
 HPSA Extension Pack

LockManager - Developer Reference

Release v.5.1

HPSA Extension Pack
LockManager - Developer Reference

2

Legal Notices

Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not
be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained from
your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-
7013.

Hewlett-Packard Company United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.

©Copyright 2001-2009 Hewlett-Packard Development Company, L.P., all rights reserved.

No part of this document may be copied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged.

Document id:

HPSA Extension Pack
LockManager - Developer Reference

3

Table of Contents

1 Introduction .. 9
1.1 Purpose ... 9
1.2 Document Scope .. 9
1.3 Definitions ... 9
1.3.1 Acronims .. 9

2 General description ... 10

3 Architecture .. 11

4 Lock Manager Service Functionality... 12

5 Lock Manager Node Guide ... 13
5.1 Nodes with Lock Manager’s own functionality ... 14
5.1.1 Lock Inventory ... 14
5.1.2 LockInventoryWithoutEnqueue ... 16
5.1.3 UnlockInventory ... 17
5.1.4 AssignLockId ... 17

5.2 Nodes affected by the Lock Manager ... 18
5.2.1 InsertInventory ... 18
5.2.2 UpdateInventory .. 20
5.2.3 MoveToHistory .. 22
5.2.4 TestAndSet .. 23
5.2.5 WFTransaction Handler .. 24

6 Configuration ... 28
6.1 Lock Manager Configuration File ... 28
6.2 Lock Manager configuration inside de MWFM .. 30
6.3 Logs .. 31

7 Command Line Tool .. 32

8 Web Client .. 33
8.1 Configuration... 33

9 Common Problems .. 34
9.1 Problems launching the service... 34
9.2 Problems starting up the MWFM .. 34

HPSA Extension Pack
LockManager - Developer Reference

4

Support

Support for the HP Service Activator Extended Pack product is available on the following mailing list:

hpsa-support@hp.com

HPSA Extension Pack
LockManager - Developer Reference

5

In This Guide

This guide is meant as a user reference guide for the Lock Manager’s latest version. It contains all the
information about this tool, its features and how to use them.

Audience

The audience for this guide is the Solutions Integrator (SI). The SI has a combination of some or all of the
following capabilities:

Understands and has a solid working knowledge of:

– UNIX® commands

– Windows® system administration

Understands networking concepts and language

Is able to program in Java™ and XML

Understands security issues

Understands the customer’s problem domain

HPSA Extension Pack
LockManager - Developer Reference

6

Conventions

The following typographical conventions are used in this guide.

Font What the Font
Represents

Example

Italic Book or manual titles,
and man page names

Refer to the HP Service Activator — Workflows and the
Workflow Manager and the Javadocs man page for more
information.

Provides emphasis You must follow these steps.

Specifies a variable
that you must supply
when entering a
command

Run the command:

InventoryBuilder <sourceFiles>

Parameters to a method The assigned_criteria parameter returns an ACSE response.

Bold New terms The distinguishing attribute of this class...

Computer Text and items on the
computer screen

The system replies: Press Enter

Command names Use the InventoryBuilder command ...

Method names The get_all_replies() method does the

following...

File and directory
names

Edit the file

$ACTIVATOR_ETC/config/mwfm.xml

Process names Check to see if mwfm is running.

Window/dialog box
names

In the Test and Track dialog...

XML tag references Use the <DBTable> tag to...

Computer

Bold
Text that you must type At the prompt, type: ls -l

Keycap Keyboard keys Press Return.

[Button] Buttons on the user
interface

Click [Delete].

Click the [Apply] button.

Menu Items A menu name followed
by a colon (:) means
that you select the
menu, then the item.
When the item is
followed by an arrow
(->), a cascading menu
follows

Select Locate:Objects->by Comment.

HPSA Extension Pack
LockManager - Developer Reference

7

Install Location Descriptors

The following names are used throughout this guide to define install locations.

Descriptor What the Descriptor Represents

$ACTIVATOR_OPT The install base location of Service Activator.

The UNIX location is /opt/OV/ServiceActivator

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\

$ACTIVATOR_ETC The install location of specific Service Activator configuration files.

The UNIX location is /etc/opt/OV/ServiceActivator

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\etc\

$ACTIVATOR_VAR The install location of specific Service Activator logging files.

The UNIX location is /var/opt/OV/ServiceActivator

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\var\

$ACTIVATOR_BIN The install location of specific Service Activator binary files.

The UNIX location is /opt/OV/ServiceActivator/bin

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\bin\

$ACTIVATOR_THIRD_PARTY The location for new Java components such as workflow nodes and
modules. Third-party libraries can also be placed in this directory.

The UNIX location is /opt/OV/ServiceActivator/3rd-party

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\3rd-party\

Customized inventory files are stored in the following locations:

UNIX: $ACTIVATOR_THIRD_PARTY/inventory

Windows: $ACTIVATOR_THIRD_PARTY\inventory

$JBOSS_HOME HOME The install location for JBoss.

The UNIX location is /opt/HP/jboss

The Windows location is

<drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service Activator J2EE components.

The UNIX location is

/opt/HP/jboss/server/default/deploy

HPSA Extension Pack
LockManager - Developer Reference

8

The Windows location is

<drive>:\HP\jboss\server\default\deploy

$ACTIVATOR_DB_USER The database user name you define.

Suggestion: ovactivator

$ACTIVATOR_SSH_USER The Secure Shell user name you define.

Suggestion: ovactusr

$SOSA_HOME The install base location of SOSA.

The default UNIX location is /opt/OV/Sosa

The default Windows location is

<drive>:\HP\OpenView\Sosa\

$SOSA_BIN The install location of specific SOSA binary files.

