
HP GlancePlus
For the HP-UX operating system

Software Version: 11.02

Dictionary of Operating System Metrics

Document Release Date: December 2011

Software Release Date: October 2011

Legal Notices
Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice
© Copyright 2010 - 2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

This product includes an interface of the 'zlib' general purpose compression library, which is
Copyright © 1995-2002 Jean-loupGailly andMark Adler.

HP GlancePlus (11.02)Page 2 of 821

Dictionary of Operating System Metrics

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using themost recent edition of a document, go
to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport
ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click theNew users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support
service. Contact your HP sales representative for details.

HP GlancePlus (11.02)Page 3 of 821

Dictionary of Operating System Metrics

Support
Visit the HP Software Support Online web site at:

http://www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support
that HP Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and
efficient way to access interactive technical support tools needed tomanage your business. As a
valued support customer, you can benefit by using the support web site to:

l Search for knowledge documents of interest

l Submit and track support cases and enhancement requests

l Download software patches

l Manage support contracts

l Look up HP support contacts

l Review information about available services

l Enter into discussions with other software customers

l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also
require a support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To findmore information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP GlancePlus (11.02)Page 4 of 821

Dictionary of Operating System Metrics

Contents

Dictionary of Operating System Metrics 1

Contents 5

Introduction 60

Metric Names by Data Class 62

Global Metrics 62

TableMetrics 81

Process Metrics 82

ApplicationMetrics 91

Process By File Metrics 93

By Disk Metrics 94

File SystemMetrics 96

Logical VolumeMetrics 97

By Network InterfaceMetrics 98

By SwapMetrics 99

By CPU Metrics 99

Process By Memory RegionMetrics 101

By NFS Metrics 102

By NFS OperationMetrics 103

By OperationMetrics 104

System Call Metrics 104

By Disk Detail Metrics 104

File System Detail Metrics 104

Logical VolumeDetail Metrics 104

TransactionMetrics 105

TransactionMeasurement SectionMetrics 109

By Process System Call Metrics 109

ThreadMetrics 109

Network by Logical Detail Metrics 118

HP GlancePlus (11.02)Page 5 of 821

Transaction Client Metrics 118

Transaction InstanceMetrics 119

Transaction User DefinedMeasurement Metrics 119

Transaction Client User DefinedMeasurement Metrics 120

Transaction Instance User DefinedMeasurement Metrics 120

PRM By VolumeGroupMetrics 120

By Logical System Metrics 121

By HbaMetrics 122

Metric Definitions 124

APP_ACTIVE_APP 124

APP_ACTIVE_APP_PRM 124

APP_ACTIVE_PROC 124

APP_ALIVE_PROC 125

APP_COMPLETED_PROC 125

APP_CPU_NICE_TIME 125

APP_CPU_NICE_UTIL 126

APP_CPU_NNICE_TIME 127

APP_CPU_NNICE_UTIL 127

APP_CPU_NORMAL_TIME 128

APP_CPU_NORMAL_UTIL 128

APP_CPU_REALTIME_TIME 129

APP_CPU_REALTIME_UTIL 129

APP_CPU_SYS_MODE_TIME 130

APP_CPU_SYS_MODE_UTIL 130

APP_CPU_TOTAL_TIME 131

APP_CPU_TOTAL_UTIL 131

APP_CPU_TOTAL_UTIL_CUM 132

APP_CPU_USER_MODE_TIME 133

APP_CPU_USER_MODE_UTIL 133

APP_DISK_FS_IO_RATE 134

APP_DISK_LOGL_IO_RATE 134

APP_DISK_LOGL_READ 135

HP GlancePlus (11.02)Page 6 of 821

Dictionary of Operating System Metrics
Contents

APP_DISK_LOGL_READ_RATE 135

APP_DISK_LOGL_WRITE 135

APP_DISK_LOGL_WRITE_RATE 136

APP_DISK_PHYS_IO_RATE 136

APP_DISK_PHYS_READ 136

APP_DISK_PHYS_READ_RATE 137

APP_DISK_PHYS_WRITE 137

APP_DISK_PHYS_WRITE_RATE 137

APP_DISK_RAW_IO_RATE 137

APP_DISK_SUBSYSTEM_QUEUE 137

APP_DISK_SUBSYSTEM_WAIT_PCT 138

APP_DISK_SYSTEM_IO_RATE 138

APP_DISK_VM_IO_RATE 138

APP_INTERVAL 138

APP_INTERVAL_CUM 139

APP_IO_BYTE 139

APP_IO_BYTE_RATE 139

APP_IPC_SUBSYSTEM_QUEUE 139

APP_IPC_SUBSYSTEM_WAIT_PCT 140

APP_MAJOR_FAULT 141

APP_MAJOR_FAULT_RATE 141

APP_MEM_QUEUE 141

APP_MEM_RES 141

APP_MEM_UTIL 142

APP_MEM_VIRT 142

APP_MEM_WAIT_PCT 143

APP_MINOR_FAULT 143

APP_MINOR_FAULT_RATE 143

APP_NAME 143

APP_NAME_PRM_GROUPNAME 144

APP_NETWORK_SUBSYSTEM_QUEUE 144

APP_NETWORK_SUBSYSTEM_WAIT_PCT 144

HP GlancePlus (11.02)Page 7 of 821

Dictionary of Operating System Metrics
Contents

APP_NUM 145

APP_OTHER_IO_QUEUE 145

APP_OTHER_IO_WAIT_PCT 146

APP_PRI 146

APP_PRI_QUEUE 147

APP_PRI_STD_DEV 147

APP_PRI_WAIT_PCT 147

APP_PRM_CPUCAP_MODE 148

APP_PRM_CPU_ENTITLEMENT 148

APP_PRM_CPU_TOTAL_UTIL_CUM 148

APP_PRM_DISK_STATE 149

APP_PRM_GROUPID 150

APP_PRM_INTERVAL_CUM 150

APP_PRM_MEM_AVAIL 150

APP_PRM_MEM_ENTITLEMENT 150

APP_PRM_MEM_STATE 150

APP_PRM_MEM_UPPERBOUND 151

APP_PRM_MEM_UTIL 151

APP_PRM_STATE 151

APP_PRM_SUSPENDED_PROC 151

APP_PROC_RUN_TIME 152

APP_SAMPLE 152

APP_SEM_QUEUE 152

APP_SEM_WAIT_PCT 152

APP_SLEEP_QUEUE 153

APP_SLEEP_WAIT_PCT 154

APP_TERM_IO_QUEUE 154

APP_TERM_IO_WAIT_PCT 154

APP_TIME 155

BYCPU_ACTIVE 155

BYCPU_CPU_CLOCK 155

BYCPU_CPU_CSWITCH_TIME 155

HP GlancePlus (11.02)Page 8 of 821

Dictionary of Operating System Metrics
Contents

BYCPU_CPU_CSWITCH_TIME_CUM 156

BYCPU_CPU_CSWITCH_UTIL 157

BYCPU_CPU_CSWITCH_UTIL_CUM 157

BYCPU_CPU_INTERRUPT_TIME 158

BYCPU_CPU_INTERRUPT_TIME_CUM 158

BYCPU_CPU_INTERRUPT_UTIL 159

BYCPU_CPU_INTERRUPT_UTIL_CUM 159

BYCPU_CPU_NICE_TIME 160

BYCPU_CPU_NICE_TIME_CUM 161

BYCPU_CPU_NICE_UTIL 161

BYCPU_CPU_NICE_UTIL_CUM 162

BYCPU_CPU_NNICE_TIME 163

BYCPU_CPU_NNICE_TIME_CUM 163

BYCPU_CPU_NNICE_UTIL 164

BYCPU_CPU_NNICE_UTIL_CUM 164

BYCPU_CPU_NORMAL_TIME 165

BYCPU_CPU_NORMAL_TIME_CUM 166

BYCPU_CPU_NORMAL_UTIL 166

BYCPU_CPU_NORMAL_UTIL_CUM 167

BYCPU_CPU_REALTIME_TIME 168

BYCPU_CPU_REALTIME_TIME_CUM 168

BYCPU_CPU_REALTIME_UTIL 169

BYCPU_CPU_REALTIME_UTIL_CUM 169

BYCPU_CPU_SYSCALL_TIME 170

BYCPU_CPU_SYSCALL_TIME_CUM 170

BYCPU_CPU_SYSCALL_UTIL 171

BYCPU_CPU_SYSCALL_UTIL_CUM 171

BYCPU_CPU_SYS_MODE_TIME 172

BYCPU_CPU_SYS_MODE_TIME_CUM 173

BYCPU_CPU_SYS_MODE_UTIL 173

BYCPU_CPU_SYS_MODE_UTIL_CUM 174

BYCPU_CPU_TOTAL_TIME 175

HP GlancePlus (11.02)Page 9 of 821

Dictionary of Operating System Metrics
Contents

BYCPU_CPU_TOTAL_TIME_CUM 175

BYCPU_CPU_TOTAL_UTIL 176

BYCPU_CPU_TOTAL_UTIL_CUM 176

BYCPU_CPU_TRAP_TIME 177

BYCPU_CPU_TRAP_TIME_CUM 177

BYCPU_CPU_TRAP_UTIL 178

BYCPU_CPU_TRAP_UTIL_CUM 179

BYCPU_CPU_USER_MODE_TIME 179

BYCPU_CPU_USER_MODE_TIME_CUM 180

BYCPU_CPU_USER_MODE_UTIL 181

BYCPU_CPU_USER_MODE_UTIL_CUM 181

BYCPU_CPU_VFAULT_TIME 182

BYCPU_CPU_VFAULT_TIME_CUM 182

BYCPU_CPU_VFAULT_UTIL 183

BYCPU_CPU_VFAULT_UTIL_CUM 183

BYCPU_CSWITCH 184

BYCPU_CSWITCH_CUM 184

BYCPU_CSWITCH_RATE 185

BYCPU_CSWITCH_RATE_CUM 185

BYCPU_ID 185

BYCPU_INTERRUPT 185

BYCPU_INTERRUPT_RATE 186

BYCPU_INTERRUPT_STATE 186

BYCPU_LAST_PROC_ID 186

BYCPU_LAST_THREAD_ID 186

BYCPU_LAST_USER_THREAD_ID 186

BYCPU_RUN_QUEUE_15_MIN 186

BYCPU_RUN_QUEUE_1_MIN 186

BYCPU_RUN_QUEUE_5_MIN 186

BYCPU_STATE 186

BYDSKDETAIL_LABEL 187

BYDSKDETAIL_NAME 187

HP GlancePlus (11.02)Page 10 of 821

Dictionary of Operating System Metrics
Contents

BYDSK_AVG_QUEUE_TIME 187

BYDSK_AVG_READ_QUEUE_TIME 187

BYDSK_AVG_READ_SERVICE_TIME 187

BYDSK_AVG_SERVICE_TIME 188

BYDSK_AVG_WRITE_QUEUE_TIME 188

BYDSK_AVG_WRITE_SERVICE_TIME 188

BYDSK_BUS 189

BYDSK_BUSY_TIME 189

BYDSK_CONTROLLER 189

BYDSK_DEVNAME 189

BYDSK_DEVNO 189

BYDSK_DIRNAME 189

BYDSK_DISKNAME 190

BYDSK_FS_IO_RATE 190

BYDSK_FS_READ 190

BYDSK_FS_READ_RATE 190

BYDSK_FS_WRITE 190

BYDSK_FS_WRITE_RATE 190

BYDSK_ID 190

BYDSK_INTERVAL 190

BYDSK_INTERVAL_CUM 191

BYDSK_LOGL_BYTE_RATE 191

BYDSK_LOGL_BYTE_RATE_CUM 191

BYDSK_LOGL_IO_RATE 192

BYDSK_LOGL_IO_RATE_CUM 192

BYDSK_LOGL_READ 192

BYDSK_LOGL_READ_BYTE_RATE 193

BYDSK_LOGL_READ_BYTE_RATE_CUM 193

BYDSK_LOGL_READ_RATE 193

BYDSK_LOGL_READ_RATE_CUM 194

BYDSK_LOGL_WRITE 194

BYDSK_LOGL_WRITE_BYTE_RATE 194

HP GlancePlus (11.02)Page 11 of 821

Dictionary of Operating System Metrics
Contents

BYDSK_LOGL_WRITE_BYTE_RATE_CUM 194

BYDSK_LOGL_WRITE_RATE 195

BYDSK_LOGL_WRITE_RATE_CUM 195

BYDSK_PHYS_BYTE 196

BYDSK_PHYS_BYTE_RATE 196

BYDSK_PHYS_BYTE_RATE_CUM 196

BYDSK_PHYS_IO 196

BYDSK_PHYS_IO_RATE 197

BYDSK_PHYS_IO_RATE_CUM 197

BYDSK_PHYS_READ 197

BYDSK_PHYS_READ_BYTE 198

BYDSK_PHYS_READ_BYTE_RATE 198

BYDSK_PHYS_READ_BYTE_RATE_CUM 198

BYDSK_PHYS_READ_RATE 198

BYDSK_PHYS_READ_RATE_CUM 199

BYDSK_PHYS_WRITE 199

BYDSK_PHYS_WRITE_BYTE 199

BYDSK_PHYS_WRITE_BYTE_RATE 200

BYDSK_PHYS_WRITE_BYTE_RATE_CUM 200

BYDSK_PHYS_WRITE_RATE 200

BYDSK_PHYS_WRITE_RATE_CUM 201

BYDSK_PRODUCT_ID 201

BYDSK_QUEUE_0_UTIL 201

BYDSK_QUEUE_2_UTIL 202

BYDSK_QUEUE_4_UTIL 202

BYDSK_QUEUE_8_UTIL 203

BYDSK_QUEUE_X_UTIL 204

BYDSK_RAW_IO_RATE 204

BYDSK_RAW_READ 204

BYDSK_RAW_READ_RATE 204

BYDSK_RAW_WRITE 204

BYDSK_RAW_WRITE_RATE 205

HP GlancePlus (11.02)Page 12 of 821

Dictionary of Operating System Metrics
Contents

BYDSK_REQUEST_QUEUE 205

BYDSK_SYSTEM_IO 205

BYDSK_SYSTEM_IO_RATE 205

BYDSK_SYSTEM_READ_RATE 205

BYDSK_SYSTEM_WRITE_RATE 205

BYDSK_TIME 205

BYDSK_UTIL 205

BYDSK_UTIL_CUM 206

BYDSK_VENDOR_ID 206

BYDSK_VM_IO 207

BYDSK_VM_IO_RATE 207

BYDSK_VM_READ_RATE 207

BYDSK_VM_WRITE_RATE 207

BYHBA_AVG_SERVICE_TIME 207

BYHBA_AVG_WAIT_TIME 207

BYHBA_BUSY_TIME 207

BYHBA_BYTE_RATE 207

BYHBA_BYTE_RATE_CUM 208

BYHBA_CLASS 208

BYHBA_DEVNAME 208

BYHBA_DEVNO 208

BYHBA_DRIVER 208

BYHBA_ID 208

BYHBA_INTERVAL 208

BYHBA_INTERVAL_CUM 208

BYHBA_IO 209

BYHBA_IO_RATE 209

BYHBA_IO_RATE_CUM 209

BYHBA_NAME 209

BYHBA_READ 210

BYHBA_READ_BYTE_RATE 210

BYHBA_READ_BYTE_RATE_CUM 210

HP GlancePlus (11.02)Page 13 of 821

Dictionary of Operating System Metrics
Contents

BYHBA_READ_RATE 210

BYHBA_READ_RATE_CUM 210

BYHBA_REQUEST_QUEUE 210

BYHBA_STATE 210

BYHBA_THROUGHPUT_UTIL 210

BYHBA_TIME 211

BYHBA_TYPE 211

BYHBA_UTIL 211

BYHBA_WRITE 211

BYHBA_WRITE_BYTE_RATE 211

BYHBA_WRITE_BYTE_RATE_CUM 211

BYHBA_WRITE_RATE 211

BYHBA_WRITE_RATE_CUM 211

BYLS_CPU_CYCLE_ENTL_MAX 212

BYLS_CPU_CYCLE_ENTL_MIN 212

BYLS_CPU_ENTL_MAX 212

BYLS_CPU_ENTL_MIN 212

BYLS_CPU_ENTL_UTIL 213

BYLS_CPU_PHYSC 213

BYLS_CPU_PHYS_TOTAL_TIME 213

BYLS_CPU_PHYS_TOTAL_TIME_CUM 214

BYLS_CPU_PHYS_TOTAL_UTIL 214

BYLS_CPU_TOTAL_UTIL 214

BYLS_DISPLAY_NAME 214

BYLS_IP_ADDRESS 215

BYLS_LS_HOSTNAME 215

BYLS_LS_ID 215

BYLS_LS_MODE 215

BYLS_LS_NAME 216

BYLS_LS_OSTYPE 216

BYLS_LS_PROC_ID 216

BYLS_LS_SHARED 217

HP GlancePlus (11.02)Page 14 of 821

Dictionary of Operating System Metrics
Contents

BYLS_LS_STATE 217

BYLS_LS_UUID 217

BYLS_MEM_ENTL 217

BYLS_MEM_ENTL_MAX 218

BYLS_MEM_ENTL_MIN 218

BYLS_MEM_ENTL_UTIL 218

BYLS_MEM_FREE 218

BYLS_MEM_FREE_UTIL 219

BYLS_MEM_HEALTH 219

BYLS_MEM_PHYS 219

BYLS_MEM_PHYS_UTIL 219

BYLS_MEM_USED 220

BYLS_NUM_CPU 220

BYLS_NUM_DISK 220

BYLS_NUM_NETIF 221

BYLS_UPTIME_SECONDS 221

BYNETIF_COLLISION 221

BYNETIF_COLLISION_1_MIN_RATE 222

BYNETIF_COLLISION_RATE 222

BYNETIF_COLLISION_RATE_CUM 223

BYNETIF_ERROR 223

BYNETIF_ERROR_1_MIN_RATE 224

BYNETIF_ERROR_RATE 224

BYNETIF_ERROR_RATE_CUM 225

BYNETIF_ID 226

BYNETIF_INTERVAL 226

BYNETIF_INTERVAL_CUM 226

BYNETIF_IN_BYTE 226

BYNETIF_IN_BYTE_RATE 226

BYNETIF_IN_BYTE_RATE_CUM 227

BYNETIF_IN_PACKET 227

BYNETIF_IN_PACKET_RATE 228

HP GlancePlus (11.02)Page 15 of 821

Dictionary of Operating System Metrics
Contents

BYNETIF_IN_PACKET_RATE_CUM 228

BYNETIF_LOGL_INTERVAL 229

BYNETIF_LOGL_INTERVAL_CUM 230

BYNETIF_LOGL_IN_PACKET 230

BYNETIF_LOGL_IN_PACKET_RATE 230

BYNETIF_LOGL_IN_PACKET_RATE_CUM 231

BYNETIF_LOGL_IP_ADDRESS 231

BYNETIF_LOGL_NAME 231

BYNETIF_LOGL_OUT_PACKET 232

BYNETIF_LOGL_OUT_PACKET_RATE 232

BYNETIF_LOGL_OUT_PACKET_RATE_CUM 232

BYNETIF_NAME 233

BYNETIF_NET_MTU 234

BYNETIF_NET_SPEED 234

BYNETIF_NET_TYPE 234

BYNETIF_OUT_BYTE 234

BYNETIF_OUT_BYTE_RATE 235

BYNETIF_OUT_BYTE_RATE_CUM 235

BYNETIF_OUT_PACKET 236

BYNETIF_OUT_PACKET_RATE 236

BYNETIF_OUT_PACKET_RATE_CUM 237

BYNETIF_PACKET_RATE 238

BYNETIF_QUEUE 238

BYNETIF_UTIL 238

BYNFSOP_CLIENT_COUNT 238

BYNFSOP_CLIENT_COUNT_CUM 239

BYNFSOP_CLIENT_TIME 239

BYNFSOP_CLIENT_TIME_CUM 239

BYNFSOP_INTERVAL 240

BYNFSOP_INTERVAL_CUM 240

BYNFSOP_NAME 240

BYNFSOP_SERVER_COUNT 242

HP GlancePlus (11.02)Page 16 of 821

Dictionary of Operating System Metrics
Contents

BYNFSOP_SERVER_COUNT_CUM 242

BYNFSOP_SERVER_TIME 242

BYNFSOP_SERVER_TIME_CUM 243

BYNFS_CLIENT_PHYS_TIME 243

BYNFS_CLIENT_PHYS_TIME_CUM 243

BYNFS_CLIENT_READ_BYTE_RATE 244

BYNFS_CLIENT_READ_BYTE_RATE_CUM 244

BYNFS_CLIENT_READ_RATE 244

BYNFS_CLIENT_READ_RATE_CUM 245

BYNFS_CLIENT_SERVICE 245

BYNFS_CLIENT_SERVICE_CUM 245

BYNFS_CLIENT_SERVICE_QUEUE 246

BYNFS_CLIENT_SERVICE_QUEUE_CUM 246

BYNFS_CLIENT_SERVICE_TIME 246

BYNFS_CLIENT_SERVICE_TIME_CUM 247

BYNFS_CLIENT_WRITE_BYTE_RATE 247

BYNFS_CLIENT_WRITE_BYTE_RATE_CUM 247

BYNFS_CLIENT_WRITE_RATE 248

BYNFS_CLIENT_WRITE_RATE_CUM 248

BYNFS_HOSTNAME 248

BYNFS_HOST_IP_ADDRESS 249

BYNFS_INTERVAL 249

BYNFS_INTERVAL_CUM 249

BYNFS_LAST_PROC_ID 249

BYNFS_SERVER_READ_BYTE_RATE 249

BYNFS_SERVER_READ_BYTE_RATE_CUM 250

BYNFS_SERVER_READ_RATE 250

BYNFS_SERVER_READ_RATE_CUM 250

BYNFS_SERVER_SERVICE 251

BYNFS_SERVER_SERVICE_CUM 251

BYNFS_SERVER_SERVICE_TIME 251

BYNFS_SERVER_SERVICE_TIME_CUM 251

HP GlancePlus (11.02)Page 17 of 821

Dictionary of Operating System Metrics
Contents

BYNFS_SERVER_WRITE_BYTE_RATE 252

BYNFS_SERVER_WRITE_BYTE_RATE_CUM 252

BYNFS_SERVER_WRITE_RATE 253

BYNFS_SERVER_WRITE_RATE_CUM 253

BYOP_CLIENT_COUNT 253

BYOP_CLIENT_COUNT_CUM 254

BYOP_INTERVAL 254

BYOP_INTERVAL_CUM 254

BYOP_NAME 255

BYOP_SERVER_COUNT 257

BYOP_SERVER_COUNT_CUM 257

BYSWP_SWAP_PRI 257

BYSWP_SWAP_SPACE_AVAIL 258

BYSWP_SWAP_SPACE_NAME 258

BYSWP_SWAP_SPACE_USED 258

BYSWP_SWAP_TYPE 259

FSDETAIL_LABEL 259

FSDETAIL_NAME 259

FS_BLOCK_SIZE 259

FS_DEVNAME 259

FS_DEVNO 260

FS_DIRNAME 260

FS_FILE_IO_RATE 261

FS_FILE_IO_RATE_CUM 261

FS_FRAG_SIZE 261

FS_INODE_UTIL 261

FS_INTERVAL 262

FS_INTERVAL_CUM 262

FS_IS_LVM 262

FS_LOGL_IO_RATE 262

FS_LOGL_IO_RATE_CUM 262

FS_LOGL_READ_BYTE_RATE 263

HP GlancePlus (11.02)Page 18 of 821

Dictionary of Operating System Metrics
Contents

FS_LOGL_READ_BYTE_RATE_CUM 263

FS_LOGL_READ_RATE 263

FS_LOGL_READ_RATE_CUM 263

FS_LOGL_WRITE_BYTE_RATE 264

FS_LOGL_WRITE_BYTE_RATE_CUM 264

FS_LOGL_WRITE_RATE 264

FS_LOGL_WRITE_RATE_CUM 265

FS_MAX_INODES 265

FS_MAX_SIZE 265

FS_PHYS_IO_RATE 266

FS_PHYS_IO_RATE_CUM 266

FS_PHYS_READ_BYTE_RATE 266

FS_PHYS_READ_BYTE_RATE_CUM 266

FS_PHYS_READ_RATE 267

FS_PHYS_READ_RATE_CUM 267

FS_PHYS_WRITE_BYTE_RATE 267

FS_PHYS_WRITE_BYTE_RATE_CUM 267

FS_PHYS_WRITE_RATE 268

FS_PHYS_WRITE_RATE_CUM 268

FS_SPACE_RESERVED 268

FS_SPACE_USED 268

FS_SPACE_UTIL 269

FS_TYPE 269

FS_VM_IO_RATE 269

FS_VM_IO_RATE_CUM 270

GBL_ACTIVE_CPU 270

GBL_ACTIVE_CPU_CORE 270

GBL_ACTIVE_PROC 270

GBL_ALIVE_PROC 271

GBL_BLANK 272

GBL_BOOT_TIME 272

GBL_CACHE_QUEUE 272

HP GlancePlus (11.02)Page 19 of 821

Dictionary of Operating System Metrics
Contents

GBL_CACHE_WAIT_PCT 273

GBL_CACHE_WAIT_TIME 273

GBL_CDFS_QUEUE 273

GBL_CDFS_WAIT_PCT 274

GBL_CDFS_WAIT_TIME 274

GBL_COLLECTOR 274

GBL_COMPLETED_PROC 275

GBL_CPU_CLOCK 275

GBL_CPU_CSWITCH_TIME 275

GBL_CPU_CSWITCH_TIME_CUM 275

GBL_CPU_CSWITCH_UTIL 276

GBL_CPU_CSWITCH_UTIL_CUM 277

GBL_CPU_CSWITCH_UTIL_HIGH 278

GBL_CPU_IDLE_TIME 278

GBL_CPU_IDLE_TIME_CUM 279

GBL_CPU_IDLE_UTIL 280

GBL_CPU_IDLE_UTIL_CUM 280

GBL_CPU_IDLE_UTIL_HIGH 281

GBL_CPU_INTERRUPT_TIME 282

GBL_CPU_INTERRUPT_TIME_CUM 282

GBL_CPU_INTERRUPT_UTIL 283

GBL_CPU_INTERRUPT_UTIL_CUM 284

GBL_CPU_INTERRUPT_UTIL_HIGH 285

GBL_CPU_MT_ENABLED 285

GBL_CPU_NICE_TIME 286

GBL_CPU_NICE_TIME_CUM 286

GBL_CPU_NICE_UTIL 287

GBL_CPU_NICE_UTIL_CUM 288

GBL_CPU_NICE_UTIL_HIGH 288

GBL_CPU_NNICE_TIME 289

GBL_CPU_NNICE_TIME_CUM 290

GBL_CPU_NNICE_UTIL 291

HP GlancePlus (11.02)Page 20 of 821

Dictionary of Operating System Metrics
Contents

GBL_CPU_NNICE_UTIL_CUM 291

GBL_CPU_NNICE_UTIL_HIGH 292

GBL_CPU_NORMAL_TIME 293

GBL_CPU_NORMAL_TIME_CUM 294

GBL_CPU_NORMAL_UTIL 294

GBL_CPU_NORMAL_UTIL_CUM 295

GBL_CPU_NORMAL_UTIL_HIGH 296

GBL_CPU_QUEUE 296

GBL_CPU_REALTIME_TIME 298

GBL_CPU_REALTIME_TIME_CUM 298

GBL_CPU_REALTIME_UTIL 299

GBL_CPU_REALTIME_UTIL_CUM 300

GBL_CPU_REALTIME_UTIL_HIGH 300

GBL_CPU_SYSCALL_TIME 301

GBL_CPU_SYSCALL_TIME_CUM 302

GBL_CPU_SYSCALL_UTIL 303

GBL_CPU_SYSCALL_UTIL_CUM 303

GBL_CPU_SYSCALL_UTIL_HIGH 304

GBL_CPU_SYS_MODE_TIME 305

GBL_CPU_SYS_MODE_TIME_CUM 305

GBL_CPU_SYS_MODE_UTIL 306

GBL_CPU_SYS_MODE_UTIL_CUM 307

GBL_CPU_TOTAL_TIME 308

GBL_CPU_TOTAL_TIME_CUM 308

GBL_CPU_TOTAL_UTIL 309

GBL_CPU_TOTAL_UTIL_CUM 310

GBL_CPU_TOTAL_UTIL_HIGH 311

GBL_CPU_TRAP_TIME 312

GBL_CPU_TRAP_TIME_CUM 312

GBL_CPU_TRAP_UTIL 313

GBL_CPU_TRAP_UTIL_CUM 314

GBL_CPU_TRAP_UTIL_HIGH 314

HP GlancePlus (11.02)Page 21 of 821

Dictionary of Operating System Metrics
Contents

GBL_CPU_USER_MODE_TIME 315

GBL_CPU_USER_MODE_TIME_CUM 316

GBL_CPU_USER_MODE_UTIL 317

GBL_CPU_USER_MODE_UTIL_CUM 317

GBL_CPU_VFAULT_TIME 318

GBL_CPU_VFAULT_TIME_CUM 319

GBL_CPU_VFAULT_UTIL 319

GBL_CPU_VFAULT_UTIL_CUM 320

GBL_CPU_VFAULT_UTIL_HIGH 321

GBL_CPU_WAIT_UTIL 321

GBL_CSWITCH_RATE 322

GBL_CSWITCH_RATE_CUM 322

GBL_CSWITCH_RATE_HIGH 323

GBL_DISK_FS_BYTE 323

GBL_DISK_FS_BYTE_CUM 323

GBL_DISK_FS_IO 324

GBL_DISK_FS_IO_CUM 324

GBL_DISK_FS_IO_PCT 325

GBL_DISK_FS_IO_PCT_CUM 325

GBL_DISK_FS_IO_RATE 325

GBL_DISK_FS_IO_RATE_CUM 326

GBL_DISK_FS_READ 326

GBL_DISK_FS_READ_RATE 326

GBL_DISK_FS_WRITE 327

GBL_DISK_FS_WRITE_RATE 327

GBL_DISK_LOGL_BYTE_RATE 327

GBL_DISK_LOGL_IO 327

GBL_DISK_LOGL_IO_CUM 328

GBL_DISK_LOGL_IO_RATE 328

GBL_DISK_LOGL_IO_RATE_CUM 329

GBL_DISK_LOGL_READ 330

GBL_DISK_LOGL_READ_BYTE 330

HP GlancePlus (11.02)Page 22 of 821

Dictionary of Operating System Metrics
Contents

GBL_DISK_LOGL_READ_BYTE_CUM 330

GBL_DISK_LOGL_READ_BYTE_RATE 331

GBL_DISK_LOGL_READ_CUM 331

GBL_DISK_LOGL_READ_PCT 332

GBL_DISK_LOGL_READ_PCT_CUM 332

