HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Release v 5.1

¥/
A /A

HPSA Extension Pack
Equipment Connections Pool Reference

Legal Notices

Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not
be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlet-Packard product can be obtained from
your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject fo restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-
7013.

Hewlett-Packard Company United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.
©Copyright 2001-2009 Hewlett-Packard Development Company, L.P., all rights reserved.

No part of this document may be copied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.
UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged.

Document id:

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Table of Contents

L LYo F o Y USRS UPTUPPIUSRPR 9
LI I U T TP PRPPPPPPPPRt 9
1.2 General DESCIIPHONttt ettt ettt ettt et ettt et 9

2 EQUIPMENT DIFIVETS .o 11
2.1 Detfault EquipmentDriver — TemplateDriverccviiiiiiiiii e 12
2.2 EQUIPMENIDIIVEL STOTESeiiiiiiiiiiiiitee ettt e e et e e e 14
2.3 Implementing an EQUIPMENTDIIVELccuviiiiiiiiiii ettt 15

2.3.1 EquipmentDriver INIHaliZation............c.ccooiiiiiiiiiic e 16
2.3.2 EquipmentDriver VErificatoncocuiiiiiiiiiie ettt 18
2.3.3 EquipmentDriver FINaliZation............cciiiiiiiiiii e 19

3 Creating an Administered POOoiiiiiiie ettt 20

4 CommaNds TEMPIOTES.....c..eeiiiiiiieitt ettt ettt et ettt 29

5 ECP Node = ECPCAIl ..ottt et 33

6 ECP Plugrin for HPSA ...ttt ettt ettt et et e et e eeas 36

HPSA Extension Pack
Equipment Connections Pool Reference

Support

Support for the HP Service Activator Extended Pack product is available on the following mailing list:

ovsa.spain.support@hp.com

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

In This Guide

This guide will explain the configuration, installation, needed development, and functionality provided by
the ECP.

Audience

The audience for this guide is the Solutions Integrator (Sl). The Sl has a combination of some or all of the
following capabilities:
Understands and has a solid working knowledge of:
— UNIX® commands
- Windows® system administration
Understands networking concepts and language
Is able to program in Java™ and XML
Understands security issues

Understands the customer’s problem domain

HPSA Extension Pack
Equipment Connections Pool Reference

Conventions

The following typographical conventions are used in this guide.

Font What the Font Example
Represents
Italic Book or manual titles, Refer to the HP Service Activator — Workflows and the
and man page names | Workflow Manager and the Javadocs man page for more
information.
Provides emphasis You must follow these steps.
Specifies a variable Run the command:
that you mLfSt supply I nvent or yBui | der <sourceFiles>
when entering a
command
Parameters to a method | The assigned_criteria parameter returns an ACSE response.
Bold New terms The distinguishing attribute of this class...
Conput er Text and items on the The system replies: Press Ent er
computer screen
Command names Use the | nvent or yBui | der command ...
Method names The get _al | _repl i es() method does the
following...
File and directory Edit the file
names $ACTI VATOR_ETC/ confi g/ mvf m xm
Process names Check to see if mvf mis running.
Window/dialog box In the Test and Track dialog...
names
XML tag references Use the <DBTabl e> tag to...
OolngUt er Text that you must type | At the prompt, type: | s -1
Bo
Keycap Keyboard keys Press Return.
[Button] Buttons on the user Click[Del ete] .
interface Click the [App! y] button.
Menu ltems | A menu name followed | Select Locate:Objects->by Comment.
by a colon (:) means
that you select the
menu, then the item.
When the item is
followed by an arrow
(->), a cascading menu
follows

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Install Location Descriptors

The following names are used throughout this guide to define install locations.

Descriptor What the Descriptor Represents
$ACTI VATOR_OPT The install base location of Service Activator.
The UNIX location is / opt / OV/ Ser vi ceAct i vat or

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceActi vat or\

$ACTI VATOR_ETC The install location of specific Service Activator configuration files.
The UNIX location is / et c/ opt / OV/ Ser vi ceAct i vat or

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceActivator\etc\

$ACTI VATOR_VAR The install location of specific Service Activator logging files.
The UNIX location is / var / opt / OV/ Ser vi ceAct i vat or

The Windows location is

<drive>:\ HP\ OpenVi ew\ Servi ceActi vat or\var\

$ACTI VATOR _BI N The install location of specific Service Activator binary files.
The UNIX location is / opt / OV/ Ser vi ceAct i vat or/ bin

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceActi vat or\ bi n\

$ACTI VATOR_THI RD_PARTY | The location for new Java components such as workflow nodes and
modules. Third-party libraries can also be placed in this directory.

The UNIX location is /opt / OV/ Servi ceActi vator/3rd-party

The Windows location is

<drive>:\ HP\ OpenVi ew\ Servi ceAct i vat or\ 3rd- party\
Customized inventory files are stored in the following locations:
UNIX: $ACTI VATOR_THI RD_PARTY/ i nvent ory

Windows: $ACTI VATOR_THI RD_PARTY\i nvent ory
$JBOSS_HOMVE HOME The install location for JBoss.

The UNIX location is / opt / HP/ j boss

The Windows location is

<drive>:\HP\j boss
$JBOSS_DEPLOY The install location of the Service Activator J2EE components.

The UNIX location is
[opt/ HP/ j boss/ server/ def aul t/ depl oy

HPSA Extension Pack

Equipment Connections Pool Reference

The Windows location is

<drive>:\HP\jboss\server\defaul t\depl oy

$ACTI VATOR _DB_USER

The database user name you define.

Suggestion: ovacti vat or

$ACTI VATOR_SSH_USER

The Secure Shell user name you define.

Suggestion: ovact usr

$SOSA_HOMVE

The install base location of SOSA.
The default UNIX location is / opt / OV/ Sosa

The default Windows location is

<drive>:\HP\OpenView\Sosa\

$SOSA BI N

The install location of specific SOSA binary files.
The default UNIX location is / opt / OV/ Sosa/ bi n

The default Windows location is
<drive>:\ HP\ OpenVi ewh Sosal\ bi n\

$SOSA _ETC

The install location of specific SOSA configuration files.
The default UNIX location is / opt / OV/ Sosal confi g
The default Windows location is

<drive>:\HP\OpenView\Sosa\config\

$ECP_HOME

The install base location of Equipment Connections Pool.
The default UNIX location is / opt / Ov/ ECP
The default Windows location is

<drive>:\HP\OpenView\ECP\

$ECP_BI N

The install location of specific Equipment Connections Pool binary files.
The default UNIX location is / opt / Ov/ ECP/ bi n
The default Windows location is

<drive>:\HP\OpenView \ECP\bin\

$ECP_ETC

The install location of specific Equipment Connections Pool
configuration files.

The default UNIX location is / opt / OV/ ECP/ conf
The default Windows location is

<drive>:\HP\OpenView\ECP\conf\

HPSA Extension Pack

Equipment Connections Pool Quick Start Guide

1

1.1

1.2

Introduction

Purpose

This document is a manual for all ECP Module users. It gives a general view of the ECP and the initial
steps needed to have it up and running.

General Description

The ECP has two main functions: Pooling TCP/IP connections and automating telnet sessions through those

connections (other protocols, such as SSH or raw TCP are available).

Connection Pooling allows the user to configure how and when the ECP will connect, optimizing speed
and resources use. Session automation eases for the client program the burden of sending commands to

the destination and interpreting their result.

A session is automated sending to the ECP a “Commands Template”, which is a java String which though
a determinate syntax, describes de commands to send and how to process and interpret their result,
establishing their execution logic.

