
OVSA SPI for Service Providers

Equipment Connections Pools Developer Reference

Release v.5.1

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

2

Legal Notices

Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to,

the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not

be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages

in connection with the furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be obtained from

your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause in DFARS 252.227-

7013.

Hewlett-Packard Company United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-

19(c)(1,2).

Copyright Notices.

©Copyright 2001-2005 Hewlett-Packard Development Company, L.P., all rights reserved.

No part of this document may be copied, reproduced, or translated to another language without the prior

written consent of Hewlett-Packard Company. The information contained in this material is subject to

change without notice.

Trademark Notices.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Linux is a U.S. registered trademark of Linus Torvalds

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of the Open Group.

Windows® and MS Windows® are U.S. registered trademarks of Microsoft Corporation.

All other product names are the property of their respective trademark or service mark holders and are

hereby acknowledged.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

3

Table of Contents

Legal Notices..2

Table of Contents ...3

Support..6

In This Guide ..7

Audience ...7

Conventions ..8

Install Location Descriptors ..9

1. Introduction ..11

1.1. Purpose ..11

1.2. General Description ...11

1.3. ECP Module Entities and Concepts ..12

1.3.1. Target System...12

1.3.2. Operation...12

1.3.3. Commands Template/Operation Template ..12

1.3.4. Operation Execution ...13

1.3.5. Resource ...13

1.3.6. Pool ...13

1.3.7. SubPool...13

1.3.8. Equipment Driver ...13

1.3.9. Protocol Driver ...14

1.4. General Architecture ..14

1.4.1. ECP Client ..14

1.4.2. ECP Service ..15

2. Functionality and Architecture..17

2.1. Connection and Pool Management..17

2.1.1. Connection Reuse ..17

2.1.2. High Availability..17

2.1.3. Target System Independence ...18

2.1.4. Protocol Independence ...18

2.1.5. Load Balance ...19

2.2. Pool and Connection types..19

2.2.1. Static vs Temporary Pools ...19

2.2.2. Direct Connections (Not Pooled Connections) ...19

2.2.3. Dynamic Pools ...19

2.3. Commands Template..20

2.4. Operation Execution ..20

2.5. Real-time Monitoring ..22

3. First Steps ...23

3.1. Equipment Driver Development...23

3.1.1. Equipment Driver Development Introduction...23

3.1.1.1. Equipment Driver Classes...23

3.1.1.2. Equipment Driver inside the ECP ...25

3.1.2. Equipment Driver Generic ..25

3.1.3. Equipment Driver Deployment..26

3.1.4. Available Equipment Drivers ..26

3.1.5. Generic Template Equipment Driver..27

3.1.5.1. Connection ..28

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

4

3.1.5.2. Disconnect ...30

3.1.5.3. Examples of DriverSpecificParamters ...30

3.2. ECP Service Process ...31

3.2.1. Starting ECP Service..31

3.2.2. Stopping ECP Service ...32

3.2.3. Restarting ECP Service ..32

3.2.4. Checking ECP Service...32

3.3. Use Examples..32

3.3.1. Creating and Using an Static Pool ..34

3.3.2. Creating and Using a Dynamic Pool...37

3.3.3. Using Direct Connections ...39

3.4. Monitoring ECP through JMS ..40

3.4.1. Including Additional Data in Activation JMS Messages: ..40

3.4.2. JMS Client Dependencies ...42

3.4.2.1. Integrating with another JMS provider ...42

3.4.2.2. No other JMS provider...42

3.4.3. JMS Client Examples ...42

3.4.3.1. JMS 1.0.2b Client Example ...44

3.4.3.2. JMS 1.1 Client Example...45

3.4.3.3. Processing Additional Data Included In Activation JMS Messages ...47

3.4.4. ECP Messages Types ..47

3.4.4.1. DataSent Message ..47

3.4.4.2. DataReceived Message..48

4. Configuration...49

4.1. Common Configuration Sources ...49

4.1.1. ProtocolDrivers.lst File ...49

4.1.2. HPSA_ECPMESSAGESPATTERNS ...49

4.1.3. HPSA_ECPCOMMANDSPATTERNS ...50

4.1.4. HPSA_ECPMESSAGESCOMMANDS ...50

4.2. ECP Lib Configuration Sources ...50

4.2.1. ECP Lib Command Line Parameters...50

4.3. ECP RMI Service Configuration Sources ..50

4.3.1. ECP RMI Service Command Line Parameters ...50

4.3.2. ecp.properties File ...51

4.3.3. HPSA_EQUIPMENTCONNPOOL DB Table ...54

4.3.4. HPSA_EQUIPMENTCONNSUBPOOL DB Table..54

4.3.5. DynamicECPProperties Class ...55

4.3.5.1. DynamicECPProperties Properties ...55

4.3.5.2. DynamicECPProperties Advanced Properties...56

5. Commands Template Reference ..57

5.1. Commands Template Commands ...57

5.1.1. Block declaration Statements..57

5.1.2. Executable Statements...57

5.1.2.1. If-Else Statement...58

5.1.2.2. ForEach Statement ..58

5.1.3. Command Statements ...59

5.1.4. Configuration Statements..59

5.2. Commands Reference ..60

5.2.1. Commands List...60

5.2.2. Commands Syntax ..62

6. Configuration Quick Reference ...65

6.1. DBManager Configuration ..65

6.2. Configurator Configuration ...65

6.3. ECP RMI Service ...66

6.4. PoolManager Configuration..66

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

5

6.5. Pool Configuration ...66

6.5.1. Pool Common Parameters Configuration..66

6.5.1.1. Pool Logging Common Parameters Configuration ..67

6.5.2. Pool Instance Specific Parameters Configuration...68

6.5.2.1. Pool Instance Specific Logging Parameters Configuration ...69

6.6. SubPool Configuration ...70

6.6.1. SubPool Instance Specific Parameters Configuration ..70

6.6.1.1. SubPool Instance Specific Logging Parameters Configuration...72

6.6.1.2. EquipmentDriver Initialization Parameters Configuration ...72

6.7. EquipmenDriver Configuration..73

6.7.1. EquipmentDriver Initialization Parameters Configuration..73

6.7.2. ConnectionResource Configuration ...73

6.8. Protocol Drivers Manager Configuration ...74

6.9. ProtocolDriver Configuration ...74

6.10. CLICommands Configuration ..74

6.11. Template Parser Configuration..75

6.12. JMS Monitoring Configuration..75

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

6

Support

Support for the HP Open View Service Activator SPI product is available on the following mailing list:

ovsa.spain.support@hp.com

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

7

In This Guide

This guide will explain the configuration, installation, needed development, and functionality provided by

the ECP.

Audience

The audience for this guide is the Solutions Integrator (SI). The SI has a combination of some or all of the

following capabilities:

Understands and has a solid working knowledge of:

UNIX® commands

Windows® system administration

Understands networking concepts and language

Is able to program in Java™ and XML

Understands security issues

Understands the customer’s problem domain

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

8

Conventions

The following typographical conventions are used in this guide.

Font What the Font

Represents

Example

Italic Book or manual titles,

and man page names

Refer to the HP Service Activator — Workflows and the

Workflow Manager and the Javadocs man page for more

information.

Provides emphasis You must follow these steps.

Specifies a variable

that you must supply

when entering a

command

Run the command:

java -classpath <classpath>

Parameters to a method The assigned_criteria parameter returns an ACSE response.

Bold New terms The distinguishing attribute of this class...

Computer Text and items on the

computer screen

The system replies: Press Enter

Command names Use the java command ...

Method names The get_all_replies() method does the

following...

File and directory

names

Edit the file

$ACTIVATOR_ETC/config/mwfm.xml

Process names Check to see if mwfm is running.

Properties files keys

names

Set the property LOG_DIR to establish the log files path.

Window/dialog box

names

In the Test and Track dialog...

XML tag references Use the <DBTable> tag to...

Computer
Bold

Text that you must type At the prompt, type: ls -l

Keycap Keyboard keys Press Return.

[Button] Buttons on the user

interface

Click [Delete].

Click the [Apply] button.

Menu Items A menu name followed

by a colon (:) means

that you select the

menu, then the item.

When the item is

followed by an arrow

(->), a cascading menu

follows

Select Locate:Objects->by Comment.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

9

Install Location Descriptors

The following names are used throughout this guide to define install locations.

Descriptor What the Descriptor Represents

$ACTIVATOR_OPT The base install location of Service Activator.

The UNIX location is /opt/OV/ServiceActivator

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\

$ACTIVATOR_ETC The install location of specific Service Activator configuration files.

The UNIX location is /etc/opt/OV/ServiceActivator

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\etc\

$ACTIVATOR_VAR The install location of specific Service Activator logging files.

The UNIX location is /var/opt/OV/ServiceActivator

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\var\

$ACTIVATOR_BIN The install location of specific Service Activator binary files.

The UNIX location is /opt/OV/ServiceActivator/bin

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\bin\

$ACTIVATOR_THIRD_PARTY The location for new Java components such as workflow nodes and

modules. Third-party libraries can also be placed in this directory.

The UNIX location is /opt/OV/ServiceActivator/3rd-party

The Windows location is

<drive>:\HP\OpenView\ServiceActivator\3rd-party\

Customized inventory files are stored in the following locations:

UNIX: $ACTIVATOR_THIRD_PARTY/inventory

Windows: $ACTIVATOR_THIRD_PARTY\inventory

$JBOSS_HOME HOME The install location for JBoss.

The UNIX location is /opt/HP/jboss

The Windows location is

<drive>:\HP\jboss

$JBOSS_DEPLOY The install location of the Service Activator J2EE components.

The UNIX location is

/opt/HP/jboss/server/default/deploy

The Windows location is

<drive>:\HP\jboss\server\default\deploy

$ACTIVATOR_DB_USER The database user name you define.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

10

Suggestion: ovactivator

$ACTIVATOR_SSH_USER The Secure Shell user name you define.

Suggestion: ovactusr

$SOSA_HOME The base install location of SOSA.

The UNIX location is /opt/OV/Sosa

The Windows location is

<drive>:\HP\OpenView\Sosa\

$SOSA_BIN The install location of specific SOSA binary files.

The UNIX location is /opt/OV/Sosa/bin

The Windows location is

<drive>:\HP\OpenView\Sosa\bin\

$SOSA_ETC The install location of specific SOSA configuration files.

The UNIX location is /opt/OV/Sosa/config

The Windows location is

<drive>:\HP\OpenView\Sosa\config\

$ECP_HOME The base install location of Equipment Connections Pool.

The UNIX location is /opt/OV/ECP

The Windows location is

<drive>:\HP\OpenView\ECP\

$ECP_BIN The install location of specific Equipment Connections Pool binary files.

The UNIX location is /opt/OV/ECP/bin

The Windows location is

<drive>:\HP\OpenView\ECP\bin\

$ECP_ETC The install location of specific Equipment Connections Pool

configuration files.

The UNIX location is /opt/OV/ECP/conf

The Windows location is

<drive>:\HP\OpenView\ECP\conf\

$ECP_LIB The install location of specific Equipment Connections Pool jar files.

The UNIX location is /opt/OV/ECP/lib

The Windows location is

<drive>:\HP\OpenView\ECP\lib\

$ECP_LOG The install location of specific Equipment Connections Pool log files.

The default UNIX location is /opt/OV/ECP/log

The default Windows location is

<drive>:\HP\OpenView\ECP\log\

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

11

1. Introduction

1.1. Purpose

This document is a manual for all ECP Module users. It gives a general view of the ECP Module concepts,

functionality, architecture, and use, with special focus in configuration and its effects.

1.2. General Description

The function of the ECP Module, as part of the SPI, is automating user interactive textual sessions, via

TCP/IP connections to networked devices, such as routers, switches, proxies, etc...

The ECP Module receives a textual representation of the session, which states the commands to issue, their

output and their meanings, and the control flow logic (such as the conditions under which a command

must be issued or how many times must be issued).

The ECP Module is the module in SPI which in the last instance directly connects to the SPI managed

devices, centralizing the SPI management connections. This situation inside the SPI framework is ideal to

perform task such as load balancing, high availability and resources use optimization when referring to

management connections. Toward this objective, the ECP Module implements a series of connections

Pools, which provide the aforementioned functionalities, grouped in a Pool Manager.

The ECP Module is divided in two elements, the ECP Client and the ECP Service (an RMI service). The ECP

Service receives the representations of the sessions and actually executes them, and contains the Pool

Manager. The ECP Client acts mainly as a proxy, easing access to the ECP Service. It also allows the user

to totally bypass the ECP RMI Service if needed, being the process transparent to the user. Bypassing the

ECP Service is known as “Direct Connection” as opposed to “Pooled Connections” when using the ECP

RMI Service. The use of either method is transparent to the user.

Such division allows easier scalability of the SPI, while maintaining the ECP Module objectives of load

balancing, high availability and resources use optimization.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

12

Figure 1: ECP Simplified General diagram.

1.3. ECP Module Entities and Concepts

1.3.1. Target System

In the context of the ECP, a “Target System” is the collection of resources accessible through a single

direct TCP/IP Connection. Usually, a “Target System” will be a single router, switch or other similar

device. However, more complex scenarios are possible if other devices are accessed from the connection

end-point.

1.3.2. Operation

By “Operation” we refer to the collection of commands and logic needed to perform a certain process on

the Target System. The purpose of the process may be a data inquiry, a configuration change or any

other action needed on a Target System. An “Operation” should be atomic, that is, it should completely

occur, or have no effects on the Target System. As a consequence, “Operations” should include the

commands and logic needed to rollback the changes on the Target System if any. However, this policy is

not enforced. Its use is left to the user’s discretion.

1.3.3. Commands Template/Operation Template

A “Command Template” is a string which complies with a certain syntax through which an Operation is

expressed, for the ECP Module to interpret and process it, usually with the purpose of automating a

human interactive session on the Target System. The “Command Template” states the commands needed

to perform the process (and usually to roll it back too), with specific information on every command, such

ECP User JVM ECP Service JVM

ECP Client

Textual

representation of

the session

Target System

commands

ECP RMI Service

Parsed

Representation of

the session
ECP

Pool Manager

commands

Pooled Connection

Direct Connection

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

13

as possible command outputs and their meaning (error, success) and the control flow which determines

their execution order, among other things.

1.3.4. Operation Execution

An “Operation Execution” is the process through which Command Template is processed, resulting in

commands inputted into the Target System.

1.3.5. Resource

In the context of the ECP, “Resource” is synonym of connection instance.

1.3.6. Pool

In the context of the ECP, a “Pool” is a set of established and authenticated connections (resources) to a

single Target System that are kept ready to use. Each connection instance belongs to a single “Pool”.

Connection instances life time is managed by the “Pool”. Pools are identified by name.

1.3.7. SubPool

A “SubPool” is a subset of the connections belonging to a Pool which are established with the Target

System through the same interface, what generally implies though the same IP and Port (and user). The

existence of the “SubPool” is only needed in the context of the ECP Configuration and Administration. In

other contexts its use is transparent to the user. Each SubPool belongs to a single Pool. Every connection

belongs to a single SubPool.

1.3.8. Equipment Driver

An “Equipment Driver” is a class whose instance encapsulates a single TCP/IP connection as a Pool

Resource and is in charge of establishing, authenticating, verifying, and closing the underlying

connection, when required by the Pool and as needed by the Target System. As some of this processes

(especially authenticating, verifying and closing the connection) are dependent on the Target System type,

usually a different “Equipment Driver” is needed for each Target System type, hence its name. It allows

the developer and designer to easily add functionality to the ECP on per connection, per equipment, per

equipment connection or even on connection event basis. Equipment Drivers must be provided by the ECP

User.