GBL_DISK_LOGL_READ_RATE 333

GBL_DISK_LOGL_READ_RATE_CUM 334

GBL_DISK_LOGL_WRITE 334

GBL_DISK_LOGL_WRITE_BYTE 335

GBL_DISK_LOGL_WRITE_BYTE_CUM 335

GBL_DISK_LOGL_WRITE_BYTE_RATE 336

GBL_DISK_LOGL_WRITE_CUM 336

GBL_DISK_LOGL_WRITE_PCT 337

GBL_DISK_LOGL_WRITE_PCT_CUM 337

GBL_DISK_LOGL_WRITE_RATE 338

GBL_DISK_LOGL_WRITE_RATE_CUM 338

GBL_DISK_PHYS_BYTE 339

GBL_DISK_PHYS_BYTE_RATE 339

GBL_DISK_PHYS_IO 340

GBL_DISK_PHYS_IO_CUM 340

GBL_DISK_PHYS_IO_RATE 341

GBL_DISK_PHYS_IO_RATE_CUM 342

GBL_DISK_PHYS_READ 342

GBL_DISK_PHYS_READ_BYTE 343

GBL_DISK_PHYS_READ_BYTE_CUM 343

GBL_DISK_PHYS_READ_BYTE_RATE 344

GBL_DISK_PHYS_READ_CUM 344

GBL_DISK_PHYS_READ_PCT 344

GBL_DISK_PHYS_READ_PCT_CUM 345

GBL_DISK_PHYS_READ_RATE 345

GBL_DISK_PHYS_READ_RATE_CUM 346

GBL_DISK_PHYS_WRITE 346

HP GlancePlus (11.02)Page 23 of 821

Dictionary of Operating System Metrics
Contents

GBL_DISK_PHYS_WRITE_BYTE 347

GBL_DISK_PHYS_WRITE_BYTE_CUM 347

GBL_DISK_PHYS_WRITE_BYTE_RATE 348

GBL_DISK_PHYS_WRITE_CUM 348

GBL_DISK_PHYS_WRITE_PCT 349

GBL_DISK_PHYS_WRITE_PCT_CUM 349

GBL_DISK_PHYS_WRITE_RATE 349

GBL_DISK_PHYS_WRITE_RATE_CUM 350

GBL_DISK_QUEUE 351

GBL_DISK_RAW_BYTE 351

GBL_DISK_RAW_BYTE_CUM 351

GBL_DISK_RAW_IO 352

GBL_DISK_RAW_IO_CUM 352

GBL_DISK_RAW_IO_PCT 352

GBL_DISK_RAW_IO_PCT_CUM 353

GBL_DISK_RAW_IO_RATE 353

GBL_DISK_RAW_IO_RATE_CUM 354

GBL_DISK_RAW_READ 354

GBL_DISK_RAW_READ_RATE 354

GBL_DISK_RAW_WRITE 354

GBL_DISK_RAW_WRITE_RATE 355

GBL_DISK_REM_FS_BYTE 355

GBL_DISK_REM_FS_BYTE_CUM 355

GBL_DISK_REM_FS_IO 356

GBL_DISK_REM_FS_IO_CUM 356

GBL_DISK_REM_FS_IO_PCT 357

GBL_DISK_REM_FS_IO_PCT_CUM 357

GBL_DISK_REM_FS_IO_RATE 357

GBL_DISK_REM_FS_IO_RATE_CUM 358

GBL_DISK_REM_LOGL_READ 358

GBL_DISK_REM_LOGL_READ_BYTE 358

GBL_DISK_REM_LOGL_READ_BYTE_CUM 359

HP GlancePlus (11.02)Page 24 of 821

Dictionary of Operating System Metrics
Contents

GBL_DISK_REM_LOGL_READ_CUM 359

GBL_DISK_REM_LOGL_READ_PCT 360

GBL_DISK_REM_LOGL_READ_PCT_CUM 360

GBL_DISK_REM_LOGL_READ_RATE 360

GBL_DISK_REM_LOGL_READ_RATE_CUM 361

GBL_DISK_REM_LOGL_WRITE 361

GBL_DISK_REM_LOGL_WRITE_BYTE 361

GBL_DISK_REM_LOGL_WRITE_BYTE_CUM 362

GBL_DISK_REM_LOGL_WRITE_CUM 362

GBL_DISK_REM_LOGL_WRITE_PCT 363

GBL_DISK_REM_LOGL_WRITE_PCT_CUM 363

GBL_DISK_REM_LOGL_WRITE_RATE 363

GBL_DISK_REM_LOGL_WRITE_RATE_CUM 364

GBL_DISK_REM_PHYS_READ 364

GBL_DISK_REM_PHYS_READ_BYTE 365

GBL_DISK_REM_PHYS_READ_BYTE_CUM 365

GBL_DISK_REM_PHYS_READ_CUM 365

GBL_DISK_REM_PHYS_READ_PCT 366

GBL_DISK_REM_PHYS_READ_PCT_CUM 366

GBL_DISK_REM_PHYS_READ_RATE 366

GBL_DISK_REM_PHYS_READ_RATE_CUM 367

GBL_DISK_REM_PHYS_WRITE 367

GBL_DISK_REM_PHYS_WRITE_BYTE 368

GBL_DISK_REM_PHYS_WRITE_BYTE_CUM 368

GBL_DISK_REM_PHYS_WRITE_CUM 368

GBL_DISK_REM_PHYS_WRITE_PCT 369

GBL_DISK_REM_PHYS_WRITE_PCT_CUM 369

GBL_DISK_REM_PHYS_WRITE_RATE 369

GBL_DISK_REM_PHYS_WRITE_RATE_CUM 370

GBL_DISK_REM_RAW_BYTE 370

GBL_DISK_REM_RAW_BYTE_CUM 370

GBL_DISK_REM_RAW_IO 371

HP GlancePlus (11.02)Page 25 of 821

Dictionary of Operating System Metrics
Contents

GBL_DISK_REM_RAW_IO_CUM 371

GBL_DISK_REM_RAW_IO_PCT 371

GBL_DISK_REM_RAW_IO_PCT_CUM 372

GBL_DISK_REM_RAW_IO_RATE 372

GBL_DISK_REM_RAW_IO_RATE_CUM 372

GBL_DISK_REM_SYSTEM_BYTE 373

GBL_DISK_REM_SYSTEM_BYTE_CUM 373

GBL_DISK_REM_SYSTEM_IO 373

GBL_DISK_REM_SYSTEM_IO_CUM 374

GBL_DISK_REM_SYSTEM_IO_PCT 374

GBL_DISK_REM_SYSTEM_IO_PCT_CUM 374

GBL_DISK_REM_SYSTEM_IO_RATE 375

GBL_DISK_REM_SYSTEM_IO_RATE_CUM 375

GBL_DISK_REM_VM_BYTE 376

GBL_DISK_REM_VM_BYTE_CUM 376

GBL_DISK_REM_VM_IO 376

GBL_DISK_REM_VM_IO_CUM 377

GBL_DISK_REM_VM_IO_PCT 377

GBL_DISK_REM_VM_IO_PCT_CUM 378

GBL_DISK_REM_VM_IO_RATE 378

GBL_DISK_REM_VM_IO_RATE_CUM 378

GBL_DISK_REQUEST_QUEUE 379

GBL_DISK_SUBSYSTEM_QUEUE 379

GBL_DISK_SUBSYSTEM_WAIT_PCT 380

GBL_DISK_SYSTEM_BYTE 380

GBL_DISK_SYSTEM_BYTE_CUM 381

GBL_DISK_SYSTEM_IO 381

GBL_DISK_SYSTEM_IO_CUM 381

GBL_DISK_SYSTEM_IO_PCT 382

GBL_DISK_SYSTEM_IO_PCT_CUM 382

GBL_DISK_SYSTEM_IO_RATE 382

GBL_DISK_SYSTEM_IO_RATE_CUM 383

HP GlancePlus (11.02)Page 26 of 821

Dictionary of Operating System Metrics
Contents

GBL_DISK_SYSTEM_READ 383

GBL_DISK_SYSTEM_READ_RATE 383

GBL_DISK_SYSTEM_WRITE 383

GBL_DISK_SYSTEM_WRITE_RATE 384

GBL_DISK_TIME_PEAK 384

GBL_DISK_UTIL 384

GBL_DISK_UTIL_PEAK 384

GBL_DISK_UTIL_PEAK_CUM 385

GBL_DISK_UTIL_PEAK_HIGH 385

GBL_DISK_UTIL_PEAK_OTHERS 386

GBL_DISK_UTIL_PEAK_VM 386

GBL_DISK_VM_BYTE 386

GBL_DISK_VM_BYTE_CUM 386

GBL_DISK_VM_IO 387

GBL_DISK_VM_IO_CUM 387

GBL_DISK_VM_IO_PCT 388

GBL_DISK_VM_IO_PCT_CUM 388

GBL_DISK_VM_IO_RATE 389

GBL_DISK_VM_IO_RATE_CUM 390

GBL_DISK_VM_READ 391

GBL_DISK_VM_READ_CUM 391

GBL_DISK_VM_READ_RATE 391

GBL_DISK_VM_READ_RATE_CUM 391

GBL_DISK_VM_READ_RATE_HIGH 392

GBL_DISK_VM_WRITE 392

GBL_DISK_VM_WRITE_CUM 393

GBL_DISK_VM_WRITE_RATE 393

GBL_DISK_VM_WRITE_RATE_CUM 394

GBL_DISK_VM_WRITE_RATE_HIGH 394

GBL_DISK_WAIT_PCT 395

GBL_DISK_WAIT_TIME 395

GBL_FS_SPACE_UTIL_PEAK 395

HP GlancePlus (11.02)Page 27 of 821

Dictionary of Operating System Metrics
Contents

GBL_GMTOFFSET 396

GBL_GRAPHICS_QUEUE 396

GBL_GRAPHICS_WAIT_PCT 396

GBL_GRAPHICS_WAIT_TIME 397

GBL_IGNORE_MT 397

GBL_INODE_QUEUE 397

GBL_INODE_WAIT_PCT 398

GBL_INODE_WAIT_TIME 399

GBL_INTERRUPT 399

GBL_INTERRUPT_RATE 399

GBL_INTERRUPT_RATE_CUM 399

GBL_INTERRUPT_RATE_HIGH 399

GBL_INTERVAL 400

GBL_INTERVAL_CUM 400

GBL_IPC_QUEUE 401

GBL_IPC_SUBSYSTEM_QUEUE 401

GBL_IPC_SUBSYSTEM_WAIT_PCT 402

GBL_IPC_WAIT_PCT 402

GBL_IPC_WAIT_TIME 403

GBL_JAVAARG 403

GBL_JOBCTL_QUEUE 403

GBL_JOBCTL_WAIT_PCT 404

GBL_JOBCTL_WAIT_TIME 404

GBL_LAN_QUEUE 404

GBL_LAN_WAIT_PCT 405

GBL_LAN_WAIT_TIME 405

GBL_LOADAVG 405

GBL_LOADAVG15 406

GBL_LOADAVG5 406

GBL_LOST_MI_TRACE_BUFFERS 406

GBL_LS_ROLE 406

GBL_LS_TYPE 406

HP GlancePlus (11.02)Page 28 of 821

Dictionary of Operating System Metrics
Contents

GBL_LS_UUID 407

GBL_MACHINE 407

GBL_MACHINE_MODEL 407

GBL_MEMFS_BLK_CNT 407

GBL_MEMFS_SWP_CNT 407

GBL_MEM_ACTIVE_VIRT 407

GBL_MEM_ACTIVE_VIRT_UTIL 407

GBL_MEM_AVAIL 408

GBL_MEM_CACHE 408

GBL_MEM_CACHE_HIT 408

GBL_MEM_CACHE_HIT_CUM 409

GBL_MEM_CACHE_HIT_PCT 410

GBL_MEM_CACHE_HIT_PCT_CUM 410

GBL_MEM_CACHE_HIT_PCT_HIGH 411

GBL_MEM_CACHE_UTIL 412

GBL_MEM_CACHE_WRITE_HIT 412

GBL_MEM_CACHE_WRITE_HIT_CUM 413

GBL_MEM_CACHE_WRITE_HIT_PCT 413

GBL_MEM_CACHE_WRITE_HIT_PCT_CUM 414

GBL_MEM_DNLC_HIT 414

GBL_MEM_DNLC_HIT_CUM 415

GBL_MEM_DNLC_HIT_PCT 416

GBL_MEM_DNLC_HIT_PCT_CUM 417

GBL_MEM_DNLC_HIT_PCT_HIGH 418

GBL_MEM_DNLC_LONGS 419

GBL_MEM_DNLC_LONGS_CUM 420

GBL_MEM_DNLC_LONGS_PCT 421

GBL_MEM_DNLC_LONGS_PCT_CUM 422

GBL_MEM_DNLC_LONGS_PCT_HIGH 423

GBL_MEM_FILE_PAGE_CACHE 424

GBL_MEM_FILE_PAGE_CACHE_UTIL 425

GBL_MEM_FREE 425

HP GlancePlus (11.02)Page 29 of 821

Dictionary of Operating System Metrics
Contents

GBL_MEM_FREE_UTIL 426

GBL_MEM_PAGEIN 426

GBL_MEM_PAGEIN_BYTE 426

GBL_MEM_PAGEIN_BYTE_CUM 426

GBL_MEM_PAGEIN_BYTE_RATE 427

GBL_MEM_PAGEIN_BYTE_RATE_CUM 427

GBL_MEM_PAGEIN_BYTE_RATE_HIGH 427

GBL_MEM_PAGEIN_CUM 428

GBL_MEM_PAGEIN_RATE 428

GBL_MEM_PAGEIN_RATE_CUM 429

GBL_MEM_PAGEIN_RATE_HIGH 429

GBL_MEM_PAGEOUT 429

GBL_MEM_PAGEOUT_BYTE 430

GBL_MEM_PAGEOUT_BYTE_CUM 430

GBL_MEM_PAGEOUT_BYTE_RATE 430

GBL_MEM_PAGEOUT_BYTE_RATE_CUM 431

GBL_MEM_PAGEOUT_BYTE_RATE_HIGH 431

GBL_MEM_PAGEOUT_CUM 432

GBL_MEM_PAGEOUT_RATE 432

GBL_MEM_PAGEOUT_RATE_CUM 433

GBL_MEM_PAGEOUT_RATE_HIGH 433

GBL_MEM_PAGE_FAULT 434

GBL_MEM_PAGE_FAULT_CUM 434

GBL_MEM_PAGE_FAULT_RATE 434

GBL_MEM_PAGE_FAULT_RATE_CUM 434

GBL_MEM_PAGE_FAULT_RATE_HIGH 435

GBL_MEM_PAGE_REQUEST 435

GBL_MEM_PAGE_REQUEST_CUM 435

GBL_MEM_PAGE_REQUEST_RATE 436

GBL_MEM_PAGE_REQUEST_RATE_CUM 436

GBL_MEM_PAGE_REQUEST_RATE_HIGH 437

GBL_MEM_PAGE_SIZE_MAX 437

HP GlancePlus (11.02)Page 30 of 821

Dictionary of Operating System Metrics
Contents

GBL_MEM_PG_SCAN 438

GBL_MEM_PG_SCAN_CUM 438

GBL_MEM_PG_SCAN_RATE 438

GBL_MEM_PG_SCAN_RATE_CUM 438

GBL_MEM_PG_SCAN_RATE_HIGH 439

GBL_MEM_PHYS 439

GBL_MEM_QUEUE 440

GBL_MEM_SWAP 440

GBL_MEM_SWAPIN 441

GBL_MEM_SWAPIN_BYTE 441

GBL_MEM_SWAPIN_BYTE_CUM 442

GBL_MEM_SWAPIN_BYTE_RATE 443

GBL_MEM_SWAPIN_BYTE_RATE_CUM 443

GBL_MEM_SWAPIN_BYTE_RATE_HIGH 444

GBL_MEM_SWAPIN_CUM 445

GBL_MEM_SWAPIN_RATE 445

GBL_MEM_SWAPIN_RATE_CUM 446

GBL_MEM_SWAPIN_RATE_HIGH 447

GBL_MEM_SWAPOUT 447

GBL_MEM_SWAPOUT_BYTE 448

GBL_MEM_SWAPOUT_BYTE_CUM 448

GBL_MEM_SWAPOUT_BYTE_RATE 449

GBL_MEM_SWAPOUT_BYTE_RATE_CUM 450

GBL_MEM_SWAPOUT_BYTE_RATE_HIGH 450

GBL_MEM_SWAPOUT_CUM 451

GBL_MEM_SWAPOUT_RATE 452

GBL_MEM_SWAPOUT_RATE_CUM 452

GBL_MEM_SWAPOUT_RATE_HIGH 453

GBL_MEM_SWAP_1_MIN_RATE 454

GBL_MEM_SWAP_CUM 454

GBL_MEM_SWAP_RATE 455

GBL_MEM_SWAP_RATE_CUM 456

HP GlancePlus (11.02)Page 31 of 821

Dictionary of Operating System Metrics
Contents

GBL_MEM_SWAP_RATE_HIGH 456

GBL_MEM_SYS 457

GBL_MEM_SYS_AND_CACHE_UTIL 458

GBL_MEM_SYS_UTIL 458

GBL_MEM_USER 458

GBL_MEM_USER_UTIL 458

GBL_MEM_UTIL 459

GBL_MEM_UTIL_CUM 459

GBL_MEM_UTIL_HIGH 460

GBL_MEM_VIRT 460

GBL_MEM_WAIT_PCT 460

GBL_MEM_WAIT_TIME 461

GBL_MI_LOST_PROC 461

GBL_MI_LOST_PROC_CUM 461

GBL_MI_PROC_ENTRIES 461

GBL_MI_THREAD_ENTRIES 461

GBL_MSG_QUEUE 461

GBL_MSG_WAIT_PCT 462

GBL_MSG_WAIT_TIME 462

GBL_NETWORK_SUBSYSTEM_QUEUE 463

GBL_NETWORK_SUBSYSTEM_WAIT_PCT 463

GBL_NET_COLLISION 464

GBL_NET_COLLISION_1_MIN_RATE 464

GBL_NET_COLLISION_CUM 465

GBL_NET_COLLISION_PCT 465

GBL_NET_COLLISION_PCT_CUM 466

GBL_NET_COLLISION_RATE 466

GBL_NET_DEFERRED 467

GBL_NET_DEFERRED_CUM 467

GBL_NET_DEFERRED_PCT 468

GBL_NET_DEFERRED_PCT_CUM 468

GBL_NET_DEFERRED_RATE 468

HP GlancePlus (11.02)Page 32 of 821

Dictionary of Operating System Metrics
Contents

GBL_NET_DEFERRED_RATE_CUM 469

GBL_NET_ERROR 469

GBL_NET_ERROR_1_MIN_RATE 469

GBL_NET_ERROR_CUM 470

GBL_NET_ERROR_RATE 470

GBL_NET_IN_ERROR 470

GBL_NET_IN_ERROR_CUM 471

GBL_NET_IN_ERROR_PCT 472

GBL_NET_IN_ERROR_PCT_CUM 472

GBL_NET_IN_ERROR_RATE 472

GBL_NET_IN_ERROR_RATE_CUM 473

GBL_NET_IN_PACKET 473

GBL_NET_IN_PACKET_CUM 474

GBL_NET_IN_PACKET_RATE 474

GBL_NET_IP_FRAGMENTS_RECEIVED 475

GBL_NET_IP_FWD_DATAGRAMS 475

GBL_NET_IP_REASSEMBLY_REQUIRED 475

GBL_NET_OUTQUEUE 475

GBL_NET_OUT_ERROR 475

GBL_NET_OUT_ERROR_CUM 476

GBL_NET_OUT_ERROR_PCT 476

GBL_NET_OUT_ERROR_PCT_CUM 477

GBL_NET_OUT_ERROR_RATE 477

GBL_NET_OUT_ERROR_RATE_CUM 477

GBL_NET_OUT_PACKET 478

GBL_NET_OUT_PACKET_CUM 478

GBL_NET_OUT_PACKET_RATE 479

GBL_NET_PACKET 479

GBL_NET_PACKET_RATE 479

GBL_NET_UTIL_PEAK 480

GBL_NFS_CALL 480

GBL_NFS_CALL_RATE 480

HP GlancePlus (11.02)Page 33 of 821

Dictionary of Operating System Metrics
Contents

GBL_NFS_CLIENT_BAD_CALL 480

GBL_NFS_CLIENT_BAD_CALL_CUM 481

GBL_NFS_CLIENT_BIOD 481

GBL_NFS_CLIENT_BYTE 481

GBL_NFS_CLIENT_BYTE_CUM 481

GBL_NFS_CLIENT_CALL 482

GBL_NFS_CLIENT_CALL_CUM 482

GBL_NFS_CLIENT_CALL_RATE 482

GBL_NFS_CLIENT_IDLE_BIOD 483

GBL_NFS_CLIENT_IO 483

GBL_NFS_CLIENT_IO_CUM 483

GBL_NFS_CLIENT_IO_PCT 484

GBL_NFS_CLIENT_IO_PCT_CUM 484

GBL_NFS_CLIENT_IO_RATE 484

GBL_NFS_CLIENT_IO_RATE_CUM 485

GBL_NFS_CLIENT_PHYS_TIME 485

GBL_NFS_CLIENT_PHYS_TIME_CUM 485

GBL_NFS_CLIENT_READ_BYTE_RATE 486

GBL_NFS_CLIENT_READ_BYTE_RATE_CUM 486

GBL_NFS_CLIENT_READ_RATE 487

GBL_NFS_CLIENT_READ_RATE_CUM 487

GBL_NFS_CLIENT_SERVICE_QUEUE 487

GBL_NFS_CLIENT_SERVICE_QUEUE_CUM 487

GBL_NFS_CLIENT_SERVICE_TIME 488

GBL_NFS_CLIENT_SERVICE_TIME_CUM 488

GBL_NFS_CLIENT_WRITE_BYTE_RATE 489

GBL_NFS_CLIENT_WRITE_BYTE_RATE_CUM 489

GBL_NFS_CLIENT_WRITE_RATE 489

GBL_NFS_CLIENT_WRITE_RATE_CUM 490

GBL_NFS_LOGL_READ 490

GBL_NFS_LOGL_READ_BYTE 490

GBL_NFS_LOGL_READ_BYTE_CUM 490

HP GlancePlus (11.02)Page 34 of 821

Dictionary of Operating System Metrics
Contents

GBL_NFS_LOGL_READ_CUM 491

GBL_NFS_LOGL_READ_PCT 491

GBL_NFS_LOGL_READ_PCT_CUM 492

GBL_NFS_LOGL_READ_RATE 492

GBL_NFS_LOGL_READ_RATE_CUM 492

GBL_NFS_LOGL_WRITE 493

GBL_NFS_LOGL_WRITE_BYTE 493

GBL_NFS_LOGL_WRITE_BYTE_CUM 493

GBL_NFS_LOGL_WRITE_CUM 493

GBL_NFS_LOGL_WRITE_PCT 494

GBL_NFS_LOGL_WRITE_PCT_CUM 494

GBL_NFS_LOGL_WRITE_RATE 494

GBL_NFS_LOGL_WRITE_RATE_CUM 495

GBL_NFS_QUEUE 495

GBL_NFS_SERVER_BAD_CALL 496

GBL_NFS_SERVER_BAD_CALL_CUM 496

GBL_NFS_SERVER_BYTE 496

GBL_NFS_SERVER_BYTE_CUM 496

GBL_NFS_SERVER_CALL 497

GBL_NFS_SERVER_CALL_CUM 497

GBL_NFS_SERVER_CALL_RATE 498

GBL_NFS_SERVER_IO 498

GBL_NFS_SERVER_IO_CUM 498

GBL_NFS_SERVER_IO_PCT 499

GBL_NFS_SERVER_IO_PCT_CUM 499

GBL_NFS_SERVER_IO_RATE 499

GBL_NFS_SERVER_IO_RATE_CUM 500

GBL_NFS_SERVER_READ_BYTE_RATE 500

GBL_NFS_SERVER_READ_BYTE_RATE_CUM 500

GBL_NFS_SERVER_READ_RATE 501

GBL_NFS_SERVER_READ_RATE_CUM 501

GBL_NFS_SERVER_SERVICE_TIME 502

HP GlancePlus (11.02)Page 35 of 821

Dictionary of Operating System Metrics
Contents

GBL_NFS_SERVER_SERVICE_TIME_CUM 502

GBL_NFS_SERVER_WRITE_BYTE_RATE 502

GBL_NFS_SERVER_WRITE_BYTE_RATE_CUM 503

GBL_NFS_SERVER_WRITE_RATE 503

GBL_NFS_SERVER_WRITE_RATE_CUM 503

GBL_NFS_WAIT_PCT 504

GBL_NFS_WAIT_TIME 504

GBL_NODENAME 505

GBL_NUM_ACTIVE_LS 505

GBL_NUM_APP 505

GBL_NUM_APP_PRM 505

GBL_NUM_CPU 505

GBL_NUM_CPU_CORE 506

GBL_NUM_DISK 506

GBL_NUM_HBA 506

GBL_NUM_LDOM 506

GBL_NUM_LS 506

GBL_NUM_NETWORK 507

GBL_NUM_SOCKET 507

GBL_NUM_SWAP 507

GBL_NUM_TAPE 507

GBL_NUM_TT 507

GBL_NUM_USER 507

GBL_NUM_VG 508

GBL_NUM_VSWITCH 508

GBL_OSKERNELTYPE 508

GBL_OSKERNELTYPE_INT 508

GBL_OSNAME 508

GBL_OSRELEASE 508

GBL_OSVERSION 508

GBL_OTHER_IO_QUEUE 509

GBL_OTHER_IO_WAIT_PCT 509

HP GlancePlus (11.02)Page 36 of 821

Dictionary of Operating System Metrics
Contents

GBL_OTHER_IO_WAIT_TIME 510

GBL_OTHER_QUEUE 510

GBL_OTHER_WAIT_PCT 510

GBL_OTHER_WAIT_TIME 511

GBL_PIPE_QUEUE 511

GBL_PIPE_WAIT_PCT 512

GBL_PIPE_WAIT_TIME 512

GBL_PRI_QUEUE 512

GBL_PRI_WAIT_PCT 514

GBL_PRI_WAIT_TIME 514

GBL_PRM_MEM_UTIL 514

GBL_PROC_RUN_TIME 514

GBL_PROC_SAMPLE 514

GBL_RPC_QUEUE 515

GBL_RPC_WAIT_PCT 515

GBL_RPC_WAIT_TIME 516

GBL_RUN_QUEUE 516

GBL_RUN_QUEUE_CUM 517

GBL_RUN_QUEUE_HIGH 518

GBL_SAMPLE 518

GBL_SEM_QUEUE 519

GBL_SEM_WAIT_PCT 519

GBL_SEM_WAIT_TIME 520

GBL_SERIALNO 520

GBL_SLEEP_QUEUE 520

GBL_SLEEP_WAIT_PCT 521

GBL_SLEEP_WAIT_TIME 521

GBL_SOCKET_QUEUE 521

GBL_SOCKET_WAIT_PCT 522

GBL_SOCKET_WAIT_TIME 522

GBL_STARTDATE 522

GBL_STARTED_PROC 523

HP GlancePlus (11.02)Page 37 of 821

Dictionary of Operating System Metrics
Contents

GBL_STARTED_PROC_RATE 523

GBL_STARTTIME 523

GBL_STATDATE 523

GBL_STATTIME 523

GBL_STREAM_QUEUE 523

GBL_STREAM_WAIT_PCT 524

GBL_STREAM_WAIT_TIME 524

GBL_SWAP_RESERVED_ONLY_UTIL 524

GBL_SWAP_SPACE_AVAIL 525

GBL_SWAP_SPACE_AVAIL_KB 525

GBL_SWAP_SPACE_DEVICE_UTIL 525

GBL_SWAP_SPACE_FS_UTIL 526

GBL_SWAP_SPACE_RESERVED 526

GBL_SWAP_SPACE_RESERVED_UTIL 527

GBL_SWAP_SPACE_USED 527

GBL_SWAP_SPACE_USED_UTIL 528

GBL_SWAP_SPACE_UTIL 528

GBL_SWAP_SPACE_UTIL_CUM 529

GBL_SWAP_SPACE_UTIL_HIGH 529

GBL_SYSCALL 530

GBL_SYSCALL_RATE 530

GBL_SYSCALL_RATE_CUM 530

GBL_SYSCALL_RATE_HIGH 531

GBL_SYSTEM_ID 532

GBL_SYSTEM_TYPE 532

GBL_SYSTEM_UPTIME_HOURS 532

GBL_SYSTEM_UPTIME_SECONDS 532

GBL_SYS_QUEUE 532

GBL_SYS_WAIT_PCT 533

GBL_SYS_WAIT_TIME 533

GBL_TERM_IO_QUEUE 533

GBL_TERM_IO_WAIT_PCT 534

HP GlancePlus (11.02)Page 38 of 821

Dictionary of Operating System Metrics
Contents

GBL_TERM_IO_WAIT_TIME 534

GBL_THRESHOLD_PROCCPU 534

GBL_THRESHOLD_PROCDISK 535

GBL_THRESHOLD_PROCIO 535

GBL_THRESHOLD_PROCMEM 535

GBL_TT_OVERFLOW_COUNT 535

LDOM_ACTIVE 535

LDOM_ID 535

LDOM_MEM_AVAIL 535

LDOM_MEM_AVAIL_DEL 535

LDOM_MEM_FREE 536

LDOM_MEM_FREE_DEL 536

LDOM_MEM_TYPE 536

LDOM_MEM_UTIL 536

LDOM_MEM_UTIL_HIGH 536

LDOM_NUM_CPU 536

LDOM_PHYS_ID 536

LVDETAIL_LABEL 537

LVDETAIL_NAME 537

LV_AVG_READ_SERVICE_TIME 537

LV_AVG_WRITE_SERVICE_TIME 537

LV_CACHE_HIT 537

LV_CACHE_MISS 538

LV_CACHE_QUEUE 538

LV_CACHE_SIZE 538

LV_DEVNO 539

LV_DIRNAME 539

LV_GROUP_NAME 539

LV_INTERVAL 540

LV_INTERVAL_CUM 540

LV_OPEN_LV 540

LV_READ_BYTE_RATE 540

HP GlancePlus (11.02)Page 39 of 821

Dictionary of Operating System Metrics
Contents

LV_READ_BYTE_RATE_CUM 541

LV_READ_RATE 541

LV_READ_RATE_CUM 541

LV_TYPE 542

LV_WRITE_BYTE_RATE 542

LV_WRITE_BYTE_RATE_CUM 542

LV_WRITE_RATE 542

LV_WRITE_RATE_CUM 543

PRM_BYVG_GROUP_ENTITLEMENT 543

PRM_BYVG_GROUP_UTIL 543

PRM_BYVG_INTERVAL 543

PRM_BYVG_INTERVAL_CUM 543

PRM_BYVG_PRM_GROUPID 544

PRM_BYVG_PRM_GROUPNAME 544

PRM_BYVG_REQUEST 544

PRM_BYVG_REQUEST_CUM 545

PRM_BYVG_REQUEST_QUEUE 545

PRM_BYVG_TRANSFER 545

PRM_BYVG_TRANSFER_CUM 546

PROCSYSCALL_ACTIVE_CUM 547

PROCSYSCALL_CALL_COUNT 547

PROCSYSCALL_CALL_COUNT_CUM 547

PROCSYSCALL_CALL_ID 547

PROCSYSCALL_CALL_NAME 547

PROCSYSCALL_CALL_RATE 547

PROCSYSCALL_CALL_RATE_CUM 547

PROCSYSCALL_INTERVAL 548

PROCSYSCALL_INTERVAL_CUM 548

PROCSYSCALL_TOTAL_TIME 548

PROCSYSCALL_TOTAL_TIME_CUM 548

PROC_APP_IDTHREAD_APP_ID 548

PROC_APP_NAMETHREAD_APP_NAME 548

HP GlancePlus (11.02)Page 40 of 821

Dictionary of Operating System Metrics
Contents

PROC_CACHE_WAIT_PCTTHREAD_CACHE_WAIT_PCT 549

PROC_CACHE_WAIT_PCT_CUMTHREAD_CACHE_WAIT_PCT_CUM 549

PROC_CACHE_WAIT_TIMETHREAD_CACHE_WAIT_TIME 550

PROC_CACHE_WAIT_TIME_CUMTHREAD_CACHE_WAIT_TIME_CUM 550

PROC_CDFS_WAIT_PCTTHREAD_CDFS_WAIT_PCT 551

PROC_CDFS_WAIT_PCT_CUMTHREAD_CDFS_WAIT_PCT_CUM 552

PROC_CDFS_WAIT_TIMETHREAD_CDFS_WAIT_TIME 553

PROC_CDFS_WAIT_TIME_CUMTHREAD_CDFS_WAIT_TIME_CUM 553

PROC_CLOSETHREAD_CLOSE 553

PROC_CLOSE_CUMTHREAD_CLOSE_CUM 554

PROC_CPU_ALIVE_SYS_MODE_UTILTHREAD_CPU_ALIVE_SYS_MODE_
UTIL 554

PROC_CPU_ALIVE_TOTAL_UTILTHREAD_CPU_ALIVE_TOTAL_UTIL 555

PROC_CPU_ALIVE_USER_MODE_UTILTHREAD_CPU_ALIVE_USER_
MODE_UTIL 555

PROC_CPU_CSWITCH_TIMETHREAD_CPU_CSWITCH_TIME 556

PROC_CPU_CSWITCH_TIME_CUMTHREAD_CPU_CSWITCH_TIME_CUM
556

PROC_CPU_CSWITCH_UTILTHREAD_CPU_CSWITCH_UTIL 557

PROC_CPU_CSWITCH_UTIL_CUMTHREAD_CPU_CSWITCH_UTIL_CUM
558

PROC_CPU_INTERRUPT_TIMETHREAD_CPU_INTERRUPT_TIME 559

PROC_CPU_INTERRUPT_TIME_CUMTHREAD_CPU_INTERRUPT_TIME_
CUM 559

PROC_CPU_INTERRUPT_UTILTHREAD_CPU_INTERRUPT_UTIL 560

PROC_CPU_INTERRUPT_UTIL_CUMTHREAD_CPU_INTERRUPT_UTIL_
CUM 561

PROC_CPU_LAST_USEDTHREAD_CPU_LAST_USED 562

PROC_CPU_NICE_TIMETHREAD_CPU_NICE_TIME 562

PROC_CPU_NICE_TIME_CUMTHREAD_CPU_NICE_TIME_CUM 563

PROC_CPU_NICE_UTILTHREAD_CPU_NICE_UTIL 564

PROC_CPU_NICE_UTIL_CUMTHREAD_CPU_NICE_UTIL_CUM 564