/ command \
o ' "
2 c .
S .0 :
g2 : !
g8 : |
£ > command / '
Client : |
User E !
empiate” :
command ' A
g command \ O E | ||||||||
2 B S ,— —+— |
§ B |
ECP E
Client o :
Program !

Fig. 1: Interactive sessions vs. ECP automated sessions.

The ECP will pool the connections used to execute the commands. The connections will be created and
destroyed as needed, and the same connection may be used to execute different consecutive automated
sessions. The ECP keeps different pools, each one managing the connections for a single destination.
When commands need to be executed on a client request, the ECP will borrow a connection from the
appropriate pool and use it to send the commands. When all the commands are sent, the connection will

HPSA Extension Pack
Equipment Connections Pool Reference

be returned to the pool. For the ECP to use a pool it must be first created and appropriately configured. A
GUI is provided to administer the ECP pools.

~_ 4

Pool 1 MF‘ (:
I @ _____________________________________

borrowed connechon

_"

Hempfate®

\ ” command

4

command
Commands
Client Engine
Program
ECP
Module

Fig. 2: ECP connection pooling.

10

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Equipment Drivers

To manage the connections through which commands are sent, the ECP pools need to be able to
establish, close and verify a session on the destination. Establishing a session usually implies satisfying
some authentication measure imposed by the destination (such as providing a login and a password).
Similarly, a clean disconnect usually must be done through certain commands (such as “I ogout ” or
“exi t”). A “session verify” is performed by the ECP to check whether the session is still alive and well on
the destination, and thus, can be reused. Veritying a session usually entails sending an innocuous
command to the destination and checking that the appropriate answer is received, which also is a
destination dependant process. These three processes are called “initialization”, “finalization” and
“verification” respectively.

As the three of these processes depend on the type of equipment to which the connections are
established, the user must provide for each type of equipment a java class which is able to perform the
“initialization”, “finalization” and “verification”. A class which is able to perform the “initialization”,
“finalization” and “verification” is called an EquipmentDriver. The ECP will create an instance of the
appropriate EquipmentDriver for each connection. For example, if the solution requires some command
templates to be run on a Linux system and some others to be fun on an HP-UX system, two different
EquipmentDriver must be implemented: one for Linux must and another one for HP-UX.

HP-UX Driver
Pool 1 @ HP-UX Driver HP-UX System
HP-UX Driver
Linux Driver
Pool 1 @ Linux Driver Linux System
Linux Driver
Commands
Engine
ECP
Module

Fig. 3: EquipmentDriver classes instances in the ECP.

11

HPSA Extension Pack
Equipment Connections Pool Reference

2.1 Default EquipmentDriver — TemplateDriver

The TemplateDriver is the default equipment driver provided by ECP. This driver is able to connect to most
of the equipments that use the Cll interface.

This equipment driver is configured using the class com.hp.spain.connection.TemplateDriver. We can
configure this driver adding into the DriverSpecificParameters the extra variables on properties format or
referring to the Common Configuration.

The next 5 templates that can be configured into the database or into a file, finding first in database.

LOGIN_TEMPLATE: template to make the login (note: this template has sense in protocol driver that
doesn’tmakes the authentication)

LOGOUT_TEMPLATE: the logout template, typically the exit command
ENTER_CONFIG_MODE_TEMPLATE: the template to configure all the sessions attributes required.
EXIT_CONFIG_MODE_TEMPLATE -> the template to unconfigure

VERIFY_TEMPLATE: template to verify if the connection is ok.

These templates will receive the parameters configured into the DriverSpecificParameters and the next
parameters configured into the subpool:

USER: user name

PASSWORD: user password
PASSWORD_ENABLE: password enable
HOST: ip host value

Also, next variables can be define to make easier the templates:
LOGIN_USER_PROMPT: synchronize the driver with the login prompt.
LOGIN_PWD_PROMPT: synchronize the driver with the password prompt.
INITIAL_PROMPT: synchronize the driver with the inital prompt.

Also, this driver has the capability to add error patterns, failure patterns, non error patterns and error
message to all the commands that are executed into a command template. In case, it's required to add
these patterns to the connections templates (LOGIN_TEMPLATE, ENTER_CONFIG_MODE_TEMPLATE, ...)
the variable ADD_PATTERNS_CONNECTION_TEMPLATES has to be setted to true.

The only requirement to set these patterns is define variables with next prefix:

ENDSTRING_PATTERN

ERROR_PATTERN

FAILURE_PATTERN

NONERROR_PATTERN

ERROR_MESSAGE: in this case only can be defined one and the variable is required to have this name.

12

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Connection flow:

wait login prompt?

protool is able to authenticatep

send user
wait passwor prompt

send password

has login tap

i execute login template 3 i execute login template 3
{ wait inital prompt 3

Gxecute enter config mode templati

When the driver starts the connection the first step is to check if the LOGIN_USER_PROMPT is configured.
In that case, synchronize this prompt. After that, the LOGIN_TEMPLATE is executed if it's configured. If not

and the protocol driver doesn’t support authentication, send the user, synchronize the password prompt
(LOGIN_PWD_PROMPT) and send the password.

In this moment, the driver is authenticated and in case the INITIAL_PROMPT is configured the driver
synchronizes the initial prompt.

Usually, when the protocol supports the authentication (for example, ssh) it's only necessary to configure
the INITIAL_PROMPT and not the LOGIN_TEMPLATE and neither LOGIN_USER_PROMPT.

After synchronize the INITIAL_PROMPT the driver execute the ENTER_CONFIG_MODE_TEMPLATE and
finally executes the VERIFY_TEMPLATE.

In this moment, the driver is connected and ready to be used.

13

HPSA Extension Pack
Equipment Connections Pool Reference

Disconnection flow:

Gxecute exit mode templata

Gxecute logout templat?

First, the driver execute the template EXIT_CONFIG_MODE_TEMPLATE and after that the
LOGOUT_TEMPLATE.

2.2 EquipmentDriver States

For the ECP to be able to operate with an EquipmentDriver, the EquipmentDriver must publish its current
state. An EquipmentDriver can remain in four different states: DEACTI VATED, | NACTI VE, ACTI VE and
BUSY. By publishing its state, the EquipmentDriver informs the ECP of the operations it is able to
undertake or needs to perform.

a) | NACTI VE/DEACTI VATED: From the EquipmentDriver point of view these two states are usually
equivalent. Both signify that the EquipmentDriver has no connection established with the
destination.

b) ACTI VE/ BUSY: From the EquipmentDriver point of view these two states are usually equivalent.
The connection with the destination has been established and the session is authenticated. The
EquipmentDriver is ready to send commands and the session on destination ready to receive
them.

The EquipmentDriver is responsible for transitioning to the appropriate states, depending on the result of
the “initialization”, “finalization” and “verification” processes. Each process is implemented as a different
method of the EquipmentDriver that the ECP will call when appropriate. The valid state transitions and
method calls are described by the state diagram which follows. Notice that the finalize call is not
dependant on the current EquipmentDriver state, that is, the finalize method can be called for all the
possible EquipmentDriver states (source state calls arrows have been omitted to simplify diagram):

14

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

2.3

Transition on success

v

Transition on failure

\ 4

NACTIVE DEACTIVATED

&

BUSY ' onnecti

Fig. 4: EquipmentDriver states, calls and transitions.

The ECP will ensure that the calls are performed in an always mutually exclusive way. As a consequence,
the EquipmentDriver implementer needs not to care about concurrency.

