QOVSA SPI for Service Providers

Equipment Connections Pools Developer Reference

Release v.5.1

¥/
A /A

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Legal Notices

Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not
be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlet-Packard product can be obtained from
your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject fo restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-
7013.

Hewlett-Packard Company United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-
19(c)(1,2).

Copyright Notices.
©Copyright 2001-2005 Hewlett-Packard Development Company, L.P., all rights reserved.

No part of this document may be copied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.
UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and are
hereby acknowledged.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Table of Contents

=T Lo o] o= OO PP 2
TADIE OF CONIENS 1..vu ettt 3
SUPIPOM 1tttk R R b bR R h bR Rt b bbbttt 6
e AT V1o [OOSR 7
AUGIENCE ...ttt 7
CONVENHONS ... 8
INSTQ] LOCOHION DESCIIPIONS 1.cvurerrerrerrereescereiseeseeseeseseessesseesessessessessesseesesesseesesssesesseesessees st ees et eeseesessessesessesssssesssssessessnns 9
T INEFOTUCHION oottt ettt 11
Tl PUIPOSE ottt 11
1.2, General DESCIIPHONcvveciriicirritiseces sttt 11
1.3. ECP Module Entities and CONCEPLScuurerriirmiieiieie ittt ittt 12
T.3.T. TArGet SYSIEM .. s 12
1.3.2. Operation .
1.3.3. Commands Template/Operation TemMPIAe ... 12
1.3.4. Operation EXECUHON ...ttt 13
103,50, RESOUICE ..ottt
IR T TR oo OO
1.3.7. SUBPOOL. ...t
1.3.8. Equipment Driver
1.3.9. Protocol DriVer ... eneens
1.4. General Architecture
L T R =T 1 1Y OO
14,2, ECP SEIVICE o.viiiiieiiietsitic ettt
2. Functionality and ArchilECIUIE.........cuuiiiieiei ettt 17
2.1. Connection and Pool MAanNGGEMENt ...ttt 17
2.1.1. Connection REUSEceceurierirneerinerierrnticneseiereans .17
2.1.2. High Availability ..o, .17
2.1.3. Target System Independence .18
2.7.4. Protocol INdEPENdENCEccuiuiiriiiiine sttt 18
2.1.5. LoAd BAIANCEvvieiiiiicie e 19
2.2. Pool and Connection types........cocuuuverirmecenrerneencrenionn. ...19
2.2.1. Static vs Temporary Pools.........coccrverneirirerinennn. ...19
2.2.2. Direct Connections (Not Pooled Connections) .19
2.2.3. DYNAMIC POOIS ..ottt e 19
2.3, Commands TEMPIOTE........cuiuieriirireiieineit sttt 20

2.4. Operation Execution
2.5. Realtime Monitoring

Bi FIISE SEEPS et 23
3.1. Equipment Driver Development.......c..cccoeverreireirrininnnn. .23
3.1.1. Equipment Driver Development Introduction .23
3.1.1.1. Equipment Driver Classes.........cccueuuvrernerrrreneen. .23
3.1.1.2. Equipment Driver inside the ECPc..cccviiirininereiieeiee et ssenes 25

3.1.2. EQUIPMENt DriVEr GENEIICc.cuieiiececeieeeeceeteec e 25
3.1.3. Equipment Driver Deployment.........cccccouuviererinnnne. ...26
3.1.4. Available Equipment Drivers.......cccocvenrireieininnnns .26
3.1.5. Generic Template Equipment Driver w27
3.T.5.T. CONNECHION ..ottt 28

OVSA SPI for Service Providers

quipment Connections Pools User Referente

3.T.5.2. DISCONNECT .ttt 30
3.1.5.3. Examples of DriverSpecificParamters ... ssssesessseseneens 30
3.2, ECP Service ProCessoviciiiiiiciiciicicie s 31
3.2.1. StAring ECP SEIVICE......cueieeceeicceec e 31
3.2.2. StopPing ECP SEIVICE ..ottt 32
3.2.3. Restarting ECP ServiCe ... s 32
3.2.4. Checking ECP SEIVICe. ..ottt 32
3.3 USE EXAMPIES ...ttt 32
3.3.1. Creating and Using an SIAHC POOL ...t sssesessseens 34
3.3.2. Creating and Using @ Dynamic POOL. ...t ssseesessssesenenos 37
3.3.3. Using Direct CONNECHONSc.cuiuceieieceieireecereireecee oo eaes 39
3.4, Monitoring ECP through JMS ...t 40
3.4.1. Including Additional Data in Activation JMS MeSSagEs:currimcineneieriniresensessiesissseseneens 40
3.4.2. JMS Client DEPendenCiesc.iuriimmieniiiiiineieeiseie ittt 42
3.4.2.1. Infegrating with another IMS Provider ... 42
3.4.2.2. NO 0ther JMS Provider ..ottt 42
3.4.3. JMS Client EXAMPIES ...ouviriviciiiciiticse ittt 42
3.4.3.1. JMS 1.0.2b Client EXAMPIE ..ottt 44
3.4.3.2. JMS 1.1 Client EXAMPIE....cvuieririireriiieiineieireiiesiseee sttt 45
3.4.3.3. Processing Additional Data Included In Activation JMS Messages...........cuvveenreneererenenereneens 47
3.4.4. ECP MeSSAGES TYPES ...cvviiiiiiieirici s 47
3.4.4.T. DataSent MESSAGE........ocuiiiiiecirceeec et 47
3.4.4.2. DataRECEIVEd MESSAGEcoureririirriiiiie ettt 48

4. CONPIGUIGHION ..ttt 49
4.1, Common ConfigurGHion SOUICESwiurieiurietieerire et sestssesise sttt 49
4,11, ProtocolDrIVErs.Ist File ...ttt ettt 49
4.1.2. HPSA_ECPMESSAGESPATTERNSoooiicr e 49
4.1.3. HPSA_ECPCOMMANDSPATTERNScoiiiiiieiicr e 50
4.1.4. HPSA_ECPMESSAGESCOMMANDS ..ottt 50
4.2, ECP Lib Configuration SOUFCESccuiiuririeiriintiseine it sss sttt sssssnees 50
4.2.1. ECP Lib Command Ling PArameters..........coocuiiiuirieiiniiesssississsssesssessisssessssesssessssssssssssessseses 50
4.3. ECP RMI Service Configuration SOUFCES ...ttt 50
4.3.1. ECP RMI Service Command Line PArameterscivinrieieinienisesssssisssesessesssssssnssenesssenns 50
4.3.2. €CP.ProPerties Fileciiiiririireeiee ettt 51
4.3.3. HPSA_EQUIPMENTCONNPOOL DB TabIecoreeeeeeeeereireireereieeeiseeseesesseeneeseeseeseeseeseeseeeesesseennes 54
4.3.4. HPSA_EQUIPMENTCONNSUBPOOL DB Table......covuriuiereieiiiniineeineieeineiseeneeseeesssesesssenssenees 54
4.3.5. DynamicECPProperties Class ... sssesss s ssss s sssssessessnns 55
4.3.5.1. DynamicECPProperties Properties ..o esssssceees 55
4.3.5.2. DynamicECPProperties Advanced Properties..........cvuriiiriinieniensinsinsinsessisssse s ssessns 56

5. Commands Template REFErENCE ..ottt 57
5.1. Commands Template CoMMANGS ...ttt 57
5.1.1. Block declaration SItemENts..........ccivierereriiimiiniineieisseesissseeseessssssssss s sssessss e 57
5.1.2. EXecutable STtemENTS.......c.iiuriiiiriritiie ittt 57
5.1.2.71. HEEISE SEAIEMENT.....ceuieeiecierieeiieeiceeeer ettt ettt s st enea 58
5.1.2.2. FOrEQCh STATEMENTcouiiriiiiriiiiiitrise ettt 58
5.1.3. Command SIAIEMENEScuuivirierieririerie ettt bbbt 59
5.1.4. Configuration SIAIEMENTS........cuiiiiirririierirseierissssse st 59
5.2, Commands REFErENCEc.uiiriieiriciiiie ettt 60
5.2, COMMANS LiSt...ooiiiriiiiiriiiiniiseiiecisesi ettt 60
5.2.2. ComMMANS SYNTAX w.voivuiiriiriiriiiieieseieseesie st 62
6. Configuration QUICk REFEIENCEuivuiieeiriicie ettt 65
6.1, DBMANAGEr CONfIGUITHIONcuuieaiscereiscieeiceseee sttt bbbttt 65
6.2, Configurator CoNfIGUITHON ...ttt 65
6.3, ECP RMI SEIVICE ...ttt 66

6.4, PoolMaNager ConfIGUIHIONc.ciuu ittt ettt 66

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

6.5, POOI CONFIGUITTION .ottt bbb
6.5.1. Pool Common Parameters Configuration .
6.5.1.1. Pool Logging Common Parameters Configuration ...
6.5.2. Pool Instance Specific Parameters Configuration............uiiincniernesssesseessee e
6.5.2.1. Pool Instance Specific Logging Parameters Configurationc.ccceneeeceneeneeneeenceneeeneens
6.6, SUDPOOI CONFIGUIGTION ..ouvierirciriciti ettt
6.6.1. SubPool Instance Specific Parameters Configuration ...
6.6.1.1. SubPool Instance Specific Logging Parameters Configuration
6.6.1.2. EquipmentDriver Initialization Parameters Configuration ...
6.7. EquipmenDriver ConfigUrOHON........coiiiiinriceeti ittt
6.7.1. EquipmentiDriver Initialization Parameters Configuration......
6.7.2. ConnectionResource Configurationc.ccrenereceniurniinens
6.8. Protocol Drivers Manager ConfigUurGtoNciiinieneieesee e
6.9, ProtocolDriver ConfIGUIGHION ...ttt ettt
6.10. CLCommands ConfiGUratONc..ciiiiiiienisieriesieeise sttt
6.11. Template Parser ConfIGUIGHON........c..cciiiiiirce ettt
6.12. JMS Monitoring ConfiGUIGHON ...ttt

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Support

Support for the HP Open View Service Activator SPI product is available on the following mailing list:

ovsa.spain .support@hp.com

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

In This Guide

This guide will explain the configuration, installation, needed development, and functionality provided by
the ECP.

Audience

The audience for this guide is the Solutions Integrator (Sl). The SI has a combination of some or all of the
following capabilities:

Understands and has a solid working knowledge of:
UNIX® commands
Windows® system administration

Understands networking concepts and language

s able to program in Java™ and XML

Understands security issues

Understands the customer’s problem domain

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Conventions

The following typographical conventions are used in this guide.

Font What the Font Example
Represents
Italic Book or manual titles, Refer to the HP Service Activator — Workflows and the
and man page names | Workflow Manager and the Javadocs man page for more
information.
Provides emphasis You must follow these steps.
Specifies a variable Run the command:
that you must supply java -cl asspat h <classpath>
when entering a
command

Parameters to a method | The assigned_criteria parameter returns an ACSE response.

Bold New terms The distinguishing attribute of this class...
Conput er Text and items on the The system replies: Press Enter
computer screen
Command names Use the j ava command ...
Method names The get _al | _repl i es() method does the
following...
File and directory Edit the file
names $ACTI VATOR_ETC/ confi g/ mmMf m xmi
Process names Check to see if mavf mis running.
Properties files keys Set the property LOG_DI R to establish the log files path.
names

Window/dialog box In the Test and Track dialog...

names
XML tag references Use the <DBTabl e> tag fo...
golngu'[er Text that you must type | At the prompt, type: I's -1
0
Keycap Keyboard keys Press Return.
[Button] Buttons on the user Click [Del et e] .

interface Click the [Appl y] button.

Menu ltems | A menu name followed | Select Locat e: Obj ect s- >by Comment .
by a colon (:) means
that you select the
menu, then the item.
When the item is
followed by an arrow
(), a cascading menu
follows

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Install Location Descriptors

The following names are used throughout this guide to define install locations.

Descriptor What the Descriptor Represents

$ACTI VATOR_OPT The base install location of Service Activator.
The UNIX location is / opt / OV/ Ser vi ceAct i vat or

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceActi vat or\

$ACTI VATOR_ETC The install location of specific Service Activator configuration files.
The UNIX location is / et c/ opt / OV/ Ser vi ceAct i vat or

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceActi vator\etc\

$ACTI VATOR_VAR The install location of specific Service Activator logging files.
The UNIX location is / var / opt / OV/ Ser vi ceAct i vat or

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceActi vat or\var\

$ACTI VATOR_BI N The install location of specific Service Activator binary files.
The UNIX location is / opt / OV/ Ser vi ceAct i vat or/ bin

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceActi vat or\ bi n\

$ACTI VATOR_THI RD_PARTY | The location for new Java components such as workflow nodes and
modules. Third-party libraries can also be placed in this directory.

The UNIX location is /opt / OV/ Ser vi ceActi vator/3rd-party

The Windows location is
<drive>:\ HP\ OpenVi ew\ Servi ceAct i vat or\ 3rd- party\

Customized inventory files are stored in the following locations:
UNIX: $ACTI VATOR_THI RD_PARTY/ i nvent ory
Windows: $ACTI VATOR_TH RD_PARTY\ i nvent ory

$JBOSS_HOME HOME The install location for JBoss.
The UNIX location is / opt / HP/ j boss

The Windows location is
<drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service Activator J2EE components.

The UNIX location is
[opt/ HP/ j boss/ server/ def aul t/ depl oy

The Windows location is
<drive>:\HP\jboss\server\defaul t\depl oy

$ACTI VATOR_DB_USER The database user name you define.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Suggestion: ovacti vat or

$ACTI VATOR_SSH_USER

The Secure Shell user name you define.

Suggestion: ovact usr

$SOSA_HOVE

The base install location of SOSA.
The UNIX location is / opt / OV/ Sosa

The Windows location is
<drive>:\HP\OpenView\Sosa\

$SOSA_BI N

The install location of specific SOSA binary files.
The UNIX location is / opt / OV/ Sosa/ bi n

The Windows location is
<drive>:\ HP\ OpenVi ew\ Sosal\ bi n\

$SCSA _ETC

The install location of specific SOSA configuration files.
The UNIX location is / opt / OV/ Sosa/ confi g

The Windows location is
<drive>:\HP\OpenView\Sosa\config\

$ECP_HOME

The base install location of Equipment Connections Pool.
The UNIX location is / opt / Ov/ ECP

The Windows location is
<drive>:\HP\OpenView\ECP\

$ECP_BI N

The install location of specific Equipment Connections Pool binary files.
The UNIX location is / opt / Ov/ ECP/ bi n

The Windows location is

<drive>:\HP\OpenView \ECP\bin\

$ECP_ETC

The install location of specific Equipment Connections Pool
configuration files.

The UNIX location is / opt / OV/ ECP/ conf
The Windows location is
<drive>:\HP\OpenView\ECP\conf\

$ECP_LIB

The install location of specific Equipment Connections Pool jar files.
The UNIX location is / opt / OV/ ECP/ | i b

The Windows location is

<drive>:\HP\OpenView \ECP\lib\

$ECP_LOG

The install location of specific Equipment Connections Pool log files.
The default UNIX location is / opt / OV/ ECP/ | og

The default Windows location is
<drive>:\HP\OpenView\ECP\log\

10

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

1. Introduction

1.1. Purpose

This document is a manual for all ECP Module users. It gives a general view of the ECP Module concepts,
functionality, architecture, and use, with special focus in configuration and its effects.

1.2. General Description

The function of the ECP Module, as part of the SPI, is automating user interactive textual sessions, via
TCP/IP connections to networked devices, such as routers, switches, proxies, efc...

The ECP Module receives a textual representation of the session, which states the commands to issue, their
output and their meanings, and the control flow logic (such as the conditions under which a command
must be issued or how many times must be issued).

The ECP Module is the module in SPI which in the last instance directly connects to the SPI managed
devices, centralizing the SPI management connections. This situation inside the SPI framework is ideal to
perform task such as load balancing, high availability and resources use optimization when referring to
management connections. Toward this objective, the ECP Module implements a series of connections
Pools, which provide the aforementioned functionalities, grouped in a Pool Manager.

The ECP Module is divided in two elements, the ECP Client and the ECP Service (an RMI service). The ECP
Service receives the representations of the sessions and actually executes them, and contains the Pool
Manager. The ECP Client acts mainly as a proxy, easing access to the ECP Service. It also allows the user
to totally bypass the ECP RMI Service if needed, being the process transparent to the user. Bypassing the
ECP Service is known as “Direct Connection” as opposed to “Pooled Connections” when using the ECP
RMI Service. The use of either method is transparent to the user.