PROC_CPU_NNICE_TIMETHREAD_CPU_NNICE_TIME 565

PROC_CPU_NNICE_TIME_CUMTHREAD_CPU_NNICE_TIME_CUM 566

HP GlancePlus (11.02)Page 41 of 821

Dictionary of Operating System Metrics
Contents

PROC_CPU_NNICE_UTILTHREAD_CPU_NNICE_UTIL 567

PROC_CPU_NNICE_UTIL_CUMTHREAD_CPU_NNICE_UTIL_CUM 568

PROC_CPU_NORMAL_TIMETHREAD_CPU_NORMAL_TIME 569

PROC_CPU_NORMAL_TIME_CUMTHREAD_CPU_NORMAL_TIME_CUM 569

PROC_CPU_NORMAL_UTILTHREAD_CPU_NORMAL_UTIL 570

PROC_CPU_NORMAL_UTIL_CUMTHREAD_CPU_NORMAL_UTIL_CUM 571

PROC_CPU_REALTIME_TIMETHREAD_CPU_REALTIME_TIME 572

PROC_CPU_REALTIME_TIME_CUMTHREAD_CPU_REALTIME_TIME_
CUM 572

PROC_CPU_REALTIME_UTILTHREAD_CPU_REALTIME_UTIL 573

PROC_CPU_REALTIME_UTIL_CUMTHREAD_CPU_REALTIME_UTIL_CUM
574

PROC_CPU_SWITCHESTHREAD_CPU_SWITCHES 575

PROC_CPU_SWITCHES_CUMTHREAD_CPU_SWITCHES_CUM 575

PROC_CPU_SYSCALL_TIMETHREAD_CPU_SYSCALL_TIME 576

PROC_CPU_SYSCALL_TIME_CUMTHREAD_CPU_SYSCALL_TIME_CUM
576

PROC_CPU_SYSCALL_UTILTHREAD_CPU_SYSCALL_UTIL 577

PROC_CPU_SYSCALL_UTIL_CUMTHREAD_CPU_SYSCALL_UTIL_CUM 578

PROC_CPU_SYS_MODE_TIMETHREAD_CPU_SYS_MODE_TIME 579

PROC_CPU_SYS_MODE_TIME_CUMTHREAD_CPU_SYS_MODE_TIME_
CUM 579

PROC_CPU_SYS_MODE_UTILTHREAD_CPU_SYS_MODE_UTIL 580

PROC_CPU_SYS_MODE_UTIL_CUMTHREAD_CPU_SYS_MODE_UTIL_
CUM 581

PROC_CPU_TOTAL_TIMETHREAD_CPU_TOTAL_TIME 582

PROC_CPU_TOTAL_TIME_CUMTHREAD_CPU_TOTAL_TIME_CUM 583

PROC_CPU_TOTAL_UTILTHREAD_CPU_TOTAL_UTIL 584

PROC_CPU_TOTAL_UTIL_CUMTHREAD_CPU_TOTAL_UTIL_CUM 585

PROC_CPU_TRAP_COUNTTHREAD_CPU_TRAP_COUNT 586

PROC_CPU_TRAP_COUNT_CUMTHREAD_CPU_TRAP_COUNT_CUM 586

PROC_CPU_USER_MODE_TIMETHREAD_CPU_USER_MODE_TIME 587

PROC_CPU_USER_MODE_TIME_CUMTHREAD_CPU_USER_MODE_
TIME_CUM 587

HP GlancePlus (11.02)Page 42 of 821

Dictionary of Operating System Metrics
Contents

PROC_CPU_USER_MODE_UTILTHREAD_CPU_USER_MODE_UTIL 588

PROC_CPU_USER_MODE_UTIL_CUMTHREAD_CPU_USER_MODE_
UTIL_CUM 589

PROC_DISK_FS_READTHREAD_DISK_FS_READ 590

PROC_DISK_FS_READ_CUMTHREAD_DISK_FS_READ_CUM 591

PROC_DISK_FS_READ_RATETHREAD_DISK_FS_READ_RATE 591

PROC_DISK_FS_WRITETHREAD_DISK_FS_WRITE 592

PROC_DISK_FS_WRITE_CUMTHREAD_DISK_FS_WRITE_CUM 592

PROC_DISK_FS_WRITE_RATETHREAD_DISK_FS_WRITE_RATE 593

PROC_DISK_LOGL_IOTHREAD_DISK_LOGL_IO 593

PROC_DISK_LOGL_IO_CUMTHREAD_DISK_LOGL_IO_CUM 594

PROC_DISK_LOGL_IO_RATETHREAD_DISK_LOGL_IO_RATE 594

PROC_DISK_LOGL_IO_RATE_CUMTHREAD_DISK_LOGL_IO_RATE_CUM
595

PROC_DISK_LOGL_READTHREAD_DISK_LOGL_READ 596

PROC_DISK_LOGL_READ_CUMTHREAD_DISK_LOGL_READ_CUM 596

PROC_DISK_LOGL_READ_RATETHREAD_DISK_LOGL_READ_RATE 597

PROC_DISK_LOGL_WRITETHREAD_DISK_LOGL_WRITE 598

PROC_DISK_LOGL_WRITE_CUMTHREAD_DISK_LOGL_WRITE_CUM 598

PROC_DISK_LOGL_WRITE_RATETHREAD_DISK_LOGL_WRITE_RATE 599

PROC_DISK_PHYS_IO_RATETHREAD_DISK_PHYS_IO_RATE 599

PROC_DISK_PHYS_IO_RATE_CUMTHREAD_DISK_PHYS_IO_RATE_CUM
600

PROC_DISK_PHYS_READTHREAD_DISK_PHYS_READ 601

PROC_DISK_PHYS_READ_CUMTHREAD_DISK_PHYS_READ_CUM 601

PROC_DISK_PHYS_READ_RATETHREAD_DISK_PHYS_READ_RATE 602

PROC_DISK_PHYS_WRITETHREAD_DISK_PHYS_WRITE 603

PROC_DISK_PHYS_WRITE_CUMTHREAD_DISK_PHYS_WRITE_CUM 603

PROC_DISK_PHYS_WRITE_RATETHREAD_DISK_PHYS_WRITE_RATE 604

PROC_DISK_RAW_READTHREAD_DISK_RAW_READ 605

PROC_DISK_RAW_READ_CUMTHREAD_DISK_RAW_READ_CUM 605

PROC_DISK_RAW_READ_RATETHREAD_DISK_RAW_READ_RATE 606

PROC_DISK_RAW_WRITETHREAD_DISK_RAW_WRITE 606

HP GlancePlus (11.02)Page 43 of 821

Dictionary of Operating System Metrics
Contents

PROC_DISK_RAW_WRITE_CUMTHREAD_DISK_RAW_WRITE_CUM 606

PROC_DISK_RAW_WRITE_RATETHREAD_DISK_RAW_WRITE_RATE 607

PROC_DISK_REM_LOGL_READTHREAD_DISK_REM_LOGL_READ 607

PROC_DISK_REM_LOGL_READ_CUMTHREAD_DISK_REM_LOGL_READ_
CUM 608

PROC_DISK_REM_LOGL_READ_RATETHREAD_DISK_REM_LOGL_
READ_RATE 609

PROC_DISK_REM_LOGL_WRITETHREAD_DISK_REM_LOGL_WRITE 609

PROC_DISK_REM_LOGL_WRITE_CUMTHREAD_DISK_REM_LOGL_
WRITE_CUM 609

PROC_DISK_REM_LOGL_WRITE_RATETHREAD_DISK_REM_LOGL_
WRITE_RATE 610

PROC_DISK_REM_PHYS_READTHREAD_DISK_REM_PHYS_READ 610

PROC_DISK_REM_PHYS_READ_CUMTHREAD_DISK_REM_PHYS_
READ_CUM 611

PROC_DISK_REM_PHYS_READ_RATETHREAD_DISK_REM_PHYS_
READ_RATE 611

PROC_DISK_REM_PHYS_WRITETHREAD_DISK_REM_PHYS_WRITE 612

PROC_DISK_REM_PHYS_WRITE_CUMTHREAD_DISK_REM_PHYS_
WRITE_CUM 612

PROC_DISK_REM_PHYS_WRITE_RATETHREAD_DISK_REM_PHYS_
WRITE_RATE 613

PROC_DISK_SUBSYSTEM_WAIT_PCTTHREAD_DISK_SUBSYSTEM_
WAIT_PCT 613

PROC_DISK_SUBSYSTEM_WAIT_PCT_CUMTHREAD_DISK_
SUBSYSTEM_WAIT_PCT_CUM 614

PROC_DISK_SUBSYSTEM_WAIT_TIMETHREAD_DISK_SUBSYSTEM_
WAIT_TIME 615

PROC_DISK_SUBSYSTEM_WAIT_TIME_CUMTHREAD_DISK_
SUBSYSTEM_WAIT_TIME_CUM 615

PROC_DISK_SYSTEM_IOTHREAD_DISK_SYSTEM_IO 616

PROC_DISK_SYSTEM_IO_RATETHREAD_DISK_SYSTEM_IO_RATE 616

PROC_DISK_SYSTEM_READTHREAD_DISK_SYSTEM_READ 616

PROC_DISK_SYSTEM_READ_CUMTHREAD_DISK_SYSTEM_READ_CUM
617

PROC_DISK_SYSTEM_WRITETHREAD_DISK_SYSTEM_WRITE 618

HP GlancePlus (11.02)Page 44 of 821

Dictionary of Operating System Metrics
Contents

PROC_DISK_SYSTEM_WRITE_CUMTHREAD_DISK_SYSTEM_WRITE_
CUM 618

PROC_DISK_VM_IOTHREAD_DISK_VM_IO 619

PROC_DISK_VM_IO_RATETHREAD_DISK_VM_IO_RATE 619

PROC_DISK_VM_READTHREAD_DISK_VM_READ 619

PROC_DISK_VM_READ_CUMTHREAD_DISK_VM_READ_CUM 620

PROC_DISK_VM_WRITETHREAD_DISK_VM_WRITE 620

PROC_DISK_VM_WRITE_CUMTHREAD_DISK_VM_WRITE_CUM 621

PROC_DISK_WAIT_PCTTHREAD_DISK_WAIT_PCT 621

PROC_DISK_WAIT_PCT_CUMTHREAD_DISK_WAIT_PCT_CUM 622

PROC_DISK_WAIT_TIMETHREAD_DISK_WAIT_TIME 623

PROC_DISK_WAIT_TIME_CUMTHREAD_DISK_WAIT_TIME_CUM 623

PROC_DISPATCHTHREAD_DISPATCH 624

PROC_DISPATCH_CUMTHREAD_DISPATCH_CUM 624

PROC_EUIDTHREAD_EUID 625

PROC_FILE_COUNT 625

PROC_FILE_MODE 625

PROC_FILE_NAME 625

PROC_FILE_NUMBER 627

PROC_FILE_OFFSET 628

PROC_FILE_OPEN 628

PROC_FILE_TYPE 628

PROC_FORCED_CSWITCHTHREAD_FORCED_CSWITCH 628

PROC_FORCED_CSWITCH_CUMTHREAD_FORCED_CSWITCH_CUM 629

PROC_FORKTHREAD_FORK 629

PROC_FORK_CUMTHREAD_FORK_CUM 629

PROC_GRAPHICS_WAIT_PCTTHREAD_GRAPHICS_WAIT_PCT 630

PROC_GRAPHICS_WAIT_PCT_CUMTHREAD_GRAPHICS_WAIT_PCT_
CUM 630

PROC_GRAPHICS_WAIT_TIMETHREAD_GRAPHICS_WAIT_TIME 631

PROC_GRAPHICS_WAIT_TIME_CUMTHREAD_GRAPHICS_WAIT_TIME_
CUM 632

PROC_GROUP_IDTHREAD_GROUP_ID 632

HP GlancePlus (11.02)Page 45 of 821

Dictionary of Operating System Metrics
Contents

PROC_GROUP_NAMETHREAD_GROUP_NAME 632

PROC_INODE_WAIT_PCTTHREAD_INODE_WAIT_PCT 633

PROC_INODE_WAIT_PCT_CUMTHREAD_INODE_WAIT_PCT_CUM 633

PROC_INODE_WAIT_TIMETHREAD_INODE_WAIT_TIME 634

PROC_INODE_WAIT_TIME_CUMTHREAD_INODE_WAIT_TIME_CUM 635

PROC_INTERESTTHREAD_INTEREST 635

PROC_INTERRUPTSTHREAD_INTERRUPTS 636

PROC_INTERRUPTS_CUMTHREAD_INTERRUPTS_CUM 636

PROC_INTERVALTHREAD_INTERVAL 636

PROC_INTERVAL_ALIVETHREAD_INTERVAL_ALIVE 636

PROC_INTERVAL_CUMTHREAD_INTERVAL_CUM 637

PROC_IOCTLTHREAD_IOCTL 637

PROC_IOCTL_CUMTHREAD_IOCTL_CUM 637

PROC_IO_BYTETHREAD_IO_BYTE 638

PROC_IO_BYTE_CUMTHREAD_IO_BYTE_CUM 639

PROC_IO_BYTE_RATETHREAD_IO_BYTE_RATE 640

PROC_IO_BYTE_RATE_CUMTHREAD_IO_BYTE_RATE_CUM 640

PROC_IPC_SUBSYSTEM_WAIT_PCTTHREAD_IPC_SUBSYSTEM_WAIT_
PCT 641

PROC_IPC_SUBSYSTEM_WAIT_PCT_CUMTHREAD_IPC_SUBSYSTEM_
WAIT_PCT_CUM 642

PROC_IPC_SUBSYSTEM_WAIT_TIMETHREAD_IPC_SUBSYSTEM_WAIT_
TIME 643

PROC_IPC_SUBSYSTEM_WAIT_TIME_CUMTHREAD_IPC_SUBSYSTEM_
WAIT_TIME_CUM 643

PROC_IPC_WAIT_PCTTHREAD_IPC_WAIT_PCT 644

PROC_IPC_WAIT_PCT_CUMTHREAD_IPC_WAIT_PCT_CUM 644

PROC_IPC_WAIT_TIMETHREAD_IPC_WAIT_TIME 645

PROC_IPC_WAIT_TIME_CUMTHREAD_IPC_WAIT_TIME_CUM 646

PROC_JOBCTL_WAIT_PCTTHREAD_JOBCTL_WAIT_PCT 646

PROC_JOBCTL_WAIT_PCT_CUMTHREAD_JOBCTL_WAIT_PCT_CUM 647

PROC_JOBCTL_WAIT_TIMETHREAD_JOBCTL_WAIT_TIME 648

PROC_JOBCTL_WAIT_TIME_CUMTHREAD_JOBCTL_WAIT_TIME_CUM 648

PROC_LAN_WAIT_PCTTHREAD_LAN_WAIT_PCT 649

HP GlancePlus (11.02)Page 46 of 821

Dictionary of Operating System Metrics
Contents

PROC_LAN_WAIT_PCT_CUMTHREAD_LAN_WAIT_PCT_CUM 650

PROC_LAN_WAIT_TIMETHREAD_LAN_WAIT_TIME 651

PROC_LAN_WAIT_TIME_CUMTHREAD_LAN_WAIT_TIME_CUM 651

PROC_LDOM_COUNT 651

PROC_LDOM_ID 652

PROC_LDOM_PCT 652

PROC_LDOM_PRIVATE 652

PROC_LDOM_SHARED 652

PROC_LDOM_SUM_PRIVATE 652

PROC_LDOM_SUM_SHARED 652

PROC_LDOM_SUM_TOTAL 652

PROC_LDOM_SUM_WEIGHTED 652

PROC_LDOM_TOTAL 652

PROC_LDOM_TYPE 653

PROC_LDOM_WEIGHTED 653

PROC_MAJOR_FAULTTHREAD_MAJOR_FAULT 653

PROC_MAJOR_FAULT_CUMTHREAD_MAJOR_FAULT_CUM 653

PROC_MEM_PRIVATE_RESTHREAD_MEM_PRIVATE_RES 654

PROC_MEM_RESTHREAD_MEM_RES 654

PROC_MEM_RES_HIGHTHREAD_MEM_RES_HIGH 655

PROC_MEM_SHARED_RESTHREAD_MEM_SHARED_RES 655

PROC_MEM_VFAULT_COUNTTHREAD_MEM_VFAULT_COUNT 655

PROC_MEM_VFAULT_COUNT_CUMTHREAD_MEM_VFAULT_COUNT_
CUM 656

PROC_MEM_VIRTTHREAD_MEM_VIRT 656

PROC_MEM_WAIT_PCTTHREAD_MEM_WAIT_PCT 657

PROC_MEM_WAIT_PCT_CUMTHREAD_MEM_WAIT_PCT_CUM 658

PROC_MEM_WAIT_TIMETHREAD_MEM_WAIT_TIME 659

PROC_MEM_WAIT_TIME_CUMTHREAD_MEM_WAIT_TIME_CUM 659

PROC_MINOR_FAULTTHREAD_MINOR_FAULT 660

PROC_MINOR_FAULT_CUMTHREAD_MINOR_FAULT_CUM 660

PROC_MSG_RECEIVEDTHREAD_MSG_RECEIVED 660

HP GlancePlus (11.02)Page 47 of 821

Dictionary of Operating System Metrics
Contents

PROC_MSG_RECEIVED_CUMTHREAD_MSG_RECEIVED_CUM 660

PROC_MSG_SENTTHREAD_MSG_SENT 661

PROC_MSG_SENT_CUMTHREAD_MSG_SENT_CUM 661

PROC_MSG_WAIT_PCTTHREAD_MSG_WAIT_PCT 662

PROC_MSG_WAIT_PCT_CUMTHREAD_MSG_WAIT_PCT_CUM 662

PROC_MSG_WAIT_TIMETHREAD_MSG_WAIT_TIME 663

PROC_MSG_WAIT_TIME_CUMTHREAD_MSG_WAIT_TIME_CUM 663

PROC_NFS_WAIT_PCTTHREAD_NFS_WAIT_PCT 664

PROC_NFS_WAIT_PCT_CUMTHREAD_NFS_WAIT_PCT_CUM 665

PROC_NFS_WAIT_TIMETHREAD_NFS_WAIT_TIME 665

PROC_NFS_WAIT_TIME_CUMTHREAD_NFS_WAIT_TIME_CUM 666

PROC_NICE_PRITHREAD_NICE_PRI 666

PROC_NONDISK_LOGL_READTHREAD_NONDISK_LOGL_READ 667

PROC_NONDISK_LOGL_READ_CUMTHREAD_NONDISK_LOGL_READ_
CUM 667

PROC_NONDISK_LOGL_WRITETHREAD_NONDISK_LOGL_WRITE 668

PROC_NONDISK_LOGL_WRITE_CUMTHREAD_NONDISK_LOGL_WRITE_
CUM 668

PROC_NONDISK_PHYS_READTHREAD_NONDISK_PHYS_READ 668

PROC_NONDISK_PHYS_READ_CUMTHREAD_NONDISK_PHYS_READ_
CUM 669

PROC_NONDISK_PHYS_WRITETHREAD_NONDISK_PHYS_WRITE 669

PROC_NONDISK_PHYS_WRITE_CUMTHREAD_NONDISK_PHYS_
WRITE_CUM 670

PROC_OPENTHREAD_OPEN 670

PROC_OPEN_CUMTHREAD_OPEN_CUM 670

PROC_OTHER_IO_WAIT_PCTTHREAD_OTHER_IO_WAIT_PCT 671

PROC_OTHER_IO_WAIT_PCT_CUMTHREAD_OTHER_IO_WAIT_PCT_
CUM 672

PROC_OTHER_IO_WAIT_TIMETHREAD_OTHER_IO_WAIT_TIME 673

PROC_OTHER_IO_WAIT_TIME_CUMTHREAD_OTHER_IO_WAIT_TIME_
CUM 673

PROC_OTHER_WAIT_PCTTHREAD_OTHER_WAIT_PCT 674

PROC_OTHER_WAIT_PCT_CUMTHREAD_OTHER_WAIT_PCT_CUM 674

HP GlancePlus (11.02)Page 48 of 821

Dictionary of Operating System Metrics
Contents

PROC_OTHER_WAIT_TIMETHREAD_OTHER_WAIT_TIME 675

PROC_OTHER_WAIT_TIME_CUMTHREAD_OTHER_WAIT_TIME_CUM 675

PROC_PAGEFAULTTHREAD_PAGEFAULT 676

PROC_PAGEFAULT_RATETHREAD_PAGEFAULT_RATE 676

PROC_PAGEFAULT_RATE_CUMTHREAD_PAGEFAULT_RATE_CUM 676

PROC_PARENT_PROC_IDTHREAD_PARENT_PROC_ID 677

PROC_PIPE_WAIT_PCTTHREAD_PIPE_WAIT_PCT 677

PROC_PIPE_WAIT_PCT_CUMTHREAD_PIPE_WAIT_PCT_CUM 677

PROC_PIPE_WAIT_TIMETHREAD_PIPE_WAIT_TIME 678

PROC_PIPE_WAIT_TIME_CUMTHREAD_PIPE_WAIT_TIME_CUM 679

PROC_PRITHREAD_PRI 679

PROC_PRI_WAIT_PCTTHREAD_PRI_WAIT_PCT 680

PROC_PRI_WAIT_PCT_CUMTHREAD_PRI_WAIT_PCT_CUM 681

PROC_PRI_WAIT_TIMETHREAD_PRI_WAIT_TIME 681

PROC_PRI_WAIT_TIME_CUMTHREAD_PRI_WAIT_TIME_CUM 682

PROC_PRMIDTHREAD_PRMID 682

PROC_PROC_ARGV1THREAD_PROC_ARGV1 683

PROC_PROC_CMDTHREAD_PROC_CMD 683

PROC_PROC_IDTHREAD_PROC_ID 683

PROC_PROC_NAMETHREAD_PROC_NAME 683

PROC_REGION_FILENAME 684

PROC_REGION_LOCKED 685

PROC_REGION_PAGE_COUNT_1_4KB 685

PROC_REGION_PAGE_COUNT_2_16KB 685

PROC_REGION_PAGE_COUNT_3_64KB 685

PROC_REGION_PAGE_COUNT_4_256KB 685

PROC_REGION_PAGE_COUNT_5_1MB 686

PROC_REGION_PAGE_COUNT_6_4MB 686

PROC_REGION_PAGE_COUNT_7_16MB 686

PROC_REGION_PAGE_COUNT_8_64MB 686

PROC_REGION_PAGE_COUNT_9_256MB 686

PROC_REGION_PAGE_COUNT_B_1GB 686

HP GlancePlus (11.02)Page 49 of 821

Dictionary of Operating System Metrics
Contents

PROC_REGION_PAGE_COUNT_B_4GB 686

PROC_REGION_PAGE_SIZE_HINT 686

PROC_REGION_PRIVATE_SHARED_FLAG 687

PROC_REGION_REF_COUNT 687

PROC_REGION_RES 687

PROC_REGION_RES_DATA 687

PROC_REGION_RES_OTHER 687

PROC_REGION_RES_SHMEM 688

PROC_REGION_RES_STACK 688

PROC_REGION_RES_TEXT 688

PROC_REGION_TYPE 689

PROC_REGION_VIRT 690

PROC_REGION_VIRT_ADDRS 690

PROC_REGION_VIRT_DATA 690

PROC_REGION_VIRT_OTHER 690

PROC_REGION_VIRT_SHMEM 691

PROC_REGION_VIRT_STACK 691

PROC_REGION_VIRT_TEXT 691

PROC_RPC_WAIT_PCTTHREAD_RPC_WAIT_PCT 692

PROC_RPC_WAIT_PCT_CUMTHREAD_RPC_WAIT_PCT_CUM 692

PROC_RPC_WAIT_TIMETHREAD_RPC_WAIT_TIME 693

PROC_RPC_WAIT_TIME_CUMTHREAD_RPC_WAIT_TIME_CUM 693

PROC_RUN_TIMETHREAD_RUN_TIME 694

PROC_SCHEDULERTHREAD_SCHEDULER 694

PROC_SEM_WAIT_PCTTHREAD_SEM_WAIT_PCT 695

PROC_SEM_WAIT_PCT_CUMTHREAD_SEM_WAIT_PCT_CUM 695

PROC_SEM_WAIT_TIMETHREAD_SEM_WAIT_TIME 696

PROC_SEM_WAIT_TIME_CUMTHREAD_SEM_WAIT_TIME_CUM 697

PROC_SIGNALTHREAD_SIGNAL 697

PROC_SIGNAL_CUMTHREAD_SIGNAL_CUM 697

PROC_SLEEP_WAIT_PCTTHREAD_SLEEP_WAIT_PCT 698

PROC_SLEEP_WAIT_PCT_CUMTHREAD_SLEEP_WAIT_PCT_CUM 698

HP GlancePlus (11.02)Page 50 of 821

Dictionary of Operating System Metrics
Contents

PROC_SLEEP_WAIT_TIMETHREAD_SLEEP_WAIT_TIME 699

PROC_SLEEP_WAIT_TIME_CUMTHREAD_SLEEP_WAIT_TIME_CUM 700

PROC_SOCKET_WAIT_PCTTHREAD_SOCKET_WAIT_PCT 700

PROC_SOCKET_WAIT_PCT_CUMTHREAD_SOCKET_WAIT_PCT_CUM 701

PROC_SOCKET_WAIT_TIMETHREAD_SOCKET_WAIT_TIME 702

PROC_SOCKET_WAIT_TIME_CUMTHREAD_SOCKET_WAIT_TIME_CUM
702

PROC_STARTTIMETHREAD_STARTTIME 703

PROC_STATETHREAD_STATE 703

PROC_STOP_REASONTHREAD_STOP_REASON 703

PROC_STOP_REASON_FLAGTHREAD_STOP_REASON_FLAG 708

PROC_STREAM_WAIT_PCTTHREAD_STREAM_WAIT_PCT 708

PROC_STREAM_WAIT_PCT_CUMTHREAD_STREAM_WAIT_PCT_CUM 708

PROC_STREAM_WAIT_TIMETHREAD_STREAM_WAIT_TIME 709

PROC_STREAM_WAIT_TIME_CUMTHREAD_STREAM_WAIT_TIME_CUM
710

PROC_SWAPTHREAD_SWAP 710

PROC_SWAP_CUMTHREAD_SWAP_CUM 711

PROC_SYS_WAIT_PCTTHREAD_SYS_WAIT_PCT 711

PROC_SYS_WAIT_PCT_CUMTHREAD_SYS_WAIT_PCT_CUM 712

PROC_SYS_WAIT_TIMETHREAD_SYS_WAIT_TIME 713

PROC_SYS_WAIT_TIME_CUMTHREAD_SYS_WAIT_TIME_CUM 713

PROC_TERM_IO_WAIT_PCTTHREAD_TERM_IO_WAIT_PCT 714

PROC_TERM_IO_WAIT_PCT_CUMTHREAD_TERM_IO_WAIT_PCT_CUM
715

PROC_TERM_IO_WAIT_TIMETHREAD_TERM_IO_WAIT_TIME 716

PROC_TERM_IO_WAIT_TIME_CUMTHREAD_TERM_IO_WAIT_TIME_CUM
716

PROC_THREAD_COUNTTHREAD_THREAD_COUNT 716

PROC_THREAD_IDTHREAD_THREAD_ID 717

PROC_TIMETHREAD_TIME 717

PROC_TOP_CPU_INDEXTHREAD_TOP_CPU_INDEX 717

PROC_TOP_DISK_INDEXTHREAD_TOP_DISK_INDEX 717

PROC_TOTAL_WAIT_TIMETHREAD_TOTAL_WAIT_TIME 717

HP GlancePlus (11.02)Page 51 of 821

Dictionary of Operating System Metrics
Contents

PROC_TOTAL_WAIT_TIME_CUMTHREAD_TOTAL_WAIT_TIME_CUM 718

PROC_TTYTHREAD_TTY 718

PROC_TTY_DEVTHREAD_TTY_DEV 719

PROC_UIDTHREAD_UID 719

PROC_USER_NAMETHREAD_USER_NAME 719

PROC_USER_THREAD_IDTHREAD_USER_THREAD_ID 719

PROC_USRPRITHREAD_USRPRI 719

PROC_VOLUNTARY_CSWITCHTHREAD_VOLUNTARY_CSWITCH 720

PROC_VOLUNTARY_CSWITCH_CUMTHREAD_VOLUNTARY_CSWITCH_
CUM 720

SYSCALL_ACTIVE_CUM 721

SYSCALL_CALL_COUNT 721

SYSCALL_CALL_COUNT_CUM 721

SYSCALL_CALL_ID 722

SYSCALL_CALL_NAME 722

SYSCALL_CALL_RATE 722

SYSCALL_CALL_RATE_CUM 722

SYSCALL_CPU_TOTAL_TIME 723

SYSCALL_CPU_TOTAL_TIME_CUM 723

SYSCALL_INTERVAL 724

SYSCALL_INTERVAL_CUM 724

TBL_BUFFER_CACHE_AVAIL 725

TBL_BUFFER_CACHE_HIGH 725

TBL_BUFFER_CACHE_MAX 726

TBL_BUFFER_CACHE_MIN 726

TBL_BUFFER_CACHE_USED 726

TBL_BUFFER_HEADER_AVAIL 727

TBL_BUFFER_HEADER_USED 727

TBL_BUFFER_HEADER_UTIL 728

TBL_BUFFER_HEADER_UTIL_HIGH 728

TBL_DNLC_CACHE_AVAIL 729

TBL_FILE_LOCK_AVAIL 730

HP GlancePlus (11.02)Page 52 of 821

Dictionary of Operating System Metrics
Contents

TBL_FILE_LOCK_USED 730

TBL_FILE_LOCK_UTIL 730

TBL_FILE_LOCK_UTIL_HIGH 730

TBL_FILE_TABLE_AVAIL 731

TBL_FILE_TABLE_USED 731

TBL_FILE_TABLE_UTIL 731

TBL_FILE_TABLE_UTIL_HIGH 731

TBL_INODE_CACHE_AVAIL 732

TBL_INODE_CACHE_HIGH 733

TBL_INODE_CACHE_USED 734

TBL_MSG_BUFFER_AVAIL 734

TBL_MSG_BUFFER_HIGH 735

TBL_MSG_BUFFER_USED 735

TBL_MSG_TABLE_AVAIL 735

TBL_MSG_TABLE_USED 736

TBL_MSG_TABLE_UTIL 736

TBL_MSG_TABLE_UTIL_HIGH 736

TBL_PROC_TABLE_AVAIL 737

TBL_PROC_TABLE_USED 737

TBL_PROC_TABLE_UTIL 737

TBL_PROC_TABLE_UTIL_HIGH 737

TBL_PTY_AVAIL 738

TBL_PTY_USED 738

TBL_PTY_UTIL 738

TBL_PTY_UTIL_HIGH 738

TBL_SEM_TABLE_AVAIL 739

TBL_SEM_TABLE_USED 739

TBL_SEM_TABLE_UTIL 739

TBL_SEM_TABLE_UTIL_HIGH 739

TBL_SHMEM_ACTIVE 740

TBL_SHMEM_AVAIL 740

TBL_SHMEM_REQUESTED 740

HP GlancePlus (11.02)Page 53 of 821

Dictionary of Operating System Metrics
Contents

TBL_SHMEM_TABLE_AVAIL 741

TBL_SHMEM_TABLE_USED 741

TBL_SHMEM_TABLE_UTIL 741

TBL_SHMEM_TABLE_UTIL_HIGH 741

TBL_SHMEM_USED 742

TTBIN_TRANS_COUNTTT_CLIENT_BIN_TRANS_COUNT 742

TTBIN_TRANS_COUNT_CUMTT_CLIENT_BIN_TRANS_COUNT_CUM 742

TTBIN_UPPER_RANGE 743

TT_ABORTTT_CLIENT_ABORT 743

TT_ABORT_CUMTT_CLIENT_ABORT_CUM 743

TT_ABORT_WALL_TIMETT_CLIENT_ABORT_WALL_TIME 743

TT_ABORT_WALL_TIME_CUMTT_CLIENT_ABORT_WALL_TIME_CUM 744

TT_APPNO 744

TT_APP_NAME 744

TT_CACHE_WAIT_TIME_PER_TRAN 744

TT_CACHE_WAIT_TIME_PER_TRAN_CUM 745

TT_CDFS_WAIT_TIME_PER_TRAN 746

TT_CDFS_WAIT_TIME_PER_TRAN_CUM 746

TT_CLIENT_ADDRESSTT_INSTANCE_CLIENT_ADDRESS 747

TT_CLIENT_ADDRESS_FORMATTT_INSTANCE_CLIENT_ADDRESS_
FORMAT 747

TT_CLIENT_CORRELATOR_COUNT 747

TT_CLIENT_TRAN_IDTT_INSTANCE_CLIENT_TRAN_ID 748

TT_COUNTTT_CLIENT_COUNT 748

TT_COUNT_CUMTT_CLIENT_COUNT_CUM 748

TT_CPU_CSWITCH_TIME_PER_TRAN 748

TT_CPU_CSWITCH_TIME_PER_TRAN_CUM 749

TT_CPU_INTERRUPT_TIME_PER_TRAN 750

TT_CPU_INTERRUPT_TIME_PER_TRAN_CUM 750

TT_CPU_NICE_TIME_PER_TRAN 751

TT_CPU_NICE_TIME_PER_TRAN_CUM 751

TT_CPU_NNICE_TIME_PER_TRAN 752

HP GlancePlus (11.02)Page 54 of 821

Dictionary of Operating System Metrics
Contents

TT_CPU_NNICE_TIME_PER_TRAN_CUM 753

TT_CPU_NORMAL_TIME_PER_TRAN 754

TT_CPU_NORMAL_TIME_PER_TRAN_CUM 754

TT_CPU_REALTIME_TIME_PER_TRAN 755

TT_CPU_REALTIME_TIME_PER_TRAN_CUM 755

TT_CPU_SYSCALL_TIME_PER_TRAN 756

TT_CPU_SYSCALL_TIME_PER_TRAN_CUM 757

TT_CPU_SYS_MODE_TIME_PER_TRAN 757

TT_CPU_SYS_MODE_TIME_PER_TRAN_CUM 758

TT_CPU_TOTAL_TIME_PER_TRAN 759

TT_CPU_TOTAL_TIME_PER_TRAN_CUM 759

TT_CPU_USER_MODE_TIME_PER_TRAN 760

TT_CPU_USER_MODE_TIME_PER_TRAN_CUM 761

TT_DISK_FS_READ_PER_TRAN 762

TT_DISK_FS_READ_PER_TRAN_CUM 762

TT_DISK_FS_WRITE_PER_TRAN 763

TT_DISK_FS_WRITE_PER_TRAN_CUM 764

TT_DISK_LOGL_IO_PER_TRAN 765

TT_DISK_LOGL_IO_PER_TRAN_CUM 765

TT_DISK_LOGL_READ_PER_TRAN 766

TT_DISK_LOGL_READ_PER_TRAN_CUM 767