Implementing an EquipmentDriver

All EquipmentDriver classes must include the following jars in their classpath:

vel oci ty-dep- xxx. j ar

| 0g4j - xxx. j ar

equi pment s- connect i ons- pool - xxx. j ar
r esour ce- manager - Xxxx. j ar

Those jars are present in the $ECP_LIB directory of your installation. The ECP will always include them at
runtime. They should also be included at develop/compile time.

Any additional jars your EquipmentDriver may need must be manually included in the $ECP_LIB directory
of your installation to be available at runtime. The developer should make sure that any additional jar will
not interfere with any of the jars present in $ECP_LIB. The ECP needs to be restarted to include new or
modified jars.

As previously mentioned, an EquipmentDriver must be able to perform the “initialization”, “finalization”
and “verification”. Those three processes are implemented by the EquipmentDriver by means of three
different methods: i ni ti al i ze(HashMap paraneters) , finalize(), verify() respectively.

A typical EquipmentDriver declaration (Test Connect i onResour ce in the example) will be as follows:

package com hp. spai n. connecti on;

i mport java.util.HashMap;

15

HPSA Extension Pack
Equipment Connections Pool Reference

All EquipmentDriver must extend the class com hp. spai n. connect i on. Connect i onResour ce. As
a consequence, much of the functionality needed to implement an EquipmentDriver is inherited from those
classes as methods or provided by parent class members. The constructor will receive a HashMap
containing the connection configuration (ip, port, protocol etc...). These parameters will be processed by
the parent classes and a call to the parent’s constructor is mandatory. The parameters may contain
EquipmentDriver class specific configuration (see the Developer Reference for further details). The methods
initialize, finalizeandverify will be analyzed later.

2.3.1 EquipmentDriver Initialization

The driver initialization is performed by the i ni ti al i ze(HashMap par anet er s) method. This
method must perform all necessary actions to start a session on the destination which is able to receive
commands. This usually entails establishing a TCP/IP connection to the destination and authenticating.
Some times it may include initiating a write mode on the destination through specific commands.

A typical initialize method implementation will be:

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

pwdCnd. put EndStrPattern("\\wW\: [\ \n\\r]*>$");
pwdCnd. set NoEcho() ;

} catch (Throwable e) {
e.printStackTrace();

}

}

public void initialize(HashMap paraneters) {
super.initialize(paraneters);

this.logger.log(Level .INFO, "Initializing Equi pment Driver " + this);

try {
/'l establish the connection

super . connect Server (t his. host, this.port, socketTi meout);
/] wait for the initial pronpt
if (!super.confTermninal (initialPronmpts)) ({

t hrow new Exception("Initial pronpt was not found.");

/1 send | ogin and pwd as conmands
| ogi nCd. put Command(user) ;
pwdCnd. put Command(passwor d) ;
aut henti cat e(l ogi nCmd, pwdCnd, null);
[l everything OK set status
set St at us(Resour ceSt at us. ACTI VE) ;
set Sessi onSt at us(CONNECTED) ;
this.logger.log(Level.INFQ, "Finished initialization of Equi pnment
Driver " + this);
} catch (Throwable t) {
this.logger.error("Error initializing Equi pment Driver will cause
finalization " + this, t);
finalize();
}

}

This method will be called only if the EquipmentDriver state is DEACTI VATED or | NACTI VE.

The method will receive a HashMap containing the connection configuration (IP, port, protocol etc...).
These parameters will be processed by the parent classes and a call to the parent’s
initialize(HashMap paranet ers) method is mandatory. The parameters may contain
EquipmentDriver class specific configuration (see the Developer Reference for further details). The received
HashMap might be nul I, meaning that the configuration previously received through the constructor or a
previous call to the i ni ti al i ze method must be used for initialization.

After parent initialization, the method will typically establish the connection with the destination, through
the parent method connect Server (String sHostname, int iPort, int iTineQut).

After establishing the connection, the EquipmentDriver must wait for the initial prompt to be received by
calling the method conf Ter mi nal (Vect or vinitial String). The method will receive a vector
containing the alternative expected prompts (i ni ti al Pronpt s in the example), described through a
regular expression like syntax (see the Developer Reference for further details). In case the destination
requires authentication, the initial prompt will usually be a login prompt (the expression "1 ogi n: $" in
the example).

When the initial prompt has arrived, login and password may be sent as regular commands (see the

Developer Reference for further details regarding how to send commands), but using the method
aut henti cat e(EQui prent Cormmand t cLogi n, Equi prent Cormand t cPassword, HashMap

hnVari abl es) . That method will distinguish if the protocol using to communicate with the destination
(SSH, Telnet...) defines any special rule when authenticating.

17

HPSA Extension Pack
Equipment Connections Pool Reference

When the process is completed without errors the EquipmentDriver state may be changed to ACTI VE.

The implementer must be careful not to leave the connection opened if an error is encountered, because
destinations usually limit the number of connections that can be opened simultaneously. The simplest way
to do this usually is to rely on the finalization method.

This implementation could be valid to connect to the built-in telnet server of a windows machine.

2.3.2 EquipmentDriver Verification

The driver verification is performed by the veri fy() method. This method must perform all necessary
actions to check whether the connection with the destination remains opened, authenticated and in the
needed state to receive commands. This usually entails simply sending a command with no side effects on
the destination and checking the answer received to the command.

A typical initialize method implementation will be:

private static Equi pnent Command cndVerify = new Equi pment Command() ;

static {
try {
cndVeri fy. put Conmand("") ;
cndVeri fy. put NonError ("*");
pwdCnd. put EndSt r Patter n("\\wA\: [ANN N\ r]*>$");
} catch (Throwable e) {
e.print StackTrace();
}

}

public ResourceStatus verify() {
| ogger. | og(Level .I NFO, "Verifying Equi pnent Driver " + this);

try {
super . execAction(cndVerify, true, new HashMap(), false);

//clean the session conmands | og
super . cl ear St dQut () ;
super . cl ear ConmandsSent () ;
} catch (Throwable e) {
this.logger.error("Error verifying Equi pnet Driver " + this, e);
finalize();

| ogger. | og(Level . I NFO, "Finished verification of Equi pnent Driver " +
this);
return this.getStatus();
}

This method will be called only if the EquipmentDriver state is ACTI VE or BUSY.

The example sends an empty commands (that is, simply an “enter”) and expects it to be answered with
the prompt (see de Developer Reference for further details on sending commands).

After successfully sending the command and receiving its answer, the commands log is deleted. This
action is needed for the verify command not to be included in the commands log sent to the client when
the commands template execution ends.

If an error is encountered during verification the EquipmentDriver must transit to the | NACTI VE state and
ensure the connection is closed. The simplest way to do this usually is to rely on the finalization method.

This implementation could be valid to verify a connection to the built-in telnet server of a windows
machine.

18

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

2.3.3 EquipmentDriver Finalization

The driver finalization is performed by the fi nal i ze() method. This method must perform all necessary
actions to perform a clean session exit, and if it is not possible, grant that the connection is closed. This
usually entails sending an exit command and closing the connection.

A typical initialize method implementation will be:

This method will be called for all the EquipmentDriver states. It can even be called more than once, that is,
finalizing an EquipmentDriver which has already been finalized.

The example will first try to send the exit command (" exi t " in the example, see de Developer Reference
for further details on sending commands). Whatever the result of the command is, the connection will be
closed after that, even if an error is encountered, through a fi nal | y block.

This implementation could be valid to connect to the built-in telnet server of a windows machine.

