in the
implementation (property conditions, ID conditions, reconciliation conditions, and link
conditions).

a. Retrieve the entire data into the adapter memory and let it select or filter the needed ClI
Instances.

b. Convert all the conditions into the data source language and let it filter and select the data.
For example:

o Convert the condition into a SQL query.
o Convert the condition into a Java APl filter object.

c. Filter some of the data on the remote service, and have the adapter select and filter the
remainder.

In the MyAdapter example, the logic in option a is used.

2. Load the Project

Copy the files from the C:\hp\UCMDB\UCMDBServer\tools\
adapter-dev-kit\SampleAdapters folder and follow the instructions in the readme files.

Note: If you use an adapter with large data sets, you may need to use caching and
indexing to improve performance for Federation.

Online javadocs documentation is available at:

C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\DBAdapterFramework_JavaAPl\index.html

Page 175 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

XML Configuration Tags and Properties

id="newAdapterldName" Defines the adapter's real name. Used for logs and
folder lookups

displayName="New Adapter Display Defines the adapter's display name, as it appears in

Name" the Ul.
<className>...</className> Defines the adapter's interface implementing the
Javaclass.

<category >My Category</category> Defines the adapter's category.

<parameters> Defines the properties for the configuration that are

available in the Ul when setting up a new integration
point.

name The name of the property (used mostly by code)

description The display hint of the property

type String or integer (use valid values with string for
Boolean).

display-name The name of the property in the Ul.

mandatory Specifies whether this configuration property is

mandatory for the user.

order-index The placing order of the property (small = up)

valid-values A list of possible valid values separated by ;'
characters (for example, valid-
values="Oracle;SQLServer;MySQL" or valid-
values="True;False").

<adapterinfo> Contains the definition of the adapter's static settings
and capabilities.

<support-federated- | Defines this adapter as capable of federation.
query>

<one-node-topology> | The ability to federated queries with one federated
query node.

<pattern-topology> The ability to federate complex queries.

<support-replicatioin- | Defines the capability to run data push and population
data> flows.

<source> This adapter may be used for population flows.

<changes-source> This adapter may be used for population changes
flows.

Page 176 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 6: Developing Java Adapters

<target> This adapter may be used for data push flows.
<default-mapping- Allows definition of a mapping engine for the adapter
engine> (by default, the adapter uses the default mapping

engine). For any other mapping engine, enter the
implementing class name of the mapping engine (for
the UCMDB 8.0x mapping engine use:
com.hp.ucmdb.federation.mappingEngine.
AdapterMappingEngine)

<removedAttributes> | Forces the removal of specific attributes from the

result.
<full-population- Specifies when to execute a full population job
days- instead of a differential job (every "x' days). Uses the
interval> aging mechanism together with the changes flow.

Page 177 of 281 HP Universal CMDB (9.05)

Chapter 7

Developing Push Adapters

This chapter includes:

Developing Push Adapters Overview. 178
Differential Synchronization. 178
Prepare the Mapping Files. 179
Write Jython Scripts. 181
Support Differential Synchronization.... 184
Build an Adapter Package. 186
Mapping File Schema. 188
Mapping Results Schema 200

Developing Push Adapters Overview

The Generic Push Adapter provides a platform that enables rapid development of integrations that
push UCMDB 9.0x data to external data repositories (databases and third-party applications).
Developing a custom integration based on Generic Push Adapter requires:

o An XML mapping file between the UCMDB ClI link types and the external data items.

o A Jython script to push the data items into the external data repository.

Differential Synchronization

For the Push adapter to support differential synchronization, the DiscoveryMain function must
return an object implementing the DataPushResults interface, which contains the mappings
between the IDs that the Jython script receives from the XML and the IDs that the Jython script
creates on the remote machine. The latter IDs are of the type Externalld.

The ExternalldUtil.restoreExternal command, which receives the ID of the Cl inthe CMDB as a
parameter, restores the external ID from the ID of the Cl in the CMDB. This command can be used,
for example, while performing differential synchronization, and a link is received where one of its
ends is not in the bulk (it was already synchronized).

If the DiscoveryMain method in the Jython script on which the Push adapter is based returns an
empty ObjectStateHolderVector instance, the adapter will not support differential synchronization.
This means that even when a differential synchronization job is run, in actuality, a full
synchronization is being performed. Therefore, no data can be updated or removed on the remote
system, since all data is added to the CMDB during each synchronization.

Page 178 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Prepare the Mapping Files

Note: You can retrieve all of the Cls and relationships as they are in the CMDB without
mapping by not creating the mappings.xml file. This will return all of the Cls and relationships

with all of their attributes.
There are two different ways to prepare mapping files:
¢ You can prepare a single, global mapping file.
All mappings are placed in a single file named mappings.xml.
o You can prepare a separate file for each push query.
Each each mapping file is called <query name>.xml.

For details, see "Mapping File Schema" on page 188.

This task includes the following steps:

"Create the Mapping File" below

e "Map Cls" below

o "Map Links " on next page

1. Create the Mapping File
The mapping file structure is created as follows:

<?xml version="1.0" encoding="UTF-8"?>

<integration>
<info>
<source name="UCMDB" versions="9.x" vendor="HP" >
<!-- for example: -->
<target name="Oracle" versions="11lg" vendor="Oracle" >
</info>
<targetcis>
<!--- CI Mappings --->
</targetcis>
<targetrelations>
<!--- Link Mappings --->
</ targetrelations>
</integration>
2. Map Cls

There are two ways to map CMDB Cl types:
= Map a Cl type so that Cls of that type and all inherited types are mapped in the same way:

<source ci type tree name="node" mode="update else insert">
<apioutputseg>1</apioutputseqg>
<target ci type name="host">

Page 179 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

<targetprimarykey>
<pkey>name</pkey>
</targetprimarykey
<target attribute name=" name" datatype="STRING">
<map type="direct" source attribute="name" >
</target attribute>
<!-- more target attributes --->
</target _ci type>
</source_ci type tree>

= Map a Cl type so that only Cls of that type will be processed. Cls of inherited types will not
be processed unless their type is also mapped (in one of the two ways):

<source ci type name="node" mode="update else insert">
<apioutputseg>1l</apioutputseqg>
<target ci type name="host">
<targetprimarykey>
<pkey>name</pkey>
</targetprimarykey
<target attribute name=" name" datatype="STRING">
<map type="direct" source attribute="name" >
</target attribute>
<!-- more target attributes --->
</target _ci type>
</source_ci_ type>

A Cl type which is mapped indirectly (one of its ancestors is mapped using source_ci_type_
tree), can also override its parent's map by having it appear in its own source_ci_type_tree or
source_ci_type.

It is recommended to use source_ci_type_tree wherever possible. Otherwise, resulting Cls of
a Cl type that do not appear in the mapping files will not be transferred to the Jython script.

3. Map Links

There are two ways to map links:
= Map alink that will also map all of the link types that inherit from that specific link:

<source_ link type tree name="dependency" target link
type="dependency" mode="update else insert" source ci type
endl="webservice" source ci type end2="sap gateway">
<target ci type endl name="webservice" >
<target ci type end2 name="sap gateway" >
<target attribute name="name" datatype="STRING">
<map type="direct" source attribute="name" >
</target_attribute>
</source link type tree>

= Map alink that will also map only that specific link type and not the link types which inherit
from it:

Page 180 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

<link source_ link type="dependency" target link type="dependency"
mode="update else insert" source ci type endl="webservice"
source_ci type end2="sap gateway">

<target ci type endl name="webservice" >

<target ci type end2 name="sap gateway" >

<target attribute name="name" datatype="STRING">

<map type="direct" source attribute="name" >
</target_attribute>

</link>

Write Jython Scripts

The mapping script is a regular Jython script, and should follow the rules for Jython scripts. For
details, see "Developing Jython Adapters" on page 43.

The script should contain the DiscoveryMain function, which may return either an empty
OSHVResult or a DataPushResults instance upon success.

To report any failure, the script should raise an exception, for example:

raise Exception('Failed to insert to remote UCMDB using
TopologyUpdateService. See log of the remote UCMDB')

In the DiscoveryMain function, the data items to be pushed to or deleted from the external
application can be obtained as follows:

get add/update/delete result objects (in XML format) from the
Framework

addResult = Framework.getTriggerCIData ('addResult')
updateResult = Framework.getTriggerCIData ('updateResult')
deleteResult = Framework.getTriggerCIData('deleteResult')

The client object to the external application can be obtained as follows:

oracleClient = Framework.createClient ()

This client object automatically uses the credentials 1D, host name and port number passed by the
adapter through the Framework.

If you need to use the connection parameters that you defined for the adapter (for details, see the
step "Edit the discoveryPatterns\push adapter.xml file." in "Build an Adapter Package " on page
186), use the following code:

propValue = str (Framework.getDestinationAttribute ('<Connection
Property Name'))

For example:
serverName = Framework.getDestinationAttribute ('ip address')
This section also includes:

o "Working with the Mapping's Results" on next page

o "Handling Test Connection in the Script" on page 184

Page 181 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Working with the Mapping's Results

The Generic Push Adapter creates XML strings that describe the data to be added, updated, or
deleted from the target system. The Jython script needs to analyze this XML, and then performs the
add, update, or delete operation on the target.

In the XML of the add operation that the Jython script receives, the mamId attribute for the objects
and links is always the UCMDB identifier of the original object or link before its type, attribute or
other information was changed to the schema of the remote system.

In the XML of the update or remove operations, the mamId attribute of each object or link contains
the string representation of the same External Id that was retumed from the Jython script from
the previous synchronization.

In the XML, the id attribute of a Cl holds the cmdb1d as an external id or the External1d of that
Clif the Cl got an ExternalId one whenthe Cl was sent to the script. The end11d and end21Id
fields of the link hold for each of the link's ends the cmdbId as an external id or the ExternalId of
that link’s end if the Cl at the link’s end got an External Id when it was sent to the script.

When processing the Cls in the Jython script, the return value of the script is a mapping between
the CI's CMDB id and the given id (the id given to each Cl in the script). If a Cl is pushed for the first
time, the id that is in the XML of that Cl is the CMDB id. If a Cl is not pushed for the first time, the
Cl’s id is the same id that was given to that Cl in the script when it was first pushed.

The id is retrieved from the Cl XML script as follows:

1. From the CI Element in the XML, retrieve the id from the id attribute. For example: id =
objectElement.getAttributeValue ('id").

2. Atterretrieving the id from the XML, restore the id from the attribute (string). For example:
objectId = CmdbObjectID.Factory.restoreObjectID(id).

3. Check if the object1d received in the previous step is the CMDB id. You can do this by
checking if the objectId has the new id that is given to it by the script. If it does, the retured
id is not the CMDB id. For example:
newId = objectId.getPropertyValue (<the name of the id attribute
which is given by the script>).

If newId is null, then the id that was returned in the XML is a CMDB id.

4. Iftheidis aCMDB id (that is, newId is null), perform the following (if the id is not a CMDB id,
go to step 5):

a. Create a property for that Cl that holds the new id. For example: propArray
=[TypesFactory.createProperty ('<the name of the id attribute
which is given by the script>', '<new id>"'")].

b. Create an externald tothat Cl. For example:
cmdbId = extI.getPropertyValue('internal id"')
className = extI.getType ()
externalld = ExternalldFactory.createExternalCiId(className,
propArray)

c. Mapthe CMDB id to the new created externalld (and in the next step return that mapping to

Page 182 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

the adapter). For example: objectMappings.put (cmdbId, externalld)

d. When all of the Cls and links are mapped:
updateResult =
DataPushResultsFactory.createDataPushResults (objectMappings,
linkMappings) ;
return updateResult

5. Iftheidis the new id (that is, newId is not null), thenthe externalldis the newId.

Example of the XML result
<root>
<data>
<objects>

<Object mode="update else insert" name="UCMDB UNIX"
operation="add" mamId="0c82f591bc3a584121b0b85efd90b174"
id="HiddenRmiDataSource%$0Aunix%0A1%0Ainternal
1d%3DSTRING%3D0c82£591bc3a584121b0b85e£d90b174%0A">

<field name="NAME" key="false" datatype="char"
length="255">UNIX5</field>

<field name="DATA NOTE" key="false" datatype="char"
length="255"></field>

</Object>
</objects>
<links>

<link targetRelationshipClass="TALK" targetParent="unix"
targetChild="unix" operation="add" mode="update else insert"
mamId="265e985c6ec51a8543f461b30£fa58£81"
id="endlid%5BHiddenRmiDataSource%0Aunix%0Al%0Ainternal
1d%$3DSTRINGS$3D41372alcbcaba27b214b84a2ec9eb535%0A%5D%0Aend21d%
5BHiddenRmiDataSource%0Aunix%0Al1%0Ainternal
1d%$3DSTRING%$3D0c82f591bc3a584121b0b85efd90b174%0A%5D%$0AHiddenRmi
DataSource%0Atalk%0A1%0Ainternal
1d%$3DSTRINGS3D265e985c6ec51a8543f461b30fab8£81%0A">

<field
name="DiscoveryIDl1">41372alcbcaba27b214b84a2ec9eb535</field>

<field
name="DiscoveryID2">0c82f591bc3a584121b0b85efd90bl74</field>

<field name="endlId">HiddenRmiDataSource%0Aunix%0A1%0Ainternal
1d%$3DSTRING%3D41372alcbcaba27b214b84a2ec9eb535%0A</field>

<field name="end2Id">HiddenRmiDataSource%0Aunix%0Al%0Ainternal
1d%3DSTRING%3D0c82£f591bc3a584121b0b85efd90b174%0A</field>

Page 183 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

<field name="NAME" key="false" datatype="char"
length="255">TALK4</field>

<field name="DATA NOTE" key="false" datatype="char"
length="255"></field>

</link>
</links>
</data>

</root>

Note: Incase datatype="BYTE", the returned result's value is a String that is generated as:
new String([the byte array attribute]).Thebyte[] object canbe
reconstructed by: <the received String>.getBytes (). There might be differencein
the default locale between the server and the probe. In this case, the reconstruction is
according to the server's default locale.

Handling Test Connection in the Script

A Jython script can be invoked to test the connection with an external application. In this case, the
testConnection destination attribute will be t rue. This attribute can be obtained from the
Framework as follows:

testConnection = Framework.getTriggerCIData ('testConnection')

When run in test connection mode, a script should raise an exception if a connection to the external
application cannot be established. Otherwise, if the connection is successful, the DiscoveryMain
function should return an empty OSHVResult.

Support Differential Synchronization

Important: If you are implementing differential synchronization on an existing adapter that was
created in version 9.00 or 9.01, you must use the push-adapter.zip file from version 9.02 or later
to recreate your adapter package. For details, see "Build an Adapter Package " on page 186.

This task enables the Push adapter to perform differential synchronization. For details, see
"Differential Synchronization " on page 178.

The Jython script returns the DataPushResults object which contains two Java maps - one for
object ID mappings (keys and values are ExternalCild type objects) and one for link IDs (keys and
values are ExternalRelationld type objects).

¢ Add the following from statements to your Jython script:

from com.hp.ucmdb.federationspi.data.query.types import
ExternalIdFactory

from com.hp.ucmdb.adapters.push import DataPushResults

from com.hp.ucmdb.adapters.push import DataPushResultsFactory

Page 184 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

from com.mercury.topaz.cmdb.server.fcmdb.spi.data.query.types import
ExternalldUtil

« Use the DataPushResultsFactory factory class to obtain the DataPushResults object from
the DiscoveryMain function.

Create the UpdateResult object

updateResult =
DataPushResultsFactory.createDataPushResults (objectMappings,
linkMappings) ;

¢ Use the following commands to create Java maps for the DataPushResults object:
#Prepare the maps to store the mappings if IDs
objectMappings = HashMap ()
linkMappings = HashMap ()

« Use the ExternalldFactory class to create the following Externalld IDs:

= Externalld for objects or links originating in a CMDB (for example, all of the Cls in an add
operation are from the CMDB):

externaCIlId = ExternalldFactory.createExternalCmdbCiId(ciType,
ciIDAsString)

externalRelationId =
ExternalIdFactory.createExternalCmdbRelationId (linkType,
endlExternalCIId,

end2ExternalCIId, linkIDAsString)

= Externalld for objects or links not originating in a CMDB (usually, every update and remove
operation contains such objects):

myIDField = TypesFactory.createProperty("systemID", "1")

myExternalld = ExternalldFactory.createExternalCilId (type,
myIDField)

Note: If the Jython script updated existing information and the ID of the object (or link)
changes, you must return a mapping between the previous external ID and the new one.

o Use the restoreCmdbCilDString or restoreCmdbRelationIDString methods from the
ExternalldFactory class to retrieve the UCMDB ID string from an External ID of an object or
link that originated in the UCMDB.

¢ Use the restoreExternalCild and restoreExternalRelationld methods from the ExternalldUtil
class to restore the Externalld object from the mamld attribute value of the XML of the update or
remove operations.

Page 185 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Note: Externalld objects are actually an array of properties. This means that you can use
an Externalld object to store any information you may need that will identify the data on the
remote system.

Build an Adapter Package

1.

Extract the content of C:\hp\UCMDB\UCMDB Server\content\

adapters\push-adapter.zip

into a temporary folder. In the adapter package, the sql_queries file located in adapterCode >
PushAdapter > sqlTablesCreation, contains the queries needed to create tables in a new
schema in Oracle for testing the adapter. The tables correspond to the adapterCode\<adapter
ID>\mappings\mappings.xml file.

Note: The sql_queries file is not needed for the adapter. It is only an example.

Edit the discoveryPatterns\push_adapter.xml file.
a. Modify the <pattern> tag with a new id and display label. Replace:

<pattern id="PushAdapter"
xsi:noNamespaceSchemalLocation="../../Patterns.xsd"
description="Discovery Pattern Description" schemaVersion="9.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

with:

<pattern id="MyPushAdapter" displayLabel="My Push Adapter"
xsi:noNamespaceSchemalLocation="../../Patterns.xsd"
description="Discovery Pattern Description" schemaVersion="9.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

b. Update the parameter list, so that the list of parameters reflects the required connection
attributes. Do not remove the probeName attribute.

Rename the adapterCode\PushAdapter folder with the adapter ID used in the previous step
(for example, adapterCode\MyPushAdapter).