The “Equipment Driver” is also in charge of executing every individual Commands Template command,

that is: composing the Target System command, sending it to the Target System, reading the Target system

answer, and interpreting it. Nevertheless, this functionality is provided by the ECP through inheritance.

For some tasks (such as establishing and closing the connection, or sending and reading data from it), the

Equipment Driver will usually rely on a Protocol Driver to perform them as very often those task are not

dependant on the Target System type, but on the network protocol to communicate with it. Entrusting this

task on the Protocol Driver allows the programmer to reuse network protocol dependant functionality.

Typically, a different Equipment Driver is needed for each model of switch or router.

In the context of the ECP, the terms “connection”, “Resource”, and “Equipment driver”, are

interchangeable.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

14

1.3.9. Protocol Driver

A “Protocol Driver” is a class whose instance encapsulates a single TCP/IP connection, and is in charge

of performing the most basic operations at low level, that is: establishing and closing the connection,

sending and reading data from it, and encoding and decoding those data as needed by the Target

System interface. Generally speaking, a Protocol Driver provides partial or total independence from the

Application Layer of the OSI model. Entrusting this task on the Protocol Driver allows the programmer to

reuse network protocol dependant functionality and the same Equipment Driver with different

communication protocols.

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols.

1.4. General Architecture

On the highest level the ECP Module can be divided in two entities: the ECP Client and the ECP Service.

1.4.1. ECP Client

The ECP Client always is the entry point for the ECP user to the ECP Module, regardless of connection

method or configuration (see Figure 1: ECP Simplified General diagram).

The ECP Client is basically an ECP Service, without a Pool Manager. As such, it is able to execute

Operations by itself and without the need of an ECP Service, opening and closing a new connection to

the Target System for every Operation execution (Direct Connection), or delegating the execution of the

Operation on the ECP Service (Pooled Connection). However, when using Direct Connections it can’t

profit on the aforementioned advantages of the RMI Service (load balancing, high availability and

resources use optimization).

The ECP Client is constituted by two entities: The ECP Template Parser

(com.hp.spain.connection.TemplateParser) and the ECP Operation Engine

(com.hp.spain.connection.CLICommands).

The ECP Template Parser receives a Command Template (and some configuration) as input, returning an

accordingly constructed ECP Operation Engine as a result.

The ECP Operation Engine receives connection configuration (and additional Operation commands if

needed) as input, and when executed returns the session stdin and stdout or an exception if the Operation

failed.

Depending on how the Template Parser and Operation Engine were configured, the real Operation

execution will take place either locally (that is, in the client’s Java Virtual Machine instance) or remotely

(that is, in a different Java Virtual Machine instance)

The figure Figure 2: Direct Connection Operation Execution Diagram represents a Direct Connection

Operation execution. See ECP Service for an explanation of Pooled Connections.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

15

Figure 2: Direct Connection Operation Execution Diagram.

1.4.2. ECP Service

The ECP Service is basically an ECP Client which retrieves the connections to the Target System from a

Pool Manager, instead of creating them (see ECP Client).

If the ECP Client Operation Engine is configured to use Pooled Connections, on execution, instead of

creating a connection, it will serialize the Parsed Command Template (contained by itself), and send it via

RMI to the ECP Service.

On reaching the ECP RMI Service, The serialized Parsed Command Template will be used to instantiate

an equivalent of the client’s ECP Operation Engine. A connection from the Pool Manager will be assigned

to this Operation Engine, which it will use to execute the Operation. The Operation will be executed as if

from the client, but with a connection obtained from the Pool Manager instead (see Functionality and

Architecture

Connection and Pool Manage for additional detail). A different Operation Engine will be instantiated for

each Operation, and multiple Operations may be executed concurrently.

The stdin and stdout or the failure of the Operation will be sent back to the caller Operation Engine (that

is, the client’s one).

User JVM

ECP Client

Command

Template
ECP

Template

Parser

ECP

Operation

Engine
Target System

commands

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

16

Figure 3: Pooled Connection Operation Execution.

ECP Service JVMUser JVM

ECP Client

Command

Template

ECP

Template

Parser

ECP

Operation

Engine

Target System

commands

ECP RMI Service

ECP

Operation

EngineParsed

Command

Template

ECP

Connection

Pool

Manager

connection

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

17

2.Functionality and Architecture

2.1. Connection and Pool Management

A single instance of the Pool Manager exists in the ECP Service. The Pool Manager contains a single Pool

for each Target System (in a typical configuration).

Each Pool contains all the connections to a Target System, and is responsible of their life time and

management. Additionally, it is responsible for:

a) Connections reuse. The connections are kept alive, opened and authenticated, reusing the

connections while possible.

b) Identifying redundant interfaces on the Target System, and their connections, providing high

availability.

c) Queuing and prioritizing the Operation Engines’ requests for connection to the Target System,

providing load balance.

d) Target System independence.

e) Protocol independence.

See Figure 4: Pool Manger Architecture

2.1.1. Connection Reuse

Opening and maintaining a connection for each user is costly and wastes resources. On the contrary,

pooling the connections enhances the performance of executing commands on a Target System. After a

connection is created, it is placed in the Pool and reused over again while possible so that another

connection does not have to be established and authenticated. The Pool creates (initialize) and

destroys (finalize) new connections as needed, not exceeding the configured limits and politics.

Connections are verified for consistency before being assigned to a client (verify). Additionally pooling

the connections allows abstracting the client of the details of the connections management. Pooling the

connections achieves reliable connections reuse. See Figure 4: Pool Manger Architecture

2.1.2. High Availability

Every Pool may have one or more SubPools. Each SubPool represents a connection factory and container.

Every SubPool comply the following rules:

a) Each SubPool “owns” a different Target System interface. This means that all ECP connections to

that Target System through that interface should be created and contained by the same SubPool

instance.

b) Connections from different SubPools should be equivalent, that is, executing an Operation

through one or another SubPool should have the same effects on the Target System (provided the

same initial Target System State).

Complying with this rules, allows the ECP to temporarily ignore a SubPool (interface) if it fails and

becomes unusable (and another SubPool exists in the Pool), using the other SubPools (interfaces) instead.

SubPooling the connections achieves high availability. See Figure 4: Pool Manger Architecture.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

18

2.1.3. Target System Independence

The ECP needs to be able to connect, login, verify and disconnect the connections to the Target Systems

as part of the Pooled connections management. As these processes are Target System specific, the ECP is

unable to do so by itself. As a consequence, the ECP User must provide an Equipment Driver which

performs those operations on behalf of the ECP. The Equipment Driver will wrap a connection, abstracting

the ECP from the real tasks needed for those operations. Roughly speaking, the Equipment Driver scope is

at a “per command” level. See Equipment Driver and Figure 4: Pool Manger Architecture.

2.1.4. Protocol Independence

Although Equipment Drivers perform Target System specific tasks, the underlying network protocol is

usually standardized, and is not Target System dependant. For example, is very common for Target

Systems to use SSH or Telnet protocols. To ease Equipment Driver development and allow protocol

interchangeability, a Protocol Layer abstraction layer is implemented, called “Protocol Driver”. That layer

will be responsible for establishing and closing the connection, sending and reading data from it, and

encoding and decoding those data as needed by the Target System interface.

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols. See Protocol

Driverand Figure 4: Pool Manger Architecture.

Figure 4: Pool Manger Architecture.

ECP RMI Service

Interface

1.N

...

ECP Connection Pool Manager

Pool 1

…SubPool 1.1

…

Equipment

Driver1.1.1

Protocol DriverX

Equipment

Driver1.1.M

Protocol DriverY

SubPool 1.N

…

Equipment

Driver1.N.1

Protocol DriverZ

Equipment

Driver1.N.S

Protocol DriverV

Pool L
…

...…

…

…

Target System 1

Interface

1.1

Target

System L

...

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

19

2.1.5. Load Balance

Every Pool, has a configurable number of “Request Queues”, where clients in need of a connection are

kept waiting for their turn to acquire a connection. Queues can be prioritized, allowing critical

Operations to remain as short as possible waiting for an available connection, and avoiding clients from

becoming starved because of a high not critical Operations load. The priority of each request is

established programmatically.

The frequency at which requests are dispatched and the number of available connections on each

SubPool can be configured, allowing management of the load over the Target System and the ECP host.

Request queuing and Pool size achieve load balance.

2.2. Pool and Connection types

Two types of Connection Pools are available, depending on how the pools are created.

2.2.1. Static vs Temporary Pools

ECP Module provides two different types of Pools: Static and Temporary.

Functionally, Temporary Pools are exactly the same as Static Pools, the only difference being that

Temporary Pools will expire if unused for a configured amount of time, while static Pools will never expire.

Temporary Pools are useful when a Target System is going to be used for a short period of time and

remain unused for long periods. Temporary Pools allow saving host resources in such situation.

When Pools are used, the Operation Execution is delegated on the ECP Service. See ECP Service.

2.2.2. Direct Connections (Not Pooled Connections)

When using Direct Connections, a connection is created for each executed Operation, being the

connection private to the ECP Operation Engine instance used to issue the Operation. The Connection

exists in the context of the ECP Operation Engine instance JVM. The Operation is executed in the JVM of

the client. No ECP RMI Service is needed for this kind of Operation, although the Equipment Driver and

Protocol Driver and their libraries will be needed. See ECP Client.

2.2.3. Dynamic Pools

The ECP Module allows the user to programmatically create Pools. Programmatically created Pools are

referred “Dynamic Pools”. Dynamic Pools are usually temporary, although they can be static. As a

consequence, “Dynamic Pools” aren’t created independently, but as part of the Operation Executions

which uses them. This is due to the fact that a client can’t know whether the Dynamic Temporary Pool will

still exist when the Operation Execution call is processed by the RMI ECP Service. For these reason,

Operation Executions which use Dynamic Pools always carry the Dynamic Pool definition. On arrival to

the ECP Service, the Dynamic Pool will be created if it does not exist. If it exists, the running Dynamic Pool

instance will be used.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

20

2.3. Commands Template

As “Commands Template” we understand a specially crafted String where, using a syntax specified by

the ECP, the commands to Do, Undo, Commit and Rollback the Operation are established.

A Velocity Engine version 1.4 is provided with ECP, to ease the implementation of dynamic Commands

Templates for the user. Through the method TemplateParser#composeTemplate(), a Velocity

Commands Template can be easily merged with the data. See http://velocity.apache.org/ for more

details. See Commands Template Reference.

What follows is an example of a possible Commands Template:

[TEMPLATE:Do]

[TEMPLATE:Section 0]

show eth0 connections
[TEMPLATE:EndStrPattern "admin#"]
[TEMPLATE:Pattern "detination IP: (.*)"]
[TEMPLATE:Array "destinationIPs"]

show eth1 connections
[TEMPLATE:EndStrPattern "admin#"]
[TEMPLATE:Pattern "detination IP: (.*)"]
[TEMPLATE:Array "destinationIPs"]

[TEMPLATE:ForEach "var" In " destinationIPs"]
ping %var% -n 1

[TEMPLATE:EndStrPattern "admin#"]
[TEMPLATE:EndFor]

[TEMPLATE:Undo]
[TEMPLATE:Section 0]

The previous template executes queries connections through eth0, storing the destination IP in the array

variable destinationIPs. The same process is repeated on eth1. After that, a ping is executed to all

the obtained IPs. All commands are over when the prompt admin# is encountered. As the Template does

not modify the Target System state, no Undo commands are needed.

2.4. Operation Execution

Operation Execution is the process through which the commands needed for the Operation to be done or

undone are issued, appropriately handling the errors and rolling back the partial configuration change or

committing the configuration changes.

The client will provide a “Commands Template”, a specially crafted String where, using a syntax

specified by the ECP, the commands to Do, Undo, Commit and Rollback the Operation are established.

The Commands Template may contain conditional or looped execution of commands. Commands output

may be stored in variables and later used in conditions and commands. For a more detailed explanation

see 2.3 Commands Template.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

21

Each command in an Operation belongs to one of the following groups:

a) Do: The commands collection to perform the configuration change.

b) Undo: The commands collection to cancel the configuration change.

c) Error: A set of commands to execute whenever a command output is identified as an unsuccessful

command execution message.

d) Commit: The commands to:

a. Make the configuration modifications effective/visible.

b. Save the configuration to a persistent media.

e) Rollback: The commands to:

a. Restore the previous configuration from a persistent media.

b. Make the previous configuration effective/visible.

This is the recommended use for these groups, although other uses may be possible, always taking in to

account the Do/Undo/Commit/Rollback logic. That logic is dependant on the call used to execute the

Operation. Four methods are available: “Execute”, “ExecuteActivation”, “Revert” and “InverseActivation”.

See the following diagrams for more detail:

Figure 5: “Execute” and “Revert” activity diagrams.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

22

Figure 6: “ExecuteActivation” activity diagram. Figure 7: “InverseActivation” activity diagram.

2.5. Real-time Monitoring

From SPI version 2.3 onwards the ECP is able to provide real time information of its execution through

JMS. Currently, ECP includes Active MQ 4.1.1 which fully implements JMS 1.1. If JMS monitoring is

enabled, ECP may start its own embedded JMS service (by default) or connect to a remote one. Active

MQ includes many features, like persistent, transactional and XA messaging; message groups, virtual

destinations, wildcards and composite destinations; pluggable transport protocols as TCP, SSL, UDP, in-

VM (embedded); clustering; bridging to other JMS providers; JMX administration, etc…

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

23

3.First Steps

3.1. Equipment Driver Development

3.1.1. Equipment Driver Development Introduction

As previously said (see Equipment Driver) an “Equipment Driver” is a class which encapsulates a single

connection as an ECP Resource (a pooled connection). As such, an Equipment Driver must implement the

functionality expected by the ECP, that is:

a) The capability of executing commands.

b) The ability of behaving as an ECP Connection.

The main part of that functionality is already implemented and inherited from the driver parent classes

EquipmentDriver and ConnectionResource, simplifying the driver development.

The capability of executing commands is fully provided by the EquipmentDriver class, very rarely

requiring additional implementation or overriding in the driver.

The ability of behaving as an ECP Connection is partially provided by the ConnectionResource class,

and as a consequence, additional implementation and overriding will be needed in the driver.

In addition, an instance of another class, the ProtocolDriver, will provide protocol independence,

allowing the use of the same Equipment Driver with varying communications protocols (telnet, SSH, etc…)

to the destination equipment.

While developing the driver, the programmer must be careful not to choose libraries versions which differ

of the versions present in $ECP_LIB (if Pooled Connections are used) and/or the versions present in the

$ACTIVATOR_THIRD_PARTY/lib (if Direct Connections are used). The Equipment Driver classes and its

dependencies may have to be deployed in one or both of those paths and the driver classes will be

loaded using the same ClassLoader as the rest of libraries there. See Equipment Driver Deployment for

further details.

See Available Equipment Drivers for a list of some Equipment Drivers already implemented. Notice that

that list includes only the precise versions of the Target Systems against which a certain driver has been or

is being used in a production environment. These drivers might be compatible as is with some other

Target Systems or versions, or might be easily adapted to them.

3.1.1.1. Equipment Driver Classes

Every Equipment Driver must inherit from com.hp.spain.connection.ConnectionResource. The

following diagram shows the typical class diagram of an Equipment Driver example

(HPUXConnectionResource).