19

HPSA Extension Pack
Equipment Connections Pool Reference

3 Creating an Administered Pool

The easiest way to configure the ECP pools is through the GUI module. This section will show how to
create an example pool that will use the EquipmentDriver shown in 2.3 Implementing an
EquipmentDriver

For the full description on how to administer the ECP pools through the GUI module see the document
“ECP Administration GUI - User Reference”.

Before creating the example pool, the developer should copy the jar containing the example
EquipmentDriver (and any jar it may need) to the $ECP_LIB directory (as described in 2.3 Implementing
an EquipmentDriver) and restart the ECP.

To access Pool Creation the user should login to the Future GUI (see the document “Solution Container
User Reference” for further details) and select the menu "Administrator" - "ECP" - "Pool" - "New".

» Administrator p
» ECP » | » Pool

» Mew
» List

£

» Subpool

£

Fig. 5: View, Pool creation

When the Pool Creation Menu is selected the ECP GUI will load the “Pool Creation” screen where the
user may enter the new pool configuration.

» File | » Search » Administrator = » Help

Pool Creation

sHame:* ‘examp\epnnl iles |examp\ePnoI log ‘

<] »Requests tmeout [fo000]

sLog level:* |Infu

»Maximum Pool Life Time from his last use (ms): ‘D ‘

Priority weighed queues

Priorities »1

23 4 25
WWeights: 1 2 3 4 5

Fig. 6: Operation, Pool creation

For this example the values will be:

e Name: The pool name. It must be unique and will be used to identify the pool from now on. The
example pool name will be “examplePool”.

e log File: The name of the file where the pool logs will be recorded; it must be unique and will be
created at "/opt/OV/ServiceActivator/ECP/log". The example log file will be
“examplePool.log”.

e log Level: The minimum level of severity of the messages to be written in the log. For developing
purposes the recommended level is Debug.

20

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Requests timeout: 10000 in this example.
Maximum Pool Life Time from his last use (ms): O in this example.

Priority Weighed Queues: For these example the weights will be 1, 2, 3, 4 and 5 for the

respective queues 1, 2, 3, 4 and 5.

Once all fields have been filled in, selecting "Pool" - "Save" in the Status Menu will save the new pool.

» File | » Search

» Administrator

» Help

Poal:

» Pool name:

» Log file:
» Log level
» Requests timeout (ms}:

2 Priority queues number.
Pool expiration time:
» Priority queues weights:

» Pool

Subpool:

KR

» Reload
» Save
» Lock
> UnLack 2 sLog file:* [examplePool2log |
» Delete = Eerrt‘e:]:ests timeout ED |
» Edit
» Log . |is last use (ms):* ‘u |
Priority weighed queues
Priorities: »1 22 »3 24 »S
Weights: ‘1 1 1 1 1

Fig. 7: Status, Pool save

It any field is wrong or a mandatory field as been left empty, the ECP GUI will load a screen with a
descriptive error message.

» File | » Search

» Administrator | » Help

IPool:

o Pool name:

Subpool:

» Log file: » Priority queues number

» Log level » Pool expiration time:

» Requests timeout (ms: 1000 2 Priority queues weights: 1.1.1,1.1
Pool examplePool2 Edition
aName:* ExamplePooiz »Log file: ‘Examp\epuu\llug |

| INVALID DATA

»Log level:* [warm J
At Pocl L355 Time from e e U (mer Must introduce a weight for the priority tail 1 |
Priority weighed queues
Priorities at »E
Weights: h J h 1 1

Fig. 8: Operation, Pool save error

If the pool configuration is valid, the ECP GUI will show the following message.

21

HPSA Extension Pack
Equipment Connections Pool Reference

» File | » Search | » Administrator | » Help

IPool: Subpool.

» Pool name:
» Log file:
» Log level

» Priority queues number
3 Pool expiration time:
» Requests timeout (ms): 1000 » Priority queues weights: 1.1.1,1.1

» Pool

RESULT

The new configuration of pool ‘examplePool2” has been saved successfully.

Fig. 9: Operation, Pool saved

After creating a Pool, a SubPool belonging to that Pool must be created. Check the Developer Reference
and Administrator Reference for further details on their use.

In case, the Subpool will use the default driver (this is the easiest way because there is no need to develop
any EquipmentDriver) it's required to create a Common Configuration. A Common Configuration is a set
of configuration to connect a type of element. In the next example, we'll configure the typical
configuration to connect via telnet to a windows machine.

To access Common Configuration creation the user must select from the Views menu "Administrator" -
"ECP" - "Common Configuration" - "New".

» Administrator

» ECP » | » Pool »
» Subpool o
» Template ®

» Common Configuration » | » Mew

w List

Fig. 10: Common Conf creation

The ECP GUI will show the “Common Configuration Creation” screen where the information must be
entered.

Commaon Co

CommonConf Creation

whlame: exampleTelnetwindows |

»Login user prompt: i\ugm | »Login password prompt: ‘password
=
»initial Prompt: C» | »Add patterns to connection templates: |
»Login template: | »Logout template: |

|
»Enter config mode template: | »Exit config mode template: |

» Verify template:

| \ \

Fig. 11: Common Conf edition

This form has next values:

22

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Login user prompt: in this case “login:” It's important fo fill this field when the protocol cannot
authenticate (telnet). In case the protocol authenticate (ssh) this field it's ignored.

Login password prompt: in this case “password:”Same as fieldbefore in case the protocol
authenticate will ignore.

Initial prompt: “C:.*>". This is the first prompt after login.

Contfiguring the last 3 field, in most of the case, there’s no need to configure more parameters because
the TemplateDriver is able to connect in most of the cases.

If the login requires sending special characters or something like that it's possible to configure the login
template. This template will have the commands required by the equipment to be able to connect.

Also, after login is possible to configure a template on “Enter config mode template” to customize the
session executing required commands. “Exit config mode template” and “logout template” will call to
finish the session.

Finally, “verify template” will be called each to check if the session it's ok before execute any activation
command.

The templates will receive the variables and values configured into the Common Configuration and also
next ones: USER, PASSWORD, PASSWORD_ENABLE, HOST.

»llot associated: » Associated:

varl valuel
vard value?

» Variables for connection templates :

=] E@) (&

Fig. 11: Common Conf variables

lt's possible to add some patterns automatically to every command in the session. Just filling end string
pattern, error pattern, failure pattern, nonerror pattern and error message.

» Hot associated: » Associated:

%,

»EndString patters:

H B =

» Not associated: » Associated:

ERROR: *

wError patterns:

H @ E&

» Hot associated: » Associated:

FAILURE: *

»Failure patterms:

H @ =

» Hot associated: » Associated:

WARNING: *

»lon error patterns:

23

HPSA Extension Pack
Equipment Connections Pool Reference

Fig. 12: Common Conf patterns

To save the Common Conf, the user must select from the “Common Conf” — “Save”

» Comman Configuration
» Save

ullame:

Fig. 13: Common Configuration save

To create a template to use into the Common Conf, the user must select from the Views menu
"Administrator" - "ECP" - "Template" - "New".

» Administrator

B » | » Pool

E
» Subpool »
» Template w | » Mew
» Common Configuration w | % List

Fig. 14: Template creation

There're just 2 field:
- Name: name of the template
- Template: the template value (commands)
In this example, a template verify it's created. This template execute a “echo” command.

» Template

Template Creation

whlames* [werifywm

Template

echo "Verify"

[TEMPLATE:Pattern " (Verify) "]
[TEMFLATE :Variakhle "wverify echo™]
[TEMPLATE :End3trPattern "C:,*>"]

nTemplate:’

Fig. 15: Template creation form

To save the template the user must select “Template” — “Save”.