The default UNIX location is /opt/OV/Sosa/bin

The default Windows location is

<drive>:\HP\OpenView\Sosa\bin\

$SOSA_ETC The install location of specific SOSA configuration files.

The default UNIX location is /opt/OV/Sosa/config

The default Windows location is

<drive>:\HP\OpenView\Sosa\config\

$ECP_HOME The install base location of Equipment Connections Pool.

The default UNIX location is /opt/OV/ECP

The default Windows location is

<drive>:\HP\OpenView\ECP\

$ECP_BIN The install location of specific Equipment Connections Pool binary files.

The default UNIX location is /opt/OV/ECP/bin

The default Windows location is

<drive>:\HP\OpenView\ECP\bin\

$ECP_ETC The install location of specific Equipment Connections Pool
configuration files.

The default UNIX location is /opt/OV/ECP/conf

The default Windows location is

<drive>:\HP\OpenView\ECP\conf\

HPSA Extension Pack
LockManager - Developer Reference

9

1 Introduction

1.1 Purpose

This guide is meant as a developer and administrator reference guide for the Lock Manager. It contains
all the information about this tool, its features and how to use them.

1.2 Document Scope

This document is focused on the main features oriented for developers.

1.3 Definitions

1.3.1 Acronims

MWFM: Micro Work Flow Manager

HPSA: HP Service Activator

EP: Extension Pack

SC: Solution Container

LM: Lock Manager

HPSA Extension Pack
LockManager - Developer Reference

10

2 General description

Lock Manager is the service in charge of the distributed management of the active locks in the HPSA. This
allows locking common objects from several systems, as they are all being managed by one and the
same individual system.

It provides both a web interface and a client shell for the management of the different service elements.

HPSA Extension Pack
LockManager - Developer Reference

11

3 Architecture

Fig. 1 Lock Manager Architecture

Next the different elements involved are described:

Lock Manager. Also termed administrator service as it is in charge of the management of the
locking requests arriving from several machines. It is installed in one machine only, and possesses an RMI
interface that provides methods for locking, unlocking, and notifying about those locks…

This service allows two ways to manage the persistence of its locks, either saving the locking information
on a file or on a DB.

Locker service. Also called locking service, it is in charge of the bidirectional communication
between the Micro-workflow Manager (MWFM onwards) of the machine where it is installed and the
administrator service (Lock Manager). To define a locker service we must configure a LockModule module
in the mwfm.xml file, that is, in the configuration file of the MWFM where the locking service will reside.
This module provides methods for requesting a Lock Manager for single and multiple locks from the
MWFM nodes.

When launching the MWFM, the Locker Service contained in the module will connect to the service and
will be registered with the URL and name defined in the module. When shutting down the MWFM it will
be unregistered.

Lock Manager

RMI

DB

__
__
__

lock_lockid.dat

Locker

Service

Micro-workflow Manager

Micro-workflow Manager

Locker
Service

… …

HPSA Extension Pack
LockManager - Developer Reference

12

4 Lock Manager Service Functionality

The Lock Manager provides a distributed locking system, to provide single access to the objects being
locked. This is necessary as it is meant to be used in distributed concurrent applications, therefore the
possibility of locking a particular object is a necessity for the HPSA.

The Lock Manager comes with several nodes and classes which enable using the Lock Manager from
Workflows and also managing the Lock Manager from the HPSA.

HPSA Extension Pack
LockManager - Developer Reference

13

5 Lock Manager Node Guide

The nodes that implement the functionality provided by the Lock Manager are contained in the Workflow
Transactions project. Most of them receive a transaction as an argument. Consult the document HPSA
Extension Pack - HPSA Extended Functionality - Developer reference (Workflow Transaction
Module) to see how to manage a transaction.

We can differentiate between:

Nodes with Lock Manager’s own functionality such as locking, unlocking, assigning a lock.

Node Name Description

LockInventory Locks beans in the inventory. If the lock is not available the
request is queued.

LockInventoryWithoutEnqueue Locks beans in the inventory. If the lock is not available the
node returns an error.

UnlockInventory Unlocks the beans in the inventory.

AssignLockId Sets the current job as owner of a lock.

Fig. 2 Nodes belonging to the Lock Manager itself

Nodes affected by the Lock Manager such as updating the inventory, moving beans to history tables, etc.
These kinds of nodes consult the administrator service to check whether the bean used is or not locked.

Node Name Description

InsertInventory Inserts beans in the inventory.

UpdateInventory Updates beans in the inventory.

MoveToHistory Moves beans from the inventory to the history tables

TestAndSet Evaluates a condition and if it is fulfilled an action is
executed on a bean from the inventory.

WFTransactionHandler Generic Handler that liberates resources reserved by the
flow and synchronizes with the parent flow if the execution
has been cancelled, propagating the corresponding error
message.

Fig. 3 Nodes Affected by the Lock Manager

All the nodes return the variable RET_VALUE. It is a String with value 0 if the node has been successfully
performed, -1 if this is not the case.

A Locker service is the service in charge of the communication with the Lock Manager. One must exist in
each machine where a MWFM resides and it is required that the generated locks are administered by the
administrator service.

To define a Locker Service we must configure in the mwfm.xml configuration file ($ETC/config) a
LockModule module. This module will contain the locker.

HPSA Extension Pack
LockManager - Developer Reference

14

5.1 Nodes with Lock Manager’s own functionality

All the nodes described in this section have a common entry parameter called lock_id. It is the
multilocking identifier. Internally this identifier refers to a vector that stores all the generated locks. Each
lock will be added to the vector. In such a way that, a single identifier can reference all the required
locks.

For the locker installation we must install the lock-manager project in every machine where a locker is
going to be defined. Also, if we want to use the methods to ask for locks, unlocks etc., from a Lock
Manager from the MWFM nodes we must install the ovsa41-wf-transaction project.