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

24

Figure 8: Equipment Driver example (HPUXConnectionResource) typical class diagram.

i. com.hp.spain.connection.ProtocolDriver Class

A “Protocol Driver” is a class whose instance encapsulates a single TCP/IP connection, and is in charge

of performing the most basic operations at low level, that is: establishing and closing the connection,

sending and reading data from it, and encoding and decoding those data as needed by the Target

System interface. Generally speaking, a Protocol Driver provides partial or total independence from the

Application Layer of the OSI model. Entrusting this task on the Protocol Driver allows the programmer to

reuse network protocol dependant functionality and the same Equipment Driver with different

communication protocols.

The ECP provides Protocol Drivers for Telnet, SSH, and raw TCP network protocols.

See com.hp.spain.connection.ProtocolDriver Class for further information.

ii. com.hp.spain.connection.EquipmentCommand Class

This class encapsulates the information needed to execute a command on the Target System, that is, to

construct the string to be sent, send it and read its output, interpret it, and extract information from it. See

Error! Reference source not found.com.hp.spain.connection.EquipmentCommand Class for further

details.

iii. com.hp.spain.connection.EquipmentDriver Class

This class contains the functionality needed to execute a command on the Target System represented as

an EquipmentCommand, that is, construct the string to be sent, send it, and process its output. It also

contains some basic connection operations, such as establishing a connection, closing a connection, and

authenticating. See Error! Reference source not found.com.hp.spain.connection.EquipmentDriver

Class for further information.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

25

iv. com.hp.spain.connection.Resource Class

This interface represents a basic pooled object. Defines the operations needed to manage an object

belonging to a pool. See Error! Reference source not found.com.hp.spain.connection.Resource

Class for further information.

v. com.hp.spain.connection.ConnectionResource Class

This class implements an EquipmentDriver as a pooled object. It implements the functionality defined by

Resource using the operations provided by EquipmentDriver, that is, executing commands and

basic connection operations. See Error! Reference source not

found.com.hp.spain.connection.ConnectionResource Class for further information.

3.1.1.2. Equipment Driver inside the ECP

The following diagram shows the relation of

Figure 9: An example Equipment Driver (HPUXConnectionResource) and its relation with the ECP.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

26

3.1.2. Equipment Driver Generic

This driver is a usefull class to avoid the implementation of the different driver’s states. Then when the

developer has to make a new driver just focus on the equipments requirements.

The driver has to extend the class com.hp.spain.connection.EquipmentDriverGeneric and overwrite next

methods. Some of them are optional.

void verifyLoggedIn(): optional. Makes the verification when the driver status is loggedin

void verifyConnected(): optional. Makes the verification when the driver status is connected

void verifyConfigMode(): optional. Makes the verification when the driver status is configMode

void verifyUnknownMode(): optional. Makes the verification when the driver status is unknown

void enterConfigMode(): optional. Execute the commands required to config the connection

void exitConfigMode(): optional. Execute the commands required to unconfig the connection

void logout(): optional. Executes the commands to logout the connection

void initalizeSpecificParameters(String specificParameters): optional.

void waitForLoginUserPrompt(): usually required for protocol without authentication support. Synchronize

the login prompt.

void waitForLoginPwdPrompt(): usually required for protocol without authentication support. Synchronize

the login password.

void waitForInitialCommandPrompt(): usually required. Synchronize the initial prompt.

3.1.3. Equipment Driver Deployment

The Equipment Driver may have to be deployed in two different paths, depending on the type of

connection used.

For Pooled Connections, the Equipment Driver jar and its dependencies must be placed inside the

$ECP_LIB directory, and the ECP Service restarted. The ECP Service should be restarted whenever that

directory contents are modified for the ECP to incorporate the changes. For the Equipment Driver to be

instantiated a Static or Dynamic Pool which uses that Equipment Driver must be created and depending

on the ECP configuration, even a Commands Template executed against it.

For Direct Connections, the Equipment Driver jar and its dependencies must be placed inside the

$ACTIVATOR_THIRD_PARTY/lib directory. The Micro Workflow Manager and the Resource Manager

must be restarted for the changes to take effect. The Micro Workflow Manager and the Resource

Manager should be restarted whenever that directory contents are modified. A Commands Template must

be executed for the Equipment Driver to be instantiated.

3.1.4. Available Equipment Drivers

The following Equipment Drivers have been already developed and are available:

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

27

Equipment Driver

Tested On Use Case

Manufacturer Model Sw/Fw

Version

Type Context Operations Protocol

cisco-ovsa-plugin Cisco

Catalyst 2960 Series

Switch. Unknown Models
?

Ethernet Switch Level 2 Network
VLAN Configuration,

ACL’s, DHCP
Telnet

Catalyst 4503 Switch ?

oxe-ovsa-plugin Alcatel-Lucent OmniPCX Enterprise
7.1

Communications Server
VoIP Telephone

Exchange

Channel

Administration
Telnet

8.1

juniper-ovsa-driver Juniper Networks M40e ? Router

Provider Router

IP/MPLS

Network Access

Router

Configuration

Configuration

diagnosis

SSH

teldat-ovsa-driver Teldat Atlas 250 ? Router Client Router
Configuration

diagnosis
Telnet

cisco-ovsa-driver Cisco

2801 Integrated Services

Router
?

Router Client Router
Configuration

diagnosis
Telnet

2621XM Multiservice

Router
?

catalyst-ovsa-driver Cisco

Catalyst 3560-24TS ?

Ethernet Switch Client Router
Configuration

diagnosis
Telnet

Catalyst 3560-48TS ?

Catalyst 3550-24-EMI ?

Catalyst 3550-12G ?

riverstone-ovsa-driver Riverstone
RS1100 ?

Router Client Router
Configuration

diagnosis
Telnet

RS 3100 ?

Notice that this list includes only the precise versions of the Target Systems against which a certain driver

has been or is being used in a production environment. These drivers might be compatible as is with

some other Target Systems or versions, or might be easily adapted to them.

3.1.5. Generic Template Equipment Driver

This driver is able to connect to any type of equipments using some variables or templates. The most

important fearture of this driver is the capability to connect any equipment and not require any java

development.

This equipment driver is configured using the class com.hp.spain.connection.TemplateDriver. We can

configure this driver adding into the DriverSpecificParameters the extra variables on properties format or

referring to the Common Configuration.

The next 5 templates that can be configured into the database or into a file, finding first in database.

LOGIN_TEMPLATE: template to make the login (note: this template has sense in protocol driver that

doesn’tmakes the authentication)

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

28

LOGOUT_TEMPLATE: the logout template, typically the exit command

ENTER_CONFIG_MODE_TEMPLATE: the template to configure all the sessions attributes required.

EXIT_CONFIG_MODE_TEMPLATE -> the template to unconfigure

VERIFY_TEMPLATE: template to verify if the connection is ok.

These templates will receive the parameters configured into the DriverSpecificParameters and the next

parameters configured into the subpool:

USER: user name

PASSWORD: user password

PASSWORD_ENABLE: password enable

HOST: ip host value

Also, next variables can be define to make easier the templates:

LOGIN_USER_PROMPT: synchronize the driver with the login prompt.

LOGIN_PWD_PROMPT: synchronize the driver with the password prompt.

INITIAL_PROMPT: synchronize the driver with the inital prompt.

Also, this driver has the capability to add error patterns, failure patterns, non error patterns and error

message to all the commands that are executed into a command template. In case, it’s required to add

these patterns to the connections templates (LOGIN_TEMPLATE, ENTER_CONFIG_MODE_TEMPLATE, …)

the variable ADD_PATTERNS_CONNECTION_TEMPLATES has to be setted to true.

The only requirement to set these patterns is define variables with next prefix:

ENDSTRING_PATTERN

ERROR_PATTERN

FAILURE_PATTERN

NONERROR_PATTERN

ERROR_MESSAGE: in this case only can be defined one and the variable is required to have this name.

3.1.5.1. Connection

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

29

When the driver starts the connection the first step is to check if the LOGIN_USER_PROMPT is configured.

In that case, synchronize this prompt. After that, the LOGIN_TEMPLATE is executed if it’s configured. If not

and the protocol driver doesn’t support authentication, send the user, synchronize the password prompt

(LOGIN_PWD_PROMPT) and send the password.

In this moment, the driver is authenticated and in case the INITIAL_PROMPT is configured the driver

synchronizes the initial prompt.

Usually, when the protocol supports the authentication (for example, ssh) it’s only necessary to configure

the INITIAL_PROMPT and not the LOGIN_TEMPLATE and neither LOGIN_USER_PROMPT.

After synchronize the INITIAL_PROMPT the driver execute the ENTER_CONFIG_MODE_TEMPLATE and

finally executes the VERIFY_TEMPLATE.

In this moment, the driver is connected and ready to be used.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

30

3.1.5.2. Disconnect

First, the driver execute the template EXIT_CONFIG_MODE_TEMPLATE and after that the

LOGOUT_TEMPLATE.

3.1.5.3. Examples of DriverSpecificParamters

Telnet easiest configuration:

LOGOUT_TEMPLATE=logout.vm

LOGIN_USER_PROMPT=.*login\:

LOGIN_PWD_PROMPT=.*password\:

INITIAL_PROMPT=C\:.*\>

Ssh easiest configuration:

INITIAL_PROMPT=#

Telnet using login template and patterns:

LOGOUT_TEMPLATE=logout.vm

LOGIN_USER_PROMPT=.*login\:

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

31

LOGIN_TEMPLATE=login.vm

VERIFY_TEMPLATE=/opt/HP/OV/ECP/templates/verify.vm

ENDSTRING_PATTERN= C\:.*\>

ERROR_PATTERN_1=ERROR [0-9]+ .*

ERROR_PATTERN_2=[0-9][0-9] ERROR .*

FAILURE_PATTERN_1=FAILURE [0-9]+ .*

FAILURE_PATTERN2=[0-9][0-9] FAILURE .*

ERROR_MESSAGE=error message

NONERROR_PATTERN_1=Warning .*

Ssh using enter mode config template and patterns:

LOGOUT_TEMPLATE=logout_ssh.vm

LOGIN_TEMPLATE=login.vm

ENTER_CONFIG_MODE_TEMPLATE=enterConfigMode.vm

EXIT_CONFIG_MODE_TEMPLATE=exitConfigMode.vm

VERIFY_TEMPLATE=/opt/HP/OV/ECP/templates/verify_ssh.vm

INITIAL_PROMPT=\\[forge\\]\\$

ENDSTRING_PATTERN=\\[forge\]\\$

ERROR_PATTERN_1=ERROR [0-9]+ .*

ERROR_PATTERN_2=[0-9][0-9] ERROR .*

FAILURE_PATTERN_1=FAILURE [0-9]+ .*

FAILURE_PATTERN2=[0-9][0-9] FAILURE .*

ERROR_MESSAGE=error message

NONERROR_PATTERN_1=Warning .*

3.2. ECP Service Process

3.2.1. Starting ECP Service

To start the ECP Service, use the following:

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

32

Windows:

$ECP_BIN\StartServer.bat

On Unix:

$ECP_BIN\StartServer.sh

3.2.2. Stopping ECP Service

To stop the ECP Service, use the following:

Windows:

$ECP_BIN\StopServer.bat

On Unix

$ECP_BIN\StopServer.sh

3.2.3. Restarting ECP Service

Just stop and start the ECP Service.

3.2.4. Checking ECP Service

To check the ECP Service, use the following:

Windows:

$ECP_BIN\showStatus.bat

On Unix:

$ECP_BIN\showStatus.sh

3.3. Use Examples

What follows is a series of examples of ECP Clients. In those examples, the following class, simulating a

client configuration, is used. You will probably have some other particular way of obtaining the

configuration. Notice that, depending on the connection type, not all of the configuration parameters are

needed:

package com.hp.spain.connection.pool.examples;

public class ExamplesConfiguration {

//Commands Template
private static String Template=

"[TEMPLATE:Do]\n" +
"[TEMPLATE:Section 0]\n" +
"help\n" +
" [TEMPLATE:EndStrPattern \"nina.*\"]\n" +
" [TEMPLATE:Error \"%CLI-E-NOFACINST, no facility instance

allowed\"]\n" +
"[TEMPLATE:Undo]\n" +
"[TEMPLATE:Section 0]\n";

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

33

//Target system data
private static String Hostname="172.16.2.111";
private static int Port=23;
private static String Login="admin";
private static String Password="pass4hpsa";
private static String PasswordEnable="pass4hpsa";

//Drivers data
private static String Protocol="telnet";
private static String

ConnectionResourceClassName="com.hp.spain.connection.RiverstoneRSConnectionR
esource";
private static String AdditionalData="Other needed values";

//Pool data
private static String PoolName="examplePool";
private static int MaxCon=3;
private static int MinCon=1;
private static boolean InitOnCreate=true;
private static int OverMinimunConnTimeout=30000;
private static int ReservedConnTimeout=60000;
private static int PoolTimeout=600000;

//ECP Instance data
private static String ECPHost="127.0.0.1";
private static String ECPPort="1200";
private static int QueueID=1;

public static String getAdditionalData() {
return AdditionalData;

}
public static String getConnectionResourceClassName() {

return ConnectionResourceClassName;
}
public static String getECPHost() {

return ECPHost;
}
public static String getECPPort() {

return ECPPort;
}
public static String getHostname() {

return Hostname;
}
public static boolean isInitOnCreate() {

return InitOnCreate;
}
public static String getLogin() {

return Login;
}
public static int getMaxCon() {

return MaxCon;
}
public static int getMinCon() {

return MinCon;
}
public static int getOverMinimunConnTimeout() {

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

34

return OverMinimunConnTimeout;
}
public static String getPassword() {

return Password;
}
public static String getPasswordEnable() {

return PasswordEnable;
}
public static String getPoolName() {

return PoolName;
}
public static int getPoolTimeout() {

return PoolTimeout;
}
public static int getPort() {

return Port;
}
public static String getProtocol() {

return Protocol;
}
public static int getReservedConnTimeout() {

return ReservedConnTimeout;
}
public static String getTemplate() {

return Template;
}
public static int getQeueID() {

return QueueID;
}

}

3.3.1. Creating and Using an Static Pool

In the source examples a Pool called “examplePool” will be used. What follows is a quick guide to create

a Pool. Refer to the document “OVSA SPI for Service Providers - ECP Administration GUI - User Reference”

for details on how to administer Pools and SubPools using the ECP GUI.

First, create the Pool (menu “Administrator->Pool->New”)

Fill in the formulary that will appear.

Name: “examplePool”. The Pool ID. Will be used from code to reference to the pool.

Log File: “examplePool.log”. Name of the file were the Pool activity will be logged.

Log Level: info

Maximum Pool Life Time from…: 10000

Weights: 1,2,3,4,5

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

35

Save the Pool (menu “Pool->Save”)

After creating the Pool, create a SubPool (menu “Administrator->SubPool->New”)

Fill in the formulary that will appear.

Pool Name: “examplePool”. The Pool to which this SubPool belongs.