24

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

» Template
» Save

ITemplate Creation

nhame:*

Template

}ve iy sem

To access Subpool creation the user must select from the Views menu "Administrator" - "ECP" -

_ IINeWII.

» Administrator
» ECP

echo "Jerify™
[TEMPLATE: Fattern " (Verify)™]

[TENPLATE:Variable "werify echo™]
[TEMPLATE :: EndatrPattern "C:. *x'"]

Fig. 16: Template Save

» Pool
» Subpool

"Subpool"

» | » Mew

» List

Fig. 17: View, Subpool creation

The ECP GUI will show the “SubPool Creation” screen where the new subpool information must be

entered.

This form has different fields depending if the checkbox “Use default driver” is checked.

» Subpool

SubPool Creation

» Pool name:*
» Use default driver*

» 1P

» User:*

» Password of enable

» Min. Sessions:"

» Init_Sessions:*

» Autclock limes (comma-separaled, in seconds):
» Number of OK responses to restore normal state:

» Common Configuration Name:*

examplePool [v]

» Protocol:*

[170.16.3.49 | »port>

|admm ‘ »Password :*

[senee | »Max sessions:*

o | » Temporary sessions life time (ms).*
» Max_Sessions use time (ms):*
[1357 | »Maximum number of errors:

B |

RHSSH]

Fig. 18: Operation, Subpool creation default driver

telnet

25

HPSA Extension Pack
Equipment Connections Pool Reference

» Subpool

SubPool Creation

» Pool name:* examplePool v
» Use default driver:* [» Protocol* telnet
» IP:* 170.16.3.49 » Port:* 23

» User* admin » Password CYTTTY
» Password of enable sesee »Max_Sessions:* 4

» Min. Sessions:* 0 » Temporary sessions lile time (ms):* 10000
» Init. Sessions:” r »Max. Sessions use time (ms).” 15000
» Autolock limes (comma-separated, in seconds): 1357 » Maximum number of errors: 10

» Number of OK responses to restore normal state 5
» Equipment connection resources class™* com.hp spain.connection. TemplateDriver|

» Driver specific parameters:*

Fig. 19: Operation, Subpool creation custom driver

The example values are:

e Pool name: The name of the pool which will host the subpool. Its name must be the name of the
pool created in the pool creation example: “examplePool”.

e Use default driver: checkbox to set the default driver or to use a custom.

e Equipment connection resources class: The full class name of the EquipmentDriver. In this
example, it will should “com.hp.spain.connection.TestConnectionResource”. This field only be
showed if use default driver is unchecked.

e Protocol: Will establishes the way to communicate with the equipment. This will depend on the
equipment being used for the test. This example will suppose it to be “telnet”.

e IP: The IP address of the destination to connect to. Will depend on the equipment being used for
the test. This example will suppose it to be “172.16.2.111".

e Port: The port of the destination to connect to. Will depend on the equipment being used for the
test. This example will suppose it to be “22".

e User: The username to authenticate on the destination. Will depend on the equipment being used
for the test. This example will suppose it to be “root”.

e Password: The login password. Will depend on the equipment being used for the test.

o Password of enable: This field will not be used. Can be left empty.

ll'l n

e Max. Sessions: in this example.

ll'l n

e Min. Sessions: in this example.

e Temporary sessions life time: “120000” in this example. Max life time in idle mode for sessions

between min sessions and max sessions.

ll‘l "

e Init. Sessions: in this example.

e Max. Sessions use time: “200000” in this example. Maximum time that a session could be in
BUSY mode (activating).

e Autolock times: a comma-separated list of times in seconds for autolocking. Leave this field blank
to disable autolock for this subpool.

e Maximum number of errors: the number of erroneous responses that will trigger autolock.

26

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

e Number of OK responses to restore normal state: the number of successful responses that will
reset autolock status to normal.

o DriverSpecific Parms: Special field to add particular configurations. This field only be showed if
use default driver is unchecked.

e Common Conf name: the name of the common configuration in case the default driver is used.
This field only be showed if use default driver is checked.

Once all fields are filled, selecting "Subpool" - "Save" from the Status menu will save the new subpool.

» Subpool
» Save
ubPool Crealion

» Pool name:* examplePool IV]

» Use defaull driver:* » Protocol:* telnet

» 1P [170.16.3.49 | wportx 23
»User: [admin | wPasswora = seses
» Password of enable: [sseee | »Max sessions:* 4
»Min. Sessions:* \u \ » Temporary sessions life time (ms):* 10000
» Init. Sessions:* »Max. Sessions use lime (ms)." 15000
» Autolock limes (comma-separated, in seconds): [1357 | s Maximum number of errors: 10

» Number of OK responses to restore normal state: B |

» Common Conliguration Name:" RHSSH [v]

Fig. 20: Status, Subpool save

It any field is wrong or a mandatory field as been left empty, the ECP GUI will load a screen with a
descriptive error message.

» File | » Search ' » Administrator | » Help

|Subpool: Session: Pool: Session:
» Connect resources class: com.hp.spsin.cenn=cic... » Maximum Hum. sessions: 10000000

» Protocel = » Minimun Num. sessions: 10090 » Sessions Humber: (] » Pool name: exampleFool

» Ip address: 2 » Maximum Time of use: 100000

» Port: 22 # Life time without use: 1000000

» Subpool

SubPool 2 Edition

» Pool name:* exampleFool » SUbpool id:* 2

» Equipment connection resources class:*

H

INVALID DATA ssh B

» P

=
]

Has not indicated the number minimum of connections ta equipment
»User*

FE
=

» Password of enable:

pH

» Min. Sessions:* [% TEMQOTaTy SESSOnS e e (ms): 20000

» Init. Sessions:*

TR

=l

| » Max. sessions use time (ms}* 00000

Fig. 21: Operation, Subpool save error

If the pool configuration is valid, the ECP GUI will show the following message.

27

HPSA Extension Pack

Equipment Connections Pool Reference

» File | » Search

» Administrator

» Help

|Subpool Session: Pool. Session:
» Canneot resaurces class: com.hp.spain connzciic... a Maximum Hum. sessions: 10000000

» Protocol » Minimun Num. sessions: 10000 » Sessions Humber. 0 » Pool name: exsmpleFool

»Ip address: 127.00.1 » Maximum Time of use: 100000

» Part: 22 2 Life time without use: 1000000

» Subpool

RESULT

The new configuration of subpool "2 concerns to pool ‘examplePool’ has recorded
successfully.

Fig. 22: Operation, Subpool saved
Restart the ECP and the new pool will be up and running.

28

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Commands Templates

A “Commands Template” is a java String describing the commands the ECP should issue. The Command
Template states the commands needed to perform a process (and usually to roll it back too), with specific
information on every command, such as possible command outputs and their meaning (error, success)
and the control flow which determines their execution order, among other things.

One of the main features of a Command Template is that it can be made atomic and reversible: The ECP
allows the developer to include the commands needed to undo and rollback the issued commands. If and
error is encountered, the ECP will start executing the specified rollback commands. Additionally,
commands fo trigger a commit on the destination system can be also included, if the system requires it for
the changes performed to be visible and effective.

The part of a Commands Template which describes the commands to issue is called the “Do Group”. The

part which describes the commands to reverse the actions performed by the Do Group is called the “Undo
Group”. The parts which describe the commands to commit and rollback the changes are called “Commit
Group” and “Rollback Group”. Those four groups are the main segments of a Command Template.