In the discoveryScript file, there is a script pushScript.py script which inserts the Cls and
links to an external Oracle database. Replace discoveryScripts\pushScript.py with the
script you wrote (for details, see "Write Jython Scripts " on page 181). If you rename the script,
the jythonScript.name property in adapterCode\<adapter ID>\

push.properties should be updated accordingly.

The adapterCode\<adapter ID>\mappings\mappings.xml file, located in
adapterCode\<adapter ID>\mappings, is a sample mapping file which contains a mapping of
the:

= Node Cl type with all the Cl types that inherit from it
= UNIX ClI type without the CI types that inherit from it

Page 186 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

= Dependency link with all of the link types that inherit from it
= Talk link type without the inherited link types that inherit from it

This mapping example corresponds to the example of the tables created in ORACLE in the
sql_queries file (see step 1).

Replace the adapterCode\<adapter ID>\mappings\mappings.xml file with the mapping
files you prepared (for details, see "Prepare the Mapping Files" on page 179.

If you want to use a mapping file for each TQL method, assign the name of the corresponding
TQL to each XML file, followed by .xml. In this case, the mappings.xml file will be used as a
default, if no specific mapping file is found for the current TQL name. The name of the default
mapping file can be modified by changing the mappingFile.default property in
adapterCode\<adapter ID>\push.properties.

Page 187 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 7: Developing Push Adapters

Mapping File Schema

Element Name and

Path

integration

Description

Defines the mapping
contents of the file.
Must be the outermost
block in the file except
for the beginning line
and any comments.

Attributes

info

(integration)

Defines information
about the data
repositories being
integrated.

source

(integration > info)

Defines information
about the source data
repository.

Name: type

Description: Name of the source data
repository.

Is required?: Required

Type: String

Name: versions

Description: Version(s) of the source
data repositories.

Is required?: Required

Type: String

Name: vendor

Description: Vendor of the source data
repository.

Is required?: Required

Type: String

target

(integration > info)

Defines information
about the target data
repository.

Name: type

Description: Name of the source data
repository.

Is required?: Required

Type: String

Name: versions

Description: Version(s) of the source
data repository.

Is required?: Required

Type: String

Name: vendor

Description: Vendor of the source data
repository.

Is required?: Required

Type: String

Page 188 of 281

HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 7: Developing Push Adapters

Element Name and

Path Description Attributes
targetcis Container element for

(integration) all CIT mappings.

source_ci_type tree Defines a source CIT 1. Name: name

(integration > targetcis)

and all of the Cl types
which inherit from it.

Description: Name of the source CIT.
Is required?: Required
Type: String

Name: mode

Description: The type of update required
for the current Cl type.

Is required?: Required

Type: One of the following strings:

a. insert: Use this only if the Cl does not
already exist.

b. update: Use this only if the Cl is known
to exist.

c. update_else_insert: If the Cl exists,
update it; otherwise, create a new ClI.

d. ignore: Do nothing with this CI type.

source_ci_type

(integration > targetcis)

Defines a source CIT
without the Cl types
which inherit from it.

Name: name

Description: Name of the source CIT.
Is required?: Required

Type: String

Name: mode

Description: The type of update required
for the current Cl type.

Is required?: Required

Type: One of the following strings:

a. insert: Use this only if the Cl does not
already exist.

b. update: Use this only if the Cl is known
to exist.

c. update_else_insert: If the Cl exists,
update it; otherwise, create a new CI.

d. ignore: Do nothing with this CI type.

Page 189 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path Description Attributes

target_ci_type Defines atarget CIT. 1. Name: name

Description: Target Cl type name.
Is required?: Required

Type: String

(integration > targetcis
>

source_ci_type

2. Name: schema

-OR- Description: The name of the schema
integration > targetcis that will be used to store this Cl type at
> source_ci_type_tree) the target.

Is required?: Not Required

Type: String

3. Name: namespace
Description: Indicates the namespace of
this Cl type on the target.
Is required?: Not Required
Type: String

targetprimarykey Identifies target CIT

. . . primary key attributes.
(integration > targetcis

> source_ci_type)
-OR-

(integration > targetcis
> source_ci_type_tree

-OR-

(integration >
targetrelations > link)

-OR-

(integration >
targetrelations >
source_link_type_tree)

Page 190 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 7: Developing Push Adapters

Element Name and
Path

pkey

(integration > targetcis
> source_ci_type >
targetprimarykey

-OR-

integration > targetcis
> source_ci_type tree
> targetprimarykey

-OR-

(integration >
targetrelations > link >
targetprimarykey)

-OR-

integration >
targetrelations >
source_link_type_tree

> targetprimarykey)

Description

Identifies one primary
key attribute.

Required only if mode is
update or
insert_else_update.

Attributes

Page 191 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path

target_attribute

(integration > targetcis
> source_ci_type

-OR-

integration > targetcis
>

source_ci_type_tree
-OR-

integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Description

Defines the target CIT's
attribute.

Attributes

1.

Name: name

Description: Name of the target CIT's
attribute.

Is required?: Required

Type: String

Name: datatype

Description: Data type of the target CIT's
attribute.

Is required?: Required

Type: String

Name: length

Description: For string/char data types,
integer size of target attribute.

Is required?: Not Required

Type. Integer

Name. option

Description. The conversion function to
be applied to the value.

Is required. False

Type. One of the following strings:

a. uppercase — Convert to uppercase

b. lowercase — Convert to lowercase

If this attribute is empty, no conversion
function will be applied.

Page 192 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path

map

(integration >
targetcis > source_ci_

type >
target_attribute

-OR-

integration >

targetcis >
source_ci_type tree >
target_attribute)

-OR-

(integration >
targetrelations > link >
target_attribute

-OR-

integration >
targetrelations >
source_link_type_tree
>

target_attribute)

Description

Specifies how to obtain
the source CIT's
attribute value.

Attributes

1.

Name. type

Description. The type of mapping
between the source and target values.

Is required. Required

Type. One of the following strings:

a. direct — Specifies a 1-to-1 mapping
from source attribute's value to target
attribute's value.

b. compoundstring — Sub-elements are
joined into a single string and the target
attribute value is set.

c. childattr — Sub-elements are one or
more child CIT's attributes. Child CITs are
defined as those with composition or
containment relationship.

d. constant — Static string

Name. value

Description. Constant string for
type=constant

Is required. Only required when
type=constant

Type. String

Name. attr

Description. Source attribute name for
type=direct

Is required. Only required when
type=direct

Type. String

Page 193 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and

Path Description Attributes
aggregation Specifies how the Name: type
source Cl's child CI Description. The type of aggregation function

(integration >
targetcis >
source_ci_type >
target_attribute > map

attribute values are Is required?: Required

combined into asingle | Type. One of the following strings:
value to map to the
target Cl attribute.
-OR- Optional.

e csv—Concatenates all included values into
a comma-separated list (numeric or
string/character).

integration >

targetcis > source_ci_

type_tree > target_

attribute > map ¢ sum - Returns a numeric count of all
included values.

e count— Returns a numeric count of all
included values.

-OR-
. _ « average — Returns a numeric average of all
(integration > included values.
targetrelations >
link > target_attribute > ¢ min—Retumns the lowest
map numeric/character included value.
-OR- « max— Returns the highest

numeric/character included value.
integration >
targetrelations >
source_link_type_tree
> target_attribute >
map)

Only valid when the
map's type is childattr

Page 194 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and

Path Description Attributes

source_child_ci_type Specifies from which 1. Name. name

it tion > t i connected ClI the child Description. The type of the child Cl

(>|n egra 'On, ¢ arge>C|s attribute is taken. Is required. Required
source_ci_type Type. String

target_attribute > map
2. Name. source_attribute

-OR- Description. The attribute of the child Cl
integration > targetcis that is mapped.
> source_ci_type_tree Is required. Required only if the childAttr
> target_attribute > aggregation type (which is on the same
map - path) is not =count.

Type. String
-OR-

(integration >
targetrelations > link >
target_attribute > map

-OR-

integration >
targetrelations >
source_link_type_tree
> target_attribute >
map)

Only valid when the
map’s type is childattr.

Page 195 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path

validation

(integration >
targetcis >
source_ci_type >
target_attribute > map

-OR-

integration >

targetcis >
source_ci_type tree >
target_attribute > map

-OR-

(integration >
targetrelations > link >
target_attribute > map

-OR-

integration >
targetrelations >
source_link_type_tree
>

target_attribute > map)

Only valid when the
map's type is childatt

Description

Allows exclusion
filtering of the source
Cl's child Cls based on
attribute values. Used
with the aggregation
sub-element to achieve
granularity of exactly
which children
attributes are mapped
tothe target CIT's
attribute value.
Optional.

Attributes

1.

Name. minlength

Description. Excludes strings shorter
than the given value.

Is Required?: Not required

Type. Integer

Name. maxlength

Description. Excludes strings longer than
the given value.

Is Required?: Not required

Type. Integer

Name. minvalue

Description. Excludes numbers smaller
than the specified value.

Is Required?: Not required

Type. Numeric

Name. maxvalue

Description. Excludes numbers greater
than the specified value.

Is Required?: Not required

Type. Numeric

targetrelations

(integration)

Container element for
all relationship
mappings. Optional.

Page 196 of 281

HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 7: Developing Push Adapters

Element Name and
Path

source_link_type_tree

(integration >
targetrelations)

Description

Maps a source
Relationship type
without the types which
inherit from it to a target
Relationship.
Mandatory only if
targetrelation is
present.

Attributes

1.

Name: name

Description. Source relationship name.
Is required?:Required

Type. String

Name: target_link_type

Description. Target relationship name
Is required?: Required

Type. String

Name: nameSpace

Description: The namespace for the link
that will be created on the target.

Is required?: Not required

Type: String

Name: mode

Description: The type of update required
for the current link.

Is required?: Required

Type: One of the following strings:

= insert— Use this only if the Cl does not
already exist.

= update — Use this only if the Cl is
known to exist.

= update_else_insert— If the Cl exists,
update it; otherwise, create a new ClI.

= ignore — Do nothing with this CI type.

Name: source_ci_type_end1
Description: Source relationship's End1
Cl type.

Is required?: Required

Type: String

Name: source_ci_type _end2
Description: Source relationship's End2
Cl type.

Is required?: Required

Type: String

Page 197 of 281

HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 7: Developing Push Adapters

Element Name and
Path

link

(integration >
targetrelations)

Description

Maps a source
Relationship to a target
Relationship.
Mandatory only if
targetrelation is
present.

Attributes

1.

Name: source_link_type

Description: Source relationship name.
Is Required?: Required

Type: String

Name: target_link_type

Description: Target relationship name.
Is required?: Required

Type: String

Name: nameSpace

Description: The namespace for the link
that will be created on the target.

Is required?: Not required

Type: String

Name: mode

Description: The type of update required
for the current link.

Is required?: Required

Type: On the following strings:

= insert— Use this only if the Cl does not
already exist.

= update — Use this only if the Cl is
known to exist.

= update_else_insert— If the Cl exists,
update it; otherwise, create a new CI.

= ignore — Do nothing with this Cl type.

5. Name: source_ci_type_end1

Description: Source relationship's End1
Cl type

Is required?: Required

Type: String

Name: source_ci_type _end2
Description: Source relationship's End2
Cl type

Is required?: Required

Type: String

Page 198 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and

Path Description Attributes
target_ci_type _end1 Target relationship’s 1. Name: name
End1 Cl type. Description: Name of the target

(integration >

: ; relationship’s End1 Cl type.
targetrelations > link

Is required?: Required

-OR- Type: String
integration > 2. Name: superclass
targetrelations > Description: Name of the End1 Cl type’s
source_link_type_tree) super-class.
Is required?: Not required
Type: String
target_ci_type_end2 Target relationship’s 1. Name: name
End2 Cl type. Description: Name of the target

(integration >

. . relationship’s End2 Cl type.
targetrelations > link

Is required?: Required

-OR- Type: String
integration > 2. Name: superclass
targetrelations > Description: Name of the End2 Cl type’s
source_link_type_tree) super-class.
Is required?: Not required
Type: String

Page 199 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Mapping Results Schema

Element Name and
Path

root

Description

The root of the result
document.

Attributes

data (root)

The root of the data
itself.

objects (root > data)

The root element for the
objects to update.

Object
(root > data > objects)

Describes the update
operation for a single
object and all of its
attributes.

1.

Name: name

Description: Name of the Cl type
Is required?: Required

Type: String

Name: mode

Description: The type of update required
for the current Cl type.

Is required?: Required

Type: One of the following strings:

a. insert — Use this only if the CI does not
already exist.

b. update — Use this only if the Cl is
known to exist.

c. update_else_insert — If the Cl exists,
update it; otherwise, create a new CI.

d. ignore — Do nothing with this CI type.

Name: operation

Description: The operation to perform
with this CI.

Is required: Required

Type: One of the following strings:

a. add — The CI should be added

b. update — The CI should be updated

c. delete — The Cl should be deleted

If no value is set, then the default value of
add is used.

Name: mamld

Description: The ID of the object on the
source CMDB.

Is required?: Required

Type: String

Page 200 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path

field

(root > data > objects
> Object

-OR-

root > data > links >
link)

Description

Describes the value of a
single field for an object.
The field’s text is the
new value in the field,
and if the field contains a
link, the value is the ID
of one of the ends. Each
end ID appears as an
object (under
<objects>).

Attributes

1.

Name: name

Description: Name of the field.
Is required?: Required

Type: String

Name: key

Description: Specifies whether this field
is a key for the object.

Is required?: Required

Type: Boolean

Name: datatype

Description: The type of the field.
Is required?: Required

Type: String

Name: length

Description: For string/character data
types, this is the integer size of the target
attribute.

Is required?: Not Required

Type: Integer

Page 201 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 7: Developing Push Adapters

Element Name and
Path

links (root > data)

Description

The root element for the
links to update.

Attributes

1.

Name: targetRelationshipClass
Description: The name of the
relationship (link) in the target system.
Is required?: Required

Type: String

Name: targetParent

Description: The type of first end of the
link (parent).

Is required?: Required

Type: String

Name: targetChild

Description: The type of the second end
of the link (child).

Is required?: Required

Type: String

Name: mode

Description: The type of update required
for the current Cl type.

Is required?: Required

Type: One of the following strings:

a. insert — Use this only if the CI does not
already exist.

b. update — Use this only if the Cl is
known to exist.

c. update_else_insert — If the Cl exists,
update it; otherwise, create a new CI.

d. ignore — Do nothing with this Cl type.

Name: operation

Description: The operation to perform
with this CI.

Is required?: Required

Type: One of the following strings:

a. add — The ClI should be added

b. update — The Cl should be updated

c. delete — The Cl should be deleted

If no value is set, then the default value of
add is used.

Name: mamld

Description: The ID of the object on the
source CMDB.

Is required?: Required

Type: String

Page 202 of 281

HP Universal CMDB (9.05)

Using APIs

Page 203 of 281 HP Universal CMDB (9.05)

Chapter 8

Introduction to APIs

This chapter includes:

APIS OVeIrVIOW. 204

APIs Overview
The following APIs are included with HP Universal CMDB:

o UCMDB Web Service API. Enables writing configuration item definitions and topological
relations to the UCMDB (Universal Configuration Management database), and querying the
information with TQL and ad hoc queries. For details, see "HP Universal CMDB Web Service
API" on page 212.

« UCMDB Java API. Explains how third-party or custom tools can use the Java API to extract
data and calculations and to write data to the UCMDB (Universal Configuration Management
database). For details, see "HP Universal CMDB API" on page 205.

« Data Flow Management Web Service API. Enables managing probes, jobs, triggers and
credentials for Data Flow Management. For details, see "Data Flow Management API" on page
266.

Note: To gain the full value of the APl documentation, it is recommended to access the online
documentation. The PDF version does not have the links into the API documentation that is
generated in html format.

Page 204 of 281 HP Universal CMDB (9.05)

Chapter 9

HP Universal CMDB API

This chapter includes:

CoONVeNtioONS. . . 205
Using the HP Universal CMDB APLI. 205
General Structure of an Application. 206
Put the APl Jar Fileinthe Classpath. 208
Create an Integration User 208
HP Universal CMDB API Reference......... i 210
USe CaSes. o 210
EXaMIPIeS. . L 211
Conventions

This chapter uses the following conventions:

o UCMDB refers to the Universal Configuration Management database itself. HP Universal
CMDB refers to the application.

o UCMDB elements and method arguments are spelled in the case in which they are specified in
the interfaces.

For full documentation on the available APIs, refer to the HP UCMDB API Reference.

These files are located in the following folder:

\\<sUCMDB root directory>\hp\UCMDB\UCMDB Server\deploy\ucmdb-
docs\docs\eng\APIs\UCMDB_JavaAPl\index.html

Using the HP Universal CMDB API

Note: Use this chapter in conjunction with the API Javadoc, available in the online
Documentation Library.

The HP Universal CMDB API is used to integrate applications with the Universal CMDB (CMDB).
The API provides methods to:

e add, remove, and update Cls and relations in the CMDB
o retrieve information about the class model

¢ retrieve information from the UCMDB history

Page 205 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 9: HP Universal CMDB API

¢ run what-if scenarios
« retrieve information about configuration items and relationships

Methods for retrieving information about configuration items and relationships generally use the
Topology Query Language (TQL). For details, see Topology Query Language in the HP Universal
CMDB Modeling Guide.

Users of the HP Universal CMDB API should be familiar with:
e The Java programming language

e HP Universal CMDB

This section includes the following topics:

o "Uses of the API" below

e "Permissions" below

Uses of the API

The APl is used to fulfill a number of business requirements. For example, a third-party system can
query the class model for information about available configuration items (Cls). For more use
cases, see "Use Cases" on page 210.

Permissions

The administrator provides login credentials for connecting with the API. The API client needs the
user name and password of an integration user defined in the CMDB. These users do not represent
human users of the CMDB, but rather applications that connect to the CMDB.

Caution: The API client can also work with regular users as long as they have API
authentication permission. However, this option is not recommended.

For details, see "Create an Integration User" on page 208.