5.1.1 Lock Inventory

Node that locks beans in the inventory and adds the corresponding rollback operations in a Workflow
Transaction*. If the lock isn’t available it queues the request.

* A Workflow Transaction is a flow level transaction, in which operations can be inserted or removed as
needed. Each of the different flow nodes or of the child flows can insert their own operations. This
transaction is processed in the end handler of the flow that created it.

Parameter Name Mandatory Type Description

WF_TRANSACTION_NAME

Si String This name identifies each of the
transactions of a group inside the
flow hierarchy

bean + i Si String Names of the beans to be locked

primary_key + i Si String Primary keys

array No Object Bean array to be locked

string_array No String Sets its value to YES or TRUE if the
array parameter contains a bean
array

job_id

Si String Variable from the case-packet that
contains the JOB_ID. If none is
specified its default value will be
JOB_ID

lock_id

No String Variable from the case-packet that
stores the multilock identifier. If none
is set the lock_id is used as default.

lock_module No String Name for the module that will be
used as locker for this flow, to make
the lock. If none is specified the
default value used will be
(LockModule)

Fig. 4 Variables of the LockInventory node

HPSA Extension Pack
LockManager - Developer Reference

15

In the previous table we can see that there are two ways of locking a group of beans at the same time in
the same node:

• Using the ‘bean+i’ and ‘primary_key+i’ variables to indicate the different beans that must be
locked and their primary keys.

<Process-Node>

 <Name>Locks RiverstoneRS</Name>

 <Action>

 <Class-Name>com.hp.spain.node.wftransaction.LockInventory</Class-Name>

 <Param name="WF_TRANSACTION_NAME"

value="wf_transaction_lock"/>

 <Param name="bean0"

value="com.hp.spain.inventory.RiverstoneRS"/>

 <Param name="primary_key0" value="rsId"/>

 <Param name="bean1"

value="com.hp.spain.inventory.RiverstoneRSPort"/>

 <Param name="primary_key1" value="rsPortId"/>

 <Param name="job_id" value="JOB_ID"/>

 <Param name="lock_id" value="lock_id"/>

 </Action>

 <Next-Node>Consulta Parametros Operador</Next-Node>

 </Process-Node>

• Using the variables ‘array’ and ‘string_array’. ‘string_array’ must be yes or true, to indicate that a
bean array is going to be sent and ‘array’ is the bean array to be locked. If the string_array
variable is set to false, the array variable won’t be evaluated, assuming that no bean array
exists. By default this variable is set to false.

<Process-Node>

 <Name>Bloquea RiverstoneRS</Name>

 <Action>

 <Class-Name>com.hp.spain.node.wftransaction.LockInventory</Class-Name>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction_lock"/>

 <Param name="string_array" value="TRUE"/>

 <Param name="array" value=" arrayRiverstoneRS "/>

 <Param name="job_id" value="JOB_ID"/>

 <Param name="lock_id" value="lock_id"/>

 </Action>

 <Next-Node>Consulta Parametros Operador</Next-Node>

</Process-Node>

The string_array parameter has assigned the value ‘TRUE’ whose value must be either true or yes. The
array parameter has assigned the variable ‘arrayRiverstoneRS’ which contains the bean array.

In both cases if the lock_id parameter is passed empty to the node, a vector with all the generated locks
in the current node will be produced. The lock_id generated will reference the locks.

HPSA Extension Pack
LockManager - Developer Reference

16

If the opposite happens, that is, the lock_id passed to the node already contains the previous locks; the
current node will update the vector, adding the new locks. The lock_id returned will be the same that was
passed to the node; however the vector being reference will contain both the old and the new locks.

5.1.2 LockInventoryWithoutEnqueue

The operation of this node is similar to the previous, the difference being that in this case the node returns
an error. The entry parameters are the same as in the previous example.

Parameter name Mandatory Type Description

WF_TRANSACTION_NAME

Si String This name will identify each of the
group transactions inside a flow
hierarchy

bean + i Si String Names of the beans to be locked

primary_key + i Si String Primary keys

array No String Bean array to be locked

string_array No String Set its value to YES or TRUE if the array
parameter contains a bean array

job_id

Si String Variable from the case-packet which
contains the JOB_ID. If it isn’t specified
the default value will be JOB_ID

lock_id

No String Variable from the case-packet which
stores the lock identifier. If none is set
the default value will be the lock_id.

lock_module No String Name of the module that will be used
as locker to achieve the lock. If none is
specified a default value will be used
(LockModule)

Fig. 5 LockInventoryWithoutEnqueue node values

<Process-Node>

 <Name>Bloquear Equipo</Name>

 <Action>

 <Class-Name>

 com.hp.spain.node.wftransaction.LockInventoryWithoutEnqueue

 </Class-Name>

 <Param name="bean0" value="com.hp.spain.inventory.RiverstoneRS"/>

 <Param name="primary_key0" value="constant:1"/>

 <Param name="job_id" value="JOB_ID"/>

 <Param name="lock_id" value="lock_id_rs"/>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 </Action>

 <Next-Node>PedirParametrosInsert</Next-Node>

HPSA Extension Pack
LockManager - Developer Reference

17

</Process-Node>

5.1.3 UnlockInventory

Unlocks the beans in the inventory and executes the delete and update operations previously added to the
Workflow Transaction* by the nodes DelayedDelete** and DelayedUpdate**

** The DelayedDelete and DelayedUpdate nodes add the update and delete operations of the inventory
beans, becoming active during the execution of the End Handler.

The lock_id parameter contains the lock identifier. In order to unlock a bean, the identifier that was
passed or was generated in the lock’s creation must be used.