The Do and Undo groups are themselves divided into numbered “Sections”. Sections help organizing
commands reversion. They relate a group of commands with the complementary group of commands, so
that the commands in Section x of the Do Group can be undone by issuing the commands in Section x of
the Undo Group.

The Commit and Rollback Groups and the Do and Undo Sections both contain Commands Statements
and flow control sentences. Command Statements define how a command must be issued and its output
processed. What follows is a simple Commands Template example to create/delete a user on a windows
system. Lines starting with “! ” are comment lines.

[TEMPLATE: Not UndoLast Sect i on]

| B I
| ¥ **kkkkhkdhdddddddkdxkx*k m********************

| IR E I Sk R Sk S Sk S o Sk Sk o S S b Sk b S o S O O

[TEVPLATE: Do]

ladd and configure the user
[TEMPLATE: Secti on 0]
net user testUser testuserpasswd /add>nul
[TEMPLATE: ErrorPattern *"]
[TEMPLATE: EndStrPattern “\wW : [\ n\r]*>$"]
[TEMPLATE: Secti on 1]
net user testUser /honedir:c:\Users\testUser>nul
[TEMPLATE: ErrorPattern *"]
[TEMPLATE: EndStrPattern “\wA:[A\ n\r]*>$"]

Icreate and configure the user hone dir
[TEMPLATE: Secti on 2]
nkdir c:\Users\testUser
[TEMPLATE: ErrorPattern ".*"]
[TEMPLATE: EndStrPattern "\wW : [\ n\r]*>$"]
[TEMPLATE: Secti on 3]
| CACLS c:\Users\testUser /grant BU LTI N Admi nistrators: (O) (Cl)F>nul
[TEMPLATE: Error Pattern ".*"]
[TEMPLATE: EndStrPattern “\wA:[A\ n\r]*>$"]
| CACLS c:\Users\testUser /grant testUser: (O) (Cl)(NP)F>nul
[TEMPLATE: ErrorPattern ".*"]

29

HPSA Extension Pack
Equipment Connections Pool Reference

The same template may be executed in several ways, but the following rules always apply:

a) The commands contained in each Section and the commands in the Rollback and Commit parts are
always executed in their declaration order.

b) The Sections in the Do and Undo parts are iterated in reverse order. The Sections in the Do part are
always executed in their declaration order. The Sections in the Undo part are executed in the
reverse order to their declaration order.

According to these rules, if no error is encountered, executing the Do part of the previous Commands
Template will always result in the following commands being sent to the destination, and in this order:

Executing the Undo part will always result in the following commands being sent to the destination, and in
this order:

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

The four different methods in which @ Commands Template may be executed are execut eAct i vati on,
i nverseActivation, execute andrevert. They allow the user to perform an action (i.e. adding
a user to the system), perform the action opposite (i.e. deleting a user from the system) and grant
atomicity, even if multiple Commands Templates are executed. Of course, the Commands Template must
be correctly crafted.

The execut eAct i vat i on method will try to run the Do Sections commands followed by the Commit
commands. As previously described, the Sections commands will be executed in the order in which they
are declared in the Commands Template and the Do Sections will be iterated in the order in which they
are declared the template. If an error which can be handled is encountered during the command
execution, the engine will run the commands in the Undo Sections followed by the Rollback commands.
Again, following the previously stated rules, the Sections commands will be executed in the order in
which they are declared in the Commands Template, and the Undo Sections will be iterated in the reverse
order to their declaration order in the template, starting from same section as the failed Do Section -1.

The i nver seAct i vat i on method will try o run the Undo Sections commands followed by the Commit
commands. As previously described, the Sections commands will be executed in the order in which they
are declared in the Commands Template and the Undo Sections will be iterated in the reverse order to
their declaration order in the template. If an error which can be handled is encountered during the
command execution, the engine will run the commands in the Do Sections followed by the Rollback
commands. Again, following the previously stated rules, the Sections commands will be executed in the
order in which they are declared in the Commands Template, and the Do Sections will be iterated in the
order in which they are declared the template, starting from same section as the failed Undo Section +1.

The execut e method will try to run the Do Sections commands followed by the Commit commands. As
previously described, the Sections commands will be executed in the order in which they are declared in
the Commands Template and the Do Sections will be iterated in the order in which they are declared the
template. If an error is encountered during the command execution, the engine will end execution.

The revert method will try fo run the Undo Sections commands followed by the Commit commands. As
previously described, the Sections commands will be executed in the order in which they are declared in
the Commands Template and the Undo Sections will be iterated in the reverse order to their declaration
order in the template. If an error is encountered during the command execution, the engine will end
execution.

In the previous Command Template example, should it fail during the execution of the Do Section 2,
performing an execut eAct i vat i on method will result in the following commands being sent to the
destination, and in this order (the failed command is signaled in red):

net user testUser testuserpasswd /add>nul
net user testUser /honedir:c:\Users\testUser>nul

nkdir c:\Users\testUser

net user testUser /del ete>nul

Performing an execut e method will result in the following commands being sent to the destination, and
in this order, should it fail during the execution of the Do Section 2 (the failed command is signaled in

red):

net user testUser testuserpasswd /add>nul
net user testUser /homedir:c:\Users\testUser>nul

nkdir c:\Users\testUser

31

HPSA Extension Pack
Equipment Connections Pool Reference

Also, should the previous Command Template example fail during the execution of the Undo Section O,
performing an execut eAct i vat i on method will result in the following commands being sent to the
destination, and in this order (the failed command is signaled in red):

Performing an r ever t method will result in the following commands being sent to the destination, and in
this order, should it fail during the execution of the Do Section O (the failed command is signaled in red):

32

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

ECP Node — ECPCall

The easiest way to execute a template using ECP is to use ECPCall node provided into the installation.

There're only two mandatory parameters. This is the simplest way to execute a template given the static
pool name:

pool_name : name of the pool to call. Could be static pool or dynamic pool

template : template value or template file absolute path name.

There're a lof of optional parameters to use all the feature available into a template execution.

Next variables are to get outputs after execution:
output_parameters : Variable hashmap where the output parameters will be saved.
stdout : variable where the output of the terminal will be saved
commands_sent : variable where the command sent will be saved
error_miscellaneous_parameters : In case of error where hashmap misscellanous will be save
error_message : In case of error where error message will be save
error_action : In case of error where error action will be save

error_command : In case of error where error command will be save

Next variables to define where ecp is running:
ecp_host : the ip address where ecp is running. By default 127.0.0.1
ecp_port : the port address where ecp is listening. By default 1200

Next variables to execute velocity parser:

compose_template: (true/false) Setting this parameter to true the node will compose the template.
Also, if compose_paramters is not null.

compose_parameters : In case the template has to be composed (velocity parsed), the hashmap
with the variables. If this variable is not null then the node will compose the template.