Min. Sessions: 10

Max Sessions: 100

Init Sessions: 1

Temporary Sessions life Time=1000000

Max. Sessions use time= 100000000

The rest of the values are dependent on the Target System. These values are given as an example

Equipment Connection Resource Class: Class of the Equipment driver. For example:

“com.hp.spain.connection.RiverstoneRSConnectionResource”

IP: Target System IP. For example: 172.16.2.111

Protocol: Protocol Driver to use. For example: telnet

Port: Port to connect through to the Target System. For example: 23

User: User Name to log into the Target System. For example: admin

Password: Password to log into the Target System.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

36

Save the SubPool (menu “SubPool->Save”)

What follows is an example of static Pool use:

package com.hp.spain.connection.pool.examples;

import java.util.HashMap;

import com.hp.spain.connection.CLICommands;
import com.hp.spain.connection.CLIExecutionException;
import com.hp.spain.connection.TemplateParser;
import com.hp.spain.connection.TemplateParserException;

public class StaticPoolConnExample {

public static void main (String[] args) throws CLIExecutionException,
TemplateParserException {

HashMap oRet=null; //the Operation execution result
TemplateParser parser; //the ECP Template Parser instance
CLICommands cliCommands; //the ECP Operation Engine instance

//ECP Template Parser instantiation and configuration
parser=new TemplateParser();

//ECP Operation Engine instantiation and configuration
cliCommands =

parser.parseTemplate(ExamplesConfiguration.getTemplate());

//ECP instance
cliCommands.setRMIHostName(ExamplesConfiguration.getECPHost());
cliCommands.setRMIPort(ExamplesConfiguration.getECPPort());

//Operation execution

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

37

oRet=cliCommands.execute(ExamplesConfiguration.getPoolName(),
ExamplesConfiguration.getQeueID());

//Other possible executions would have been:

//oRet=cliCommands.executeActivation(ExamplesConfiguration.getPoolName(),
ExamplesConfiguration.getQeueID());

//oRet=cliCommands.revert(ExamplesConfiguration.getPoolName(),
ExamplesConfiguration.getQeueID());

//oRet=cliCommands.inverseActivation(ExamplesConfiguration.getPoolName(),
ExamplesConfiguration.getQeueID());

//Execution Output
System.out.println("RESULT HASHMAP:");
System.out.println(oRet);
System.out.println("COMMANDS SENT:");
System.out.println(cliCommands.getCommandsSent());
System.out.println("STDOUT:");
System.out.println(cliCommands.getStdOut());

}
}

To execute the example, run the following command, where <classpath> should contain all the

libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled. The

java version must be 1.4.2.

java -classpath <classpath>
com.hp.spain.connection.pool.examples.StaticPoolConnExample

3.3.2. Creating and Using a Dynamic Pool

It is possible to create a Pool programmatically, indicating its properties as part of an Operation

Execution. Programmatically created pools are called “Dynamic Pools” and are usually temporary. See

Dynamic Pools for a more detailed explanation.

package com.hp.spain.connection.pool.examples;

import java.util.HashMap;

import com.hp.spain.connection.CLICommands;
import com.hp.spain.connection.CLIExecutionException;
import com.hp.spain.connection.TemplateParser;
import com.hp.spain.connection.TemplateParserException;
import com.hp.spain.connection.pool.DynamicEcpProperties;

public class DynPoolConnExample {

public static void main (String[] args) throws CLIExecutionException,
TemplateParserException {

HashMap oRet=null; //the Operation execution result
TemplateParser parser; //the ECP Template Parser instance
CLICommands cliCommands; //the ECP Operation Engine instance
DynamicEcpProperties oDynProps;

//ECP Template Parser instantiation and configuration

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

38

parser=new TemplateParser();
//Target System Data
parser.setHostname(ExamplesConfiguration.getHostname());
parser.setPort(ExamplesConfiguration.getPort());
parser.setLogin(ExamplesConfiguration.getLogin());
parser.setPassword(ExamplesConfiguration.getPassword());
parser.setPasswordEnable(ExamplesConfiguration.getPasswordEnable());

//ECP Operation Engine instantiation and configuration
cliCommands =

parser.parseTemplate(ExamplesConfiguration.getTemplate());
//Equipment and Protocol Drivers
cliCommands.setProtocol(ExamplesConfiguration.getProtocol());

cliCommands.setConnectionResourceClassName(ExamplesConfiguration.getConnect
ionResourceClassName());

//Pooling Data
cliCommands.setDynamicPoolName(ExamplesConfiguration.getPoolName());

//optional. By default dynamic pool names are autogenerated.
oDynProps= cliCommands.getDynamicEcpProperties();
oDynProps.setPoolConfiguration(ExamplesConfiguration.getMaxCon(),

//maximum number of connections to be contained in the pool
ExamplesConfiguration.getMinCon(), //minimum number of

connections to be contained in the pool
ExamplesConfiguration.isInitOnCreate(), //initialize on

instantiation, instead of on firs use
ExamplesConfiguration.getOverMinimunConnTimeout(), //Not used

timeout of connections over the minimum (ms)
ExamplesConfiguration.getReservedConnTimeout(), //maximum time a

connection may be in use by an Operation (ms)
ExamplesConfiguration.getPoolTimeout() //Not used timeout for

the pool
);
//ECP instance
cliCommands.setRMIHostName(ExamplesConfiguration.getECPHost());
cliCommands.setRMIPort(ExamplesConfiguration.getECPPort());

//Equipment Driver additional initialization parameters

oDynProps.setSpecificParameters(ExamplesConfiguration.getAdditionalData());

//Operation execution
oRet=cliCommands.execute(oDynProps,

ExamplesConfiguration.getQeueID());
//Other possible executions would have been:
//oRet=cliCommands.executeActivation(oDynProps,

ExamplesConfiguration.getQeueID());
//oRet=cliCommands.revert(oDynProps,

ExamplesConfiguration.getQeueID());
//oRet=cliCommands.inverseActivation(oDynProps,

ExamplesConfiguration.getQeueID());

//Execution Output
System.out.println("RESULT HASHMAP:");
System.out.println(oRet);
System.out.println("COMMANDS SENT:");
System.out.println(cliCommands.getCommandsSent());
System.out.println("STDOUT:");
System.out.println(cliCommands.getStdOut());

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

39

}
}

To execute the example, run the following command, where <classpath> should contain all the

libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled. The

java version must be 1.4.2.

java -classpath <classpath>
com.hp.spain.connection.pool.examples.DynPoolConnExample

3.3.3. Using Direct Connections

It is possible to bypass the ECP Service when executing a Commands Template. See Direct Connections

(Not Pooled Connections) for a detailed explanation.

package com.hp.spain.connection.pool.examples;

import java.util.HashMap;

import com.hp.spain.connection.CLICommands;
import com.hp.spain.connection.CLIExecutionException;
import com.hp.spain.connection.ConnectionResource;
import com.hp.spain.connection.TemplateParser;
import com.hp.spain.connection.TemplateParserException;

public class DirectConnExample {

public static void main (String[] args) throws CLIExecutionException,
TemplateParserException {

HashMap oRet=null; //the Operation execution result
TemplateParser parser; //the ECP Template Parser instance
CLICommands cliCommands; //the ECP Operation Engine instance

//ECP Template Parser instantiation and configuration
parser=new TemplateParser();
//Target System Data
parser.setHostname(ExamplesConfiguration.getHostname());
parser.setPort(ExamplesConfiguration.getPort());
parser.setLogin(ExamplesConfiguration.getLogin());
parser.setPassword(ExamplesConfiguration.getPassword());
parser.setPasswordEnable(ExamplesConfiguration.getPasswordEnable());

//ECP Operation Engine instantiation and configuration
cliCommands =

parser.parseTemplate(ExamplesConfiguration.getTemplate());
//Equipment and Protocol Drivers
cliCommands.setProtocol(ExamplesConfiguration.getProtocol());

cliCommands.setConnectionResourceClassName(ExamplesConfiguration.getConnect
ionResourceClassName());

//Equipment Driver additional initialization parameters
HashMap oAddParams= new HashMap();

oAddParams.put(ConnectionResource.DefaultParameterNames.specificParameters,
ExamplesConfiguration.getAdditionalData());

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

40

cliCommands.setEquipmentDriverAdditionalParameters(oAddParams);

//Operation execution
oRet=cliCommands.execute();
//Other possible executions would have been:
//oRet=cliCommands.executeActivation();
//oRet=cliCommands.revert();
//oRet=cliCommands.inverseActivation();

//Execution Output
System.out.println("RESULT HASHMAP:");
System.out.println(oRet);
System.out.println("COMMANDS SENT:");
System.out.println(cliCommands.getCommandsSent());
System.out.println("STDOUT:");
System.out.println(cliCommands.getStdOut());

}
}

To execute the example, run the following command, where <classpath> should contain all the

libraries contained in the directory $ECP_LIB plus the path where these classes have been compiled plus

the path where the Equipment Driver libraries are located. The java version must be 1.4.2.

java -classpath <classpath> -Dactivator.dir.config=$ECP_ETC
com.hp.spain.connection.pool.examples.DirectConnExample

3.4. Monitoring ECP through JMS

ECP can be monitored through JMS. JMS is a specification which defines a messaging API. Two version

of the specification have been produced so far: 1.1 and the now obsolete 1.0.2b.

Depending on your system, you might have to use JMS version 1.0.2b or 1.1. For example, JBoss-4.x

supports the JMS1.1 version of the specification, while JBoss-3.2.x supports JMS1.0.2b. From 3.2.8,

JBoss also supports JMS1.1. If your system does not impose a JMS version, version 1.1 is recommended.

JMS 1.1 is backwards-compatible that is, a JMS 1.0.2b client will work with a JMS 1.1 provider and a

JMS 1.1 provider will work as a JMS 1.0.2b provider.

3.4.1. Including Additional Data in Activation JMS Messages:

JMS Activation monitoring messages won’t be sent unless the client issuing the activation establishes some

data to be included in the messages. When receiving the JMS messages through a JMS client, the data

established by the ECP client will be received. This provides a way for the ECP client to communicate with

the JMS Client. The JMS Client will typically use this information to filter the messages it will receive (see

JMS Documentation for additional information on this issue).

The following example shows how to establish the data to be sent in the messages.

package com.hp.spain.connection.pool.examples;

import java.util.HashMap;
import java.util.Map;

import com.hp.spain.connection.CLICommands;
import com.hp.spain.connection.CLIExecutionException;
import com.hp.spain.connection.TemplateParser;
import com.hp.spain.connection.TemplateParserException;

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

41

import com.hp.spain.connection.configuration.ECPSendingMessageConfiguration;

public class JMSMessagesActivationExample {

public static void main (String[] args) throws CLIExecutionException,
TemplateParserException {

HashMap oRet=null; //the Operation execution result
TemplateParser parser; //the ECP Template Parser instance
CLICommands cliCommands; //the ECP Operation Engine instance

//ECP Template Parser instantiation and configuration
parser=new TemplateParser();

//ECP Operation Engine instantiation and configuration
cliCommands =

parser.parseTemplate(ExamplesConfiguration.getTemplate());

//ECP instance
cliCommands.setRMIHostName(ExamplesConfiguration.getECPHost());
cliCommands.setRMIPort(ExamplesConfiguration.getECPPort());

//Set the content to include in the JMS Monitoring messages
Map messagesConfiguration=new HashMap(); //The messages configuration
cliCommands.setMsgsSpecifier(messagesConfiguration); //establish the

messages configuration
Map messagesAdditionalContents=new HashMap(); //The messages

additional data

messagesConfiguration.put(ECPSendingMessageConfiguration.MSGSPEC_PROPID_JMS
PROPERTIES, messagesAdditionalContents); //Include the additional message
contents in the messages configuration.

//Add the messages additional data
messagesAdditionalContents.put("par1", new Integer(1));
messagesAdditionalContents.put("par2", "val2");

//Operation execution
oRet=cliCommands.execute(ExamplesConfiguration.getPoolName(),

ExamplesConfiguration.getQeueID());

//Execution Output
System.out.println("RESULT HASHMAP:");
System.out.println(oRet);
System.out.println("COMMANDS SENT:");
System.out.println(cliCommands.getCommandsSent());
System.out.println("STDOUT:");
System.out.println(cliCommands.getStdOut());

}
}

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

42

3.4.2. JMS Client Dependencies

3.4.2.1. Integrating with another JMS provider

If your system does impose a JMS version (usually because it provides a JMS implementation), you will

have to include the following library:

activemq-core-4.1.1.jar

The previous jar has a runtime dependency with the following jars. You may also have to include them if

your system does not.

backport-util-concurrent-2.1.jar
commons-logging-1.1.jar
geronimo-j2ee-management_1.0_spec-1.0.jar

Those libraries provide the Active MQ 4.1.1 implementation of JMS, but do not include a JMS definition.

As the JMS API version is imposed by your system, you should include one of your system libraries to

provide the API definition. Check your system documentation to know which library to include. JBoss

provides the following jars:

jboss-j2ee.jar
jbossall-client.jar

Both jars include the JMS API definition. Use whichever you find more convenient, but not both.

3.4.2.2. No other JMS provider

If your system does not impose a JMS version (it does not include at least a runtime JMS API definition),

you may use the JMS API version provided by Active MQ 4.1.1. You will have to include the following

library

apache-activemq-4.1.1.jar

3.4.3. JMS Client Examples

What follows is a series of examples of JMS clients which work as ECP Monitors. In those examples, the

following class, simulating a configuration, is used. You will probably have some other particular way of

obtaining the configuration.

package com.hp.spain.connection.pool.examples;

import java.util.Hashtable;

import javax.jms.Session;
import javax.naming.Context;

public class JMSClientConfiguration {

private static final Hashtable contextEnvironment;

private static final boolean administeredConnectionFactory;
private static final String connectionFactoryJNDIName;
private static final String connectionFactoryURL;

private static final boolean transactedSession;
private static final int acknowledgeMode;

private static final String destinationJNDIName;

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

43

private static final String consumerMessagesFilter;
private static final boolean receiveLocalMessages;

private static final long messageReceptionTimeOut;

static {
contextEnvironment = new Hashtable();
contextEnvironment.put(Context.INITIAL_CONTEXT_FACTORY,

"org.apache.activemq.jndi.ActiveMQInitialContextFactory");
contextEnvironment.put(Context.PROVIDER_URL,

"tcp://pallanthas.des.hp.es:4001");

administeredConnectionFactory = true;
connectionFactoryJNDIName = "TopicConnectionFactory";
connectionFactoryURL = "tcp://pallanthas.des.hp.es:4001";

transactedSession=false;
acknowledgeMode = Session.AUTO_ACKNOWLEDGE;

destinationJNDIName = "dynamicTopics/ECP.MainTopic";

consumerMessagesFilter = null;
receiveLocalMessages = true;

messageReceptionTimeOut = 10000;
}

public static String getConsumerMessagesFilter() {
return consumerMessagesFilter;

}

public static boolean isReceiveLocalMessages() {
return receiveLocalMessages;

}

public static boolean isAdministeredConnectionFactory() {
return administeredConnectionFactory;

}

public static String getConnectionFactoryJNDIName() {
return connectionFactoryJNDIName;

}

public static String getConnectionFactoryURL() {
return connectionFactoryURL;

}

public static Hashtable getContextEnvironment() {
return contextEnvironment;

}

public static int getAcknowledgeMode() {
return acknowledgeMode;

}

public static boolean isTransactedSession() {

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

44

return transactedSession;
}

public static String getDestinationJNDIName() {
return destinationJNDIName;

}

public static long getMessageReceptionTimeOut() {
return messageReceptionTimeOut;

}
};

