
Part No. DAC-441-EN35

Build 17

Peregrine

AssetCenter

P
ro

d
u

ct D
o

cu
m

en
tatio

n

Tuning

© Copyright 2005 Peregrine Systems, Inc.

All Rights Reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be used or disclosed only with written
permission from Peregrine Systems, Inc. This manual, or any part thereof, may not be reproduced without the prior written permission of
Peregrine Systems, Inc. This document refers to numerous products by their trade names. In most, if not all, cases these designations are
claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems ® and AssetCenter ® are trademarks of Peregrine Systems, Inc. or its subsidiaries.

This document and the related software described in this manual are supplied under license or nondisclosure agreement and may be used
or copied only in accordance with the terms of the agreement. The information in this document is subject to change without notice and
does not represent a commitment on the part of Peregrine Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to verify the
date of the latest version of this document.

The names of companies and individuals used in the sample database and in examples in the manuals are fictitious and are intended to
illustrate the use of the software. Any resemblance to actual companies or individuals, whether past or present, is purely coincidental.

If you need technical support for this product, or would like to request documentation for a product for which you are licensed, contact
Peregrine Systems, Inc. Customer Support by email at support@peregrine.com.

If you have comments or suggestions about this documentation, contact Peregrine Systems, Inc. Technical Publications by email at
doc_comments@peregrine.com.

This edition applies to version 4.4 of the licensed program

AssetCenter

Peregrine Systems, Inc.
3611 Valley Centre Drive San Diego, CA 92130
858.481.5000
Fax 858.481.1751
www.peregrine.com

AssetCenter

Introduction . 5

What is the aim of this guide? 5
Who is this guide intended for? 5
Reminder concerning AssetCenter architecture 6
Bottlenecks . 7
Contents of this guide . 7

Chapter 1. Tuning a client . 9

Network latency . 9
Tree view and table view . 9
Loading lists . 11
Type-ahead . 12
Access restrictions . 13
Properties of the objects . 14
Features . 16
List configuration . 17

Chapter 2. Tuning the database 21

About hardware . 21
About queries . 23
About database engines . 24
Eliminating locks and deadlocks 24

Index . 41

AssetCenter 4.4 - Tuning | 3

Table of Contents
PEREGRINE

4 | AssetCenter 4.4 - Tuning

AssetCenter

What is the aim of this guide?
This guide describes tuning strategies for AssetCenter. In particular, it deals with
certain techniques to reduce bottlenecks caused by:
n the network,
n the database server,
n the AssetCenter client,
n the database engine

Who is this guide intended for?
This guide is mainly intended for AssetCenter administrators and database
administrators. It contains information and procedures, which if misinterpreted,
misapplied or implemented badly may provoke a range of problems from
performance issues to data corruption.

AssetCenter 4.4 - Tuning | 5

Introduction
PEREGRINE

Warning:

This document is intended to assist administrators in identifying and resolving
performance-related issues within the software and database. However, it is not
a comprehensive database-tuning guide, and although it is intended to contain
as much information about tuning as possible, it is not guaranteed that the
subjects mentioned here are the only tuning options available. Also, Peregrine
Systems, Inc is not responsible for any damages or data loss incurred as a result
of improper use of the information provided herein. If you don't understand
something, don't do it. As always, Peregrine recommends having a current
backup before you make any major changes in your implementation.

Reminder concerning AssetCenter architecture
AssetCenter relies on a two-tier architecture. The AssetCenter client connects
directly to the database and falls into the category of what is usually called a
"fat" client. A "fat" client resides completely on the client computer. The advantage
of this kind of architecture is better performance on a fast LAN. The disadvantage
is that the performance gets geometrically worse on a slow network. What this
means is if your network latency is twice as bad as the recommended (10
milliseconds), your actual performance decrease will be approximately four times
worse.

One of the key components of AssetCenter is AssetCenter Server. This server
does not exchange any data with the client. It connects to the database
separately, and perform all of the background tasks that require regular triggering
and/or monitoring. For example, if you have an alarm set up on your contract
end date to send you an email when the contract expires in less than 30 days,
the AssetCenter Server is what sends that email out at the appropriate time. It
also executes server-process workflows, calculates rents, and - most importantly
- validates the authorization code in the database. Most of the tuning suggestions
being made in this document will not apply to the AssetCenter Server.

6 | AssetCenter 4.4 - Tuning

AssetCenter

Bottlenecks
There are basically four areas of AssetCenter where a performance bottleneck
can occur: the network, the client, the database server, and the database engine.

Network bottlenecks usually occur when you are utilizing AssetCenter on a slower
network than it was designed to utilize.

Client bottlenecks are often actually database or network bottlenecks. Usually
what happens is that the queries take a long time to return data (either because
of a slow network or because it takes a long time for the database to respond).
Database server bottlenecks occur when the hardware that the database server
is running on is insufficient for the implementation of AssetCenter. Typically this
is not a problem area because most implementations analyze their requirements
in advance and make sure the hardware is good enough, but once in a while
this can be a problem.

Database engine bottlenecks are the most common. What happens in this case
is the database engine is not able to respond rapidly to the queries being sent
to it. This can happen for a variety of different reasons; poor database tuning,
complex queries, bad optimizer choices, or insufficient resources...

Note:

One thing to remember is just because you have a powerhouse of a server doesn't
mean that the database is configured to take advantage of all of that power.
Also, if you have several different applications sharing a single database server,
that means the resources are going to be split among them, and that can affect
performance.

Contents of this guide

Chapter Tuning a client

This chapter explains how to tune client computers.

Chapter Tuning the database

This chapter deals with tuning the database.

AssetCenter 4.4 - Tuning | 7

Tuning

Conventions used in this guide
What follows is a list of the conventions that we use in this guide

DescriptionConvention
Example of the code or commandJava Script Code

DOS command, function parameter or data
format

Fixed-width characters

Portion of omitted code or command....
Informative noteNote:

Extra information

Important information for the userImportant:

Be careful...

Tip to help you use the applicationTip:

User tip

Extremely important information for the userWarning:

Exercise caution

AssetCenter interface object: menu, menu
entry, tab or button.

Object

The following conventions are also used:
n The steps that we ask you to follow in a specific order are shown as a

numbered list. For example:
1 First step

2 Second step

3 Third and last step

n All the figures and the tables are numbered according to the chapter in which
they are found, and the order in which the appear in the chapter. For example,
the title of the fourth table in chapter two will be prefixed by Table 2-4.

8 | AssetCenter 4.4 - Tuning

AssetCenter

This chapter explores the different performance-optimization strategies for
AssetCenter. It discusses certain internal mechanisms of AssetCenter that can
impact performance and provides troubleshooting tips.

Network latency
As we mentioned, the network has a direct impact on application performance.
The recommended network latency for AssetCenter is 10 milliseconds or less.

Tree view and table view
AssetCenter enables you to view records in two distinct modes:
n A tree view of the records. This view shows you the hierarchy of the table,

allowing you to unfold the different leaves and easily view the parent-child
relationships being maintained in that table. Any table that has a FullName
field can be viewed in tree view. Some examples are Employees/Departments
(amEmplDept), Portfolio Items (amPortfolio), Locations (amLocation), etc.

AssetCenter 4.4 - Tuning | 9

Tuning a client1
CHAPTER

n A list view of the records without any hierarchy information.

The way the tree view list is built is very costly in terms of performance. If you
are on a fast network with a table that is not very large, tree view will work fine.
But the larger the table and the slower the network, the worse that performance
is going to get.

Two tuning methods are immediately available to you:
1 Viewing the tables in the list view if the network is slow and/or the table is

of considerable size.