Next variables to define the type of execution:
initial_section : Number of the initial section
priority : Priority number of this execution
revert : (true/false) Call revert action instead of executeActivation
inverse : (frue/false) Call inverseActivation action instead of executeActivation

execute : (true/false) Call execute action instead of executeActivation

Next variables is to define a dynamic call:

33

HPSA Extension Pack
Equipment Connections Pool Reference

dynamic_ip : The target ip address in case of connection by dynamic pool. If this variable is
sefted then the call will be dynamic.

dynamic_port : The target port in case of connection by dynamic pool.

dynamic_protocol : Type of protocol (telnet, tcp, ssh, ssh_deprecated, ...) in case of connection
by dynamic pool.

dynamic_user : User name in case of connection by dynamic pool.
dynamic_password : Password in case of connection by dynamic pool.
dynamic_password_enable : Password enable in case of connection by dynamic pool.

dynamic_resource_class_name : The resource class name in case of connection by dynamic pool.
Default value is com.hp.spain.connection.TemplateDriver

dynamic_specific_params : Specific params in case of connection by dynamic pool.

dynamic_maximum_connection : Maximum connections allowed in case of connection by
dynamic pool.

dynamic_minimum_connection : Minimum connections in case of connection by dynamic pool.
dynamic_init_on_create : Initialize sesions on create in case of connection by dynamic pool.

dynamic_temporary_resource_timeout : Temporary resoucer timeout in milisegonds in case of
connection by dynamic pool.

dynamic_resource_timeout : Resource timeout in milisegonds in case of connection by dynamic
pool.

dynamic_not_used_maxtime_life : Not used maximum time in milisegonds of this pool in case of
connection by dynamic pool.

In case a dynamic call is used and dynamic_resource_class_name is setted to
com.hp.spain.connection.TemplateDriver, next variables is to configure the TemplateDriver:

driver_common_configuration_name: the name of the common configuration (only for
TemplateDriver)

driver_add_patterns_connection_templates : add patterns to connection templates (only for
TemplateDriver)

driver_endstring_pattern : end string patterns that will be added to all commands (only for
TemplateDriver)

driver_error_pattern : error patterns that will be added to all commands (only for TemplateDriver)

driver_error_message : error message that will be added to all commands(only for
TemplateDriver)

driver_failure_pattern : failure patterns that will be added to all commands(only for
TemplateDriver)

driver_nonerror_pattern : nonerror patterns that will be added to all commands(only for
TemplateDriver)

driver_login_template : login template file path or name templates saved into database
(configured by web administration)(only for TemplateDriver)

34

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

driver_logout_template : logout template file path or name templates saved into database
(configured by web administration)(only for TemplateDriver)

driver_enter_config_mode_template : enter config mode template file path or name templates
saved into database (configured by web administration)(only for TemplateDriver)

driver_exit_config_mode_template : exit config mode template file path or name templates saved
info database (configured by web administration)(only for TemplateDriver)

driver_verify_template : verify template file path or name templates saved into database
(configured by web administration)(only for TemplateDriver)

driver_login_user_prompt : login user prompt(only for TemplateDriver)
driver_login_pwd_prompt : login password prompt(only for TemplateDriver)

driver_inital_prompt : initial prompt(only for TemplateDriver)

Next variables are used to save into ddbb each execution:

save_ecp_action_by_jms : If true jms message will be listen to save the ECP action on database.
Default false

job_id : job_id variable. Default value is JOB_ID

service : In case save_ecp_action_by_jms is true, service value will be saved into database into
the ECP action

action : In case save_ecp_action_by_jms is true, action value will be saved into database into the
ECP action

ecp_ijms_module : Name of the jms module. Default value is EcpJmsModule

To call the ECP in background and the free the worked, the node will be waiting in askfor. It's mandatory
to configure the background module into the mwfm.xml:

background_call: If true tha activation will be done by BackgroundCallModule in background.
background_call_module: Name of the BackgroundCallModule. Default EcpBackgroundModule.

35

HPSA Extension Pack
Equipment Connections Pool Reference

6 ECP Plug-in for HPSA

The example which follows is an ECP plug-in which may execute (doing or undoing) an arbitrary
Commands Template using a connection from an arbitrary pool. There're two task one for static and
another for dynamic. These tasks receive a parameter named template. This template cannot be a file
path name else the content. This plugin doesn’t make the compose of velocity. Then, there’s a node called
ECPParseTemplate. This node has next paremeters:

template : Template value or template file path.

compose_parameters : In case the template has to be composed (velocity parsed), the hashmap
with the variables. If this variable is not null then the node will compose the template.

compose_template : (frue/false) Setting this parameter to true the node will compose the template.
Default value, true.

generated_template : The variable where parsed template will be saved.

Next there's the plugin example:

package com hp. spai n. connecti on. pl ugi n;

i mport java.io.ByteArrayl nput Stream
i mport java.i o.ByteArrayQut put Stream
i mport java.io.| OExcepti on;

i mport java.util.HashMap;

i nport java.util.Properties;

i nport com hp. ov. acti vator.resngr. Executi onDescri ptor;
i mport com hp. ov. acti vator. resngr. par. PARPI ugi n;

i mport com hp. ov. acti vator.resngr. par. Pl ugi nExcepti on;
i nport com hp.ov.activator.util.AttributeTabl e;

i mport com hp. spai n. connecti on. CLI Conmmands;

i nport com hp. spai n. connecti on. CLI Const ant s;
i mport com hp. spai n. connecti on. CLI Execut i onExcept i on;
i mport com hp. spai n. connecti on. Tenpl at eDri ver;
i mport com hp. spai n. connecti on. Tenpl at ePar ser ;
i mport com hp. spai n. connect i on. Tenpl at ePar ser Excepti on;
i mport com hp. spai n. connecti on. pool . Dynani cEcpProperti es;
/**
* <p>
* ecp plugin
*
* @reprov <i>General pre-provisioning informtion</i>
* @l atform <i >Pl atform here</i >
*
* @ut hor HP QpenVi ew Service Activator ServiceBuilder
* @ersion 1.0.0
* (c) Copyright 2007 Hew ett-Packard Devel opnment Conpany, L.P.
*/

public class ECP extends PARPI ugin

public static final String ECP_SERVICE |IP = "ECP_SERVI CE | P";

36

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

HPSA Extension Pack
Equipment Connections Pool Reference

t hr ow new Pl ugi nExcepti on(" Operati on not
supported");

cont ext . upl oadDat a(" ecp_out put parans", hmVari abl es) ;
return new ExecutionDescri ptor (ExecutionDescri ptor. K,
Executi onDescri ptor. NONE, "tenpl ate executed", "", "");

} catch (CLI ExecutionException cliee) {
if (cliee.getAction().equals(CLIConstants. ROLLBACK ERROR) | |
cliee.getAction().equal s(CLI Constants.| O ERROR)
|| (cliee.getAction().equals(CLI Constants. CONNECTI ON_ERROR)
&& cliee.getSectionNunber() !'= null)) {
return new ExecutionDescri ptor (Executi onDescri pt or. ERROR,
Executi onDescri pt or. | NCONSI STENT, cli Conmands. get St dQut (),
cliee. get Message(), cliee.getCommand()+ "\n" + cliee.getMscellaneous());
} else {
return new ExecutionDescri ptor (Executi onDescri pt or. ERROR,
Execut i onDescri pt or. CONSI STENT, cli Conmands. get StdQut (), cliee. get Message(),
cliee.get Coomand()+ "\n" + cliee.getMscellaneous());

} catch (Tenpl at ePar ser Excepti on e) {
return new ExecutionDescri ptor (Executi onDescri pt or. ERROR,
Executi onDescri pt or. CONSI STENT, e. get Message(), e.get Message(),
e. get Message()) ;
}

}
/**
* <p>
*
* @ar am pool Nane
*
* @lo_and_check <i >DO_AND CHECK descri pti on</i >
* @ndo_and_check <i >UNDO AND CHECK descri ption</i >
* @reprov <i>Pre-provisioning requirenments</i>
* @varni ng <i >Addi ti onal warni ngs</i >
* @lependency <i >Dependenci es with other el enents</i>
*/

publ i c Executi onDescriptor task _dynanicCall (int op, String pool Nane, String

tenpl at e,

String driverProtocol, String driver, String ip, String port,
String user, String password, String passwordEnable, String
dri ver Speci fi cPar ans,