TT_DISK_LOGL_WRITE_PER_TRAN 768

TT_DISK_LOGL_WRITE_PER_TRAN_CUM 768

TT_DISK_PHYS_IO_PER_TRAN 769

TT_DISK_PHYS_IO_PER_TRAN_CUM 770

TT_DISK_PHYS_READ_PER_TRAN 771

TT_DISK_PHYS_READ_PER_TRAN_CUM 771

TT_DISK_PHYS_WRITE_PER_TRAN 772

TT_DISK_PHYS_WRITE_PER_TRAN_CUM 773

TT_DISK_RAW_READ_PER_TRAN 774

TT_DISK_RAW_READ_PER_TRAN_CUM 774

TT_DISK_RAW_WRITE_PER_TRAN 775

HP GlancePlus (11.02)Page 55 of 821

Dictionary of Operating System Metrics
Contents

TT_DISK_RAW_WRITE_PER_TRAN_CUM 776

TT_DISK_SYSTEM_READ_PER_TRAN 777

TT_DISK_SYSTEM_READ_PER_TRAN_CUM 777

TT_DISK_SYSTEM_WRITE_PER_TRAN 778

TT_DISK_SYSTEM_WRITE_PER_TRAN_CUM 779

TT_DISK_VM_READ_PER_TRAN 780

TT_DISK_VM_READ_PER_TRAN_CUM 780

TT_DISK_VM_WRITE_PER_TRAN 781

TT_DISK_VM_WRITE_PER_TRAN_CUM 782

TT_DISK_WAIT_TIME_PER_TRAN 782

TT_DISK_WAIT_TIME_PER_TRAN_CUM 783

TT_FAILEDTT_CLIENT_FAILED 784

TT_FAILED_CUMTT_CLIENT_FAILED_CUM 784

TT_FAILED_WALL_TIMETT_CLIENT_FAILED_WALL_TIME 784

TT_FAILED_WALL_TIME_CUMTT_CLIENT_FAILED_WALL_TIME_CUM 784

TT_GOLDENRESOURCE_INTERVAL 785

TT_GOLDENRESOURCE_INTERVAL_CUM 785

TT_GRAPHICS_WAIT_TIME_PER_TRAN 785

TT_GRAPHICS_WAIT_TIME_PER_TRAN_CUM 786

TT_INFO 787

TT_INODE_WAIT_TIME_PER_TRAN 787

TT_INODE_WAIT_TIME_PER_TRAN_CUM 787

TT_INPROGRESS_COUNT 788

TT_INSTANCE_ID 788

TT_INSTANCE_PROC_ID 788

TT_INSTANCE_START_TIME 788

TT_INSTANCE_STOP_TIME 789

TT_INSTANCE_THREAD_ID 789

TT_INSTANCE_UPDATE_COUNT 789

TT_INSTANCE_UPDATE_TIME 789

TT_INSTANCE_WALL_TIME 789

TT_INTERVALTT_CLIENT_INTERVAL 789

HP GlancePlus (11.02)Page 56 of 821

Dictionary of Operating System Metrics
Contents

TT_INTERVAL_CUMTT_CLIENT_INTERVAL_CUM 789

TT_IPC_WAIT_TIME_PER_TRAN 790

TT_IPC_WAIT_TIME_PER_TRAN_CUM 790

TT_JOBCTL_WAIT_TIME_PER_TRAN 791

TT_JOBCTL_WAIT_TIME_PER_TRAN_CUM 792

TT_LAN_WAIT_TIME_PER_TRAN 792

TT_LAN_WAIT_TIME_PER_TRAN_CUM 793

TT_MEASUREMENT_COUNT 794

TT_MEM_WAIT_TIME_PER_TRAN 794

TT_MEM_WAIT_TIME_PER_TRAN_CUM 794

TT_MSG_WAIT_TIME_PER_TRAN 795

TT_MSG_WAIT_TIME_PER_TRAN_CUM 796

TT_NAME 796

TT_NFS_WAIT_TIME_PER_TRAN 796

TT_NFS_WAIT_TIME_PER_TRAN_CUM 797

TT_OTHER_IO_WAIT_TIME_PER_TRAN 798

TT_OTHER_IO_WAIT_TIME_PER_TRAN_CUM 798

TT_OTHER_WAIT_TIME_PER_TRAN 799

TT_OTHER_WAIT_TIME_PER_TRAN_CUM 800

TT_PIPE_WAIT_TIME_PER_TRAN 800

TT_PIPE_WAIT_TIME_PER_TRAN_CUM 801

TT_PRI_WAIT_TIME_PER_TRAN 802

TT_PRI_WAIT_TIME_PER_TRAN_CUM 802

TT_RESOURCE_INTERVAL 803

TT_RESOURCE_INTERVAL_CUM 803

TT_RPC_WAIT_TIME_PER_TRAN 804

TT_RPC_WAIT_TIME_PER_TRAN_CUM 804

TT_SEM_WAIT_TIME_PER_TRAN 805

TT_SEM_WAIT_TIME_PER_TRAN_CUM 805

TT_SLEEP_WAIT_TIME_PER_TRAN 806

TT_SLEEP_WAIT_TIME_PER_TRAN_CUM 807

TT_SLO_COUNTTT_CLIENT_SLO_COUNT 808

HP GlancePlus (11.02)Page 57 of 821

Dictionary of Operating System Metrics
Contents

TT_SLO_COUNT_CUMTT_CLIENT_SLO_COUNT_CUM 808

TT_SLO_PERCENT 808

TT_SLO_THRESHOLD 808

TT_SOCKET_WAIT_TIME_PER_TRAN 808

TT_SOCKET_WAIT_TIME_PER_TRAN_CUM 809

TT_STREAM_WAIT_TIME_PER_TRAN 810

TT_STREAM_WAIT_TIME_PER_TRAN_CUM 810

TT_SYS_WAIT_TIME_PER_TRAN 811

TT_SYS_WAIT_TIME_PER_TRAN_CUM 811

TT_TERM_IO_WAIT_TIME_PER_TRAN 812

TT_TERM_IO_WAIT_TIME_PER_TRAN_CUM 813

TT_TOTAL_WAIT_TIME_PER_TRAN 814

TT_TOTAL_WAIT_TIME_PER_TRAN_CUM 814

TT_TRAN_1_MIN_RATE 815

TT_TRAN_ID 815

TT_UNAME 815

TT_UPDATETT_CLIENT_UPDATE 816

TT_UPDATE_CUMTT_CLIENT_UPDATE_CUM 816

TT_USER_MEASUREMENT_AVGTT_INSTANCE_USER_MEASUREMENT_
AVGTT_CLIENT_USER_MEASUREMENT_AVG 816

TT_USER_MEASUREMENT_COUNTTT_INSTANCE_USER_
MEASUREMENT_COUNTTT_CLIENT_USER_MEASUREMENT_COUNT 817

TT_USER_MEASUREMENT_MAXTT_INSTANCE_USER_MEASUREMENT_
MAXTT_CLIENT_USER_MEASUREMENT_MAX 817

TT_USER_MEASUREMENT_MINTT_INSTANCE_USER_MEASUREMENT_
MINTT_CLIENT_USER_MEASUREMENT_MIN 817

TT_USER_MEASUREMENT_NAMETT_INSTANCE_USER_
MEASUREMENT_NAMETT_CLIENT_USER_MEASUREMENT_NAME 817

TT_USER_MEASUREMENT_STRING1024_VALUETT_INSTANCE_USER_
MEASUREMENT_STRING1024_VALUETT_CLIENT_USER_
MEASUREMENT_STRING1024_VALUE

818

TT_USER_MEASUREMENT_STRING32_VALUETT_INSTANCE_USER_
MEASUREMENT_STRING32_VALUETT_CLIENT_USER_MEASUREMENT_
STRING32_VALUE

818

TT_USER_MEASUREMENT_TYPETT_INSTANCE_USER_
MEASUREMENT_TYPETT_CLIENT_USER_MEASUREMENT_TYPE 818

HP GlancePlus (11.02)Page 58 of 821

Dictionary of Operating System Metrics
Contents

TT_USER_MEASUREMENT_VALUETT_INSTANCE_USER_
MEASUREMENT_VALUETT_CLIENT_USER_MEASUREMENT_VALUE 818

TT_WALL_TIMETT_CLIENT_WALL_TIME 818

TT_WALL_TIME_CUMTT_CLIENT_WALL_TIME_CUM 819

TT_WALL_TIME_PER_TRANTT_CLIENT_WALL_TIME_PER_TRAN 819

TT_WALL_TIME_PER_TRAN_CUMTT_CLIENT_WALL_TIME_PER_TRAN_
CUM 819

HP GlancePlus (11.02)Page 59 of 821

Dictionary of Operating System Metrics
Contents

Dictionary of Operating System Metrics
Chapter 1: Introduction

Introduction
This dictionary contains definitions of the Linux operating system performancemetrics for HP
GlancePlus.

HP GlancePlus provides metrics for system resources, processes, and applications data.You can
use the graphical user interface or character-based terminal of HP GlancePlus to view these
metrics. This document provides descriptions of eachmetric. Metrics are arranged in the
alphabetical order and grouped by metric classes.

HP GlancePlus (11.02)Page 60 of 821

Dictionary of Operating System Metrics
Chapter 1: Introduction

HP GlancePlus (11.02)Page 61 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

Metric Names by Data Class
Global Metrics

GBL_ACTIVE_CPUGBL_ACTIVE_CPU

GBL_ACTIVE_CPU_COREGBL_ACTIVE_CPU_CORE

GBL_ACTIVE_PROCGBL_ACTIVE_PROC

GBL_ALIVE_PROCGBL_ALIVE_PROC

GBL_BLANKGBL_BLANK

GBL_BOOT_TIMEGBL_BOOT_TIME

GBL_CACHE_QUEUEGBL_CACHE_QUEUE

GBL_CACHE_WAIT_PCTGBL_CACHE_WAIT_PCT

GBL_CACHE_WAIT_TIMEGBL_CACHE_WAIT_TIME

GBL_CDFS_QUEUEGBL_CDFS_QUEUE

GBL_CDFS_WAIT_PCTGBL_CDFS_WAIT_PCT

GBL_CDFS_WAIT_TIMEGBL_CDFS_WAIT_TIME

GBL_COLLECTORGBL_COLLECTOR

GBL_COMPLETED_PROCGBL_COMPLETED_PROC

GBL_CPU_CLOCKGBL_CPU_CLOCK

GBL_CPU_CSWITCH_TIMEGBL_CPU_CSWITCH_TIME

GBL_CPU_CSWITCH_TIME_CUMGBL_CPU_CSWITCH_TIME_CUM

GBL_CPU_CSWITCH_UTILGBL_CPU_CSWITCH_UTIL

GBL_CPU_CSWITCH_UTIL_CUMGBL_CPU_CSWITCH_UTIL_CUM

GBL_CPU_CSWITCH_UTIL_HIGHGBL_CPU_CSWITCH_UTIL_HIGH

GBL_CPU_IDLE_TIMEGBL_CPU_IDLE_TIME

GBL_CPU_IDLE_TIME_CUMGBL_CPU_IDLE_TIME_CUM

GBL_CPU_IDLE_UTILGBL_CPU_IDLE_UTIL

GBL_CPU_IDLE_UTIL_CUMGBL_CPU_IDLE_UTIL_CUM

GBL_CPU_IDLE_UTIL_HIGHGBL_CPU_IDLE_UTIL_HIGH

GBL_CPU_INTERRUPT_TIMEGBL_CPU_INTERRUPT_TIME

GBL_CPU_INTERRUPT_TIME_CUMGBL_CPU_INTERRUPT_TIME_CUM

GBL_CPU_INTERRUPT_UTILGBL_CPU_INTERRUPT_UTIL

GBL_CPU_INTERRUPT_UTIL_CUMGBL_CPU_INTERRUPT_UTIL_CUM

GBL_CPU_INTERRUPT_UTIL_HIGHGBL_CPU_INTERRUPT_UTIL_HIGH

HP GlancePlus (11.02)Page 62 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_CPU_MT_ENABLEDGBL_CPU_MT_ENABLED

GBL_CPU_NICE_TIMEGBL_CPU_NICE_TIME

GBL_CPU_NICE_TIME_CUMGBL_CPU_NICE_TIME_CUM

GBL_CPU_NICE_UTILGBL_CPU_NICE_UTIL

GBL_CPU_NICE_UTIL_CUMGBL_CPU_NICE_UTIL_CUM

GBL_CPU_NICE_UTIL_HIGHGBL_CPU_NICE_UTIL_HIGH

GBL_CPU_NNICE_TIMEGBL_CPU_NNICE_TIME

GBL_CPU_NNICE_TIME_CUMGBL_CPU_NNICE_TIME_CUM

GBL_CPU_NNICE_UTILGBL_CPU_NNICE_UTIL

GBL_CPU_NNICE_UTIL_CUMGBL_CPU_NNICE_UTIL_CUM

GBL_CPU_NNICE_UTIL_HIGHGBL_CPU_NNICE_UTIL_HIGH

GBL_CPU_NORMAL_TIMEGBL_CPU_NORMAL_TIME

GBL_CPU_NORMAL_TIME_CUMGBL_CPU_NORMAL_TIME_CUM

GBL_CPU_NORMAL_UTILGBL_CPU_NORMAL_UTIL

GBL_CPU_NORMAL_UTIL_CUMGBL_CPU_NORMAL_UTIL_CUM

GBL_CPU_NORMAL_UTIL_HIGHGBL_CPU_NORMAL_UTIL_HIGH

GBL_CPU_QUEUEGBL_CPU_QUEUE

GBL_CPU_REALTIME_TIMEGBL_CPU_REALTIME_TIME

GBL_CPU_REALTIME_TIME_CUMGBL_CPU_REALTIME_TIME_CUM

GBL_CPU_REALTIME_UTILGBL_CPU_REALTIME_UTIL

GBL_CPU_REALTIME_UTIL_CUMGBL_CPU_REALTIME_UTIL_CUM

GBL_CPU_REALTIME_UTIL_HIGHGBL_CPU_REALTIME_UTIL_HIGH

GBL_CPU_SYSCALL_TIMEGBL_CPU_SYSCALL_TIME

GBL_CPU_SYSCALL_TIME_CUMGBL_CPU_SYSCALL_TIME_CUM

GBL_CPU_SYSCALL_UTILGBL_CPU_SYSCALL_UTIL

GBL_CPU_SYSCALL_UTIL_CUMGBL_CPU_SYSCALL_UTIL_CUM

GBL_CPU_SYSCALL_UTIL_HIGHGBL_CPU_SYSCALL_UTIL_HIGH

GBL_CPU_SYS_MODE_TIMEGBL_CPU_SYS_MODE_TIME

GBL_CPU_SYS_MODE_TIME_CUMGBL_CPU_SYS_MODE_TIME_CUM

GBL_CPU_SYS_MODE_UTILGBL_CPU_SYS_MODE_UTIL

GBL_CPU_SYS_MODE_UTIL_CUMGBL_CPU_SYS_MODE_UTIL_CUM

GBL_CPU_TOTAL_TIMEGBL_CPU_TOTAL_TIME

GBL_CPU_TOTAL_TIME_CUMGBL_CPU_TOTAL_TIME_CUM

HP GlancePlus (11.02)Page 63 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_CPU_TOTAL_UTILGBL_CPU_TOTAL_UTIL

GBL_CPU_TOTAL_UTIL_CUMGBL_CPU_TOTAL_UTIL_CUM

GBL_CPU_TOTAL_UTIL_HIGHGBL_CPU_TOTAL_UTIL_HIGH

GBL_CPU_TRAP_TIMEGBL_CPU_TRAP_TIME

GBL_CPU_TRAP_TIME_CUMGBL_CPU_TRAP_TIME_CUM

GBL_CPU_TRAP_UTILGBL_CPU_TRAP_UTIL

GBL_CPU_TRAP_UTIL_CUMGBL_CPU_TRAP_UTIL_CUM

GBL_CPU_TRAP_UTIL_HIGHGBL_CPU_TRAP_UTIL_HIGH

GBL_CPU_USER_MODE_TIMEGBL_CPU_USER_MODE_TIME

GBL_CPU_USER_MODE_TIME_CUMGBL_CPU_USER_MODE_TIME_CUM

GBL_CPU_USER_MODE_UTILGBL_CPU_USER_MODE_UTIL

GBL_CPU_USER_MODE_UTIL_CUMGBL_CPU_USER_MODE_UTIL_CUM

GBL_CPU_VFAULT_TIMEGBL_CPU_VFAULT_TIME

GBL_CPU_VFAULT_TIME_CUMGBL_CPU_VFAULT_TIME_CUM

GBL_CPU_VFAULT_UTILGBL_CPU_VFAULT_UTIL

GBL_CPU_VFAULT_UTIL_CUMGBL_CPU_VFAULT_UTIL_CUM

GBL_CPU_VFAULT_UTIL_HIGHGBL_CPU_VFAULT_UTIL_HIGH

GBL_CPU_WAIT_UTILGBL_CPU_WAIT_UTIL

GBL_CSWITCH_RATEGBL_CSWITCH_RATE

GBL_CSWITCH_RATE_CUMGBL_CSWITCH_RATE_CUM

GBL_CSWITCH_RATE_HIGHGBL_CSWITCH_RATE_HIGH

GBL_DISK_FS_BYTEGBL_DISK_FS_BYTE

GBL_DISK_FS_BYTE_CUMGBL_DISK_FS_BYTE_CUM

GBL_DISK_FS_IOGBL_DISK_FS_IO

GBL_DISK_FS_IO_CUMGBL_DISK_FS_IO_CUM

GBL_DISK_FS_IO_PCTGBL_DISK_FS_IO_PCT

GBL_DISK_FS_IO_PCT_CUMGBL_DISK_FS_IO_PCT_CUM

GBL_DISK_FS_IO_RATEGBL_DISK_FS_IO_RATE

GBL_DISK_FS_IO_RATE_CUMGBL_DISK_FS_IO_RATE_CUM

GBL_DISK_FS_READGBL_DISK_FS_READ

GBL_DISK_FS_READ_RATEGBL_DISK_FS_READ_RATE

GBL_DISK_FS_WRITEGBL_DISK_FS_WRITE

GBL_DISK_FS_WRITE_RATEGBL_DISK_FS_WRITE_RATE

HP GlancePlus (11.02)Page 64 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_DISK_LOGL_BYTE_RATEGBL_DISK_LOGL_BYTE_RATE

GBL_DISK_LOGL_IOGBL_DISK_LOGL_IO

GBL_DISK_LOGL_IO_CUMGBL_DISK_LOGL_IO_CUM

GBL_DISK_LOGL_IO_RATEGBL_DISK_LOGL_IO_RATE

GBL_DISK_LOGL_IO_RATE_CUMGBL_DISK_LOGL_IO_RATE_CUM

GBL_DISK_LOGL_READGBL_DISK_LOGL_READ

GBL_DISK_LOGL_READ_BYTEGBL_DISK_LOGL_READ_BYTE

GBL_DISK_LOGL_READ_BYTE_CUMGBL_DISK_LOGL_READ_BYTE_CUM

GBL_DISK_LOGL_READ_BYTE_RATEGBL_DISK_LOGL_READ_BYTE_RATE

GBL_DISK_LOGL_READ_CUMGBL_DISK_LOGL_READ_CUM

GBL_DISK_LOGL_READ_PCTGBL_DISK_LOGL_READ_PCT

GBL_DISK_LOGL_READ_PCT_CUMGBL_DISK_LOGL_READ_PCT_CUM

GBL_DISK_LOGL_READ_RATEGBL_DISK_LOGL_READ_RATE

GBL_DISK_LOGL_READ_RATE_CUMGBL_DISK_LOGL_READ_RATE_CUM

GBL_DISK_LOGL_WRITEGBL_DISK_LOGL_WRITE

GBL_DISK_LOGL_WRITE_BYTEGBL_DISK_LOGL_WRITE_BYTE

GBL_DISK_LOGL_WRITE_BYTE_CUMGBL_DISK_LOGL_WRITE_BYTE_CUM

GBL_DISK_LOGL_WRITE_BYTE_RATEGBL_DISK_LOGL_WRITE_BYTE_RATE

GBL_DISK_LOGL_WRITE_CUMGBL_DISK_LOGL_WRITE_CUM

GBL_DISK_LOGL_WRITE_PCTGBL_DISK_LOGL_WRITE_PCT

GBL_DISK_LOGL_WRITE_PCT_CUMGBL_DISK_LOGL_WRITE_PCT_CUM

GBL_DISK_LOGL_WRITE_RATEGBL_DISK_LOGL_WRITE_RATE

GBL_DISK_LOGL_WRITE_RATE_CUMGBL_DISK_LOGL_WRITE_RATE_CUM

GBL_DISK_PHYS_BYTEGBL_DISK_PHYS_BYTE

GBL_DISK_PHYS_BYTE_RATEGBL_DISK_PHYS_BYTE_RATE

GBL_DISK_PHYS_IOGBL_DISK_PHYS_IO

GBL_DISK_PHYS_IO_CUMGBL_DISK_PHYS_IO_CUM

GBL_DISK_PHYS_IO_RATEGBL_DISK_PHYS_IO_RATE

GBL_DISK_PHYS_IO_RATE_CUMGBL_DISK_PHYS_IO_RATE_CUM

GBL_DISK_PHYS_READGBL_DISK_PHYS_READ

GBL_DISK_PHYS_READ_BYTEGBL_DISK_PHYS_READ_BYTE

GBL_DISK_PHYS_READ_BYTE_CUMGBL_DISK_PHYS_READ_BYTE_CUM

GBL_DISK_PHYS_READ_BYTE_RATEGBL_DISK_PHYS_READ_BYTE_RATE

HP GlancePlus (11.02)Page 65 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_DISK_PHYS_READ_CUMGBL_DISK_PHYS_READ_CUM

GBL_DISK_PHYS_READ_PCTGBL_DISK_PHYS_READ_PCT

GBL_DISK_PHYS_READ_PCT_CUMGBL_DISK_PHYS_READ_PCT_CUM

GBL_DISK_PHYS_READ_RATEGBL_DISK_PHYS_READ_RATE

GBL_DISK_PHYS_READ_RATE_CUMGBL_DISK_PHYS_READ_RATE_CUM

GBL_DISK_PHYS_WRITEGBL_DISK_PHYS_WRITE

GBL_DISK_PHYS_WRITE_BYTEGBL_DISK_PHYS_WRITE_BYTE

GBL_DISK_PHYS_WRITE_BYTE_CUMGBL_DISK_PHYS_WRITE_BYTE_CUM

GBL_DISK_PHYS_WRITE_BYTE_RATEGBL_DISK_PHYS_WRITE_BYTE_RATE

GBL_DISK_PHYS_WRITE_CUMGBL_DISK_PHYS_WRITE_CUM

GBL_DISK_PHYS_WRITE_PCTGBL_DISK_PHYS_WRITE_PCT

GBL_DISK_PHYS_WRITE_PCT_CUMGBL_DISK_PHYS_WRITE_PCT_CUM

GBL_DISK_PHYS_WRITE_RATEGBL_DISK_PHYS_WRITE_RATE

GBL_DISK_PHYS_WRITE_RATE_CUMGBL_DISK_PHYS_WRITE_RATE_CUM

GBL_DISK_QUEUEGBL_DISK_QUEUE

GBL_DISK_RAW_BYTEGBL_DISK_RAW_BYTE

GBL_DISK_RAW_BYTE_CUMGBL_DISK_RAW_BYTE_CUM

GBL_DISK_RAW_IOGBL_DISK_RAW_IO

GBL_DISK_RAW_IO_CUMGBL_DISK_RAW_IO_CUM

GBL_DISK_RAW_IO_PCTGBL_DISK_RAW_IO_PCT

GBL_DISK_RAW_IO_PCT_CUMGBL_DISK_RAW_IO_PCT_CUM

GBL_DISK_RAW_IO_RATEGBL_DISK_RAW_IO_RATE

GBL_DISK_RAW_IO_RATE_CUMGBL_DISK_RAW_IO_RATE_CUM

GBL_DISK_RAW_READGBL_DISK_RAW_READ

GBL_DISK_RAW_READ_RATEGBL_DISK_RAW_READ_RATE

GBL_DISK_RAW_WRITEGBL_DISK_RAW_WRITE

GBL_DISK_RAW_WRITE_RATEGBL_DISK_RAW_WRITE_RATE

GBL_DISK_REM_FS_BYTEGBL_DISK_REM_FS_BYTE

GBL_DISK_REM_FS_BYTE_CUMGBL_DISK_REM_FS_BYTE_CUM

GBL_DISK_REM_FS_IOGBL_DISK_REM_FS_IO

GBL_DISK_REM_FS_IO_CUMGBL_DISK_REM_FS_IO_CUM

GBL_DISK_REM_FS_IO_PCTGBL_DISK_REM_FS_IO_PCT

GBL_DISK_REM_FS_IO_PCT_CUMGBL_DISK_REM_FS_IO_PCT_CUM

HP GlancePlus (11.02)Page 66 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_DISK_REM_FS_IO_RATEGBL_DISK_REM_FS_IO_RATE

GBL_DISK_REM_FS_IO_RATE_CUMGBL_DISK_REM_FS_IO_RATE_CUM

GBL_DISK_REM_LOGL_READGBL_DISK_REM_LOGL_READ

GBL_DISK_REM_LOGL_READ_BYTEGBL_DISK_REM_LOGL_READ_BYTE

GBL_DISK_REM_LOGL_READ_BYTE_CUMGBL_DISK_REM_LOGL_READ_BYTE_CUM

GBL_DISK_REM_LOGL_READ_CUMGBL_DISK_REM_LOGL_READ_CUM

GBL_DISK_REM_LOGL_READ_PCTGBL_DISK_REM_LOGL_READ_PCT

GBL_DISK_REM_LOGL_READ_PCT_CUMGBL_DISK_REM_LOGL_READ_PCT_CUM

GBL_DISK_REM_LOGL_READ_RATEGBL_DISK_REM_LOGL_READ_RATE

GBL_DISK_REM_LOGL_READ_RATE_CUMGBL_DISK_REM_LOGL_READ_RATE_CUM

GBL_DISK_REM_LOGL_WRITEGBL_DISK_REM_LOGL_WRITE

GBL_DISK_REM_LOGL_WRITE_BYTEGBL_DISK_REM_LOGL_WRITE_BYTE

GBL_DISK_REM_LOGL_WRITE_BYTE_CUMGBL_DISK_REM_LOGL_WRITE_BYTE_CUM

GBL_DISK_REM_LOGL_WRITE_CUMGBL_DISK_REM_LOGL_WRITE_CUM

GBL_DISK_REM_LOGL_WRITE_PCTGBL_DISK_REM_LOGL_WRITE_PCT

GBL_DISK_REM_LOGL_WRITE_PCT_CUMGBL_DISK_REM_LOGL_WRITE_PCT_CUM

GBL_DISK_REM_LOGL_WRITE_RATEGBL_DISK_REM_LOGL_WRITE_RATE

GBL_DISK_REM_LOGL_WRITE_RATE_CUMGBL_DISK_REM_LOGL_WRITE_RATE_CUM

GBL_DISK_REM_PHYS_READGBL_DISK_REM_PHYS_READ

GBL_DISK_REM_PHYS_READ_BYTEGBL_DISK_REM_PHYS_READ_BYTE

GBL_DISK_REM_PHYS_READ_BYTE_CUMGBL_DISK_REM_PHYS_READ_BYTE_CUM

GBL_DISK_REM_PHYS_READ_CUMGBL_DISK_REM_PHYS_READ_CUM

GBL_DISK_REM_PHYS_READ_PCTGBL_DISK_REM_PHYS_READ_PCT

GBL_DISK_REM_PHYS_READ_PCT_CUMGBL_DISK_REM_PHYS_READ_PCT_CUM

GBL_DISK_REM_PHYS_READ_RATEGBL_DISK_REM_PHYS_READ_RATE

GBL_DISK_REM_PHYS_READ_RATE_CUMGBL_DISK_REM_PHYS_READ_RATE_CUM

GBL_DISK_REM_PHYS_WRITEGBL_DISK_REM_PHYS_WRITE

GBL_DISK_REM_PHYS_WRITE_BYTEGBL_DISK_REM_PHYS_WRITE_BYTE

GBL_DISK_REM_PHYS_WRITE_BYTE_CUMGBL_DISK_REM_PHYS_WRITE_BYTE_CUM

GBL_DISK_REM_PHYS_WRITE_CUMGBL_DISK_REM_PHYS_WRITE_CUM

GBL_DISK_REM_PHYS_WRITE_PCTGBL_DISK_REM_PHYS_WRITE_PCT

GBL_DISK_REM_PHYS_WRITE_PCT_CUMGBL_DISK_REM_PHYS_WRITE_PCT_CUM

GBL_DISK_REM_PHYS_WRITE_RATEGBL_DISK_REM_PHYS_WRITE_RATE

HP GlancePlus (11.02)Page 67 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_DISK_REM_PHYS_WRITE_RATE_CUMGBL_DISK_REM_PHYS_WRITE_RATE_CUM

GBL_DISK_REM_RAW_BYTEGBL_DISK_REM_RAW_BYTE

GBL_DISK_REM_RAW_BYTE_CUMGBL_DISK_REM_RAW_BYTE_CUM

GBL_DISK_REM_RAW_IOGBL_DISK_REM_RAW_IO

GBL_DISK_REM_RAW_IO_CUMGBL_DISK_REM_RAW_IO_CUM

GBL_DISK_REM_RAW_IO_PCTGBL_DISK_REM_RAW_IO_PCT

GBL_DISK_REM_RAW_IO_PCT_CUMGBL_DISK_REM_RAW_IO_PCT_CUM

GBL_DISK_REM_RAW_IO_RATEGBL_DISK_REM_RAW_IO_RATE

GBL_DISK_REM_RAW_IO_RATE_CUMGBL_DISK_REM_RAW_IO_RATE_CUM

GBL_DISK_REM_SYSTEM_BYTEGBL_DISK_REM_SYSTEM_BYTE

GBL_DISK_REM_SYSTEM_BYTE_CUMGBL_DISK_REM_SYSTEM_BYTE_CUM

GBL_DISK_REM_SYSTEM_IOGBL_DISK_REM_SYSTEM_IO

GBL_DISK_REM_SYSTEM_IO_CUMGBL_DISK_REM_SYSTEM_IO_CUM

GBL_DISK_REM_SYSTEM_IO_PCTGBL_DISK_REM_SYSTEM_IO_PCT

GBL_DISK_REM_SYSTEM_IO_PCT_CUMGBL_DISK_REM_SYSTEM_IO_PCT_CUM

GBL_DISK_REM_SYSTEM_IO_RATEGBL_DISK_REM_SYSTEM_IO_RATE

GBL_DISK_REM_SYSTEM_IO_RATE_CUMGBL_DISK_REM_SYSTEM_IO_RATE_CUM

GBL_DISK_REM_VM_BYTEGBL_DISK_REM_VM_BYTE

GBL_DISK_REM_VM_BYTE_CUMGBL_DISK_REM_VM_BYTE_CUM

GBL_DISK_REM_VM_IOGBL_DISK_REM_VM_IO

GBL_DISK_REM_VM_IO_CUMGBL_DISK_REM_VM_IO_CUM

GBL_DISK_REM_VM_IO_PCTGBL_DISK_REM_VM_IO_PCT

GBL_DISK_REM_VM_IO_PCT_CUMGBL_DISK_REM_VM_IO_PCT_CUM

GBL_DISK_REM_VM_IO_RATEGBL_DISK_REM_VM_IO_RATE

GBL_DISK_REM_VM_IO_RATE_CUMGBL_DISK_REM_VM_IO_RATE_CUM

GBL_DISK_REQUEST_QUEUEGBL_DISK_REQUEST_QUEUE

GBL_DISK_SUBSYSTEM_QUEUEGBL_DISK_SUBSYSTEM_QUEUE

GBL_DISK_SUBSYSTEM_WAIT_PCTGBL_DISK_SUBSYSTEM_WAIT_PCT

GBL_DISK_SYSTEM_BYTEGBL_DISK_SYSTEM_BYTE

GBL_DISK_SYSTEM_BYTE_CUMGBL_DISK_SYSTEM_BYTE_CUM

GBL_DISK_SYSTEM_IOGBL_DISK_SYSTEM_IO

GBL_DISK_SYSTEM_IO_CUMGBL_DISK_SYSTEM_IO_CUM

GBL_DISK_SYSTEM_IO_PCTGBL_DISK_SYSTEM_IO_PCT

HP GlancePlus (11.02)Page 68 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_DISK_SYSTEM_IO_PCT_CUMGBL_DISK_SYSTEM_IO_PCT_CUM

GBL_DISK_SYSTEM_IO_RATEGBL_DISK_SYSTEM_IO_RATE

GBL_DISK_SYSTEM_IO_RATE_CUMGBL_DISK_SYSTEM_IO_RATE_CUM

GBL_DISK_SYSTEM_READGBL_DISK_SYSTEM_READ

GBL_DISK_SYSTEM_READ_RATEGBL_DISK_SYSTEM_READ_RATE

GBL_DISK_SYSTEM_WRITEGBL_DISK_SYSTEM_WRITE

GBL_DISK_SYSTEM_WRITE_RATEGBL_DISK_SYSTEM_WRITE_RATE

GBL_DISK_TIME_PEAKGBL_DISK_TIME_PEAK

GBL_DISK_UTILGBL_DISK_UTIL

GBL_DISK_UTIL_PEAKGBL_DISK_UTIL_PEAK

GBL_DISK_UTIL_PEAK_CUMGBL_DISK_UTIL_PEAK_CUM

GBL_DISK_UTIL_PEAK_HIGHGBL_DISK_UTIL_PEAK_HIGH

GBL_DISK_UTIL_PEAK_OTHERSGBL_DISK_UTIL_PEAK_OTHERS

GBL_DISK_UTIL_PEAK_VMGBL_DISK_UTIL_PEAK_VM

GBL_DISK_VM_BYTEGBL_DISK_VM_BYTE

GBL_DISK_VM_BYTE_CUMGBL_DISK_VM_BYTE_CUM

GBL_DISK_VM_IOGBL_DISK_VM_IO

GBL_DISK_VM_IO_CUMGBL_DISK_VM_IO_CUM

GBL_DISK_VM_IO_PCTGBL_DISK_VM_IO_PCT

GBL_DISK_VM_IO_PCT_CUMGBL_DISK_VM_IO_PCT_CUM

GBL_DISK_VM_IO_RATEGBL_DISK_VM_IO_RATE

GBL_DISK_VM_IO_RATE_CUMGBL_DISK_VM_IO_RATE_CUM

GBL_DISK_VM_READGBL_DISK_VM_READ

GBL_DISK_VM_READ_CUMGBL_DISK_VM_READ_CUM

GBL_DISK_VM_READ_RATEGBL_DISK_VM_READ_RATE

GBL_DISK_VM_READ_RATE_CUMGBL_DISK_VM_READ_RATE_CUM

GBL_DISK_VM_READ_RATE_HIGHGBL_DISK_VM_READ_RATE_HIGH

GBL_DISK_VM_WRITEGBL_DISK_VM_WRITE

GBL_DISK_VM_WRITE_CUMGBL_DISK_VM_WRITE_CUM

GBL_DISK_VM_WRITE_RATEGBL_DISK_VM_WRITE_RATE

GBL_DISK_VM_WRITE_RATE_CUMGBL_DISK_VM_WRITE_RATE_CUM

GBL_DISK_VM_WRITE_RATE_HIGHGBL_DISK_VM_WRITE_RATE_HIGH

GBL_DISK_WAIT_PCTGBL_DISK_WAIT_PCT

HP GlancePlus (11.02)Page 69 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_DISK_WAIT_TIMEGBL_DISK_WAIT_TIME