General Structure of an Application

There is only one static factory, the UcmdbServiceFactory. This factory is the entry point for an
application. The UcmdbServiceFactory exposes getServiceProvider methods. These methods
return an instance of the UcmdbServiceProvider interface.

The client creates other objects using interface methods. For example, to create a new query
definition, the client:

1. Gets the query service from the main CMDB service object
2. Gets a query factory object from the service object
3. Gets a new query definition from the factory

UcmdbServiceProvider provider =
UcmdbServiceFactory.getServiceProvider (HOST NAME, PORT);
UcmdbService ucmdbService =
provider.connect (provider.createCredentials (USERNAME,
PASSWORD), provider.createClientContext ("Test"));

Page 206 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 9: HP Universal CMDB API

TopologyQueryService queryService =
ucmdbService.getTopologyQueryService () ;

TopologyQueryFactory factory = queryService.getFactory();
QueryDefinition queryDefinition =
factory.createQueryDefinition ("Test Query");
queryDefinition.addNode ("Node") .0ofType ("host") ;

Topology topology = queryService.executeQuery(queryDefinition);
System.out.println ("There are " + topology.getAllCIs().size() + "
hosts in uCMDB") ;

The services available from UcmdbService are:

Service Methods Use
getClassModelService Information about types of Cls and relations
getConfigurationService Infrastructure settings management, for server

configuration

getDDMConfigurationService Configure the Data Flow Management system

getDDMManagementService Analyze and view the progress, results, and errors of
the Data Flow Management system

getHistoryService Information about history of monitored Cls (chages,
removals, and so on)

getlmpactAnalysisService Run impact analysis scenario (also known as
correlation).

getQueryManagementService Manage access to queries - save, delete, list existing.
Also provides query validation and queries
dependencies discovery.

getResourceBundleManagementService | Resource tagging ("bundling" services. Allows explicit
creation of new tags and removal of tags from all
tagged resources.

getStateService Provide services for managing states (list, add,
remove, and so on)

getSoftwareSignatureService Define software items to be discovered by the
Discovery and Dependency Management system

getSnapshotService Provide services for managing snapshots (get, save,
compare, and so on)

getTopologyQueryService Get information about the IT universe

getTopologyUpdateService Change information in the IT universe

Page 207 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 9: HP Universal CMDB API

Service Methods Use

getViewService View execution service (execute definition, execute
saved) and management service (save, delete, list
existing). Also provides view validation and
dependencies discovery.

getViewArchiveService View result archiving services. Allows saving the
current view result and retrieving previously saved
results.

SystemHealthService Provide system health services (basic system
performance indicators, capacity and availability
metrics)

The client communicates with the server over HTTP.

Put the API Jar File in the Classpath

The use of this API set requires the file uemdb-api.jar. You can download the file by entering
http://<localhost>:8080 inaWeb browser where 1ocalhost is the machine where
UCMDB is installed and clicking the API Client Download link.

Put the jar file in the classpath before compiling or running your application.
Note: Usage of the UCMDB Java API Jar requires you to have JRE version 6 or later installed.

Create an Integration User

You can create a dedicated user for integrations between other products and UCMDB. This user
enables a product that uses the UCMDB client SDK to be authenticated in the server SDK and
execute the APls. Applications written with this API set must log on with integration user
credentials.

Caution: It is also possible to connect with a regular UCMDB user, (for instance, admin);
however, this option is not recommended. To connect with a UCMDB user, you must grant it
API authentication permission.
To create an integration user:
1. Launch the Web browser and enter the server address, as follows.
http://localhost:8080/jmx-console.
You may have to log in with a user name and password (the defaults are sysadmin/sysadmin).
2. Under ucMDB, click service=sUCMDB Security Services.
3. Locate the CreatelntegrationUser operation. This method accepts the following parameters:
= customerld. The customer ID.

= username. The integration user's name.

Page 208 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 9: HP Universal CMDB API

= password. The integration user's password.

= dataStoreOrigin. The name of the product that is going to use this integration user.
The following operations are useful for integration user management:

= DeletelntegrationUser. Deletes the given integration user.

= ExportintegrationUser. Exports the integration user to an XML file in the given path (on the
server machine).

= getintegrationUser. Displays the integration user information.
= changelntegrationUserPassword. Changes the integration user's password.

= canUserAuthenticate. isIntegrationUser is true: can the integration user authenticate
with the given credentials?

4. Click Invoke.

Either create more users, or close the JMX console.
Log on to UCMDB as an administator.

From the Administration tab, run Package Manager.
Click the New icon.

Enter a name for the new package, and click Next.

© ®© N o O

In the Resource Selection tab, under Administration, click Integration Users.
10. Select a user or users that you created using the JMX console.

11. Click Next and then Finish. Your new package appears in the Package Name list in Package
Manager.

12. Deploy the package to the users who will run the API applications.

For details, see "Deploy a Package" in the HP Universal CMDB Administration Guide.

Page 209 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 9: HP Universal CMDB API

Note:

The integration user is per customer. To create a stronger integration user for cross-
customer usage, use a systemUser with the isSuperintegrationUser flag set to true. Use
the systemUser methods (createSystemUser, removeSystemUser,
showAllSystemUsers, changeSystemUserPassword,
canSuperintegrationUserAuthenticate, and so on).

There are two out-of-the-box system users; it is recommended to change their passwords
after installation using the changeSystemUserPassword method.

= sysadmin/sysadmin

= UISysadmin/UISysadmin (This user is also the Super Integration User
SuperintegrationUser).

If you change the UISysadmin password using changeSystemUserPassword, you
must execute the following method: in the JMX Console, locate the UCMDB-
Ul:name=UCMDB Integration service. Run setCMDBSuperintegrationUser with the
user name and new password of the integration user.

HP Universal CMDB API Reference

These files are located in the following folder:

\\<UCMDB root directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\UCMDB_JavaAPl\index.html

Use Cases
The following use cases assume two systems:
¢ HP Universal CMDB server
o Athird-party system that contains a repository of configuration items
This section includes the following topics:

¢ "Populating the CMDB " below

e "Querying the CMDB " on next page

o "Querying the Class Model" on next page

e "Analyzing Change Impact " on next page

Populating the CMDB

Use cases:

o A third-party asset management updates the CMDB with information available only in asset
management

o A number of third-party systems populate the CMDB to create a central CMDB that can track
changes and perform impact analysis

Page 210 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 9: HP Universal CMDB API

A third-party system creates Configuration Items and Relations according to third-party
business logic, to leverage the UCMDB query capabilities

Querying the CMDB

Use cases:

A third-party system gets the Configuration Items and Relations that represent the SAP system
by retrieving the results of the SAP TQL

A third-party system gets the list of Oracle servers that have been added or changed in the last
five hours

A third-party system gets the list of servers whose host name contains the 1ab substring

A third-party system finds the elements related to a given Cl by getting its neighbors

Querying the Class Model

Use cases:

A third-party system enables users to specify the set of data to be retrieved from the CMDB. A
user interface can be built over the class model to show users the possible properties and
prompt them for required data. The user can then choose the information to be retrieved.

A third-party system explores the class model when the user cannot access the UCMDB user
interface.

Analyzing Change Impact

Use case:

A third-party system outputs a list of the business services that could be impacted by a change on a
specified host.

Examples

See the following code samples:

Create a Connection

Create and Execute an Ad-Hoc Query

Create and Execute a View

Add and Delete Data

Execute an Impact Analysis

Query the Class Model

Query a History Sample

These files are located in the following directory:

\\<UCMDB root directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\JavaSDK_Samples\

Page 211 of 281 HP Universal CMDB (9.05)

Chapter 10

HP Universal CMDB Web Service API

This chapter includes:

CoNVeNtiONS. .. 212
HP Universal CMDB Web Service APl Overview... 213
HP Universal CMDB Web Service APl Reference.. 214
Call the Web Service. 214
Query the CIMDB. ... 215
Update the UCMDB. 217
Query the UCMDB Class Model. i, 219
Query for Impact Analysis. 220
UCMDB General Parameters. 220
UCMDB Output Parameters. L 223
UCMDB Query Methods. 224
UCMDB Update Methods. ... L 234
UCMDB Impact Analysis Methods. L 237
Actual State Web Service APl 238
USe CaSes. o i 239
EXaMIPIeS. . 240
Conventions

This chapter uses the following conventions:

o UCMDB refers to the Universal Configuration Management database itself. HP Universal
CMDB refers to the application.

o UCMDB elements and method arguments are spelled in the case in which they are specified in
the schema. An element or argument to a method is not capitalized. For example, a relation
is an element of type Relation passed to a method.

For full documentation on the request and response structures, refer to the HP UCMDB Web
Service API Reference. These files are located in the following folder:

<UCMDB root directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\CMDB _
Schema\webframe.html

Page 212 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

HP Universal CMDB Web Service API Overview

Note: Use this chapter in conjunction with the UCMDB schema documentation, available in
the online Documentation Library.

The HP Universal CMDB Web Service APl is used to integrate applications with the HP Universal
CMDB (UCMDB). The API provides methods to:

e add, remove, and update Cls and relations in the CMDB

o retrieve information about the class model

o retrieve impact analyses

« retrieve information about configuration items and relationships
e Mmanage credentials: view, add, update, and remove

e Mmanage jobs: view status, activate, and deactivate

e manage Probe ranges: view, add, and update

e manage triggers: add or remove a trigger Cl, and add, remove, or disable a trigger TQL

view general data on domains and Probes

Methods for retrieving information about configuration items and relationships generally use the
Topology Query Language (TQL). For details, see Topology Query Language in the HP Universal
CMDB Modeling Guide.

Users of the HP Universal CMDB Web Service API should be familiar with:
o The SOAP specification

An object-oriented programming language such as C++, C#or Java
¢ HP Universal CMDB

o Data Flow Management

This section includes the following topics:

o "Uses of the API" below

o "Permissions" on next page

Uses of the API

The API is used to fulfill a number of business requirements. For example:

o A third-party system can query the class model for information about available configuration
items (Cls).

o A third-party asset management tool can update the CMDB with information available only to
that tool, thereby unifying its data with data collected by HP applications.

o A number of third-party systems can populate the CMDB to create a central CMDB that can
track changes and perform impact analysis.

Page 213 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

o A third-party system can create entities and relations according to its business logic, and then
write the data to the CMDB to take advantage of the CMDB query capabilities.

o Other systems, such as the Release Control (CCM) system, can use the Impact Analysis
methods for change analysis.

Permissions

The administrator provides login credentials for connecting with the Web Service. The required
credentials depend on whether you are using HP Universal CMDB as a standalone application or
from within HP Business Service Management:

e HP Universal CMDB standalone. Log in using the credentials of a UCMDB user who has been
granted permissions on the discovery and integration resources.

For details, see "Security Manager Page" in the HP Universal CMDB Administration Guide.

e HP Universal CMDB embedded in HP Business Service Management. Log in using the
credentials of a HP Business Service Management user. The user must have been granted the
relevant permissions on the HP Universal CMDB resource in HP Business Service
Management.

When permissions are assigned through HP Universal CMDB, the permission levels are View,
Update, and Execute. When they are assigned using HP Business Service Management, the
levels are View and Update, where Update also includes Execution. To view the permissions
required for each operation, see each operation's request documentation.

HP Universal CMDB Web Service APl Reference

For full documentation on the request and response structures, refer to the HP UCMDB Web
Service API Reference. These files are located in the following folder:

<UCMDB root directory>\UCMDB Server\deploy\ucmdb-docs\docs\eng\APIs\CMDB_
Schema\webframe.html

Call the Web Service

You use standard SOAP programming techniques in the HP Universal CMDB Web Service to
enable calling server-side methods. If the statement cannot be parsed or if there is a problem
invoking the method, the APl methods throw a SoapFault exception. Whena SoapFault
exception is thrown, UCMDB populates one or more of the error message, error code, and
exception message fields. If there is no error, the results of the invocation are returned.

SOAP programmers can access the WSDL at:
http://<server>[:port]/axis2/services/UcmdbService?wsdl

The port specification is only necessary for non-standard installations. Consult your system
administrator for the correct port number.

The URL for calling the service is:
http://<server>[:port]/axis2/services/UcmdbService

For examples of connecting to the CMDB, see "Use Cases" on page 239.

Page 214 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Query the CMDB

The CMDB is queried using the APls described in "UCMDB Query Methods" on page 224.

The queries and the returned CMDB elements always contain real UMDB IDs.

For examples of the use of the query methods, see "Query Example" on page 242.

This section includes the following topics:

o "Just In Time Response Calculation" below

e "Processing Large Responses" below

o "Specifying Properties to Return" on next page

o "Concrete Properties" on next page

o "Derived Properties" on page 217

o "Naming Properties" on page 217

o "Other Property Specification Elements" on page 217

Just In Time Response Calculation

For all query methods, the UMDB server calculates the values requested by the query method
when the request is received, and returns results based on the latest data. The result is always
calculated at the time the request is received, even if the TQL query is active and there exists a
previously calculated result. Therefore, the results of running a query returned to the client
application may be different to the results of the same query displayed on the user interface.

Tip: If your application uses the results of a given query more than once and the data is not
expected to change significantly between uses of the result data, you can improve
performance by having the client application store the data rather than repeatedly running the
query.

Processing Large Responses

The response to a query always includes the structures for the data requested by the query method,
even if no actual data is being transmitted. For many methods where the data is a collection or map,
the response also includes the ChunkInfo structure, comprised of chunksKey and
numberOfChunks. The numberOfChunks field indicates the number of chunks containing data
that must be retrieved.

The maximum transmission size of data is set by the system administrator. If the data returned
from the query is larger than the maximum size, the data structures in the first response contain no
meaningful information, and the value of the numberOfChunks field is 2 or greater. If the data is
not larger than the maximum, the numberOfChunks field is 0 (zero), and the data is transmitted in
the first response. Therefore, in processing a response, check the numberOfChunks value first. If
it is greater than 1, discard the data in the transmission and request the chunks of data. Otherwise,
use the data in the response.

For information on handling chunked data, see "pullTopologyMapChunks" on page 232 and
"releaseChunks" on page 234.

Page 215 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Specifying Properties to Return

Cls and relations generally have many properties. Some methods that return collections or graphs
of these items accept input parameters that specify which property values to return with each item
that matches the query. The CMDB does not return empty properties. Therefore, the response to a
query may have fewer properties than requested in the query.

This section describes the types of sets used to specify the properties to return.
Properties can be referenced in two ways:
¢ By theirnames

o By using names of predefined properties rules. Predefined properties rules are used by the
CMDB to create a list of real property names.

When an application references properties by name, it passes a PropertiesList element.

Tip: Whenever possible, use PropertiesList to specify the names of the properties in
which you are interested, rather than a rule-based set. The use of predefined properties rules
nearly always results in returning more properties than needed, and bears a performance price.

There are two types of predefined properties: qualifier properties and simple properties.

« Qualifier properties. Use when the client application should pass aQualifierProperties
element (a list of qualifiers that can be applied to properties). The CMDB converts the list of
qualifiers passed by the client application to the list of the properties to which at least one of the
qualifiers applies. The values of these properties are returned with the CT orRelation
elements.

o Simple properties. To use simple rule-based properties, the client application passes a
SimplePredefinedPropertyor SimpleTypedPredefinedProperty element. These
elements contain the name of the rule by which the CMDB generates the list of properties to
return. The rules that can be specifiedina SimplePredefinedProperty or
SimpleTypedPredefinedProperty element are CONCRETE, DERIVED, and NAMING.

Concrete Properties

Concrete properties are the set of properties defined for the specified CIT. The properties added by
derived classes are not returned for instances of those derived classes.

A collection of instances returned by a method may consist of instances of a CIT specified in the
method invocation and instances of CITs that inherit from that CIT. The derived CITs inherit the
properties of the specified CIT. In addition, the derived CITs extend the parent CIT by adding
properties.

Example of Concrete Properties:

CIT T1 has properties P1 and P2. CIT T11 inherits from T1 and extends T1 with properties
P21 and P22.

The collection of Cls of type T1 includes the instances of T1 and T11. The concrete
propertiesof all instances in this collection are P1 and p2.

Page 216 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Derived Properties

Derived properties are the set of properties defined for the specified CIT and, for each derived CIT,
the properties added by the derived CIT.

Example of Derived Properties:

Continuing the example from concrete properties, the derived properties of instances of T1 are
P1 and P2. The derived properties of instances of T11 are P1, P2, P21, and P22.

Naming Properties

The naming properties are display label anddata name.

Other Property Specification Elements

o PredefinedProperties

PredefinedProperties cancontainaQualifierProperties elementanda
SimplePredefinedProperty element for each of the other possible rules. A
PredefinedProperties setdoes not necessarily contain all types of lists.

o PredefinedTypedProperties

PredefinedTypedProperties is used to apply a different set of properties to each CIT.
PredefinedTypedProperties cancontainaQualifierProperties elementanda
SimpleTypedPredefinedProperty element for each of the other applicable rules. Because
PredefinedTypedProperties is applied to each CIT individually, derived properties are not
relevant. A PredefinedProperties setdoes not necessarily contain all applicable types of
lists.

o CustomProperties

CustomProperties can contain any combination of the basic PropertiesListandthe
rule-based property lists. The properties filter is the union of all the properties returned by all the
lists.

o CustomTypedProperties

CustomTypedProperties can contain any combination of the basic PropertiesList
and the applicable rule-based property lists. The properties filter is the union of all the properties
returned by all the lists.

o TypedProperties

TypedProperties is usedto pass a different set of properties for each CIT.
TypedProperties is acollection of pairs composed of type names and properties sets of all
types. Each properties set is applied only to the corresponding type.

Update the UCMDB

You update the CMDB with the update APIs. For details of the API methods, see "UCMDB Update
Methods" on page 234. For examples of the use of the update methods, see "Update Example" on

page 254.

This task includes the following steps:

Page 217 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

o "Update the UCMDB" on previous page

o "Use of ID Types with Update Methods" below
UCMDB Update Parameters

This topic describes the parameters used only by the service's update methods. For details, see
the schema documentation.

¢ ClsAndRelationsUpdates

The CIsAndRelationsUpdates type consists of CIsForUpdate,
relationsForUpdate, referencedRelations, and referencedCIs. A
CIsAndRelationsUpdates instance does not necessarily include all three elements.