Such division allows easier scalability of the SPI, while maintaining the ECP Module objectives of load
balancing, high availability and resources use optimization.

11

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Parsed

Representation of
the session

commands cgmmands
|| || Pooled Connection
N N N
O O O O Target System < Direct Connection
—_—

Figure 1: ECP Simplified General diagram.

1.3. ECP Module Entities and Concepts

1.3.1. Target System

In the context of the ECP, a “Target System” is the collection of resources accessible through a single
direct TCP/IP Connection. Usually, a “Target System” will be a single router, switch or other similar
device. However, more complex scenarios are possible if other devices are accessed from the connection
end-point.

1.3.2. Operation

By “Operation” we refer to the collection of commands and logic needed to perform a certain process on
the Target System. The purpose of the process may be a data inquiry, a configuration change or any
other action needed on a Target System. An “Operation” should be atomic, that is, it should completely
occur, or have no effects on the Target System. As a consequence, “Operations” should include the
commands and logic needed to rollback the changes on the Target System if any. However, this policy is
not enforced. Its use is left to the user’s discretion.

1.3.3. Commands Template/Operation Template

A “Command Template” is a string which complies with a certain syntax through which an Operation is
expressed, for the ECP Module to interpret and process it, usually with the purpose of automating a
human inferactive session on the Target System. The “Command Template” states the commands needed
to perform the process (and usually to roll it back too), with specific information on every command, such

12

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

as possible command outputs and their meaning (error, success) and the control flow which determines
their execution order, among other things.

1.3.4. Operation Execution

An “Operation Execution” is the process through which Command Template is processed, resulting in
commands inputted into the Target System.

1.3.5. Resource

In the context of the ECP, “Resource” is synonym of connection instance.

1.3.6. Pool

In the context of the ECP, a “Pool” is a set of established and authenticated connections (resources) to a
single Target System that are kept ready to use. Each connection instance belongs to a single “Pool”.
Connection instances life time is managed by the “Pool”. Pools are identified by name.

1.3.7. SubPool

A “SubPool” is a subset of the connections belonging to a Pool which are established with the Target
System through the same interface, what generally implies though the same IP and Port (and user). The
existence of the “SubPool” is only needed in the context of the ECP Configuration and Administration. In
other contexts its use is transparent to the user. Each SubPool belongs to a single Pool. Every connection
belongs to a single SubPool.

1.3.8. Equipment Driver

An “Equipment Driver” is a class whose instance encapsulates a single TCP/IP connection as a Pool
Resource and is in charge of establishing, authenticating, verifying, and closing the underlying
connection, when required by the Pool and as needed by the Target System. As some of this processes
(especially authenticating, verifying and closing the connection) are dependent on the Target System type,
usually a different “Equipment Driver” is needed for each Target System type, hence its name. It allows
the developer and designer to easily add functionality to the ECP on per connection, per equipment, per
equipment connection or even on connection event basis. Equipment Drivers must be provided by the ECP
User.

The “Equipment Driver” is also in charge of executing every individual Commands Template command,
that is: composing the Target System command, sending it to the Target System, reading the Target system
answer, and interpreting it. Nevertheless, this functionality is provided by the ECP through inheritance.

For some tasks (such as establishing and closing the connection, or sending and reading data from it), the
Equipment Driver will usually rely on a Protocol Driver to perform them as very often those task are not
dependant on the Target System type, but on the network protocol to communicate with it. Entrusting this
task on the Protocol Driver allows the programmer to reuse network protocol dependant functionality.

Typically, a different Equipment Driver is needed for each model of switch or router.

In the context of the ECP, the terms “connection”, “Resource”, and “Equipment driver”, are
interchangeable.

13

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

1.3.9. Protocol Driver

A “Protocol Driver” is a class whose instance encapsulates a single TCP/IP connection, and is in charge
of performing the most basic operations at low level, that is: establishing and closing the connection,
sending and reading data from it, and encoding and decoding those data as needed by the Target
System interface. Generally speaking, a Protocol Driver provides partial or total independence from the
Application Layer of the OSI model. Entrusting this task on the Protocol Driver allows the programmer to
reuse network protocol dependant functionality and the same Equipment Driver with different
communication protocols.

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols.

1.4. General Architecture
On the highest level the ECP Module can be divided in two entities: the ECP Client and the ECP Service.

1.4.1. ECP Client

The ECP Client always is the entry point for the ECP user to the ECP Module, regardless of connection
method or configuration (see Figure 1: ECP Simplified General diagram).

The ECP Client is basically an ECP Service, without a Pool Manager. As such, it is able to execute
Operations by itself and without the need of an ECP Service, opening and closing a new connection to
the Target System for every Operation execution (Direct Connection), or delegating the execution of the
Operation on the ECP Service (Pooled Connection). However, when using Direct Connections it can't
profit on the aforementioned advantages of the RMI Service (load balancing, high availability and
resources use optimization).

The ECP Client is constituted by two entities: The ECP Template Parser
(com hp. spai n. connecti on. Tenpl at ePar ser) and the ECP Operation Engine
(com hp. spai n. connecti on. CLI Conmands).

The ECP Template Parser receives a Command Template (and some configuration) as input, returning an
accordingly constructed ECP Operation Engine as a result.

The ECP Operation Engine receives connection configuration (and additional Operation commands if
needed) as input, and when executed returns the session stdin and stdout or an exception if the Operation

failed.

Depending on how the Template Parser and Operation Engine were configured, the real Operation
execution will take place either locally (that is, in the client’s Java Virtual Machine instance) or remotely
(that is, in a different Java Virtual Machine instance)

The figure Figure 2: Direct Connection Operation Execution Diagram represents a Direct Connection
Operation execution. See ECP Service for an explanation of Pooled Connections.

14

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

commands
g
Template Operation OO OO Target System
Parser Engine

Figure 2: Direct Connection Operation Execution Diagram.

1.4.2. ECP Service

The ECP Service is basically an ECP Client which retrieves the connections to the Target System from a
Pool Manager, instead of creating them (see ECP Client).

If the ECP Client Operation Engine is configured to use Pooled Connections, on execution, instead of
creating a connection, it will serialize the Parsed Command Template (contained by itself), and send it via
RMI to the ECP Service.

On reaching the ECP RMI Service, The serialized Parsed Command Template will be used to instantiate
an equivalent of the client's ECP Operation Engine. A connection from the Pool Manager will be assigned
to this Operation Engine, which it will use to execute the Operation. The Operation will be executed as if
from the client, but with a connection obtained from the Pool Manager instead (see Functionality and
Architecture

Connection and Pool Manage for additional detail). A different Operation Engine will be instantiated for
each Operation, and multiple Operations may be executed concurrently.

The stdin and stdout or the failure of the Operation will be sent back to the caller Operation Engine (that
is, the client’s one).

15

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

ECP
Operation
Engine

Parsed

Command
Template

Template
Parser

commands

ECP
Operation
Engine

Figure 3: Pooled Connection Operation Execution.

16

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

2. Functionality and Architecture

2.1. Connection and Pool Management

A single instance of the Pool Manager exists in the ECP Service. The Pool Manager contains a single Pool
for each Target System (in a typical configuration).

Each Pool contains all the connections to a Target System, and is responsible of their life time and
management. Additionally, it is responsible for:

a) Connections reuse. The connections are kept alive, opened and authenticated, reusing the
connections while possible.

b) Identifying redundant interfaces on the Target System, and their connections, providing high
availability.

c) Queuing and prioritizing the Operation Engines’ requests for connection to the Target System,
providing load balance.

d) Target System independence.
e) Protocol independence.

See Figure 4: Pool Manger Architecture

2.1.1. Connection Reuse

Opening and maintaining a connection for each user is costly and wastes resources. On the contrary,
pooling the connections enhances the performance of executing commands on a Target System. After a
connection is created, it is placed in the Pool and reused over again while possible so that another
connection does not have to be established and authenticated. The Pool creates (i ni ti al i ze) and
destroys (f i nal i ze) new connections as needed, not exceeding the configured limits and politics.
Connections are verified for consistency before being assigned to a client (veri f y). Additionally pooling
the connections allows abstracting the client of the details of the connections management. Pooling the
connections achieves reliable connections reuse. See Figure 4: Pool Manger Architecture

2.1.2. High Availability

Every Pool may have one or more SubPools. Each SubPool represents a connection factory and container.
Every SubPool comply the following rules:

a) Each SubPool “owns” a different Target System interface. This means that all ECP connections to
that Target System through that inferface should be created and contained by the same SubPool
instance.

b) Connections from different SubPools should be equivalent, that is, executing an Operation
through one or another SubPool should have the same effects on the Target System (provided the
same initial Target System State).

Complying with this rules, allows the ECP to temporarily ignore a SubPool (interface) if it fails and
becomes unusable (and another SubPool exists in the Pool), using the other SubPools (interfaces) instead.
SubPooling the connections achieves high availability. See Figure 4: Pool Manger Architecture.

17

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

2.1.3. Target System Independence

The ECP needs to be able to connect, login, verify and disconnect the connections to the Target Systems
as part of the Pooled connections management. As these processes are Target System specific, the ECP is
unable to do so by itself. As a consequence, the ECP User must provide an Equipment Driver which
performs those operations on behalf of the ECP. The Equipment Driver will wrap a connection, abstracting
the ECP from the real tasks needed for those operations. Roughly speaking, the Equipment Driver scope is
at a “per command” level. See Equipment Driver and Figure 4: Pool Manger Architecture.

2.1.4. Protocol Independence

Although Equipment Drivers perform Target System specific tasks, the underlying network protocol is
usually standardized, and is not Target System dependant. For example, is very common for Target
Systems to use SSH or Telnet protocols. To ease Equipment Driver development and allow protocol
inferchangeability, a Protocol Layer abstraction layer is implemented, called “Protocol Driver”. That layer
will be responsible for establishing and closing the connection, sending and reading data from it, and
encoding and decoding those data as needed by the Target System interface.

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols. See Protocol
Driverand Figure 4: Pool Manger Architecture.

Pool 1 Pool L
SubPool 1.1 SubPool 1.N
Equipment Equipment Equipment Equipment
Driver1.1.1 Driver1.1.M Driver1.N.1 Driver1.N.S
Protocol DriverX Protocol DriverY Protocol DriverZ Protocol DriverV A A

A

A

A

Interface

11

L 00

v

Target System 1

Inferface
TN

Uil

Target
System L

Figure 4: Pool Manger Architecture.

18

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

2.1.5. Load Balance

Every Pool, has a configurable number of “Request Queues”, where clients in need of a connection are
kept waiting for their turn to acquire a connection. Queues can be prioritized, allowing critical
Operations fo remain as short as possible waiting for an available connection, and avoiding clients from
becoming starved because of a high not critical Operations load. The priority of each request is
established programmatically.

The frequency at which requests are dispatched and the number of available connections on each
SubPool can be configured, allowing management of the load over the Target System and the ECP host.
Request queuing and Pool size achieve load balance.

2.2. Pool and Connection types

Two types of Connection Pools are available, depending on how the pools are created.

2.2.1. Static vs Temporary Pools

ECP Module provides two different types of Pools: Static and Temporary.

Functionally, Temporary Pools are exactly the same as Static Pools, the only difference being that
Temporary Pools will expire if unused for a configured amount of time, while static Pools will never expire.

Temporary Pools are useful when a Target System is going to be used for a short period of time and
remain unused for long periods. Temporary Pools allow saving host resources in such situation.

When Pools are used, the Operation Execution is delegated on the ECP Service. See ECP Service.

2.2.2. Direct Connections (Not Pooled Connections)

When using Direct Connections, a connection is created for each executed Operation, being the
connection private to the ECP Operation Engine instance used to issue the Operation. The Connection
exists in the context of the ECP Operation Engine instance JVM. The Operation is executed in the JVM of
the client. No ECP RMI Service is needed for this kind of Operation, although the Equipment Driver and
Protocol Driver and their libraries will be needed. See ECP Client.

2.2.3. Dynamic Pools

The ECP Module allows the user to programmatically create Pools. Programmatically created Pools are
referred “Dynamic Pools”. Dynamic Pools are usually temporary, although they can be static. As a
consequence, “Dynamic Pools” aren’t created independently, but as part of the Operation Executions
which uses them. This is due to the fact that a client can’t know whether the Dynamic Temporary Pool will
still exist when the Operation Execution call is processed by the RMI ECP Service. For these reason,
Operation Executions which use Dynamic Pools always carry the Dynamic Pool definition. On arrival to
the ECP Service, the Dynamic Pool will be created if it does not exist. If it exists, the running Dynamic Pool
instance will be used.

19

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

2.3. Commands Template

As “Commands Template” we understand a specially crafted String where, using a syntax specified by
the ECP, the commands to Do, Undo, Commit and Rollback the Operation are established.

A Velocity Engine version 1.4 is provided with ECP, to ease the implementation of dynamic Commands
Templates for the user. Through the method Tenpl at ePar ser #conposeTenpl at e(), a Velocity
Commands Template can be easily merged with the data. See http://velocity.apache.org/ for more
details. See Commands Template Reference.

What follows is an example of a possible Commands Template:

[TEVPLATE: Do]

[TEMPLATE: Secti on 0]

show et hO connecti ons
[TEMPLATE: EndStr Pattern "adm n#"]
[TEMPLATE: Pattern "detination IP: (.*)"]
[TEMPLATE: Array "desti nationl Ps"]

show et hl connecti ons
[TEMPLATE: EndStr Pattern "adm n#"]
[TEMPLATE: Pattern "detination IP: (.*)"]
[TEMPLATE: Array "destinationl Ps"]

[TEMPLATE: For Each "var" In " destinationl Ps"]
ping %ar%-n 1
[TEMPLATE: EndStr Pattern "admi n#"]
[TEMPLATE: EndFor]

[TEVPLATE: Undo]
[TEVPLATE: Secti on 0]

The previous template executes queries connections through et hO, storing the destination IP in the array
variable dest i nati onl Ps. The same process is repeated on eth1. After that, a ping is executed to all
the obtained IPs. All commands are over when the prompt adni n# is encountered. As the Template does
not modify the Target System state, no Undo commands are needed.

2.4. Operation Execution

Operation Execution is the process through which the commands needed for the Operation to be done or
undone are issued, appropriately handling the errors and rolling back the partial configuration change or
committing the configuration changes.

The client will provide a “Commands Template”, a specially crafted String where, using a syntax
specified by the ECP, the commands to Do, Undo, Commit and Rollback the Operation are established.
The Commands Template may contain conditional or looped execution of commands. Commands output
may be stored in variables and later used in conditions and commands. For a more detailed explanation
see 2.3 Commands Template.

20

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Each command in an Operation belongs to one of the following groups:
a) Do: The commands collection to perform the configuration change.
b) Undo: The commands collection to cancel the configuration change.

c) Error: A set of commands to execute whenever a command output is identified as an unsuccessful
command execution message.

d) Commit: The commands to:
a. Make the configuration modifications effective/visible.
b. Save the configuration to a persistent media.
e) Rollback: The commands to:
a. Restore the previous configuration from a persistent media.
b. Make the previous configuration effective/visible.

This is the recommended use for these groups, although other uses may be possible, always taking in to
account the Do/Undo/Commit/Rollback logic. That logic is dependant on the call used to execute the
Operation. Four methods are available: “Execute”, “ExecuteActivation”, “Revert” and “InverseActivation”.
See the following diagrams for more detail:

ObtainConnection

ObtainConnection

s
| CLIExecutionException |

i
@
ReleaseConnection

%
o]

¥

Commit
ReleaseConnection

Commit
ReleaseConnection

ReleaseConnection
.
e
e |
.

|rCLIExecutiDnExce|3ti0n] | | CLIExecutionException |

o ®

Figure 5: “Execute” and “Revert” activity diagrams.

21

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

ObtainConnection

ObtainConnection

©(“/ - - { [CLIExecutionException] [<577 "7 Bt

[IbNotUndglastsection] [&l$e]

ReleaseConnection

DoFailedSection

Rollback Rallback

ReleaseConnection ReleaseConnection

Figure 6: “ExecuteActivation” activity diagram. Figure 7: “InverseActivation” activity diagram.