2 Modifying the default display parameters of hierarchic lists so that they are
initially collapsed. This speeds up the initial screen load. To do this, set the
Initially collapsed option in AssetCenter to Yes. (Edit/ Options/ Lists/ Main
lists and Edit/ Options/ Lists/ Other lists).

List-loading mechanism
When the Initially collapsed option is enabled, AssetCenter uses the following
mechanism to display the lists (the following example concerns the opening of
the Departments and Employees table in tree view):
1 AssetCenter sends a query to recover all the records at the top of the hierarchy

(those for which the sLvl field is set to 0) and whose Full name (FullName)
field is greater than the first record in the list. The query sent to the database
is the following:

SELECT E1.lIconId, E1.lEmplDeptId, E1.MrMrs, E1.Name, E1.FirstName, E1.
Title, E1.Phone, E1.Fax, E1.FullName FROM amEmplDept E1 WHERE E1.sLvl=0
AND E1.FullName >='/Admin,,ADMIN/' ORDER BY E1.FullName

2 When a branch is unfolded, a new query is sent to the database. This query
recovers the records directly underneath and whose full name contains the
name of the parent. For example (in this case, the Taltek branch of the tree
is unfolded):

SELECT E1.lIconId, E1.lEmplDeptId, E1.MrMrs, E1.Name, E1.FirstName, E1.
Title, E1.Phone, E1.Fax, E1.FullName FROM amEmplDept E1 WHERE E1.FullNa
me LIKE '/Taltek/%' ESCAPE '\\' AND E1.sLvl=1 ORDER BY E1.FullName

Each time a branch is unfolded, a query of this type is sent by AssetCenter. If
the record you are looking for is lower down in the tree, the amount of queries
sent to the database is increased.

On the other hand, the same table opened in list view results in one single query
as follows:

10 | AssetCenter 4.4 - Tuning

AssetCenter

SELECT E1.lIconId, E1.lEmplDeptId, E1.MrMrs, E1.Name, E1.FirstName, E1.Tit
le, E1.Phone, E1.Fax, E1.FullName FROM amEmplDept E1 ORDER BY E1.lEmplDept
Id

All the records returned by the query are used to populate the list, the size of
which is limited as defined in the AssetCenter options.

Loading lists
Several options are available to define the number of records initially loaded in
a list. By reducing or limiting the this number, you can improve response time
when displaying a list. The options in question are located in the Edit/ Options/
Lists/ Main lists and Edit/ Options/ Lists/ Other lists sections. The available
options are:
n Do not load for longer than: This option defines the maximum time (in

milliseconds) during which AssetCenter tries to populate the list. When this
time is overrun, the operation is suspended and the list if populated with
those records recovered. By default, this value is set to 5000 milliseconds.

n Do not load more than: This option defines the maximum number of records
loaded in a list. By default, 200 records are loaded.

Note:

This number also corresponds to the number of additional records that are
loaded when clicking the + icon next to list.

The default values of these two options appropriate for the vast majority of cases.
However, in specific circumstances when the list configuration is complex, these
values may not suit you in terms of performance. If performance issues are
encountered displaying lists, you may wish to:
n Reduce the value of the Do not load more than option to 30 or 50, for

example.
n Change the value of the ArrayFetchingSize parameter in AssetCenter. This

parameter specifies the number of records recovered by AssetCenter in each
network packet. For performance reasons, this value must be the same as
that defined in the Do not load more than plus one. For example, if the value
of the Do not load more than option is 200, the ArrayFetchingSize parameter
must be set to 201. This incrementation accounts for the NULL record, which
is returned in the results of the query but not displayed by AssetCenter.

AssetCenter 4.4 - Tuning | 11

Tuning

To modify the value of the ArrayFetchingSize parameter:
1 Load the amdb.ini file in a text editor,

2 In the section corresponding to the declaration of the database
connection, find the ArrayFetchingSize parameter. The following is an
example for the database ACDemo432en:

[ACDemo432en]
Engine=SQLAnywhere
Location=ACDemo432en
EngineLogin=itam
EnginePassword=7BC2423F1B1F6A42E2B3A27E396F52C3A9AD6828582AED88DAC2F
53E9A369BC03E6393911903124254200200
ReadOnly=0
CacheSize=5120000
ArrayFetchingSize=201
AmApiDll=C:\PROGRA~1\PEREGR~1\ASSETC~1\ASSETC~2\bin\aamapi43.dll

3 Modify the value of the parameter and save your changes.

Note:

Changing this parameter may also prove useful when AssetCenter is used over
a WAN (Wide Area Network).

Type-ahead
By default, AssetCenter uses type-ahead functionality to help users populate a
link field. It works by waiting for a certain amount of time (which by default is
after 500 milliseconds, or half a second) after a user stops typing in a link field,
and then queries the database to find the first record that matches what the user
has typed so far.

Most of the time this can be very handy; for instance, if you're typing in a person's
name as a user of a portfolio item, it can help you populate the link after typing
only a few letters of the person's last name. The bad side, however, is that once
the type-ahead starts to execute the user will have to wait until the query returns
before they can continue to type. In situations where there is a slow network or
where the table the link connects to is large, this can be very expensive. In these
cases it is recommended to disable type-ahead. To do this:
1 Select the Edit/ Options/ Navigation/ Selection of linked records/

Type-ahead after menu,

2 Click the number located next to this option,

12 | AssetCenter 4.4 - Tuning

AssetCenter

3 Change it to a very large number (for example 1,000,000) to prevent
type-ahead from ever being triggered,

4 Click OK.

Access restrictions
Access restrictions are part of an AssetCenter profile. It basically translates into
a filter on the records of a table. For example they can be used to prevent a
technician from seeing any portfolio items outside of their department.

Because they are a designed to provide row-level security, access restrictions
are commonly used, and rightly so. However, because they affect the query that
gets sent to the database when a user opens a screen, a poorly written or poorly
defined access restriction can cause all kinds of performance issues.

Access restrictions are always in the context of a specific table, and are broken
down into two areas: Read and Write. Read access restrictions prevent users from
seeing a particular set of records. By corollary, they also prevent users from
modifying certain sets of records. Write access restrictions prevent users from
modifying certain records. They do not affect their ability to read any data in the
record, they simply receive an error message whenever they try to make a change
to that record.

Access restriction mechanism
n Read restrictions are applied via a WHERE clause added to the query sent to

the database. For example, lets take an access restriction that a user may only
view cost centers for which they are the supervisor. The query sent is as
follows:

SELECT C1.lCostId, C1.Title, C1.AcctNo FROM amCostCenter C1, amEmplDept
amEmplDept_CurrentUser WHERE amEmplDept_CurrentUser.lEmplDeptId = C1.lS
upervId AND amEmplDept_CurrentUser.lEmplDeptId = 25323 ORDER BY C1.lCos
tId

This typical and simple case is not very costly in performance terms. But if
the query is more complex, and in particular if it contains one or more
sub-queries, the database engine will take more time in processing and
sending the result to AssetCenter, which will result in a slower display. Once
more, the size of the table concerned by the query plays an important role.

AssetCenter 4.4 - Tuning | 13

Tuning

n Write restrictions work in a slightly different way. When a user tries to modify
a record in a table with one or more write access restrictions, AssetCenter
sends a separate SELECT query to the database specifying the access
restriction in the WHERE clause. If the record that the user is trying to modify
is not returned, a message informs the user that they do not have the required
permissions and the changes are cancelled at the database level. If the record
is returned, an UPDATE statement is sent to the database and the
modifications are validated. The network traffic is potentially twice as high
(a test query plus a modification query). In addition, as for read restrictions,
the complexity of the queries and the size of the tables concerned also plays
a role in reduced performance.