CIsForUpdate is aCls collection. relationsForUpdate isaRelations collection. The
CI and relation elements in the collections have a props element. When creating a Cl or
relation, properties that have either the requi red attribute or the key attribute in the Cl Type
definition must be populated with values. The items in these collections are updated or created
by the method.

referencedCIs and referencedRelations are collections of Cls that are already
defined in the CMDB. The elements in the collection are identified with a temporary ID in
conjunction with all the key properties. These items are used to resolve the identities of Cls and
relations for update. They are never created or updated by the method.

Each of the CT and relation elements in these collections has a properties collection. New
items are created with the property values in these collections.

Use of ID Types with Update Methods

The following describes ID CITs, and Cls and relations. When the ID is not areal CMDB ID, the
type and key attributes are required.

o Deleting or Updating Configuration Items

A temporary or empty ID may be used by the client when calling a method to delete or update an
item. In this case, the Cl type and the "Key Attributes" that identify the Cl must be set.

o Deleting or Updating Relations
When deleting or updating relations, the relation ID can be empty, temporary, or real.

If a Cl's ID is temporary, the Cl must be passed in the referencedCIs collection and its key
attributes must be specified. For details, see referencedCls in "ClsAndRelationsUpdates"
above.

« Inserting New Configuration Items into the CMDB

Itis possible to use either an empty ID or a temporary ID toinsert a new Cl. However, if the ID is
empty, the server cannot return the real CMDB ID in the structure createIDsMap because
thereis no clientID. Fordetails, see "addClsAndRelations" on page 234 and "UCMDB Query
Methods" on page 224.

« Inserting New Relations into the CMDB

Page 218 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

The relation ID can be either temporary or empty. However, if the relation is new but the
configuration items on either end of the relation are already defined in the CMDB, then those Cls
that already exist must be identified by a real CMDB ID or be specified ina referencedCIs

collection.

Query the UCMDB Class Model

The class model methods return information about CITs and relations. The class model is

configured using the Cl Type Manager. For details, see Cl Type Manager in the HP Universal
CMDB Modeling Guide.

For examples of the use of the class model methods, see "Class Model Example" on page 258.

This section provides information on the following methods that return information about CITs and

relations:

o "getClassAncestors" below

o "getAllClassesHierarchy" below

¢ "getCmdbClassDefinition" on next page

getClassAncestors

The getClassAncestors method retrieves the path between the given CIT and its root, including

the root.

Input

Parameter

Comment

cmdbContext For details, see "CmdbContext" on page 221.
className The type name. For details, see "Type Name" on page 222.
Output

Parameter Comment

classHierarchy

A collection of pairs of class names and parent class name.

comments

For internal use only.

getAliClassesHierarchy

The getAllClassesHierarchy method retrieves the entire class model tree.

Input

Parameter

Comment

cmdbContext

For details, see "CmdbContext" on page 221.

Page 219 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Output
classesHierarchy A collection of pairs of class name and parent class name.
comments For internal use only.

getCmdbClassDefinition

The getCmdbClassDefinition method retrieves information about the specified class.

If you use getCmdbClassDefinition to retrieve the key attributes, you must also query the parent
classes up to the base class. getCmdbClassDefinition identifies as key attributes only those
attributes with the ID_ATTRIBUTE set in the class definition specified by c1assName. Inherited
key attributes are not recognized as key attributes of the specified class. Therefore, the complete
list of key attributes for the specified class is the union of all the keys of the class and of all its
parents, up to the root.

Input

Parameter Comment

cmdbContext | For details, see "CmdbContext" on next page.

className The type name. For details, see "UCMDB General Parameters " below.

Output

Parameter Comment

cmdbClass | The class definition, consisting of name, classType, displayLabel,
description, parentName, qualifiers, and attributes.

comments | Forinternal use only.

Query for Impact Analysis

TheIdentifier inthe impact analysis methods points to the service's response data. It is unique
for the current response and is discarded from the server's memory cache after 10 minutes of non-
use.

For examples of the use of the impact analysis methods, see "Impact Analysis Example" on page
259.

UCMDB General Parameters

This section describes the most common parameters of the service's methods. For details, refer to
the schema documentation.

This section includes the following topics:

Page 220 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

¢ "CmdbContext" below

e "ID" below

o "Key Attributes" below

e "ID Types" below

o "ClProperties" below

o "Type Name" on next page

o "Configuration Item (CI)" on next page

« "Relation" on next page

CmdbContext

AllUCMDB Web Service API service invocations require a CmdbContext argument.
CmdbContext isacallerApplication string that identifies the application that invokes the
service. CmdbContext is used for logging and troubleshooting.

ID

Every CT and Relation has an 1D field. It consists of a case-sensitive ID string and an optional
temp flag, indicating whether the ID is temporary.

Key Attributes

Foridentifyinga CI or Relation in some contexts, key attributes can be used in place of a CMDB
ID. Key attributes are those attributes with the ID_ATTRIBUTE set in the class definition.

In the user interface, the key attributes have a key icon next to them in the list of Configuration Item
Type attributes in the user interface. For details, see Add/Edit Attribute Dialog Box in the HP
Universal CMDB Modeling Guide. For information about identifying the key attributes from within
the API client application, see "getCmdbClassDefinition" on previous page.

ID Types

An 1D element can contain a real ID, or a temporary ID.

Areal ID is a string assigned by the CMDB that identifies an entity in the database. A temporary 1D
can be any string that is unique in the current request.

A temporary ID can be assigned by the client and often represents the ID of the Cl as stored by the
client. It does not necessarily represent an entity already created in the CMDB. When a temporary
ID is passed by the client, if the CMDB can identify an existing data configuration item using the CI
key properties, that Cl is used as appropriate for the context as though it had been identified with a
real ID.

ClProperties

A CIProperties elementis composed of collections, each containing a sequence of name-value
elements that specify properties of the type indicated by the collection name. None of the
collections are required, so the CIProperties element can contain any combination of
collections.

CIProperties areusedby CI andRelation elements. Fordetails, see "Configuration Item
(CD)" on next page and "Relation" on next page.

Page 221 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

The properties collections are:

e dateProps -collectionof DateProp elements

e doubleProps -collection of DoubleProp elements

e floatProps -collectionof FloatProp elements

e intListProps -collectionof intListProp elements
e intProps -collectionof IntProp elements

e strProps -collectionof StrProp elements

e strListProps -collectionof StrListProp elements
e longProps -collection of LongProp elements

e bytesProps -collectionof BytesProp elements

e xmlProps -collectionof XmlProp elements

Type Name

The type name is the class name of a configuration item type or relation type. The type name is
used in code to refer to the class. It should not be confused with the display name, which is seen on
the user interface where the class is mentioned, but which is meaningless in code.

Configuration Item (CI)

A CT element is composed of an ID, a type, and a props collection.

When using "UCMDB Update Methods" to update a C1, the 1D element can contain areal CMDB
ID or a client-assigned temporary ID. If a temporary ID is used, set the temp flag to true. When
deleting an item, the 1D can be empty. "UCMDB Query Methods" take real 1Ds as input
parameters and return real 1Ds in the query results.

The type can be any type name defined in the Cl Type Manager. For details, see Cl Type Manager
in the HP Universal CMDB Modeling Guide.

The props element is a ClProperties collection. For details, see "UCMDB General Parameters "
on page 220.

Relation

A Relation is an entity that links two configuration items. A Relation element is composed of
an ID, a type, the identifiers of the two items being linked (end1IDandend2ID), anda
props collection.

When using "UCMDB Update Methods" to update a Relation, the value of the Relation's ID
can be areal CMDB ID or a temporary ID. When deleting an item, the ID can be empty. "UCMDB
Query Methods" take real IDs as input parameters and return real IDs in the query results.

The relation type is the Type Name of the UCMDB class from which the relation is instantiated.
The type can be any of the relation types defined in the CMDB. For further information on classes or
types, see "Query the UCMDB Class Model " on page 219.

For details, see Cl Type Manager in the HP Universal CMDB Modeling Guide.

Page 222 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

The two relation end IDs must not be empty IDs because they are used to create the ID of the
current relation. However, they both can have temporary IDs assigned to them by the client.

The props element is a ClProperties collection. For details, see "ClProperties" on page 221.

UCMDB Output Parameters

This section describes the most common output parameters of the service methods. For details,
refer to the schema documentation.

This section includes the following topics:
o "Cls" below

o "ShallowRelation" below

o "Topology" below

o "CINode" below

o "RelationNode" below

o "TopologyMap" below

e "ChunklInfo" on next page

Cls

CIs is acollection of Cl elements.

ShallowRelation

A shallowRelation is an entity that links two configuration items, composed of an ID, a type,
and the identifiers of the two items being linked (end1IDandend21ID). The relationtype is the
Type Name of the CMDB class from which the relation is instantiated. The type can be any of the
relation types defined in the CMDB.

Topology

Topology is agraph of CT elements and relations. A Topology consists of a CIs collection and a
Relations collection containing one or more Relation elements.

CINode

CINode is composedof aCIs collectionwitha label. The label inthe CINode is the label
defined in the node of the TQL used in the query.

RelationNode

RelationNode is aset of Relationscollections witha label. The 1abel inthe
RelationNode is the label defined in the node of the TQL used in the query.

TopologyMap

TopologyMap is the output of a query calculation that matches a TQL query. The 1abels inthe
TopologyMap are the node labels defined in the TQL used in the query.

The data of TopologyMap is returned in the following form:

Page 223 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

e CINodes. This is one or more CINode (see "CINode" on previous page).

e relationNodes. Thisis one ormore RelationNode (see "RelationNode" on previous page).

The 1abels inthese two structures order the lists of configuration items and relations.

Chunkinfo

When a query returns a large amount of data, the server stores the data, divided into segments
called chunks. The information the client uses to retrieve the chunked data is located in the
ChunkInfo structure returned by the query. ChunkInfo is composed of the numberOfChunks
that must be retrieved and the chunksKey. The chunksKey is a unique identifier of the data on the
server for this specific query invocation.

For more information, see "Processing Large Responses" on page 215.

UCMDB Query Methods

This section provides information on the following methods:

o "executeTopologyQueryByNameWithParameters" below

o "executeTopologyQueryWithParameters " on next page

o "getChangedCls" on page 226

o "getCINeighbours" on page 226

o "getClsByID" on page 227

o "getClsByType" on page 227

o "getFilteredClsByType " on page 228

o "getQueryNameOfView" on page 231

o "getTopologyQueryExistingResultByName" on page 231

o "getTopologyQueryResultCountByName" on page 232

o "pullTopologyMapChunks" on page 232

o "releaseChunks" on page 234

executeTopologyQueryByNameWithParameters

The executeTopologyQueryByNameWithParameters method retrieves a topologyMap
element that matches the specified parameterized query.

The values for the query parameters are passed inthe parameterizedNodes argument. The
specified TQL must have unique labels defined for each CINode and each relationNode orthe
method invocation fails.

Page 224 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Input
cmdbContext For details, see "CmdbContext" on page 221.
queryName The name of the parameterized TQL in the CMDB for which to get the
map.

parameterizedNodes | The conditions each node must meet to be included in the query results.

query TypedProperties | A collection of sets of properties to retrieve to items of a specific
Configuration Iltem Type.

Output

Parameter Comment

topologyMap | For details, see "TopologyMap" on page 223.

chunklinfo For details, see: "Chunklnfo" on previous page and "Processing Large
Responses" on page 215.

executeTopologyQueryWithParameters

The executeTopologyQueryWithParameters method retrieves a topologyMap element
that matches the parameterized query.

The query is passed in the que r yXML argument. The values for the query parameters are passed in
the parameterizedNodes argument. The TQL must have unique labels defined for each CINode
and each relationNode.

The executeTopologyQueryWithParameters method is used to pass ad-hoc queries, rather
than accessing a query defined in the CMDB. You can use this method when you do not have
access to the UCMDB user interface to define a query, or when you do not want to save the query
to the database.

To use an exported TQL as the input to this method, do the following:

1. Launch the Web browser and enter the following address:
http://localhost:8080/jmx-console.

You may have to log in with a user name and password. The default is sysadmin/sysadmin
2. Click UCMDB:service=TQL Services.
3. Locate the exportTql operation.
= Inthe customerld parameter box, enter 1 (the default).
= Inthe patternName parameter box, enter a valid TQL name.

4. Click Invoke.

Page 225 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Input
cmdbContext For details, see "CmdbContext" on page 221.
queryXML An XML string representing a TQL without resource tags.

parameterizedNodes | The conditions each node must meet to be included in the query results.

Output

Parameter Comment

topologyMap | For details, see "TopologyMap" on page 223.

chunklinfo For details, see "Chunklnfo" on page 224 and "Processing Large Responses" on
page 215.

getChangedCls
The getChangedC1Is method returns the change data for all Cls related to the specified Cls.
Input

Parameter Comment

cmdbContext | For details, see "CmdbContext" on page 221.

ids The list of the IDs of the root Cls whose related Cls are checked for changes.

Only real CMDB IDs are valid in this collection.

fromDate The beginning of the period in which to check if Cls changed.
toDate The end of the period in which to check if Cls changed.
Output

Parameter Comment

changeDatalnfo Zero or more collections of ChangedDataInfo elements.

getCINeighbours

The getCINeighbours method returns the immediate neighbors of the specified Cl.

For example, if the query is on the neighbors of Cl 2, and ClI A contains Cl B whichuses Cl ¢, CI B
is returned, but CI C is not. That is, only neighbors of the specified type are returned.

Page 226 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.
ID The ID of the CI with which to retrieve the neighbors. This must be a real

CMDB ID.

neighbourType The CIT name of the neighbors to retrieve. Neighbors of the specified type
and of types derived from that type are returned. For details, see "Type
Name" on page 222.

ClProperties The data to be returned on each configuration item, called the Query Layout
in the user interface. For details, see "TypedProperties" on page 217.

relationProperties | The data to be returned on each relation (called the Query Layout in the user
interface). For details, see "TypedProperties" on page 217

Output
topology For details, see "Topology" on page 223.
comments Forinternal use only.
getClsByID
The getCIsByID method retrieves configuration items by their CMDB IDs.
Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.

ClsTypedProperties | A typed properties collection. For details, see "Other Property
Specification Elements" on page 217.

IDs Only real CMDB IDs are valid in this collection.

Output

Parameter Comment

Cls Collection of Cl elements.

chunkinfo | For details, see: "Chunklnfo" on page 224 and "Processing Large Responses" on
page 215.

getClsByType

The getCIsByType method returns the collection of configuration items of the specified type and
of all types that inherit from the specified type.

Page 227 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Input

Parameter Comment

cmdbContext | For details, see "CmdbContext" on page 221.

type The class name. For details, see "Type Name" on page 222.

properties The data to be returned on each configuration item. For details, see
"CustomProperties" on page 217.

Output

Parameter Comment

Cls Collection of Cl elements.

chunkinfo | Fordetails, see: "ChunkInfo" on page 224 and "Processing Large Responses" on
page 215.

getFilteredClisByType

The getFilteredCIsByType method retrieves the Cls of the specified type that meet the
conditions used by the method. A condition is comprised of:

« aname field containing the name of a property
e an operator field containing a comparison operator
« anoptional value field containing a value or list of values

Together, they form a Boolean expression:
<item>.property.value [operator] <condition>.value

For example, if the condition name is root actualdeletionperiod, the condition valueis 40
and the operator is Equal, the Boolean statement is:

<item>.root actualdeletionperiod.value = = 40

The query returns all items whose root actualdeletionperiodis 40, assuming there are no
other conditions.

If the conditionsLogicalOperator argumentis AND, the query returns the items that meet all
conditions in the conditions collection. If conditionsLogicalOperator is OR, the query
returns the items that meet at least one of the conditions in the conditions collection.

The following table lists the comparison operators:

Page 228 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Operator Type of Condition/Comments

ChangedDuring Date

This is a range check. The condition value is specified in hours. If the value
of the date property lies in the range of the time the method is invoked plus or
minus the condition value, the condition is true.

For example, if the condition value is 24, the condition is true if the value of
the date property is between yesterday at this time and tomorrow at this
time.

Note: The name ChangedDuring is kept to preserve backward
compatibility. In previous versions, the operator was used only with create
and modify time properties.

Equal String and numerical

EquallgnoreCase | String

Greater Numerical
GreaterEqual Numerical
In String, numerical, and list

The condition's value is a list. The condition is true if the value of the
property is one of the values in the list.

InList List
The condition's value and the property's value are lists.

The condition is true if all the values in the condition's list also appear in the
item's property list. There can be more property values than specified in the
condition without affecting the truth of the condition.

IsNull String, numerical, and list

The item's property has no value. When operator IsNull is used, the value
of the condition is ignored, and in some cases can be nil.

Less Numerical
LessEqual Numerical
Like String

The condition's value is a substring of the value of the property's value. The
condition's value must be bracketed with percentage signs (%). For example,
$Bi% matches BismarkandBay of Biscay, butnotbiscuit.

LikelgnoreCase String

Usethe LikeIgnoreCase operator as you use the L.i ke operator. The
match, however is not case-sensitive. Therefore, $Bi% matches biscuit.

Page 229 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Operator Type of Condition/Comments

NotEqual String and numerical

UnchangedDuring | Date

This is a range check. The condition value is specified in hours. If the value
of the date property is in the range of the time the method is invoked plus or
minus the condition value, the condition is false. If it lies outside that range,
the condition is true.

For example, if the condition value is 24, the condition is true if the value of
the date property is before yesterday at this time or after tomorrow at this
time.

Note: The name UnchangedDuring is kept to preserve backward
compatibility. In previous versions, the operator was used only with create
and modify time properties.

Example of Setting Up a Condition:

FloatCondition fc = new FloatCondition () ;

FloatProp fp = new FloatProp():;

fp.setName ("attr name") ;

fp.setValue (11) ;

fc.setCondition (fp) ;

fc.setFloatOperator (FloatCondition.floatOperatorEnum.Equal) ;

Example of Querying for Inherited Properties:

The target Cl is samp1le which has two attributes, name and size. sampleII extends the Cl
with two attributes, 1evel and grade. This example sets up a query for the properties of
sampleII thatwere inherited from sample by specifying them by name.