@ s CLIExecutionException] f=-27_.

©<"53-- CLIExecutionException] M=-z2_.

2.5. Realtime Monitoring

From SPI version 2.3 onwards the ECP is able to provide real time information of its execution through
JMS. Currently, ECP includes Active MQ 4.1.1 which fully implements JMS 1.1. If JMS monitoring is
enabled, ECP may start its own embedded JMS service (by default) or connect to a remote one. Active
MQ includes many features, like persistent, fransactional and XA messaging; message groups, virtual
destinations, wildcards and composite destinations; pluggable transport protocols as TCP, SSL, UDP, in-
VM (embedded); clustering; bridging to other JMS providers; JMX administration, efc...

22

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3. First Steps

3.1. Equipment Driver Development

3.1.1. Equipment Driver Development Introduction

As previously said (see Equipment Driver) an “Equipment Driver” is a class which encapsulates a single
connection as an ECP Resource (a pooled connection). As such, an Equipment Driver must implement the
functionality expected by the ECP, that is:

a) The capability of executing commands.
b) The ability of behaving as an ECP Connection.

The main part of that functionality is already implemented and inherited from the driver parent classes
Equi pnent Dri ver and Connect i onResour ce, simplifying the driver development.

The capability of executing commands is fully provided by the Equi pment Dri ver class, very rarely
requiring additional implementation or overriding in the driver.

The ability of behaving as an ECP Connection is partially provided by the Connect i onResour ce class,
and as a consequence, additional implementation and overriding will be needed in the driver.

In addition, an instance of another class, the Pr ot ocol Dri ver, will provide protocol independence,
allowing the use of the same Equipment Driver with varying communications protocols (telnet, SSH, etc...)
to the destination equipment.

While developing the driver, the programmer must be careful not to choose libraries versions which differ
of the versions present in $ECP_LI B (if Pooled Connections are used) and/or the versions present in the
$ACTI VATOR_THI RD_PARTY/ | i b (if Direct Connections are used). The Equipment Driver classes and its
dependencies may have to be deployed in one or both of those paths and the driver classes will be
loaded using the same Classloader as the rest of libraries there. See Equipment Driver Deployment for
further details.

See Available Equipment Drivers for a list of some Equipment Drivers already implemented. Notice that
that list includes only the precise versions of the Target Systems against which a certain driver has been or
is being used in a production environment. These drivers might be compatible as is with some other
Target Systems or versions, or might be easily adapted to them.

3.1.1.1. Equipment Driver Classes

Every Equipment Driver must inherit from com.hp.spain.connection.Connect i onResour ce. The
following diagram shows the typical class diagram of an Equipment Driver example
(HPUXConnect i onResour ce).

23

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

IJ'I
EquipmentCommand TaROQeL System
A A
zecallz> !
Resdurce | EAUDmenthriver :
: 7
ConnectionResowrce @

ProtocolDriver

HPUXConnectionResource

Figure 8: Equipment Driver example (HPUXConnect i onResour ce) typical class diagram.

i. com.hp.spain.connection.ProtocolDriver Class

A “Protocol Driver” is a class whose instance encapsulates a single TCP/IP connection, and is in charge
of performing the most basic operations at low level, that is: establishing and closing the connection,
sending and reading data from it, and encoding and decoding those data as needed by the Target
System interface. Generally speaking, a Protocol Driver provides partial or total independence from the
Application Layer of the OSI model. Entrusting this task on the Protocol Driver allows the programmer to
reuse network protocol dependant functionality and the same Equipment Driver with different
communication protocols.

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols.

See com.hp.spain.connection.ProtocolDriver Class for further information.

ii. com.hp.spain.connection.EquipmentCommand Class

This class encapsulates the information needed to execute a command on the Target System, that is, to
construct the string to be sent, send it and read its output, interpret it, and extract information from it. See
Error! Reference source not found.com.hp.spain.connection.EquipmentCommand Class for further
details.

iii. com.hp.spain.connection.EquipmentDriver Class

This class contains the functionality needed to execute a command on the Target System represented as
an Equi pment Conmand, that is, construct the string to be sent, send it, and process its output. It also
contains some basic connection operations, such as establishing a connection, closing a connection, and
authenticating. See Error! Reference source not found.com.hp.spain.connection.EquipmentDriver
Class for further information.

24

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

iv. com.hp.spain.connection.Resource Class

This interface represents a basic pooled object. Defines the operations needed to manage an object

belonging to a pool. See Error! Reference source not found.com.hp.spain.connection.Resource
Class for further information.

v. com.hp.spain.connection.ConnectionResource Class

This class implements an EquipmentDriver as a pooled object. It implements the functionality defined by
Resour ce using the operations provided by Equi pment Dri ver, that is, executing commands and
basic connection operations. See Error! Reference source not
found.com.hp.spain.connection.ConnectionResource Class for further information.

3.1.1.2. Equipment Driver inside the ECP

The following diagram shows the relation of

[Pooled Connection only
[Direct Connection onlky
[Eoth Pocled & Direct Connection

SubPool

F

Cecreate> =

Pool | gl PoolManager
=5

-
-

<<call==". Jcal==

RmiECcpService

’ o
_E=create=>

Figure 9: An example Equipment Driver (HPUXConnect i onResour ce) and its relation with the ECP.

25

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3.1.2. Equipment Driver Generic

This driver is a usefull class to avoid the implementation of the different driver’s states. Then when the
developer has to make a new driver just focus on the equipments requirements.

The driver has to extend the class com.hp.spain.connection.EquipmentDriverGeneric and overwrite next
methods. Some of them are optional.

void verifyloggedin(): optional. Makes the verification when the driver status is loggedin

void verifyConnected(): optional. Makes the verification when the driver status is connected
void verifyConfigMode(): optional. Makes the verification when the driver status is configMode
void verifyUnknownMode(): optional. Makes the verification when the driver status is unknown
void enterConfigMode(): optional. Execute the commands required to config the connection
void exitConfigMode(): optional. Execute the commands required to unconfig the connection
void logout(): optional. Executes the commands to logout the connection

void initalizeSpecificParameters(String specificParameters): optional.

void waitForloginUserPrompt(): usually required for protocol without authentication support. Synchronize
the login prompt.

void waitForloginPwdPrompt(): usually required for protocol without authentication support. Synchronize
the login password.

void waitForlnitialCommandPrompt(): usually required. Synchronize the initial prompt.

3.1.3. Equipment Driver Deployment

The Equipment Driver may have to be deployed in two different paths, depending on the type of
connection used.

For Pooled Connections, the Equipment Driver jar and its dependencies must be placed inside the
$ECP_LI B directory, and the ECP Service restarted. The ECP Service should be restarted whenever that
directory contents are modified for the ECP to incorporate the changes. For the Equipment Driver to be
instantiated a Static or Dynamic Pool which uses that Equipment Driver must be created and depending
on the ECP configuration, even a Commands Template executed against it.

For Direct Connections, the Equipment Driver jar and its dependencies must be placed inside the

$ACTI VATOR_THI RD_PARTY/ | i b directory. The Micro Workflow Manager and the Resource Manager
must be restarted for the changes to take effect. The Micro Workflow Manager and the Resource
Manager should be restarted whenever that directory contents are modified. A Commands Template must
be executed for the Equipment Driver to be instantiated.

3.1.4. Available Equipment Drivers

The following Equipment Drivers have been already developed and are available:

26

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Tested On Use Case
Equipment Driver
Manvufacturer Model Sw/Fw Type Context Operations Protocol
Version
Catalyst 2960 Series ’ {
SRR R : Switch. Unknown Models | . VLAN Contiguration,
cisco-ovsa-plugin Cisco Ethernet Switch Level 2 Network ACL's, DHCP Telnet
Catalyst 4503 Switch ?
7.1
oxe-ovsa-plugin Alcatel-Llucent ~ |OmniPCX Enterprise Communications Server VolP Telephone Char?nf—:‘l . Telnet
31 Exchange Administration
Provider Router Configuration
juniper-ovsa-driver |Juniper Networks |[M40e ? Router :\Pl/e:v“:l-i Accoss Configuration SSH
Rou;:;r diagnosis
teldat-ovsa-driver Teldat Atlas 250 ? Router Client Router dC.onflgurahon Telnet
iagnosis
2801 Infegrated Services |,
Router ’) .
cisco-ovsa-driver Cisco Router Client Router g.onflgurohon Telnet
2621XM Multiservice » lagnosis
Router ’
Catalyst 3560-24TS ?
Catalyst 3560-48TS ? - -
catalyst-ovsa-driver |Cisco Ethernet Switch Client Router dC.onflgurahon Telnet
Catalyst 3550-24-EMI ? 1agnosis
Catalyst 3550-12G ?
RS1100 ?) :
riverstone-ovsa-driver |Riverstone Router Client Router Configuration Telnet

RS 3100

diagnosis

Notice that this list includes only the precise versions of the Target Systems against which a certain driver
has been or is being used in a production environment. These drivers might be compatible as is with
some other Target Systems or versions, or might be easily adapted to them.

3.1.5. Generic Template Equipment Driver

This driver is able to connect to any type of equipments using some variables or templates. The most
important fearture of this driver is the capability to connect any equipment and not require any java

development.

This equipment driver is configured using the class com.hp.spain.connection.TemplateDriver. We can
configure this driver adding into the DriverSpecificParameters the extra variables on properties format or
referring fo the Common Configuration.

The next 5 templates that can be configured into the database or into a file, finding first in database.

LOGIN_TEMPLATE: template to make the login (note: this template has sense in protocol driver that
doesn’tmakes the authentication)

27

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

LOGOUT_TEMPLATE: the logout template, typically the exit command
ENTER_CONFIG_MODE_TEMPLATE: the template to configure all the sessions attributes required.
EXIT_CONFIG_MODE_TEMPLATE -> the template to unconfigure

VERIFY_TEMPLATE: template to verify if the connection is ok.

These templates will receive the parameters configured into the DriverSpecificParameters and the next
parameters configured into the subpool:

USER: user name

PASSWORD: user password
PASSWORD_ENABLE: password enable
HOST: ip host value

Also, next variables can be define to make easier the templates:
LOGIN_USER_PROMPT: synchronize the driver with the login prompt.
LOGIN_PWD_PROMPT: synchronize the driver with the password prompt.
INITIAL_PROMPT: synchronize the driver with the inital prompt.

Also, this driver has the capability to add error patterns, failure patterns, non error patterns and error
message to all the commands that are executed into a command template. In case, it's required to add
these patterns to the connections templates (LOGIN_TEMPLATE, ENTER_CONFIG_MODE_TEMPLATE, ...)
the variable ADD_PATTERNS_CONNECTION_TEMPLATES has to be setted to true.

The only requirement to set these patterns is define variables with next prefix:

ENDSTRING_PATTERN

ERROR_PATTERN

FAILURE_PATTERN

NONERROR_PATTERN

ERROR_MESSAGE: in this case only can be defined one and the variable is required to have this name.

3.1.5.1. Connection

28

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

wait login prompt?

priitool is able to authenticatef

send user
wait passwor prompt

send passwaord

i execute login template ‘J i execute login template ‘J
{ wait inital prompt 3

Gxer:ute enter config mode templata

When the driver starts the connection the first step is to check if the LOGIN_USER_PROMPT is configured.
In that case, synchronize this prompt. After that, the LOGIN_TEMPLATE is executed if it's configured. If not

and the protocol driver doesn’t support authentication, send the user, synchronize the password prompt
(LOGIN_PWD_PROMPT) and send the password.

In this moment, the driver is authenticated and in case the INITIAL_PROMPT is configured the driver
synchronizes the initial prompt.

Usually, when the protocol supports the authentication (for example, ssh) it's only necessary to configure
the INITIAL_PROMPT and not the LOGIN_TEMPLATE and neither LOGIN_USER_PROMPT.

After synchronize the INITIAL_PROMPT the driver execute the ENTER_CONFIG_MODE_TEMPLATE and
finally executes the VERIFY_TEMPLATE.

In this moment, the driver is connected and ready to be used.

29

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3.1.5.2. Disconnect

Gxev:ute exit mode templat?

Gxecute logout templata

First, the driver execute the template EXIT_CONFIG_MODE_TEMPLATE and after that the
LOGOUT_TEMPLATE.

3.1.5.3. Examples of DriverSpecificParamters

Telnet easiest configuration:

LOGOUT_TEMPLATE=logout.vm
LOGIN_USER_PROMPT=.*login\:
LOGIN_PWD_PROMPT=. *password\:
INITIAL_PROMPT=C\:. *\>

Ssh easiest configuration:

INITIAL_PROMPT=#
Telnet using login template and patterns:

LOGOUT_TEMPLATE=logout.vm
LOGIN_USER_PROMPT=.*login\:

30

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

LOGIN_TEMPLATE=login.vm
VERIFY_TEMPLATE=/opt/HP/OV/ECP/templates/verify.vm
ENDSTRING_PATTERN= C\:.*\>
ERROR_PATTERN_1=ERROR [0-9]+ .*
ERROR_PATTERN_2=[0-9][0-9] ERROR .*
FAILURE_PATTERN_1=FAILURE [0-9]+ .*
FAILURE_PATTERN2=[0-9][0-9] FAILURE .*
ERROR_MESSAGE=error message
NONERROR_PATTERN_1=Warning .*

Ssh using enter mode config template and patterns:

LOGOUT_TEMPLATE=logout_ssh.vm
LOGIN_TEMPLATE=login.vm
ENTER_CONFIG_MODE_TEMPLATE=enterConfigMode.vm
EXIT_CONFIG_MODE_TEMPLATE=exitConfigMode.vm
VERIFY_TEMPLATE=/opt/HP/OV/ECP/templates/verify_ssh.vm
INITIAL_PROMPT=\\[forge\\]\\'$
ENDSTRING_PATTERN=\\[forge\]\\'$
ERROR_PATTERN_T1=ERROR [0-9]+ .*
ERROR_PATTERN_2=[0-9][0-9] ERROR .*
FAILURE_PATTERN_1=FAILURE [0-9]+ .*
FAILURE_PATTERN2=[0-9][0-Q] FAILURE .*
ERROR_MESSAGE=error message
NONERROR_PATTERN_1=Warning .*

3.2. ECP Service Process

3.2.1. Starting ECP Service

To start the ECP Service, use the following:

31

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Windows:

On Unix:

3.2.2. Stopping ECP Service

To stop the ECP Service, use the following:

Windows:

On Unix

3.2.3. Restarting ECP Service

Just stop and start the ECP Service.

3.2.4. Checking ECP Service

To check the ECP Service, use the following:

Windows:

On Unix:

3.3. Use Examples

What follows is a series of examples of ECP Clients. In those examples, the following class, simulating a
client configuration, is used. You will probably have some other particular way of obtaining the
configuration. Notice that, depending on the connection type, not all of the configuration parameters are
needed:

32

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

return Over M ni munConnTi neout ;

}
public static String get Password() {

return Password;

public static String get PasswordEnabl e() {
return Passwor dEnabl e;

}

public static String get Pool Nane() {
return Pool Nane;

}

public static int getPool Ti meout () {
return Pool Ti meout ;
}

public static int getPort() {
return Port;
}

public static String getProtocol () {
return Protocol;

public static int getReservedConnTi meout () {
return ReservedConnTi neout ;

}

public static String get Tenplate() {
return Tenpl at e;

}

public static int getQeuel) {
return Queuel D
}

}

3.3.1. Creating and Using an Static Pool

|ll

In the source examples a Pool called “examplePool” will be used. What follows is a quick guide to create
a Pool. Refer to the document “OVSA SPI for Service Providers - ECP Administration GUI - User Reference”
for details on how to administer Pools and SubPools using the ECP GUI.

First, create the Pool (menu “Administrator->Pool->New”)

» Administrator p
» ECP » |» Pool » | » Mew
» Subpool » | » List

Fill in the formulary that will appear.