Important:

It is therefore crucial to carefully analyze how you require access restrictions to
be applied and to implemented them in the most succinct and rational manner
possible.

Properties of the objects
The properties of database objects (fields, links...) may have a significant impact
on performance.

Note:

These properties can been seen via the Configure object shortcut menu or by
using AssetCenter Database Administrator.

The display properties
The AssetCenter database objects, fields and links in particular, have properties
that determine how they are displayed. These properties are the following:
n Mandatory: The label of this field is shown in red and the field must be

populated in order to be able to validate the record,
n Read only: The field is grayed out,
n Irrelevant: The field is not displayed.

14 | AssetCenter 4.4 - Tuning

AssetCenter

These properties may be set to the following values:
n Yes
n No
n Script

In this last case, an interpreted Basic script determines the final value of the
property.

A value of Yes or No for a property does not impact performance because it is
not required to be evaluated. This is not the case for a script. When a script is
loaded or updated, all the scripts associated with the record are executed. Simple
scripts that work on local data are relatively transparent in terms of performance.
On the other hand, scripts that query the database (for example, when using
AmDbGetLong() type functions) will generate queries and have a direct impact
on performance. It is the same when the value of a field or a remote link is
referenced in a script, for example:

[CostCenter.Supervisor.Location.City]

To resume:
n Analyze clearly the need to script a property,
n Bear in mind that all scripts that perform database queries may impact

performance,
n Optimize your scripts for efficiency.

History
AssetCenter makes it possible to keep history of modifications made to database
objects. This functionality is controlled by the Keep history property of fields
and links. The history mechanism is as follows:
1 A user modifies a record. If any object concerned by this modification has a

Keep history properties that evaluates to 1 (i.e. it is set to Yes or a script
returns the value 1), the history agent is triggered.

2 The history agent creates a record in the History table (amHistory) storing
both the old and new values of the object.

As for the Mandatory, Read only and Irrelevant properties previously mentioned,
the Keep history property may cause performance issues if a complex script
(querying the database) is associated with it. Another impact to performance is
directly linked to the fact that an insert statement is sent to the database for
each historized object. In ideal cases, if the number of historized objects is limited
this will not cause any particular problems. This is not the case when dozens of

AssetCenter 4.4 - Tuning | 15

Tuning

historized objects are modified. Another factor in reduced performance is linked
to the fact that the amount of time it takes for the query to complete is directly
related to the size of the table. The more records there are in the table, the longer
it takes. And typically if someone is keeping history on several fields, the
amHistory table can get very, very large, in some cases upwards of 10 million
rows.

We therefore recommend:
n For best performance, only keep history on those fields you absolutely have

to. Do not historize fields systematically.
n Choose an amount of time after which you can delete history. You can write

a workflow to delete history after 6 months, for example.

Validity check
Validity scripts are used by AssetCenter to check certain conditions of records
before inserting them into the database. For example, this type of script is used
to check that an end date in a contract does not come before the start date. If
this occurs, the record is not inserted and an error is raised.

Scripts are subject to the same performance constraints as previously mentioned
for the properties of objects.

Features
Features are a historical functionality of AssetCenter introduced prior to version
4.0.0. They provided the ability to define additional information for records when
it was not possible for users to extend the database schema. Despite their power,
features are often costly in performance terms. Taking the Locations table as an
example, three tables are impacted when using the features, as illustrated below:

The Locations table (amLocation) does not actually hold any information about
features. It is simply the target of the Feature Values (amFVLocation) table, which
holds the values of the features associated with the Locations table. The Features
(amFeature) table itself contains the physical data on the feature, such as its SQL
name and Label, etc.

Each feature you assign to a record causes at least one extra join to be executed
to pull in that data. The impact on performance may be significant, especially if
the feature is displayed in the list.

16 | AssetCenter 4.4 - Tuning

AssetCenter

Since AssetCenter 4.0.0, it is now possible to modify the database schema directly.
Using features is less justifiable. However, you may still wish to do so in the
following two cases:
1 When the piece of information is going to be on very few records (1% or less,

but may vary depending on implementations), you may wish to use a feature
rather than create a new field in the table. A feature only takes up space when
it is populated (the only notable exception being when the Force display
property is on). An additional field takes up space regardless. Under these
circumstances, using a field may use up a large amount of storage space
unnecessarily.

2 Modifying the database structure is relatively straightforward but can be
risky. If something happens during the structure update that causes it to stop,
your database will be in an inconsistent state and you will have to restore
from a backup. For this reason Peregrine Systems recommends:
n Backing up the database before modifying the structure,
n Carefully planning changes and having them performed by personnel

with the required competences.

During the planning stage, you may with to temporarily use feature before
permanently creating a field to link to perform the same role.

List configuration
A majority of performance problems experienced when using the AssetCenter
client are due to poor list configuration choices. When a user opens a screen,
AssetCenter executes a query to pull in all of the list data. The query is dynamically
built based on several settings (the columns in the list, sorts, filters, etc.), read
access restrictions, table/tree view, etc.

The choice of columns in the list is particularly important as they are used in the
SELECT clause of the query. Performance is optimal when querying one single
table only. However, if you add a column that is a link to another table, that
creates a new join in the query.

Note:

This is also true for features, for the reasons already mentioned.

Before adding the following items to a list configuration, we also recommend
thinking through your needs:

AssetCenter 4.4 - Tuning | 17

Tuning

n A calculated field: Basic-type calculated fields also slow things down because
they must be evaluated once for every record in the list.

n The self description string: For certain tables, the description is complex (for
example, the Portfolio Items table) and may require multiple outer joins.

Sorts
When a list is sorted on the value of a field or link, the database engine sorts the
results that are sent to AssetCenter. This operation is not expensive when the
object is indexed in the database. The following list resumes the sort strategies
that can be applied to lists starting with the least expensive in performance
terms:
1 Sort on an indexed field in the table

2 Sort on an indexed field on a linked table one link distant (e.g. User.BarCode
from the list of Portfolio Items)

3 Sort on an non-indexed field in the table

4 Sort on multiple indexed fields in the table

5 Sort on multiple non-indexed fields in the table

6 Sort on multiple fields (indexed or not) in a linked table one link distant

7 Sort on the description string of a linked table

8 Sort on fields (indexed or not) in a linked table more than one link distant

Filters
Filters translate directly to the WHERE clause of the query that populates the list
on a table. As such, you should consider how they are going to be treated by
the database when you create them. Filters that involve linked tables are
necessarily going to be slower than filters that only involve fields on the main
table. Complex filters can, if improperly designed, make the list open extremely
slowly. Some rules of thumb for writing filters:
n Whenever possible, try to use AND instead of OR
n Try to avoid using LIKE and NOT LIKE. If you must use them, try to only use a

trailing wildcard and use an indexed field. For example, it is better to write:

FullName LIKE '/Taltek/%'

than:

FullName LIKE '%/Taltek/%'

18 | AssetCenter 4.4 - Tuning

AssetCenter

Wildcards at the start of the string for comparison force a complex search
through the whole database, which can prove very costly.

n It is better to use IN and NOT IN clauses with constants. For example:

Name IN ('Thomas', 'James')

Using these clauses with a sub-queries is very expensive.

AssetCenter 4.4 - Tuning | 19

Tuning

20 | AssetCenter 4.4 - Tuning

AssetCenter

This chapter deals with tuning the database used by AssetCenter. It is not
intended to replace specialized books on the subject but does describe several
tuning strategies for AssetCenter. Whatever the case, it is highly recommended
leaving this sort of operation to a qualified database administrator.

About hardware
The levels of database server hardware you need for your database is one of the
hardest things to quantify. There are so many different factors involved, such as
the number of users, the number of databases, the database engine, other
applications running on the server, the quantity of data, and so on.