GetFilteredCIsByType request = new GetFilteredCIsByType ()
request.setCmdbContext (cmdbContext)

request.setType ("sampleII")

CustomProperties customProperties = new CustomProperties():;
PropertiesList propertiesList = new PropertiesList();
propertiesList.addPropertyName ("name") ;
propertiesList.addPropertyName ("size") ;
customProperties.setPropertieslList (propertieslList) ;
request.setProperties (customProperties)

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.

Page 230 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Parameter Comment

type The class name. For details, see "Type Name" on page 222. The
type can be any of the types defined using the Cl Type Manager. For
details, see Cl Type Manager in the HP Universal CMDB Modeling
Guide.

properties The data to be returned on each CI (called the Query Layout in the
user interface). For details, see "CustomProperties" on page 217.

conditions A collection of name-value pairs and the operators that relate one to
the other. For example, host _hostname like QA.

conditionsLogicalOperator | « AND. All the conditions must be met.

¢ OR. At least one of the conditions must be met.

Output

Parameter Comment

Cls Collection of Cl elements.

chunkinfo | Fordetails, see "Chunklnfo" on page 224 and "Processing Large Responses" on
page 215.

getQueryNameOfView

The getQueryNameOfView method retrieves the name of the TQL on which the specified view is
based.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.

viewName The name of a view, that is, a sub-set of the class model in the CMDB.

Output

Parameter Comment

queryName The name of the TQL in the CMDB on which the view is based.

getTopologyQueryExistingResultByName

The getTopologyQueryExistingResultByName method retrieves the most recent result of
running the specified TQL. The call does not run the TQL. If there are no results from a previous run,
nothing is returned.

Page 231 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Input
cmdbContext For details, see "CmdbContext" on page 221.
queryName The name of a TQL.

queryTypedProperties | A collection of sets of properties to retrieve for items of a specific
Configuration Item Type.

Output

Parameter Comment

queryName The name of the TQL in the CMDB on which the view is based.

getTopologyQueryResultCountByName

The getTopologyQueryResultCountByName method retrieves the number of instances of
each node that matches the specified query.

Input

cmdbContext For details, see "CmdbContext" on page 221.

queryName The name of a TQL.

countlnvisible If true, the output includes Cls defined as invisible in the query.
Output

Parameter Comment

queryName The name of the TQL in the CMDB on which the view is based.

pullTopologyMapChunks

The pullTopologyMapChunks method retrieves one of the chunks that contain the response to
a method.

Each chunk contains a topologyMap element that is part of the response. The first chunk is
numbered 1, so the retrieval loop counter iterates from 1 to <response
object>.getChunkInfo () .getNumberOfChunks ().

For details, see "ChunkInfo" on page 224 and "Query the CMDB" on page 215.

The client application must be able to handle the partial maps. See the following example of
handling a ClI collection and the example of merging chunks to a map in "Query Example" on page
242.

Page 232 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Input

Parameter Comment

cmdbContext | For details, see "CmdbContext" on page 221.

ChunkRequest | The number of the chunk to retrieve and the ChunkInfo that is returned by the

query method.
Output
Parameter Comment
topologyMap For details, see "TopologyMap" on page 223.
comments For internal use only.

Example of Handling Chunks:

GetCIsByType request =
new GetCIsByType (cmdbContext, typeName, customProperties):;
GetCIsByTypeResponse response =
ucmdbService.getCIsByType (request) ;
ChunkRequest chunkRequest = new ChunkRequest () ;
chunkRequest.setChunkInfo (response.getChunkInfo()) ;
for (int j=1; j<=response.getChunkInfo () .getNumberOfChunks (); j++) {
chunkRequest.setChunkNumber (j) ;
PullTopologyMapChunks req =new
PullTopologyMapChunks (cmdbContext, chunkRequest) ;
PullTopologyMapChunksResponse res =
ucmdbService.pullTopologyMapChunks (req) ;
for (int m=0 ;
m < res.getTopologyMap () .getCINodes () .sizeCINodelList ()

m++) {
CIs cis =
res.getTopologyMap () .getCINodes () .getCINode (m) .getCIs () ;
for(int i=0 ; i1 < cis.sizeCIList () ; i++) {

// your code to process the CIs

}

GetCIsByType request =
new GetCIsByType (cmdbContext, typeName, customProperties):;
GetCIsByTypeResponse response =
ucmdbService.getCIsByType (request) ;
ChunkRequest chunkRequest = new ChunkRequest () ;
chunkRequest.setChunkInfo (response.getChunkInfo()) ;
for (int j=1 ; j <= response.getChunkInfo () .getNumberOfChunks () ;

Page 233 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

j++) A
chunkRequest.setChunkNumber (j) ;
PullTopologyMapChunks req = new
PullTopologyMapChunks (cmdbContext, chunkRequest) ;
PullTopologyMapChunksResponse res =
ucmdbService.pullTopologyMapChunks (req) ;
for (int m=0 ;

m < res.getTopologyMap () .getCINodes () .sizeCINodeList ()

m++) |

CIs cis =
res.getTopologyMap () .getCINodes () .getCINode (m) .getCIs () ;
for(int i=0 ; i < cis.sizeCIList() ; i++) {

// your code to process the CIs

releaseChunks

The releaseChunks method frees the memory of the chunks that contain the data from the
query.

Tip: The server discards the data after ten minutes. Calling this method to discard the data as
soon as it has been read conserves server resources.

Input

Parameter Comment

cmdbContext | For details, see"CmdbContext" on page 221.

chunksKey The identifier of the data on the server that was chunked. The key is an element
of ChunkInfo

UCMDB Update Methods

This section provides information on the following methods:

¢ "addClsAndRelations" below

o "addCustomer" on next page

o "deleteClsAndRelations" on page 236

o "removeCustomer" on page 236

o "updateClsAndRelations" on page 236

addClIsAndRelations

The addCIsAndRelations method adds or updates Cls and relations.

Page 234 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

If the Cls or relations do not exist in the CMDB, they are added and their properties are set
according to the contents of the CTsAndRelationsUpdates argument.

If the Cls or relations do exist in the CMDB, they are updated with the new data, if
updateExistingis true.

If updateExistingis false, CIsAndRelationsUpdates cannot reference existing
configuration items or relations. Any attempt to reference existing items when updateExisting
is false results in an exception.

If updateExistingis true, the add or update operation is performed without validating the Cls,
regardless of the value of ignorevalidation.

If updateExisitingis falseand ignorevalidation is true, the add operation is performed
without validating the Cls.

If updateExisitingis falseand ignorevalidation is false, the Cls are validated before the
add operation.

Relations are never validated.

CreatedIDsMap is a map or dictionary of type C1ientIDToCmdbID that connects the client's
temporary IDs with the corresponding real CMDB IDs.

Input
cmdbContext For details, see "CmdbContext" on page 221.
updateExisting Set to frue to update items that already exist in the CMDB. Set to

false to throw an exception if any item already exists.

ClsAndRelationsUpdates | The items to update or create. For details, see
"ClsAndRelationsUpdates" on page 218.

ignoreValidation If true, no check is performed before updating the CMDB.

Output

Parameter Comment

CreatedlDsMap | The map of client IDs to CMDB IDs. For details, see the description above.

comments Forintemnal use only.

addCustomer
The addCustomer method adds a customer.

Input

Parameter Comment

CustomerlD The numeric ID of the customer.

Page 235 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

deleteClsAndRelations

The deleteCIsAndRelations method removes the specified configuration items and relations
from the CMDB.

When a Cl is deleted and the Cl is one end of one or more Relation items, those Relation
items are also deleted.

Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.

ClsAndRelationsUpdates | The items to delete. For details, see "ClsAndRelationsUpdates" on
page 218

removeCustomer
The removeCustomer method deletes a customer record.

Input

Parameter Comment

CustomerlD The numeric ID of the customer.

updateClsAndRelations

The updateCIsAndRelations method updates the specified Cls and relations.

Update uses the property values from the CIsAndRelationsUpdates argument. If any of the
Cls orrelations do not exist in the CMDB, an exception is thrown.

CreatedIDsMap is a map or dictionary of type C1ient IDToCmdbID that connects the client's
temporary 1Ds with the corresponding real CMDB IDs.

Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.

ClsAndRelationsUpdates | The items to update. For details, see "ClsAndRelationsUpdates" on
page 218.

ignoreValidation If true, no check is performed before updating the CMDB.

Output

Parameter Comment

CreatedIlDsMap | The map of client IDs to CMDB IDs. For details, see "addCIsAndRelations"
on page 234.

Page 236 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

UCMDB Impact Analysis Methods

This section provides information on the following methods:

o "calculatelmpact" below

o "getlmpactPath" below

¢ "getlmpactRulesByNamePrefix" on next page

calculatelmpact

The calculateImpact method calculates which Cls are affected by a given Cl according to the
rules defined in the CMDB.

This shows the effect of an event triggering of the rule. The identifier output of
calculateImpact is used as input for "getimpactPath" below.

Input
cmdbContext For details, see "CmdbContext" on page 221.
impactCategory The type of event that would trigger the rule being simulated.
IDs A collection of ID elements.
impactRulesNames A collection of ImpactRuleName elements.
severity The severity of the triggering event.
Output
impactTopology For details, see "Topology" on page 223.
identifier The key to the server response.

getimpactPath

The get ImpactPath method retrieves the topology graph of the path between the affected Cl and
the Cl that affects it.

The identifier output of "calculatelmpact" above is used as the identi fier input argument
of getImpactPath.

Input

Parameter

Comment

cmdbContext

For details, see "CmdbContext" on page 221.

identifier

The key to the server response that was returned by calculatelmpact.

Page 237 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Parameter Comment

relation A Relation based on one of the "ShallowRelation"s returned by calculatelmpact
inthe impactTopology element.

Output
impactPathTopology A CIs collectionand an ImpactRelations collection.
comments Forinternal use only.

An ImpactRelations element consists of an ID, type, end1ID, end2ID,arule, andan
action.

getimpactRulesByNamePrefix

The get ImpactRulesByNamePrefix method retrieves rules using a prefix filter.

This method applies to impact rules that are named with a prefix that indicates the context to which
they apply, forexample, SAP myrule, ORA myrule, and so on. This method filters all impact rule
names for those beginning with the prefix specified by the ruleNamePrefixFilter argument.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.

ruleNamePrefixFilter A string containing the first letters of the rule names to match.

Output

Parameter

impactRules | impactRules is composed of zero or more impactRule. An impactRule,
which specifies the effect of a change, is composed of ruleName,
description, queryName, and isActive.

Actual State Web Service API

The Actual State Web Service APl is used primarily by the Service Manger to retrieve Actual State
information for a specific CMDB ID or Global ID and a specific customer ID. The API find a
matching query under the folder Integration/SM Query and executes the TQL with the CMDB ID or
Global ID as a condition, and returns the output of the query.

Web Service URL: http://[machine_name]:8080/axis2/services/ucmdbSMService

Web Service Schema: http://[machine_name]:8080/axis2/services/ucmdbSMService?xsd=xsd0

Page 238 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Flow

When the API method is called, it tries to find an appropriate Query in the Integration/SM Query
folder. It tries to match the type of the requested CMDBID/GloballD with one of the queries in the
latter folder first by looking for a QueryElement with the name Root, and if one is not found it tries
to use any QueryNode of the same type as the requested CMDBID/GloballD. Once an appropriate
Query and QueryNode is found, it puts the CMDBID/GloballD as a condition on the QueryNode and
executes the Query. The result is then returned to the caller of the API.

Manipulating the Result Using Transformations

In some cases you may want to apply additional transformations to the resulting XML (for example,
to sum up the sizes of all the disks and add that sum as an additional attribute to the CI). To add
additional transformations on the TQL results, place a resource called [tgl_name].xslt in the
adapter configuration as follows: Adapter Management > ServiceDeskAdapter7-1
>Configuration Files > [tql_name].xslt.

Logs for the Actual State Web Service API

The log configuration for UCMDB resides at: UCMDBServer/Conf/log in the various *.properties
files.

To view logs of the SM Actual State flow:

1. Open the cmdb_soaapi.properties file and change the log level to DEBUG as follows:
loglevel=DEBUG.

2. Open the femdb.properties file and change the log level to DEBUG as follows:
loglevel=DEBUG.

3. Wait 1 minute for the server to retrieve the changes.
4. Run the Actual State from the SM.
5. View the following log files at UCMDBServer/Runtime/log:
= cmdb.soaapi.log
= fcmdb.log
Use Cases
The following use cases assume two systems:
o HP Universal CMDB server
o A third-party system that contains a repository of configuration items
This section includes the following topics:

o "Populating the CMDB" on next page

o "Querying the CMDB" on next page

o "Querying the Class Model" on next page

¢ "Analyzing Change Impact " on next page

Page 239 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

Populating the CMDB

Use cases:

A third-party asset management updates the CMDB with information available only in asset
management

A number of third-party systems populate the CMDB to create a central CMDB that can track
changes and perform impact analysis

A third-party system creates Configuration Items and Relations according to third-party
business logic to leverage the CMDB query capabilities

Querying the CMDB

Use cases:

A third-party system gets the Configuration Items and Relations that represent the SAP system
by getting the results of the SAP TQL

A third-party system gets the list of Oracle servers that have been added or changed in the last
five hours

A third-party system gets the list of servers whose host name contains the substring /ab

A third-party system finds the elements related to a given Cl by getting its neighbors

Querying the Class Model

Use cases:

A third-party system enables users to specify the set of data to be retrieved from the CMDB. A
user interface can be built over the class model to show users the possible properties and
prompt them for required data. The user can then choose the information to be retrieved.

A third-party system explores the class model when the user cannot access the UCMDB user
interface.

Analyzing Change Impact

Use case:

A third-party system outputs a list of the business services that could be impacted by a change on a
specified host.

Examples

This section includes the following topics:

"The Example Base Class" on next page

"Query Example" on page 242

"Update Example" on page 254

"Class Model Example" on page 258

"Impact Analysis Example" on page 259

"Adding Credentials Example" on page 262

Page 240 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

The Example Base Class

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.services.UcmdbService;
import com.hp.ucmdb.generated.services.UcmdbServiceStub;
import com.hp.ucmdb.generated.types.CmdbContext;

import org.apache.axis2.AxisFault;

import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;
import java.net.MalformedURLException;
import java.net.URL;

/**

* User: hbarkai

* Date: Jul 12, 2007
*/

abstract class Demo {

UcmdbService stub;
CmdbContext context;

public void initDemo () {
try |
setStub (createUcmdbService ("admin", "admin"));
setContext () ;
} catch (Exception e) {
//handle exception

}

public UcmdbService getStub () {
return stub;

}

public void setStub (UcmdbService stub) {
this.stub = stub;
}

public CmdbContext getContext () {
return context;

}

public void setContext () {
CmdbContext context = new CmdbContext ();
context.setCallerApplication ("demo") ;

this.context = context;
}
//connection to service - for axis2/jibx client
private static final String PROTOCOL = "http";
private static final String HOST NAME = "host name";
private static final int PORT = 8080;
private static final String FILE = "/axis2/services/UcmdbService";

Page 241 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

protected UcmdbService createUcmdbService
(String username, String password) throws Exception{
URL url;
UcmdbServiceStub serviceStub;

try f{
url = new URL
(Demo.PROTOCOL, Demo.HOST NAME,
Demo.PORT, Demo.FILE);
serviceStub = new UcmdbServiceStub (url.toString()):;
HttpTransportProperties.Authenticator auth =
new HttpTransportProperties.Authenticator();
auth.setUsername (username) ;
auth.setPassword (password) ;
serviceStub. getServiceClient () .getOptions () .setProperty
(HTTPConstants.AUTHENTICATE, auth) ;

} catch (AxisFault axisFault) {
throw new Exception
("Failed to create SOAP adapter for "
+ Demo.HOST NAME , axisFault);

} catch (MalformedURLException e) {
throw new Exception
("Failed to create SOAP adapter for "
+ Demo.HOST NAME, e);
}
return serviceStub;
}
}

Query Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.query.*;

import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.services.UcmdbService;

import com.hp.ucmdb.generated.types.*;

import com.hp.ucmdb.generated.types.props.*;

import java.rmi.RemoteException;

public class QueryDemo extends Demo{
UcmdbService stub;
CmdbContext context;

public void getCIsByTypeDemo () {
GetCIsByType request = new GetCIsByType()
//set cmdbcontext
CmdbContext cmdbContext = getContext();
request.setCmdbContext (cmdbContext) ;
//set CIs type
request.setType ("anyType") ;

Page 242 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

//set CIs propeties to be retrieved
CustomProperties customProperties = new CustomProperties():;
PredefinedProperties predefinedProperties =

new PredefinedProperties();
SimplePredefinedProperty simplePredefinedProperty =

new SimplePredefinedProperty();
simplePredefinedProperty.setName

(SimplePredefinedProperty.nameEnum.DERIVED) ;
SimplePredefinedPropertyCollection

simplePredefinedPropertyCollection =

new SimplePredefinedPropertyCollection () ;

simplePredefinedPropertyCollection.addSimplePredefinedProperty
(simplePredefinedProperty) ;

predefinedProperties.setSimplePredefinedProperties
(simplePredefinedPropertyCollection);

customProperties.setPredefinedProperties (predefinedProperties);
request.setProperties (customProperties) ;
try |
GetCIsByTypeResponse response =
getStub () .getCIsByType (request) ;
TopologyMap map =
getTopologyMapResultFromCIs
(response.getCIs (), response.getChunkInfol()):;
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

public void getCIsByIdDemo () {

GetCIsById request = new GetCIsById();

CmdbContext cmdbContext = getContext();

//set cmdbcontext

request.setCmdbContext (cmdbContext) ;

//set ids

ID idl = new ID();

idl.setBase ("cmdbobjectidCIT1") ;

ID id2 = new ID();

id2.setBase ("cmdbobjectidCIT2") ;

IDs ids = new IDs{();

ids.addID(idl) ;

ids.addID(id2) ;

request.setIDs (ids) ;

//set CIls properties to be retrieved

TypedPropertiesCollection properties =
new TypedPropertiesCollection();

Page 243 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

TypedProperties typedPropertiesl =
new TypedProperties();
typedPropertiesl.setType ("CIT1");