III

Name: “examplePool”. The Pool ID. Will be used from code to reference to the pool.
Log File: “examplePool.log”. Name of the file were the Pool activity will be logged.
Log Level: info

Maximum Pool Life Time from...: 10000

Weights: 1,2,3,4,5

34

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Pool Creation

»Hame:* |examp\ePDUI | »Log file:* |examp\ePDUI.IUg |

»Log level* [info =] peauests fmeout (30000 |

»Maximum Pool Life Time from its last use (ms):* |D |

Priority weighed queues

Friaritiss: #1 #2 #3 »4 #3
Weights 1 | 2 3 4 5

Save the Pool (menu “Pool->Save”)

» Pool
» Save

ool Creation

»Hame:* |examp\ePDDI | #Log file:* |examp|ePooI.I0g ‘
wLog level:* IInfD j m?:esls Rienie |3EIUUU ‘
»Maximum Pool Life Time from its last use (ms):* ‘D ‘

Priority weighed queues

Prioritie=: »1 2 »3 »d E]
Weights 1 | l2 \ 3 | 4 \ s

After creating the Pool, create a SubPool (menu “Administrator->SubPool->New”)

» Administrator P

» ECP » | » Pool W

» Subpool » | » Mew
» List

Fill in the formulary that will appear.

Pool Name: “examplePool”. The Pool to which this SubPool belongs.

Min. Sessions: 10

Max Sessions: 100

Init Sessions: 1

Temporary Sessions life Time=1000000

Max. Sessions use time= 100000000

The rest of the values are dependent on the Target System. These values are given as an example

Equipment Connection Resource Class: Class of the Equipment driver. For example:
“com.hp.spain.connection.RiverstoneRSConnectionResource”

IP: Target System IP. For example: 172.16.2.111

Protocol: Protocol Driver to use. For example: telnet

Port: Port to connect through to the Target System. For example: 23
User: User Name to log info the Target System. For example: admin

Password: Password to log into the Target System.

35

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

» Subpoal

SubPool Creation

»Pool name:*

= 1P

»Uszer:”

»Pagsword of enable:
»Min. Sessions™

= Init. Sessions:*

» Driver specific parameters:*

SubPool Creation

» Equipment connection resources class:*

exampleFool

n.RiverstoneRSConnectionFesource| »Protocol:* telnet j

16.38.0.138 » Port:* 23

admin »Password = ssssssses

sesssnnee » Max. Sessions:* 3

1 » Temporary sessions life time (ms):* 30000

1 » Max. Sessions use time (ms):* 1800000

’I [—|
H

Save the SubPool (menu “SubPool->Save”)

» Subpool
» Save

» Pool name:*

wlPs*

»User:*

» Password of enable:
» Min. Sessions:*

» Init. Sessions:*

» Driver epecific parameters:*

» Equipment connection resources class:*

examplePool

n RiverstoneR3ConnectionResource| » Protocolk* telnet j

16.38.0.738 » Ports* 23

admin » Password :* CITTITTTT)

LITTTTTTT » Max. Sessions:” K]

1 » Temporary sessions life time (ms):* 30000

1 » Max. Sessions use time (ms)* 1800000
=l
[

What follows is an example of static Pool use:

i mport
i mport
i mport
i mport
i mport
public

publ i

par ser

package com hp. spai n. connecti on. pool . exanpl es;

java. util . HashMap;

connecti on
connecti on
connecti on
connecti on

com hp.
com hp.
com hp.
com hp.

spai n.
spai n.
spai n.
spai n.

. CLI Commands;

. CLI Executi onExcepti on;

. Tenpl at ePar ser

. Tenpl at ePar ser Except i on

cl ass StaticPool ConnExanpl e {

c static void main (String[] args) throws CLIExecuti onException

Tenpl at ePar ser Excepti on {

HashMap oRet=null; //the Operation execution result
Tenpl at eParser parser; //the ECP Tenpl ate Parser instance
CLI Conmands cli Conmands; //the ECP Operation Engi ne instance

/1 ECP Tenpl ate Parser instantiation and configuration
par ser =new Tenpl at ePar ser () ;

/1 ECP Qperation Engine instantiation and configuration
cl i Commands
. par seTenpl at e(Exanpl esConf i gurati on. get Tenpl ate());

[/ ECP i nst ance
cl i Conmands. set RM Host Nanme(Exanpl esConf i gurati on. get ECPHost ()) ;
cl i Commands. set RM Port (Exanpl esConfi gurati on. get ECPPort ());

/] Operation execution

36

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

oRet =cl i Commands. execut e(Exanpl esConfi gur ati on. get Pool Nane(),
Exanpl esConfi gurati on. get Qeuel X)) ;
/I & her possible executions woul d have been:

/I oRet =cl i Commands. execut eActi vati on(Exanpl esConf i gurati on. get Pool Nanme(),
Exanpl esConfi gurati on. get Qeuel X)) ;
/I oRet =cl i Conmands. r evert (Exanpl esConf i gur ati on. get Pool Nanme() ,
Exanpl esConfi gurati on. get Qeuel D()) ;

/I oRet =cl i Commands. i nver seActi vati on(Exanpl esConf i gurati on. get Pool Nane(),
Exanpl esConfi gurati on. get Qeuel X)) ;

/ | Executi on Cut put
System out . println("RESULT HASHVAP: ") ;
System out . printl n(oRet);
System out . printl| n(" COWWANDS SENT: ") ;
System out . printl n(cli Commands. get CommandsSent ()) ;
System out . println("STDOUT: ") ;
System out . println(cli Comrmands. get StdCut ());
}
}

To execute the example, run the following command, where <cl asspat h> should contain all the
libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled. The
java version must be 1.4.2.

java -cl asspat h <cl asspat h>
com hp. spai n. connect i on. pool . exanpl es. St at i cPool ConnExanpl e

3.3.2. Creating and Using a Dynamic Pool

It is possible to create a Pool programmatically, indicating its properties as part of an Operation
Execution. Programmatically created pools are called “Dynamic Pools” and are usually temporary. See
Dynamic Pools for a more detailed explanation.

package com hp. spai n. connect i on. pool . exanpl es;
i nport java.util.HashMap;

i mport com hp. spai n. connect i on. CLI Conmands;

i mport com hp. spai n. connecti on. CLI Execut i onExcept i on;

i mport com hp. spai n. connecti on. Tenpl at ePar ser ;

i mport com hp. spai n. connect i on. Tenpl at ePar ser Excepti on;

i mport com hp. spai n. connect i on. pool . Dynani cEcpProperti es;

public cl ass DynPool ConnExanpl e {

public static void main (String[] args) throws CLIExecuti onExcepti on,
Tenpl at ePar ser Excepti on {
HashMap oRet=null; //the COperation execution result
Tenpl at eParser parser; //the ECP Tenpl ate Parser instance
CLI Commands cl i Commands; //the ECP Operation Engine instance
Dynami cEcpProperties oDynProps;

/I ECP Tenpl ate Parser instantiation and configuration

37

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

par ser =new Tenpl at ePar ser () ;

/| Tar get System Dat a

par ser . set Host nanme(Exanpl esConf i gur ati on. get Host nanme()) ;

par ser . set Port (Exanpl esConfi gurati on. getPort());

par ser. set Logi n(Exanpl esConfi gurati on. get Logi n());

par ser. set Passwor d(Exanpl esConf i gur ati on. get Passwor d()) ;

par ser . set Passwor dEnabl e(Exanpl esConf i gur ati on. get Passwor dEnabl e()) ;

/I ECP Operation Engine instantiation and configuration
cli Commands =
par ser. par seTenpl at e(Exanpl esConfi gurati on. get Tenpl ate());
/I Equi pnent and Protocol Drivers
cl i Conmands. set Pr ot ocol (Exanpl esConf i gurati on. get Prot ocol ());

cl i Commands. set Connect i onResour ceCl assNane(Exanpl esConf i gur ati on. get Connect
i onResour ceC assNane()) ;
/I Pool i ng Data
cl i Commands. set Dynam cPool Name(Exanpl esConf i gur ati on. get Pool Name()) ;
[loptional. By default dynami c pool names are autogenerated.
oDynProps= cl i Commands. get Dynani cEcpProperties();
oDynPr ops. set Pool Confi gurati on(Exanpl esConfi gur ati on. get MaxCon(),
/I maxi mum nunber of connections to be contained in the pool
Exanpl esConfi gurati on. get M nCon(), //m ni mum nunber of
connections to be contained in the pool
Exanpl esConfiguration.islnitOnCreate(), //initialize on
instantiation, instead of on firs use
Exanpl esConfi gurati on. get Over M ni munConnTi neout (), //Not used
ti meout of connections over the m ni mum (ns)
Exanpl esConfi gurati on. get Reser vedConnTi neout (), //maxi mumtine a
connection may be in use by an Operation (ns)
Exanpl esConfi gurati on. get Pool Ti neout () //Not used tineout for
t he pool
)
| ECP i nstance
cl i Commands. set RM Host Name(Exanpl esConf i gur ati on. get ECPHost ()) ;
cl i Commands. set RM Port (Exanpl esConfi gurati on. get ECPPort ());

[Equi pnent Driver additional initialization paraneters
oDynPr ops. set Speci fi cPar anet er s(Exanpl esConf i gurati on. get Addi ti onal Data()) ;

/] Operation execution

oRet =cl i Conmands. execut e(oDynPr ops,
Exanpl esConfi gurati on. get Qeuel X)) ;

[l & her possible executions woul d have been:

/] oRet =cl i Commands. execut eActi vati on(oDynProps,
Exanpl esConfi gurati on. get Qeuel X)) ;

/I oRet =cl i Conmands. r evert (oDynPr ops,
Exanpl esConfi gurati on. get Qeuel ()) ;

/] oRet =cl i Commands. i nver seActi vati on(oDynProps,
Exanpl esConfi gurati on. get Qeuel ()) ;

/| Executi on Qut put

System out . printl n("RESULT HASHVAP: ") ;

System out . printl n(oRet);

System out . print| n(" COWANDS SENT: ") ;

System out . printl n(cli Conmands. get ConmandsSent ()) ;
System out . printl n("STDOUT: ") ;

System out . printl n(cli Commands. get StdQut ()) ;

38

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

}
}

To execute the example, run the following command, where <cl asspat h> should contain all the
libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled. The
java version must be 1.4.2.

java -cl asspat h <cl asspat h>
com hp. spai n. connecti on. pool . exanpl es. DynPool ConnExanpl e

3.3.3. Using Direct Connections

It is possible to bypass the ECP Service when executing a Commands Template. See Direct Connections
(Not Pooled Connections) for a detailed explanation.

package com hp. spai n. connecti on. pool . exanpl es;
i mport java.util.HashMap;

i mport com hp. spai n. connecti on. CLI Conmmands;

i mport com hp. spai n. connecti on. CLI Execut i onExcept i on;

i mport com hp. spai n. connecti on. Connecti onResour ce;

i mport com hp. spai n. connecti on. Tenpl at ePar ser ;

i mport com hp. spai n. connecti on. Tenpl at ePar ser Excepti on;

public class Direct ConnExanpl e {

public static void main (String[] args) throws CLI Executi onExcepti on,
Tenpl at ePar ser Excepti on {
HashMap oRet=null; //the Operation execution result
Tenpl at eParser parser; //the ECP Tenpl ate Parser instance
CLI Conmands cli Conmands; //the ECP Operation Engi ne instance

/I ECP Tenpl ate Parser instantiation and configuration

par ser =new Tenpl at ePar ser () ;

/| Target System Dat a

par ser . set Host nanme(Exanpl esConf i gur ati on. get Host nanme()) ;

par ser . set Port (Exanpl esConfi gurati on. getPort());

par ser . set Logi n(Exanpl esConfi gurati on. get Logi n());

par ser. set Passwor d(Exanpl esConf i gur ati on. get Passwor d()) ;

par ser. set Passwor dEnabl e(Exanpl esConf i gur ati on. get Passwor dEnabl e()) ;

/I ECP Operation Engine instantiation and configuration
cl i Commands =
par ser. par seTenpl at e(Exanpl esConfi gurati on. get Tenpl ate());
/I Equi prrent and Protocol Drivers
cl i Commands. set Pr ot ocol (Exanpl esConf i gurati on. get Prot ocol ());

cl i Conmands. set Connect i onResour ceCl assNane(Exanpl esConfi gur ati on. get Connect
i onResour ceC assNane()) ;

[Equi pnent Driver additional initialization paraneters
HashMap oAddPar ans= new HashMap() ;

oAddPar ans. put (Connect i onResour ce. Def aul t Par amet er Nanes. speci fi cPar anet ers,
Exanpl esConfi gurati on. get Addi ti onal Data());

39

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

cl i Commands. set Equi pnent Dri ver Addi ti onal Par anmet er s(oAddPar ans) ;

/] Operation execution

oRet =cl i Conmands. execut e() ;

[l & her possible executions woul d have been:
/ / oRet =cl i Cormands. execut eActi vation();

[/ oRet =cl i Cormands. revert ();

[/ oRet =cl i Commands. i nver seActi vation();

/ | Executi on Cut put
System out . println("RESULT HASHVAP: ") ;
System out . printl n(oRet);
System out . printl| n(" COWWANDS SENT: ") ;
System out . println(cli Cormands. get CommandsSent ()) ;
System out . println("STDOUT: ") ;
System out . println(cli Comrands. get StdCut ());
}
}

To execute the example, run the following command, where <cl asspat h> should contain all the
libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled plus
the path where the Equipment Driver libraries are located. The java version must be 1.4.2.

java -cl asspath <cl asspat h> -Dactivator.dir.confi g=$ECP_ETC
com hp. spai n. connecti on. pool . exanpl es. Di r ect ConnExanpl e

3.4. Monitoring ECP through JMS

ECP can be monitored through JMS. JMS is a specification which defines a messaging API. Two version
of the specification have been produced so far: 1.1 and the now obsolete 1.0.2b.

Depending on your system, you might have to use JMS version 1.0.2b or 1.1. For example, JBoss-4.x
supports the JMS1.1 version of the specification, while JBoss-3.2.x supports JMS1.0.2b. From 3.2.8,
JBoss also supports IMS1.1. If your system does not impose a JMS version, version 1.1 is recommended.
JMS 1.1 is backwards-compatible that is, a JMS 1.0.2b client will work with a JMS 1.1 provider and a
JMS 1.1 provider will work as a JMS 1.0.2b provider.

3.4.1. Including Additional Data in Activation JMS Messages:

JMS Activation monitoring messages won't be sent unless the client issuing the activation establishes some
data to be included in the messages. When receiving the JMS messages through a JMS client, the data
established by the ECP client will be received. This provides a way for the ECP client to communicate with
the JMS Client. The JMS Client will typically use this information to filter the messages it will receive (see
JMS Documentation for additional information on this issue).

The following example shows how to establish the data to be sent in the messages.

package com hp. spai n. connect i on. pool . exanpl es;

i mport java.util.HashMap;
i mport java.util.Mp;

i nport com hp. spai n. connecti on. CLI Conmmands;

i mport com hp. spai n. connecti on. CLI Execut i onExcept i on;

i mport com hp. spai n. connecti on. Tenpl at ePar ser ;

i mport com hp. spai n. connecti on. Tenpl at ePar ser Excepti on;

40

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

i nport com hp. spai n. connecti on. confi gurati on. ECPSendi ngMessageConfi gur ati on
public class JMSMessagesActi vati onExanpl e {

public static void main (String[] args) throws CLI Executi onExcepti on,
Tenpl at ePar ser Excepti on {
HashMap oRet=nul|l; //the Operation execution result
Tenpl at eParser parser; //the ECP Tenpl ate Parser instance
CLI Commands cl i Commands; //the ECP Operation Engi ne instance

/I ECP Tenpl ate Parser instantiation and configuration
par ser =new Tenpl at ePar ser () ;

[I ECP Operation Engine instantiation and configuration
cl i Commands =
par ser. par seTenpl at e(Exanpl esConfi gurati on. get Tenpl ate());

[/ ECP i nst ance
cl i Commands. set RM Host Nanme(Exanpl esConf i gur ati on. get ECPHost ()) ;
cl i Commands. set RM Port (Exanpl esConfi gurati on. get ECPPort ());

//Set the content to include in the JM5 Monitoring nessages

Map nmessagesConfi gurati on=new HashMap(); //The nessages configuration

cl i Commands. set MsgsSpeci fi er (messagesConfi guration); //establish the
messages configuration

Map nessagesAddi ti onal Cont ent s=new HashMap(); //The nessages
addi ti onal data

nmessagesConfi gur ati on. put (ECPSendi ngMessageConf i gur at i on. MVSGSPEC PROPI D_JNMS
PROPERTI ES, nessagesAdditional Contents); //Include the additional nessage
contents in the nessages configuration.