Parameter name Mandatory Type Description

WF_TRANSACTION_NAME

Si String Este nombre identificará cada una de
las transacciones de un grupo dentro
de una jerarquía de flujos

Lock_id No String Variable del case-packet que almacena
el identificador de bloqueo. Si no se
establece se usará lock_id como valor
por defecto.

Lock_module No String Nombre del módulo que se usará
como locker en este flujo, para
realizar el bloqueo. Si no se especifica
uno e utilizará su valor por defecto
(LockModule)

Fig. 6 Variables nodo UnlockInventory

<Process-Node>

 <Name>Desbloquear Equipo</Name>

 <Action>

 <Class-Name>

 com.hp.spain.node.wftransaction.UnlockInventory

 </Class-Name>

 <Param name="lock_module" value="MWFM-0"/>

 <Param name="lock_id" value="lock_id_rs"/>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 </Action>

 <Next-Node>NextNode</Next-Node>

</Process-Node>

5.1.4 AssignLockId

HPSA Extension Pack
LockManager - Developer Reference

18

Node that establishes the current job as owner of a lock and adds it to a Workflow Transaction.

Parameter Name Mandatory Type Description

WF_TRANSACTION_NAME

Si String This name will identify each of the
transactions belonging to a group inside
a flow hierarchy

Value Si String Variable where the lock identifier is kept.

lock_id

Si String Variable where the new lock identifier
will be kept.

Soft No String No exceptions are thrown if its value is
set to YES or TRUE

Fig. 7 AssignLockId node variables

<Process-Node>

 <Name>Assign Lock Id</Name>

 <Action>

 <Class-Name>

 com.hp.spain.node.wftransaction.AssignLockId

 </Class-Name>

 <Param name="value" value="lock_id_previous"/>

 <Param name="lock_id" value="lock_id_rs"/>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 </Action>

 <Next-Node>NextNode</Next-Node>

</Process-Node>

5.2 Nodes affected by the Lock Manager

5.2.1 InsertInventory

Node that inserts beans in the inventory, adding afterwards the corresponding rollback operations to a
Workflow Transaction.

Parameter Name Mandatory Type Description

WF_TRANSACTION_NAME

Si String This name will identify each of the
transactions belonging to a group
inside a flow hierarchy.

HPSA Extension Pack
LockManager - Developer Reference

19

Db No String Name of the DB module to be used. If
this parameter is not passed the default
value of “db” will be loaded.

Bean Si String Bean name

primary_key Si String Primary Key

attribute + i Si String Attributes to be inserted in the bean

value + i No String Values for the attributes to be inserted
in the bean

field + i No String Fields to be updated. They must be in
lower case.

variable + i No String Values of the fields to be updated.

bean_object No String Bean generated with the data inserted
in the inventory

lock_module No String Name of the locking module to be
used.

lock No String The values of YES or TRUE will indicate
that the new bean is will be locked.

job_id No String Variable from the case-packet that
contains the JOB_ID. If none is
specified the default value will be
JOB_ID

lock_id No String Variable from the case-packet which
stores the lock identifier (optional). If
none is speficied the default value used
will be lock_id.

soft No String No exceptions are thrown if its value is
set to YES or TRUE.

method No String Defines the method to be executed to
make the insertion in the inventory. If
none is specified the bean’s store
method is executed.

attributeExt + i No String Extended attributes to be inserted

valueExt + i No String Values for the extended attributes

error_message No String Error message generated when the
node is executed

Fig. 8 InsertInventory node variables

<Process-Node>

 <Name>InsertarRegistro</Name>

 <Description>Insertamos el registro</Description>

 <Action>

HPSA Extension Pack
LockManager - Developer Reference

20

 <Class-Name>com.hp.spain.node.wftransaction.InsertInventory</Class-Name>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 <Param name="db" value="db"/>

 <Param name="bean" value="com.hp.spain.inventory.WfBDTest"/>

 <Param name="attribute0" value="WorkflowId"/>

 <Param name="attribute1" value="Name"/>

 <Param name="attribute2" value="Description"/>

 <Param name="value0" value="JOB_ID"/>

 <Param name="value1" value="Nombre"/>

 <Param name="value2" value="Descripcion"/>

 </Action>

 <Next-Node>MensajeInsertar</Next-Node>

</Process-Node>

5.2.2 UpdateInventory

Updates beans in the inventory, adding afterwards the corresponding rollback operations in a Workflow
Transaction.

Parameter Name Mandatory Type Description

WF_TRANSACTION_NAME

Si String This name will identify each of the
transactions in a group inside a flow
hierarchy

db No String Name of the DB module to be used. If
this parameter is not passed the default
value loaded will be “db”

bean Si String Bean name

primary_key Si String Primary Key

attribute + i No String Attributes to be updated in the bean

value + i No String Attribute values to be updated in the
bean

variable + i No String Field values to be updated

bean_object No String Bean generated with the data inserted in
the inventory

job_id No String Variable from the case-packet that
contains the JOB_ID. If none is specified
the default value is JOB_ID

lock_id No String Variable from the case-packet which
stores the lock identifier (optional). If
none is specified the default value used
will be the lock_id.

HPSA Extension Pack
LockManager - Developer Reference

21

ignoreLockMan No String Variable that indicates whether we must
take into account the locking module. If
its value is false, no validation to check
that the bean is locked is made before
an update.

lock_module No String Name for the module that will be used as
locker for this flow, to make the lock. If
none is specified the default value is
used (LockModule)

soft No String No exceptions are thrown if its value is
set to YES or TRUE.

findmethod No String Search method implemented to obtain
the bean to be updated

Findvariable + i No String Entry variables for the method specified
by the findmethod parameter.

updatemethod No String Method to be executed to make the
update. If none is set the default update
method used will be the bean’s update.

updatePK No String If its value is true or yes it means that the
method specified with the updatemethod
parameter will be used.

primary_key_att + i No String primaryKeys of the beans to be updated
if the update method is used.

attributeExt + i No String Extended attributes to be inserted

valueExt + i No String Values for the extended attributes

error_message No String Error message generated when the node
is executed.