CustomTypedProperties customPropertiesl =
new CustomTypedProperties();
PredefinedTypedProperties predefinedPropertiesl =
new PredefinedTypedProperties();
SimpleTypedPredefinedProperty simplePredefinedPropertyl =
new SimpleTypedPredefinedProperty();
simplePredefinedPropertyl.setName
(SimpleTypedPredefinedProperty.nameEnum.CONCRETE) ;
SimpleTypedPredefinedPropertyCollection
simplePredefinedPropertyCollectionl =
new SimpleTypedPredefinedPropertyCollection();
simplePredefinedPropertyCollectionl
.addSimpleTypedPredefinedProperty
(simplePredefinedPropertyl) ;

predefinedPropertiesl.
setSimpleTypedPredefinedProperties
(simplePredefinedPropertyCollectionl) ;
customPropertiesl.
setPredefinedTypedProperties
(predefinedPropertiesl) ;
typedPropertiesl.setProperties (customPropertiesl) ;
properties.addTypedProperties (typedPropertiesl) ;

TypedProperties typedProperties2?2 =

new TypedProperties();
typedProperties2.setType ("CIT2") ;
CustomTypedProperties customProperties2 =

new CustomTypedProperties();
PredefinedTypedProperties predefinedProperties2 =

new PredefinedTypedProperties();
SimpleTypedPredefinedProperty simplePredefinedProperty2 =

new SimpleTypedPredefinedProperty() ;
simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.nameEnum.NAMING) ;
SimpleTypedPredefinedPropertyCollection

simplePredefinedPropertyCollection2 =

new SimpleTypedPredefinedPropertyCollection();

simplePredefinedPropertyCollection?2.
addSimpleTypedPredefinedProperty
(simplePredefinedProperty?) ;

predefinedProperties?2.setSimpleTypedPredefinedProperties
(simplePredefinedPropertyCollection?2);

customProperties2.setPredefinedTypedProperties
(predefinedProperties?) ;

Page 244 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

typedProperties2.setProperties (customProperties?);
properties.addTypedProperties (typedProperties?);

request.setCIsTypedProperties (properties) ;
try f{
GetCIsByIdResponse response =
getStub () .getCIsById(request)
CIs cis = response.getCIs();
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

public void getFilteredCIsByTypeDemo () {
GetFilteredCIsByType request = new GetFilteredCIsByType();
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext (cmdbContext) ;
//set CIs type
request.setType ("anyType") ;
//sets Filter conditions
Conditions conditions = new Conditions({();
IntConditions intConditions = new IntConditions{();
IntCondition intCondition = new IntCondition();
IntProp intProp = new IntProp();
intProp.setName ("int attrl");

intProp.setValue (100) ;
intCondition.setCondition (intProp) ;
intCondition.setIntOperator
(IntCondition.intOperatorEnum.Greater) ;
intConditions.addIntCondition (intCondition);

conditions.setIntConditions (intConditions) ;
request.setConditions (conditions);
//set logical operator for conditions
request.setConditionsLogicalOperator
(GetFilteredCIsByType.conditionsLogicalOperatorEnum.AND) ;
//set CIs properties to be retrieved
CustomProperties customProperties =
new CustomProperties();
PredefinedProperties predefinedProperties =
new PredefinedProperties|();
SimplePredefinedProperty simplePredefinedProperty =
new SimplePredefinedProperty();
simplePredefinedProperty.setName
(SimplePredefinedProperty.namekEnum.NAMING) ;

Page 245 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

SimplePredefinedPropertyCollection
simplePredefinedPropertyCollection =
new SimplePredefinedPropertyCollection () ;
simplePredefinedPropertyCollection.
addSimplePredefinedProperty
(simplePredefinedProperty) ;
predefinedProperties.setSimplePredefinedProperties
(simplePredefinedPropertyCollection);
customProperties.setPredefinedProperties
(predefinedProperties);

request.setProperties (customProperties) ;
try |
GetFilteredCIsByTypeResponse response =
getStub () .getFilteredCIsByType (request) ;
TopologyMap map =

getTopologyMapResultFromCIs
(response.getCIs (), response.getChunkInfol()):;

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

public void executeTopologyQueryByNameDemo () {

ExecuteTopologyQueryByName request = new

ExecuteTopologyQueryByName () ;
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext (cmdbContext) ;
//set query name
request.setQueryName ("queryName") ;

try {
ExecuteTopologyQueryByNameResponse response =
getStub () .executeTopologyQueryByName (request) ;
TopologyMap map =
getTopologyMapResult
(response.getTopologyMap (),
response.getChunkInfo());
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

// assume the follow query was defined at UCMDB

Page 246 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

// Query Name: exampleQuery

// Query sketch:

// Host

// / N\

// ip Disk
// Query Parameters:

// Host-

// host os (like)

// Disk-

// disk failures (equal)

public void executeTopologyQueryByNameWithParametersDemo () {
ExecuteTopologyQueryByNameWithParameters request =
new ExecuteTopologyQueryByNameWithParameters() ;
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext (cmdbContext) ;
//set query name
request.setQueryName ("queryName") ;
//set parameters
ParameterizedNode hostParametrizedNode =
new ParameterizedNode () ;
hostParametrizedNode.setNodeLabel ("Host") ;
CIProperties parameters = new CIProperties{():;
StrProps strProps = new StrProps():;
StrProp strProp = new StrProp();
strProp.setName ("host os");
strProp.setValue ("%2000%") ;
strProps.addStrProp (strProp) ;
parameters.setStrProps (strProps) ;
hostParametrizedNode.setParameters (parameters) ;
request.addParameterizedNodes (hostParametrizedNode) ;
ParameterizedNode diskParametrizedNode =
new ParameterizedNode () ;

diskParametrizedNode.setNodeLabel ("Disk") ;
CIProperties parametersl = new CIProperties();
IntProps intProps = new IntProps|();

IntProp intProp = new IntProp();
intProp.setName ("disk failures");
intProp.setValue (30);
intProps.addIntProp (intProp) ;
parametersl.setIntProps (intProps);
diskParametrizedNode.setParameters (parametersl) ;

request.addParameterizedNodes (diskParametrizedNode) ;
try f{
ExecuteTopologyQueryByNameWithParametersResponse
response =
getStub () .executeTopologyQueryByNameWithParameters
(request) ;

Page 247 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

TopologyMap map =
getTopologyMapResult
(response.getTopologyMap (),
response.getChunkInfo());
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

/ // assume the follow query was defined at UCMDB
// Query Name: exampleQuery
// Query sketch:
// Host
// /N
// ip Disk
// Query Parameters:
// Host-
// host os (like)
// Disk-
// disk failures (equal)

public void executeTopologyQueryWithParametersDemo () {
ExecuteTopologyQueryWithParameters request =
new ExecuteTopologyQueryWithParameters () ;
CmdbContext cmdbContext = getContext();
//set cmdbcontext
request.setCmdbContext (cmdbContext) ;
//set query definition
String queryXml = "<xml that represents the query above>";
request.setQueryXml (queryXml) ;
//set parameters
ParameterizedNode hostParametrizedNode =
new ParameterizedNode () ;

hostParametrizedNode.setNodeLabel ("Host") ;

CIProperties parameters = new CIProperties():;
StrProps strProps = new StrProps():;
StrProp strProp = new StrProp();
strProp.setName ("host os");
strProp.setValue ("%2000%") ;
strProps.addStrProp (strProp) ;
parameters.setStrProps (strProps) ;
hostParametrizedNode.setParameters (parameters) ;
request.addParameterizedNodes (hostParametrizedNode) ;
ParameterizedNode diskParametrizedNode =

new ParameterizedNode () ;
diskParametrizedNode.setNodeLabel ("Disk") ;

Page 248 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

CIProperties parametersl = new CIProperties();
IntProps intProps = new IntProps{();

IntProp intProp = new IntProp();
intProp.setName ("disk failures");
intProp.setValue (30);

intProps.addIntProp (intProp) ;
parametersl.setIntProps (intProps) ;
diskParametrizedNode.setParameters (parametersl);
request.addParameterizedNodes (diskParametrizedNode) ;

try |
ExecuteTopologyQueryWithParametersResponse
response = getStub () .executeTopologyQueryWithParameters
(request) ;

TopologyMap map =
getTopologyMapResult
(response.getTopologyMap (),
response.getChunkInfo());

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

public void getCINeighboursDemo () {
GetCINeighbours request = new GetCINeighbours() ;
//set cmdbcontext
CmdbContext cmdbContext = getContext();
request.setCmdbContext (cmdbContext) ;
// set CI id
ID id = new ID();
id.setBase ("cmdbobjectidCIT1") ;
request.setID(id) ;
//set neighbour type
request.setNeighbourType ("neighbourType") ;
//set Neighbours CIs propeties to be retrieved
TypedPropertiesCollection properties =
new TypedPropertiesCollection();
TypedProperties typedPropertiesl = new TypedProperties();
typedPropertiesl.setType ("neighbourType") ;
CustomTypedProperties customPropertiesl =
new CustomTypedProperties() ;
PredefinedTypedProperties predefinedPropertiesl =
new PredefinedTypedProperties();

QualifierProperties qualifierProperties =
new QualifierProperties();
qualifierProperties.addQualifierName ("ID ATTRIBUTE") ;

Page 249 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

predefinedPropertiesl.setQualifierProperties(qualifierProperties):;

customPropertiesl.setPredefinedTypedProperties
(predefinedPropertiesl) ;

typedPropertiesl.setProperties (customPropertiesl);

properties.addTypedProperties (typedPropertiesl);

request.setCIProperties (properties);

TypedPropertiesCollection relationsProperties =

new TypedPropertiesCollection();
TypedProperties typedProperties2 = new TypedProperties();
typedProperties2.setType ("relationType") ;
CustomTypedProperties customProperties2 =

new CustomTypedProperties();

PredefinedTypedProperties predefinedProperties?2 =
new PredefinedTypedProperties();
SimpleTypedPredefinedProperty simplePredefinedProperty2 =
new SimpleTypedPredefinedProperty();
simplePredefinedProperty2.setName

(SimpleTypedPredefinedProperty.namekEnum.CONCRETE) ;
SimpleTypedPredefinedPropertyCollection
simplePredefinedPropertyCollection2 =
new SimpleTypedPredefinedPropertyCollection();
simplePredefinedPropertyCollection?2.
addSimpleTypedPredefinedProperty
(simplePredefinedProperty?2) ;
predefinedProperties?2.
setSimpleTypedPredefinedProperties
(simplePredefinedPropertyCollection?) ;
customProperties?2.setPredefinedTypedProperties
(predefinedProperties?);
typedProperties2.setProperties (customProperties?);
relationsProperties.addTypedProperties (typedProperties?) ;
request.setRelationProperties (relationsProperties);

try |

GetCINeighboursResponse response =

getStub () .getCINeighbours (request) ;

Topology topology = response.getTopology()
} catch (RemoteException e) {

//handle exception
} catch (UcmdbFaultException e) {

//handle exception

}

//get Topology Map for chunked/non-chunked result
private TopologyMap getTopologyMapResult (TopologyMap topologyMap,
ChunkInfo chunkInfo) {
if (chunkInfo.getNumberOfChunks () == 0) {

Page 250 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

return topologyMap;
} else {

topologyMap = new TopologyMap () ;

for(int i=1 ; i <= chunkInfo.getNumberOfChunks () ; i++) {
ChunkRequest chunkRequest = new ChunkRequest () ;
chunkRequest.setChunkInfo (chunkInfo) ;
chunkRequest.setChunkNumber (i) ;
PullTopologyMapChunks reqg =

new PullTopologyMapChunks () ;

req.setChunkRequest (chunkRequest) ;
req.setCmdbContext (getContext ()) ;
PullTopologyMapChunksResponse res = null;

try A
res = getStub () .pullTopologyMapChunks (req) ;
TopologyMap map = res.getTopologyMap () ;
topologyMap = mergeMaps (topologyMap, map)
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

}
return topologyMap;

private TopologyMap getTopologyMapResultFromCIs (CIs cis, ChunkInfo
chunkInfo) {

TopologyMap topologyMap = new TopologyMap();

if (chunkInfo.getNumberOfChunks () == 0) {
CINode ciNode = new CINode () ;
ciNode.setLabel ("");
ciNode.setCIs(cis);
CINodes ciNodes = new CINodes() ;
ciNodes.addCINode (ciNode) ;
topologyMap.setCINodes (ciNodes) ;

} else {

for(int i=1 ; i <= chunkInfo.getNumberOfChunks () ; i++) {
ChunkRequest chunkRequest =
new ChunkRequest () ;
chunkRequest.setChunkInfo (chunkInfo) ;
chunkRequest.setChunkNumber (i) ;
PullTopologyMapChunks req =
new PullTopologyMapChunks () ;
req.setChunkRequest (chunkRequest) ;
req.setCmdbContext (getContext ()) ;
PullTopologyMapChunksResponse res = null;

Page 251 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

try {
res = getStub () .pullTopologyMapChunks (req) ;
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception
}
TopologyMap map = res.getTopologyMap () ;
topologyMap = mergeMaps (topologyMap, map):;
}

//release chunks

ReleaseChunks reqg = new ReleaseChunks();
req.setChunksKey (chunkInfo.getChunksKey()) ;
req.setCmdbContext (getContext ()) ;

try |
getStub () .releaseChunks (req) ;

} catch (RemoteException e) {
//handle exception

} catch (UcmdbFaultException e) {
//handle exception

}
return topologyMap;

/* WARNING merge will be correct only if a each node is given
a unique name. This applies to both CI and Relation nodes .*/

private TopologyMap mergeMaps (TopologyMap topologyMap, TopologyMap
newMap) {
for(int i=0 ; i < newMap.getCINodes () .sizeCINodeList () ; i++)

CINode ciNode = newMap.getCINodes () .getCINode (i)

boolean alreadyExist = false;

if (topologyMap.getCINodes () == null) {
topologyMap.setCINodes (new CINodes())

for(int j=0 ; j <
topologyMap.getCINodes () .sizeCINodeList () ; Jj++) {
CINode ciNode2 =
topologyMap.getCINodes () .getCINode (7) ;
if (ciNode2.getLabel () .equals (ciNode.getLabel ())) {

CIs cisTOAdd = ciNode.getCIs() ;
CIs cis =
mergeCIsGroups

Page 252 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

(topologyMap.getCINodes () .getCINode (j) .getCIs (),
cisTOAdd) ;

topologyMap.getCINodes () .getCINode (j) .setCIs (cis);
alreadyExist = true;

}
if('alreadyExist) {
topologyMap.getCINodes () .addCINode (ciNode) ;

}

for(int i=0 ; 1 <
newMap.getRelationNodes () .sizeRelationNodeList () ; i++) {
RelationNode relationNode =

newMap.getRelationNodes () .getRelationNode (1) ;
boolean alreadyExist = false;

if (topologyMap.getRelationNodes () == null) {

topologyMap.setRelationNodes (new RelationNodes ());
}

for (int j=0

’

J <
topologyMap.getRelationNodes () .sizeRelationNodelList () ;
J++) |

RelationNode relationNode2 =

topologyMap.getRelationNodes () .getRelationNode (7j) ;

if (relationNode2.getLabel () .equals (relationNode.getLabel ())) {
Relations relationsTOAdd =
relationNode.getRelations () ;

Relations relations =
mergeRelationsGroups
(topologyMap.getRelationNodes () .

getRelationNode (j) .getRelations(),
relationsTOAdd) ;

topologyMap.getRelationNodes () .

getRelationNode (j) .setRelations (relations);
alreadyExist = true;

}

if(!alreadyExist) {

topologyMap.getRelationNodes () .addRelationNode (relationNode) ;

}
return topologyMap;
}

private Relations mergeRelationsGroups (Relations relationsl,
Relations relations2) {
for(int i=0

; 1 < relations2.sizeRelationList () ; 1++) {

Page 253 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

}

}

relationsl.addRelation(relations2.getRelation(1i));

return relationsl;

private CIs mergeCIsGroups (CIs cisl, CIs cis2) {
; 1 < cis2.sizeCIList () ; i++) |
cisl.addCI(cis2.getCI (1))

Update Example

import

import

com.hp.

import
import
import
import
import
import
import
import
import

public

for (int 1i=0

}

return cisl;

com.hp.ucmdb.generated.

com

com

com

com

com.

com.

.hp.
.hp.
.hp.
hp.

hp.