[/ Add the messages additional data
nmessagesAddi ti onal Cont ent s. put ("par1", new Integer(1));
messagesAddi ti onal Cont ents. put (" par2", "val 2");

/] Operation execution
oRet =cl i Commands. execut e(Exanpl esConfi gur ati on. get Pool Nane(),
Exanpl esConfi gurati on. get Qeuel D()) ;

/| Executi on Qut put

System out . printl n("RESULT HASHVAP: ") ;

System out . printl n(oRet);

System out . printl n(" COUWANDS SENT: ") ;

System out . printl n(cli Cormands. get CommandsSent ()) ;
System out . printl n("STDOUT: ") ;

System out. println(cli Coomands. get StdQut ());

41

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3.4.2. JMS Client Dependencies

3.4.2.1. Integrating with another JMS provider

If your system does impose a JMS version (usually because it provides a JMS implementation), you will
have to include the following library:

activeng-core-4.1.1.jar

The previous jar has a runtime dependency with the following jars. You may also have to include them if
your system does not.

backport-util-concurrent-2.1.jar
conmons- | oggi ng-1. 1. j ar
ger oni no-j 2ee- managenent _1. 0_spec-1.0. j ar

Those libraries provide the Active MQ 4.1.1 implementation of JMS, but do not include a JMS definition.
As the JMS API version is imposed by your system, you should include one of your system libraries to
provide the API definition. Check your system documentation to know which library to include. JBoss
provides the following jars:

j boss-j 2ee. jar
j bossal |l -client.jar

Both jars include the JMS API definition. Use whichever you find more convenient, but not both.

3.4.2.2. No other JMS provider

If your system does not impose a JMS version (it does not include at least a runtime JMS API definition),
you may use the JMS API version provided by Active MQ 4.1.1. You will have to include the following
library

apache-activeng-4.1.1.jar

3.4.3. JMS Client Examples

What follows is a series of examples of JMS clients which work as ECP Monitors. In those examples, the
following class, simulating a configuration, is used. You will probably have some other particular way of
obtaining the configuration.

package com hp. spai n. connect i on. pool . exanpl es;
i nport java.util.Hashtabl e;

i mport j avax. | nms. Sessi on;
i mport j avax.nam ng. Cont ext ;

public class JMSClient Configuration {
private static final Hashtabl e contextEnvironnent;
private static final bool ean admi ni st eredConnecti onFact ory;

private static final String connectionFactoryJND Nane;
private static final String connectionFactoryURL;

(@]

private static final bool ean transactedSessi on;
private static final int acknow edgeMde;

private static final String destinati onJNDI Nane;

42

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3.4.3.1. JMS 1.0.2b Client Example

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3.4.3.2. JMS 1.1 Client Example

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

public static void main(String[] args) throws Exception{
Initial Context context;
Connecti onFact ory connecti onFactory;
Connecti on connection
Sessi on sessi on;
Destination destination
MessageConsumer nessageConsuner ;
MapMessage nessage;

/I nam ng context for adm nistered objects
context = new
Initial Context(JVMSO i ent Configuration. get Cont ext Environnent ());

//the connection factory i s obtained
connecti onFactory = (Connecti onFactory)
cont ext . | ookup(JMSC i ent Confi gur ati on. get Connecti onFact or yJNDI Nane()) ;

//the connection is created

connecti on = connecti onFactory. creat eConnecti on();

//the session is craeted

session =
connecti on. cr eat eSessi on(JMSCl i ent Confi gurati on. i sTransact edSessi on(),
JMBd i ent Confi guration. get Acknowl edgeMbde()) ;

//the destination is obtained
destination = (Destination)
cont ext . | ookup(JMSC i ent Confi gurati on. get Desti nati onJNDI Narme()) ;

//the nessage receiver is created

messageConsuner = session. cr eat eConsuner (desti nati on
JMSCl i ent Confi gurati on. get Consuner MessagesFil ter (),
JMBCd i ent Confi guration.i sRecei veLocal Messages());

[lstart to receive nessages
connection.start();

[Iwait for a nessage
Systemout.println("Waiting for nessage.");
message= nul | ;
nessage=
(MapMessage) nessageConsuner . recei ve(JMSCl i ent Confi gur ati on. get MessageRecept i
onTi meQut ());
i f (nmessage! =null){
/I process the nessage
System out . printl n("Recei ved nmessage

+ nmessage.toString());

/I acknow edge t he nessage.

/I Acknow edgi ng a consuned nessage acknowl edges all nessages
that the session has consuned.

[/ This call can be onmitted for both transacted sessi ons and
sessions specified to use inplicit

/I acknow edgenent npdes. However, extra care nust be taken when
omtting nessage

/I acknow edgenent as nmessages that have been received but not
acknow edged may be redelivered.

// Addi tionally, when client acknow edgnent node is used, a
client may build up a | arge nunber

/I of unacknow edged nessages while attenpting to process them

46

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

[/ This call can be nade before processing the nessage, if
message | osses are tol erated.
nmessage. acknow edge() ;

}
el se {
Systemout. println("No nessage was received.");
}
//clean up

messageConsuner. cl ose() ;
connecti on. stop();
session. cl ose();
connecti on. cl ose();

System out. println("FI N SHED. ") ;

}
}

3.4.3.3. Processing Additional Data Included In Activation JMS Messages

When processing a JMS message, the additional data included by the client who issued the activation
can be extracted by the JMS Client. The additional data is contained as named values inside the
MapMessage. Extracting the data is a simple process:

message. get Stri ng("par");

3.4.4. ECP Messages Types

To ease client implementation, JMS provides the means to filter the messages that a
MessageConsuner/ Topi cSubscri ber will receive. See the IMS documentation for further details.

ECP Messages will always be instances of MapMessage.

All messages will contain a Header Property, with the name

com hp. spai n. connect i on. noni t or . ressages. ECPMessage. Event | DFi el d. Nane

and whose value will identify the type of message. The information available in a message will vary,
depending on the type of message.

3.4.4.1. DataSent Message

If the message header property of name

com hp. spai n. connecti on. noni t or . ressages. ECPMessage. Event | DFi el d. Nane

has the value

com hp. spai n. connecti on. noni t or . ressages. Dat aSent Message. Event | DFi el d. Val ues
. Dat aSent

the message is a DataSent Message. Than type of message will be sent every time the protocol driver is
instructed to send data to the equipment.

The message header property of name

com.hp.spain.connection.monitor.messages.DataSentMessage. EventDataField. Name

will contain the data sent.

47

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3.4.4.2. DataReceived Message

If the message header property of name

| com hp. spai n. connecti on. noni t or. nessages. ECPMessage. Event | DFi el d. Nanme

has the value

com hp. spai n. connecti on. noni t or. nessages. Dat aRecei vedMessage. Event | D. Val ues.
Dat aRecei ved

the message is a DataSent Message. Than type of message will be sent every time the protocol driver is
instructed to receive data from the equipment.

The message header property of name

com.hp.spain.connection.monitor.messages. DataReceivedMessage.EventDataField.Name

will contain the data received.

48

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

4. Configuration

Some of the configuration parameters will affect multiple ECP entities. As a consequence, it is
recommended to check the indicated cross references to avoid collateral effects when modifying a
parameter.

4.1. Common Configuration Sources

4.1.1. ProtocolDrivers.lst File

This file will configure the ProtocolDrivers to register and use (see Protocol Drivers Manager
Configuration). The Pr ot ocol Dri vers. | st file should be located in the path <ecp_hone>\ conf by
default, being <ecp_hone> the ECP installation directory (see ECP RMI Service Command Line
Parameters). The default location may be overwritten through the system property
activator.dir.config (see ECP RMI Service Command Line Parameters). The file specifies the
protocol driver classes, containing a single string with the following syntax:

<protocol driver _|ist>:=<protcol _driver>{<sep><protcol driver>}
<sep>: =, |:]|;

Where <pr ot ocol _dri ver > is the fully qualified name of the protocol driver class. It must implement
com hp. spai n. connect i on. Pr ot ocolDriver.

4.1.2. HPSA_ECPMESSAGESPATTERNS

| DVESSAGE: Message Identifier. Mandatory. The sequence HPSA ECPMESSAGESPATTERNS_SEQ
should be used to establish the values of this field.

CONNECT! ONRESOURCECLASSNAME: Canonical name of the equipment driver class to which the pattern
applies. nul | if the pattern should be applied to all the drivers (and the protocol indicated by
PROTOCOL).

PROTOCOL: Identifier of the protocol to which the pattern applies. nul | if the pattern should be applied
to all the protocols (and the driver indicated by CONNECTI ONRESOURCECL ASSNANE).

TYPE: Reserved. Always nul | . In a future this field might be use to further restrict the scope of the
pattern, i.e.: failures, errors...

RESPONSEPATTERN: Regular expression to be used to identify the message to return and to generate that
message, as defined in Java 1.4 j ava. util . regex. Patt ern. If the command response matches the
pattern, the message generated will contain the command response with all the matches replaced with the
replacement established in r esponseRepl acenment . Mandatory.

RESPONSEREPL ACENMENT: Replacement value as defined in Java 1.4
java. util.regex. Mat cher #appendRepl acenent (StringBuffer, String) which will be
used to replace all the matches of r esponsePat t er n (if any) in the generated message. Mandatory.

49

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

4.1.3. HPSA_ECPCOMMANDSPATTERNS

| DCOVMAND: Command Identifier. Mandatory. The sequence HPSA_ECPCOMVANDSPATTERNS_SEQ
should be used to stablish the values of this field.

TYPE: Reserverd. Always nul | . In a future this field might be use to further restrict the scope of the
pattern, i.e.: failures, errors...

COMVANDPATTERN: Regular expression fo be used to identify the message to return and to generate that
message, as defined in Java 1.4 j ava. util.regex. Patt ern. If the associated command response is
matched, the command will be matched with this pattern and all the matches (if any) will be replaced by
the replacement established in conmmandRepl acenent . Mandatory.

COMVANDREPL ACENMENT: Replacement value as defined in Java 1.4
java. util.regex. Mat cher #appendReplacement(StringBuffer, String) which will be used to replace all
the matches of conmandPat t er n (if any) in the generated message. Mandatory.

4.1.4. HPSA_ECPMESSAGESCOMMANDS

| DVESSAGE: Message Identifier. Mandatory.
| DCOVMAND: Command Identifier. Mandatory.

4.2. ECP Lib Configuration Sources

4.2.1. ECP Lib Command Line Parameters

ECP Lib uses the following JVM command line parameters:

-Dactivator.dir.config=<ecp_prot_drivers_dir>

<ecp_prot _drivers_dir>: Directory where the Pr ot ocol Dri vers. | st file can be found. This
parameter is mandatory only if direct connections are used. In other case, it is not used. See
ProtocolDrivers.lst File.

4.3. ECP RMI Service Configuration Sources

4.3.1. ECP RMI Service Command Line Parameters

The command line of the ECP RMI Server JVM has the following syntax:

<j ava_exe> -server -Djava.rm.server.codebase=fil e: <ecp_honme>\rm _pub
-Djava.rm .server.|logCal | s=fal se -

D ava. rm . server. host nane=<ecp_rni _server _i p>

-Dj ava. security. policy=<ecp_hone>\ conf\ Rm EcpServi ce. policy -

Dacti vator. dir.config=<ecp_prot_drivers_dir> -classpath <ecp_|ibs>

com hp. spai n. connect i on. pool . server. R EcpServi ce

<ecp_rm _registry server_host> <ecp_rm _registry server_port> <ecp_hone>

50

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

<j ava_exe>: path to the JVM executable file. Of course, it is mandatory.

<ecp_home>: ECP installation directory. This parameter is mandatory. It will be used to establish the
ecp. properties and Rmi EcpSer vi ce. pol i cy files location and the Pr ot ocol Dri vers. | st file
default location. See ecp.properties File and ProtocolDrivers.Ist File.

<ecp_rni _server_i p>: IP of the localhost, used by the locally created stubs to access the RMI server.
Used by the JVM. This parameter is mandatory.

<ecp_rni _registry_server_host >: Host name of the host where the RMI registry is located and
where the ECP RMI service object should be bound. Normally it should refer to the localhost. This
parameter is mandatory.

<ecp_rni _registry_server_port>: Port number where the RMI registry accepts calls and where the ECP
RMI service object should be bound. This parameter is mandatory.

<ecp_l i bs>: all the .jar and .zip files in the directory <ecp_home>\| i b. This parameter is mandatory.

<ecp_prot _drivers_dir>: Directory where the Prot ocol Dri vers. | st file can be found. This
parameter is optional (see ProtocolDrivers.lst File).

4.3.2. ecp.properties File

The ecp. properti es file should be located in the path <ecp_home>\conf, being <ecp_home> the ECP
installation directory (See ECP RMI Service Command Line Parameters). The ecp. pr operti es files may
contain the following properties.

LOG DI R: Logs directory. Most of the log data will be stored there. Its default value is

“C:\ hp\ OpenVi ew\ Ser vi ceActi vator\var\l og” in windows and

“/var/opt/ OV/ Servi ceActivator/log/” in HP-UX. It must end with the path separator
character.This directory should exist and the user which executes the ECP RMI Service JVM must have
writing permission over it. It will establish the Pool LogFi | ePat h (see Pool Instance Specific Logging
Parameters Configuration), ProtocolDriver SpyFi | e (see ProtocolDriver Configuration) and Configurator
Appender (see Configurator Configuration).

LOG_MAX_FI LE_SI ZE: Will configure the Rol | i ngFi | eAppender s (when used) maximum file size (in
bytes) before being rolled over to backup files. Its default value is 5242880 bytes (5MB). See Pool
Logging Common Parameters Configuration and Configurator Configuration.

LOG_MAX_NUM FI LES: Will configure the Rol | i ngFi | eAppender s (when used) maximum backup
index (how many backup files are kept). Its default value is 10. See Pool Logging Common Parameters
Configuration and Configurator Configuration.

LOG_DATE_PATTERN: Will establish the type of Appender s used by the pools and configure the pools
Dai | yRol | i ngFi | eAppender s (when used) rolling date pattern. Its default value is nul I . It must be
nul | or a valid Si npl eDat eFor mat pattern (see
http://java.sun.com/2se/1.4.2/docs/api/java/text/SimpleDateFormat.html). See Pool Logging Common
Parameters Configuration.

LOG_PATTERN: Will configure the messages pattern for the pools and the Conf i gur at or . lts default
value is nul | . See Pool Logging Common Parameters Configuration and Configurator Configuration.

51

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

RELOAD_MAX_TI ME: Will configure the subpools expiration timeout. Its default value is 0. (see
PoolManager Configuration and ECP RMI Service)

MAX_REQUESTS_TO GET_VERI FI ED_RESOURCE: Will configure the maximum number of request to
obtain a positively verified resource. lts default value is 1. Must be >=1. See Pool Common Parameters
Configuration.

DEFAULT_QUEUE_| D: Will configure the default queue to add the resource requests to, if it is not
specified or the specified queue is not found. Its default value is 1. See Pool Common Parameters
Configuration.

MAX_POOLS: Will configure the maximum number of pools that can coexist simultaneously. lts default
value is 0. See PoolManager Configuration.

DI SPATCHER _MAX_RATE: Will configure the maximum number of connections assigned to the whole set
of clients by second. Its default value is 10. See Pool Common Parameters Configuration.

RES_MGR_MAX_RATE: Will configure the maximum number of times per second that the expired
resources will be finalized, the expired temporary resources deleted and the inactive resources
reinitialized. Its default value is 1. See Pool Common Parameters Configuration.

REQ MGR_MAX_RATE: Will configure the maximum number of times per second that the process of
elimination and cancellation of expired resources requests will be executed. Its default value is 0. 1. See
Pool Common Parameters Configuration.

POOL_MGR_MAX_RATE: Will configure the number of times per second that the process of unloading
dynamic expired pools will be executed. lts default value is 0. 1. See PoolManager Configuration.

DYNAM C_POOL_NOT_USED_MAX_TI ME_LI FE: Will configure the default dynamic pools
Not UsedMaxTi neLi f e. lts default value is 0. See Pool Instance Specific Parameters Configuration.

DYNAM C_POOL_REQUEST_TI ME_OUT: Will configure the dynamic pools Request Ti neout . Its default
value is 0. See Pool Instance Specific Parameters Configuration.

DYNAM C_POOL_NUM QUEUES: Will configure the dynamic pools NunQueues. lts default value is 0. See
Pool Instance Specific Parameters Configuration.