Fig. 9 UpdateInventory node variables

<Process-Node>

 <Name>ModificarRegistro </Name>

 <Description/>

 <Action>

 <Class-Name>com.hp.spain.node.wftransaction.UpdateInventory</Class-Name>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 <Param name="db" value="db"/>

 <Param name="bean" value="com.hp.spain.inventory.WfBDTest"/>

 <Param name="primary_key" value="Resultado"/>

 <Param name="attribute0" value="Description"/>

 <Param name="value0" value="Descripcion"/>

 </Action>

 <Next-Node>MensajeModificar</Next-Node>

</Process-Node>

HPSA Extension Pack
LockManager - Developer Reference

22

5.2.3 MoveToHistory

Moves beans from the inventory to the history tables, adding afterwards the corresponding rollback
operations in a Workflow Transaction.

Parameter Name Mandatory Type Description

WF_TRANSACTION_NAME

Si String This name identifies each of the
transactions of a group inside a flow
hierarchy.

db No String Name of the DB module to be used. If
this parameter is not passed the default
value “db” will be used

bean + i Si String Bean name

array_bean + i No Object Bean array

primary_key + i Si String Primary Key

bean_class + i String

lock_id Variable from the case-packet that stores
the lock identifier (optional). If none is
specified the default value will be the
lock_id

job_id No String Variable from the case-packet which
contains the JOB_ID. If none is specified
the default value used will be JOB_ID

soft No String No exceptions are thrown if its value is
set to YES or TRUE

Fig. 10 MovetoHistory node variables

<Process-Node>

 <Name>MoveToHistory</Name>

 <Description/>

 <Action>

 <Class-Name>com.hp.spain.node.wftransaction.MoveToHistory</Class-Name>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 <Param name="db" value="db"/>

 <Param name="bean" value="com.hp.spain.inventory.WfBDTest"/>

 <Param name="primary_key" value="Resultado"/>

 <Param name="attribute0" value="Description"/>

 <Param name="value0" value="Descripcion"/>

 </Action>

 <Next-Node>MensajeModificar</Next-Node>

</Process-Node>

HPSA Extension Pack
LockManager - Developer Reference

23

5.2.4 TestAndSet

Node that evaluates a condition and if it is fulfilled it executes an action on a bean from the inventory,
adding afterwards the corresponding rollback operations to a Workflow Transaction*

Parameter Name Mandatory Type Description

WF_TRANSACTION_NAME

Si String This name identifies each of the
transactions of a group inside a flow
hierarchy.

db No String Name of the DB module to be used. If
this parameter is not passed the default
value “db” will be used

bean Si String Bean name

primary_key Si String Primary Key

condition No String Condition to be evaluated

action+i Si String Action to be executed in a field. It must
have a specific format*

field + i No String Name of the required field

variable + i No String Value of the required field

force_insert No String If true, the insertion of the bean in the DB
will be made, unless it already existed.

lock_id No String Variable from the case-packet that stores
the lock identifier (optional). If none is
specified the default value will be the
lock_id

job_id No String Variable from the case-packet which
contains the JOB_ID. If none is specified
the default value used will be JOB_ID

soft No String No exceptions are thrown if its value is
set to YES or TRUE

error_message No String Error message generated when the node
is executed

Fig. 11 TestAndSet node variables

The action field format must be ‘field;operator;value’ where operator can have the following values:
‘==’, ‘¡=’, ‘<’,’ >’, ‘<=’, ‘>=’ .

<Process-Node>

 <Name>MoveToHistory</Name>

 <Description/>

 <Action>

HPSA Extension Pack
LockManager - Developer Reference

24

 <Class-Name>com.hp.spain.node.wftransaction.MoveToHistory</Class-Name>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 <Param name="db" value="db"/>

 <Param name="bean" value="com.hp.spain.inventory.WfBDTest"/>

 <Param name="primary_key" value="pk"/>

 <Param name="condition" value="condition"/>

 <Param name="action0" value="Accion"/>

 </Action>

 <Next-Node>MensajeModificar</Next-Node>

</Process-Node>

5.2.5 WFTransaction Handler

Generic Handler that is always called at the end of a flow. It is used to liberate resources reserved by the
flow, to synchronize with the parent flow and if the execution was cancelled, it propagates the
corresponding error message. Also, it removes the Workflow Transactions created by the flow after
processing the ones indicated in its configuration parameters.

The Finish and Cancel variables are the ones defined if the flow finished successfully or with errors. In a
successful execution of the flow the value of these variables would be Finish=true and Cancel=false.

In the following table we specify what values must the variables finish and cancel have to take into
account the rest of the parameter values.

For example:

If the rollback beans variable is set to true, it indicates that a rollback must be executed of the inserted or
modified beans in the inventory. This action will only be executed if the values for the variables are
Finish=no and Cancel=true.

Parameter name
Mandator
y

Description
Finish/Canc
el

finish No Boolean that indicates
whether the flow finished
successfully

cancel No Boolean that indicates
whether the flow has been
cancelled

controller No Boolean that tells whether the
flow is a controller

-/-

WF_TRANSACTION_NAME,
WF_TRANSACTION_NAME + i

No Name of every Workflow
Transaction to be processed

-/-

rollback_beans,
rollback_beans + i

No Boolean that indicates
whether a rollback of the
inserted or modified beans in
the inventory should be
executed

No/Yes

rollback_moved_beans,
rollback_moved_beans + i

No Boolean that indicates
whether a rollback of the
beans moved to the history

No/Yes

HPSA Extension Pack
LockManager - Developer Reference

25

table should be executed

rollback_recovered_beans,
rollback_recovered_beans+i

No Boolean that indicates
whether a rollback of the
beans that have been
recovered from the history
table should be executed.