GBL_FS_SPACE_UTIL_PEAKGBL_FS_SPACE_UTIL_PEAK

GBL_GMTOFFSETGBL_GMTOFFSET

GBL_GRAPHICS_QUEUEGBL_GRAPHICS_QUEUE

GBL_GRAPHICS_WAIT_PCTGBL_GRAPHICS_WAIT_PCT

GBL_GRAPHICS_WAIT_TIMEGBL_GRAPHICS_WAIT_TIME

GBL_IGNORE_MTGBL_IGNORE_MT

GBL_INODE_QUEUEGBL_INODE_QUEUE

GBL_INODE_WAIT_PCTGBL_INODE_WAIT_PCT

GBL_INODE_WAIT_TIMEGBL_INODE_WAIT_TIME

GBL_INTERRUPTGBL_INTERRUPT

GBL_INTERRUPT_RATEGBL_INTERRUPT_RATE

GBL_INTERRUPT_RATE_CUMGBL_INTERRUPT_RATE_CUM

GBL_INTERRUPT_RATE_HIGHGBL_INTERRUPT_RATE_HIGH

GBL_INTERVALGBL_INTERVAL

GBL_INTERVAL_CUMGBL_INTERVAL_CUM

GBL_IPC_QUEUEGBL_IPC_QUEUE

GBL_IPC_SUBSYSTEM_QUEUEGBL_IPC_SUBSYSTEM_QUEUE

GBL_IPC_SUBSYSTEM_WAIT_PCTGBL_IPC_SUBSYSTEM_WAIT_PCT

GBL_IPC_WAIT_PCTGBL_IPC_WAIT_PCT

GBL_IPC_WAIT_TIMEGBL_IPC_WAIT_TIME

GBL_JAVAARGGBL_JAVAARG

GBL_JOBCTL_QUEUEGBL_JOBCTL_QUEUE

GBL_JOBCTL_WAIT_PCTGBL_JOBCTL_WAIT_PCT

GBL_JOBCTL_WAIT_TIMEGBL_JOBCTL_WAIT_TIME

GBL_LAN_QUEUEGBL_LAN_QUEUE

GBL_LAN_WAIT_PCTGBL_LAN_WAIT_PCT

GBL_LAN_WAIT_TIMEGBL_LAN_WAIT_TIME

GBL_LOADAVGGBL_LOADAVG

GBL_LOADAVG15GBL_LOADAVG15

GBL_LOADAVG5GBL_LOADAVG5

GBL_LOST_MI_TRACE_BUFFERSGBL_LOST_MI_TRACE_BUFFERS

GBL_LS_ROLEGBL_LS_ROLE

HP GlancePlus (11.02)Page 70 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_LS_TYPEGBL_LS_TYPE

GBL_LS_UUIDGBL_LS_UUID

GBL_MACHINEGBL_MACHINE

GBL_MACHINE_MODELGBL_MACHINE_MODEL

GBL_MEMFS_BLK_CNTGBL_MEMFS_BLK_CNT

GBL_MEMFS_SWP_CNTGBL_MEMFS_SWP_CNT

GBL_MEM_ACTIVE_VIRTGBL_MEM_ACTIVE_VIRT

GBL_MEM_ACTIVE_VIRT_UTILGBL_MEM_ACTIVE_VIRT_UTIL

GBL_MEM_AVAILGBL_MEM_AVAIL

GBL_MEM_CACHEGBL_MEM_CACHE

GBL_MEM_CACHE_HITGBL_MEM_CACHE_HIT

GBL_MEM_CACHE_HIT_CUMGBL_MEM_CACHE_HIT_CUM

GBL_MEM_CACHE_HIT_PCTGBL_MEM_CACHE_HIT_PCT

GBL_MEM_CACHE_HIT_PCT_CUMGBL_MEM_CACHE_HIT_PCT_CUM

GBL_MEM_CACHE_HIT_PCT_HIGHGBL_MEM_CACHE_HIT_PCT_HIGH

GBL_MEM_CACHE_UTILGBL_MEM_CACHE_UTIL

GBL_MEM_CACHE_WRITE_HITGBL_MEM_CACHE_WRITE_HIT

GBL_MEM_CACHE_WRITE_HIT_CUMGBL_MEM_CACHE_WRITE_HIT_CUM

GBL_MEM_CACHE_WRITE_HIT_PCTGBL_MEM_CACHE_WRITE_HIT_PCT

GBL_MEM_CACHE_WRITE_HIT_PCT_CUMGBL_MEM_CACHE_WRITE_HIT_PCT_CUM

GBL_MEM_DNLC_HITGBL_MEM_DNLC_HIT

GBL_MEM_DNLC_HIT_CUMGBL_MEM_DNLC_HIT_CUM

GBL_MEM_DNLC_HIT_PCTGBL_MEM_DNLC_HIT_PCT

GBL_MEM_DNLC_HIT_PCT_CUMGBL_MEM_DNLC_HIT_PCT_CUM

GBL_MEM_DNLC_HIT_PCT_HIGHGBL_MEM_DNLC_HIT_PCT_HIGH

GBL_MEM_DNLC_LONGSGBL_MEM_DNLC_LONGS

GBL_MEM_DNLC_LONGS_CUMGBL_MEM_DNLC_LONGS_CUM

GBL_MEM_DNLC_LONGS_PCTGBL_MEM_DNLC_LONGS_PCT

GBL_MEM_DNLC_LONGS_PCT_CUMGBL_MEM_DNLC_LONGS_PCT_CUM

GBL_MEM_DNLC_LONGS_PCT_HIGHGBL_MEM_DNLC_LONGS_PCT_HIGH

GBL_MEM_FILE_PAGE_CACHEGBL_MEM_FILE_PAGE_CACHE

GBL_MEM_FILE_PAGE_CACHE_UTILGBL_MEM_FILE_PAGE_CACHE_UTIL

GBL_MEM_FREEGBL_MEM_FREE

HP GlancePlus (11.02)Page 71 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_MEM_FREE_UTILGBL_MEM_FREE_UTIL

GBL_MEM_PAGEINGBL_MEM_PAGEIN

GBL_MEM_PAGEIN_BYTEGBL_MEM_PAGEIN_BYTE

GBL_MEM_PAGEIN_BYTE_CUMGBL_MEM_PAGEIN_BYTE_CUM

GBL_MEM_PAGEIN_BYTE_RATEGBL_MEM_PAGEIN_BYTE_RATE

GBL_MEM_PAGEIN_BYTE_RATE_CUMGBL_MEM_PAGEIN_BYTE_RATE_CUM

GBL_MEM_PAGEIN_BYTE_RATE_HIGHGBL_MEM_PAGEIN_BYTE_RATE_HIGH

GBL_MEM_PAGEIN_CUMGBL_MEM_PAGEIN_CUM

GBL_MEM_PAGEIN_RATEGBL_MEM_PAGEIN_RATE

GBL_MEM_PAGEIN_RATE_CUMGBL_MEM_PAGEIN_RATE_CUM

GBL_MEM_PAGEIN_RATE_HIGHGBL_MEM_PAGEIN_RATE_HIGH

GBL_MEM_PAGEOUTGBL_MEM_PAGEOUT

GBL_MEM_PAGEOUT_BYTEGBL_MEM_PAGEOUT_BYTE

GBL_MEM_PAGEOUT_BYTE_CUMGBL_MEM_PAGEOUT_BYTE_CUM

GBL_MEM_PAGEOUT_BYTE_RATEGBL_MEM_PAGEOUT_BYTE_RATE

GBL_MEM_PAGEOUT_BYTE_RATE_CUMGBL_MEM_PAGEOUT_BYTE_RATE_CUM

GBL_MEM_PAGEOUT_BYTE_RATE_HIGHGBL_MEM_PAGEOUT_BYTE_RATE_HIGH

GBL_MEM_PAGEOUT_CUMGBL_MEM_PAGEOUT_CUM

GBL_MEM_PAGEOUT_RATEGBL_MEM_PAGEOUT_RATE

GBL_MEM_PAGEOUT_RATE_CUMGBL_MEM_PAGEOUT_RATE_CUM

GBL_MEM_PAGEOUT_RATE_HIGHGBL_MEM_PAGEOUT_RATE_HIGH

GBL_MEM_PAGE_FAULTGBL_MEM_PAGE_FAULT

GBL_MEM_PAGE_FAULT_CUMGBL_MEM_PAGE_FAULT_CUM

GBL_MEM_PAGE_FAULT_RATEGBL_MEM_PAGE_FAULT_RATE

GBL_MEM_PAGE_FAULT_RATE_CUMGBL_MEM_PAGE_FAULT_RATE_CUM

GBL_MEM_PAGE_FAULT_RATE_HIGHGBL_MEM_PAGE_FAULT_RATE_HIGH

GBL_MEM_PAGE_REQUESTGBL_MEM_PAGE_REQUEST

GBL_MEM_PAGE_REQUEST_CUMGBL_MEM_PAGE_REQUEST_CUM

GBL_MEM_PAGE_REQUEST_RATEGBL_MEM_PAGE_REQUEST_RATE

GBL_MEM_PAGE_REQUEST_RATE_CUMGBL_MEM_PAGE_REQUEST_RATE_CUM

GBL_MEM_PAGE_REQUEST_RATE_HIGHGBL_MEM_PAGE_REQUEST_RATE_HIGH

GBL_MEM_PAGE_SIZE_MAXGBL_MEM_PAGE_SIZE_MAX

GBL_MEM_PG_SCANGBL_MEM_PG_SCAN

HP GlancePlus (11.02)Page 72 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_MEM_PG_SCAN_CUMGBL_MEM_PG_SCAN_CUM

GBL_MEM_PG_SCAN_RATEGBL_MEM_PG_SCAN_RATE

GBL_MEM_PG_SCAN_RATE_CUMGBL_MEM_PG_SCAN_RATE_CUM

GBL_MEM_PG_SCAN_RATE_HIGHGBL_MEM_PG_SCAN_RATE_HIGH

GBL_MEM_PHYSGBL_MEM_PHYS

GBL_MEM_QUEUEGBL_MEM_QUEUE

GBL_MEM_SWAPGBL_MEM_SWAP

GBL_MEM_SWAPINGBL_MEM_SWAPIN

GBL_MEM_SWAPIN_BYTEGBL_MEM_SWAPIN_BYTE

GBL_MEM_SWAPIN_BYTE_CUMGBL_MEM_SWAPIN_BYTE_CUM

GBL_MEM_SWAPIN_BYTE_RATEGBL_MEM_SWAPIN_BYTE_RATE

GBL_MEM_SWAPIN_BYTE_RATE_CUMGBL_MEM_SWAPIN_BYTE_RATE_CUM

GBL_MEM_SWAPIN_BYTE_RATE_HIGHGBL_MEM_SWAPIN_BYTE_RATE_HIGH

GBL_MEM_SWAPIN_CUMGBL_MEM_SWAPIN_CUM

GBL_MEM_SWAPIN_RATEGBL_MEM_SWAPIN_RATE

GBL_MEM_SWAPIN_RATE_CUMGBL_MEM_SWAPIN_RATE_CUM

GBL_MEM_SWAPIN_RATE_HIGHGBL_MEM_SWAPIN_RATE_HIGH

GBL_MEM_SWAPOUTGBL_MEM_SWAPOUT

GBL_MEM_SWAPOUT_BYTEGBL_MEM_SWAPOUT_BYTE

GBL_MEM_SWAPOUT_BYTE_CUMGBL_MEM_SWAPOUT_BYTE_CUM

GBL_MEM_SWAPOUT_BYTE_RATEGBL_MEM_SWAPOUT_BYTE_RATE

GBL_MEM_SWAPOUT_BYTE_RATE_CUMGBL_MEM_SWAPOUT_BYTE_RATE_CUM

GBL_MEM_SWAPOUT_BYTE_RATE_HIGHGBL_MEM_SWAPOUT_BYTE_RATE_HIGH

GBL_MEM_SWAPOUT_CUMGBL_MEM_SWAPOUT_CUM

GBL_MEM_SWAPOUT_RATEGBL_MEM_SWAPOUT_RATE

GBL_MEM_SWAPOUT_RATE_CUMGBL_MEM_SWAPOUT_RATE_CUM

GBL_MEM_SWAPOUT_RATE_HIGHGBL_MEM_SWAPOUT_RATE_HIGH

GBL_MEM_SWAP_1_MIN_RATEGBL_MEM_SWAP_1_MIN_RATE

GBL_MEM_SWAP_CUMGBL_MEM_SWAP_CUM

GBL_MEM_SWAP_RATEGBL_MEM_SWAP_RATE

GBL_MEM_SWAP_RATE_CUMGBL_MEM_SWAP_RATE_CUM

GBL_MEM_SWAP_RATE_HIGHGBL_MEM_SWAP_RATE_HIGH

GBL_MEM_SYSGBL_MEM_SYS

HP GlancePlus (11.02)Page 73 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_MEM_SYS_AND_CACHE_UTILGBL_MEM_SYS_AND_CACHE_UTIL

GBL_MEM_SYS_UTILGBL_MEM_SYS_UTIL

GBL_MEM_USERGBL_MEM_USER

GBL_MEM_USER_UTILGBL_MEM_USER_UTIL

GBL_MEM_UTILGBL_MEM_UTIL

GBL_MEM_UTIL_CUMGBL_MEM_UTIL_CUM

GBL_MEM_UTIL_HIGHGBL_MEM_UTIL_HIGH

GBL_MEM_VIRTGBL_MEM_VIRT

GBL_MEM_WAIT_PCTGBL_MEM_WAIT_PCT

GBL_MEM_WAIT_TIMEGBL_MEM_WAIT_TIME

GBL_MI_LOST_PROCGBL_MI_LOST_PROC

GBL_MI_LOST_PROC_CUMGBL_MI_LOST_PROC_CUM

GBL_MI_PROC_ENTRIESGBL_MI_PROC_ENTRIES

GBL_MI_THREAD_ENTRIESGBL_MI_THREAD_ENTRIES

GBL_MSG_QUEUEGBL_MSG_QUEUE

GBL_MSG_WAIT_PCTGBL_MSG_WAIT_PCT

GBL_MSG_WAIT_TIMEGBL_MSG_WAIT_TIME

GBL_NETWORK_SUBSYSTEM_QUEUEGBL_NETWORK_SUBSYSTEM_QUEUE

GBL_NETWORK_SUBSYSTEM_WAIT_PCTGBL_NETWORK_SUBSYSTEM_WAIT_PCT

GBL_NET_COLLISIONGBL_NET_COLLISION

GBL_NET_COLLISION_1_MIN_RATEGBL_NET_COLLISION_1_MIN_RATE

GBL_NET_COLLISION_CUMGBL_NET_COLLISION_CUM

GBL_NET_COLLISION_PCTGBL_NET_COLLISION_PCT

GBL_NET_COLLISION_PCT_CUMGBL_NET_COLLISION_PCT_CUM

GBL_NET_COLLISION_RATEGBL_NET_COLLISION_RATE

GBL_NET_DEFERREDGBL_NET_DEFERRED

GBL_NET_DEFERRED_CUMGBL_NET_DEFERRED_CUM

GBL_NET_DEFERRED_PCTGBL_NET_DEFERRED_PCT

GBL_NET_DEFERRED_PCT_CUMGBL_NET_DEFERRED_PCT_CUM

GBL_NET_DEFERRED_RATEGBL_NET_DEFERRED_RATE

GBL_NET_DEFERRED_RATE_CUMGBL_NET_DEFERRED_RATE_CUM

GBL_NET_ERRORGBL_NET_ERROR

GBL_NET_ERROR_1_MIN_RATEGBL_NET_ERROR_1_MIN_RATE

HP GlancePlus (11.02)Page 74 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_NET_ERROR_CUMGBL_NET_ERROR_CUM

GBL_NET_ERROR_RATEGBL_NET_ERROR_RATE

GBL_NET_IN_ERRORGBL_NET_IN_ERROR

GBL_NET_IN_ERROR_CUMGBL_NET_IN_ERROR_CUM

GBL_NET_IN_ERROR_PCTGBL_NET_IN_ERROR_PCT

GBL_NET_IN_ERROR_PCT_CUMGBL_NET_IN_ERROR_PCT_CUM

GBL_NET_IN_ERROR_RATEGBL_NET_IN_ERROR_RATE

GBL_NET_IN_ERROR_RATE_CUMGBL_NET_IN_ERROR_RATE_CUM

GBL_NET_IN_PACKETGBL_NET_IN_PACKET

GBL_NET_IN_PACKET_CUMGBL_NET_IN_PACKET_CUM

GBL_NET_IN_PACKET_RATEGBL_NET_IN_PACKET_RATE

GBL_NET_IP_FRAGMENTS_RECEIVEDGBL_NET_IP_FRAGMENTS_RECEIVED

GBL_NET_IP_FWD_DATAGRAMSGBL_NET_IP_FWD_DATAGRAMS

GBL_NET_IP_REASSEMBLY_REQUIREDGBL_NET_IP_REASSEMBLY_REQUIRED

GBL_NET_OUTQUEUEGBL_NET_OUTQUEUE

GBL_NET_OUT_ERRORGBL_NET_OUT_ERROR

GBL_NET_OUT_ERROR_CUMGBL_NET_OUT_ERROR_CUM

GBL_NET_OUT_ERROR_PCTGBL_NET_OUT_ERROR_PCT

GBL_NET_OUT_ERROR_PCT_CUMGBL_NET_OUT_ERROR_PCT_CUM

GBL_NET_OUT_ERROR_RATEGBL_NET_OUT_ERROR_RATE

GBL_NET_OUT_ERROR_RATE_CUMGBL_NET_OUT_ERROR_RATE_CUM

GBL_NET_OUT_PACKETGBL_NET_OUT_PACKET

GBL_NET_OUT_PACKET_CUMGBL_NET_OUT_PACKET_CUM

GBL_NET_OUT_PACKET_RATEGBL_NET_OUT_PACKET_RATE

GBL_NET_PACKETGBL_NET_PACKET

GBL_NET_PACKET_RATEGBL_NET_PACKET_RATE

GBL_NET_UTIL_PEAKGBL_NET_UTIL_PEAK

GBL_NFS_CALLGBL_NFS_CALL

GBL_NFS_CALL_RATEGBL_NFS_CALL_RATE

GBL_NFS_CLIENT_BAD_CALLGBL_NFS_CLIENT_BAD_CALL

GBL_NFS_CLIENT_BAD_CALL_CUMGBL_NFS_CLIENT_BAD_CALL_CUM

GBL_NFS_CLIENT_BIODGBL_NFS_CLIENT_BIOD

GBL_NFS_CLIENT_BYTEGBL_NFS_CLIENT_BYTE

HP GlancePlus (11.02)Page 75 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_NFS_CLIENT_BYTE_CUMGBL_NFS_CLIENT_BYTE_CUM

GBL_NFS_CLIENT_CALLGBL_NFS_CLIENT_CALL

GBL_NFS_CLIENT_CALL_CUMGBL_NFS_CLIENT_CALL_CUM

GBL_NFS_CLIENT_CALL_RATEGBL_NFS_CLIENT_CALL_RATE

GBL_NFS_CLIENT_IDLE_BIODGBL_NFS_CLIENT_IDLE_BIOD

GBL_NFS_CLIENT_IOGBL_NFS_CLIENT_IO

GBL_NFS_CLIENT_IO_CUMGBL_NFS_CLIENT_IO_CUM

GBL_NFS_CLIENT_IO_PCTGBL_NFS_CLIENT_IO_PCT

GBL_NFS_CLIENT_IO_PCT_CUMGBL_NFS_CLIENT_IO_PCT_CUM

GBL_NFS_CLIENT_IO_RATEGBL_NFS_CLIENT_IO_RATE

GBL_NFS_CLIENT_IO_RATE_CUMGBL_NFS_CLIENT_IO_RATE_CUM

GBL_NFS_CLIENT_PHYS_TIMEGBL_NFS_CLIENT_PHYS_TIME

GBL_NFS_CLIENT_PHYS_TIME_CUMGBL_NFS_CLIENT_PHYS_TIME_CUM

GBL_NFS_CLIENT_READ_BYTE_RATEGBL_NFS_CLIENT_READ_BYTE_RATE

GBL_NFS_CLIENT_READ_BYTE_RATE_CUMGBL_NFS_CLIENT_READ_BYTE_RATE_
CUM

GBL_NFS_CLIENT_READ_RATEGBL_NFS_CLIENT_READ_RATE

GBL_NFS_CLIENT_READ_RATE_CUMGBL_NFS_CLIENT_READ_RATE_CUM

GBL_NFS_CLIENT_SERVICE_QUEUEGBL_NFS_CLIENT_SERVICE_QUEUE

GBL_NFS_CLIENT_SERVICE_QUEUE_CUMGBL_NFS_CLIENT_SERVICE_QUEUE_CUM

GBL_NFS_CLIENT_SERVICE_TIMEGBL_NFS_CLIENT_SERVICE_TIME

GBL_NFS_CLIENT_SERVICE_TIME_CUMGBL_NFS_CLIENT_SERVICE_TIME_CUM

GBL_NFS_CLIENT_WRITE_BYTE_RATEGBL_NFS_CLIENT_WRITE_BYTE_RATE

GBL_NFS_CLIENT_WRITE_BYTE_RATE_CUMGBL_NFS_CLIENT_WRITE_BYTE_RATE_
CUM

GBL_NFS_CLIENT_WRITE_RATEGBL_NFS_CLIENT_WRITE_RATE

GBL_NFS_CLIENT_WRITE_RATE_CUMGBL_NFS_CLIENT_WRITE_RATE_CUM

GBL_NFS_LOGL_READGBL_NFS_LOGL_READ

GBL_NFS_LOGL_READ_BYTEGBL_NFS_LOGL_READ_BYTE

GBL_NFS_LOGL_READ_BYTE_CUMGBL_NFS_LOGL_READ_BYTE_CUM

GBL_NFS_LOGL_READ_CUMGBL_NFS_LOGL_READ_CUM

GBL_NFS_LOGL_READ_PCTGBL_NFS_LOGL_READ_PCT

GBL_NFS_LOGL_READ_PCT_CUMGBL_NFS_LOGL_READ_PCT_CUM

HP GlancePlus (11.02)Page 76 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_NFS_LOGL_READ_RATEGBL_NFS_LOGL_READ_RATE

GBL_NFS_LOGL_READ_RATE_CUMGBL_NFS_LOGL_READ_RATE_CUM

GBL_NFS_LOGL_WRITEGBL_NFS_LOGL_WRITE

GBL_NFS_LOGL_WRITE_BYTEGBL_NFS_LOGL_WRITE_BYTE

GBL_NFS_LOGL_WRITE_BYTE_CUMGBL_NFS_LOGL_WRITE_BYTE_CUM

GBL_NFS_LOGL_WRITE_CUMGBL_NFS_LOGL_WRITE_CUM

GBL_NFS_LOGL_WRITE_PCTGBL_NFS_LOGL_WRITE_PCT

GBL_NFS_LOGL_WRITE_PCT_CUMGBL_NFS_LOGL_WRITE_PCT_CUM

GBL_NFS_LOGL_WRITE_RATEGBL_NFS_LOGL_WRITE_RATE

GBL_NFS_LOGL_WRITE_RATE_CUMGBL_NFS_LOGL_WRITE_RATE_CUM

GBL_NFS_QUEUEGBL_NFS_QUEUE

GBL_NFS_SERVER_BAD_CALLGBL_NFS_SERVER_BAD_CALL

GBL_NFS_SERVER_BAD_CALL_CUMGBL_NFS_SERVER_BAD_CALL_CUM

GBL_NFS_SERVER_BYTEGBL_NFS_SERVER_BYTE

GBL_NFS_SERVER_BYTE_CUMGBL_NFS_SERVER_BYTE_CUM

GBL_NFS_SERVER_CALLGBL_NFS_SERVER_CALL

GBL_NFS_SERVER_CALL_CUMGBL_NFS_SERVER_CALL_CUM

GBL_NFS_SERVER_CALL_RATEGBL_NFS_SERVER_CALL_RATE

GBL_NFS_SERVER_IOGBL_NFS_SERVER_IO

GBL_NFS_SERVER_IO_CUMGBL_NFS_SERVER_IO_CUM

GBL_NFS_SERVER_IO_PCTGBL_NFS_SERVER_IO_PCT

GBL_NFS_SERVER_IO_PCT_CUMGBL_NFS_SERVER_IO_PCT_CUM

GBL_NFS_SERVER_IO_RATEGBL_NFS_SERVER_IO_RATE

GBL_NFS_SERVER_IO_RATE_CUMGBL_NFS_SERVER_IO_RATE_CUM

GBL_NFS_SERVER_READ_BYTE_RATEGBL_NFS_SERVER_READ_BYTE_RATE

GBL_NFS_SERVER_READ_BYTE_RATE_CUMGBL_NFS_SERVER_READ_BYTE_RATE_
CUM

GBL_NFS_SERVER_READ_RATEGBL_NFS_SERVER_READ_RATE

GBL_NFS_SERVER_READ_RATE_CUMGBL_NFS_SERVER_READ_RATE_CUM

GBL_NFS_SERVER_SERVICE_TIMEGBL_NFS_SERVER_SERVICE_TIME

GBL_NFS_SERVER_SERVICE_TIME_CUMGBL_NFS_SERVER_SERVICE_TIME_CUM

GBL_NFS_SERVER_WRITE_BYTE_RATEGBL_NFS_SERVER_WRITE_BYTE_RATE

HP GlancePlus (11.02)Page 77 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_NFS_SERVER_WRITE_BYTE_RATE_CUMGBL_NFS_SERVER_WRITE_BYTE_RATE_
CUM

GBL_NFS_SERVER_WRITE_RATEGBL_NFS_SERVER_WRITE_RATE

GBL_NFS_SERVER_WRITE_RATE_CUMGBL_NFS_SERVER_WRITE_RATE_CUM

GBL_NFS_WAIT_PCTGBL_NFS_WAIT_PCT

GBL_NFS_WAIT_TIMEGBL_NFS_WAIT_TIME

GBL_NODENAMEGBL_NODENAME

GBL_NUM_ACTIVE_LSGBL_NUM_ACTIVE_LS

GBL_NUM_APPGBL_NUM_APP

GBL_NUM_APP_PRMGBL_NUM_APP_PRM

GBL_NUM_CPUGBL_NUM_CPU

GBL_NUM_CPU_COREGBL_NUM_CPU_CORE

GBL_NUM_DISKGBL_NUM_DISK

GBL_NUM_HBAGBL_NUM_HBA

GBL_NUM_LDOMGBL_NUM_LDOM

GBL_NUM_LSGBL_NUM_LS

GBL_NUM_NETWORKGBL_NUM_NETWORK

GBL_NUM_SOCKETGBL_NUM_SOCKET

GBL_NUM_SWAPGBL_NUM_SWAP

GBL_NUM_TAPEGBL_NUM_TAPE

GBL_NUM_TTGBL_NUM_TT

GBL_NUM_USERGBL_NUM_USER

GBL_NUM_VGGBL_NUM_VG

GBL_NUM_VSWITCHGBL_NUM_VSWITCH

GBL_OSKERNELTYPEGBL_OSKERNELTYPE

GBL_OSKERNELTYPE_INTGBL_OSKERNELTYPE_INT

GBL_OSNAMEGBL_OSNAME

GBL_OSRELEASEGBL_OSRELEASE

GBL_OSVERSIONGBL_OSVERSION

GBL_OTHER_IO_QUEUEGBL_OTHER_IO_QUEUE

GBL_OTHER_IO_WAIT_PCTGBL_OTHER_IO_WAIT_PCT

GBL_OTHER_IO_WAIT_TIMEGBL_OTHER_IO_WAIT_TIME

GBL_OTHER_QUEUEGBL_OTHER_QUEUE

HP GlancePlus (11.02)Page 78 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_OTHER_WAIT_PCTGBL_OTHER_WAIT_PCT

GBL_OTHER_WAIT_TIMEGBL_OTHER_WAIT_TIME

GBL_PIPE_QUEUEGBL_PIPE_QUEUE

GBL_PIPE_WAIT_PCTGBL_PIPE_WAIT_PCT

GBL_PIPE_WAIT_TIMEGBL_PIPE_WAIT_TIME

GBL_PRI_QUEUEGBL_PRI_QUEUE

GBL_PRI_WAIT_PCTGBL_PRI_WAIT_PCT

GBL_PRI_WAIT_TIMEGBL_PRI_WAIT_TIME

GBL_PRM_MEM_UTILGBL_PRM_MEM_UTIL

GBL_PROC_RUN_TIMEGBL_PROC_RUN_TIME

GBL_PROC_SAMPLEGBL_PROC_SAMPLE

GBL_RPC_QUEUEGBL_RPC_QUEUE

GBL_RPC_WAIT_PCTGBL_RPC_WAIT_PCT

GBL_RPC_WAIT_TIMEGBL_RPC_WAIT_TIME

GBL_RUN_QUEUEGBL_RUN_QUEUE

GBL_RUN_QUEUE_CUMGBL_RUN_QUEUE_CUM

GBL_RUN_QUEUE_HIGHGBL_RUN_QUEUE_HIGH

GBL_SAMPLEGBL_SAMPLE

GBL_SEM_QUEUEGBL_SEM_QUEUE

GBL_SEM_WAIT_PCTGBL_SEM_WAIT_PCT

GBL_SEM_WAIT_TIMEGBL_SEM_WAIT_TIME

GBL_SERIALNOGBL_SERIALNO

GBL_SLEEP_QUEUEGBL_SLEEP_QUEUE

GBL_SLEEP_WAIT_PCTGBL_SLEEP_WAIT_PCT

GBL_SLEEP_WAIT_TIMEGBL_SLEEP_WAIT_TIME

GBL_SOCKET_QUEUEGBL_SOCKET_QUEUE

GBL_SOCKET_WAIT_PCTGBL_SOCKET_WAIT_PCT

GBL_SOCKET_WAIT_TIMEGBL_SOCKET_WAIT_TIME

GBL_STARTDATEGBL_STARTDATE

GBL_STARTED_PROCGBL_STARTED_PROC

GBL_STARTED_PROC_RATEGBL_STARTED_PROC_RATE

GBL_STARTTIMEGBL_STARTTIME

GBL_STATDATEGBL_STATDATE

HP GlancePlus (11.02)Page 79 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_STATTIMEGBL_STATTIME

GBL_STREAM_QUEUEGBL_STREAM_QUEUE

GBL_STREAM_WAIT_PCTGBL_STREAM_WAIT_PCT

GBL_STREAM_WAIT_TIMEGBL_STREAM_WAIT_TIME

GBL_SWAP_RESERVED_ONLY_UTILGBL_SWAP_RESERVED_ONLY_UTIL

GBL_SWAP_SPACE_AVAILGBL_SWAP_SPACE_AVAIL

GBL_SWAP_SPACE_AVAIL_KBGBL_SWAP_SPACE_AVAIL_KB

GBL_SWAP_SPACE_DEVICE_UTILGBL_SWAP_SPACE_DEVICE_UTIL

GBL_SWAP_SPACE_FS_UTILGBL_SWAP_SPACE_FS_UTIL

GBL_SWAP_SPACE_RESERVEDGBL_SWAP_SPACE_RESERVED

GBL_SWAP_SPACE_RESERVED_UTILGBL_SWAP_SPACE_RESERVED_UTIL

GBL_SWAP_SPACE_USEDGBL_SWAP_SPACE_USED

GBL_SWAP_SPACE_USED_UTILGBL_SWAP_SPACE_USED_UTIL

GBL_SWAP_SPACE_UTILGBL_SWAP_SPACE_UTIL

GBL_SWAP_SPACE_UTIL_CUMGBL_SWAP_SPACE_UTIL_CUM

GBL_SWAP_SPACE_UTIL_HIGHGBL_SWAP_SPACE_UTIL_HIGH

GBL_SYSCALLGBL_SYSCALL

GBL_SYSCALL_RATEGBL_SYSCALL_RATE

GBL_SYSCALL_RATE_CUMGBL_SYSCALL_RATE_CUM

GBL_SYSCALL_RATE_HIGHGBL_SYSCALL_RATE_HIGH

GBL_SYSTEM_IDGBL_SYSTEM_ID

GBL_SYSTEM_TYPEGBL_SYSTEM_TYPE

GBL_SYSTEM_UPTIME_HOURSGBL_SYSTEM_UPTIME_HOURS

GBL_SYSTEM_UPTIME_SECONDSGBL_SYSTEM_UPTIME_SECONDS

GBL_SYS_QUEUEGBL_SYS_QUEUE

GBL_SYS_WAIT_PCTGBL_SYS_WAIT_PCT

GBL_SYS_WAIT_TIMEGBL_SYS_WAIT_TIME

GBL_TERM_IO_QUEUEGBL_TERM_IO_QUEUE

GBL_TERM_IO_WAIT_PCTGBL_TERM_IO_WAIT_PCT

GBL_TERM_IO_WAIT_TIMEGBL_TERM_IO_WAIT_TIME

GBL_THRESHOLD_PROCCPUGBL_THRESHOLD_PROCCPU

GBL_THRESHOLD_PROCDISKGBL_THRESHOLD_PROCDISK

GBL_THRESHOLD_PROCIOGBL_THRESHOLD_PROCIO

HP GlancePlus (11.02)Page 80 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