.hp.ucmdb.
ucmdb.
ucmdb.

ucmdb.

ucmdb

ucmdb.

ucmdb.generated.params
generated.
generated.

generated.

generated

.generated.

generated

params.update.AddCIsAndRelations;

.update.AddCIsAndRelationsResponse;
params.update.UpdateCIsAndRelations;
params.update.DeleteCIsAndRelations;
services.UcmdbFault;

.types.*;
types.update.CIsAndRelationsUpdates;

.types.update.ClientIDToCmdbID;

java.rmi.RemoteException;

java.util.ArrayList;

java.util.List;

class UpdateDemo extends Demo{

public void getAddCIsAndRelationsDemo () {

AddCIsAndRelations request = new AddCIsAndRelations({();

request.setCmdbContext (getContext ());

request.setUpdateExisting (true) ;

CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates() ;

CIs c

is

= new CIs ()

List<CI> 1listCI = new ArrayList<CI>();

CI ci

ID id

new CI();

new ID();

id.setString ("templ") ;

id.setTemp (true) ;

ci.setID(id);

Page 254 of

281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

ci.setType ("host");

CIProperties props = new CIProperties{();
StrProps strProps = new StrProps();
StrProp strProp = new StrProp();
strProp.setName ("host key");

String value = "blabla";
strProp.setValue (value);
strProps.getStrProps () .add(strProp) ;
props.setStrProps (strProps);

ci.setProps (props):;

listCI.add(ci);

cis.setCIs(listCI);
updates.setCIsForUpdate (cis);
request.setCIsAndRelationsUpdates (updates) ;
try |

AddCIsAndRelationsResponse response =
getStub () .addCIsAndRelations (request) ;

for(int i = 0 ; 1 < response.getCreatedIDsMaps () .size() ; 1i++) {
ClientIDToCmdbID idsMap = response.getCreatedIDsMaps () .get (i)
//do something
}
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFault e) {

//handle exception

}

public void getUpdateCIsAndRelationsDemo () {
UpdateCIsAndRelations request = new UpdateCIsAndRelations();
request.setCmdbContext (getContext ());
CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates() ;
CIs cis = new CIs();
List<CI> 1istCI = new ArrayList<CI>();

CI ci = new CI();

Page 255 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

ID id = new ID();
id.setString ("templ") ;
id.setTemp (true) ;
ci.setID(id);
ci.setType ("host");
CIProperties props = new CIProperties{();
StrProps strProps = new StrProps();
StrProp hostKeyProp = new StrProp();
hostKeyProp.setName ("host key"):;
String hostKeyValue = "blabla";
hostKeyProp.setValue (hostKeyValue) ;
strProps.getStrProps () .add (hostKeyProp) ;
StrProp hostOSProp = new StrProp();
hostOSProp.setName ("host os");
String hostOSValue = "winXP";
hostOSProp.setValue (hostOSValue) ;
strProps.getStrProps () .add (hostOSProp) ;
StrProp hostDNSProp = new StrProp/();
hostDNSProp.setName ("host dnsname");
String hostDNSValue = "dnsname";
hostDNSProp.setValue (hostDNSValue) ;
strProps.getStrProps () .add (hostDNSProp) ;
props.setStrProps (strProps);
ci.setProps (props);
listCI.add(ci);
cis.setCIs (1istCI);
updates.setCIsForUpdate (cis);
request.setCIsAndRelationsUpdates (updates) ;
try {

getStub () .updateCIsAndRelations (request) ;
} catch (RemoteException e) {

//handle exception

} catch (UcmdbFault e) {

Page 256 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

//handle exception

}

public void getDeleteCIsAndRelationsDemo () {
DeleteCIsAndRelations request = new DeleteCIsAndRelations{();
request.setCmdbContext (getContext ());
CIsAndRelationsUpdates updates = new CIsAndRelationsUpdates() ;
CIs cis = new CIs();
List<CI> 1istCI = new ArrayList<CI>();
CI ci = new CI();

ID id

new ID();
id.setString ("stam") ;
id.setTemp (true) ;
ci.setID(id);
ci.setType ("host");
CIProperties props = new CIProperties();
StrProps strProps = new StrProps();
StrProp strPropl = new StrProp():;
strPropl.setName ("host key");
String valuel = "for delete";
strPropl.setValue (valuel) ;
strProps.getStrProps () .add(strPropl);
props.setStrProps (strProps);
ci.setProps (props);
listCI.add(ci);
cis.setCIs (1istCI);
updates.setCIsForUpdate (cis);
request.setCIsAndRelationsUpdates (updates) ;
try {

getStub () .deleteCIsAndRelations (request) ;
} catch (RemoteException e) {

//handle exception

} catch (UcmdbFault e) {

Page 257 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

//handle exception

}

public static void main (String[] args) {
try{
UpdateDemo demo = new UpdateDemo () ;

demo.initDemo () ;
demo.getAddCIsAndRelationsDemo () ;

} catch (Exception e) {
System.out.println (e.getMessage()) ;

e.printStackTrace () ;

}

Class Model Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.classmodel.*;

import com.hp.ucmdb.generated.services.UcmdbFaultException;
import
com.hp.ucmdb.generated.types.classmodel.UcmdbClassModelHierarchy;
import com.hp.ucmdb.generated.types.classmodel.UcmdbClass;

import java.rmi.RemoteException;

public class ClassmodelDemo extends Demo{

public void getClassAncestorsDemo () {
GetClassAncestors request =
new GetClassAncestors();
request.setCmdbContext (getContext ()) ;
request.setClassName ("className") ;

try |
GetClassAncestorsResponse response =
getStub () .getClassAncestors (request) ;
UcmdbClassModelHierarchy hierarchy =
response.getClassHierarchy () ;
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

Page 258 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

public void getAllClassesHierarchyDemo () {
GetAllClassesHierarchy request =
new GetAllClassesHierarchy ()
request.setCmdbContext (getContext ()) ;
try |
GetAllClassesHierarchyResponse response =
getStub () .getAllClassesHierarchy (request) ;
UcmdbClassModelHierarchy hierarchy =
response.getClassesHierarchy () ;
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

public void getCmdbClassDefinitionDemo () {
GetCmdbClassDefinition request =
new GetCmdbClassDefinition():;
request.setCmdbContext (getContext ());
request.setClassName ("className") ;

try f{
GetCmdbClassDefinitionResponse response =
getStub () .getCmdbClassDefinition (request);
UcmdbClass ucmdbClass = response.getUcmdbClass () ;
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {

//handle exception

}

Impact Analysis Example

package com.hp.ucmdb.demo;

import com.hp.ucmdb.generated.params.impact.*;

import com.hp.ucmdb.generated.services.UcmdbFaultException;
import com.hp.ucmdb.generated.types.*;

import com.hp.ucmdb.generated.types.impact.*;

import java.rmi.RemoteException;

/**
* Date: Jul 17, 2007
*/

public class ImpactDemo extends Demo{

Page 259 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

//Impact Rule Name : impactExample
//Impact Query:

// Network

// |

// Host

// |

// 1P

//Impact Action: network affect on ip ;severity 100% ; category:
change

//

public void calculateImpactAndGetImpactPathDemo () {
CalculateImpact request = new CalculateImpact():;
request.setCmdbContext (getContext ()) ;
//set root cause ids
IDs ids = new IDs();
ID id = new ID();
id.setBase ("rootCauseCmdbID") ;
ids.addID(id) ;

request.setIDs (ids) ;
//set impact category
request.setImpactCategory ("change");
//set rule Names
ImpactRuleNames impactRuleNames = new ImpactRuleNames/()
ImpactRuleName impactRuleName = new ImpactRuleName () ;
impactRuleName.setBase ("impactExample") ;
impactRuleNames.addImpactRuleName (impactRuleName) ;
request.setImpactRuleNames (impactRuleNames) ;
//set severity
request.setSeverity (100) ;
CalculateImpactResponse response =

new CalculateImpactResponse ()

request.setIDs (ids) ;
//set impact category
request.setImpactCategory ("change") ;
//set rule Names
ImpactRuleNames impactRuleNames = new ImpactRuleNames();
ImpactRuleName impactRuleName = new ImpactRuleName () ;
impactRuleName.setBase ("impactExample") ;
impactRuleNames.addImpactRuleName (impactRuleName) ;
request.setImpactRuleNames (impactRuleNames) ;
//set severity
request.setSeverity (100) ;
CalculateImpactResponse response =

new CalculateImpactResponse();

try {

response = getStub () .calculatelImpact (request):;
} catch (RemoteException e) {

//handle exception

Page 260 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

} catch (UcmdbFaultException e) {
//handle exception

}

Identifier identifier= response.getlIdentifier();

Topology topology
Relation relation = topology.getRelations().getRelation(0);

response.getImpactTopology () ;

GetImpactPath request?2 = new GetImpactPath();
//set cmdb context

request2.setCmdbContext (getContext ()) ;

//set impact identifier

request2.setIdentifier (identifier);

//set shallowRelation

ShallowRelation shallowRelation = new ShallowRelation();
shallowRelation.setID(relation.getID())
shallowRelation.setEndlID(relation.getEndlID())
shallowRelation.setEnd2ID(relation.getEnd2ID()) ;
shallowRelation.setType(relation.getType())
request2.setRelation(shallowRelation) ;

try |
GetImpactPathResponse response2 =
getStub () .getImpactPath (request?2);
ImpactTopology impactTopology =
response?2.getImpactPathTopology () ;
} catch (RemoteException e) {
//To change body of catch statement
// use File | Settings | File Templates.
e.printStackTrace () ;
} catch (UcmdbFaultException e) {
//To change body of catch statement
// use File | Settings | File Templates.
e.printStackTrace () ;

public void getImpactRulesByGroupName () {

GetImpactRulesByGroupName request =
new GetImpactRulesByGroupName () ;

//set cmdb context
request.setCmdbContext (getContext ());
//set group names list
request.addRuleGroupNameFilter ("groupNamel") ;
request.addRuleGroupNameFilter ("groupName2") ;

try f{
GetImpactRulesByGroupNameResponse response =
getStub () .getImpactRulesByGroupName (request) ;
ImpactRules impactRules = response.getImpactRules() ;
} catch (RemoteException e) {
//handle exception

Page 261 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

} catch (UcmdbFaultException e) {
//handle exception

public void getImpactRulesByNamePrefix () {
GetImpactRulesByNamePrefix request =
new GetImpactRulesByNamePrefix () ;
//set cmdb context
request.setCmdbContext (getContext ());
//set prefixes list
request.addRuleNamePrefixFilter ("prefixl");

try {
GetImpactRulesByNamePrefixResponse response =
getStub () .getImpactRulesByNamePrefix (request) ;
ImpactRules impactRules = response.getImpactRules() ;
} catch (RemoteException e) {
//handle exception
} catch (UcmdbFaultException e) {
//handle exception

}
}

Adding Credentials Example

import java.net.URL;

import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;
import com.hp.ucmdb.generated.params.discovery.*;

import com.hp.ucmdb.generated.services.DiscoveryService;
import com.hp.ucmdb.generated.services.DiscoveryServiceStub;
import com.hp.ucmdb.generated.types.BytesProp;

import com.hp.ucmdb.generated.types.BytesProps;

import com.hp.ucmdb.generated.types.CIProperties;

import com.hp.ucmdb.generated.types.CmdbContext;

import com.hp.ucmdb.generated.types.StrList;

import com.hp.ucmdb.generated.types.StrProp;

import com.hp.ucmdb.generated.types.StrProps;

public class test {

static final String HOST NAME = "hostname";
static final int PORT = 8080;
private static final String PROTOCOL = "http";

private static final String FILE =
"/axis2/services/DiscoveryService";

private static final String PASSWORD = "admin";
private static final String USERNAME

"admin";

Page 262 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

private static CmdbContext cmdbContext = new CmdbContext ("ws
tests");
public static void main(String[] args) throws Exception {
// Get the stub object
DiscoveryService discoveryService = getDiscoveryService();

// Activate Job
discoveryService.activateJob (new ActivateJobRequest ("Range IPs
by ICMP", cmdbContext));

// Get domain & probes info
getProbesInfo (discoveryService) ;
// Add credentilas entry for ntcmd protcol
addNTCMDCredentialsEntry () ;
}

public static void addNTCMDCredentialsEntry() throws Exception {
DiscoveryService discoveryService = getDiscoveryService();

// Get domain name
StrList domains =
discoveryService.getDomainsNames (new
GetDomainsNamesRequest (cmdbContext)) .getDomainNames () ;
if (domains.sizeStrValuelList() == 0) {
System.out.println ("No domains were found, can't create
credentials");
return;
}
String domainName = domains.getStrValue (0);
// Create propeties with one byte param
CIProperties newCredsProperties = new CIProperties{();

// Add password property - this is of type bytes
newCredsProperties.setBytesProps (new BytesProps());
setPasswordProperty (newCredsProperties);

// Add user & domain properties - these are of type string

newCredsProperties.setStrProps (new StrProps());

setStringProperties ("protocol username", "test user",
newCredsProperties);

setStringProperties ("ntadminprotocol ntdomain", "test doamin",
newCredsProperties);

// Add new credentials entry
discoveryService.addCredentialsEntry (new

AddCredentialsEntryRequest (domainName, "ntadminprotocol",
newCredsProperties, cmdbContext));

System.out.println ("new credentials craeted for domain: " +
domainName + " in ntcmd protocol");

}

Page 263 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

private static void setPasswordProperty(CIProperties
newCredsProperties) {
BytesProp bProp = new BytesProp():
bProp.setName ("protocol password");
bProp.setValue (new byte[] {101,103,102,104});
newCredsProperties.getBytesProps () .addBytesProp (bProp) ;
}

private static void setStringProperties(String propertyName,
String value, CIProperties newCredsProperties) {
StrProp strProp = new StrProp();
strProp.setName (propertyName) ;
strProp.setValue (value);
newCredsProperties.getStrProps () .addStrProp (strProp) ;
}

private static void getProbesInfo(DiscoveryService
discoveryService) throws Exception {
GetDomainsNamesResponse result =
discoveryService.getDomainsNames (new
GetDomainsNamesRequest (cmdbContext));
// Go over all the domains
if (result.getDomainNames () .sizeStrValueList () > 0) {
String domainName =
result.getDomainNames () .getStrValue (0) ;
GetProbesNamesResponse probesResult =
discoveryService.getProbesNames (new
GetProbesNamesRequest (domainName, cmdbContext));
// Go over all the probes
for (int i=0;
i<probesResult.getProbesNames () .sizeStrValuelList (); 1i++) {
String probeName =
probesResult.getProbesNames () .getStrValue (i) ;
// Check if connected
IsProbeConnectedResponce connectedRequest =
discoveryService.isProbeConnected (new
IsProbeConnectedRequest (domainName, probeName, cmdbContext));
Boolean isConnected =
connectedRequest.getIsConnected() ;
// Do something

System.out.println ("probe " + probeName + "
isconnect=" + isConnected);
}
}
}
private static DiscoveryService getDiscoveryService () throws
Exception {
DiscoveryService discoveryService = null;

try |
// Create service

Page 264 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 10: HP Universal CMDB Web Service API

URL url = new URL(PROTOCOL,HOST NAME, PORT, FILE);
DiscoveryServiceStub serviceStub = new
DiscoveryServiceStub (url.toString()) ;

// Authenticate info

HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator () ;

auth.setUsername (USERNAME) ;

auth.setPassword (PASSWORD) ;

serviceStub.
getServiceClient () .getOptions () .setProperty (HTTPConstants.AUTHENTICATE, auth) ;

discoveryService = serviceStub;
} catch (Exception e) {
throw new Exception ("cannot create a connection to service

return discoveryService;
}
} // End class

Page 265 of 281 HP Universal CMDB (9.05)

Chapter 11

Data Flow Management API

This chapter includes:

Data Flow Management APl Overview. L 266
CoONVeNtioONS. .. . 266
Data Flow Management Web Service 266
Call the Web Service. 267
Data Flow Management Methods. 267
Code Sample . 277

Data Flow Management APl Overview

This chapter explains how third-party or custom tools can use the HP Data Flow Management Web
Service to manage Data Flow Management.

For full documentation on the available operations, see HP Discovery and Dependency Mapping
Schema Reference. These files are located in the following folder:

<UCMDB root directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\DDM_
Schema\webframe.html

Conventions

This chapter uses the following conventions:

o This style E1ement indicates that anitem is an entity in the database or an element defined in

the schema, including structures passed to or returned by methods. Plain text indicates that the
item is being discussed in a general context.

Data Flow Management elements and method arguments are spelled in the case in which they
are specified in the schema. This usually means that a class name or generic reference to an
instance of the class is capitalized. An element or argument to a method is not capitalized. For
example, a credential is an element of type Credential passed to a method.

Data Flow Management Web Service

The HP Data Flow Management Web Service is an API used to integrate applications with HP
Universal CMDB. The API provides methods to:

Manage credentials. View, add, update, and remove.

Manage jobs. View status, activate, and deactivate.

Manage probe ranges. View, add, and update.

Manage triggers. Add or remove a trigger Cl, and add, remove, or disable a trigger TQL.

View general data. Data on domains and probes.

Page 266 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Users of the HP Data Flow Management Web Service should be familiar with:
o The SOAP specification

o An object-oriented programming language such as C++, C#or Java

e HP Universal CMDB

o Data Flow Management

Permissions

The administrator provides login credentials for connecting with the Web service. The permission
levels are View, Update, and Execute. To view the permissions required for each operation, see
each operation's request documentation in the HP Discovery and Dependency Mapping Schema
Reference.

Call the Web Service

The HP Discovery and Dependency Mapping Web Service enables calling server-side methods
using standard SOAP programming techniques. If the statement cannot be parsed or if there is a
problem invoking the method, the APl methods throw a SoapFault exception. When a
SoapFault exception is thrown, the service populates one or more of the error message, error
code, and exception message fields. If there is no error, the results of the invocation are returned.

To call the service, use:

e Protocol: http or https (depending on server configuration)
e URL: <UCMDB server>:8080/axis2/services/DiscoveryService

e Default password: "admin"

e Default username: "admin"

SOAP programmers can access the WSDL at:

e axis2/services/DiscoveryService?wsdl

Data Flow Management Methods

This section contains a list of the Web service operations and a brief summary of their use. For full
documentation of the request and response for each operation, see HP Discovery and Dependency
Mapping Schema Reference.

This section includes the following topics:

o "Data Structures" on next page

o "Managing Discovery Job Methods" on next page

« "Managing Trigger Methods" on page 270

e "Domain and Probe Data Methods" on page 271

o "Credentials Data Methods" on page 274

o "Data Refresh Methods" on page 276

Page 267 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Data Structures
These are some of the data structures used in the Data Flow Management Web Service API.

ClProperties

CIProperties is acollection of collections. Each collection contains properties of a different data
type. For example, there can be a dateProps collection, astrListProps collection, an
xmlProps collection, and so on.

Each type collection contains individual properties of the given type. The names of these properties
elements is the same as the container, but in singular. For example, dateProps contains
dateProp elements. Each property is a name-value pair.

See ClProperties in the HP Discovery and Dependency Mapping Schema Reference.
IPList

Alist of 1P elements, each of which contains an IPv4 Address.

See IPList in the HP Discovery and Dependency Mapping Schema Reference.
IPRange

An IPRange has two elements, the Start and the End elements. Each contains an Address
element which is an IPv4 Address.

See IPLRange in the HP Discovery and Dependency Mapping Schema Reference.

Scope

Two IPRanges. Exclude is a collection of TPRanges to exclude from the job. Include isa
collection of IPRanges toinclude in the job.

See Scope in the HP Discovery and Dependency Mapping Schema Reference
Managing Discovery Job Methods

activateJob

Activates the specified job.

See "Code Sample" on page 277

Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.
JobName The name of the job.

deactivateJob

Deactivates the specified job.

Input

Page 268 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.

JobName The name of the job.

dispatchAdHocJob

Dispatches a job on the probe ad-hoc. The job must be active and contain the specified trigger CI.