RAM
As a general rule of thumb, RAM is going to have the greatest impact on database
performance. RAM is where the DBMS caches queries and data, so the more of
it there is the more likely you are to get a cache hit when you execute a query.
It's also where information for each user connection to the database is stored,
so the more users you have the more RAM you need.

AssetCenter 4.4 - Tuning | 21

Tuning the database2
CHAPTER

CPUs
The number and type of CPUs is also going to have an effect. If your DBMS is
able to make use of multiple processors, then it is beneficial to have several,
which allows the DMBS to do calculations in parallel. And of course, in general,
the faster the CPU the better.

Hard drives
Hard disk I/O will also have a major effect on database performance. If you have
a blazingly fast CPU with tons of RAM but your hard disk is slow, then any time
the DBMS has to go to disk to retrieve data everything else has to wait until it's
done. Ideally, you want the fastest hard disks you can get, typically SCSI drives,
although IDE drives have come a long way in the past few years. You also may
want to consider a RAID setup. RAID stands for Redundant Array of Independent
Disks. It's essentially a way to combine multiple hard disks into one system for
enhancing certain aspects of performance:
n If you want to set up a bare minimum RAID system, then you should consider

RAID 1. RAID 1 is mirroring. That means that every disk in the array has another
identical disk that duplicates it's data exactly. This allows a significant increase
in Read I/O performance because both disks can be read in parallel (since
they both contain the same information). As the majority of AssetCenter
queries involve reading only, this will probably give you good performance.
It also has the advantage of fault tolerance; if one disk crashes, causing data
loss, you still have another disk with exactly the same data on it, so none of
the data is actually lost. You just slip a new hard disk into the array and let it
mirror the data again. Unfortunately there is no benefit to writing with this
system. The other disadvantage is that you must have an even number of
disks, so each one can be mirrored.

n If you have the money and the hardware, however, a RAID 10 system is better.
This combines both mirroring and striping into one system. Striping is when
the system writes data across several disks. This allows very fast write
performance because each disk has a section of the data written to it
simultaneously.

22 | AssetCenter 4.4 - Tuning

AssetCenter

Network
As mentioned on several occasions, network performance is of extreme
importance. The faster the network is, the greater the bandwidth and a greater
number of concurrent users can be handled.

About queries
To better understand how query transactions impact performance, it is
worthwhile detailing how a query is sent by AssetCenter:
1 AssetCenter builds the query and sends it to the database, but any parameters

are not yet sent. The parameters are the hard-coded values of the query that
are needed to specify what is returned. For example, in the following WHERE
clause:

WHERE lEmplDeptId=12345

12345 is the parameter.

2 The database's query optimizer compiles an access plan for the data and
returns it to AssetCenter. The value is irrelevant at this point. Using the above
example, if the optimizer knows that it is going to get a value for lEmplDeptId,
then it will be able to determine an appropriate access plan (such as using
the index on lEmplDeptId).

3 AssetCenter binds the parameters to the query, then sends it back to the
database.

4 The database executes the query based on the access plan and retrieves the
data, then returns it to AssetCenter.

Note:

On some RDBMSs, steps 1 and 2 are not used. In that case, the query is just sent
directly to the database with the parameters bound and without getting the
access plan in advance. The impact on performance may be significant.

AssetCenter 4.4 - Tuning | 23

Tuning

About database engines
This section contains a few suggestions that are valid for all database engines,
although they will have differing levels of effectiveness depending on your DBMS.
n First off, when possible, keep indexes and data in separate tablespaces.

AssetCenter uses a lot of indexes out of the box, and performance will typically
be improved by having the indexes separated from the data. This is especially
true when you can put the two tablespaces on separate disks, where the
database can do simultaneous reads of both.

n Another recommendation is to calculate statistics regularly. This can be done
by either your DBA as a regular database maintenance task, or by AssetCenter
Server as one of its modules. Peregrine Systems recommends letting
AssetCenter Server do this once a week. What calculating statistics does, in
a basic sense, is gather information about the frequency that data is used.
This often allows the optimizer to improve access to frequently used data.

n Rebuild your indexes regularly, as well, especially if you do a lot of
inserts/deletes. After a while, the indexes become less efficient because of
holes in their data and size. If you mostly do updates and there's not a lot of
data being added or deleted, then you can probably do this once a quarter.
Most likely, though, you should have the DBA perform this once a month a
part of the regular database maintenance.

n If you're seeing poor performance overall, one thing you may want to look
for is to see how much server swapping is going on. This happens when you
have virtual memory specified and the operating system has to swap data
out of RAM and onto the disk (in the pagefile) to make space for other data,
or it needs to swap the data from the disk back into physical RAM in order to
act on it. This can happen if there is insufficient physical RAM on the machine,
or there is not enough physical RAM allocated to the RDBMS. If you see this
happening (which you can see by looking at the Task Manager in Windows),
then you either need to allocate more physical memory to the RDBMS (if
possible) or add more physical memory to the server.

Eliminating locks and deadlocks
When several users are doing similar operations with quite large transactions
involving counters, there is a significant probability that some concurrent

24 | AssetCenter 4.4 - Tuning

AssetCenter

transactions may end with deadlock on amCounter. This section deals with
troubleshooting the deadlocks on several RDBMs.

Warning:

This information is intended for experienced database administrators.

Microsoft SQL Server
The proposed solution is to replace the amCounter table for most used counters
and deport them to other tables. Each counter will have its own table to minimize
locking.

Step 1 - Identify the deadlocking counters
Most likely, the counters with the highest numbers are the problem areas, but
there might be others if some specific operations are leading to locks. Begin by
identifying the counters and counter names. To do this:
1 Open MS SQL Server Query Analyzer

2 Run the following query against the AssetCenter database:

select * from amcounter

This query returns the current value of the counters stored in this table.

Note:

For the steps to follow, the following counters will be used:
amItemReceived_ItemNo, amAsset_AssetTag, amTicket_TicketNo and
amExpenseLine_ItemNo.

Step 2 - Backup
Backup the stored procedure up_GetCounterVal.

Step 3 - Create tables for the counters
Run a CREATE TABLE script for each of the counters you are deporting using the
following format:

CREATE TABLE [itam].[<NewTableName>] (
 [lValue] [int] IDENTITY (<IdentityStart>, 1) NOT NULL ,
 [luserspid] [int] NOT NULL

AssetCenter 4.4 - Tuning | 25

Tuning

) ON [PRIMARY]
GO

In this script:
n NewTableName is the name of the table to create, typically in the format

cnt_<Original counter name>.
n IdentityStart is the current value of the original counter table.

A typical SQL query that can be used to generate these CREATION STATEMENTS
on the database would be:

select 'CREATE TABLE [itam].[cnt_'+Identifier+'] ([lValue] [int] IDENTITY
('+ltrim(rtrim(str(lValue)))+',1) NOT NULL ,[luserspid] [int] NOT NULL) O
N [PRIMARY]' as sqlquery from amCounter where lCounterid<>0

Note:

In this example the owner of the tables will be specified as itam, be sure it
matches your database and modify the script if necessary.