GBL_THRESHOLD_PROCMEMGBL_THRESHOLD_PROCMEM

GBL_TT_OVERFLOW_COUNTGBL_TT_OVERFLOW_COUNT

Table Metrics
TBL_BUFFER_CACHE_AVAILTBL_BUFFER_CACHE_AVAIL

TBL_BUFFER_CACHE_HIGHTBL_BUFFER_CACHE_HIGH

TBL_BUFFER_CACHE_MAXTBL_BUFFER_CACHE_MAX

TBL_BUFFER_CACHE_MINTBL_BUFFER_CACHE_MIN

TBL_BUFFER_CACHE_USEDTBL_BUFFER_CACHE_USED

TBL_BUFFER_HEADER_AVAILTBL_BUFFER_HEADER_AVAIL

TBL_BUFFER_HEADER_USEDTBL_BUFFER_HEADER_USED

TBL_BUFFER_HEADER_UTILTBL_BUFFER_HEADER_UTIL

TBL_BUFFER_HEADER_UTIL_HIGHTBL_BUFFER_HEADER_UTIL_HIGH

TBL_DNLC_CACHE_AVAILTBL_DNLC_CACHE_AVAIL

TBL_FILE_LOCK_AVAILTBL_FILE_LOCK_AVAIL

TBL_FILE_LOCK_USEDTBL_FILE_LOCK_USED

TBL_FILE_LOCK_UTILTBL_FILE_LOCK_UTIL

TBL_FILE_LOCK_UTIL_HIGHTBL_FILE_LOCK_UTIL_HIGH

TBL_FILE_TABLE_AVAILTBL_FILE_TABLE_AVAIL

TBL_FILE_TABLE_USEDTBL_FILE_TABLE_USED

TBL_FILE_TABLE_UTILTBL_FILE_TABLE_UTIL

TBL_FILE_TABLE_UTIL_HIGHTBL_FILE_TABLE_UTIL_HIGH

TBL_INODE_CACHE_AVAILTBL_INODE_CACHE_AVAIL

TBL_INODE_CACHE_HIGHTBL_INODE_CACHE_HIGH

TBL_INODE_CACHE_USEDTBL_INODE_CACHE_USED

TBL_MSG_BUFFER_AVAILTBL_MSG_BUFFER_AVAIL

TBL_MSG_BUFFER_HIGHTBL_MSG_BUFFER_HIGH

TBL_MSG_BUFFER_USEDTBL_MSG_BUFFER_USED

TBL_MSG_TABLE_AVAILTBL_MSG_TABLE_AVAIL

TBL_MSG_TABLE_USEDTBL_MSG_TABLE_USED

TBL_MSG_TABLE_UTILTBL_MSG_TABLE_UTIL

TBL_MSG_TABLE_UTIL_HIGHTBL_MSG_TABLE_UTIL_HIGH

TBL_PROC_TABLE_AVAILTBL_PROC_TABLE_AVAIL

HP GlancePlus (11.02)Page 81 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

TBL_PROC_TABLE_USEDTBL_PROC_TABLE_USED

TBL_PROC_TABLE_UTILTBL_PROC_TABLE_UTIL

TBL_PROC_TABLE_UTIL_HIGHTBL_PROC_TABLE_UTIL_HIGH

TBL_PTY_AVAILTBL_PTY_AVAIL

TBL_PTY_USEDTBL_PTY_USED

TBL_PTY_UTILTBL_PTY_UTIL

TBL_PTY_UTIL_HIGHTBL_PTY_UTIL_HIGH

TBL_SEM_TABLE_AVAILTBL_SEM_TABLE_AVAIL

TBL_SEM_TABLE_USEDTBL_SEM_TABLE_USED

TBL_SEM_TABLE_UTILTBL_SEM_TABLE_UTIL

TBL_SEM_TABLE_UTIL_HIGHTBL_SEM_TABLE_UTIL_HIGH

TBL_SHMEM_ACTIVETBL_SHMEM_ACTIVE

TBL_SHMEM_AVAILTBL_SHMEM_AVAIL

TBL_SHMEM_REQUESTEDTBL_SHMEM_REQUESTED

TBL_SHMEM_TABLE_AVAILTBL_SHMEM_TABLE_AVAIL

TBL_SHMEM_TABLE_USEDTBL_SHMEM_TABLE_USED

TBL_SHMEM_TABLE_UTILTBL_SHMEM_TABLE_UTIL

TBL_SHMEM_TABLE_UTIL_HIGHTBL_SHMEM_TABLE_UTIL_HIGH

TBL_SHMEM_USEDTBL_SHMEM_USED

Process Metrics
PROC_APP_IDPROC_APP_ID

PROC_APP_NAMEPROC_APP_NAME

PROC_CACHE_WAIT_PCTPROC_CACHE_WAIT_PCT

PROC_CACHE_WAIT_PCT_CUMPROC_CACHE_WAIT_PCT_CUM

PROC_CACHE_WAIT_TIMEPROC_CACHE_WAIT_TIME

PROC_CACHE_WAIT_TIME_CUMPROC_CACHE_WAIT_TIME_CUM

PROC_CDFS_WAIT_PCTPROC_CDFS_WAIT_PCT

PROC_CDFS_WAIT_PCT_CUMPROC_CDFS_WAIT_PCT_CUM

PROC_CDFS_WAIT_TIMEPROC_CDFS_WAIT_TIME

PROC_CDFS_WAIT_TIME_CUMPROC_CDFS_WAIT_TIME_CUM

PROC_CLOSEPROC_CLOSE

PROC_CLOSE_CUMPROC_CLOSE_CUM

HP GlancePlus (11.02)Page 82 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_CPU_ALIVE_SYS_MODE_UTILPROC_CPU_ALIVE_SYS_MODE_UTIL

PROC_CPU_ALIVE_TOTAL_UTILPROC_CPU_ALIVE_TOTAL_UTIL

PROC_CPU_ALIVE_USER_MODE_UTILPROC_CPU_ALIVE_USER_MODE_UTIL

PROC_CPU_CSWITCH_TIMEPROC_CPU_CSWITCH_TIME

PROC_CPU_CSWITCH_TIME_CUMPROC_CPU_CSWITCH_TIME_CUM

PROC_CPU_CSWITCH_UTILPROC_CPU_CSWITCH_UTIL

PROC_CPU_CSWITCH_UTIL_CUMPROC_CPU_CSWITCH_UTIL_CUM

PROC_CPU_INTERRUPT_TIMEPROC_CPU_INTERRUPT_TIME

PROC_CPU_INTERRUPT_TIME_CUMPROC_CPU_INTERRUPT_TIME_CUM

PROC_CPU_INTERRUPT_UTILPROC_CPU_INTERRUPT_UTIL

PROC_CPU_INTERRUPT_UTIL_CUMPROC_CPU_INTERRUPT_UTIL_CUM

PROC_CPU_LAST_USEDPROC_CPU_LAST_USED

PROC_CPU_NICE_TIMEPROC_CPU_NICE_TIME

PROC_CPU_NICE_TIME_CUMPROC_CPU_NICE_TIME_CUM

PROC_CPU_NICE_UTILPROC_CPU_NICE_UTIL

PROC_CPU_NICE_UTIL_CUMPROC_CPU_NICE_UTIL_CUM

PROC_CPU_NNICE_TIMEPROC_CPU_NNICE_TIME

PROC_CPU_NNICE_TIME_CUMPROC_CPU_NNICE_TIME_CUM

PROC_CPU_NNICE_UTILPROC_CPU_NNICE_UTIL

PROC_CPU_NNICE_UTIL_CUMPROC_CPU_NNICE_UTIL_CUM

PROC_CPU_NORMAL_TIMEPROC_CPU_NORMAL_TIME

PROC_CPU_NORMAL_TIME_CUMPROC_CPU_NORMAL_TIME_CUM

PROC_CPU_NORMAL_UTILPROC_CPU_NORMAL_UTIL

PROC_CPU_NORMAL_UTIL_CUMPROC_CPU_NORMAL_UTIL_CUM

PROC_CPU_REALTIME_TIMEPROC_CPU_REALTIME_TIME

PROC_CPU_REALTIME_TIME_CUMPROC_CPU_REALTIME_TIME_CUM

PROC_CPU_REALTIME_UTILPROC_CPU_REALTIME_UTIL

PROC_CPU_REALTIME_UTIL_CUMPROC_CPU_REALTIME_UTIL_CUM

PROC_CPU_SWITCHESPROC_CPU_SWITCHES

PROC_CPU_SWITCHES_CUMPROC_CPU_SWITCHES_CUM

PROC_CPU_SYSCALL_TIMEPROC_CPU_SYSCALL_TIME

PROC_CPU_SYSCALL_TIME_CUMPROC_CPU_SYSCALL_TIME_CUM

PROC_CPU_SYSCALL_UTILPROC_CPU_SYSCALL_UTIL

HP GlancePlus (11.02)Page 83 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_CPU_SYSCALL_UTIL_CUMPROC_CPU_SYSCALL_UTIL_CUM

PROC_CPU_SYS_MODE_TIMEPROC_CPU_SYS_MODE_TIME

PROC_CPU_SYS_MODE_TIME_CUMPROC_CPU_SYS_MODE_TIME_CUM

PROC_CPU_SYS_MODE_UTILPROC_CPU_SYS_MODE_UTIL

PROC_CPU_SYS_MODE_UTIL_CUMPROC_CPU_SYS_MODE_UTIL_CUM

PROC_CPU_TOTAL_TIMEPROC_CPU_TOTAL_TIME

PROC_CPU_TOTAL_TIME_CUMPROC_CPU_TOTAL_TIME_CUM

PROC_CPU_TOTAL_UTILPROC_CPU_TOTAL_UTIL

PROC_CPU_TOTAL_UTIL_CUMPROC_CPU_TOTAL_UTIL_CUM

PROC_CPU_TRAP_COUNTPROC_CPU_TRAP_COUNT

PROC_CPU_TRAP_COUNT_CUMPROC_CPU_TRAP_COUNT_CUM

PROC_CPU_USER_MODE_TIMEPROC_CPU_USER_MODE_TIME

PROC_CPU_USER_MODE_TIME_CUMPROC_CPU_USER_MODE_TIME_CUM

PROC_CPU_USER_MODE_UTILPROC_CPU_USER_MODE_UTIL

PROC_CPU_USER_MODE_UTIL_CUMPROC_CPU_USER_MODE_UTIL_CUM

PROC_DISK_FS_READPROC_DISK_FS_READ

PROC_DISK_FS_READ_CUMPROC_DISK_FS_READ_CUM

PROC_DISK_FS_READ_RATEPROC_DISK_FS_READ_RATE

PROC_DISK_FS_WRITEPROC_DISK_FS_WRITE

PROC_DISK_FS_WRITE_CUMPROC_DISK_FS_WRITE_CUM

PROC_DISK_FS_WRITE_RATEPROC_DISK_FS_WRITE_RATE

PROC_DISK_LOGL_IOPROC_DISK_LOGL_IO

PROC_DISK_LOGL_IO_CUMPROC_DISK_LOGL_IO_CUM

PROC_DISK_LOGL_IO_RATEPROC_DISK_LOGL_IO_RATE

PROC_DISK_LOGL_IO_RATE_CUMPROC_DISK_LOGL_IO_RATE_CUM

PROC_DISK_LOGL_READPROC_DISK_LOGL_READ

PROC_DISK_LOGL_READ_CUMPROC_DISK_LOGL_READ_CUM

PROC_DISK_LOGL_READ_RATEPROC_DISK_LOGL_READ_RATE

PROC_DISK_LOGL_WRITEPROC_DISK_LOGL_WRITE

PROC_DISK_LOGL_WRITE_CUMPROC_DISK_LOGL_WRITE_CUM

PROC_DISK_LOGL_WRITE_RATEPROC_DISK_LOGL_WRITE_RATE

PROC_DISK_PHYS_IO_RATEPROC_DISK_PHYS_IO_RATE

PROC_DISK_PHYS_IO_RATE_CUMPROC_DISK_PHYS_IO_RATE_CUM

HP GlancePlus (11.02)Page 84 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_DISK_PHYS_READPROC_DISK_PHYS_READ

PROC_DISK_PHYS_READ_CUMPROC_DISK_PHYS_READ_CUM

PROC_DISK_PHYS_READ_RATEPROC_DISK_PHYS_READ_RATE

PROC_DISK_PHYS_WRITEPROC_DISK_PHYS_WRITE

PROC_DISK_PHYS_WRITE_CUMPROC_DISK_PHYS_WRITE_CUM

PROC_DISK_PHYS_WRITE_RATEPROC_DISK_PHYS_WRITE_RATE

PROC_DISK_RAW_READPROC_DISK_RAW_READ

PROC_DISK_RAW_READ_CUMPROC_DISK_RAW_READ_CUM

PROC_DISK_RAW_READ_RATEPROC_DISK_RAW_READ_RATE

PROC_DISK_RAW_WRITEPROC_DISK_RAW_WRITE

PROC_DISK_RAW_WRITE_CUMPROC_DISK_RAW_WRITE_CUM

PROC_DISK_RAW_WRITE_RATEPROC_DISK_RAW_WRITE_RATE

PROC_DISK_REM_LOGL_READPROC_DISK_REM_LOGL_READ

PROC_DISK_REM_LOGL_READ_CUMPROC_DISK_REM_LOGL_READ_CUM

PROC_DISK_REM_LOGL_READ_RATEPROC_DISK_REM_LOGL_READ_RATE

PROC_DISK_REM_LOGL_WRITEPROC_DISK_REM_LOGL_WRITE

PROC_DISK_REM_LOGL_WRITE_CUMPROC_DISK_REM_LOGL_WRITE_CUM

PROC_DISK_REM_LOGL_WRITE_RATEPROC_DISK_REM_LOGL_WRITE_RATE

PROC_DISK_REM_PHYS_READPROC_DISK_REM_PHYS_READ

PROC_DISK_REM_PHYS_READ_CUMPROC_DISK_REM_PHYS_READ_CUM

PROC_DISK_REM_PHYS_READ_RATEPROC_DISK_REM_PHYS_READ_RATE

PROC_DISK_REM_PHYS_WRITEPROC_DISK_REM_PHYS_WRITE

PROC_DISK_REM_PHYS_WRITE_CUMPROC_DISK_REM_PHYS_WRITE_CUM

PROC_DISK_REM_PHYS_WRITE_RATEPROC_DISK_REM_PHYS_WRITE_RATE

PROC_DISK_SUBSYSTEM_WAIT_PCTPROC_DISK_SUBSYSTEM_WAIT_PCT

PROC_DISK_SUBSYSTEM_WAIT_PCT_CUMPROC_DISK_SUBSYSTEM_WAIT_PCT_CUM

PROC_DISK_SUBSYSTEM_WAIT_TIMEPROC_DISK_SUBSYSTEM_WAIT_TIME

PROC_DISK_SUBSYSTEM_WAIT_TIME_CUMPROC_DISK_SUBSYSTEM_WAIT_TIME_
CUM

PROC_DISK_SYSTEM_IOPROC_DISK_SYSTEM_IO

PROC_DISK_SYSTEM_IO_RATEPROC_DISK_SYSTEM_IO_RATE

PROC_DISK_SYSTEM_READPROC_DISK_SYSTEM_READ

PROC_DISK_SYSTEM_READ_CUMPROC_DISK_SYSTEM_READ_CUM

HP GlancePlus (11.02)Page 85 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_DISK_SYSTEM_WRITEPROC_DISK_SYSTEM_WRITE

PROC_DISK_SYSTEM_WRITE_CUMPROC_DISK_SYSTEM_WRITE_CUM

PROC_DISK_VM_IOPROC_DISK_VM_IO

PROC_DISK_VM_IO_RATEPROC_DISK_VM_IO_RATE

PROC_DISK_VM_READPROC_DISK_VM_READ

PROC_DISK_VM_READ_CUMPROC_DISK_VM_READ_CUM

PROC_DISK_VM_WRITEPROC_DISK_VM_WRITE

PROC_DISK_VM_WRITE_CUMPROC_DISK_VM_WRITE_CUM

PROC_DISK_WAIT_PCTPROC_DISK_WAIT_PCT

PROC_DISK_WAIT_PCT_CUMPROC_DISK_WAIT_PCT_CUM

PROC_DISK_WAIT_TIMEPROC_DISK_WAIT_TIME

PROC_DISK_WAIT_TIME_CUMPROC_DISK_WAIT_TIME_CUM

PROC_DISPATCHPROC_DISPATCH

PROC_DISPATCH_CUMPROC_DISPATCH_CUM

PROC_EUIDPROC_EUID

PROC_FORCED_CSWITCHPROC_FORCED_CSWITCH

PROC_FORCED_CSWITCH_CUMPROC_FORCED_CSWITCH_CUM

PROC_FORKPROC_FORK

PROC_FORK_CUMPROC_FORK_CUM

PROC_GRAPHICS_WAIT_PCTPROC_GRAPHICS_WAIT_PCT

PROC_GRAPHICS_WAIT_PCT_CUMPROC_GRAPHICS_WAIT_PCT_CUM

PROC_GRAPHICS_WAIT_TIMEPROC_GRAPHICS_WAIT_TIME

PROC_GRAPHICS_WAIT_TIME_CUMPROC_GRAPHICS_WAIT_TIME_CUM

PROC_GROUP_IDPROC_GROUP_ID

PROC_GROUP_NAMEPROC_GROUP_NAME

PROC_INODE_WAIT_PCTPROC_INODE_WAIT_PCT

PROC_INODE_WAIT_PCT_CUMPROC_INODE_WAIT_PCT_CUM

PROC_INODE_WAIT_TIMEPROC_INODE_WAIT_TIME

PROC_INODE_WAIT_TIME_CUMPROC_INODE_WAIT_TIME_CUM

PROC_INTERESTPROC_INTEREST

PROC_INTERRUPTSPROC_INTERRUPTS

PROC_INTERRUPTS_CUMPROC_INTERRUPTS_CUM

PROC_INTERVALPROC_INTERVAL

HP GlancePlus (11.02)Page 86 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_INTERVAL_ALIVEPROC_INTERVAL_ALIVE

PROC_INTERVAL_CUMPROC_INTERVAL_CUM

PROC_IOCTLPROC_IOCTL

PROC_IOCTL_CUMPROC_IOCTL_CUM

PROC_IO_BYTEPROC_IO_BYTE

PROC_IO_BYTE_CUMPROC_IO_BYTE_CUM

PROC_IO_BYTE_RATEPROC_IO_BYTE_RATE

PROC_IO_BYTE_RATE_CUMPROC_IO_BYTE_RATE_CUM

PROC_IPC_SUBSYSTEM_WAIT_PCTPROC_IPC_SUBSYSTEM_WAIT_PCT

PROC_IPC_SUBSYSTEM_WAIT_PCT_CUMPROC_IPC_SUBSYSTEM_WAIT_PCT_CUM

PROC_IPC_SUBSYSTEM_WAIT_TIMEPROC_IPC_SUBSYSTEM_WAIT_TIME

PROC_IPC_SUBSYSTEM_WAIT_TIME_CUMPROC_IPC_SUBSYSTEM_WAIT_TIME_CUM

PROC_IPC_WAIT_PCTPROC_IPC_WAIT_PCT

PROC_IPC_WAIT_PCT_CUMPROC_IPC_WAIT_PCT_CUM

PROC_IPC_WAIT_TIMEPROC_IPC_WAIT_TIME

PROC_IPC_WAIT_TIME_CUMPROC_IPC_WAIT_TIME_CUM

PROC_JOBCTL_WAIT_PCTPROC_JOBCTL_WAIT_PCT

PROC_JOBCTL_WAIT_PCT_CUMPROC_JOBCTL_WAIT_PCT_CUM

PROC_JOBCTL_WAIT_TIMEPROC_JOBCTL_WAIT_TIME

PROC_JOBCTL_WAIT_TIME_CUMPROC_JOBCTL_WAIT_TIME_CUM

PROC_LAN_WAIT_PCTPROC_LAN_WAIT_PCT

PROC_LAN_WAIT_PCT_CUMPROC_LAN_WAIT_PCT_CUM

PROC_LAN_WAIT_TIMEPROC_LAN_WAIT_TIME

PROC_LAN_WAIT_TIME_CUMPROC_LAN_WAIT_TIME_CUM

PROC_MAJOR_FAULTPROC_MAJOR_FAULT

PROC_MAJOR_FAULT_CUMPROC_MAJOR_FAULT_CUM

PROC_MEM_PRIVATE_RESPROC_MEM_PRIVATE_RES

PROC_MEM_RESPROC_MEM_RES

PROC_MEM_RES_HIGHPROC_MEM_RES_HIGH

PROC_MEM_SHARED_RESPROC_MEM_SHARED_RES

PROC_MEM_VFAULT_COUNTPROC_MEM_VFAULT_COUNT

PROC_MEM_VFAULT_COUNT_CUMPROC_MEM_VFAULT_COUNT_CUM

PROC_MEM_VIRTPROC_MEM_VIRT

HP GlancePlus (11.02)Page 87 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_MEM_WAIT_PCTPROC_MEM_WAIT_PCT

PROC_MEM_WAIT_PCT_CUMPROC_MEM_WAIT_PCT_CUM

PROC_MEM_WAIT_TIMEPROC_MEM_WAIT_TIME

PROC_MEM_WAIT_TIME_CUMPROC_MEM_WAIT_TIME_CUM

PROC_MINOR_FAULTPROC_MINOR_FAULT

PROC_MINOR_FAULT_CUMPROC_MINOR_FAULT_CUM

PROC_MSG_RECEIVEDPROC_MSG_RECEIVED

PROC_MSG_RECEIVED_CUMPROC_MSG_RECEIVED_CUM

PROC_MSG_SENTPROC_MSG_SENT

PROC_MSG_SENT_CUMPROC_MSG_SENT_CUM

PROC_MSG_WAIT_PCTPROC_MSG_WAIT_PCT

PROC_MSG_WAIT_PCT_CUMPROC_MSG_WAIT_PCT_CUM

PROC_MSG_WAIT_TIMEPROC_MSG_WAIT_TIME

PROC_MSG_WAIT_TIME_CUMPROC_MSG_WAIT_TIME_CUM

PROC_NFS_WAIT_PCTPROC_NFS_WAIT_PCT

PROC_NFS_WAIT_PCT_CUMPROC_NFS_WAIT_PCT_CUM

PROC_NFS_WAIT_TIMEPROC_NFS_WAIT_TIME

PROC_NFS_WAIT_TIME_CUMPROC_NFS_WAIT_TIME_CUM

PROC_NICE_PRIPROC_NICE_PRI

PROC_NONDISK_LOGL_READPROC_NONDISK_LOGL_READ

PROC_NONDISK_LOGL_READ_CUMPROC_NONDISK_LOGL_READ_CUM

PROC_NONDISK_LOGL_WRITEPROC_NONDISK_LOGL_WRITE

PROC_NONDISK_LOGL_WRITE_CUMPROC_NONDISK_LOGL_WRITE_CUM

PROC_NONDISK_PHYS_READPROC_NONDISK_PHYS_READ

PROC_NONDISK_PHYS_READ_CUMPROC_NONDISK_PHYS_READ_CUM

PROC_NONDISK_PHYS_WRITEPROC_NONDISK_PHYS_WRITE

PROC_NONDISK_PHYS_WRITE_CUMPROC_NONDISK_PHYS_WRITE_CUM

PROC_OPENPROC_OPEN

PROC_OPEN_CUMPROC_OPEN_CUM

PROC_OTHER_IO_WAIT_PCTPROC_OTHER_IO_WAIT_PCT

PROC_OTHER_IO_WAIT_PCT_CUMPROC_OTHER_IO_WAIT_PCT_CUM

PROC_OTHER_IO_WAIT_TIMEPROC_OTHER_IO_WAIT_TIME

PROC_OTHER_IO_WAIT_TIME_CUMPROC_OTHER_IO_WAIT_TIME_CUM

HP GlancePlus (11.02)Page 88 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_OTHER_WAIT_PCTPROC_OTHER_WAIT_PCT

PROC_OTHER_WAIT_PCT_CUMPROC_OTHER_WAIT_PCT_CUM

PROC_OTHER_WAIT_TIMEPROC_OTHER_WAIT_TIME

PROC_OTHER_WAIT_TIME_CUMPROC_OTHER_WAIT_TIME_CUM

PROC_PAGEFAULTPROC_PAGEFAULT

PROC_PAGEFAULT_RATEPROC_PAGEFAULT_RATE

PROC_PAGEFAULT_RATE_CUMPROC_PAGEFAULT_RATE_CUM

PROC_PARENT_PROC_IDPROC_PARENT_PROC_ID

PROC_PIPE_WAIT_PCTPROC_PIPE_WAIT_PCT

PROC_PIPE_WAIT_PCT_CUMPROC_PIPE_WAIT_PCT_CUM

PROC_PIPE_WAIT_TIMEPROC_PIPE_WAIT_TIME

PROC_PIPE_WAIT_TIME_CUMPROC_PIPE_WAIT_TIME_CUM

PROC_PRIPROC_PRI

PROC_PRI_WAIT_PCTPROC_PRI_WAIT_PCT

PROC_PRI_WAIT_PCT_CUMPROC_PRI_WAIT_PCT_CUM

PROC_PRI_WAIT_TIMEPROC_PRI_WAIT_TIME

PROC_PRI_WAIT_TIME_CUMPROC_PRI_WAIT_TIME_CUM

PROC_PRMIDPROC_PRMID

PROC_PROC_ARGV1PROC_PROC_ARGV1

PROC_PROC_CMDPROC_PROC_CMD

PROC_PROC_IDPROC_PROC_ID

PROC_PROC_NAMEPROC_PROC_NAME

PROC_RPC_WAIT_PCTPROC_RPC_WAIT_PCT

PROC_RPC_WAIT_PCT_CUMPROC_RPC_WAIT_PCT_CUM

PROC_RPC_WAIT_TIMEPROC_RPC_WAIT_TIME

PROC_RPC_WAIT_TIME_CUMPROC_RPC_WAIT_TIME_CUM

PROC_RUN_TIMEPROC_RUN_TIME

PROC_SCHEDULERPROC_SCHEDULER

PROC_SEM_WAIT_PCTPROC_SEM_WAIT_PCT

PROC_SEM_WAIT_PCT_CUMPROC_SEM_WAIT_PCT_CUM

PROC_SEM_WAIT_TIMEPROC_SEM_WAIT_TIME

PROC_SEM_WAIT_TIME_CUMPROC_SEM_WAIT_TIME_CUM

PROC_SIGNALPROC_SIGNAL

HP GlancePlus (11.02)Page 89 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_SIGNAL_CUMPROC_SIGNAL_CUM

PROC_SLEEP_WAIT_PCTPROC_SLEEP_WAIT_PCT

PROC_SLEEP_WAIT_PCT_CUMPROC_SLEEP_WAIT_PCT_CUM

PROC_SLEEP_WAIT_TIMEPROC_SLEEP_WAIT_TIME

PROC_SLEEP_WAIT_TIME_CUMPROC_SLEEP_WAIT_TIME_CUM

PROC_SOCKET_WAIT_PCTPROC_SOCKET_WAIT_PCT

PROC_SOCKET_WAIT_PCT_CUMPROC_SOCKET_WAIT_PCT_CUM

PROC_SOCKET_WAIT_TIMEPROC_SOCKET_WAIT_TIME

PROC_SOCKET_WAIT_TIME_CUMPROC_SOCKET_WAIT_TIME_CUM

PROC_STARTTIMEPROC_STARTTIME

PROC_STATEPROC_STATE

PROC_STOP_REASONPROC_STOP_REASON

PROC_STOP_REASON_FLAGPROC_STOP_REASON_FLAG

PROC_STREAM_WAIT_PCTPROC_STREAM_WAIT_PCT

PROC_STREAM_WAIT_PCT_CUMPROC_STREAM_WAIT_PCT_CUM

PROC_STREAM_WAIT_TIMEPROC_STREAM_WAIT_TIME

PROC_STREAM_WAIT_TIME_CUMPROC_STREAM_WAIT_TIME_CUM

PROC_SWAPPROC_SWAP

PROC_SWAP_CUMPROC_SWAP_CUM

PROC_SYS_WAIT_PCTPROC_SYS_WAIT_PCT

PROC_SYS_WAIT_PCT_CUMPROC_SYS_WAIT_PCT_CUM

PROC_SYS_WAIT_TIMEPROC_SYS_WAIT_TIME

PROC_SYS_WAIT_TIME_CUMPROC_SYS_WAIT_TIME_CUM

PROC_TERM_IO_WAIT_PCTPROC_TERM_IO_WAIT_PCT

PROC_TERM_IO_WAIT_PCT_CUMPROC_TERM_IO_WAIT_PCT_CUM

PROC_TERM_IO_WAIT_TIMEPROC_TERM_IO_WAIT_TIME

PROC_TERM_IO_WAIT_TIME_CUMPROC_TERM_IO_WAIT_TIME_CUM

PROC_THREAD_COUNTPROC_THREAD_COUNT

PROC_THREAD_IDPROC_THREAD_ID

PROC_TIMEPROC_TIME

PROC_TOP_CPU_INDEXPROC_TOP_CPU_INDEX

PROC_TOP_DISK_INDEXPROC_TOP_DISK_INDEX

PROC_TOTAL_WAIT_TIMEPROC_TOTAL_WAIT_TIME

HP GlancePlus (11.02)Page 90 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_TOTAL_WAIT_TIME_CUMPROC_TOTAL_WAIT_TIME_CUM

PROC_TTYPROC_TTY

PROC_TTY_DEVPROC_TTY_DEV

PROC_UIDPROC_UID

PROC_USER_NAMEPROC_USER_NAME

PROC_USER_THREAD_IDPROC_USER_THREAD_ID

PROC_USRPRIPROC_USRPRI

PROC_VOLUNTARY_CSWITCHPROC_VOLUNTARY_CSWITCH

PROC_VOLUNTARY_CSWITCH_CUMPROC_VOLUNTARY_CSWITCH_CUM

Application Metrics
APP_ACTIVE_APPAPP_ACTIVE_APP

APP_ACTIVE_APP_PRMAPP_ACTIVE_APP_PRM

APP_ACTIVE_PROCAPP_ACTIVE_PROC

APP_ALIVE_PROCAPP_ALIVE_PROC

APP_COMPLETED_PROCAPP_COMPLETED_PROC

APP_CPU_NICE_TIMEAPP_CPU_NICE_TIME

APP_CPU_NICE_UTILAPP_CPU_NICE_UTIL

APP_CPU_NNICE_TIMEAPP_CPU_NNICE_TIME

APP_CPU_NNICE_UTILAPP_CPU_NNICE_UTIL

APP_CPU_NORMAL_TIMEAPP_CPU_NORMAL_TIME

APP_CPU_NORMAL_UTILAPP_CPU_NORMAL_UTIL

APP_CPU_REALTIME_TIMEAPP_CPU_REALTIME_TIME

APP_CPU_REALTIME_UTILAPP_CPU_REALTIME_UTIL

APP_CPU_SYS_MODE_TIMEAPP_CPU_SYS_MODE_TIME

APP_CPU_SYS_MODE_UTILAPP_CPU_SYS_MODE_UTIL

APP_CPU_TOTAL_TIMEAPP_CPU_TOTAL_TIME

APP_CPU_TOTAL_UTILAPP_CPU_TOTAL_UTIL

APP_CPU_TOTAL_UTIL_CUMAPP_CPU_TOTAL_UTIL_CUM

APP_CPU_USER_MODE_TIMEAPP_CPU_USER_MODE_TIME

APP_CPU_USER_MODE_UTILAPP_CPU_USER_MODE_UTIL

APP_DISK_FS_IO_RATEAPP_DISK_FS_IO_RATE

APP_DISK_LOGL_IO_RATEAPP_DISK_LOGL_IO_RATE

HP GlancePlus (11.02)Page 91 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

APP_DISK_LOGL_READAPP_DISK_LOGL_READ

APP_DISK_LOGL_READ_RATEAPP_DISK_LOGL_READ_RATE

APP_DISK_LOGL_WRITEAPP_DISK_LOGL_WRITE

APP_DISK_LOGL_WRITE_RATEAPP_DISK_LOGL_WRITE_RATE

APP_DISK_PHYS_IO_RATEAPP_DISK_PHYS_IO_RATE

APP_DISK_PHYS_READAPP_DISK_PHYS_READ

APP_DISK_PHYS_READ_RATEAPP_DISK_PHYS_READ_RATE

APP_DISK_PHYS_WRITEAPP_DISK_PHYS_WRITE

APP_DISK_PHYS_WRITE_RATEAPP_DISK_PHYS_WRITE_RATE

APP_DISK_RAW_IO_RATEAPP_DISK_RAW_IO_RATE

APP_DISK_SUBSYSTEM_QUEUEAPP_DISK_SUBSYSTEM_QUEUE

APP_DISK_SUBSYSTEM_WAIT_PCTAPP_DISK_SUBSYSTEM_WAIT_PCT

APP_DISK_SYSTEM_IO_RATEAPP_DISK_SYSTEM_IO_RATE

APP_DISK_VM_IO_RATEAPP_DISK_VM_IO_RATE

APP_INTERVALAPP_INTERVAL

APP_INTERVAL_CUMAPP_INTERVAL_CUM

APP_IO_BYTEAPP_IO_BYTE

APP_IO_BYTE_RATEAPP_IO_BYTE_RATE

APP_IPC_SUBSYSTEM_QUEUEAPP_IPC_SUBSYSTEM_QUEUE

APP_IPC_SUBSYSTEM_WAIT_PCTAPP_IPC_SUBSYSTEM_WAIT_PCT

APP_MAJOR_FAULTAPP_MAJOR_FAULT

APP_MAJOR_FAULT_RATEAPP_MAJOR_FAULT_RATE

APP_MEM_QUEUEAPP_MEM_QUEUE

APP_MEM_RESAPP_MEM_RES

APP_MEM_UTILAPP_MEM_UTIL

APP_MEM_VIRTAPP_MEM_VIRT

APP_MEM_WAIT_PCTAPP_MEM_WAIT_PCT

APP_MINOR_FAULTAPP_MINOR_FAULT

APP_MINOR_FAULT_RATEAPP_MINOR_FAULT_RATE

APP_NAMEAPP_NAME

APP_NAME_PRM_GROUPNAMEAPP_NAME_PRM_GROUPNAME

APP_NETWORK_SUBSYSTEM_QUEUEAPP_NETWORK_SUBSYSTEM_QUEUE

APP_NETWORK_SUBSYSTEM_WAIT_PCTAPP_NETWORK_SUBSYSTEM_WAIT_PCT

HP GlancePlus (11.02)Page 92 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