3.4.3.1. JMS 1.0.2b Client Example

package com.hp.spain.connection.pool.examples;

import javax.jms.MapMessage;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicSession;
import javax.jms.TopicSubscriber;
import javax.naming.InitialContext;

public class JMS102bClient {
public static void main(String[] args) throws Exception{

InitialContext context;
TopicConnectionFactory connectionFactory;
TopicConnection connection;
TopicSession session;
Topic destination;
TopicSubscriber messageConsumer;
MapMessage message;

//naming context for administered objects
context = new

InitialContext(JMSClientConfiguration.getContextEnvironment());

//the connection factory is obtained
connectionFactory = (TopicConnectionFactory)

context.lookup(JMSClientConfiguration.getConnectionFactoryJNDIName());

//the connection is created
connection = connectionFactory.createTopicConnection();
//the session is craeted
session =

connection.createTopicSession(JMSClientConfiguration.isTransactedSession(),
JMSClientConfiguration.getAcknowledgeMode());

//the destination is obtained
destination = (Topic)

context.lookup(JMSClientConfiguration.getDestinationJNDIName());

//the message receiver is created
messageConsumer = session.createSubscriber(destination,

JMSClientConfiguration.getConsumerMessagesFilter(),
JMSClientConfiguration.isReceiveLocalMessages());

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

45

//start to receive messages
connection.start();

//wait for a message
System.out.println("Waiting for message.");
message= null;
message=

(MapMessage)messageConsumer.receive(JMSClientConfiguration.getMessageRecepti
onTimeOut());

if (message!=null){
//process the message
System.out.println("Received message: " + message.toString());

//acknowledge the message.
//Acknowledging a consumed message acknowledges all messages

that the session has consumed.
//This call can be omitted for both transacted sessions and

sessions specified to use implicit
//acknowledgement modes. However, extra care must be taken when

omitting message
//acknowledgement as messages that have been received but not

acknowledged may be redelivered.
//Additionally, when client acknowledgment mode is used, a

client may build up a large number
//of unacknowledged messages while attempting to process them.
//This call can be made before processing the message, if

message losses are tolerated.
message.acknowledge();

}
else {

System.out.println("No message was received.");
}

//clean up
messageConsumer.close();
connection.stop();
session.close();
connection.close();

System.out.println("FINISHED.");
}

}

3.4.3.2. JMS 1.1 Client Example

package com.hp.spain.connection.pool.examples;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.MapMessage;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import javax.naming.InitialContext;

public class JMS11Client {

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

46

public static void main(String[] args) throws Exception{
InitialContext context;
ConnectionFactory connectionFactory;
Connection connection;
Session session;
Destination destination;
MessageConsumer messageConsumer;
MapMessage message;

//naming context for administered objects
context = new

InitialContext(JMSClientConfiguration.getContextEnvironment());

//the connection factory is obtained
connectionFactory = (ConnectionFactory)

context.lookup(JMSClientConfiguration.getConnectionFactoryJNDIName());

//the connection is created
connection = connectionFactory.createConnection();
//the session is craeted
session =

connection.createSession(JMSClientConfiguration.isTransactedSession(),
JMSClientConfiguration.getAcknowledgeMode());

//the destination is obtained
destination = (Destination)

context.lookup(JMSClientConfiguration.getDestinationJNDIName());

//the message receiver is created
messageConsumer = session.createConsumer(destination,

JMSClientConfiguration.getConsumerMessagesFilter(),
JMSClientConfiguration.isReceiveLocalMessages());

//start to receive messages
connection.start();

//wait for a message
System.out.println("Waiting for message.");
message= null;
message=

(MapMessage)messageConsumer.receive(JMSClientConfiguration.getMessageRecepti
onTimeOut());

if (message!=null){
//process the message
System.out.println("Received message: " + message.toString());

//acknowledge the message.
//Acknowledging a consumed message acknowledges all messages

that the session has consumed.
//This call can be omitted for both transacted sessions and

sessions specified to use implicit
//acknowledgement modes. However, extra care must be taken when

omitting message
//acknowledgement as messages that have been received but not

acknowledged may be redelivered.
//Additionally, when client acknowledgment mode is used, a

client may build up a large number
//of unacknowledged messages while attempting to process them.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

47

//This call can be made before processing the message, if
message losses are tolerated.

message.acknowledge();
}
else {

System.out.println("No message was received.");
}

//clean up
messageConsumer.close();
connection.stop();
session.close();
connection.close();

System.out.println("FINISHED.");
}

}

3.4.3.3. Processing Additional Data Included In Activation JMS Messages

When processing a JMS message, the additional data included by the client who issued the activation

can be extracted by the JMS Client. The additional data is contained as named values inside the

MapMessage. Extracting the data is a simple process:

message.getString("par");

3.4.4. ECP Messages Types

To ease client implementation, JMS provides the means to filter the messages that a

MessageConsumer/TopicSubscriber will receive. See the JMS documentation for further details.

ECP Messages will always be instances of MapMessage.

All messages will contain a Header Property, with the name

com.hp.spain.connection.monitor.messages.ECPMessage.EventIDField.Name

and whose value will identify the type of message. The information available in a message will vary,

depending on the type of message.

3.4.4.1. DataSent Message

If the message header property of name

com.hp.spain.connection.monitor.messages.ECPMessage.EventIDField.Name

has the value

com.hp.spain.connection.monitor.messages.DataSentMessage.EventIDField.Values
.DataSent

the message is a DataSent Message. Than type of message will be sent every time the protocol driver is

instructed to send data to the equipment.

The message header property of name

com.hp.spain.connection.monitor.messages.DataSentMessage.EventDataField.Name

will contain the data sent.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

48

3.4.4.2. DataReceived Message

If the message header property of name

com.hp.spain.connection.monitor.messages.ECPMessage.EventIDField.Name

has the value

com.hp.spain.connection.monitor.messages.DataReceivedMessage.EventID.Values.
DataReceived

the message is a DataSent Message. Than type of message will be sent every time the protocol driver is

instructed to receive data from the equipment.

The message header property of name

com.hp.spain.connection.monitor.messages.DataReceivedMessage.EventDataField.Name

will contain the data received.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

49

4.Configuration

Some of the configuration parameters will affect multiple ECP entities. As a consequence, it is

recommended to check the indicated cross references to avoid collateral effects when modifying a

parameter.

4.1. Common Configuration Sources

4.1.1. ProtocolDrivers.lst File

This file will configure the ProtocolDrivers to register and use (see Protocol Drivers Manager

Configuration). The ProtocolDrivers.lst file should be located in the path <ecp_home>\conf by

default, being <ecp_home> the ECP installation directory (see ECP RMI Service Command Line

Parameters). The default location may be overwritten through the system property

activator.dir.config (see ECP RMI Service Command Line Parameters). The file specifies the

protocol driver classes, containing a single string with the following syntax:

<protocol_driver_list>:=<protcol_driver>{<sep><protcol_driver>}
<sep>:=,|:|;

Where <protocol_driver> is the fully qualified name of the protocol driver class. It must implement

com.hp.spain.connection.ProtocolDriver.

4.1.2. HPSA_ECPMESSAGESPATTERNS

IDMESSAGE: Message Identifier. Mandatory. The sequence HPSA_ECPMESSAGESPATTERNS_SEQ

should be used to establish the values of this field.

CONNECTIONRESOURCECLASSNAME: Canonical name of the equipment driver class to which the pattern

applies. null if the pattern should be applied to all the drivers (and the protocol indicated by

PROTOCOL).

PROTOCOL: Identifier of the protocol to which the pattern applies. null if the pattern should be applied

to all the protocols (and the driver indicated by CONNECTIONRESOURCECLASSNAME).

TYPE: Reserved. Always null. In a future this field might be use to further restrict the scope of the

pattern, i.e.: failures, errors...

RESPONSEPATTERN: Regular expression to be used to identify the message to return and to generate that

message, as defined in Java 1.4 java.util.regex.Pattern. If the command response matches the

pattern, the message generated will contain the command response with all the matches replaced with the

replacement established in responseReplacement. Mandatory.

RESPONSEREPLACEMENT: Replacement value as defined in Java 1.4

java.util.regex.Matcher#appendReplacement(StringBuffer, String) which will be

used to replace all the matches of responsePattern (if any) in the generated message. Mandatory.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

50

4.1.3. HPSA_ECPCOMMANDSPATTERNS

IDCOMMAND: Command Identifier. Mandatory. The sequence HPSA_ECPCOMMANDSPATTERNS_SEQ

should be used to stablish the values of this field.

TYPE: Reserverd. Always null. In a future this field might be use to further restrict the scope of the

pattern, i.e.: failures, errors...

COMMANDPATTERN: Regular expression to be used to identify the message to return and to generate that

message, as defined in Java 1.4 java.util.regex.Pattern. If the associated command response is

matched, the command will be matched with this pattern and all the matches (if any) will be replaced by

the replacement established in commandReplacement. Mandatory.

COMMANDREPLACEMENT: Replacement value as defined in Java 1.4

java.util.regex.Matcher#appendReplacement(StringBuffer, String) which will be used to replace all

the matches of commandPattern (if any) in the generated message. Mandatory.

4.1.4. HPSA_ECPMESSAGESCOMMANDS

IDMESSAGE: Message Identifier. Mandatory.

IDCOMMAND: Command Identifier. Mandatory.

4.2. ECP Lib Configuration Sources

4.2.1. ECP Lib Command Line Parameters

ECP Lib uses the following JVM command line parameters:

-Dactivator.dir.config=<ecp_prot_drivers_dir>

<ecp_prot_drivers_dir>: Directory where the ProtocolDrivers.lst file can be found. This

parameter is mandatory only if direct connections are used. In other case, it is not used. See

ProtocolDrivers.lst File.

4.3. ECP RMI Service Configuration Sources

4.3.1. ECP RMI Service Command Line Parameters

The command line of the ECP RMI Server JVM has the following syntax:

<java_exe> -server -Djava.rmi.server.codebase=file:<ecp_home>\rmi_pub
-Djava.rmi.server.logCalls=false -
Djava.rmi.server.hostname=<ecp_rmi_server_ip>
-Djava.security.policy=<ecp_home>\conf\RmiEcpService.policy -
Dactivator.dir.config=<ecp_prot_drivers_dir> -classpath <ecp_libs>
com.hp.spain.connection.pool.server.RmiEcpService
<ecp_rmi_registry_server_host> <ecp_rmi_registry_server_port> <ecp_home>

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

51

<java_exe>: path to the JVM executable file. Of course, it is mandatory.

<ecp_home>: ECP installation directory. This parameter is mandatory. It will be used to establish the

ecp.properties and RmiEcpService.policy files location and the ProtocolDrivers.lst file

default location. See ecp.properties File and ProtocolDrivers.lst File.

<ecp_rmi_server_ip>: IP of the localhost, used by the locally created stubs to access the RMI server.

Used by the JVM. This parameter is mandatory.

<ecp_rmi_registry_server_host>: Host name of the host where the RMI registry is located and

where the ECP RMI service object should be bound. Normally it should refer to the localhost. This

parameter is mandatory.

<ecp_rmi_registry_server_port>: Port number where the RMI registry accepts calls and where the ECP

RMI service object should be bound. This parameter is mandatory.

<ecp_libs>: all the .jar and .zip files in the directory <ecp_home>\lib. This parameter is mandatory.

<ecp_prot_drivers_dir>: Directory where the ProtocolDrivers.lst file can be found. This

parameter is optional (see ProtocolDrivers.lst File).

4.3.2. ecp.properties File

The ecp.properties file should be located in the path <ecp_home>\conf, being <ecp_home> the ECP

installation directory (See ECP RMI Service Command Line Parameters). The ecp.properties files may

contain the following properties.

LOG_DIR: Logs directory. Most of the log data will be stored there. Its default value is

“C:\hp\OpenView\ServiceActivator\var\log” in windows and

“/var/opt/OV/ServiceActivator/log/” in HP-UX. It must end with the path separator

character.This directory should exist and the user which executes the ECP RMI Service JVM must have

writing permission over it. It will establish the Pool LogFilePath (see Pool Instance Specific Logging

Parameters Configuration), ProtocolDriver SpyFile (see ProtocolDriver Configuration) and Configurator

Appender (see Configurator Configuration).

LOG_MAX_FILE_SIZE: Will configure the RollingFileAppenders (when used) maximum file size (in

bytes) before being rolled over to backup files. Its default value is 5242880 bytes (5MB). See Pool

Logging Common Parameters Configuration and Configurator Configuration.

LOG_MAX_NUM_FILES: Will configure the RollingFileAppenders (when used) maximum backup

index (how many backup files are kept). Its default value is 10. See Pool Logging Common Parameters

Configuration and Configurator Configuration.

LOG_DATE_PATTERN: Will establish the type of Appenders used by the pools and configure the pools

DailyRollingFileAppenders (when used) rolling date pattern. Its default value is null. It must be

null or a valid SimpleDateFormat pattern (see

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html). See Pool Logging Common

Parameters Configuration.

LOG_PATTERN: Will configure the messages pattern for the pools and the Configurator. Its default

value is null. See Pool Logging Common Parameters Configuration and Configurator Configuration.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

52

RELOAD_MAX_TIME: Will configure the subpools expiration timeout. Its default value is 0. (see

PoolManager Configuration and ECP RMI Service)

MAX_REQUESTS_TO_GET_VERIFIED_RESOURCE: Will configure the maximum number of request to

obtain a positively verified resource. Its default value is 1. Must be >=1. See Pool Common Parameters

Configuration.

DEFAULT_QUEUE_ID: Will configure the default queue to add the resource requests to, if it is not

specified or the specified queue is not found. Its default value is 1. See Pool Common Parameters

Configuration.

MAX_POOLS: Will configure the maximum number of pools that can coexist simultaneously. Its default

value is 0. See PoolManager Configuration.

DISPATCHER_MAX_RATE: Will configure the maximum number of connections assigned to the whole set

of clients by second. Its default value is 10. See Pool Common Parameters Configuration.

RES_MGR_MAX_RATE: Will configure the maximum number of times per second that the expired

resources will be finalized, the expired temporary resources deleted and the inactive resources

reinitialized. Its default value is 1. See Pool Common Parameters Configuration.

REQ_MGR_MAX_RATE: Will configure the maximum number of times per second that the process of

elimination and cancellation of expired resources requests will be executed. Its default value is 0.1. See

Pool Common Parameters Configuration.

POOL_MGR_MAX_RATE: Will configure the number of times per second that the process of unloading

dynamic expired pools will be executed. Its default value is 0.1. See PoolManager Configuration.

DYNAMIC_POOL_NOT_USED_MAX_TIME_LIFE: Will configure the default dynamic pools

NotUsedMaxTimeLife. Its default value is 0. See Pool Instance Specific Parameters Configuration.

DYNAMIC_POOL_REQUEST_TIME_OUT: Will configure the dynamic pools RequestTimeout. Its default

value is 0. See Pool Instance Specific Parameters Configuration.

DYNAMIC_POOL_NUM_QUEUES: Will configure the dynamic pools NumQueues. Its default value is 0. See

Pool Instance Specific Parameters Configuration.

DYNAMIC_POOL_WEIGHT_QUEUES: Will configure the dynamic pools WeightQueues. Its default value

is null. See Pool Instance Specific Parameters Configuration.

DYNAMIC_POOL_LOG_LEVEL: Will configure the dynamic pools LogLevel. Its default value is 0. See

Pool Instance Specific Logging Parameters Configuration.