Using the examples of counters defined above, the statements sent will be the
following:

CREATE TABLE [itam].[cnt_amAsset_AssetTag] (
 [lValue] [int] IDENTITY (17697, 1) NOT NULL ,
 [luserspid] [int] NOT NULL
) ON [PRIMARY]
GO

CREATE TABLE [itam].[cnt_amExpenseLine_ItemNo] (
 [lValue] [int] IDENTITY (10735, 1) NOT NULL ,
 [luserspid] [int] NOT NULL
) ON [PRIMARY]
GO

CREATE TABLE [itam].[cnt_amItemReceived_ItemNo] (
 [lValue] [int] IDENTITY (4, 1) NOT NULL ,
 [luserspid] [int] NOT NULL
) ON [PRIMARY]
GO

CREATE TABLE [itam].[cnt_amticket_ticketno] (
 [lValue] [int] IDENTITY (140000, 1) NOT NULL ,
 [luserspid] [int] NOT NULL
) ON [PRIMARY]
GO

Step 4 - Create a stored procedure
The next step is to create the stored procedure to handle counters. We suggest
that you use the following example, replace the counters name in the stored

26 | AssetCenter 4.4 - Tuning

AssetCenter

procedure and add/remove as many procedure blocks as needed. Also, make
sure the counter name appears in the NOT IN () statement used to distinguish
counters using their own table from those still using amCounter.

sp_dropmessage 50895
GO
sp_addmessage 50895, 16,'up_GetCounterVal increment is %d which is not sup
ported when modified for non-locking optimization. Please edit the AMDB.IN
I file on your computer and add ImportCounterCache=1 in the current databa
se connexion description'
GO
CREATE PROCEDURE up_GetCounterVal @CounterName varchar(64), @CounterIncrem
ent int AS
BEGIN
 DECLARE @CounterIdent int
 'Change the NOT IN() list in this next line to reflect the names of the
new counters in your database.
 IF @CounterName NOT IN ('amItemReceived_ItemNo', 'amAsset_AssetTag', 'am
Ticket_TicketNo', 'amExpenseLine_ItemNo')
 BEGIN
 DECLARE amCounterLock CURSOR FOR SELECT lCounterId FROM amCounter WHER
E Identifier = @CounterName FOR UPDATE
 SELECT @CounterIdent = MAX(lCounterId) FROM amCounter WHERE Identifier
= @CounterName
 IF @CounterIdent IS NULL
 INSERT INTO amCounter (lCounterId, Identifier, Description, lValue,
dtLastModif) SELECT MAX(lCounterId) + 1, @CounterName, @CounterName, @Coun
terIncrement, GetDate() FROM amCounter
 ELSE
 BEGIN
 OPEN amCounterLock
 UPDATE amCounter SET lValue = lValue + @CounterIncrement, dtLastMo
dif = GetDate() WHERE lCounterId = @CounterIdent
 END
 SELECT lValue FROM amCounter WHERE Identifier = @CounterName
 IF @CounterIdent IS NOT NULL
 CLOSE amCounterLock
 /* END IF*/
 DEALLOCATE amCounterLock
 END
 ELSE
 BEGIN
 IF @CounterIncrement <> 1
 RAISERROR (50895, 17, @CounterIncrement)
 /* END IF */

-- See generation sql below
 --Add an IF block (next 5 lines) for EACH new counter table. Insert the
original counter name in all the bold faced areas.
 IF @CounterName = 'amTicket_TicketNo'
 BEGIN
 insert into cnt_amTicket_TicketNo (luserspid) values(@@SPID)
 SELECT max(lValue) FROM cnt_amTicket_TicketNo WITH (NOLOCK) where lu
serspid=@@SPID
 END

AssetCenter 4.4 - Tuning | 27

Tuning

 IF @CounterName = 'amAsset_AssetTag'
 BEGIN
 insert into cnt_amAsset_AssetTag (luserspid) values(@@SPID)
 SELECT max(lValue) FROM cnt_amAsset_AssetTag WITH (NOLOCK) where lus
erspid=@@SPID
 END
 IF @CounterName = 'amExpenseLine_ItemNo'
 BEGIN
 insert into cnt_amExpenseLine_ItemNo (luserspid) values(@@SPID)
 SELECT max(lValue) FROM cnt_amExpenseLine_ItemNo WITH (NOLOCK) where
luserspid=@@SPID
 END
 IF @CounterName = 'amItemReceived_ItemNo'
 BEGIN
 insert into cnt_amItemReceived_ItemNo (luserspid) values(@@SPID)
 SELECT max(lValue) FROM cnt_amItemReceived_ItemNo WITH (NOLOCK) wher
e luserspid=@@SPID
 END
-- end of generation sql below
 END
END
GO

Tip:

The content of the NOT IN() statement and the IF block statements can be
respectively generated with the following queries:

select '''cnt_'+Identifier+''', ' as sqlquery from amCounter where lCounte
rid<>0

and

select ' IF @CounterName =''cnt_'+Identifier+ '''
BEGIN
insert into cnt_'+Identifier+' (luserspid) values(@@SPID)
SELECT max(lValue) FROM cnt_'+Identifier+' WITH (NOLOCK) where luserspid=
@@SPID
END' as sqlquery from amCounter where lCounterid<>0

Step 5 - Check the stored procedure
Run the following script:

exec up_getcounterval 'amAsset_AssetTag',1
SELECT COUNT(*) from cnt_amAsset_AssetTag
exec up_getcounterval 'amItemReceived_ItemNo',1
SELECT COUNT(*) from cnt_amItemReceived_ItemNo
exec up_getcounterval 'amTicket_TicketNo',1
SELECT COUNT(*) from cnt_amticket_ticketno
exec up_getcounterval 'amExpenseLine_ItemNo',1
SELECT COUNT(*) from cnt_amExpenseLine_ItemNo

28 | AssetCenter 4.4 - Tuning

AssetCenter

Each and every new counter table should theoretically have one record.

Step 6 - Modify the stored procedure up_GetId
Locking on ID generation may also occur sometimes. To minimize locking, modify
the stored procedure up_GetId as follows :

DROP procedure up_GetId
GO
CREATE procedure up_GetId as
insert into LastId (Value) values(@@SPID)
return 1+(SELECT max(IdSeed) FROM lastid WITH (NOLOCK) where value=@@SPID
)*30
/*
create procedure up_GetId as if (select count(*) from LastId WITH (READU
NCOMMITTED))>20 delete from LastId insert into LastId (Value) values(@@S
PID) return 1+@@IDENTITY*30
*/
GO

Step 7 - Create a clean-up stored procedure
The purpose of this step is to build a stored procedure that will wipe out each
counter table periodically when no inserts are pending.
1 Get the object ID for each counter table. Run the following query:

select id, name from sysobjects where name like 'cnt%'

2 You should get a result set like this:

id name
---------- ------------------------
1793441463 cnt_amAsset_AssetTag
2001442204 cnt_amExpenseLine_ItemNo
1745441292 cnt_amItemReceived_ItemNo
1505440437 cnt_amticket_ticketno

3 Generate the stored procedure for wiping out specific counter tables:

To generate all the main code block below for all deletes, run the sql
query
select 'delete from [cnt_'+Identifier+'] WITH (TABLOCKX)' as sqlquery f
rom amCounter where lCounterid<>0

DROP PROCEDURE AM_Cleanspeccounters
GO
CREATE PROCEDURE AM_Cleanspeccounters AS
BEGIN
 declare @locknb int

 set nocount on

AssetCenter 4.4 - Tuning | 29

Tuning

 --while 1=1

 'Insert a code block (Next 1 line) for EACH new counter. Insert th
e appropriate ID or counter name in the bold faced areas.
 delete from cnt_amAsset_AssetTag with (TABLOCKX)

 delete from cnt_amExpenseLine_ItemNo with (TABLOCKX)

 delete from cnt_amItemReceived_ItemNo with (TABLOCKX)

 delete from cnt_amticket_ticketno with (TABLOCKX)

...