DYNAM C_POOL_WEI GHT_QUEUES: Will configure the dynamic pools Wi ght Queues. lts default value
is nul | . See Pool Instance Specific Parameters Configuration.

DYNAM C_POOL_LOG _LEVEL: Will configure the dynamic pools LogLevel . Its default value is 0. See
Pool Instance Specific Logging Parameters Configuration.

DYNAM C_POOCL_| NI T_SESSI ONS: Will configure the dynamic SubPool s default I ni t sessi ons.
Must be an integer value. If it equals 0, then, f al se. In other case, t r ue. lts default value is 0. See
SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DYNAM C_POOL_MAX_SESSI ONS: Will configure the dynamic SubPool s default MaxSessi ons. lts
default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

52

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

DYNAM C_POOL_M N_SESSI ONS: Will configure the dynamic SubPool s default M nSessi ons. lts
default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DYNAM C_POOL_RESOURCE_TI ME_QOUT: Will configure the dynamic SubPool s default
Resour ceTi meout . lis default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DYNAM C_POOL_TEMPORARY_RESOURCES_TIME_OUT: Will configure the dynamic SubPool s default
Tenpor ar yResour cesTi neout . lts default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DB_DRI VER: Fully qualified class name of a j ava. sql . Dri ver to load and register in the JDBC
Dri ver Manager . lts default value is nul | . See DBManager Configuration

DB_USER: The DataBase user on whose behalf the connection is being made. lts default value is nul I .
See DBManager Configuration

DB_PASSWORD: The DataBase user password. Its default value is nul | . See DBManager Configuration

DB_URL: A JDBC DataBase URL with the form: j dbc: <subpr ot ocol >: <subname>. lis default value is
nul | . See DBManager Configuration

ECP. Msgs. Enabl e: Whether de ECP should perform JMS monitoring or not. If this option is disabled,
no JMS monitoring messages will be sent, and the JMS configuration parameters will be ignored. lts
default value is “false”.

JNBBr oker Ref er ence. broker . uri : URl of the JMS service where ECP JMS monitoring messages will
be sent. Ignored if “ECP. Msgs. Enabl e=f al se”. By default it will start an embedded JMS broker. Its
default value is

“vm\:(broker\:(tcp\://localhost\:400 1)?brokerName\=EmbeddedBroker&uselmx\=true&persistent\=fal
se&populate)MSXUserlD\=false&useShutdownHook\=false&delete Al MessagesOnStartup\=false&enable
Statistics\=false)?marshal\=false”.

j ava. naming. factory.initial: The Initial context factory for IMS Administered obijects. Ignored if
“ECP. Msgs. Enabl e=f al se”. lts default value is
“org.apache.activemq.jndi.ActiveMQlInitialContextFactory”.

JVBMessageBr oker . dest . t ype: The type of the JMS destination where the ECP JMS Monitoring
messages will be sent. Use “temp” to indicate a temporary Destination and “administered” to indicate an
administered one. Ignored if “ECP. Msgs. Enabl e=f al se”. Its default value is “administered”.

JMBMessageBr oker . dest . nane: The JMS destination where the ECP JMS Monitoring messages will
be sent. If the destination type in “JMSMessageBr oker . dest . t ype” is temporary, any value will
suffice; if the destination type in “JMSMessageBr oker . dest . t ype” is administered, this property must
contain the name under which the Destination is registered. Ignored if “ECP. Msgs. Enabl e=f al se”. lis
default value is “ECP.MainTopic”.

53

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

4.3.3. HPSA_EQUIPMENTCONNPOOL DB Table

NANME: Will configure the static pool Nane. See Pool Instance Specific Parameters Configuration.

NOTUSEDMAXTI MELI FE: Will configure the static pool Not UsedMaxTi meLi f e. See Pool Instance
Specific Parameters Configuration.

REQUESTTI MEOQUT: Will configure the static pool Request Ti meout . See Pool Instance Specific
Parameters Configuration.

NUMQUEUES: Will configure the static pool NumQueues. See Pool Instance Specific Parameters
Configuration.

VEI GHTQUEUES: Will configure the static pool Wi ght Queues. See Pool Instance Specific Parameters
Configuration.

LOGFI LE: Will configure the static pool LogFi | ePat h. See Pool Instance Specific Logging Parameters
Configuration

LOGLEVEL: Will configure the static pool LogLevel . See Pool Instance Specific Logging Parameters
Configuration.

4.3.4. HPSA_EQUIPMENTCONNSUBPOOL DB Table

I NI TSESSI ONS: Will configure the static subpool | ni t sessi ons. See SubPool Configuration
SubPool Instance Specific Parameters Configuration.

MAXSESSI ONS: Will configure the static subpool MaxSessi ons. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

M NSESSI ONS: Will configure the static subpool M nSessi ons. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

RESOURCETI MEQUT: Will configure the static subpool Resour ceTi neout . See SubPool Configuration
SubPool Instance Specific Parameters Configuration.

TEMPORARYRESOURCESTI MEQUT: Will configure the static subpool Tenpor ar yResour cesTi neout .
See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

NAMEPQOL : The register in the table HPSA_EQUI PMENTCONNPOOL associated with this one.
| DSUBPOOL: Will configure the static subpool | d. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

CONNECTI ONRESOURCECLASSNANE: Will configure the static subpool
Connect i onResour ceCl assName. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

I P: Will configure the static subpool EquipmentDrivers initialization parameter | P. See EquipmentDriver
Initialization Parameters Configuration.

PORT: Will configure the static subpool EquipmentDrivers initialization parameter Por t . See
EquipmentDriver Initialization Parameters Configuration.

54

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

PROTOCOL: Will configure the static subpool EquipmentDrivers initialization parameter Pr ot ocol . See
EquipmentDriver Initialization Parameters Configuration.

USERNAME: Will configure the static subpool EquipmentDrivers initialization parameter User name. See
EquipmentDriver Initialization Parameters Configuration.

PASSWORD: Will configure the static subpool EquipmentDrivers initialization parameter Passwor d. See
EquipmentDriver Initialization Parameters Configuration.

PASSWORDENABLE: Will configure the static subpool EquipmentDrivers initialization parameter
Passwor denabl e. See EquipmentDriver Initialization Parameters Configuration.

4.3.5. DynamicECPProperties Class

This class stores the configuration of a dynamic Pool and a SubPool . A dynamic Pool will always
contain a single SubPool .

4.3.5.1. DynamicECPProperties Properties

vi. DynamicECPProperties Pool Properties

Pool Name: Will configure the dynamic pool Nane (see Pool Instance Specific Parameters Configuration)
and LogFi | ePat h (Pool Instance Specific Logging Parameters Configuration).

vii. DynamicECPProperties SubPool Properties

Connect i onResour ceC assName: Will configure the dynamic subpool
Connect i onResour ceCl assName. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

I P: Will configure the dynamic subpool EquipmentDrivers initialization parameter | p. See
EquipmentDriver Initialization Parameters Configuration.

Por t : Will configure the dynamic subpool EquipmentDrivers initialization parameter Port . See
EquipmentDriver Initialization Parameters Configuration.

Pr ot ocol : Will configure the dynamic subpool EquipmentDrivers initialization parameter Pr ot ocol .
See EquipmentDriver Initialization Parameters Configuration.

User : Will configure the dynamic subpool EquipmentDrivers initialization parameter User nane. See
EquipmentDriver Initialization Parameters Configuration.

Passwor d: Will configure the dynamic subpool EquipmentDrivers initialization parameter Passwor d.
See EquipmentDriver Initialization Parameters Configuration.

Passwor dEnabl e: Will configure the dynamic subpool EquipmentDrivers initialization parameter
Passwor denabl e. See EquipmentDriver Initialization Parameters Configuration.

55

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

4.3.5.2. DynamicECPProperties Advanced Properties

viii. DynamicECPProperties Advanced Pool Properties

Not UsedMaxTi meLi f e: Will configure the pool Not UsedMaxTi neLi f e. See Pool Instance Specific
Parameters Configuration.

ix. DynamicECPProperties Advanced SubPool Properties

I ni t Sessi ons: Will configure the subpool I ni t sessi ons. See SubPool Configuration
SubPool Instance Specific Parameters Configuration.

MaxSessi ons: Will configure the subpool MaxSessi ons. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

M nSessi ons: Will configure the subpool M nSessi ons. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

Resour ceTi meQut : Will configure the subpool Resour ceTi neout . See SubPool Configuration
SubPool Instance Specific Parameters Configuration.

Tenpor ar yResour cesTi neQut : Will configure the subpool Tenpor ar yResour cesTi neout . See
SubPool Configuration

SubPool Instance Specific Parameters Configuration.

56

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

5.Commands Template Reference

5.1. Commands Template Commands

5.1.1. Block declaration Statements

Block Declaration Statements are those which indicate the beginning or ending of a Block. The following
are Block Declaration Statements.

[TEMPLATE: Confi g]

[TEMPLATE: Do]

[TEMPLATE: Err or Sect i on]
[TEMPLATE: Undo]

[TEMPLATE: Conmi t]

[TEMPLATE: Rol | back]

[TEMPLATE: Secti on *]

Block Declaration Statements may include other Block Declaration Statements (depending on the
containing statement) or Executable Statements. Block Declaration mainly have group of commands to be
executed.

A template could start with the optional block [TEMPLATE:Config] and in this block is possible to put all
the commands required to configure properly the terminal before executing any activation command.

After that, the mandatory block [TEMPLATE:Do]. This block will contains all commands to activate the
service and we can divide this block in sections using the block [TEMPLATE:Section *] where “*” is a
number starting from O.

The [TEMPLATE:Undo] is the next optional tag . This block will contain all the “undo” commands that have
to be executed when one of the “DO” commands fails in the reverse order. Both blocks, [TEMPLATE:Do]
and [TEMPLATE_Undo] are divided using the block [TEMPLATE:Section *] and the undo block will execute
only the section executed in DO. For example, if DO and UNDO have 0,1,2,3,4 and 5 sections and a
command from section 4 fails the UNDO block will execute 3,2,1,0 section in this order.

The optional tag [TEMPLATE:ErrorSection] can be defined after the DO block and it can include the
commands that have to be executed in one section fails. This block is useful because the UNDO section
will execute only the section that have been executed properly and not the section that has been failed.

At the end o f the template, [TEMPLATE:Commit] and [TEMPLATE:Rollback] can be defined. Commit block
will execute only if all DO commands have been executed properly and Rollback block will execute if
some command from DO or Commit fails.

5.1.2. Executable Statements

Executable Statements are those which do not intervene in the Declaration of a Block but are included by
them and define commands to be executed. They must always appear inside a Block. The executable
statements are useful to execute if and loops in runtime. This means, the template is able to make decision
based on conditions and these conditions could be refer to output of commands. For example, it possible
to execute first “whoami” command and after that define and if where we'll execute “add user” if the
output of whoami is root and “sudo add user” if the ouput of whoami is not root.

57

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

Another example using loop could be to execute “Is /directory/*.ixt" command, save the output in an
array and after that execute a loop where a command will be executed for each txt file.

Both, ifs and loops, are possible to nest them.

5.1.2.1. I-Else Statement

Declares two different Executable blocks to execute depending on the value of a condition. The “Else”
part is optional. It is defined like this:

[TEMPLATE: | f “<condi ti on>"]
<Execut abl e St at enent Bl ock>
[TEMPLATE: El se]
<Execut abl e St at enent Bl ock>
[TEMPLATE: Endl f]

Where <condi ti on> is any valid ECP condition and <Execut abl e St at ement Bl ock> is a set of
Executable Statements. Nested If-Else or ForEach Statements are allowed. For example:

[TEMPLATE: | f "fail ed=="true""]
hel p
[TEMPLATE: EndStr Pattern "adm n#"]
exit
[TEMPLATE: EndStr Pattern "admi n#"]
[TEMPLATE: Endl f]

Or with an else clause:

[TEMPLATE: | f "fail ed=="true""]
hel p
[TEMPLATE: EndStr Pattern "admi n#"]
[TEMPLATE: El se]
tel net 127.0.0.1 1234
[TEMPLATE: EndStr Pattern "adm n#"]
[TEMPLATE: Endl f]

5.1.2.2. ForEach Statement

Declares an Executable block to be executed once for every element of an Array Variable. It is defined

like this:

[TEMPLATE: For Each "<vari abl el D>" In "<arrayVari abl el D>"]
<Execut abl e St at enent Bl ock>
[TEMPLATE: EndFor]

Where <vari abl el D> is any valid ECP variable identifier, <ar r ayVar i abl el D> is any valid ECP
array variable identifier and <Execut abl e St at ement Bl ock> is a set of Executable Statements.

On each loop, the variable <var i abl el D> will contain a different value in <ar rayVari abl el D> and
its values will be in the same order as in <arrayVar i abl el D>. Nested If-Else or ForEach Statements are
allowed. For example:

[TEMPLATE: For Each "var" In " destinationl Ps"]
ping %ar%-n 1
[TEMPLATE: EndStr Pattern "adm n#"]

58

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

| [TEMPLATE:

EndFor]

5.1.3. Command Statements

Command Statements are those which define how a command must be issued and its output processed.
Therefore, next tags can be declared after any command. These tags define errors, failures, variables that
will containg certain value from the output command, force to save the full output to a file and so on. The
following are the full Command Statements list:

[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:

Error Message “*"]
NonError “*”]
NonErrorPattern “*"]
Error “*"]

Failure “*"]

EndStr “*"]
EndStrPattern “*”]
Secret]

Echo]

EndParantString “*”]
EndConmmandString “*”]
Question “*” Response “*"]
Pattern “*"]

Condi tion “*"]
ExecuteUntil “*"]
CommandDel ay “*"]
ReadAttenps “*"]
ErrorPattern \"*\"]
FailurePattern \"*\"]
Vari able “*"]

Array “*”]

ExecuteUnti | Del ay “*”]
ExecuteUntil Attenpts “*"]
Fil ename “*"]

Fil ename “*” Option “*”]

5.1.4. Configuration Statements

Configuration statements are defined in the Config block to define default behavior to the full template.
For example, the EndStrPattern is usually the same value for all command and the template can define the
default end string pattern using the tag [TEMPLATE:DefaultEndStrPattern].

[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:

[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:
[TEMPLATE:

Def aul t Del ay “*"]

Def aul t ReadAt t enps “*"]

Def aul t EndPar anString “*”]
Def aul t EndConmandString “*”]

Defaul tError “*"]

Def aul t NonError “*"]

Def aul t NonErrorPattern “*”]
Defaul t EndStr “*"]

Def aul t EndStr Pattern “*”]
Def aul t Echo]

59

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

5.2. Commands Reference

5.2.1. Commands List

Token

l<comment>

[TEMPLATE:DefaultDelay “*”]

[TEMPLATE:DefaultRead Attemps “*"]

[TEMPLATE:DefaultEndParamString “*”]

Explanation

Comments lines stars with | character and comments will be ingnore by the ECP engine

This value will introduce a delay before executing any command. The value is defined in milliseconds.

When a command is executed the ECP engine try to read the output until it gets the end string. This
value define the maximum number of read with no answer that ECP egine can execute.

Some commands make a question after executing the command. This tag is the default value to append
to the question responses.

[TEMPLATE:DefautEndCommandString “*”]This value will be append to every command.

[TEMPLATE:DefaultError “*"]

[TEMPLATE:DefaultNonError “*”]

[TEMPLATE:DefaultNonErrorPattern “*”]

[TEMPLATE:DefaultEndStr “*”]

[TEMPLATE:DefaultEndStrPattern “*”]

[TEMPLATE:DefaultEcho]

[TEMPLATE:Config]

[TEMPLATE:Do]

[TEMPLATE:ErrorSection]
[TEMPLATE:Undo]
[TEMPLATE:Commit]

[TEMPLATE:Rollback]

[TEMPLATE:Section *]

An error define is the command has not been executed properly. This tag define a default error that will
be apply to all commands in the template.

In case a error is detected it's possible to define exceptions. For example, if the output is ERROR: user
already exist but in this case the template should not return an error, a NonError can be defined. This
NonError will be executed to all commands. This doesn’t apply for failures.

Same behaviour than DefaultNonError but in this case using Regural Expresion Pattern

After execute a command it's mandatory to find a string that define the end of the command. This string
is usually the prompt. This tag define the default end string applied to all commands.