No/Yes

remove_history_beans,
remove_history_beans+i

No Boolean that indicates
whether the beans that have
been moved to the history
should be deleted

Yes/No

unlock_beans, unlock_beans+i No Boolean that indicates
whether the beans that have
been locked by the flow
should be unlocked

Yes/Yes

release_resources,
release_resources+i

No Boolean that indicates
whether the resources that
have been reserved by the
flow should be released

No/Yes

concurrent_sync No Boolean that indicates
whether it must synchronize
with the parent flow. This
synchronization is used when
the child flows have been
launched by the
StartJobConcurrent.

No/Yes

concurrent_sync_finish No Boolean that indicates
whether it must synchronize
with the parent flow. This
synchronization is used when
the child flows have been
launched by the
StartJobConcurrent

Yes/No

delete_concurrent_cp No Boolean that indicates
whether all the concurrent
flow’s information from the
module’s
ConcurrentWorkflows queue
should be deleted

Yes/Yes

remote_ip No Remote IP (necessary for
synchronizing with the parent
when concurrent flows are
launched remotely)

-/-

local_ip No Local IP (necessary to
synchronize with the parent
flow when concurrent flows
have been launched locally)

-/-

service_update,
service_update+i

No Boolean that indicates
whether the enties in the
ServiceInstanceParameters
must be updated

Yes/No

delete_delayed, No Boolean that indicates
whether the beans marked by

Yes/No

HPSA Extension Pack
LockManager - Developer Reference

26

delete_delayed+i the DelayedDelete node

update_delayed,
update_delayed+i

No Boolean that indicates
whether the beans marked
with the delay modification
should be modified

Yes/No

release_delayed,
release_delayed+i

No Boolean that indicates
whether the beans marked
with delayed release should
be released.

Yes/No

sender_module No Name for the module of
message dispatch.

No/Yes

force_rollback,
force_rollback+i

No Boolean that indicates that
the rollback tasks will be
executed even if the flow
ends successfully, ignoring
the 'finish' parameter

-/-

action_if_killed,
action_if_killed+i

No Action to be executed on the
bean if the job is killed using
killJob

-/-

do_action_if_killed,
do_action_if_killed+i

No Boolean that indicates
whether the associated task
should be executed (even if
the flow hast been killed)

-/-

db_if_killed, db_if_killed+i No Database module to be used -/-

class_bean_if_killed,
class_bean_if_killed+i

No Bean class on which we want
to execute the action

-/-

bean_if_killed, bean_if_killed+i No Variable with the bean
instance on which we want to
execute the action

-/-

field_if_killed, field_if_killed+i No Name of the bean’s attribute -/-

value_if_killed,
value_if_killed+i

No Value for the bean’s attribute -/-

lock_id_if_killed,
lock_id_if_killed+i

No Identifier for the bean lock on
which the action will be
executed

-/-

Fig. 12 WFTransactionHandler node variables

<End-Handler>

 <Class-Name>com.hp.spain.node.wftransaction.WFTransactionHandler</Class-

Name>

 <Param name="Finish" value="Finish"/>

 <Param name="Cancel" value="Cancel"/>

 <Param name="unlock_beans" value="unlock_beans"/>

 <Param name="WF_TRANSACTION_NAME" value="wf_transaction"/>

 <Param name="rollback_beans"

 value="rollback_beans"/>

</End-Handler>

HPSA Extension Pack
LockManager - Developer Reference

27

HPSA Extension Pack
LockManager - Developer Reference

28

6 Configuration

6.1 Lock Manager Configuration File

Next the properties that are present in the configuration files are described, in case the need arises of
modifying the configuration.

There are two configuration files of the Lock Manager:

LockManager.properties located in $LOCK_MANAGER_HOME/bin. This file has a series of generic
parameters:

Parameter Name Description

LOCK_PENDING_PERIOD Processing time in milliseconds of the waiting locks

LOCK_PENDING_TIMEOUT
Maximum amount of time a lock can remain in a
lock queue awaiting notification

DEAD_LOCK_RISK_THRESHOLD_TIME
Time threshold in milliseconds that creates the risk of
deadlock for a lock

KEY_MONITOR_WAIT_TIMEOUT
Maximum amount of time in milliseconds a monitor
waits before locking a key

ADMINISTRATOR_LOCKER_NAMES Locker names with administration permission

Fig. 13 Generic parameters

Next an example configuration of these variables is shown:

 LOCK_PENDING_PERIOD = 5000

 LOCK_PENDING_TIMEOUT = 600000

 DEAD_LOCK_RISK_THRESHOLD_TIME = 60000

 KEY_MONITOR_WAIT_TIMEOUT = 0

 ADMINISTRATOR_LOCKER_NAMES = SUPERLOCKER_WEB_1, SUPERLOCKER_WEB_2,
 SUPERLOCKER_CMD

Also the persistence of the locks can be configured in two ways:

 Persistence in files: The information of each lock is stored in a file called multilock_lockid.dat,
where lockid is the lock’s identifier. In this case the only thing that can be configured is the persistence
directory.

Nombre Parámetro Descripción

PERSISTENCE_CLASS Class that implements the persistence in a file

PERSISTENCE_DIR_PATH Directory for the persistence file

Fig. 14 Persistence parameter file

HPSA Extension Pack
LockManager - Developer Reference

29

For example:

 PERSISTENCE_CLASS = com.hp.spain.lock.manager.FileDataSource

 PERSISTENCE_DIR_PATH = C:/hp/LockManager/data

 Persistence in a Database: The information about all the locks is stored in a table called
HPSA_LOCKS inside the database referred in the build.properties. In this type of persistence, we can
configure the JDBC driver, the maximum number of active pools and the connection URI to the database.