APP_NUMAPP_NUM

APP_OTHER_IO_QUEUEAPP_OTHER_IO_QUEUE

APP_OTHER_IO_WAIT_PCTAPP_OTHER_IO_WAIT_PCT

APP_PRIAPP_PRI

APP_PRI_QUEUEAPP_PRI_QUEUE

APP_PRI_STD_DEVAPP_PRI_STD_DEV

APP_PRI_WAIT_PCTAPP_PRI_WAIT_PCT

APP_PRM_CPUCAP_MODEAPP_PRM_CPUCAP_MODE

APP_PRM_CPU_ENTITLEMENTAPP_PRM_CPU_ENTITLEMENT

APP_PRM_CPU_TOTAL_UTIL_CUMAPP_PRM_CPU_TOTAL_UTIL_CUM

APP_PRM_DISK_STATEAPP_PRM_DISK_STATE

APP_PRM_GROUPIDAPP_PRM_GROUPID

APP_PRM_INTERVAL_CUMAPP_PRM_INTERVAL_CUM

APP_PRM_MEM_AVAILAPP_PRM_MEM_AVAIL

APP_PRM_MEM_ENTITLEMENTAPP_PRM_MEM_ENTITLEMENT

APP_PRM_MEM_STATEAPP_PRM_MEM_STATE

APP_PRM_MEM_UPPERBOUNDAPP_PRM_MEM_UPPERBOUND

APP_PRM_MEM_UTILAPP_PRM_MEM_UTIL

APP_PRM_STATEAPP_PRM_STATE

APP_PRM_SUSPENDED_PROCAPP_PRM_SUSPENDED_PROC

APP_PROC_RUN_TIMEAPP_PROC_RUN_TIME

APP_SAMPLEAPP_SAMPLE

APP_SEM_QUEUEAPP_SEM_QUEUE

APP_SEM_WAIT_PCTAPP_SEM_WAIT_PCT

APP_SLEEP_QUEUEAPP_SLEEP_QUEUE

APP_SLEEP_WAIT_PCTAPP_SLEEP_WAIT_PCT

APP_TERM_IO_QUEUEAPP_TERM_IO_QUEUE

APP_TERM_IO_WAIT_PCTAPP_TERM_IO_WAIT_PCT

APP_TIMEAPP_TIME

Process By File Metrics
PROC_FILE_COUNTPROC_FILE_COUNT

PROC_FILE_MODEPROC_FILE_MODE

HP GlancePlus (11.02)Page 93 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_FILE_NAMEPROC_FILE_NAME

PROC_FILE_NUMBERPROC_FILE_NUMBER

PROC_FILE_OFFSETPROC_FILE_OFFSET

PROC_FILE_OPENPROC_FILE_OPEN

PROC_FILE_TYPEPROC_FILE_TYPE

By Disk Metrics
BYDSK_AVG_QUEUE_TIMEBYDSK_AVG_QUEUE_TIME

BYDSK_AVG_READ_QUEUE_TIMEBYDSK_AVG_READ_QUEUE_TIME

BYDSK_AVG_READ_SERVICE_TIMEBYDSK_AVG_READ_SERVICE_TIME

BYDSK_AVG_SERVICE_TIMEBYDSK_AVG_SERVICE_TIME

BYDSK_AVG_WRITE_QUEUE_TIMEBYDSK_AVG_WRITE_QUEUE_TIME

BYDSK_AVG_WRITE_SERVICE_TIMEBYDSK_AVG_WRITE_SERVICE_TIME

BYDSK_BUSBYDSK_BUS

BYDSK_BUSY_TIMEBYDSK_BUSY_TIME

BYDSK_CONTROLLERBYDSK_CONTROLLER

BYDSK_DEVNAMEBYDSK_DEVNAME

BYDSK_DEVNOBYDSK_DEVNO

BYDSK_DIRNAMEBYDSK_DIRNAME

BYDSK_DISKNAMEBYDSK_DISKNAME

BYDSK_FS_IO_RATEBYDSK_FS_IO_RATE

BYDSK_FS_READBYDSK_FS_READ

BYDSK_FS_READ_RATEBYDSK_FS_READ_RATE

BYDSK_FS_WRITEBYDSK_FS_WRITE

BYDSK_FS_WRITE_RATEBYDSK_FS_WRITE_RATE

BYDSK_IDBYDSK_ID

BYDSK_INTERVALBYDSK_INTERVAL

BYDSK_INTERVAL_CUMBYDSK_INTERVAL_CUM

BYDSK_LOGL_BYTE_RATEBYDSK_LOGL_BYTE_RATE

BYDSK_LOGL_BYTE_RATE_CUMBYDSK_LOGL_BYTE_RATE_CUM

BYDSK_LOGL_IO_RATEBYDSK_LOGL_IO_RATE

BYDSK_LOGL_IO_RATE_CUMBYDSK_LOGL_IO_RATE_CUM

BYDSK_LOGL_READBYDSK_LOGL_READ

HP GlancePlus (11.02)Page 94 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYDSK_LOGL_READ_BYTE_RATEBYDSK_LOGL_READ_BYTE_RATE

BYDSK_LOGL_READ_BYTE_RATE_CUMBYDSK_LOGL_READ_BYTE_RATE_CUM

BYDSK_LOGL_READ_RATEBYDSK_LOGL_READ_RATE

BYDSK_LOGL_READ_RATE_CUMBYDSK_LOGL_READ_RATE_CUM

BYDSK_LOGL_WRITEBYDSK_LOGL_WRITE

BYDSK_LOGL_WRITE_BYTE_RATEBYDSK_LOGL_WRITE_BYTE_RATE

BYDSK_LOGL_WRITE_BYTE_RATE_CUMBYDSK_LOGL_WRITE_BYTE_RATE_CUM

BYDSK_LOGL_WRITE_RATEBYDSK_LOGL_WRITE_RATE

BYDSK_LOGL_WRITE_RATE_CUMBYDSK_LOGL_WRITE_RATE_CUM

BYDSK_PHYS_BYTEBYDSK_PHYS_BYTE

BYDSK_PHYS_BYTE_RATEBYDSK_PHYS_BYTE_RATE

BYDSK_PHYS_BYTE_RATE_CUMBYDSK_PHYS_BYTE_RATE_CUM

BYDSK_PHYS_IOBYDSK_PHYS_IO

BYDSK_PHYS_IO_RATEBYDSK_PHYS_IO_RATE

BYDSK_PHYS_IO_RATE_CUMBYDSK_PHYS_IO_RATE_CUM

BYDSK_PHYS_READBYDSK_PHYS_READ

BYDSK_PHYS_READ_BYTEBYDSK_PHYS_READ_BYTE

BYDSK_PHYS_READ_BYTE_RATEBYDSK_PHYS_READ_BYTE_RATE

BYDSK_PHYS_READ_BYTE_RATE_CUMBYDSK_PHYS_READ_BYTE_RATE_CUM

BYDSK_PHYS_READ_RATEBYDSK_PHYS_READ_RATE

BYDSK_PHYS_READ_RATE_CUMBYDSK_PHYS_READ_RATE_CUM

BYDSK_PHYS_WRITEBYDSK_PHYS_WRITE

BYDSK_PHYS_WRITE_BYTEBYDSK_PHYS_WRITE_BYTE

BYDSK_PHYS_WRITE_BYTE_RATEBYDSK_PHYS_WRITE_BYTE_RATE

BYDSK_PHYS_WRITE_BYTE_RATE_CUMBYDSK_PHYS_WRITE_BYTE_RATE_CUM

BYDSK_PHYS_WRITE_RATEBYDSK_PHYS_WRITE_RATE

BYDSK_PHYS_WRITE_RATE_CUMBYDSK_PHYS_WRITE_RATE_CUM

BYDSK_PRODUCT_IDBYDSK_PRODUCT_ID

BYDSK_QUEUE_0_UTILBYDSK_QUEUE_0_UTIL

BYDSK_QUEUE_2_UTILBYDSK_QUEUE_2_UTIL

BYDSK_QUEUE_4_UTILBYDSK_QUEUE_4_UTIL

BYDSK_QUEUE_8_UTILBYDSK_QUEUE_8_UTIL

BYDSK_QUEUE_X_UTILBYDSK_QUEUE_X_UTIL

HP GlancePlus (11.02)Page 95 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYDSK_RAW_IO_RATEBYDSK_RAW_IO_RATE

BYDSK_RAW_READBYDSK_RAW_READ

BYDSK_RAW_READ_RATEBYDSK_RAW_READ_RATE

BYDSK_RAW_WRITEBYDSK_RAW_WRITE

BYDSK_RAW_WRITE_RATEBYDSK_RAW_WRITE_RATE

BYDSK_REQUEST_QUEUEBYDSK_REQUEST_QUEUE

BYDSK_SYSTEM_IOBYDSK_SYSTEM_IO

BYDSK_SYSTEM_IO_RATEBYDSK_SYSTEM_IO_RATE

BYDSK_SYSTEM_READ_RATEBYDSK_SYSTEM_READ_RATE

BYDSK_SYSTEM_WRITE_RATEBYDSK_SYSTEM_WRITE_RATE

BYDSK_TIMEBYDSK_TIME

BYDSK_UTILBYDSK_UTIL

BYDSK_UTIL_CUMBYDSK_UTIL_CUM

BYDSK_VENDOR_IDBYDSK_VENDOR_ID

BYDSK_VM_IOBYDSK_VM_IO

BYDSK_VM_IO_RATEBYDSK_VM_IO_RATE

BYDSK_VM_READ_RATEBYDSK_VM_READ_RATE

BYDSK_VM_WRITE_RATEBYDSK_VM_WRITE_RATE

File System Metrics
FS_BLOCK_SIZEFS_BLOCK_SIZE

FS_DEVNAMEFS_DEVNAME

FS_DEVNOFS_DEVNO

FS_DIRNAMEFS_DIRNAME

FS_FILE_IO_RATEFS_FILE_IO_RATE

FS_FILE_IO_RATE_CUMFS_FILE_IO_RATE_CUM

FS_FRAG_SIZEFS_FRAG_SIZE

FS_INODE_UTILFS_INODE_UTIL

FS_INTERVALFS_INTERVAL

FS_INTERVAL_CUMFS_INTERVAL_CUM

FS_IS_LVMFS_IS_LVM

FS_LOGL_IO_RATEFS_LOGL_IO_RATE

FS_LOGL_IO_RATE_CUMFS_LOGL_IO_RATE_CUM

HP GlancePlus (11.02)Page 96 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

FS_LOGL_READ_BYTE_RATEFS_LOGL_READ_BYTE_RATE

FS_LOGL_READ_BYTE_RATE_CUMFS_LOGL_READ_BYTE_RATE_CUM

FS_LOGL_READ_RATEFS_LOGL_READ_RATE

FS_LOGL_READ_RATE_CUMFS_LOGL_READ_RATE_CUM

FS_LOGL_WRITE_BYTE_RATEFS_LOGL_WRITE_BYTE_RATE

FS_LOGL_WRITE_BYTE_RATE_CUMFS_LOGL_WRITE_BYTE_RATE_CUM

FS_LOGL_WRITE_RATEFS_LOGL_WRITE_RATE

FS_LOGL_WRITE_RATE_CUMFS_LOGL_WRITE_RATE_CUM

FS_MAX_INODESFS_MAX_INODES

FS_MAX_SIZEFS_MAX_SIZE

FS_PHYS_IO_RATEFS_PHYS_IO_RATE

FS_PHYS_IO_RATE_CUMFS_PHYS_IO_RATE_CUM

FS_PHYS_READ_BYTE_RATEFS_PHYS_READ_BYTE_RATE

FS_PHYS_READ_BYTE_RATE_CUMFS_PHYS_READ_BYTE_RATE_CUM

FS_PHYS_READ_RATEFS_PHYS_READ_RATE

FS_PHYS_READ_RATE_CUMFS_PHYS_READ_RATE_CUM

FS_PHYS_WRITE_BYTE_RATEFS_PHYS_WRITE_BYTE_RATE

FS_PHYS_WRITE_BYTE_RATE_CUMFS_PHYS_WRITE_BYTE_RATE_CUM

FS_PHYS_WRITE_RATEFS_PHYS_WRITE_RATE

FS_PHYS_WRITE_RATE_CUMFS_PHYS_WRITE_RATE_CUM

FS_SPACE_RESERVEDFS_SPACE_RESERVED

FS_SPACE_USEDFS_SPACE_USED

FS_SPACE_UTILFS_SPACE_UTIL

FS_TYPEFS_TYPE

FS_VM_IO_RATEFS_VM_IO_RATE

FS_VM_IO_RATE_CUMFS_VM_IO_RATE_CUM

Logical Volume Metrics
LV_AVG_READ_SERVICE_TIMELV_AVG_READ_SERVICE_TIME

LV_AVG_WRITE_SERVICE_TIMELV_AVG_WRITE_SERVICE_TIME

LV_CACHE_HITLV_CACHE_HIT

LV_CACHE_MISSLV_CACHE_MISS

LV_CACHE_QUEUELV_CACHE_QUEUE

HP GlancePlus (11.02)Page 97 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

LV_CACHE_SIZELV_CACHE_SIZE

LV_DEVNOLV_DEVNO

LV_DIRNAMELV_DIRNAME

LV_GROUP_NAMELV_GROUP_NAME

LV_INTERVALLV_INTERVAL

LV_INTERVAL_CUMLV_INTERVAL_CUM

LV_OPEN_LVLV_OPEN_LV

LV_READ_BYTE_RATELV_READ_BYTE_RATE

LV_READ_BYTE_RATE_CUMLV_READ_BYTE_RATE_CUM

LV_READ_RATELV_READ_RATE

LV_READ_RATE_CUMLV_READ_RATE_CUM

LV_TYPELV_TYPE

LV_WRITE_BYTE_RATELV_WRITE_BYTE_RATE

LV_WRITE_BYTE_RATE_CUMLV_WRITE_BYTE_RATE_CUM

LV_WRITE_RATELV_WRITE_RATE

LV_WRITE_RATE_CUMLV_WRITE_RATE_CUM

By Network Interface Metrics
BYNETIF_COLLISIONBYNETIF_COLLISION

BYNETIF_COLLISION_1_MIN_RATEBYNETIF_COLLISION_1_MIN_RATE

BYNETIF_COLLISION_RATEBYNETIF_COLLISION_RATE

BYNETIF_COLLISION_RATE_CUMBYNETIF_COLLISION_RATE_CUM

BYNETIF_ERRORBYNETIF_ERROR

BYNETIF_ERROR_1_MIN_RATEBYNETIF_ERROR_1_MIN_RATE

BYNETIF_ERROR_RATEBYNETIF_ERROR_RATE

BYNETIF_ERROR_RATE_CUMBYNETIF_ERROR_RATE_CUM

BYNETIF_IDBYNETIF_ID

BYNETIF_INTERVALBYNETIF_INTERVAL

BYNETIF_INTERVAL_CUMBYNETIF_INTERVAL_CUM

BYNETIF_IN_BYTEBYNETIF_IN_BYTE

BYNETIF_IN_BYTE_RATEBYNETIF_IN_BYTE_RATE

BYNETIF_IN_BYTE_RATE_CUMBYNETIF_IN_BYTE_RATE_CUM

BYNETIF_IN_PACKETBYNETIF_IN_PACKET

HP GlancePlus (11.02)Page 98 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYNETIF_IN_PACKET_RATEBYNETIF_IN_PACKET_RATE

BYNETIF_IN_PACKET_RATE_CUMBYNETIF_IN_PACKET_RATE_CUM

BYNETIF_NAMEBYNETIF_NAME

BYNETIF_NET_MTUBYNETIF_NET_MTU

BYNETIF_NET_SPEEDBYNETIF_NET_SPEED

BYNETIF_NET_TYPEBYNETIF_NET_TYPE

BYNETIF_OUT_BYTEBYNETIF_OUT_BYTE

BYNETIF_OUT_BYTE_RATEBYNETIF_OUT_BYTE_RATE

BYNETIF_OUT_BYTE_RATE_CUMBYNETIF_OUT_BYTE_RATE_CUM

BYNETIF_OUT_PACKETBYNETIF_OUT_PACKET

BYNETIF_OUT_PACKET_RATEBYNETIF_OUT_PACKET_RATE

BYNETIF_OUT_PACKET_RATE_CUMBYNETIF_OUT_PACKET_RATE_CUM

BYNETIF_PACKET_RATEBYNETIF_PACKET_RATE

BYNETIF_QUEUEBYNETIF_QUEUE

BYNETIF_UTILBYNETIF_UTIL

By Swap Metrics
BYSWP_SWAP_PRIBYSWP_SWAP_PRI

BYSWP_SWAP_SPACE_AVAILBYSWP_SWAP_SPACE_AVAIL

BYSWP_SWAP_SPACE_NAMEBYSWP_SWAP_SPACE_NAME

BYSWP_SWAP_SPACE_USEDBYSWP_SWAP_SPACE_USED

BYSWP_SWAP_TYPEBYSWP_SWAP_TYPE

By CPU Metrics
BYCPU_ACTIVEBYCPU_ACTIVE

BYCPU_CPU_CLOCKBYCPU_CPU_CLOCK

BYCPU_CPU_CSWITCH_TIMEBYCPU_CPU_CSWITCH_TIME

BYCPU_CPU_CSWITCH_TIME_CUMBYCPU_CPU_CSWITCH_TIME_CUM

BYCPU_CPU_CSWITCH_UTILBYCPU_CPU_CSWITCH_UTIL

BYCPU_CPU_CSWITCH_UTIL_CUMBYCPU_CPU_CSWITCH_UTIL_CUM

BYCPU_CPU_INTERRUPT_TIMEBYCPU_CPU_INTERRUPT_TIME

BYCPU_CPU_INTERRUPT_TIME_CUMBYCPU_CPU_INTERRUPT_TIME_CUM

BYCPU_CPU_INTERRUPT_UTILBYCPU_CPU_INTERRUPT_UTIL

BYCPU_CPU_INTERRUPT_UTIL_CUMBYCPU_CPU_INTERRUPT_UTIL_CUM

HP GlancePlus (11.02)Page 99 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYCPU_CPU_NICE_TIMEBYCPU_CPU_NICE_TIME

BYCPU_CPU_NICE_TIME_CUMBYCPU_CPU_NICE_TIME_CUM

BYCPU_CPU_NICE_UTILBYCPU_CPU_NICE_UTIL

BYCPU_CPU_NICE_UTIL_CUMBYCPU_CPU_NICE_UTIL_CUM

BYCPU_CPU_NNICE_TIMEBYCPU_CPU_NNICE_TIME

BYCPU_CPU_NNICE_TIME_CUMBYCPU_CPU_NNICE_TIME_CUM

BYCPU_CPU_NNICE_UTILBYCPU_CPU_NNICE_UTIL

BYCPU_CPU_NNICE_UTIL_CUMBYCPU_CPU_NNICE_UTIL_CUM

BYCPU_CPU_NORMAL_TIMEBYCPU_CPU_NORMAL_TIME

BYCPU_CPU_NORMAL_TIME_CUMBYCPU_CPU_NORMAL_TIME_CUM

BYCPU_CPU_NORMAL_UTILBYCPU_CPU_NORMAL_UTIL

BYCPU_CPU_NORMAL_UTIL_CUMBYCPU_CPU_NORMAL_UTIL_CUM

BYCPU_CPU_REALTIME_TIMEBYCPU_CPU_REALTIME_TIME

BYCPU_CPU_REALTIME_TIME_CUMBYCPU_CPU_REALTIME_TIME_CUM

BYCPU_CPU_REALTIME_UTILBYCPU_CPU_REALTIME_UTIL

BYCPU_CPU_REALTIME_UTIL_CUMBYCPU_CPU_REALTIME_UTIL_CUM

BYCPU_CPU_SYSCALL_TIMEBYCPU_CPU_SYSCALL_TIME

BYCPU_CPU_SYSCALL_TIME_CUMBYCPU_CPU_SYSCALL_TIME_CUM

BYCPU_CPU_SYSCALL_UTILBYCPU_CPU_SYSCALL_UTIL

BYCPU_CPU_SYSCALL_UTIL_CUMBYCPU_CPU_SYSCALL_UTIL_CUM

BYCPU_CPU_SYS_MODE_TIMEBYCPU_CPU_SYS_MODE_TIME

BYCPU_CPU_SYS_MODE_TIME_CUMBYCPU_CPU_SYS_MODE_TIME_CUM

BYCPU_CPU_SYS_MODE_UTILBYCPU_CPU_SYS_MODE_UTIL

BYCPU_CPU_SYS_MODE_UTIL_CUMBYCPU_CPU_SYS_MODE_UTIL_CUM

BYCPU_CPU_TOTAL_TIMEBYCPU_CPU_TOTAL_TIME

BYCPU_CPU_TOTAL_TIME_CUMBYCPU_CPU_TOTAL_TIME_CUM

BYCPU_CPU_TOTAL_UTILBYCPU_CPU_TOTAL_UTIL

BYCPU_CPU_TOTAL_UTIL_CUMBYCPU_CPU_TOTAL_UTIL_CUM

BYCPU_CPU_TRAP_TIMEBYCPU_CPU_TRAP_TIME

BYCPU_CPU_TRAP_TIME_CUMBYCPU_CPU_TRAP_TIME_CUM

BYCPU_CPU_TRAP_UTILBYCPU_CPU_TRAP_UTIL

BYCPU_CPU_TRAP_UTIL_CUMBYCPU_CPU_TRAP_UTIL_CUM

BYCPU_CPU_USER_MODE_TIMEBYCPU_CPU_USER_MODE_TIME

HP GlancePlus (11.02)Page 100 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYCPU_CPU_USER_MODE_TIME_CUMBYCPU_CPU_USER_MODE_TIME_CUM

BYCPU_CPU_USER_MODE_UTILBYCPU_CPU_USER_MODE_UTIL

BYCPU_CPU_USER_MODE_UTIL_CUMBYCPU_CPU_USER_MODE_UTIL_CUM

BYCPU_CPU_VFAULT_TIMEBYCPU_CPU_VFAULT_TIME

BYCPU_CPU_VFAULT_TIME_CUMBYCPU_CPU_VFAULT_TIME_CUM

BYCPU_CPU_VFAULT_UTILBYCPU_CPU_VFAULT_UTIL

BYCPU_CPU_VFAULT_UTIL_CUMBYCPU_CPU_VFAULT_UTIL_CUM

BYCPU_CSWITCHBYCPU_CSWITCH

BYCPU_CSWITCH_CUMBYCPU_CSWITCH_CUM

BYCPU_CSWITCH_RATEBYCPU_CSWITCH_RATE

BYCPU_CSWITCH_RATE_CUMBYCPU_CSWITCH_RATE_CUM

BYCPU_IDBYCPU_ID

BYCPU_INTERRUPTBYCPU_INTERRUPT

BYCPU_INTERRUPT_RATEBYCPU_INTERRUPT_RATE

BYCPU_INTERRUPT_STATEBYCPU_INTERRUPT_STATE

BYCPU_LAST_PROC_IDBYCPU_LAST_PROC_ID

BYCPU_LAST_THREAD_IDBYCPU_LAST_THREAD_ID

BYCPU_LAST_USER_THREAD_IDBYCPU_LAST_USER_THREAD_ID

BYCPU_RUN_QUEUE_15_MINBYCPU_RUN_QUEUE_15_MIN

BYCPU_RUN_QUEUE_1_MINBYCPU_RUN_QUEUE_1_MIN

BYCPU_RUN_QUEUE_5_MINBYCPU_RUN_QUEUE_5_MIN

BYCPU_STATEBYCPU_STATE

Process By Memory Region Metrics
PROC_REGION_FILENAMEPROC_REGION_FILENAME

PROC_REGION_LOCKEDPROC_REGION_LOCKED

PROC_REGION_PAGE_COUNT_1_4KBPROC_REGION_PAGE_COUNT_1_4KB

PROC_REGION_PAGE_COUNT_2_16KBPROC_REGION_PAGE_COUNT_2_16KB

PROC_REGION_PAGE_COUNT_3_64KBPROC_REGION_PAGE_COUNT_3_64KB

PROC_REGION_PAGE_COUNT_4_256KBPROC_REGION_PAGE_COUNT_4_256KB

PROC_REGION_PAGE_COUNT_5_1MBPROC_REGION_PAGE_COUNT_5_1MB

PROC_REGION_PAGE_COUNT_6_4MBPROC_REGION_PAGE_COUNT_6_4MB

PROC_REGION_PAGE_COUNT_7_16MBPROC_REGION_PAGE_COUNT_7_16MB

HP GlancePlus (11.02)Page 101 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PROC_REGION_PAGE_COUNT_8_64MBPROC_REGION_PAGE_COUNT_8_64MB

PROC_REGION_PAGE_COUNT_9_256MBPROC_REGION_PAGE_COUNT_9_256MB

PROC_REGION_PAGE_COUNT_B_1GBPROC_REGION_PAGE_COUNT_B_1GB

PROC_REGION_PAGE_COUNT_B_4GBPROC_REGION_PAGE_COUNT_B_4GB

PROC_REGION_PAGE_SIZE_HINTPROC_REGION_PAGE_SIZE_HINT

PROC_REGION_PRIVATE_SHARED_FLAGPROC_REGION_PRIVATE_SHARED_FLAG

PROC_REGION_REF_COUNTPROC_REGION_REF_COUNT

PROC_REGION_RESPROC_REGION_RES

PROC_REGION_RES_DATAPROC_REGION_RES_DATA

PROC_REGION_RES_OTHERPROC_REGION_RES_OTHER

PROC_REGION_RES_SHMEMPROC_REGION_RES_SHMEM

PROC_REGION_RES_STACKPROC_REGION_RES_STACK

PROC_REGION_RES_TEXTPROC_REGION_RES_TEXT

PROC_REGION_TYPEPROC_REGION_TYPE

PROC_REGION_VIRTPROC_REGION_VIRT

PROC_REGION_VIRT_ADDRSPROC_REGION_VIRT_ADDRS

PROC_REGION_VIRT_DATAPROC_REGION_VIRT_DATA

PROC_REGION_VIRT_OTHERPROC_REGION_VIRT_OTHER

PROC_REGION_VIRT_SHMEMPROC_REGION_VIRT_SHMEM

PROC_REGION_VIRT_STACKPROC_REGION_VIRT_STACK

PROC_REGION_VIRT_TEXTPROC_REGION_VIRT_TEXT

By NFS Metrics
BYNFS_CLIENT_PHYS_TIMEBYNFS_CLIENT_PHYS_TIME

BYNFS_CLIENT_PHYS_TIME_CUMBYNFS_CLIENT_PHYS_TIME_CUM

BYNFS_CLIENT_READ_BYTE_RATEBYNFS_CLIENT_READ_BYTE_RATE

BYNFS_CLIENT_READ_BYTE_RATE_CUMBYNFS_CLIENT_READ_BYTE_RATE_CUM

BYNFS_CLIENT_READ_RATEBYNFS_CLIENT_READ_RATE

BYNFS_CLIENT_READ_RATE_CUMBYNFS_CLIENT_READ_RATE_CUM

BYNFS_CLIENT_SERVICEBYNFS_CLIENT_SERVICE

BYNFS_CLIENT_SERVICE_CUMBYNFS_CLIENT_SERVICE_CUM

BYNFS_CLIENT_SERVICE_QUEUEBYNFS_CLIENT_SERVICE_QUEUE

BYNFS_CLIENT_SERVICE_QUEUE_CUMBYNFS_CLIENT_SERVICE_QUEUE_CUM

HP GlancePlus (11.02)Page 102 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYNFS_CLIENT_SERVICE_TIMEBYNFS_CLIENT_SERVICE_TIME

BYNFS_CLIENT_SERVICE_TIME_CUMBYNFS_CLIENT_SERVICE_TIME_CUM

BYNFS_CLIENT_WRITE_BYTE_RATEBYNFS_CLIENT_WRITE_BYTE_RATE

BYNFS_CLIENT_WRITE_BYTE_RATE_CUMBYNFS_CLIENT_WRITE_BYTE_RATE_CUM

BYNFS_CLIENT_WRITE_RATEBYNFS_CLIENT_WRITE_RATE

BYNFS_CLIENT_WRITE_RATE_CUMBYNFS_CLIENT_WRITE_RATE_CUM

BYNFS_HOSTNAMEBYNFS_HOSTNAME

BYNFS_HOST_IP_ADDRESSBYNFS_HOST_IP_ADDRESS

BYNFS_INTERVALBYNFS_INTERVAL

BYNFS_INTERVAL_CUMBYNFS_INTERVAL_CUM

BYNFS_LAST_PROC_IDBYNFS_LAST_PROC_ID

BYNFS_SERVER_READ_BYTE_RATEBYNFS_SERVER_READ_BYTE_RATE

BYNFS_SERVER_READ_BYTE_RATE_CUMBYNFS_SERVER_READ_BYTE_RATE_CUM

BYNFS_SERVER_READ_RATEBYNFS_SERVER_READ_RATE

BYNFS_SERVER_READ_RATE_CUMBYNFS_SERVER_READ_RATE_CUM

BYNFS_SERVER_SERVICEBYNFS_SERVER_SERVICE

BYNFS_SERVER_SERVICE_CUMBYNFS_SERVER_SERVICE_CUM

BYNFS_SERVER_SERVICE_TIMEBYNFS_SERVER_SERVICE_TIME

BYNFS_SERVER_SERVICE_TIME_CUMBYNFS_SERVER_SERVICE_TIME_CUM

BYNFS_SERVER_WRITE_BYTE_RATEBYNFS_SERVER_WRITE_BYTE_RATE

BYNFS_SERVER_WRITE_BYTE_RATE_CUMBYNFS_SERVER_WRITE_BYTE_RATE_CUM

BYNFS_SERVER_WRITE_RATEBYNFS_SERVER_WRITE_RATE

BYNFS_SERVER_WRITE_RATE_CUMBYNFS_SERVER_WRITE_RATE_CUM

By NFS Operation Metrics
BYNFSOP_CLIENT_COUNTBYNFSOP_CLIENT_COUNT

BYNFSOP_CLIENT_COUNT_CUMBYNFSOP_CLIENT_COUNT_CUM

BYNFSOP_CLIENT_TIMEBYNFSOP_CLIENT_TIME

BYNFSOP_CLIENT_TIME_CUMBYNFSOP_CLIENT_TIME_CUM

BYNFSOP_INTERVALBYNFSOP_INTERVAL

BYNFSOP_INTERVAL_CUMBYNFSOP_INTERVAL_CUM

BYNFSOP_NAMEBYNFSOP_NAME

BYNFSOP_SERVER_COUNTBYNFSOP_SERVER_COUNT

HP GlancePlus (11.02)Page 103 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYNFSOP_SERVER_COUNT_CUMBYNFSOP_SERVER_COUNT_CUM

BYNFSOP_SERVER_TIMEBYNFSOP_SERVER_TIME

BYNFSOP_SERVER_TIME_CUMBYNFSOP_SERVER_TIME_CUM

By Operation Metrics
BYOP_CLIENT_COUNTBYOP_CLIENT_COUNT

BYOP_CLIENT_COUNT_CUMBYOP_CLIENT_COUNT_CUM

BYOP_INTERVALBYOP_INTERVAL

BYOP_INTERVAL_CUMBYOP_INTERVAL_CUM

BYOP_NAMEBYOP_NAME

BYOP_SERVER_COUNTBYOP_SERVER_COUNT

BYOP_SERVER_COUNT_CUMBYOP_SERVER_COUNT_CUM

System Call Metrics
SYSCALL_ACTIVE_CUMSYSCALL_ACTIVE_CUM

SYSCALL_CALL_COUNTSYSCALL_CALL_COUNT

SYSCALL_CALL_COUNT_CUMSYSCALL_CALL_COUNT_CUM

SYSCALL_CALL_IDSYSCALL_CALL_ID

SYSCALL_CALL_NAMESYSCALL_CALL_NAME

SYSCALL_CALL_RATESYSCALL_CALL_RATE

SYSCALL_CALL_RATE_CUMSYSCALL_CALL_RATE_CUM

SYSCALL_CPU_TOTAL_TIMESYSCALL_CPU_TOTAL_TIME

SYSCALL_CPU_TOTAL_TIME_CUMSYSCALL_CPU_TOTAL_TIME_CUM

SYSCALL_INTERVALSYSCALL_INTERVAL

SYSCALL_INTERVAL_CUMSYSCALL_INTERVAL_CUM

By Disk Detail Metrics
BYDSKDETAIL_LABELBYDSKDETAIL_LABEL

BYDSKDETAIL_NAMEBYDSKDETAIL_NAME

File System Detail Metrics
FSDETAIL_LABELFSDETAIL_LABEL

FSDETAIL_NAMEFSDETAIL_NAME

Logical Volume Detail Metrics
LVDETAIL_LABELLVDETAIL_LABEL

LVDETAIL_NAMELVDETAIL_NAME

HP GlancePlus (11.02)Page 104 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