--Next line is to be commented when you define a new SQL Agent Task to
kick off the procedure each time on the server (it is in fact recommend
ed).
--waitfor delay '000:05:00'

 -- 'here the stored procedure is fired each 5 minutes

 -- CONTINUE
-- end
end

4 Define a new SQL Agent Task to kick off the procedure each hour or so on
the server.

5 Verify that it works. After the programmed delay all specific counter tables
should be empty.

Step 8 - Edit the amdb.ini file
1 Open the amdb.ini file of AssetCenter

2 Find the section called [Connexion] and add this line:

ImportCounterCache=1

3 Repeat this procedure on each client computer.

Important:

This step is absolutely mandatory.

Oracle
The proposed solution is to modify the UP_GETCOUNTERVALUE stored
procedure.

30 | AssetCenter 4.4 - Tuning

AssetCenter

This procedure will improve performance in wizards or external applications
calling AssetCenter via APIs. Specifically, it will speed handling of large
transactions involving the insertion of records/objects which need default values
taken of from counters. On large transactions with several inserts needing default
values from counters, counters may lock or deadlock (especially if several
transactions are played at the same time, all needing a new value for the same
counter). Current lock contention on counters can be monitored through a SQL
query on the v$session view (when connected as an administrator) with the
following statement:

Select username, machine, sid, serial# from v$session where lockwait != Nu
ll;

If this returns a large number of locks, then you may benefit from the workaround
listed below. The purpose of the workaround is to replace counters whenever
possible by sequences (which are non-locking mechanisms).

Note:

This solution eliminates your ability to query counter values through AssetCenter
(the Tools/ Administration/ Counters menu item will display a screen with
out-of-date values).

Step 1 - Preparation
1 Before you begin, make sure no one is using the database (or at least is doing

inserts using counters). This is very important, otherwise the sequences you
generate will not have the correct numbers.

2 Before altering the database, make sure you have a backup and tested copy
of the database.

Step 2 - Replace the counters
1 Connect to SQLPlus as the AssetCenter database owner

2 Identify the counters to be replaced by sequences with the following query:

Select * from amcounter;

3 Move the counters into sequences:

SET CHARWIDTH 200;
SET PAGESIZE 9999;
SET HEADING OFF;
SET ECHO OFF;
Spool seqgen.sql

AssetCenter 4.4 - Tuning | 31

Tuning

SELECT 'CREATE SEQUENCE ' || IDENTIFIER || ' INCREMENT BY 1 NOMAXVALUE
MINVALUE '|| (LVALUE + 1) || ' NOCYCLE CACHE 20 ORDER;' AS TEXT FROM AM
COUNTER where identifier IS NOT NULL;

Spool off

This yields a result similar to the following:

CREATE SEQUENCE amEmplDept_BarCode INCREMENT BY 1 NOMAXVALUE MINVALUE 6
0155 NOCYCLE CACHE 20 ORDER; CREATE SEQUENCE amLocation_BarCode INCREM
ENT BY 1 NOMAXVALUE MINVALUE 31 NOCYCLE CACHE 20 ORDER; CREATE SEQUENC
E amCategory_BarCode INCREMENT BY 1 NOMAXVALUE MINVALUE 101 NOCYCLE CAC
HE 20 ORDER; CREATE SEQUENCE amProduct_CatalogRef INCREMENT BY 1 NOMAX
VALUE MINVALUE 34076 NOCYCLE CACHE 20 ORDER; ...
CREATE SEQUENCE amOutputEvent_EventNo INCREMENT BY 1 NOMAXVALUE MINVALU
E 11 NOCYCLE CACHE 20 ORDER;

49 rows selected.

4 The seqgen.sql file can then be then edited to keep only the CREATE
SEQUENCE statements.

Step 3 - Update the stored procedure
Replace the stored procedure UP_GETCOUNTERVAL to take advantage of
sequences where possible.
1 Execute a basic statement to generate most of the sequence calls into the

stored procedure. For example:

spool UP_GETCOUNTERVAL_gen.SQL
SET CHARWIDTH 200;
SELECT 'ELSIF CounterName = '||CHR(39)|| IDENTIFIER ||CHR(39)||' THEN '

|| ' SELECT '||IDENTIFIER||'.NEXTVAL INTO CounterValue FROM DUAL;'
FROM AMCOUNTER;
spool off;

This will generate a statement like the following:

ELSIF CounterName = '' THEN SELECT .NEXTVAL INTO CounterValue FROM DUA
L;
ELSIF CounterName = 'amEmplDept_BarCode' THEN SELECT amEmplDept_BarCod
e.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amLocation_BarCode' THEN SELECT amLocation_BarCod
e.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amCategory_BarCode' THEN SELECT amCategory_BarCod
e.NEXTVAL INTO CounterValue FROM DUAL;
...

2 Make the following modifications to the generated statement:
1 Change the generated statement to properly handle IF Blocks.

2 Remove the line with that deals with the empty counter:

32 | AssetCenter 4.4 - Tuning

AssetCenter

ELSIF CounterName = '' THEN SELECT .NEXTVAL INTO CounterValue FROM
DUAL;

3 Add the declare and end part of the UP_GETCOUNTERVAL stored
procedure.

Your final statement should look like the following example:

CREATE OR REPLACE PROCEDURE UP_GETCOUNTERVAL (CounterName IN VARCHAR
2, CounterIncrement IN NUMBER, CounterValue OUT NUMBER) AS
CounterIdent NUMBER;
BEGIN
IF CounterIncrement <> 1 THEN
RAISE_APPLICATION_ERROR (-20004, 'Error in counter increment with th
e Up_getcounterval stored procedure altered to minimize locking, You
must use a counter increment of 1, please add the importcountercache
=1 in the amdb.ini file, in the parameters of your current database
connection');
ELSIF CounterName = 'amEmplDept_BarCode' THEN SELECT amEmplDept_Bar
Code.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amLocation_BarCode' THEN SELECT amLocation_Bar
Code.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amCategory_BarCode' THEN SELECT amCategory_Bar
Code.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amProduct_CatalogRef' THEN SELECT amProduct_Ca
talogRef.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amProduct_BarCode' THEN SELECT amProduct_BarCo
de.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amProdCompo_ItemNo' THEN SELECT amProdCompo_It
emNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amAsset_AssetTag' THEN SELECT amAsset_AssetTag
.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amConnection_CnxNo' THEN SELECT amConnection_C
nxNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amCompany_Code' THEN SELECT amCompany_Code.NEX
TVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amBudget_BudgetNo' THEN SELECT amBudget_Budget
No.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amContract_Ref' THEN SELECT amContract_Ref.NEX
TVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amConsUse_ItemNo' THEN SELECT amConsUse_ItemNo
.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amStock_Code' THEN SELECT amStock_Code.NEXTVAL
INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amProdReserv_ItemNo' THEN SELECT amProdReserv_
ItemNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amProject_Code' THEN SELECT amProject_Code.NEX
TVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amTicket_TicketNo' THEN SELECT amTicket_Ticket
No.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWorkOrder_WONo' THEN SELECT amWorkOrder_WONo
.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amNews_Name' THEN SELECT amNews_Name.NEXTVAL I
NTO CounterValue FROM DUAL;
ELSIF CounterName = 'amKnowlBase_Code' THEN SELECT amKnowlBase_Code
.NEXTVAL INTO CounterValue FROM DUAL;