Parameter Name Description

PERSISTENCE_CLASS Class that implements the persistence in the DB
POOL_JDBCDRIVER Class that implements the JDBC driver

POOL_MAXACTIVE Maximum number of active pools
DATABASE_CONNECTION_URI Connection URL to the DB

Fig. 15 DB persistence parameters

For example:

 PERSISTENCE_CLASS = com.hp.spain.lock.manager.JdbcDataSource

 POOL_JDBCDRIVER = oracle.jdbc.driver.OracleDriver

 POOL_MAXACTIVE = 10

 DATABASE_CONNECTION_URI = jdbc:oracle:thin:manuel/****@172.16.3.49:1521:HPSA

Finally we can configure the log system of the different log files.

Parameter Name Description

LOG_MAX_FILE_SIZE Sets the maximum size for the log file
LOG_MAX_NUM_FILES Sets the maximum number of backup log files that should

be stored before being deleted.
LOG_PATTERN Date pattern to be used in the created log file when a

rotation is produced.
LOG_LEVEL Log level. In ascending order the possible levels are

DEBUF, INFO, WARN, ERROR and FATAL
Fig. 16 Log level parameters

Example:

 LOG_MAX_FILE_SIZE = 5242880

 LOG_MAX_NUM_FILES = 10

 LOG_PATTERN = %d [%t] %-5p %c\{1} - %m %n

 LOG_LEVEL = DEBUG

RmiLockManagerService.policy. File where the RMI security policy is configured. Currently all the
actions are allowed for every user.

HPSA Extension Pack
LockManager - Developer Reference

30

 grant {

 permission java.security.AllPermission;

 };

6.2 Lock Manager configuration inside de MWFM

The Lock Manager is already configured in the HPSA installation, but if the need arises to change any of
the values, here each section is described.

This is the Lock Module’s configuration in the mwfm.xml file:

 <Module>

 <Name>LockModule</Name>

 <Class-Name>com.hp.spain.engine.module.lock.manager.LockModule</Class-

Name>

 <Param name="locker_name" value="MWFM-0"/>

 <Param name="locker_service_ip_address" value="127.0.0.1"/>

 <Param name="unlock_pending_period" value="60000"/>

 <Param name="lock_manager_service_url"

value="rmi://127.0.0.1:1220/RmiLockManagerService"/>

 <Param name="persistence_dir_path"

value="C:/hp/OpenView/ServiceActivator/var/tmp/lockers"/>

 <Param name="lock_waiter_mode" value="enqueue_jobs"/>

 <Param name="bean_helper_must_check_locks" value="true"/>

 <Param name="debug" value="false"/>

 </Module>

Each of the elements is described next:

• Name is used to define the Module’s name.

• Class-name, defines the class that will implement the module.

Parameters:

• locker-name: name of the locker HPSA will use to communicate with the Lock Manager

• locker_service_ip_address: ip address the locker will use.

• unlock_pending_period: amount of time a pending unlock will be kept waiting.

• lock_manager_service_url: Url for the Lock Manager service.

• persistence_dir_path: directory for file persistence

• lock_waiter_mode: enqueue jobs means locking requests will be enqueued.

• bean_helper_must_check_locks: the bean helper checks locks

• debug: whether debug mode is on.

HPSA Extension Pack
LockManager - Developer Reference

31

6.3 Logs

The Lock Manager’s log files are located in the $LOCK_MANAGER_HOME/log directory.

Log Name Description

RmiLockManagerService.stderr Shows the Service’s errors

RmiLockManagerService.stdout Shows the operations executed by the administrator
service such as locking/unlocking and
registry/unregistry of lockers.

LockManager.log The logs that are shown are contained in the file
RmiLockManagerService.stdout

 Fig. 17 Logs

HPSA Extension Pack
LockManager - Developer Reference

32

7 Command Line Tool

The Lock Manager has a command line client that can be used to launch different actions by executing
the scripts provided.

Name of the
Script

Description

StartServer Launches the Lock Manager service

StopServer Stops the Lock Manager service

showStatus Shows the status of the Lock Manager service

showLocks Shows all the current active locks that exist in the Lock Manager

getLockInfo Shows all the relevant information about a lock (lockId, key, status,
ownerId). Usage: getLockInfo <lockId>

Unlock Unlocks an active lock on the Lock Manager. Usage: unlock <lockId>

getLockersInfo Shows all the active locking services that exist in the LockManager

forceUnregister Deregisters a locking service from the Lock Manager. Usage:
forceUnregister <lockerName>

 Fig. 18 Scripts

Note: All the scripts are executed from the directory $LOCK_MANAGER_HOME/bin

HPSA Extension Pack
LockManager - Developer Reference

33

8 Web Client

The Lock Manager’s web client is a web application, integrated in the application container, developed
for the administration of the lock manager service called LockManager.

Its functioning is outlined in the “User Manual for the Administration of the Lock Module” document.

8.1 Configuration

The configuration of the Lock Manager is stored in the Lock-Manager-Web.properties file, located
in the $JBOSS/server/diagnostic/deploy/hpovact.sar/activator.war/properties/ directory.

This file contains the variables previously configured in the build.properties file of the machine. The
variables contained set the IPs of the machine that is running the Lock Manager service and the machine
that will act as administrator (machine where the web application resides).

#Configuración del servicio RMI Lock Manager

lockmanager.service.host = 172.16.2.121

lockmanager.service.port = 1220

lockmanager.service.name = RmiLockManagerService

locker.service.host = localhost

locker.service.port = 1230

locker.service.name = RmiLockerService-SUPERLOCKER_WEB_1

locker.name = SUPERLOCKER_WEB_1

This application in order to establish communication with the Lock Manager creates a locker.