String maxConnections, String m nConnections, String
i nitOnCreate,

String tenporaryResourceTi meout, String reourceTi neout, String
not UsedMaxTi ne, String driver ConmonConfi gurati onNane) throws Pl ugi nException

{

HashMap hnVari abl es = new HashMap() ;
CLI Cormands cl i Commands = nul | ;

Tenpl at ePar ser parser = new Tenpl at ePar ser () ;
Dynani cEcpProperti es dynani cEcpProperties = null;
try {
if (driver == null || "".equal s(driver)){
driver = "com hp. spai n. connecti on. Tenpl at eDri ver";
}

38

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

bool ean i sDefaul tDriver = fal se;

if ("com hp.spain.connection. Tenpl ateDriver". equal s(driver))({
i sDef aul t Dri ver =t rue;

}

if (driverProtocol != null &&
dri ver Protocol .t oLower Case() . equal s("ssh_deprecated")) {
dri ver Prot ocol ="ssh";
lelse if (driverProtocol == null ||
dri ver Protocol .t oLower Case() . equal s("ssh")){
dri ver Prot ocol =" sshex";
}

dynami cEcpProperties = new Dynani cEcpProperti es(pool Nane,
driverProtocol, driver, ip, new Integer(port).intVal ue()
, user, password, passwordEnable);

dynani cEcpProperti es. set Pool Confi gurati on(pool Nanme, new
I nt eger (maxConnecti ons) . i nt Val ue(),
new | nt eger (m nConnecti ons). i nt Val ue(),
"true". equal sl gnoreCase(initOnCreate),
new | nt eger (t empor ar yResour ceTi neout) . i nt Val ue(),
new | nt eger (reour ceTi meout),
new | nt eger (not UsedMaxTi ne)) ;

if (isDefaultDriver){
Properties properties = new Properties();
if (driverSpecificParanms!=null &&
1"" equal s(driver Speci fi cParans)){
try {
properties. | oad(new
Byt eArrayl nput Strean(dri ver Speci fi cParans. get Bytes()));
} catch (1 CException e) {
e.printStackTrace();
}
}

properties. put (Tenpl at eDri ver . COON_CONFI GURATI ON_NAME,
dri ver CormonConf i gur ati onNane) ;
Byt eArr ayQut put St r eam out put St ream = new
Byt eArrayQut put St ream() ;
try {
properties.store(outputStream "Tenplate Driver
par anet ers") ;
} catch (1 CException e) {

dynani cEcpProperti es. set Speci fi cParamnet er s(out put Stream toString());
}el se{

dynani cEcpProperti es. set Speci fi cParanet ers(dri ver Speci fi cPar ans) ;

cli Commands = parser. parseTenpl at e(tenpl at e);

if (ecpServicelp!=null && !'"".equal s(ecpServicelp))
cl i Commands. set RM Host Nanme(ecpServicelp); // | P de ECP

if (ecpServicePort!=null &&
I"" equal s(ecpServicePort))cli Commands. set RM Port (ecpServi cePort); // Puerto
de ECP

39

HPSA Extension Pack
Equipment Connections Pool Reference

switch (op) {
case DO _AND_CHECK:

hnvari abl es =
cl i Commands. execut eActi vat i on(dynani cEcpProperties);
br eak;
case UNDO_AND_ CHECK:
hnvari abl es =
cl i Commands. revert (dynam cEcpProperti es);
br eak;
defaul t:

t hrow new Pl ugi nExcepti on(" Operati on not
supported");

cont ext . upl oadDat a(" ecp_out put parans", hmvari abl es) ;
return new ExecutionDescri ptor (ExecutionDescri ptor. K,
Executi onDescri ptor. NONE, "tenpl ate executed", "", "");

} catch (CLI ExecutionException cliee) {
if (cliee.getAction().equals(CLIConstants. ROLLBACK ERROR) | |
cliee.getAction().equal s(CLI Constants.| O ERROR)
|| (cliee.getAction().equals(CLIConstants. CONNECTI ON_ERROR)
&& cliee.getSectionNunber() !'= null)) {
return new ExecutionDescri ptor (Executi onDescri pt or. ERROR,
Execut i onDescri pt or. | NCONSI STENT, cli Cormands. get St dQut (),
cliee. get Message(), cliee.getCommand()+ "\n" + cliee.getM scellaneous());
} else {
return new ExecutionDescri ptor (Executi onDescri pt or. ERROR,
Execut i onDescri pt or. CONSI STENT, cli Conmands. get StdQut (), cliee. get Message(),
cliee.get Coommand()+ "\n" + cliee.getMscellaneous());

}
} catch (Tenpl at ePar ser Excepti on e) {
return new ExecutionDescri ptor (Executi onDescri pt or. ERROR,
Executi onDescri pt or. CONSI STENT, e. get Message(), e.get Message(),
e. get Message());
}

}

}

The execution of a Commands Template involves a parser instance and an engine instance. The
Commands Template must be first parsed using a Tenpl at ePar ser class instance and calling its
method par seTenpl at e(String sTenpl at e), which receives the template as a St ri ng. As a result
of the parsing process, the TemplateParser will either throw a Tenpl at ePar ser Except i on if the
parsing was not possible, or return a CLI Commands engine instance.

If the parsing is successtul, the returned CLICommands instance may be used to execute the Commands
Template. The four Commands Template execution methods are available through the functions
execut eActivation(String sPool Nane), i nverseActivation(String sPool Nane),
execute(String sPool Nane) and revert (String sPool Nane) . The developer may usually
recognize whether the execution has not been atomic by checking the exception action type and the
failed section. The exception action type indicates the part of the Commands Template where the error
referred by the Exception occurred.

If the error is an | OExcept i on which is encountered during Do, Undo, Commit or Rollback, as
| CExcept i on errors cannot be handled, the special action type CLI Const ant's. | O ERROR is
declared by the exception. This error will usually indicate (depending on the specific Commands

40

HPSA Extension Pack
Equipment Connections Pool Quick Start Guide

Template) an inconsistent execution, that is, atomicity could not be provided and the plug-in should return
an Execut i onDescri pt or. | NCONSI STENT result.

If a non | OExcept i on error is encountered during error handling, the action type

CLI Const ant s. ROLLBACK_ERRCR is declared by the exception. Again, this error will usually indicate
(depending on the specific Commands Template) an inconsistent execution, that is, atomicity could not be
provided and the plug-in should return an Execut i onDescri pt or. | NCONSI STENT result.

If a non | OExcept i on error is encountered during error handling, the action type

CLI Const ant s. ROLLBACK_ERROR is declared by the exception. Again, this error will usually indicate
(depending on the specific Commands Template) an inconsistent execution, that is, atomicity could not be
provided and the plug-in should return an Execut i onDescri pt or. | NCONSI STENT result.

If a SocketException error is encountered, the action type CLI Const ant s. CONNECTI ON_ERRCR is
declared by the exception. This error can’t be handled by the ECP, and as a consequence if this error is
thrown on Do, Undo, Commit or Rollback no error handling is performed and as a consequence atomicity
can’t be provided and (depending on the specific Commands Template) the plug-in should return an
Execut i onDescri pt or. | NCONSI STENT result. To identify if the error has been thrown on Do, Undo,
Commit or Rollback, the user should check whether a section is present in the error.

41