AssetCenter 4.4 - Tuning | 33

Tuning

ELSIF CounterName = 'amDecisionTree_Code' THEN SELECT amDecisionTre
e_Code.NEXTVAL INTO CounterValue FROM DUAL
ELSIF CounterName = 'amDownTimePeriod_Code' THEN SELECT amDownTimeP
eriod_Code.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amRequest_ReqNumber' THEN SELECT amRequest_Req
Number.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amReqLine_ItemNo' THEN SELECT amReqLine_ItemNo
.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amEstimate_EstimNumber' THEN SELECT amEstimate
_EstimNumber.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amEstimLine_ItemNo' THEN SELECT amEstimLine_It
emNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amPOrder_PONumber' THEN SELECT amPOrder_PONumb
er.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amPOrdLine_ItemNo' THEN SELECT amPOrdLine_Item
No.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amDeliv_DelivNumber' THEN SELECT amDeliv_Deliv
Number.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amItemReceived_ItemNo' THEN SELECT amItemRecei
ved_ItemNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amItemReturned_ItemNo' THEN SELECT amItemRetur
ned_ItemNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amInvoice_InvoiceNumber' THEN SELECT amInvoice
_InvoiceNumber.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amAdjustment_ItemNo' THEN SELECT amAdjustment_
ItemNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amFieldAdjust_ItemNo' THEN SELECT amFieldAdjus
t_ItemNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amFieldAdjustModel_ItemNo' THEN SELECT amField
AdjustModel_ItemNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amReturnEnv_Code' THEN SELECT amReturnEnv_Code
.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amLoan_Code' THEN SELECT amLoan_Code.NEXTVAL I
NTO CounterValue FROM DUAL;
ELSIF CounterName = 'amCostCenter_Code' THEN SELECT amCostCenter_Co
de.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amExpenseLine_ItemNo' THEN SELECT amExpenseLin
e_ItemNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfScheme_Ref' THEN SELECT amWfScheme_Ref.NEX
TVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfOrgRole_Ref' THEN SELECT amWfOrgRole_Ref.N
EXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfActivity_Ref' THEN SELECT amWfActivity_Ref
.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfActivAlarm_Ref' THEN SELECT amWfActivAlarm
_Ref.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfEvent_Ref' THEN SELECT amWfEvent_Ref.NEXTV
AL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfTransition_Ref' THEN SELECT amWfTransition
_Ref.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfWorkItem_Ref' THEN SELECT amWfWorkItem_Ref
.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfSyncPoint_Ref' THEN SELECT amWfSyncPoint_R
ef.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amWfInstance_Ref' THEN SELECT amWfInstance_Ref
.NEXTVAL INTO CounterValue FROM DUAL;

34 | AssetCenter 4.4 - Tuning

AssetCenter

ELSIF CounterName = 'amInputEvent_EventNo' THEN SELECT amInputEvent
_EventNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSIF CounterName = 'amOutputEvent_EventNo' THEN SELECT amOutputEve
nt_EventNo.NEXTVAL INTO CounterValue FROM DUAL;
ELSE
SELECT MAX(lCounterId) INTO CounterIdent FROM amCounter WHERE Identi
fier = CounterName;
IF CounterIdent IS NULL THEN
SELECT MAX(lCounterId)+1 INTO CounterIdent FROM amCounter;
INSERT INTO amCounter (lCounterId, Identifier, Description, lValue,
dtLastModif) VALUES (CounterIdent, CounterName, CounterName, Counter
Increment, SYSDATE);
ELSE
UPDATE amCounter SET lValue = lValue + CounterIncrement, dtLastModif
= SYSDATE WHERE lCounterId = CounterIdent;
END IF;
SELECT lValue INTO CounterValue FROM amCounter WHERE Identifier = Co
unterName;
END IF;
END;

/

3 Make a backup of the original UP_GETCOUNTERVAL stored procedure.

4 Update the stored procedure using the script previously generated.

Step 8 - Edit the amdb.ini file
1 Open the amdb.ini file of AssetCenter

2 Find the section called [Connexion] and add this line:

ImportCounterCache=1

3 Repeat this procedure on each client computer.

Important:

This step is absolutely mandatory.

DB2
The proposed solution is to modify the UP_GETCOUNTERVALUE stored
procedure.

This procedure will improve performance in wizards or external applications
calling AssetCenter via APIs. Specifically, it will speed up handling of large
transactions involving the insertion of records/objects that need default values
from counters.

AssetCenter 4.4 - Tuning | 35

Tuning

If this returns a large number of locks, then you may benefit from the workaround
listed below. The purpose of the workaround is to replace counters whenever
possible by sequences (which are non-locking mechanisms).

Note:

This solution eliminates your ability to query counter values through AssetCenter
(the Tools/ Administration/ Counters menu item will display a screen with
out-of-date values).

Step 1 - Preparation
1 Before you begin, make sure no one is using the database (or at least is doing

inserts using counters). This is very important, otherwise the sequences you
generate will not have the correct numbers.

2 Before altering the database, make sure you have a backup and tested copy
of the database.

Step 2 - Replace the counters
1 Connect to CLP as the AssetCenter database owner

2 Identify the counters to be replaced by sequences with the following query:

Select * from amcounter;

3 Move the counters into sequences:

SELECT 'CREATE SEQUENCE ' || IDENTIFIER || ' INCREMENT BY 1 NOMAXVALUE
START WITH '|| CHAR(LVALUE + 1) || ' NOCYCLE CACHE 20 ORDER' AS TEXT FR
OM AMCOUNTER where identifier IS NOT NULL;

This will generate a statement like the following:

CREATE SEQUENCE amInputEvent_EventNo INCREMENT BY 1 NOMAXVALUE START WI
TH 1001 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amOutputEvent_EventNo INCREMENT BY 1 NOMAXVALUE START W
ITH 1001 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amWfActivAlarm_Ref INCREMENT BY 1 NOMAXVALUE START WITH
1001 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amWfActivity_Ref INCREMENT BY 1 NOMAXVALUE START WITH 1
005 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amWfEvent_Ref INCREMENT BY 1 NOMAXVALUE START WITH 1011
NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amWfInstance_Ref INCREMENT BY 1 NOMAXVALUE START WITH 1
029 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amWfOrgRole_Ref INCREMENT BY 1 NOMAXVALUE START WITH 10
01 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amWfScheme_Ref INCREMENT BY 1 NOMAXVALUE START WITH 101
0 NOCYCLE CACHE 20 ORDER

36 | AssetCenter 4.4 - Tuning

AssetCenter

CREATE SEQUENCE amWfTransition_Ref INCREMENT BY 1 NOMAXVALUE START WITH
1009 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amWfWorkItem_Ref INCREMENT BY 1 NOMAXVALUE START WITH 1
029 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amCable_CableTag INCREMENT BY 1 NOMAXVALUE START WITH 1
001 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amCableLink_BarCode INCREMENT BY 1 NOMAXVALUE START WIT
H 1001 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amColorCode_Code INCREMENT BY 1 NOMAXVALUE START WITH 1
001 NOCYCLE CACHE 20 ORDER
CREATE SEQUENCE amTraceHistory_BarCode INCREMENT BY 1 NOMAXVALUE START
WITH 1001 NOCYCLE CACHE 20 ORDER
......
73 rows selected.