This locker does not need to be configured in a module inside the mwfm.xml file as it won’t be used from
any flow. It will only be used in the web application and will have to have administration permissions.
Because of this, the name of this locker must be one of the names defined in the
ADMINISTRATOR_LOCKER_NAMES variable of the service’s configuration file
‘LockManager.properties’. (See chap. 3.4 Configuration).

Next we can see an example configuration:

lockmanager.service.host = 172.16.2.117

lockmanager.service.port = 1220

lockmanager.service.name = RmiLockManagerService

locker.service.host = 172.16.3.49

locker.service.port = 1230

locker.service.name = RmiLockerService-SUPERLOCKER_WEB_1

locker.name = SUPERLOCKER_WEB_1

HPSA Extension Pack
LockManager - Developer Reference

34

9 Common Problems

9.1 Problems launching the service

Most of the startup problems of the LockManager are related to a bad configuration of the service. Next
is a list of a series of possible errors:

1- Log belonging to the LockManager.log file

2008-01-04 14:18:48,281 [main] ERROR JdbcDataSource - LockContainer not restored. It's not posible to create a
connection to the database
java.sql.SQLException: Excepción de E/S: The Network Adapter could not establish the connection
 at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:134)
 at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:179)
 …
ERROR LockManagerImpl - Persistence not restored. It's not posible to create a connection to the database
com.hp.spain.lock.manager.DataSourceException: LockContainer not restored. It's not posible to create a connection
to the databaseExcepción de E/S: The Network Adapter could not establish the connection.

A connection could not be established with the DB used to store the locks. Check the connection
configuration set with the DATABASE_CONNECTION_URI property in the LockManager.properties file.

2- Log belonging to the RmiLockManagerService.stderr log file

java.rmi.ConnectException: Connection refused to host: 172.16.3.65; nested exception is:
 java.net.ConnectException: Connection timed out: connect
…

Could not connect to the server where the service is launched. Check that the value for the variables
RMI_HOST and RMI_IP configured in the StartServer file is correct. If the IPs are incorrect, they will
probably be badly configured in the rest of the script located in the $LOCK_MANAGER_HOME/bin
directory.

9.2 Problems starting up the MWFM

1- When starting up, the LockModule tries to connect with the service to register the locker it has
configured and the connection fails. See the RmiLockManager.stdout log file:

08-ene-2008 13:42:21: starting module: LockModule with class
com.hp.spain.engine.module.lock.manager.LockModule
2008-01-08 13:42:22,359 [main] DEBUG RmiLockManagerService.WaitersFileDataSource - All waiters restored
from filedirectory 'C:/hp/OpenView/ServiceAct
ivator/var/tmp/lockers\MWFM-0\waiters'
2008-01-08 13:42:22,390 [main] DEBUG FileSaver - Restoring file
'C:/hp/OpenView/ServiceActivator/var/tmp/lockers\MWFM-0/pendingUnlocks.dat'
…
com.hp.spain.lock.manager.LockerException: Connection to lock manager failed
 at com.hp.spain.lock.manager.RmiLockerService.ensureConnection(RmiLockerService.java:171)
 at com.hp.spain.lock.manager.RmiLockerService.getLocks(RmiLockerService.java:302)
 at

Normally, either the LockManager has not been launched previously or it did not start up correctly.

HPSA Extension Pack
LockManager - Developer Reference

35

2- When starting up the LockModule module and connecting with the service, it tries to register the locker
it has configured, and the registration fails.

08-ene-2008 16:20:48: ><registering hooks with the queue manager...
java.rmi.ServerException: RemoteException occurred in server thread; nested exception is:
 java.rmi.RemoteException: Registration refused. Another locker is already registered with the
name MWFM-0
 at sun.rmi.server.UnicastServerRef.dispatch(UnicastServerRef.java:292)
 at sun.rmi.transport.Transport$1.run(Transport.java:148)
…

In this case two things could have happened:

That another LockModule with the same locker name has already been registered previously. In this case
we must modify the name of the locker, as this identifier must be unique.

That in the last mwfm shutdown, the locker was not correctly unregistered for some strange reason. When
it tries to register it again it detects that it is already registered. In this case, we can solve it by deleting the
locker’s persistence directory $VAR/tmp/lockers/<locker name > and retry starting up.

3. When starting up the LockModule module connects with the service and tries to register the locker it
has configured.

2008-01-08 16:10:01,234 [main] DEBUG RmiLockManagerService.MultilocksFileDataSource - All multilocks restored
from filedirectory 'C:/hp/OpenView/Serv
iceActivator/var/tmp/lockers\MWFM-0\multilocks'
java.rmi.NoSuchObjectException: no such object in table
 at sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer(StreamRemoteCall.java:247)
 at sun.rmi.transport.StreamRemoteCall.executeCall(StreamRemoteCall.java:223)
 at sun.rmi.server.UnicastRef.invoke(UnicastRef.java:133)
 …
2008-01-08 16:10:01,843 [RmiUnattendedLockerService] WARN RmiUnattendedLockerService - Register on lock
manager failed
08-ene-2008 16:10:02: ><all startup activities completed
08-ene-2008 16:10:02: ><Micro Workflow Manager Startup Complete! Check log files for details.
08-ene-2008 16:10:02: ><Releasing worker threads to process workflows

The problem is that an inconsistence exists between what is stored in the HPSA_LOCKS table, which is the
table where the LockManager stores its locks, and the persistence files of the locker. To solve this problem
we must shutdown the mwfm service, delete the $VAR/tmp/lockers/<locker_name> directory and try to
launch it again.

If the inconsistency continues then we will have to again shutdown the mwfm, delete the locker’s
persistence directory, restart the lock-manager service and try to launch the mwfm again.