Same behaviour than DefaultEndString but using Regular Expression Pattern.

Target System will echo, treat it as ifs never arrived on every command by default

Declares the begining of a Config Block. This block contains the command to configure the terminal
before executing any activation command.

Declares the begining of a Do Block. This block contains the activation commands.

Declares the begining of an Error Block. This block contains the commands to execute in case a section
fails.

Declares the begining of an Undo Block. This block contains the rollback commands to executed in case
the DO block fails.

Declares the begining of an Commit Block. This block contains the commit commands to be executed
after DO section in case DO block works.

Declares the begining of an Rollback Block. This block contains the rollback commands to execute after
the UNDO section in case the DO section fails or even after Commit section if it fails.

Declares the begining of an Section Block. DO and UNDO are divided in sections to group commands.

60

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

<commandcommand>
[TEMPLATE:AssignVariable “*"]

[TEMPLATE:If "*"]

[TEMPLATE:Else]
[TEMPLATE:Endf]
[TEMPLATE:ForEach "*" In "*"]

[TEMPLATE:EndFor]

[TEMPLATE:ErrorMessage “*”|
[TEMPLATE:NonError “*”]
[TEMPLATE:NonErrorPattern “*”]
[TEMPLATE:Error “*"]

[TEMPLATE:Failure “*"]

[TEMPLATE:EndStr “*”]
[TEMPLATE:EndStrPattern “*”]
[TEMPLATE:Secret]
[TEMPLATE:Echo]

[TEMPLATE:EndParamString “*"]

[TEMPLATE:EndCommandString “*”]

[TEMPLATE:Question “*” Response “*"]

[TEMPLATE:Pattern “*"]

[TEMPLATE:Condition “*"]
[TEMPLATE:CommandDelay “*"]

[TEMPLATE:ReadAttemps “*"]

[TEMPLATE:ErrorPattern \"*\"]

[TEMPLATE:FailurePattern \"*\"]

[TEMPLATE:Variable “*"]

[TEMPLATE:Array “*”]

[TEMPLATE:ExecuteUntil “*”]

Assigns a constant value to a variable.

Declares an Executable block to execute if the condition is true. The condition can use variable fromused
in the template.

Declares an Executable block to execute if the corresponding if condition is false

Declares de end of an if or else executable block

Declares an Executable block to be executed once for every element of an Array Variable

Declares de end of a forEach executable block

An error message to be sent to the ECP client if an error is encountered

Pattern to ignore on error search (not on failure search)

Regural Expresion Pattern to ignore on error search (not on failure search)

Pattern to interpret as the command returning an error (and wait for command response end string)

Pattern to interpret as the command returning a failure (and do not wait for command response end
string)

Pattern to interpret as the end of the command execution

Regular Expression Pattern to interpret as the end of the command execution

Do not trace the issued command (useful for passwords because it avoid to be printed in the log files)
Target System will echo, treat it as ifs never arrived

String to append to the question responses

String to append to the command

The command is interactive. If the Pattern is found, send that response

Store every ocurrence of the group in the regular expresion in a position of the array variables which
follow

Only issue the command if the condition is satisfied
Wait that number of milliseconds before executing the command

When a command is executed the ECP engine try to read the output until it gets the end string. This
value define the maximum number of read with no answer that ECP egine can execute

Regular Expresion Pattern to interpret as the command returning an error

Regular Expresion Pattern to interpret as the command returning a failure

Variable where to store the ocurrence of the Pattern. The pattern will capture a particular string from the
output and the value will be save in this variable. The variable can be used in other commands using the
% symbol. For example, add user %name%.

Array variable where to store the occurence.s. To access to a single position next is the format
name[position]

Execute the command until the condition is satisfied. This command is very useful when the server
sometimes doesn’t work at the first time and it will work after some retries.

61

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

[TEMPLATE:ExecuteUntilDelay “*" Wait that number of milliseconds before issueing the command on every iteration

[TEMPLATE:ExecuteUntilAttempts “*”] If that number of iterations is exceeded, ignore condition and exit loop

[TEMPLATE:Filename “*"]

Save the ouput to the file

[TEMPLATE:Filename “*” Option “*"] Save the ouput to the file. Options can be bigouput to true/false , tail and grep. The format to define

options are bigouput=false;tail=100;grep=100. When output are really big is almost mandatory to define
bigoutput to true because if not the ECP could trhow an OutOfMemory.

5.2.2. Commands Syntax
Token Unique Precedes to Follows to Nested to Token Mutually exclusive
I(r;lomextToken (and) Token (or) with Token
I<comment>
[TEMPLATE:DefaultDelay “*"] Yes [TEMPLATE:Config]
[TEMPLATE:DefaultReadAttemps “*’] [TEMPLATE:Config]
[TEMPLATE DefaultEndParamString “”] ~ Yes [TEMPLATE:Config]
[TEMPLATE:DefaultEndCommandString “"]Yes [TEMPLATE:Config]
[TEMPLATE:DefaultError “*"] [TEMPLATE:Config] [TEMPLATE:DefaultErrorNull]
[TEMPLATE:DefaultNonError “*”] [TEMPLATE:Config] [TEMPLATE:DefaultNonErrorNull]
[TEMPLATE:DefaultNonErrorPattern “*”] [TEMPLATE:Config] [TEMPLATE:DefaultNonErrorPatternNull]
[TEMPLATE:DefaultEndStr “*] [TEMPLATE:Config] [TEMPLATE:DefaultEndStrNull]
[TEMPLATE:DefaultEndStrPattern “*"] [TEMPLATE:Config] [TEMPLATE:DefaultEndStrPatternNull]
[TEMPLATE:DefaultEcho] [TEMPLATE:Config]
[TEMPLATE:Config] Yes [TEMPLATE:Do] [TEMPLATE:Config FinalConfig]
[TEMPLATE:ErrorSection]
[TEMPLATE:ErrorSection
FinalCommand]
[TEMPLATE:Undo]
[TEMPLATE:Commit]
[TEMPLATE:Commit
FinalCommit]
[TEMPLATE:Rollback]
[TEMPLATE:Rollback
FinalRollback]
[TEMPLATE:Exit]
[TEMPLATE:Exit
FinalExit]
[TEMPLATE:Do] Yes

62

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

[TEMPLATE:ErrorSection] Yes
[TEMPLATE:Undo] Yes
[TEMPLATE:Commit]

[TEMPLATE:Rollback]

[TEMPLATE:Section *]

<commandcommand>

[TEMPLATE:AssignVariable ']
[TEMPLATE:Hf "]
[TEMPLATE:Else]
[TEMPLATE:EndIf]
[TEMPLATE:ForEach " In **']

[TEMPLATE:EndFor]

[TEMPLATE:ErrorMessage “*’|
[TEMPLATE:NonError “*’]
[TEMPLATE:NonErrorPattern “*’]
[TEMPLATE:Error “*']
[TEMPLATE:Failure **]
[TEMPLATE:EndStr *']
[TEMPLATE:EndStrPattem “*']
[TEMPLATE:Secref]
[TEMPLATE:Echo]
[TEMPLATE:EndParamString “*"]
[TEMPLATE:EndCommandString “*']

[TEMPLATE:Question “*” Response “*’]

[TEMPLATE Do]

[TEMPLATE:Do]
[TEMPLATE:ErrorSection]

[TEMPLATE:Undo]

[TEMPLATE:Undo]
[TEMPLATE:Commit]
[TEMPLATE:Commit
FinalCommif]

[TEMPLATE:ErrorSection FinalCommand)]

[TEMPLATE Do]
[TEMPLATE:Undo]

[TEMPLATE:Config]
[TEMPLATE:Config FinalConfig]
[TEMPLATE:ErrorSection]
[TEMPLATE:ErrorSection
FinalCommand]

[TEMPLATE:Commit]
[TEMPLATE:Commit FinalCommit]
[TEMPLATE:Rollback]
[TEMPLATE:Rollback FinalRollback]
[TEMPLATE:Exif]

[TEMPLATE:Exit FinalExif]
[TEMPLATE:Do)/[TEMPLATE:Section *]
[TEMPLATE:Undo)/[TEMPLATE:Section

!

idem <command>
idem <command>
idem <command>
idem <command>

idem <command>

idem <command>

<command>
<command>
<command>
<command>
<command>
<command>
<command>
<command>
<command>
<command>
<command>

<command>

63

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

[TEMPLATE:Pattern “*"]
[TEMPLATE:Condition “*"]
[TEMPLATE:ExecuteUntil “*”]
[TEMPLATE:CommandDelay “*"]
[TEMPLATE:ReadAttemps “*"]
[TEMPLATE ErrorPattern \"*\"]

[TEMPLATE:FailurePattern \"\"]

[TEMPLATE:Variable **]

[TEMPLATE:Array ']

[TEMPLATE:ExecuteUntilDelay “*"]

[TEMPLATE:ExecuteUntilAttempts “*"]

<command>
<command>
<command>
<command>

<command>

<command>

<command>

[TEMPLATE:Pattern “*"]

[TEMPLATE:Pattern “*"]

[TEMPLATE:ExecuteUntil “*"]

[TEMPLATE:ExecuteUntil “*"]

64

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

6. Configuration Quick Reference

6.1. DBManager Configuration

Dri ver: A java.sgl.Driver to load (through a Class.forName()) for it to be registered in the JDBC
Dri ver Manager . The class must exist and be in the classpath. Established from the ecp.properties
DB_DRI VER property (see ecp.properties File).

User : The DataBase user on whose behalf the connection is being made. Established from the
ecp.properties DB_USER property (see ecp.properties File).

Passwor d: The DataBase user password. Established from the ecp.properties DB_ PASSWORD property
(see ecp.properties File).

URL: A JDBC URL String in the form “j dbc: <subpr ot ocol >: <subnanme>" . Established from the
ecp.properties DB_URL property (see ecp.properties File).

6.2. Configurator Contiguration

The following parameters of the Conf i gur at or may be established:

Appender : The Conf i gur at or Appender properties (except for the file name which is fixed) may be
configured from the ecp.properties LOG DI R, LOG_MAX_FI LE_SI ZE and LOG_MAX_NUM FI LES
properties (see ecp.properties File).

The Confi gur at or will use a Rol | i ngFi | eAppender as Appender . lts maximum file size and
maximum number of files will be the values specified by LOG_MAX_FI LE_SI ZE and
LOG_MAX_NUM FI LES respectively. The Configurator log file will be located at LOG DI R +
“Configurator.|og”. See ecp.properties File.

Pat t er n: Established from the ecp. properti es LOG_PATTERN property (see ecp.properties File). It
will configure the log messages format pattern of the Conf i gur at or . ls valid values may be:

nul |
| SC8601

A valid Pat t er nLayout ‘s pattern.

If the pattern is nul | or “1 SOB601” a TTCCLayout will be used as the Appender Layout . In other
case, a Pat t er nLayout with specified value will be used. See
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4|/TTCClayout.html

http://logging.apache.org/log4i/1.2/apidocs/org/apache/log4i/PatternLayout.html

65

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

6.3. ECP RMI Service

rel oadSubPool : On a r el oadSubPool call, the timeout given to the whole set of the BUSY resources
of the subpool before forcing their finalization can be configured through the ecp. properti es file
RELOAD_MAX_TI ME property. If its value is ==0, the process will wait until the resources are not BUSY.
See ecp.properties File.

| ockSubPool : On a | ockSubPool call, the timeout given to the whole set of the BUSY resources of the
subpool before forcing their finalization can be configured through the ecp. properti es file
RELOAD_MAX_TI ME property. If its value is <=0, no timeout will be given. See ecp.properties File.

| ockPool : On a | ockPool call, the timeout given to the whole set of the BUSY resources of each
subpool before forcing their finalization can be configured through the ecp. properti es file
RELOAD_MAX_TI ME property. If its value is <=0, no timeout will be given. See ecp.properties File.

unl oadPool : On a unloadPool call, the timeout given to the whole set of the BUSY resources of each
subpool before forcing their finalization can be configured through the ecp. properti es file
RELOAD_MAX_TI ME property. If its value is <=0, no timeout will be given. See ecp.properties File.

6.4. PoolManager Configuration

Pool Expi ration: When a (not BUSY) pool expires and is unloaded, the timeout in milliseconds given
to each subpool for its BUSY resources before forcing their finalization can be configured through the
ecp. properti es file RELOAD_MAX_TI ME property. If its value is O, no timeout will be given. See
ecp.properties File.

MaxPool s: The maximum number of pools that can coexist simultaneously can be configured through the
ecp. properti es file MAX_POOLS property. If its value is 0, no limit will be established. See
ecp.properties File.

Pool Cl eanUp: The number of times per second that the process of unloading dynamic expired pools will
be executed can be configured through the ecp. properti es file POOL_MGR_MAX_RATE property.
Must be ! =0. See ecp.properties File.

6.5. Pool Configuration

6.5.1. Pool Common Parameters Configuration

The following parameters are shared by all the pools:

66

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

getResourceRetries: The number of request to obtain a positively verified resource can be configured
through the ecp. properti es file MAX_REQUESTS_TO GET_VERI FI ED_RESOURCE property. See
ecp.properties File.

get ResourceDefaultQeueld: The default queue to add the resource request to, if it is not specified or the
specified queue is not found can be configured through the ecp. properti es file DEFAULT_QUEUE_I D
property. See ecp.properties File.

Di spat cher MaxRat e: The maximum number of connections assigned to the whole set of clients by
second can be configured through the ecp. properti es file DI SPATCHER _MAX_RATE property. Must
be ! =0. See ecp.properties File.

Resour cesCl eanUp: The maximum number of times per second that the expired resources will be
finalized, the expired temporary resources deleted and the inactive resources reinitialized can be
configured through the ecp. properti es file RES_MGR_MAX_RATE property. Must be ! =0. See
ecp.properties File.

Request sC eanUp: The maximum number of times per second that the process of elimination and
cancellation of expired resources requests will be executed can be configured through the
ecp. properti es file REQ MGR_MAX_RATE property. Must be ! =0. See ecp.properties File.

6.5.1.1. Pool Logging Common Parameters Configuration

Appender : Each pool will have its own Appender, but the Appender s properties and types are
common, except for the file path (LogFi | €) which is specific for each pool, see Pool Instance Specific
Logging Parameters Configuration.The pools Appender s types and properties may be configured from
the ecp.properties LOG_MAX_FI LE_SI ZE, LOG_MAX_NUM FI LES and LOG_DATE_PATTERN properties
(see ecp.properties File).

If LOG_DATE_PATTERN s nul | , then a Rol | i ngFi | eAppender will be used. In other case, a

Dai | yRol I i ngFi | eAppender will be used. If a Dai | yRol | i ngFi | eAppender is used, its rolling
date pattern will be the value specified by LOG DATE_PATTERN. If a Rol | i ngFi | eAppender is used,
its maximum file size and maximum number of files will be the values specified by LOG_MAX_FI LE_SI ZE
and LOG_MAX_NUM FI LES respectively. See ecp.properties File. Notice that each SubPool will use the
logger of the pool it belongs to, to log its messages (see SubPool Instance Specific Logging Parameters
Configuration)

Pat t er n: Established from the ecp.properties LOG_PATTERN property (see ecp.properties File). Will
configure the pools log messages format pattern. lts valid values may be:

67

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

nul |
| SC8601

A valid Pat t er nLayout ‘s pattern.

If the pattern is nul | or “1 SOB601” a TTCCLayout will be used as the Appender Layout . In other
case, a Pat t er nLayout with specified value will be used. See
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4|/TTCClayout.html

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4/PatternLayout. html

Notice that each SubPool will use the logger of the pool it belongs to, to log its messages (see SubPool
Instance Specific Logging Parameters Configuration)

6.5.2. Pool Instance Specific Parameters Configuration

Name: Establishes the name that will identity the pool. If the pool is dynamic, and a name has been set
(see DynamicECPProperties Pool Properties) the value of this parameter will be

Pool Nanre + "-" + user + "-" +ip + "-" + port

If @ name has not been set, the value of this parameter will be

"DYNAM Cl + n_on + user + n_n + |p + n_n + port

If the pool is static, the value of this parameter will be specified by the HPSA_EQUI PMENT CONNPOOL
NANE DB field (see HPSA_EQUIPMENTCONNPOOL DB Table).