DYNAMIC_POOL_INIT_SESSIONS: Will configure the dynamic SubPools default Initsessions.

Must be an integer value. If it equals 0, then, false. In other case, true. Its default value is 0. See

SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DYNAMIC_POOL_MAX_SESSIONS: Will configure the dynamic SubPools default MaxSessions. Its

default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

53

DYNAMIC_POOL_MIN_SESSIONS: Will configure the dynamic SubPools default MinSessions. Its

default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DYNAMIC_POOL_RESOURCE_TIME_OUT: Will configure the dynamic SubPools default

ResourceTimeout. Its default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DYNAMIC_POOL_TEMPORARY_RESOURCES_TIME_OUT: Will configure the dynamic SubPools default

TemporaryResourcesTimeout. Its default value is 0. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

DB_DRIVER: Fully qualified class name of a java.sql.Driver to load and register in the JDBC

DriverManager. Its default value is null. See DBManager Configuration

DB_USER: The DataBase user on whose behalf the connection is being made. Its default value is null.

See DBManager Configuration

DB_PASSWORD: The DataBase user password. Its default value is null. See DBManager Configuration

DB_URL: A JDBC DataBase URL with the form: jdbc:<subprotocol>:<subname>. Its default value is

null. See DBManager Configuration

ECP.Msgs.Enable: Whether de ECP should perform JMS monitoring or not. If this option is disabled,

no JMS monitoring messages will be sent, and the JMS configuration parameters will be ignored. Its

default value is “false”.

JMSBrokerReference.broker.uri: URI of the JMS service where ECP JMS monitoring messages will

be sent. Ignored if “ECP.Msgs.Enable=false”. By default it will start an embedded JMS broker. Its

default value is

“vm\:(broker\:(tcp\://localhost\:4001)?brokerName\=EmbeddedBroker&useJmx\=true&persistent\=fal

se&populateJMSXUserID\=false&useShutdownHook\=false&deleteAllMessagesOnStartup\=false&enable

Statistics\=false)?marshal\=false”.

java.naming.factory.initial: The Initial context factory for JMS Administered objects. Ignored if

“ECP.Msgs.Enable=false”. Its default value is

“org.apache.activemq.jndi.ActiveMQInitialContextFactory”.

JMSMessageBroker.dest.type: The type of the JMS destination where the ECP JMS Monitoring

messages will be sent. Use “temp” to indicate a temporary Destination and “administered” to indicate an

administered one. Ignored if “ECP.Msgs.Enable=false”. Its default value is “administered”.

JMSMessageBroker.dest.name: The JMS destination where the ECP JMS Monitoring messages will

be sent. If the destination type in “JMSMessageBroker.dest.type” is temporary, any value will

suffice; if the destination type in “JMSMessageBroker.dest.type” is administered, this property must

contain the name under which the Destination is registered. Ignored if “ECP.Msgs.Enable=false”. Its

default value is “ECP.MainTopic”.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

54

4.3.3. HPSA_EQUIPMENTCONNPOOL DB Table

NAME: Will configure the static pool Name. See Pool Instance Specific Parameters Configuration.

NOTUSEDMAXTIMELIFE: Will configure the static pool NotUsedMaxTimeLife. See Pool Instance

Specific Parameters Configuration.

REQUESTTIMEOUT: Will configure the static pool RequestTimeout. See Pool Instance Specific

Parameters Configuration.

NUMQUEUES: Will configure the static pool NumQueues. See Pool Instance Specific Parameters

Configuration.

WEIGHTQUEUES: Will configure the static pool WeightQueues. See Pool Instance Specific Parameters

Configuration.

LOGFILE: Will configure the static pool LogFilePath. See Pool Instance Specific Logging Parameters

Configuration

LOGLEVEL: Will configure the static pool LogLevel. See Pool Instance Specific Logging Parameters

Configuration.

4.3.4. HPSA_EQUIPMENTCONNSUBPOOL DB Table

INITSESSIONS: Will configure the static subpool Initsessions. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

MAXSESSIONS: Will configure the static subpool MaxSessions. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

MINSESSIONS: Will configure the static subpool MinSessions. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

RESOURCETIMEOUT: Will configure the static subpool ResourceTimeout. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

TEMPORARYRESOURCESTIMEOUT: Will configure the static subpool TemporaryResourcesTimeout.

See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

NAMEPOOL: The register in the table HPSA_EQUIPMENTCONNPOOL associated with this one.

IDSUBPOOL: Will configure the static subpool Id. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

CONNECTIONRESOURCECLASSNAME: Will configure the static subpool

ConnectionResourceClassName. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

IP: Will configure the static subpool EquipmentDrivers initialization parameter IP. See EquipmentDriver

Initialization Parameters Configuration.

PORT: Will configure the static subpool EquipmentDrivers initialization parameter Port. See

EquipmentDriver Initialization Parameters Configuration.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

55

PROTOCOL: Will configure the static subpool EquipmentDrivers initialization parameter Protocol. See

EquipmentDriver Initialization Parameters Configuration.

USERNAME: Will configure the static subpool EquipmentDrivers initialization parameter Username. See

EquipmentDriver Initialization Parameters Configuration.

PASSWORD: Will configure the static subpool EquipmentDrivers initialization parameter Password. See

EquipmentDriver Initialization Parameters Configuration.

PASSWORDENABLE: Will configure the static subpool EquipmentDrivers initialization parameter

Passwordenable. See EquipmentDriver Initialization Parameters Configuration.

4.3.5. DynamicECPProperties Class

This class stores the configuration of a dynamic Pool and a SubPool. A dynamic Pool will always

contain a single SubPool.

4.3.5.1. DynamicECPProperties Properties

vi. DynamicECPProperties Pool Properties

PoolName: Will configure the dynamic pool Name (see Pool Instance Specific Parameters Configuration)

and LogFilePath (Pool Instance Specific Logging Parameters Configuration).

vii. DynamicECPProperties SubPool Properties

ConnectionResourceClassName: Will configure the dynamic subpool

ConnectionResourceClassName. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

IP: Will configure the dynamic subpool EquipmentDrivers initialization parameter Ip. See

EquipmentDriver Initialization Parameters Configuration.

Port: Will configure the dynamic subpool EquipmentDrivers initialization parameter Port. See

EquipmentDriver Initialization Parameters Configuration.

Protocol: Will configure the dynamic subpool EquipmentDrivers initialization parameter Protocol.

See EquipmentDriver Initialization Parameters Configuration.

User: Will configure the dynamic subpool EquipmentDrivers initialization parameter Username. See

EquipmentDriver Initialization Parameters Configuration.

Password: Will configure the dynamic subpool EquipmentDrivers initialization parameter Password.

See EquipmentDriver Initialization Parameters Configuration.

PasswordEnable: Will configure the dynamic subpool EquipmentDrivers initialization parameter

Passwordenable. See EquipmentDriver Initialization Parameters Configuration.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

56

4.3.5.2. DynamicECPProperties Advanced Properties

viii. DynamicECPProperties Advanced Pool Properties

NotUsedMaxTimeLife: Will configure the pool NotUsedMaxTimeLife. See Pool Instance Specific

Parameters Configuration.

ix. DynamicECPProperties Advanced SubPool Properties

InitSessions: Will configure the subpool Initsessions. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

MaxSessions: Will configure the subpool MaxSessions. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

MinSessions: Will configure the subpool MinSessions. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

ResourceTimeOut: Will configure the subpool ResourceTimeout. See SubPool Configuration

SubPool Instance Specific Parameters Configuration.

TemporaryResourcesTimeOut: Will configure the subpool TemporaryResourcesTimeout. See

SubPool Configuration

SubPool Instance Specific Parameters Configuration.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

57

5.Commands Template Reference

5.1. Commands Template Commands

5.1.1. Block declaration Statements

Block Declaration Statements are those which indicate the beginning or ending of a Block. The following

are Block Declaration Statements.

[TEMPLATE:Config]
[TEMPLATE:Do]
[TEMPLATE:ErrorSection]
[TEMPLATE:Undo]
[TEMPLATE:Commit]
[TEMPLATE:Rollback]
[TEMPLATE:Section *]

Block Declaration Statements may include other Block Declaration Statements (depending on the

containing statement) or Executable Statements. Block Declaration mainly have group of commands to be

executed.

A template could start with the optional block [TEMPLATE:Config] and in this block is possible to put all

the commands required to configure properly the terminal before executing any activation command.

After that, the mandatory block [TEMPLATE:Do]. This block will contains all commands to activate the

service and we can divide this block in sections using the block [TEMPLATE:Section *] where “*” is a

number starting from 0.

The [TEMPLATE:Undo] is the next optional tag . This block will contain all the “undo” commands that have

to be executed when one of the “DO” commands fails in the reverse order. Both blocks, [TEMPLATE:Do]

and [TEMPLATE_Undo] are divided using the block [TEMPLATE:Section *] and the undo block will execute

only the section executed in DO. For example, if DO and UNDO have 0,1,2,3,4 and 5 sections and a

command from section 4 fails the UNDO block will execute 3,2,1,0 section in this order.

The optional tag [TEMPLATE:ErrorSection] can be defined after the DO block and it can include the

commands that have to be executed in one section fails. This block is useful because the UNDO section

will execute only the section that have been executed properly and not the section that has been failed.

At the end o f the template, [TEMPLATE:Commit] and [TEMPLATE:Rollback] can be defined. Commit block

will execute only if all DO commands have been executed properly and Rollback block will execute if

some command from DO or Commit fails.

5.1.2. Executable Statements

Executable Statements are those which do not intervene in the Declaration of a Block but are included by

them and define commands to be executed. They must always appear inside a Block. The executable

statements are useful to execute if and loops in runtime. This means, the template is able to make decision

based on conditions and these conditions could be refer to output of commands. For example, it possible

to execute first “whoami” command and after that define and if where we’ll execute “add user” if the

output of whoami is root and “sudo add user” if the ouput of whoami is not root.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

58

Another example using loop could be to execute “ls /directory/*.txt” command, save the output in an

array and after that execute a loop where a command will be executed for each txt file.

Both, ifs and loops, are possible to nest them.

5.1.2.1. If-Else Statement

Declares two different Executable blocks to execute depending on the value of a condition. The “Else”

part is optional. It is defined like this:

[TEMPLATE:If “<condition>”]
<Executable Statement Block>

[TEMPLATE:Else]
<Executable Statement Block>

[TEMPLATE:EndIf]

Where <condition> is any valid ECP condition and <Executable Statement Block> is a set of

Executable Statements. Nested If-Else or ForEach Statements are allowed. For example:

[TEMPLATE:If "failed=="true""]
help

[TEMPLATE:EndStrPattern "admin#"]
exit

[TEMPLATE:EndStrPattern "admin#"]
[TEMPLATE:EndIf]

Or with an else clause:

[TEMPLATE:If "failed=="true""]
help

[TEMPLATE:EndStrPattern "admin#"]
[TEMPLATE:Else]
telnet 127.0.0.1 1234

[TEMPLATE:EndStrPattern "admin#"]
[TEMPLATE:EndIf]

5.1.2.2. ForEach Statement

Declares an Executable block to be executed once for every element of an Array Variable. It is defined

like this:

[TEMPLATE:ForEach "<variableID>" In "<arrayVariableID>"]
<Executable Statement Block>

[TEMPLATE:EndFor]

Where <variableID> is any valid ECP variable identifier, <arrayVariableID> is any valid ECP

array variable identifier and <Executable Statement Block> is a set of Executable Statements.

On each loop, the variable <variableID> will contain a different value in <arrayVariableID> and

its values will be in the same order as in <arrayVariableID>. Nested If-Else or ForEach Statements are

allowed. For example:

[TEMPLATE:ForEach "var" In " destinationIPs"]
ping %var% -n 1

[TEMPLATE:EndStrPattern "admin#"]

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

59

[TEMPLATE:EndFor]

5.1.3. Command Statements

Command Statements are those which define how a command must be issued and its output processed.

Therefore, next tags can be declared after any command. These tags define errors, failures, variables that

will containg certain value from the output command, force to save the full output to a file and so on. The

following are the full Command Statements list:

[TEMPLATE:ErrorMessage “*”]
[TEMPLATE:NonError “*”]
[TEMPLATE:NonErrorPattern “*”]
[TEMPLATE:Error “*”]
[TEMPLATE:Failure “*”]
[TEMPLATE:EndStr “*”]
[TEMPLATE:EndStrPattern “*”]
[TEMPLATE:Secret]
[TEMPLATE:Echo]
[TEMPLATE:EndParamString “*”]
[TEMPLATE:EndCommandString “*”]
[TEMPLATE:Question “*” Response “*”]
[TEMPLATE:Pattern “*”]
[TEMPLATE:Condition “*”]
[TEMPLATE:ExecuteUntil “*”]
[TEMPLATE:CommandDelay “*”]
[TEMPLATE:ReadAttemps “*”]
[TEMPLATE:ErrorPattern \"*\"]
[TEMPLATE:FailurePattern \"*\"]
[TEMPLATE:Variable “*”]
[TEMPLATE:Array “*”]
[TEMPLATE:ExecuteUntilDelay “*”]
[TEMPLATE:ExecuteUntilAttempts “*”]
[TEMPLATE:Filename “*”]
[TEMPLATE:Filename “*” Option “*”]

5.1.4. Configuration Statements

Configuration statements are defined in the Config block to define default behavior to the full template.

For example, the EndStrPattern is usually the same value for all command and the template can define the

default end string pattern using the tag [TEMPLATE:DefaultEndStrPattern].

[TEMPLATE:DefaultDelay “*”]
[TEMPLATE:DefaultReadAttemps “*”]
[TEMPLATE:DefaultEndParamString “*”]
[TEMPLATE:DefaultEndCommandString “*”]

[TEMPLATE:DefaultError “*”]
[TEMPLATE:DefaultNonError “*”]
[TEMPLATE:DefaultNonErrorPattern “*”]
[TEMPLATE:DefaultEndStr “*”]
[TEMPLATE:DefaultEndStrPattern “*”]
[TEMPLATE:DefaultEcho]

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

60

5.2. Commands Reference

5.2.1. Commands List

Token Explanation

!<comment> Comments lines stars with ! character and comments will be ingnore by the ECP engine

[TEMPLATE:DefaultDelay “*”] This value will introduce a delay before executing any command. The value is defined in milliseconds.

[TEMPLATE:DefaultReadAttemps “*”] When a command is executed the ECP engine try to read the output until it gets the end string. This
value define the maximum number of read with no answer that ECP egine can execute.

[TEMPLATE:DefaultEndParamString “*”] Some commands make a question after executing the command. This tag is the default value to append
to the question responses.

[TEMPLATE:DefaultEndCommandString “*”]This value will be append to every command.

[TEMPLATE:DefaultError “*”] An error define is the command has not been executed properly. This tag define a default error that will
be apply to all commands in the template.

[TEMPLATE:DefaultNonError “*”] In case a error is detected it’s possible to define exceptions. For example, if the output is ERROR: user
already exist but in this case the template should not return an error, a NonError can be defined. This
NonError will be executed to all commands. This doesn’t apply for failures.

[TEMPLATE:DefaultNonErrorPattern “*”] Same behaviour than DefaultNonError but in this case using Regural Expresion Pattern

[TEMPLATE:DefaultEndStr “*”] After execute a command it’s mandatory to find a string that define the end of the command. This string
is usually the prompt. This tag define the default end string applied to all commands.

[TEMPLATE:DefaultEndStrPattern “*”] Same behaviour than DefaultEndString but using Regular Expression Pattern.