4 The seqgen.sql file can then be then edited to keep only the CREATE
SEQUENCE statements.

Step 3 - Update the stored procedure
Replace the stored procedure UP_GETCOUNTERVAL to take advantage of
sequences where possible.
1 Execute a basic statement to generate most of the sequence calls into the

stored procedure. For example:

db2 => SELECT 'ELSEIF CounterName = '||CHR(39)|| IDENTIFIER ||CHR(39)||
' THEN Values NEXTVAL FOR '||IDENTIFIER||' INTO CounterValue ' FROM AMC
OUNTER

This will generate a statement like the following:

ELSEIF CounterName = 'amInputEvent_EventNo' THEN Values NEXTVAL FOR amI
nputEvent_EventNo INTO CounterValue;
ELSEIF CounterName = 'amOutputEvent_EventNo' THEN Values NEXTVAL FOR am
OutputEvent_EventNo INTO CounterValue;
ELSEIF CounterName = 'amWfActivAlarm_Ref' THEN Values NEXTVAL FOR amWfA
ctivAlarm_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfActivity_Ref' THEN Values NEXTVAL FOR amWfAct
ivity_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfEvent_Ref' THEN Values NEXTVAL FOR amWfEvent_
Ref INTO CounterValue;
ELSEIF CounterName = 'amWfInstance_Ref' THEN Values NEXTVAL FOR amWfIns
tance_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfOrgRole_Ref' THEN Values NEXTVAL FOR amWfOrgR
ole_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfScheme_Ref' THEN Values NEXTVAL FOR amWfSchem
e_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfTransition_Ref' THEN Values NEXTVAL FOR amWfT
ransition_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfWorkItem_Ref' THEN Values NEXTVAL FOR amWfWor
kItem_Ref INTO CounterValue;
ELSEIF CounterName = 'amCable_CableTag' THEN Values NEXTVAL FOR amCable
_CableTag INTO CounterValue;
ELSEIF CounterName = 'amCableLink_BarCode' THEN Values NEXTVAL FOR amCa

AssetCenter 4.4 - Tuning | 37

Tuning

bleLink_BarCode INTO CounterValue;
ELSEIF CounterName = 'amColorCode_Code' THEN Values NEXTVAL FOR amColor
Code_Code INTO CounterValue;
ELSEIF CounterName = 'amTraceHistory_BarCode' THEN Values NEXTVAL FOR a
mTraceHistory_BarCode INTO CounterValue;
ELSEIF CounterName = 'amCatalog_Code' THEN Values NEXTVAL FOR amCatalog
_Code INTO CounterValue;
ELSEIF CounterName = 'InternalRef' THEN Values NEXTVAL FOR InternalRef
INTO CounterValue;
ELSEIF CounterName = 'amContract_Ref' THEN Values NEXTVAL FOR amContrac
t_Ref INTO CounterValue;
.....

2 Make the following modifications to the generated statement:
1 Change the generated statement to properly handle IF Blocks.

2 Remove the line with that deals with the empty counter:

3 Add the declare and end part of the UP_GETCOUNTERVAL stored
procedure.

Your final statement should look like the following example:

CREATE PROCEDURE UP_GETCOUNTERVAL (IN CounterName VARCHAR(64), IN Co
unterIncrement INTEGER, OUT CounterValue INTEGER) LANGUAGE SQL BEGIN
DECLARE CounterIdent INTEGER; DECLARE ERR_MSG VARCHAR(255);
IF CounterIncrement <> 1 THEN
SELECT 'Up_getcounterval stored procedure altered to minimize lockin
g, You must use a counter increment of 1, please add the importcount
ercache=1 in the amdb.ini file, in the parameters of your current da
tabase connection' INTO ERR_MSG FROM SYSIBM.SYSDUMMY1;
SIGNAL SQLSTATE '75002' SET MESSAGE_TEXT = ERR_MSG;
ELSEIF CounterName = 'amInputEvent_EventNo' THEN Values NEXTVAL FOR
amInputEvent_EventNo INTO CounterValue;
ELSEIF CounterName = 'amOutputEvent_EventNo' THEN Values NEXTVAL FOR
amOutputEvent_EventNo INTO CounterValue;
ELSEIF CounterName = 'amWfActivAlarm_Ref' THEN Values NEXTVAL FOR am
WfActivAlarm_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfActivity_Ref' THEN Values NEXTVAL FOR amWf
Activity_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfEvent_Ref' THEN Values NEXTVAL FOR amWfEve
nt_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfInstance_Ref' THEN Values NEXTVAL FOR amWf
Instance_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfOrgRole_Ref' THEN Values NEXTVAL FOR amWfO
rgRole_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfScheme_Ref' THEN Values NEXTVAL FOR amWfSc
heme_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfTransition_Ref' THEN Values NEXTVAL FOR am
WfTransition_Ref INTO CounterValue;
ELSEIF CounterName = 'amWfWorkItem_Ref' THEN Values NEXTVAL FOR amWf
WorkItem_Ref INTO CounterValue;
ELSEIF CounterName = 'amCable_CableTag' THEN Values NEXTVAL FOR amCa
ble_CableTag INTO CounterValue;
ELSEIF CounterName = 'amCableLink_BarCode' THEN Values NEXTVAL FOR a
mCableLink_BarCode INTO CounterValue;

38 | AssetCenter 4.4 - Tuning

AssetCenter

ELSEIF CounterName = 'amColorCode_Code' THEN Values NEXTVAL FOR amCo
lorCode_Code INTO CounterValue;
ELSEIF CounterName = 'amTraceHistory_BarCode' THEN Values NEXTVAL FO
R amTraceHistory_BarCode INTO CounterValue;
ELSEIF CounterName = 'amCatalog_Code' THEN Values NEXTVAL FOR amCata
log_Code INTO CounterValue;
ELSEIF CounterName = 'InternalRef' THEN Values NEXTVAL FOR InternalR
ef INTO CounterValue;
ELSEIF CounterName = 'amContract_Ref' THEN Values NEXTVAL FOR amCont
ract_Ref INTO CounterValue;
ELSE SELECT MAX(lCounterId) INTO CounterIdent FROM amCounter WHERE I
dentifier = CounterName;
IF CounterIdent IS NULL THEN SELECT MAX(lCounterId)+1 INTO CounterId
ent FROM amCounter;
INSERT INTO amCounter (lCounterId, Identifier, Description, lValue,
dtLastModif) VALUES (CounterIdent, CounterName, CounterName, Counter
Increment, CURRENT TIMESTAMP);
ELSE UPDATE amCounter SET lValue = lValue + CounterIncrement, dtLast
Modif = CURRENT TIMESTAMP WHERE lCounterId =CounterIdent;
END IF;
SELECT lValue INTO CounterValue FROM amCounter WHERE Identifier = Co
unterName;
END IF;
END
GO

3 Make a backup of the original UP_GETCOUNTERVAL stored procedure.

4 Update the stored procedure using the script previously generated.

Step 8 - Edit the amdb.ini file
1 Open the amdb.ini file of AssetCenter

2 Find the section called [Connexion] and add this line:

ImportCounterCache=1

3 Repeat this procedure on each client computer.

Important:

This step is absolutely mandatory.

AssetCenter 4.4 - Tuning | 39

Tuning

	Introduction
	What is the aim of this guide?
	Who is this guide intended for?
	Reminder concerning AssetCenter architecture
	Bottlenecks
	Contents of this guide
	Conventions used in this guide

	1.Tuning a client
	Network latency
	Tree view and table view
	List-loading mechanism

	Loading lists
	Type-ahead
	Access restrictions
	Access restriction mechanism

	Properties of the objects
	The display properties
	History
	Validity check

	Features
	List configuration
	Sorts
	Filters

	2.Tuning the database
	About hardware
	RAM
	CPUs
	Hard drives
	Network

	About queries
	About database engines
	Eliminating locks and deadlocks
	Microsoft SQL Server
	Step 1 - Identify the deadlocking counters
	Step 2 - Backup
	Step 3 - Create tables for the counters
	Step 4 - Create a stored procedure
	Step 5 - Check the stored procedure
	Step 6 - Modify the stored procedure up_GetId
	Step 7 - Create a clean-up stored procedure
	Step 8 - Edit the amdb.ini file

	Oracle
	Step 1 - Preparation
	Step 2 - Replace the counters
	Step 3 - Update the stored procedure
	Step 8 - Edit the amdb.ini file

	DB2
	Step 1 - Preparation
	Step 2 - Replace the counters
	Step 3 - Update the stored procedure
	Step 8 - Edit the amdb.ini file

	Index