Input
cmdbContext For details, see "CmdbContext" on page 221.
JobName The name of the job.
ClID The ID of the trigger Cl.
ProbeName The name of the probe.
Timeout In milliseconds

getDiscoveryJobsNames

Returns the list of job names.

Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.
Output
Parameter Comment
strList The list of job names.
isJobActive
Checks whether the job is active.
Input
cmdbContext For details, see "CmdbContext" on page 221.
JobName The name of the job to check.
Output

Page 269 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Parameter

JobState True if the job is active.

Managing Trigger Methods

addTriggerCl

Adds a new trigger Cl to the specified job.

Input
cmdbContext For details, see "CmdbContext" on page 221.
JobName The name of the job.
ClID The ID of the trigger CI.

addTriggerTQL

Adds a new trigger TQL to the specified job.

Input
cmdbContext For details, see "CmdbContext" on page 221.
JobName The name of the job.
TqlName The name of the TQL to add.

disableTriggerTQL

Prevents the TQL from triggering the job, but does not permanently remove it from the list of queries
that trigger the job.

Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.
JobName The name of the job.

removeTriggerCl

Removes the specified Cl from the list of Cls that trigger the job.
Input

Page 270 of 281 HP Universal CMDB (9.05)

Developer Reference Guide

Chapter 11: Data Flow Management API

cmdbContext For details, see "CmdbContext" on page 221.

JobName The job name.

ClID The ID of the trigger CI.
removeTriggerTQL
Removes the specified TQL from the list of queries that trigger the job.
Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.

JobName Collection of job names to check.

CIID The ID of the TQL to remove.

setTriggerTQLProbesLimit

Restrict the probes in which the TQL is active in the job to the specified list.

Input
Parameter Comment
cmdbContext For details, see "CmdbContext" on page 221.
JobName The name of the job.
tgiIName The TQL name.
probesLimit The list of probes for which the TQL is active.

Domain and Probe Data Methods

getDomainType

Returns the domain type.

5
T

c

=

Parameter

cmdbContext

Comment

For details, see "CmdbContext" on page 221.

domainName

The name of the domain.

Output

Page 271 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Parameter

domainType The domain type.

getDomainsNames

Returns the names of the current domains.

See "Code Sample" on page 277

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.
Output

Parameter Comment

domainNames The list of domain names.

getProbelPs

Returns the IP addresses of the specified probe.

Input

cmdbContext For details, see "CmdbContext" on page 221.

domainName The domain to check.

probeName The name of the probe used on that domain.
Output

Parameter Comment

probelPs The "IPList" of the addresses in the probe.
getProbesNames

Returns the names of the probes in the specified domain.

See "Code Sample" on page 277

Input
cmdbContext For details, see "CmdbContext" on page 221.
domainName The domain to check.

Page 272 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Output
Parameter Comment
probesName The list of probes on the domain.
getProbeScope
Returns the scope definition of the specified probe.
Input
cmdbContext For details, see "CmdbContext" on page 221.
domainName The domain to check.
probeName The name of the probe.
Output
Parameter Comment
probeScope The "Scope” of the probe.
isProbeConnected

Checks whether the specified probe is connected.

See "Code Sample" on page 277

Input
cmdbContext For details, see "CmdbContext" on page 221.
domainName The domain to check.
probeName The probe to check
Output
Parameter Comment
isConnected True if the probe is connected.
updateProbeScope

Sets the scope of the specified probe, overriding the existing scope.

Input

Page 273 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.
domainName The domain.

probeName The probe to update.

newScope The "Scope" to set for the probe.

Credentials Data Methods

addCredentialsEntry

Adds a credentials entry to the specified protocol for the specified domain.

See "Code Sample" on page 277

Input
cmdbContext For details, see "CmdbContext" on page 221.
domainName The domain to update.
protocolName The name of the protocol.
credentialsEntryParameters The "ClProperties" collection of the new credentials.
Output

Parameter Comment

credentialsEntrylD The CI ID of the new credential entry.

getCredentialsEntriesIDs

Returns the IDs of the credentials defined for the specified protocol.

Input
cmdbContext For details, see "CmdbContext" on page 221.
domainName The domain to get the credentials for.
protocolName The name of a protocol used on that domain.
Output

Parameter Comment

credentialsEntrylDs The list of credential IDs for the protocol on the domain.

Page 274 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

getCredentialsEntry

Returns the credentials defined for the specified protocol. Encrypted attributes are retumed empty.

Input

Parameter Comment

cmdbContext

For details, see "CmdbContext" on page 221.

domainName

The domain to get the credentials for.

protocolName

A protocol used on that domain.

credentialsEntryID

The credential ID to get.

Output

Parameter

Comment

credentialsEntryParameters

The "ClProperties" collection of the credentials.

removeCredentialsEntry

Removes the specified credentials from the protocol.

Input

Parameter Comment

cmdbContext

For details, see "CmdbContext" on page 221.

domainName

The domain.

protocolName

A protocol used on the domain.

credentialsEntrylD

The ID of the credential to remove.

updateCredentialsEntry

Sets new values for properties of the specified credentials entry.

The existing properties are deleted and these properties are set. Any property whose value is not
set in this call is left undefined.

Input

Parameter

Comment

cmdbContext

For details, see "CmdbContext" on page 221.

domainName

The domain to update credentials in.

protocolName

A protocol used on the domain.

credentialsEntrylD

The ID of the credentials to update.

Page 275 of 281

HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Parameter

credentialsEntryParameters | The "ClProperties" collection to set as properties for the
credentials.

Data Refresh Methods

rediscoverCls

Locates the triggers that discovered the specified Cl objects and reruns those triggers.

rediscoverCls runs asynchronously. Call checkDiscoveryProgress to determine when the
rediscovery is complete.

Input
cmdbContext For details, see "CmdbContext" on page 221.
CmdbIDs Collection of IDs of the objects to rediscover.
Output

Parameter Comment

isSucceed True if the Cls rediscovery succeeded.

checkDiscoveryProgress

Returns the progress of the most recent rediscoverCls call on the specified IDs. The response is a
value from 0 to 1. When the response is 1, the rediscoverCls call has completed.

Input

cmdbContext For details, see "CmdbContext" on page 221.

CmdbIDs Collection of IDs of the objects in the rediscover call to track.
Output

Parameter Comment

progress | A completed job has a progress of 1. Jobs that have not completed have a fraction
less than 1.

rediscoverViewCls

Locates the triggers that created the data to populate the specified view, and reruns those triggers.

rediscoverViewCls runs asynchronously. Call checkViewDiscoveryProgress to determine when
the rediscovery is complete.

Input

Page 276 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 221.
viewName The views to check.
Output

Parameter Comment

isSucceed True if Cls rediscovery succeeded.

checkViewDiscoveryProgress

Returns the progress of the most recent rediscoverViewCls call on the specified view. The
response is a value from 0 to 1. When the response is 1, the rediscoverCls call has completed.

Input
cmdbContext For details, see "CmdbContext" on page 221.
viewName The collection of views to check.

Output

Parameter Comment

progress A completed job has a progress of 1. Jobs that have not completed have a fraction
less than 1.

Code Sample

import java.net.URL;

import org.apache.axis2.transport.http.HTTPConstants;

import org.apache.axis2.transport.http.HttpTransportProperties;
import com.hp.ucmdb.generated.params.discovery.*;

import com.hp.ucmdb.generated.services.*;

import com.hp.ucmdb.generated.types.*;

public class test {

static final String HOST NAME = "<my hostname>";
static final int PORT = 8080;
private static final String PROTOCOL = "http";

private static final String FILE =
"/axis2/services/DiscoveryService";

private static final String PASSWORD = "<my password>";
private static final String USERNAME = "<my username>";

Page 277 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

private static CmdbContext cmdbContext = new CmdbContext ("ws
tests");
public static void main(String[] args) throws Exception {
// Get the stub object
DiscoveryService discoveryService = getDiscoveryService();

// Activate Job
discoveryService.activateJob (new ActivateJobRequest (
"Range IPs by ICMP", cmdbContext));

// Get domain & probes info

getProbesInfo (discoveryService) ;

// Add credentilas entry for ntcmd protcol
addNTCMDCredentialsEntry () ;

public static void addNTCMDCredentialsEntry () throws Exception {
DiscoveryService discoveryService = getDiscoveryService();

// Get domain name
StrlList domains =
discoveryService.getDomainsNames (
new GetDomainsNamesRequest (cmdbContext)) .
getDomainNames () ;
if (domains.sizeStrValuelList() == 0) {
System.out.println ("No domains were found, can't create
credentials");
return;
}
String domainName = domains.getStrValue (0);
// Create propeties with one byte param
CIProperties newCredsProperties = new CIProperties{();

// Add password property - this is of type bytes
newCredsProperties.setBytesProps (new BytesProps());
setPasswordProperty (newCredsProperties);

// Add user & domain properties - these are of type string
newCredsProperties.setStrProps (new StrProps());
setStringProperties ("protocol username", "test user",
newCredsProperties);
setStringProperties ("ntadminprotocol ntdomain",
"test doamin", newCredsProperties);

// Add new credentials entry
discoveryService.addCredentialsEntry (
new AddCredentialsEntryRequest (domainName,
"ntadminprotocol", newCredsProperties, cmdbContext));

Page 278 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

System.out.println ("new credentials craeted for domain: " +
domainName + " in ntcmd protocol");

}

private static void setPasswordProperty (CIProperties
newCredsProperties) {
BytesProp bProp = new BytesProp():
bProp.setName ("protocol password");
bProp.setValue (new byte[] {101,103,102,104});
newCredsProperties.getBytesProps () .addBytesProp (bProp) ;

private static void setStringProperties(String propertyName,
String value, CIProperties newCredsProperties) ({
StrProp strProp = new StrProp/();
strProp.setName (propertyName) ;
strProp.setValue (value);
newCredsProperties.getStrProps () .addStrProp (strProp);

private static void getProbesInfo (DiscoveryService
discoveryService) throws Exception {
GetDomainsNamesResponse result =
discoveryService.getDomainsNames (new
GetDomainsNamesRequest (cmdbContext));
// Go over all the domains
if (result.getDomainNames () .sizeStrValueList () > 0) {
String domainName =
result.getDomainNames () .getStrValue (0) ;
GetProbesNamesResponse probesResult =
discoveryService.getProbesNames (
new GetProbesNamesRequest (domainName,
cmdbContext)) ;
// Go over all the probes
for (int 1i=0;
i<probesResult.getProbesNames () .sizeStrValuelList (); 1i++) {
String probeName =
probesResult.getProbesNames () .getStrValue (i) ;
// Check if connected
IsProbeConnectedResponce connectedRequest =
discoveryService.isProbeConnected
new IsProbeConnectedRequest (
domainName, probeName, cmdbContext)):;
Boolean isConnected =
connectedRequest.getIsConnected() ;
// Do something
System.out.println ("probe " + probeName + "
isconnect=" + isConnected);

Page 279 of 281 HP Universal CMDB (9.05)

Developer Reference Guide
Chapter 11: Data Flow Management API

private static DiscoveryService getDiscoveryService () throws
Exception {
DiscoveryService discoveryService = null;
try |

// Create service
URL url = new URL(PROTOCOL,HOSTiNAME,PORT, FILE) ;

DiscoveryServiceStub serviceStub =
new DiscoveryServiceStub (url.toString())

// Authenticate info

HttpTransportProperties.Authenticator auth =
new HttpTransportProperties.Authenticator();

auth.setUsername (USERNAME) ;

auth.setPassword (PASSWORD) ;

serviceStub. getServiceClient () .getOptions () .setProperty(
HTTPConstants.AUTHENTICATE, auth) ;

discoveryService = serviceStub;

} catch (Exception e) {
throw new Exception("cannot create a connection to service

return discoveryService;

Page 280 of 281 HP Universal CMDB (9.05)

	Developer Reference Guide
	Contents
	Creating Discovery and Integration Adapters
	Adapter Development and Writing
	Adapter Development and Writing Overview
	Content Creation
	The Adapter Development Cycle
	Startup and Preparation of Copy
	Development and Testing
	Cleanup and Document
	Create Package

	Data Flow Management and Integration
	Associating Business Value with Discovery Development
	Researching Integration Requirements

	Developing Integration Content
	Developing Discovery Content
	Discovery Adapters and Related Components
	Separating Adapters

	Implement a Discovery Adapter
	Step 1: Create an Adapter
	Step 2: Assign a Job to the Adapter
	Step 3: Create Jython Code
	Configure Remote Process Execution

	Discovery Content Migration Guidelines
	Discovery Content Migration Guidelines Overview
	Version 9.0x New Infrastructure Features
	Guidelines for Developing Cross-Data Model Scripts
	Implementation Tips
	Access Universal Data Model (UDM) Documentation Online
	Package Migration Utility
	Troubleshooting and Limitations

	Developing Jython Adapters
	HP Data Flow Management API Reference
	Create Jython Code
	Use External Java JAR Files within Jython
	Execution of the Code
	Modifying Out-of-the-Box Scripts
	Structure of the Jython File
	Imports
	Main Function – DiscoveryMain
	Functions Definition

	Results Generation by the Jython Script
	The ObjectStateHolder Syntax

	The Framework Instance
	Finding the Correct Credentials (for Connection Adapters)
	Handling Exceptions from Java

	Support Localization in Jython Adapters
	Add Support for a New Language
	Change the Default Language
	Determine the Character Set for Encoding
	Define a New Job to Operate With Localized Data
	Decode Commands Without a Keyword
	Work with Resource Bundles
	API Reference
	Fields
	Arguments
	Arguments
	Arguments

	Work with Discovery Analyzer
	Tasks and Records
	Logs

	Run Discovery Analyzer from Eclipse
	Record DFM Code
	Jython Libraries and Utilities

	Error Messages
	Error Messages Overview
	Error-Writing Conventions
	Error Severity Levels

	Developing Generic Database Adapters
	Generic Database Adapter Overview
	TQL Queries for the Generic Database Adapter
	Reconciliation
	Hibernate as JPA Provider
	Prepare for Adapter Creation
	Prepare the Adapter Package
	Upgrade the Generic DB Adapter from 9.00 or 9.01 to 9.02 and Later
	Configure the Adapter – Minimal Method
	Configure the Adapter – Advanced Method
	Implement a Plugin
	Deploy the Adapter
	Edit the Adapter
	Create an Integration Point
	Create a View
	Calculate the Results
	View the Results
	View Reports
	Enable Log Files
	Use Eclipse to Map Between CIT Attributes and Database Tables
	Adapter Configuration Files
	The adapter.conf File
	The simplifiedConfiguration.xml File
	The orm.xml File
	The reconciliation_types.txt file
	The reconciliation_rules.txt File (for backwards compatibility)
	The transformations.txt File
	The discriminator.properties File
	The replication_config.txt File
	The fixed_values.txt File
	The persistence.xml File

	Out-of-the-Box Converters
	Plugins
	Configuration Examples
	Simplified Definition
	Advanced Definition
	Simplified Definition
	Advanced Definition
	Simplified Definition
	Advanced Definition
	Simplified Definition
	Advanced Definition

	Adapter Log Files
	External References
	Troubleshooting and Limitations

	Developing Java Adapters
	Federation Framework Overview
	SourceDataAdapter Flow
	SourceChangesDataAdapter Flow
	PopulateDataAdapter Flow
	PopulateChangesDataAdapter Flow

	Adapter and Mapping Interaction with the Federation Framework
	Federation Framework for Federated TQL Queries
	Interactions between the Federation Framework, Server, Adapter, and Mapping E...
	Federation Framework Flow for Population
	Adapter Interfaces
	OneNode Interfaces
	Data Adapter Interfaces
	Pattern Topology Interfaces (Deprecated as of UCMDB 9.00)
	Additional Interfaces
	Adapter Interfaces for Synchronization

	Debug Adapter Resources
	Add an Adapter for a New External Data Source
	Implement the Mapping Engine
	Create a Sample Adapter
	XML Configuration Tags and Properties

	Developing Push Adapters
	Developing Push Adapters Overview
	Differential Synchronization
	Prepare the Mapping Files
	Write Jython Scripts
	Support Differential Synchronization
	Build an Adapter Package
	Mapping File Schema
	Mapping Results Schema

	Using APIs
	Introduction to APIs
	APIs Overview

	HP Universal CMDB API
	Conventions
	Using the HP Universal CMDB API
	General Structure of an Application
	Put the API Jar File in the Classpath
	Create an Integration User
	HP Universal CMDB API Reference
	Use Cases
	Examples

	HP Universal CMDB Web Service API
	Conventions
	HP Universal CMDB Web Service API Overview
	HP Universal CMDB Web Service API Reference
	Call the Web Service
	Query the CMDB
	Update the UCMDB
	Query the UCMDB Class Model
	getClassAncestors
	getAllClassesHierarchy
	getCmdbClassDefinition

	Query for Impact Analysis
	UCMDB General Parameters
	UCMDB Output Parameters
	UCMDB Query Methods
	executeTopologyQueryByNameWithParameters
	executeTopologyQueryWithParameters
	getChangedCIs
	getCINeighbours
	getCIsByID
	getCIsByType
	getFilteredCIsByType
	getQueryNameOfView
	getTopologyQueryExistingResultByName
	getTopologyQueryResultCountByName
	pullTopologyMapChunks
	releaseChunks

	UCMDB Update Methods
	addCIsAndRelations
	addCustomer
	deleteCIsAndRelations
	removeCustomer
	updateCIsAndRelations

	UCMDB Impact Analysis Methods
	calculateImpact
	getImpactPath
	getImpactRulesByNamePrefix

	Actual State Web Service API
	Flow
	Manipulating the Result Using Transformations
	Logs for the Actual State Web Service API

	Use Cases
	Examples
	The Example Base Class
	Query Example
	Update Example
	Class Model Example
	Impact Analysis Example
	Adding Credentials Example

	Data Flow Management API
	Data Flow Management API Overview
	Conventions
	Data Flow Management Web Service
	Call the Web Service
	Data Flow Management Methods
	Data Structures
	Managing Discovery Job Methods
	Managing Trigger Methods
	Domain and Probe Data Methods
	Credentials Data Methods
	Data Refresh Methods

	Code Sample