[TEMPLATE:DefaultEcho] Target System will echo, treat it as ifs never arrived on every command by default

[TEMPLATE:Config] Declares the begining of a Config Block. This block contains the command to configure the terminal
before executing any activation command.

[TEMPLATE:Do] Declares the begining of a Do Block. This block contains the activation commands.

[TEMPLATE:ErrorSection] Declares the begining of an Error Block. This block contains the commands to execute in case a section
fails.

[TEMPLATE:Undo] Declares the begining of an Undo Block. This block contains the rollback commands to executed in case
the DO block fails.

[TEMPLATE:Commit] Declares the begining of an Commit Block. This block contains the commit commands to be executed
after DO section in case DO block works.

[TEMPLATE:Rollback] Declares the begining of an Rollback Block. This block contains the rollback commands to execute after
the UNDO section in case the DO section fails or even after Commit section if it fails.

[TEMPLATE:Section *] Declares the begining of an Section Block. DO and UNDO are divided in sections to group commands.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

61

<commandcommand>

[TEMPLATE:AssignVariable “*”] Assigns a constant value to a variable.

[TEMPLATE:If "*"] Declares an Executable block to execute if the condition is true. The condition can use variable fromused

in the template.

[TEMPLATE:Else] Declares an Executable block to execute if the corresponding if condition is false

[TEMPLATE:EndIf] Declares de end of an if or else executable block

[TEMPLATE:ForEach "*" In "*"] Declares an Executable block to be executed once for every element of an Array Variable

[TEMPLATE:EndFor] Declares de end of a forEach executable block

[TEMPLATE:ErrorMessage “*”] An error message to be sent to the ECP client if an error is encountered

[TEMPLATE:NonError “*”] Pattern to ignore on error search (not on failure search)

[TEMPLATE:NonErrorPattern “*”] Regural Expresion Pattern to ignore on error search (not on failure search)

[TEMPLATE:Error “*”] Pattern to interpret as the command returning an error (and wait for command response end string)

[TEMPLATE:Failure “*”] Pattern to interpret as the command returning a failure (and do not wait for command response end
string)

[TEMPLATE:EndStr “*”] Pattern to interpret as the end of the command execution

[TEMPLATE:EndStrPattern “*”] Regular Expression Pattern to interpret as the end of the command execution

[TEMPLATE:Secret] Do not trace the issued command (useful for passwords because it avoid to be printed in the log files)

[TEMPLATE:Echo] Target System will echo, treat it as ifs never arrived

[TEMPLATE:EndParamString “*”] String to append to the question responses

[TEMPLATE:EndCommandString “*”] String to append to the command

[TEMPLATE:Question “*” Response “*”] The command is interactive. If the Pattern is found, send that response

[TEMPLATE:Pattern “*”] Store every ocurrence of the group in the regular expresion in a position of the array variables which
follow

[TEMPLATE:Condition “*”] Only issue the command if the condition is satisfied

[TEMPLATE:CommandDelay “*”] Wait that number of milliseconds before executing the command

[TEMPLATE:ReadAttemps “*”] When a command is executed the ECP engine try to read the output until it gets the end string. This
value define the maximum number of read with no answer that ECP egine can execute

[TEMPLATE:ErrorPattern \"*\"] Regular Expresion Pattern to interpret as the command returning an error

[TEMPLATE:FailurePattern \"*\"] Regular Expresion Pattern to interpret as the command returning a failure

[TEMPLATE:Variable “*”] Variable where to store the ocurrence of the Pattern. The pattern will capture a particular string from the
output and the value will be save in this variable. The variable can be used in other commands using the
% symbol. For example, add user %name%.

[TEMPLATE:Array “*”] Array variable where to store the occurence.s. To access to a single position next is the format
name[position]

[TEMPLATE:ExecuteUntil “*”] Execute the command until the condition is satisfied. This command is very useful when the server
sometimes doesn’t work at the first time and it will work after some retries.

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

62

[TEMPLATE:ExecuteUntilDelay “*”] Wait that number of milliseconds before issueing the command on every iteration

[TEMPLATE:ExecuteUntilAttempts “*”] If that number of iterations is exceeded, ignore condition and exit loop

[TEMPLATE:Filename “*”] Save the ouput to the file

[TEMPLATE:Filename “*” Option “*”] Save the ouput to the file. Options can be bigouput to true/false , tail and grep. The format to define
options are bigouput=false;tail=100;grep=100. When output are really big is almost mandatory to define
bigoutput to true because if not the ECP could trhow an OutOfMemory.

5.2.2. Commands Syntax

Token Unique
in
Context

Precedes to

Token (and)

Follows to

Token (or)

Nested to Token Mutually exclusive

with Token

!<comment>

[TEMPLATE:DefaultDelay “*”] Yes [TEMPLATE:Config]

[TEMPLATE:DefaultReadAttemps “*”] [TEMPLATE:Config]

[TEMPLATE:DefaultEndParamString “*”] Yes [TEMPLATE:Config]

[TEMPLATE:DefaultEndCommandString “*”]Yes [TEMPLATE:Config]

[TEMPLATE:DefaultError “*”] [TEMPLATE:Config] [TEMPLATE:DefaultErrorNull]

[TEMPLATE:DefaultNonError “*”] [TEMPLATE:Config] [TEMPLATE:DefaultNonErrorNull]

[TEMPLATE:DefaultNonErrorPattern “*”] [TEMPLATE:Config] [TEMPLATE:DefaultNonErrorPatternNull]

[TEMPLATE:DefaultEndStr “*”] [TEMPLATE:Config] [TEMPLATE:DefaultEndStrNull]

[TEMPLATE:DefaultEndStrPattern “*”] [TEMPLATE:Config] [TEMPLATE:DefaultEndStrPatternNull]

[TEMPLATE:DefaultEcho] [TEMPLATE:Config]

[TEMPLATE:Config] Yes [TEMPLATE:Do]
[TEMPLATE:ErrorSection]
[TEMPLATE:ErrorSection
FinalCommand]
[TEMPLATE:Undo]
[TEMPLATE:Commit]
[TEMPLATE:Commit
FinalCommit]
[TEMPLATE:Rollback]
[TEMPLATE:Rollback
FinalRollback]
[TEMPLATE:Exit]
[TEMPLATE:Exit
FinalExit]

[TEMPLATE:Config FinalConfig]

[TEMPLATE:Do] Yes

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

63

[TEMPLATE:ErrorSection] Yes [TEMPLATE:Do] [TEMPLATE:ErrorSection FinalCommand]

[TEMPLATE:Undo] Yes [TEMPLATE:Do]
[TEMPLATE:ErrorSection]

[TEMPLATE:Commit] [TEMPLATE:Undo]

[TEMPLATE:Rollback] [TEMPLATE:Undo]
[TEMPLATE:Commit]
[TEMPLATE:Commit
FinalCommit]

[TEMPLATE:Section *] [TEMPLATE:Do]
[TEMPLATE:Undo]

<commandcommand> [TEMPLATE:Config]
[TEMPLATE:Config FinalConfig]
[TEMPLATE:ErrorSection]
[TEMPLATE:ErrorSection
FinalCommand]
[TEMPLATE:Commit]
[TEMPLATE:Commit FinalCommit]
[TEMPLATE:Rollback]
[TEMPLATE:Rollback FinalRollback]
[TEMPLATE:Exit]
[TEMPLATE:Exit FinalExit]
[TEMPLATE:Do]/[TEMPLATE:Section *]
[TEMPLATE:Undo]/[TEMPLATE:Section
*]

[TEMPLATE:AssignVariable “*”] idem <command>

[TEMPLATE:If "*"] idem <command>

[TEMPLATE:Else] idem <command>

[TEMPLATE:EndIf] idem <command>

[TEMPLATE:ForEach "*" In "*"] idem <command>

[TEMPLATE:EndFor] idem <command>

[TEMPLATE:ErrorMessage “*”] <command>

[TEMPLATE:NonError “*”] <command>

[TEMPLATE:NonErrorPattern “*”] <command>

[TEMPLATE:Error “*”] <command>

[TEMPLATE:Failure “*”] <command>

[TEMPLATE:EndStr “*”] <command>

[TEMPLATE:EndStrPattern “*”] <command>

[TEMPLATE:Secret] <command>

[TEMPLATE:Echo] <command>

[TEMPLATE:EndParamString “*”] <command>

[TEMPLATE:EndCommandString “*”] <command>

[TEMPLATE:Question “*” Response “*”] <command>

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

64

[TEMPLATE:Pattern “*”] <command>

[TEMPLATE:Condition “*”] <command>

[TEMPLATE:ExecuteUntil “*”] <command>

[TEMPLATE:CommandDelay “*”] <command>

[TEMPLATE:ReadAttemps “*”] <command>

[TEMPLATE:ErrorPattern \"*\"] <command>

[TEMPLATE:FailurePattern \"*\"] <command>

[TEMPLATE:Variable “*”] [TEMPLATE:Pattern “*”]

[TEMPLATE:Array “*”] [TEMPLATE:Pattern “*”]

[TEMPLATE:ExecuteUntilDelay “*”] [TEMPLATE:ExecuteUntil “*”]

[TEMPLATE:ExecuteUntilAttempts “*”] [TEMPLATE:ExecuteUntil “*”]

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

65

6.Configuration Quick Reference

6.1. DBManager Configuration

Driver: A java.sql.Driver to load (through a Class.forName()) for it to be registered in the JDBC

DriverManager. The class must exist and be in the classpath. Established from the ecp.properties

DB_DRIVER property (see ecp.properties File).

User: The DataBase user on whose behalf the connection is being made. Established from the

ecp.properties DB_USER property (see ecp.properties File).

Password: The DataBase user password. Established from the ecp.properties DB_PASSWORD property

(see ecp.properties File).

URL: A JDBC URL String in the form “jdbc:<subprotocol>:<subname>”. Established from the

ecp.properties DB_URL property (see ecp.properties File).

6.2. Configurator Configuration

The following parameters of the Configurator may be established:

Appender: The Configurator Appender properties (except for the file name which is fixed) may be

configured from the ecp.properties LOG_DIR, LOG_MAX_FILE_SIZE and LOG_MAX_NUM_FILES

properties (see ecp.properties File).

The Configurator will use a RollingFileAppender as Appender. Its maximum file size and

maximum number of files will be the values specified by LOG_MAX_FILE_SIZE and

LOG_MAX_NUM_FILES respectively. The Configurator log file will be located at LOG_DIR +

“Configurator.log”. See ecp.properties File.

Pattern: Established from the ecp.properties LOG_PATTERN property (see ecp.properties File). It

will configure the log messages format pattern of the Configurator. Its valid values may be:

null
ISO8601

A valid PatternLayout‘s pattern.

If the pattern is null or “ISO8601” a TTCCLayout will be used as the Appender Layout. In other

case, a PatternLayout with specified value will be used. See
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/TTCCLayout.html

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

66

6.3. ECP RMI Service

reloadSubPool: On a reloadSubPool call, the timeout given to the whole set of the BUSY resources

of the subpool before forcing their finalization can be configured through the ecp.properties file

RELOAD_MAX_TIME property. If its value is ==0, the process will wait until the resources are not BUSY.

See ecp.properties File.

lockSubPool: On a lockSubPool call, the timeout given to the whole set of the BUSY resources of the

subpool before forcing their finalization can be configured through the ecp.properties file

RELOAD_MAX_TIME property. If its value is <=0, no timeout will be given. See ecp.properties File.

lockPool: On a lockPool call, the timeout given to the whole set of the BUSY resources of each

subpool before forcing their finalization can be configured through the ecp.properties file

RELOAD_MAX_TIME property. If its value is <=0, no timeout will be given. See ecp.properties File.

unloadPool: On a unloadPool call, the timeout given to the whole set of the BUSY resources of each

subpool before forcing their finalization can be configured through the ecp.properties file

RELOAD_MAX_TIME property. If its value is <=0, no timeout will be given. See ecp.properties File.

6.4. PoolManager Configuration

Pool Expiration: When a (not BUSY) pool expires and is unloaded, the timeout in milliseconds given

to each subpool for its BUSY resources before forcing their finalization can be configured through the

ecp.properties file RELOAD_MAX_TIME property. If its value is 0, no timeout will be given. See

ecp.properties File.

MaxPools: The maximum number of pools that can coexist simultaneously can be configured through the

ecp.properties file MAX_POOLS property. If its value is 0, no limit will be established. See

ecp.properties File.

PoolCleanUp: The number of times per second that the process of unloading dynamic expired pools will

be executed can be configured through the ecp.properties file POOL_MGR_MAX_RATE property.

Must be !=0. See ecp.properties File.

6.5. Pool Configuration

6.5.1. Pool Common Parameters Configuration

The following parameters are shared by all the pools:

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

67

getResourceRetries: The number of request to obtain a positively verified resource can be configured

through the ecp.properties file MAX_REQUESTS_TO_GET_VERIFIED_RESOURCE property. See

ecp.properties File.

getResourceDefaultQeueId: The default queue to add the resource request to, if it is not specified or the

specified queue is not found can be configured through the ecp.properties file DEFAULT_QUEUE_ID

property. See ecp.properties File.

DispatcherMaxRate: The maximum number of connections assigned to the whole set of clients by

second can be configured through the ecp.properties file DISPATCHER_MAX_RATE property. Must

be !=0. See ecp.properties File.

ResourcesCleanUp: The maximum number of times per second that the expired resources will be

finalized, the expired temporary resources deleted and the inactive resources reinitialized can be

configured through the ecp.properties file RES_MGR_MAX_RATE property. Must be !=0. See

ecp.properties File.

RequestsCleanUp: The maximum number of times per second that the process of elimination and

cancellation of expired resources requests will be executed can be configured through the

ecp.properties file REQ_MGR_MAX_RATE property. Must be !=0. See ecp.properties File.

6.5.1.1. Pool Logging Common Parameters Configuration

Appender: Each pool will have its own Appender, but the Appenders properties and types are

common, except for the file path (LogFile) which is specific for each pool, see Pool Instance Specific

Logging Parameters Configuration.The pools Appenders types and properties may be configured from

the ecp.properties LOG_MAX_FILE_SIZE, LOG_MAX_NUM_FILES and LOG_DATE_PATTERN properties

(see ecp.properties File).

If LOG_DATE_PATTERN is null, then a RollingFileAppender will be used. In other case, a

DailyRollingFileAppender will be used. If a DailyRollingFileAppender is used, its rolling

date pattern will be the value specified by LOG_DATE_PATTERN. If a RollingFileAppender is used,

its maximum file size and maximum number of files will be the values specified by LOG_MAX_FILE_SIZE

and LOG_MAX_NUM_FILES respectively. See ecp.properties File. Notice that each SubPool will use the

logger of the pool it belongs to, to log its messages (see SubPool Instance Specific Logging Parameters

Configuration)

Pattern: Established from the ecp.properties LOG_PATTERN property (see ecp.properties File). Will

configure the pools log messages format pattern. Its valid values may be:

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

68

null
ISO8601

A valid PatternLayout‘s pattern.