Not UsedMaxTi neLi f e: Establishes the maximum time that a pool may remain unused. Once that time
has expired, it will be removed. The timer is reset on each Operation (execute, executeActivation,
inverseActivation, revert). If the pool is dynamic, and the advanced dynamic properties are set (see
DynamicECPProperties Advanced Properties) the value of this parameter will be specified by the
DynamicECPProperties NotUsedMaxTimelife attribute (see DynamicECPProperties Advanced Pool
Properties). If the advanced dynamic properties are not set, the value of this parameter will be specified
by the the ecp.properties DYNAMIC_POOL_NOT_USED_MAX_TIME_LIFE property (see ecp.properties
File). If the pool is static, the value of this parameter will be specified by the
HPSA_EQUIPMENTCONNPOOL NOTUSEDMAXTIMELIFE DB field (see HPSA_EQUIPMENTCONNPOOL
DB Table).

RequestTimeout: Maximum time to wait when obtaining a connection on a client request.

If the pool is dynamic, the value of this parameter will be specified by the ecp. properti es

DYNAM C_POOL_REQUEST_TI ME_OUT property (see ecp.properties File). If the pool is static, the value
of this parameter will be specified by the HPSA_EQUI PMENTCONNPOOL REQUESTTI MEQUT DB field (see
HPSA_EQUIPMENTCONNPOOL DB Table).

68

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

NumQueues: Number of request queues to add to the pool. Its value must be coherent with the value
specified in WeightQueues.

If the pool is dynamic, the value of this parameter will be specified by the ecp. properti es

DYNAM C_POOL_NUM QUEUES property (see ecp.properties File). If the pool is static, the value of this
parameter will be specified by the HPSA_EQUI PMENTCONNPOOL NUMQUEUES DB field (see
HPSA_EQUIPMENTCONNPOOL DB Table).

Vi ght Queues: Priority of each request queue. The number of request queues specified in NumQueues
will be created with the specified corresponding weights and order, and with the ids from 1 to
NumQueues. It must not be null, and must have the format:

<wei ght _queues>: =<queue_wei ght >{ <sep><queue_wei ght >}
<sep>: =,

Where <queue_wei ght > is a number specifying the weight of the queue. The higher the weight, the
higher the priority of the queve.

If the pool is dynamic, the value of this parameter will be specified by the ecp. properti es

DYNAM C_POOL_WEI GHT_QUEUES property (see ecp.properties File). If the pool is static, the value of this
parameter will be specified by the HPSA_EQUI PMENTCONNPOOL WEI GHTQUEUES DB field (see
HPSA_EQUIPMENTCONNPOOL DB Table).

6.5.2.1. Pool Instance Specific Logging Parameters Configuration

LogLevel : The pool logger level. Should be an integer value. If the log message level value is greater or
equal than the log level, the message will be written. The numerical values of the log4j log levels are:

FATAL = 50000
ERROR = 40000
WARN = 30000
I NFO = 20000

DEBUG = 10000
ALL = I nteger. M N_VALUE

If the pool is dynamic, the value of this parameter will be specified by the ecp. properti es
DYNAM C_POOL_LOG _LEVEL property (see ecp.properties File). If the pool is static, the value of this
parameter will be specified by the HPSA_EQUI PMENTCONNPOOL LOGLEVEL DB field (see
HPSA_EQUIPMENTCONNPOOL DB Table).

Notice that each SubPool will use the logger of the pool it belongs to to log its messages (see SubPool
Instance Specific Logging Parameters Configuration)

69

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

LogFi | ePat h: Defermines the file where the pool instance log will be written. The file will be created in
the directory specified by the ecp.properties LOG_DI R property.

If the pool is dynamic, the LogFi | ePat h will be

LOG DIR + Pool . Nane + “.log”

If the pool is static, the LogFi | ePat h will be specified by the HPSA_EQUI PMENTCONNPOOL LOGFI LE
field (see HPSA_EQUIPMENTCONNPOOL DB Table).

LOG DIR + LOGFI LE

Notice that each SubPool will use the logger of the pool it belongs to to log its messages (see SubPool
Instance Specific Logging Parameters Configuration)

6.6. SubPool Configuration

6.6.1. SubPool Instance Specific Parameters Configuration

I ni t sessi ons: Determines whether the resources should be initialized as soon as created (or reused) or
the SubPool should wait until the resource is requested by the client.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties
Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

I ni t Sessi ons attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced
dynamic properties are not set, the value of this parameter will be specified by the the ecp. properti es
DYNAM C_POOL_I NI T_SESSI ONs property (see ecp.properties File). If the pool is static, the value of this
parameter will be specified by the HPSA_EQUI PMENTCONNSUBPOOL | NI TSESSI ONS DB field (see
HPSA_EQUIPMENTCONNSUBPOOL DB Table).

MaxSessi ons: Maximum number of resources that the SubPool will contain. Resources will be allocated
as needed, but existent resources will be reused if possible.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties
Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

I ni t Sessi ons attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced
dynamic properties are not set, the value of this parameter will be specified by the the ecp. properti es
DYNAM C_POOL_MAX_SESSI ONS property (see ecp.properties File). If the pool is static, the value of this
parameter will be specified by the HPSA_EQUI PMENTCONNSUBPOOL MAXSESSI ONS DB field (see
HPSA_EQUIPMENTCONNSUBPOOL DB Table).

M nSessi ons: Minimum number of resources to keep instantiated in the SubPool. The SubPool will
always contain at least that quantity of resources.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties
Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties
I ni t Sessi ons attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced

70

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

dynamic properties are not set, the value of this parameter will be specified by the the ecp. properti es
DYNAM C_POOL_M N_SESSI ONS property (see ecp.properties File). If the pool is static, the value of this
parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL M NSESSI ONS DB field (see
HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Resour ceTi neout : Maximum time that a resource is allowed to remain BUSY (in use by a client). Once
the timeout has expired the resource remains BUSY, the resource will be finalized (and eventually
reinitialized and reassigned to other client).

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties
Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties
InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced dynamic
properties are not set, the value of this parameter will be specified by the the ecp.properties
DYNAMIC_POOL_RESOURCE_TIME_OUT property (see ecp.properties File). If the pool is static, the value
of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL RESOURCETIMEOUT DB
field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Tenpor ar yResour cesTi neout : Maximum time that a temporary connection can remain unused after
it is created, in milliseconds. If the timeout is set to O, it will never expire. Once the timeout has expired
the temporary connection will be finalized and destroyed. Temporary connections are the additional
connections to MinSessions. Expired temporary connections are not reused. Instead, they are finalized
and destroyed after their expiration. They may be reused though, if the connection is not expired and the
SubPool is reloaded or the connection closed (via RMI) and the pool contains less than MinSessions
resources. Notice that Temporary connections are also affected by ResourceTimeout.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties
Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

I ni t Sessi ons attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced
dynamic properties are not set, the value of this parameter will be specified by the the ecp. properti es
DYNAM C_POOL_TEMPORARY_RESOURCES_TI ME_QOUT property (see ecp.properties File). If the pool is
static, the value of this parameter will be specified by the HPSA_EQUI PMENT CONNSUBPOOL
TEMPORARYRESOURCESTIMEOUT DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

| d: Identifier of the subpool.

If the subpool is dynamic, then the subpool identifier will be O (actually, the JVM initialization value of an
integer, as the value is not initialized by the ECP). If the subpool is static, the value of this parameter will
be specified by the HPSA_EQUI PMENTCONNSUBPOOL | DSUBPOOL DB field (see
HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Connect i onResour ceC assNane: Fully qualified class name of the EquipmentDriver to be used for
this subpool connections. Must extend ConnectionResource and be in the system codebase (classpath).

If the subpool is dynamic, the value of this parameter will be specified by the DynamicECPProperties
Connect i onResour ceCl assNane attribute (see DynamicECPProperties SubPool Properties). If the
subpool is static, the value of this parameter will be specified by the HPSA_EQUI PMENT CONNSUBPOOL
CONNECTI ONRESOURCECL ASSNANE DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

/1

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

6.6.1.1. SubPool Instance Specific Logging Parameters Configuration

Logger: Each SubPool will use the logger of the pool it belongs to to log its messages (see Pool Logging
Common Parameters Configuration and Pool Instance Specific Logging Parameters Configuration).

Notice that each ConnectionResource will use the logger of the SubPool it belongs to to log its messages
(see ConnectionResource Configuration)

6.6.1.2. EquipmentDriver Initialization Parameters Configuration

I p: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

Connect i onResour ce. Def aul t Par anet er Nanes. host . If the SubPool to which the
EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the
DynamicECPProperties | P attribute (see DynamicECPProperties SubPool Properties). If the subpool is
static, the value of this parameter will be specified by the HPSA_EQUI PMENTCONNSUBPOCL | P DB field
(see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Por t : Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

Connect i onResour ce. Def aul t Par anet er Nanes. por t . If the SubPool to which the
EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the
DynamicECPProperties Por t attribute (see DynamicECPProperties SubPool Properties). If the subpool is
static, the value of this parameter will be specified by the HPSA_EQUI PMENTCONNSUBPOOL PORT DB
field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Pr ot ocol : Passed from the SubPool to the EquipmentDriver on construction in the Map entry key
Connect i onResour ce. Def aul t Par amet er Nanes. pr ot ocol . If the SubPool to which the
EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the
DynamicECPProperties Pr ot ocol attribute (see DynamicECPProperties SubPool Properties). If the subpool
is static, the value of this parameter will be specified by the HPSA_ EQUI PMENTCONNSUBPOOL
PROTOCOL DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table). The value identifies a
ProtocolDriver. A ProtocolDriver registered in the Protocol Driver manager under that name must exist. See
Protocol Drivers Manager Configuration

User nanme: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key
Connect i onResour ce. Def aultParameterNames.user. If the SubPool to which the EquipmentDriver
belongs is dynamic, the value of this parameter will be specified by the DynamicECPProperties User
attribute (see DynamicECPProperties SubPool Properties). If the subpool is static, the value of this
parameter will be specified by the HPSA_EQUI PMENTCONNSUBPOOL USERNANE DB field (see
HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Passwor d: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key
Connect i onResour ce. Def aul t Par anet er Nanes. passwor d. If the SubPool to which the
EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the
DynamicECPProperties Passwor d attribute (see DynamicECPProperties SubPool Properties). If the subpool

72

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

is static, the value of this parameter will be specified by the HPSA_ EQUI PMENTCONNSUBPOOL
PASSWORD DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Passwor denabl e: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key
Connect i onResour ce. Def aul t Par anet er Nanes. passwor dEnabl e. If the SubPool to which the
EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the
DynamicECPProperties Passwor dEnabl e attribute (see DynamicECPProperties SubPool Properties). If the
subpool is static, the value of this parameter will be specified by the HPSA_EQUI PMENT CONNSUBPOOL
PASSWORDENABLE DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

6.7. EquipmenDriver Configuration

Logger : This logger is set by the ConnectionResource (see ConnectionResource Configuration) and it
will determine the Pri nt Wi t er and the initial LogLevel . EquipmentDriver won't use it for logging
(except to log some error messages). Instead, it will use Print Witer.

Print Witer: Will be determined by the Logger . If the Logger has a Wi t abl eFi | eAppender, it
will be used as Pri nt er Wi t er. In other case, Syst em out will be used.

LogLevel : Will determine the level of the messages to Pri nt Wi t er to print. Initially, LogLevel will
be the LogLevel of Logger but the client can change it when requesting a connection. In fact,
ClLICommands will set the EquipmentDriver LogLevel to its own Loglevel when executing an Operation
(see CLICommands Configuration).

if LogLevel equals or g. apache. | og4j . Level . | NFOthe EquipmentDriver will write on this
PrintWiter the data read and written through the ProtocolDriver.

If LogLevel equals or g. apache. | og4j . Level . DEBUG, only the data read during

confi gureTerni nal will be logged but accumulating it, that is, if five consecutive read operations are
needed to find a searched string, the five reading operations, each one including the previous read data,
will be logged.

If an error is found, the read data will always be written.

6.7.1. EquipmentDriver Initialization Parameters Configuration

See EquipmentDriver Initialization Parameters Configuration

6.7.2. ConnectionResource Configuration

Logger: Each ConnectionResource will use the logger of the SubPool it belongs to, to log its messages
(see SubPool Instance Specific Logging Parameters Configuration). It will also determine the Logger of the
EquipmentDriver (see EquipmenDriver Configuration).

/3

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

6.8. Protocol Drivers Manager Configuration

The Protocol Drivers Manager can be configured through the Pr ot ocol Dri vers. | st file. See
ProtocolDrivers.lst File.

Additionally, the Protocol Drivers Manager will use the current log4j Logger Reposi t ory to look for the
logger with the name “Dri ver Manager ”. A Consol eAppender to stdout will be added to this logger,
and used to log the Protocol Driver registering process.

6.9. ProtocolDriver Configuration

SpyFi | e: The directory where the spy files will be generated may be configured from the
ecp. properti es file LOG DI R property. The spy file will be

LOG DIR + "spy" + ${pool.nanme} + " " + ${subpool.nanme} + " " +
${resource.id} + ".log"

See ecp.properties File.

6.10.ClLiICommands Configuration

Logger: Default Abstract Loggeabl e Logger (Consol eAppender to System out):

LogLevel : On CLI Conmands construction, the Logger log level will be established to

org. apache. | og4j . Level.INFO if bl nf o==t r ue, or to or g. apache. | og4j . Level . WARN if

bl nf o==f al se. Later, this logger level will be used to determine the EquipmentDriver LogLevel , setting
it o the same log level (see EquipmenDriver Configuration).

ECPRM Ser vi ceRegi st r yHost Nane: Hostname of the registry service where the ECP RMI Service
object has been bound. This parameter may be configured via set RM Host Nane.

ECPRM Ser vi ceRegi st ryPort : Port of the registry service where the ECP RMI Service object has
been bound. This parameter may be configured via set RM Por t

ECPRM Ser vi ceRef er enceName: Name to which the ECP RMI Service reference has been bound. This
parameter may be configured via set RM Ser vi ceNane

74

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

6.11.Template Parser Configuration

TemplateParser logs to Syst em out but when constructing the TemplateParser, the generated
ClLICommands LogLevel can be set. The bl nf o parameter will be passed to the CLICommands. See
ClLICommands Configuration.

6.12.JMS Monitoring Configuration

Enabl i ng: To enable JMS Monitoring, the ecp. properti es field ECP. Msgs. Enabl e must be set to
true. No Monitoring message will be sent if this property is set to other value. See 4.3.2 ecp.properties
File, property “ECP. Msgs. Enabl e” for further details.

Admi ni stered Obj ects Nami ng Cont ext : All the properties included in ecp.properties will be set
as environment of the InitialContext instance used to look for administered objects. By default, the
ecp.properties will use the Active MQ Initial Context Factory, setting the property

“j ava. nami ng. factory.initial =

org. apache. acti veng. j ndi . Acti veMJQ ni ti al Cont ext Fact ory”. Check Active MQ
documentation and javax.naming.InitialContext for the possible values. It is possible for example to create
administered Destinations by tweaking these properties. See 4.3.2 ecp.properties File, property

“j ava. nam ng. factory.initial ” for further details.

JMS Broker Connection/Start: Itis possible to determine the JMS Broker that the ECP will connect
to, indicating its URI in the the ecp. properti es field JMSBr oker Ref er ence. br oker . uri . This URI
will be used for to instantiate an ActiveMQConnectionFactory, to create connections to the broker. Active
MQ supports a wide variety of URIs, including embedded brokers, broker configuration through URI,
multiple transport protocols etc. Check Active MQ documentation for details. By default the JMS Broker
URI is

“vm : (broker\: (tcp\://1ocal host\:4001) ?br oker Nane\ =EnbeddedBr oker &useJnx\ =t r
ue&per si st ent\ =f al se&popul at eIJMsXUser | D\ =f al se&useShut downHook\ =f al se&del et e

Al | MessagesOnSt art up\ =f al se&enabl eSt ati sti cs\ =fal se) ?mar shal \ =f al se”. “vf’ URIs
will start an embedded broker. See 4.3.2 ecp.properties File, property
“JNBBr oker Ref er ence. br oker. uri ” for further details.

JMS ECP Messages Destination: It is possible to determine the destination type and name where ECP
monitoring messages will be sent. See 4.3.2 ecp.properties File, properties
“JVBMessageBr oker . dest . t ype” and “JMSMessageBr oker . dest . nane” for further details.

75