If the pattern is null or “ISO8601” a TTCCLayout will be used as the Appender Layout. In other

case, a PatternLayout with specified value will be used. See
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/TTCCLayout.html

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

Notice that each SubPool will use the logger of the pool it belongs to, to log its messages (see SubPool

Instance Specific Logging Parameters Configuration)

6.5.2. Pool Instance Specific Parameters Configuration

Name: Establishes the name that will identify the pool. If the pool is dynamic, and a name has been set

(see DynamicECPProperties Pool Properties) the value of this parameter will be

PoolName + "-" + user + "-" + ip + "-" + port

If a name has not been set, the value of this parameter will be

"DYNAMIC" + "-" + user + "-" + ip + "-" + port

If the pool is static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNPOOL

NAME DB field (see HPSA_EQUIPMENTCONNPOOL DB Table).

NotUsedMaxTimeLife: Establishes the maximum time that a pool may remain unused. Once that time

has expired, it will be removed. The timer is reset on each Operation (execute, executeActivation,

inverseActivation, revert). If the pool is dynamic, and the advanced dynamic properties are set (see

DynamicECPProperties Advanced Properties) the value of this parameter will be specified by the

DynamicECPProperties NotUsedMaxTimeLife attribute (see DynamicECPProperties Advanced Pool

Properties). If the advanced dynamic properties are not set, the value of this parameter will be specified

by the the ecp.properties DYNAMIC_POOL_NOT_USED_MAX_TIME_LIFE property (see ecp.properties

File). If the pool is static, the value of this parameter will be specified by the

HPSA_EQUIPMENTCONNPOOL NOTUSEDMAXTIMELIFE DB field (see HPSA_EQUIPMENTCONNPOOL

DB Table).

RequestTimeout: Maximum time to wait when obtaining a connection on a client request.

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties

DYNAMIC_POOL_REQUEST_TIME_OUT property (see ecp.properties File). If the pool is static, the value

of this parameter will be specified by the HPSA_EQUIPMENTCONNPOOL REQUESTTIMEOUT DB field (see

HPSA_EQUIPMENTCONNPOOL DB Table).

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

69

NumQueues: Number of request queues to add to the pool. Its value must be coherent with the value

specified in WeightQueues.

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties

DYNAMIC_POOL_NUM_QUEUES property (see ecp.properties File). If the pool is static, the value of this

parameter will be specified by the HPSA_EQUIPMENTCONNPOOL NUMQUEUES DB field (see

HPSA_EQUIPMENTCONNPOOL DB Table).

WeightQueues: Priority of each request queue. The number of request queues specified in NumQueues

will be created with the specified corresponding weights and order, and with the ids from 1 to

NumQueues. It must not be null, and must have the format:

<weight_queues>:=<queue_weight>{<sep><queue_weight>}
<sep>:=,

Where <queue_weight> is a number specifying the weight of the queue. The higher the weight, the

higher the priority of the queue.

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties

DYNAMIC_POOL_WEIGHT_QUEUES property (see ecp.properties File). If the pool is static, the value of this

parameter will be specified by the HPSA_EQUIPMENTCONNPOOL WEIGHTQUEUES DB field (see

HPSA_EQUIPMENTCONNPOOL DB Table).

6.5.2.1. Pool Instance Specific Logging Parameters Configuration

LogLevel: The pool logger level. Should be an integer value. If the log message level value is greater or

equal than the log level, the message will be written. The numerical values of the log4j log levels are:

FATAL = 50000
ERROR = 40000
WARN = 30000
INFO = 20000
DEBUG = 10000
ALL = Integer.MIN_VALUE

If the pool is dynamic, the value of this parameter will be specified by the ecp.properties

DYNAMIC_POOL_LOG_LEVEL property (see ecp.properties File). If the pool is static, the value of this

parameter will be specified by the HPSA_EQUIPMENTCONNPOOL LOGLEVEL DB field (see

HPSA_EQUIPMENTCONNPOOL DB Table).

Notice that each SubPool will use the logger of the pool it belongs to to log its messages (see SubPool

Instance Specific Logging Parameters Configuration)

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

70

LogFilePath: Determines the file where the pool instance log will be written. The file will be created in

the directory specified by the ecp.properties LOG_DIR property.

If the pool is dynamic, the LogFilePath will be

LOG_DIR + Pool.Name + “.log”

If the pool is static, the LogFilePath will be specified by the HPSA_EQUIPMENTCONNPOOL LOGFILE

field (see HPSA_EQUIPMENTCONNPOOL DB Table).

LOG_DIR + LOGFILE

Notice that each SubPool will use the logger of the pool it belongs to to log its messages (see SubPool

Instance Specific Logging Parameters Configuration)

6.6. SubPool Configuration

6.6.1. SubPool Instance Specific Parameters Configuration

Initsessions: Determines whether the resources should be initialized as soon as created (or reused) or

the SubPool should wait until the resource is requested by the client.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties

DYNAMIC_POOL_INIT_SESSIONS property (see ecp.properties File). If the pool is static, the value of this

parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL INITSESSIONS DB field (see

HPSA_EQUIPMENTCONNSUBPOOL DB Table).

MaxSessions: Maximum number of resources that the SubPool will contain. Resources will be allocated

as needed, but existent resources will be reused if possible.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties

DYNAMIC_POOL_MAX_SESSIONS property (see ecp.properties File). If the pool is static, the value of this

parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL MAXSESSIONS DB field (see

HPSA_EQUIPMENTCONNSUBPOOL DB Table).

MinSessions: Minimum number of resources to keep instantiated in the SubPool. The SubPool will

always contain at least that quantity of resources.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

71

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties

DYNAMIC_POOL_MIN_SESSIONS property (see ecp.properties File). If the pool is static, the value of this

parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL MINSESSIONS DB field (see

HPSA_EQUIPMENTCONNSUBPOOL DB Table).

ResourceTimeout: Maximum time that a resource is allowed to remain BUSY (in use by a client). Once

the timeout has expired the resource remains BUSY, the resource will be finalized (and eventually

reinitialized and reassigned to other client).

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced dynamic

properties are not set, the value of this parameter will be specified by the the ecp.properties

DYNAMIC_POOL_RESOURCE_TIME_OUT property (see ecp.properties File). If the pool is static, the value

of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL RESOURCETIMEOUT DB

field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

TemporaryResourcesTimeout: Maximum time that a temporary connection can remain unused after

it is created, in milliseconds. If the timeout is set to 0, it will never expire. Once the timeout has expired

the temporary connection will be finalized and destroyed. Temporary connections are the additional

connections to MinSessions. Expired temporary connections are not reused. Instead, they are finalized

and destroyed after their expiration. They may be reused though, if the connection is not expired and the

SubPool is reloaded or the connection closed (via RMI) and the pool contains less than MinSessions

resources. Notice that Temporary connections are also affected by ResourceTimeout.

If the subpool is dynamic, and the advanced dynamic properties are set (see DynamicECPProperties

Advanced Properties) the value of this parameter will be specified by the DynamicECPProperties

InitSessions attribute (see DynamicECPProperties Advanced SubPool Properties). If the advanced

dynamic properties are not set, the value of this parameter will be specified by the the ecp.properties

DYNAMIC_POOL_TEMPORARY_RESOURCES_TIME_OUT property (see ecp.properties File). If the pool is

static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL

TEMPORARYRESOURCESTIMEOUT DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Id: Identifier of the subpool.

If the subpool is dynamic, then the subpool identifier will be 0 (actually, the JVM initialization value of an

integer, as the value is not initialized by the ECP). If the subpool is static, the value of this parameter will

be specified by the HPSA_EQUIPMENTCONNSUBPOOL IDSUBPOOL DB field (see

HPSA_EQUIPMENTCONNSUBPOOL DB Table).

ConnectionResourceClassName: Fully qualified class name of the EquipmentDriver to be used for

this subpool connections. Must extend ConnectionResource and be in the system codebase (classpath).

If the subpool is dynamic, the value of this parameter will be specified by the DynamicECPProperties

ConnectionResourceClassName attribute (see DynamicECPProperties SubPool Properties). If the

subpool is static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL

CONNECTIONRESOURCECLASSNAME DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

72

6.6.1.1. SubPool Instance Specific Logging Parameters Configuration

Logger: Each SubPool will use the logger of the pool it belongs to to log its messages (see Pool Logging

Common Parameters Configuration and Pool Instance Specific Logging Parameters Configuration).

Notice that each ConnectionResource will use the logger of the SubPool it belongs to to log its messages

(see ConnectionResource Configuration)

6.6.1.2. EquipmentDriver Initialization Parameters Configuration

Ip: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

ConnectionResource.DefaultParameterNames.host. If the SubPool to which the

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the

DynamicECPProperties IP attribute (see DynamicECPProperties SubPool Properties). If the subpool is

static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL IP DB field

(see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Port: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

ConnectionResource.DefaultParameterNames.port. If the SubPool to which the

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the

DynamicECPProperties Port attribute (see DynamicECPProperties SubPool Properties). If the subpool is

static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL PORT DB

field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Protocol: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

ConnectionResource.DefaultParameterNames.protocol. If the SubPool to which the

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the

DynamicECPProperties Protocol attribute (see DynamicECPProperties SubPool Properties). If the subpool

is static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL

PROTOCOL DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table). The value identifies a

ProtocolDriver. A ProtocolDriver registered in the Protocol Driver manager under that name must exist. See

Protocol Drivers Manager Configuration

Username: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

ConnectionResource.DefaultParameterNames.user. If the SubPool to which the EquipmentDriver

belongs is dynamic, the value of this parameter will be specified by the DynamicECPProperties User

attribute (see DynamicECPProperties SubPool Properties). If the subpool is static, the value of this

parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL USERNAME DB field (see

HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Password: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

ConnectionResource.DefaultParameterNames.password. If the SubPool to which the

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the

DynamicECPProperties Password attribute (see DynamicECPProperties SubPool Properties). If the subpool

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

73

is static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL

PASSWORD DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

Passwordenable: Passed from the SubPool to the EquipmentDriver on construction in the Map entry key

ConnectionResource.DefaultParameterNames.passwordEnable. If the SubPool to which the

EquipmentDriver belongs is dynamic, the value of this parameter will be specified by the

DynamicECPProperties PasswordEnable attribute (see DynamicECPProperties SubPool Properties). If the

subpool is static, the value of this parameter will be specified by the HPSA_EQUIPMENTCONNSUBPOOL

PASSWORDENABLE DB field (see HPSA_EQUIPMENTCONNSUBPOOL DB Table).

6.7. EquipmenDriver Configuration

Logger: This logger is set by the ConnectionResource (see ConnectionResource Configuration) and it

will determine the PrintWriter and the initial LogLevel. EquipmentDriver won’t use it for logging

(except to log some error messages). Instead, it will use PrintWriter.

PrintWriter: Will be determined by the Logger. If the Logger has a WritableFileAppender, it

will be used as PrinterWriter. In other case, System.out will be used.

LogLevel: Will determine the level of the messages to PrintWriter to print. Initially, LogLevel will

be the LogLevel of Logger but the client can change it when requesting a connection. In fact,

CLICommands will set the EquipmentDriver LogLevel to its own LogLevel when executing an Operation

(see CLICommands Configuration).

if LogLevel equals org.apache.log4j.Level.INFO the EquipmentDriver will write on this

PrintWriter the data read and written through the ProtocolDriver.

If LogLevel equals org.apache.log4j.Level.DEBUG, only the data read during

configureTerminal will be logged but accumulating it, that is, if five consecutive read operations are

needed to find a searched string, the five reading operations, each one including the previous read data,

will be logged.

If an error is found, the read data will always be written.

6.7.1. EquipmentDriver Initialization Parameters Configuration

See EquipmentDriver Initialization Parameters Configuration

6.7.2. ConnectionResource Configuration

Logger: Each ConnectionResource will use the logger of the SubPool it belongs to, to log its messages

(see SubPool Instance Specific Logging Parameters Configuration). It will also determine the Logger of the

EquipmentDriver (see EquipmenDriver Configuration).

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

74

6.8. Protocol Drivers Manager Configuration

The Protocol Drivers Manager can be configured through the ProtocolDrivers.lst file. See

ProtocolDrivers.lst File.

Additionally, the Protocol Drivers Manager will use the current log4j LoggerRepository to look for the

logger with the name “DriverManager”. A ConsoleAppender to stdout will be added to this logger,

and used to log the Protocol Driver registering process.

6.9. ProtocolDriver Configuration

SpyFile: The directory where the spy files will be generated may be configured from the

ecp.properties file LOG_DIR property. The spy file will be

LOG_DIR + "spy" + ${pool.name} + "_" + ${subpool.name} + "_" +
${resource.id} + ".log"

See ecp.properties File.

6.10.CLICommands Configuration

Logger: Default AbstractLoggeable Logger (ConsoleAppender to System.out):

LogLevel: On CLICommands construction, the Logger log level will be established to

org.apache.log4j.Level.INFO if bInfo==true, or to org.apache.log4j.Level.WARN if

bInfo==false. Later, this logger level will be used to determine the EquipmentDriver LogLevel, setting

it to the same log level (see EquipmenDriver Configuration).

ECPRMIServiceRegistryHostName: Hostname of the registry service where the ECP RMI Service

object has been bound. This parameter may be configured via setRMIHostName.

ECPRMIServiceRegistryPort: Port of the registry service where the ECP RMI Service object has

been bound. This parameter may be configured via setRMIPort

ECPRMIServiceReferenceName: Name to which the ECP RMI Service reference has been bound. This

parameter may be configured via setRMIServiceName

OVSA SPI for Service Providers

Equipment Connections Pools User Referente

75

6.11.Template Parser Configuration

TemplateParser logs to System.out but when constructing the TemplateParser, the generated

CLICommands LogLevel can be set. The bInfo parameter will be passed to the CLICommands. See

CLICommands Configuration.

6.12.JMS Monitoring Configuration

Enabling: To enable JMS Monitoring, the ecp.properties field ECP.Msgs.Enable must be set to

true. No Monitoring message will be sent if this property is set to other value. See 4.3.2 ecp.properties

File, property “ECP.Msgs.Enable” for further details.

Administered Objects Naming Context: All the properties included in ecp.properties will be set

as environment of the InitialContext instance used to look for administered objects. By default, the

ecp.properties will use the Active MQ Initial Context Factory, setting the property

“java.naming.factory.initial=

org.apache.activemq.jndi.ActiveMQInitialContextFactory”. Check Active MQ

documentation and javax.naming.InitialContext for the possible values. It is possible for example to create

administered Destinations by tweaking these properties. See 4.3.2 ecp.properties File, property

“java.naming.factory.initial” for further details.

JMS Broker Connection/Start: It is possible to determine the JMS Broker that the ECP will connect

to, indicating its URI in the the ecp.properties field JMSBrokerReference.broker.uri. This URI

will be used for to instantiate an ActiveMQConnectionFactory, to create connections to the broker. Active

MQ supports a wide variety of URIs, including embedded brokers, broker configuration through URI,

multiple transport protocols etc. Check Active MQ documentation for details. By default the JMS Broker

URI is

“vm\:(broker\:(tcp\://localhost\:4001)?brokerName\=EmbeddedBroker&useJmx\=tr
ue&persistent\=false&populateJMSXUserID\=false&useShutdownHook\=false&delete

AllMessagesOnStartup\=false&enableStatistics\=false)?marshal\=false”. “vm” URIs

will start an embedded broker. See 4.3.2 ecp.properties File, property

“JMSBrokerReference.broker.uri” for further details.

JMS ECP Messages Destination: It is possible to determine the destination type and name where ECP

monitoring messages will be sent. See 4.3.2 ecp.properties File, properties

“JMSMessageBroker.dest.type” and “JMSMessageBroker.dest.name” for further details.