Transaction Metrics
TT_ABORTTT_ABORT

TT_ABORT_CUMTT_ABORT_CUM

TT_ABORT_WALL_TIMETT_ABORT_WALL_TIME

TT_ABORT_WALL_TIME_CUMTT_ABORT_WALL_TIME_CUM

TT_APPNOTT_APPNO

TT_APP_NAMETT_APP_NAME

TT_CACHE_WAIT_TIME_PER_TRANTT_CACHE_WAIT_TIME_PER_TRAN

TT_CACHE_WAIT_TIME_PER_TRAN_CUMTT_CACHE_WAIT_TIME_PER_TRAN_CUM

TT_CDFS_WAIT_TIME_PER_TRANTT_CDFS_WAIT_TIME_PER_TRAN

TT_CDFS_WAIT_TIME_PER_TRAN_CUMTT_CDFS_WAIT_TIME_PER_TRAN_CUM

TT_CLIENT_CORRELATOR_COUNTTT_CLIENT_CORRELATOR_COUNT

TT_COUNTTT_COUNT

TT_COUNT_CUMTT_COUNT_CUM

TT_CPU_CSWITCH_TIME_PER_TRANTT_CPU_CSWITCH_TIME_PER_TRAN

TT_CPU_CSWITCH_TIME_PER_TRAN_CUMTT_CPU_CSWITCH_TIME_PER_TRAN_CUM

TT_CPU_INTERRUPT_TIME_PER_TRANTT_CPU_INTERRUPT_TIME_PER_TRAN

TT_CPU_INTERRUPT_TIME_PER_TRAN_CUMTT_CPU_INTERRUPT_TIME_PER_TRAN_
CUM

TT_CPU_NICE_TIME_PER_TRANTT_CPU_NICE_TIME_PER_TRAN

TT_CPU_NICE_TIME_PER_TRAN_CUMTT_CPU_NICE_TIME_PER_TRAN_CUM

TT_CPU_NNICE_TIME_PER_TRANTT_CPU_NNICE_TIME_PER_TRAN

TT_CPU_NNICE_TIME_PER_TRAN_CUMTT_CPU_NNICE_TIME_PER_TRAN_CUM

TT_CPU_NORMAL_TIME_PER_TRANTT_CPU_NORMAL_TIME_PER_TRAN

TT_CPU_NORMAL_TIME_PER_TRAN_CUMTT_CPU_NORMAL_TIME_PER_TRAN_CUM

TT_CPU_REALTIME_TIME_PER_TRANTT_CPU_REALTIME_TIME_PER_TRAN

TT_CPU_REALTIME_TIME_PER_TRAN_CUMTT_CPU_REALTIME_TIME_PER_TRAN_CUM

TT_CPU_SYSCALL_TIME_PER_TRANTT_CPU_SYSCALL_TIME_PER_TRAN

TT_CPU_SYSCALL_TIME_PER_TRAN_CUMTT_CPU_SYSCALL_TIME_PER_TRAN_CUM

TT_CPU_SYS_MODE_TIME_PER_TRANTT_CPU_SYS_MODE_TIME_PER_TRAN

TT_CPU_SYS_MODE_TIME_PER_TRAN_CUMTT_CPU_SYS_MODE_TIME_PER_TRAN_
CUM

TT_CPU_TOTAL_TIME_PER_TRANTT_CPU_TOTAL_TIME_PER_TRAN

HP GlancePlus (11.02)Page 105 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

TT_CPU_TOTAL_TIME_PER_TRAN_CUMTT_CPU_TOTAL_TIME_PER_TRAN_CUM

TT_CPU_USER_MODE_TIME_PER_TRANTT_CPU_USER_MODE_TIME_PER_TRAN

TT_CPU_USER_MODE_TIME_PER_TRAN_CUMTT_CPU_USER_MODE_TIME_PER_
TRAN_CUM

TT_DISK_FS_READ_PER_TRANTT_DISK_FS_READ_PER_TRAN

TT_DISK_FS_READ_PER_TRAN_CUMTT_DISK_FS_READ_PER_TRAN_CUM

TT_DISK_FS_WRITE_PER_TRANTT_DISK_FS_WRITE_PER_TRAN

TT_DISK_FS_WRITE_PER_TRAN_CUMTT_DISK_FS_WRITE_PER_TRAN_CUM

TT_DISK_LOGL_IO_PER_TRANTT_DISK_LOGL_IO_PER_TRAN

TT_DISK_LOGL_IO_PER_TRAN_CUMTT_DISK_LOGL_IO_PER_TRAN_CUM

TT_DISK_LOGL_READ_PER_TRANTT_DISK_LOGL_READ_PER_TRAN

TT_DISK_LOGL_READ_PER_TRAN_CUMTT_DISK_LOGL_READ_PER_TRAN_CUM

TT_DISK_LOGL_WRITE_PER_TRANTT_DISK_LOGL_WRITE_PER_TRAN

TT_DISK_LOGL_WRITE_PER_TRAN_CUMTT_DISK_LOGL_WRITE_PER_TRAN_CUM

TT_DISK_PHYS_IO_PER_TRANTT_DISK_PHYS_IO_PER_TRAN

TT_DISK_PHYS_IO_PER_TRAN_CUMTT_DISK_PHYS_IO_PER_TRAN_CUM

TT_DISK_PHYS_READ_PER_TRANTT_DISK_PHYS_READ_PER_TRAN

TT_DISK_PHYS_READ_PER_TRAN_CUMTT_DISK_PHYS_READ_PER_TRAN_CUM

TT_DISK_PHYS_WRITE_PER_TRANTT_DISK_PHYS_WRITE_PER_TRAN

TT_DISK_PHYS_WRITE_PER_TRAN_CUMTT_DISK_PHYS_WRITE_PER_TRAN_CUM

TT_DISK_RAW_READ_PER_TRANTT_DISK_RAW_READ_PER_TRAN

TT_DISK_RAW_READ_PER_TRAN_CUMTT_DISK_RAW_READ_PER_TRAN_CUM

TT_DISK_RAW_WRITE_PER_TRANTT_DISK_RAW_WRITE_PER_TRAN

TT_DISK_RAW_WRITE_PER_TRAN_CUMTT_DISK_RAW_WRITE_PER_TRAN_CUM

TT_DISK_SYSTEM_READ_PER_TRANTT_DISK_SYSTEM_READ_PER_TRAN

TT_DISK_SYSTEM_READ_PER_TRAN_CUMTT_DISK_SYSTEM_READ_PER_TRAN_CUM

TT_DISK_SYSTEM_WRITE_PER_TRANTT_DISK_SYSTEM_WRITE_PER_TRAN

TT_DISK_SYSTEM_WRITE_PER_TRAN_CUMTT_DISK_SYSTEM_WRITE_PER_TRAN_
CUM

TT_DISK_VM_READ_PER_TRANTT_DISK_VM_READ_PER_TRAN

TT_DISK_VM_READ_PER_TRAN_CUMTT_DISK_VM_READ_PER_TRAN_CUM

TT_DISK_VM_WRITE_PER_TRANTT_DISK_VM_WRITE_PER_TRAN

TT_DISK_VM_WRITE_PER_TRAN_CUMTT_DISK_VM_WRITE_PER_TRAN_CUM

HP GlancePlus (11.02)Page 106 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

TT_DISK_WAIT_TIME_PER_TRANTT_DISK_WAIT_TIME_PER_TRAN

TT_DISK_WAIT_TIME_PER_TRAN_CUMTT_DISK_WAIT_TIME_PER_TRAN_CUM

TT_FAILEDTT_FAILED

TT_FAILED_CUMTT_FAILED_CUM

TT_FAILED_WALL_TIMETT_FAILED_WALL_TIME

TT_FAILED_WALL_TIME_CUMTT_FAILED_WALL_TIME_CUM

TT_GOLDENRESOURCE_INTERVALTT_GOLDENRESOURCE_INTERVAL

TT_GOLDENRESOURCE_INTERVAL_CUMTT_GOLDENRESOURCE_INTERVAL_CUM

TT_GRAPHICS_WAIT_TIME_PER_TRANTT_GRAPHICS_WAIT_TIME_PER_TRAN

TT_GRAPHICS_WAIT_TIME_PER_TRAN_CUMTT_GRAPHICS_WAIT_TIME_PER_TRAN_
CUM

TT_INFOTT_INFO

TT_INODE_WAIT_TIME_PER_TRANTT_INODE_WAIT_TIME_PER_TRAN

TT_INODE_WAIT_TIME_PER_TRAN_CUMTT_INODE_WAIT_TIME_PER_TRAN_CUM

TT_INPROGRESS_COUNTTT_INPROGRESS_COUNT

TT_INTERVALTT_INTERVAL

TT_INTERVAL_CUMTT_INTERVAL_CUM

TT_IPC_WAIT_TIME_PER_TRANTT_IPC_WAIT_TIME_PER_TRAN

TT_IPC_WAIT_TIME_PER_TRAN_CUMTT_IPC_WAIT_TIME_PER_TRAN_CUM

TT_JOBCTL_WAIT_TIME_PER_TRANTT_JOBCTL_WAIT_TIME_PER_TRAN

TT_JOBCTL_WAIT_TIME_PER_TRAN_CUMTT_JOBCTL_WAIT_TIME_PER_TRAN_CUM

TT_LAN_WAIT_TIME_PER_TRANTT_LAN_WAIT_TIME_PER_TRAN

TT_LAN_WAIT_TIME_PER_TRAN_CUMTT_LAN_WAIT_TIME_PER_TRAN_CUM

TT_MEASUREMENT_COUNTTT_MEASUREMENT_COUNT

TT_MEM_WAIT_TIME_PER_TRANTT_MEM_WAIT_TIME_PER_TRAN

TT_MEM_WAIT_TIME_PER_TRAN_CUMTT_MEM_WAIT_TIME_PER_TRAN_CUM

TT_MSG_WAIT_TIME_PER_TRANTT_MSG_WAIT_TIME_PER_TRAN

TT_MSG_WAIT_TIME_PER_TRAN_CUMTT_MSG_WAIT_TIME_PER_TRAN_CUM

TT_NAMETT_NAME

TT_NFS_WAIT_TIME_PER_TRANTT_NFS_WAIT_TIME_PER_TRAN

TT_NFS_WAIT_TIME_PER_TRAN_CUMTT_NFS_WAIT_TIME_PER_TRAN_CUM

TT_OTHER_IO_WAIT_TIME_PER_TRANTT_OTHER_IO_WAIT_TIME_PER_TRAN

HP GlancePlus (11.02)Page 107 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

TT_OTHER_IO_WAIT_TIME_PER_TRAN_CUMTT_OTHER_IO_WAIT_TIME_PER_TRAN_
CUM

TT_OTHER_WAIT_TIME_PER_TRANTT_OTHER_WAIT_TIME_PER_TRAN

TT_OTHER_WAIT_TIME_PER_TRAN_CUMTT_OTHER_WAIT_TIME_PER_TRAN_CUM

TT_PIPE_WAIT_TIME_PER_TRANTT_PIPE_WAIT_TIME_PER_TRAN

TT_PIPE_WAIT_TIME_PER_TRAN_CUMTT_PIPE_WAIT_TIME_PER_TRAN_CUM

TT_PRI_WAIT_TIME_PER_TRANTT_PRI_WAIT_TIME_PER_TRAN

TT_PRI_WAIT_TIME_PER_TRAN_CUMTT_PRI_WAIT_TIME_PER_TRAN_CUM

TT_RESOURCE_INTERVALTT_RESOURCE_INTERVAL

TT_RESOURCE_INTERVAL_CUMTT_RESOURCE_INTERVAL_CUM

TT_RPC_WAIT_TIME_PER_TRANTT_RPC_WAIT_TIME_PER_TRAN

TT_RPC_WAIT_TIME_PER_TRAN_CUMTT_RPC_WAIT_TIME_PER_TRAN_CUM

TT_SEM_WAIT_TIME_PER_TRANTT_SEM_WAIT_TIME_PER_TRAN

TT_SEM_WAIT_TIME_PER_TRAN_CUMTT_SEM_WAIT_TIME_PER_TRAN_CUM

TT_SLEEP_WAIT_TIME_PER_TRANTT_SLEEP_WAIT_TIME_PER_TRAN

TT_SLEEP_WAIT_TIME_PER_TRAN_CUMTT_SLEEP_WAIT_TIME_PER_TRAN_CUM

TT_SLO_COUNTTT_SLO_COUNT

TT_SLO_COUNT_CUMTT_SLO_COUNT_CUM

TT_SLO_PERCENTTT_SLO_PERCENT

TT_SLO_THRESHOLDTT_SLO_THRESHOLD

TT_SOCKET_WAIT_TIME_PER_TRANTT_SOCKET_WAIT_TIME_PER_TRAN

TT_SOCKET_WAIT_TIME_PER_TRAN_CUMTT_SOCKET_WAIT_TIME_PER_TRAN_CUM

TT_STREAM_WAIT_TIME_PER_TRANTT_STREAM_WAIT_TIME_PER_TRAN

TT_STREAM_WAIT_TIME_PER_TRAN_CUMTT_STREAM_WAIT_TIME_PER_TRAN_CUM

TT_SYS_WAIT_TIME_PER_TRANTT_SYS_WAIT_TIME_PER_TRAN

TT_SYS_WAIT_TIME_PER_TRAN_CUMTT_SYS_WAIT_TIME_PER_TRAN_CUM

TT_TERM_IO_WAIT_TIME_PER_TRANTT_TERM_IO_WAIT_TIME_PER_TRAN

TT_TERM_IO_WAIT_TIME_PER_TRAN_CUMTT_TERM_IO_WAIT_TIME_PER_TRAN_CUM

TT_TOTAL_WAIT_TIME_PER_TRANTT_TOTAL_WAIT_TIME_PER_TRAN

TT_TOTAL_WAIT_TIME_PER_TRAN_CUMTT_TOTAL_WAIT_TIME_PER_TRAN_CUM

TT_TRAN_1_MIN_RATETT_TRAN_1_MIN_RATE

TT_TRAN_IDTT_TRAN_ID

TT_UNAMETT_UNAME

HP GlancePlus (11.02)Page 108 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

TT_UPDATETT_UPDATE

TT_UPDATE_CUMTT_UPDATE_CUM

TT_WALL_TIMETT_WALL_TIME

TT_WALL_TIME_CUMTT_WALL_TIME_CUM

TT_WALL_TIME_PER_TRANTT_WALL_TIME_PER_TRAN

TT_WALL_TIME_PER_TRAN_CUMTT_WALL_TIME_PER_TRAN_CUM

Transaction Measurement Section Metrics
TTBIN_TRANS_COUNTTTBIN_TRANS_COUNT

TTBIN_TRANS_COUNT_CUMTTBIN_TRANS_COUNT_CUM

TTBIN_UPPER_RANGETTBIN_UPPER_RANGE

By Process System Call Metrics
PROCSYSCALL_ACTIVE_CUMPROCSYSCALL_ACTIVE_CUM

PROCSYSCALL_CALL_COUNTPROCSYSCALL_CALL_COUNT

PROCSYSCALL_CALL_COUNT_CUMPROCSYSCALL_CALL_COUNT_CUM

PROCSYSCALL_CALL_IDPROCSYSCALL_CALL_ID

PROCSYSCALL_CALL_NAMEPROCSYSCALL_CALL_NAME

PROCSYSCALL_CALL_RATEPROCSYSCALL_CALL_RATE

PROCSYSCALL_CALL_RATE_CUMPROCSYSCALL_CALL_RATE_CUM

PROCSYSCALL_INTERVALPROCSYSCALL_INTERVAL

PROCSYSCALL_INTERVAL_CUMPROCSYSCALL_INTERVAL_CUM

PROCSYSCALL_TOTAL_TIMEPROCSYSCALL_TOTAL_TIME

PROCSYSCALL_TOTAL_TIME_CUMPROCSYSCALL_TOTAL_TIME_CUM

Thread Metrics
THREAD_APP_IDPROC_APP_ID

THREAD_APP_NAMEPROC_APP_NAME

THREAD_CACHE_WAIT_PCTPROC_CACHE_WAIT_PCT

THREAD_CACHE_WAIT_PCT_CUMPROC_CACHE_WAIT_PCT_CUM

THREAD_CACHE_WAIT_TIMEPROC_CACHE_WAIT_TIME

THREAD_CACHE_WAIT_TIME_CUMPROC_CACHE_WAIT_TIME_CUM

THREAD_CDFS_WAIT_PCTPROC_CDFS_WAIT_PCT

THREAD_CDFS_WAIT_PCT_CUMPROC_CDFS_WAIT_PCT_CUM

THREAD_CDFS_WAIT_TIMEPROC_CDFS_WAIT_TIME

HP GlancePlus (11.02)Page 109 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_CDFS_WAIT_TIME_CUMPROC_CDFS_WAIT_TIME_CUM

THREAD_CLOSEPROC_CLOSE

THREAD_CLOSE_CUMPROC_CLOSE_CUM

THREAD_CPU_ALIVE_SYS_MODE_UTILPROC_CPU_ALIVE_SYS_MODE_UTIL

THREAD_CPU_ALIVE_TOTAL_UTILPROC_CPU_ALIVE_TOTAL_UTIL

THREAD_CPU_ALIVE_USER_MODE_UTILPROC_CPU_ALIVE_USER_MODE_UTIL

THREAD_CPU_CSWITCH_TIMEPROC_CPU_CSWITCH_TIME

THREAD_CPU_CSWITCH_TIME_CUMPROC_CPU_CSWITCH_TIME_CUM

THREAD_CPU_CSWITCH_UTILPROC_CPU_CSWITCH_UTIL

THREAD_CPU_CSWITCH_UTIL_CUMPROC_CPU_CSWITCH_UTIL_CUM

THREAD_CPU_INTERRUPT_TIMEPROC_CPU_INTERRUPT_TIME

THREAD_CPU_INTERRUPT_TIME_CUMPROC_CPU_INTERRUPT_TIME_CUM

THREAD_CPU_INTERRUPT_UTILPROC_CPU_INTERRUPT_UTIL

THREAD_CPU_INTERRUPT_UTIL_CUMPROC_CPU_INTERRUPT_UTIL_CUM

THREAD_CPU_LAST_USEDPROC_CPU_LAST_USED

THREAD_CPU_NICE_TIMEPROC_CPU_NICE_TIME

THREAD_CPU_NICE_TIME_CUMPROC_CPU_NICE_TIME_CUM

THREAD_CPU_NICE_UTILPROC_CPU_NICE_UTIL

THREAD_CPU_NICE_UTIL_CUMPROC_CPU_NICE_UTIL_CUM

THREAD_CPU_NNICE_TIMEPROC_CPU_NNICE_TIME

THREAD_CPU_NNICE_TIME_CUMPROC_CPU_NNICE_TIME_CUM

THREAD_CPU_NNICE_UTILPROC_CPU_NNICE_UTIL

THREAD_CPU_NNICE_UTIL_CUMPROC_CPU_NNICE_UTIL_CUM

THREAD_CPU_NORMAL_TIMEPROC_CPU_NORMAL_TIME

THREAD_CPU_NORMAL_TIME_CUMPROC_CPU_NORMAL_TIME_CUM

THREAD_CPU_NORMAL_UTILPROC_CPU_NORMAL_UTIL

THREAD_CPU_NORMAL_UTIL_CUMPROC_CPU_NORMAL_UTIL_CUM

THREAD_CPU_REALTIME_TIMEPROC_CPU_REALTIME_TIME

THREAD_CPU_REALTIME_TIME_CUMPROC_CPU_REALTIME_TIME_CUM

THREAD_CPU_REALTIME_UTILPROC_CPU_REALTIME_UTIL

THREAD_CPU_REALTIME_UTIL_CUMPROC_CPU_REALTIME_UTIL_CUM

THREAD_CPU_SWITCHESPROC_CPU_SWITCHES

THREAD_CPU_SWITCHES_CUMPROC_CPU_SWITCHES_CUM

HP GlancePlus (11.02)Page 110 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_CPU_SYSCALL_TIMEPROC_CPU_SYSCALL_TIME

THREAD_CPU_SYSCALL_TIME_CUMPROC_CPU_SYSCALL_TIME_CUM

THREAD_CPU_SYSCALL_UTILPROC_CPU_SYSCALL_UTIL

THREAD_CPU_SYSCALL_UTIL_CUMPROC_CPU_SYSCALL_UTIL_CUM

THREAD_CPU_SYS_MODE_TIMEPROC_CPU_SYS_MODE_TIME

THREAD_CPU_SYS_MODE_TIME_CUMPROC_CPU_SYS_MODE_TIME_CUM

THREAD_CPU_SYS_MODE_UTILPROC_CPU_SYS_MODE_UTIL

THREAD_CPU_SYS_MODE_UTIL_CUMPROC_CPU_SYS_MODE_UTIL_CUM

THREAD_CPU_TOTAL_TIMEPROC_CPU_TOTAL_TIME

THREAD_CPU_TOTAL_TIME_CUMPROC_CPU_TOTAL_TIME_CUM

THREAD_CPU_TOTAL_UTILPROC_CPU_TOTAL_UTIL

THREAD_CPU_TOTAL_UTIL_CUMPROC_CPU_TOTAL_UTIL_CUM

THREAD_CPU_TRAP_COUNTPROC_CPU_TRAP_COUNT

THREAD_CPU_TRAP_COUNT_CUMPROC_CPU_TRAP_COUNT_CUM

THREAD_CPU_USER_MODE_TIMEPROC_CPU_USER_MODE_TIME

THREAD_CPU_USER_MODE_TIME_CUMPROC_CPU_USER_MODE_TIME_CUM

THREAD_CPU_USER_MODE_UTILPROC_CPU_USER_MODE_UTIL

THREAD_CPU_USER_MODE_UTIL_CUMPROC_CPU_USER_MODE_UTIL_CUM

THREAD_DISK_FS_READPROC_DISK_FS_READ

THREAD_DISK_FS_READ_CUMPROC_DISK_FS_READ_CUM

THREAD_DISK_FS_READ_RATEPROC_DISK_FS_READ_RATE

THREAD_DISK_FS_WRITEPROC_DISK_FS_WRITE

THREAD_DISK_FS_WRITE_CUMPROC_DISK_FS_WRITE_CUM

THREAD_DISK_FS_WRITE_RATEPROC_DISK_FS_WRITE_RATE

THREAD_DISK_LOGL_IOPROC_DISK_LOGL_IO

THREAD_DISK_LOGL_IO_CUMPROC_DISK_LOGL_IO_CUM

THREAD_DISK_LOGL_IO_RATEPROC_DISK_LOGL_IO_RATE

THREAD_DISK_LOGL_IO_RATE_CUMPROC_DISK_LOGL_IO_RATE_CUM

THREAD_DISK_LOGL_READPROC_DISK_LOGL_READ

THREAD_DISK_LOGL_READ_CUMPROC_DISK_LOGL_READ_CUM

THREAD_DISK_LOGL_READ_RATEPROC_DISK_LOGL_READ_RATE

THREAD_DISK_LOGL_WRITEPROC_DISK_LOGL_WRITE

THREAD_DISK_LOGL_WRITE_CUMPROC_DISK_LOGL_WRITE_CUM

HP GlancePlus (11.02)Page 111 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_DISK_LOGL_WRITE_RATEPROC_DISK_LOGL_WRITE_RATE

THREAD_DISK_PHYS_IO_RATEPROC_DISK_PHYS_IO_RATE

THREAD_DISK_PHYS_IO_RATE_CUMPROC_DISK_PHYS_IO_RATE_CUM

THREAD_DISK_PHYS_READPROC_DISK_PHYS_READ

THREAD_DISK_PHYS_READ_CUMPROC_DISK_PHYS_READ_CUM

THREAD_DISK_PHYS_READ_RATEPROC_DISK_PHYS_READ_RATE

THREAD_DISK_PHYS_WRITEPROC_DISK_PHYS_WRITE

THREAD_DISK_PHYS_WRITE_CUMPROC_DISK_PHYS_WRITE_CUM

THREAD_DISK_PHYS_WRITE_RATEPROC_DISK_PHYS_WRITE_RATE

THREAD_DISK_RAW_READPROC_DISK_RAW_READ

THREAD_DISK_RAW_READ_CUMPROC_DISK_RAW_READ_CUM

THREAD_DISK_RAW_READ_RATEPROC_DISK_RAW_READ_RATE

THREAD_DISK_RAW_WRITEPROC_DISK_RAW_WRITE

THREAD_DISK_RAW_WRITE_CUMPROC_DISK_RAW_WRITE_CUM

THREAD_DISK_RAW_WRITE_RATEPROC_DISK_RAW_WRITE_RATE

THREAD_DISK_REM_LOGL_READPROC_DISK_REM_LOGL_READ

THREAD_DISK_REM_LOGL_READ_CUMPROC_DISK_REM_LOGL_READ_CUM

THREAD_DISK_REM_LOGL_READ_RATEPROC_DISK_REM_LOGL_READ_RATE

THREAD_DISK_REM_LOGL_WRITEPROC_DISK_REM_LOGL_WRITE

THREAD_DISK_REM_LOGL_WRITE_CUMPROC_DISK_REM_LOGL_WRITE_CUM

THREAD_DISK_REM_LOGL_WRITE_RATEPROC_DISK_REM_LOGL_WRITE_RATE

THREAD_DISK_REM_PHYS_READPROC_DISK_REM_PHYS_READ

THREAD_DISK_REM_PHYS_READ_CUMPROC_DISK_REM_PHYS_READ_CUM

THREAD_DISK_REM_PHYS_READ_RATEPROC_DISK_REM_PHYS_READ_RATE

THREAD_DISK_REM_PHYS_WRITEPROC_DISK_REM_PHYS_WRITE

THREAD_DISK_REM_PHYS_WRITE_CUMPROC_DISK_REM_PHYS_WRITE_CUM

THREAD_DISK_REM_PHYS_WRITE_RATEPROC_DISK_REM_PHYS_WRITE_RATE

THREAD_DISK_SUBSYSTEM_WAIT_PCTPROC_DISK_SUBSYSTEM_WAIT_PCT

THREAD_DISK_SUBSYSTEM_WAIT_PCT_CUMPROC_DISK_SUBSYSTEM_WAIT_PCT_
CUM

THREAD_DISK_SUBSYSTEM_WAIT_TIMEPROC_DISK_SUBSYSTEM_WAIT_TIME

THREAD_DISK_SUBSYSTEM_WAIT_TIME_CUMPROC_DISK_SUBSYSTEM_WAIT_TIME_
CUM

HP GlancePlus (11.02)Page 112 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_DISK_SYSTEM_IOPROC_DISK_SYSTEM_IO

THREAD_DISK_SYSTEM_IO_RATEPROC_DISK_SYSTEM_IO_RATE

THREAD_DISK_SYSTEM_READPROC_DISK_SYSTEM_READ

THREAD_DISK_SYSTEM_READ_CUMPROC_DISK_SYSTEM_READ_CUM

THREAD_DISK_SYSTEM_WRITEPROC_DISK_SYSTEM_WRITE

THREAD_DISK_SYSTEM_WRITE_CUMPROC_DISK_SYSTEM_WRITE_CUM

THREAD_DISK_VM_IOPROC_DISK_VM_IO

THREAD_DISK_VM_IO_RATEPROC_DISK_VM_IO_RATE

THREAD_DISK_VM_READPROC_DISK_VM_READ

THREAD_DISK_VM_READ_CUMPROC_DISK_VM_READ_CUM

THREAD_DISK_VM_WRITEPROC_DISK_VM_WRITE

THREAD_DISK_VM_WRITE_CUMPROC_DISK_VM_WRITE_CUM

THREAD_DISK_WAIT_PCTPROC_DISK_WAIT_PCT

THREAD_DISK_WAIT_PCT_CUMPROC_DISK_WAIT_PCT_CUM

THREAD_DISK_WAIT_TIMEPROC_DISK_WAIT_TIME

THREAD_DISK_WAIT_TIME_CUMPROC_DISK_WAIT_TIME_CUM

THREAD_DISPATCHPROC_DISPATCH

THREAD_DISPATCH_CUMPROC_DISPATCH_CUM

THREAD_EUIDPROC_EUID

THREAD_FORCED_CSWITCHPROC_FORCED_CSWITCH

THREAD_FORCED_CSWITCH_CUMPROC_FORCED_CSWITCH_CUM

THREAD_FORKPROC_FORK

THREAD_FORK_CUMPROC_FORK_CUM

THREAD_GRAPHICS_WAIT_PCTPROC_GRAPHICS_WAIT_PCT

THREAD_GRAPHICS_WAIT_PCT_CUMPROC_GRAPHICS_WAIT_PCT_CUM

THREAD_GRAPHICS_WAIT_TIMEPROC_GRAPHICS_WAIT_TIME

THREAD_GRAPHICS_WAIT_TIME_CUMPROC_GRAPHICS_WAIT_TIME_CUM

THREAD_GROUP_IDPROC_GROUP_ID

THREAD_GROUP_NAMEPROC_GROUP_NAME

THREAD_INODE_WAIT_PCTPROC_INODE_WAIT_PCT

THREAD_INODE_WAIT_PCT_CUMPROC_INODE_WAIT_PCT_CUM

THREAD_INODE_WAIT_TIMEPROC_INODE_WAIT_TIME

THREAD_INODE_WAIT_TIME_CUMPROC_INODE_WAIT_TIME_CUM

HP GlancePlus (11.02)Page 113 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_INTERESTPROC_INTEREST

THREAD_INTERRUPTSPROC_INTERRUPTS

THREAD_INTERRUPTS_CUMPROC_INTERRUPTS_CUM

THREAD_INTERVALPROC_INTERVAL

THREAD_INTERVAL_ALIVEPROC_INTERVAL_ALIVE

THREAD_INTERVAL_CUMPROC_INTERVAL_CUM

THREAD_IOCTLPROC_IOCTL

THREAD_IOCTL_CUMPROC_IOCTL_CUM

THREAD_IO_BYTEPROC_IO_BYTE

THREAD_IO_BYTE_CUMPROC_IO_BYTE_CUM

THREAD_IO_BYTE_RATEPROC_IO_BYTE_RATE

THREAD_IO_BYTE_RATE_CUMPROC_IO_BYTE_RATE_CUM

THREAD_IPC_SUBSYSTEM_WAIT_PCTPROC_IPC_SUBSYSTEM_WAIT_PCT

THREAD_IPC_SUBSYSTEM_WAIT_PCT_CUMPROC_IPC_SUBSYSTEM_WAIT_PCT_CUM

THREAD_IPC_SUBSYSTEM_WAIT_TIMEPROC_IPC_SUBSYSTEM_WAIT_TIME

THREAD_IPC_SUBSYSTEM_WAIT_TIME_CUMPROC_IPC_SUBSYSTEM_WAIT_TIME_
CUM

THREAD_IPC_WAIT_PCTPROC_IPC_WAIT_PCT

THREAD_IPC_WAIT_PCT_CUMPROC_IPC_WAIT_PCT_CUM

THREAD_IPC_WAIT_TIMEPROC_IPC_WAIT_TIME

THREAD_IPC_WAIT_TIME_CUMPROC_IPC_WAIT_TIME_CUM

THREAD_JOBCTL_WAIT_PCTPROC_JOBCTL_WAIT_PCT

THREAD_JOBCTL_WAIT_PCT_CUMPROC_JOBCTL_WAIT_PCT_CUM

THREAD_JOBCTL_WAIT_TIMEPROC_JOBCTL_WAIT_TIME

THREAD_JOBCTL_WAIT_TIME_CUMPROC_JOBCTL_WAIT_TIME_CUM

THREAD_LAN_WAIT_PCTPROC_LAN_WAIT_PCT

THREAD_LAN_WAIT_PCT_CUMPROC_LAN_WAIT_PCT_CUM

THREAD_LAN_WAIT_TIMEPROC_LAN_WAIT_TIME

THREAD_LAN_WAIT_TIME_CUMPROC_LAN_WAIT_TIME_CUM

THREAD_MAJOR_FAULTPROC_MAJOR_FAULT

THREAD_MAJOR_FAULT_CUMPROC_MAJOR_FAULT_CUM

THREAD_MEM_PRIVATE_RESPROC_MEM_PRIVATE_RES

THREAD_MEM_RESPROC_MEM_RES

HP GlancePlus (11.02)Page 114 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_MEM_RES_HIGHPROC_MEM_RES_HIGH

THREAD_MEM_SHARED_RESPROC_MEM_SHARED_RES

THREAD_MEM_VFAULT_COUNTPROC_MEM_VFAULT_COUNT

THREAD_MEM_VFAULT_COUNT_CUMPROC_MEM_VFAULT_COUNT_CUM

THREAD_MEM_VIRTPROC_MEM_VIRT

THREAD_MEM_WAIT_PCTPROC_MEM_WAIT_PCT

THREAD_MEM_WAIT_PCT_CUMPROC_MEM_WAIT_PCT_CUM

THREAD_MEM_WAIT_TIMEPROC_MEM_WAIT_TIME

THREAD_MEM_WAIT_TIME_CUMPROC_MEM_WAIT_TIME_CUM

THREAD_MINOR_FAULTPROC_MINOR_FAULT

THREAD_MINOR_FAULT_CUMPROC_MINOR_FAULT_CUM

THREAD_MSG_RECEIVEDPROC_MSG_RECEIVED

THREAD_MSG_RECEIVED_CUMPROC_MSG_RECEIVED_CUM

THREAD_MSG_SENTPROC_MSG_SENT

THREAD_MSG_SENT_CUMPROC_MSG_SENT_CUM

THREAD_MSG_WAIT_PCTPROC_MSG_WAIT_PCT

THREAD_MSG_WAIT_PCT_CUMPROC_MSG_WAIT_PCT_CUM

THREAD_MSG_WAIT_TIMEPROC_MSG_WAIT_TIME

THREAD_MSG_WAIT_TIME_CUMPROC_MSG_WAIT_TIME_CUM

THREAD_NFS_WAIT_PCTPROC_NFS_WAIT_PCT

THREAD_NFS_WAIT_PCT_CUMPROC_NFS_WAIT_PCT_CUM

THREAD_NFS_WAIT_TIMEPROC_NFS_WAIT_TIME

THREAD_NFS_WAIT_TIME_CUMPROC_NFS_WAIT_TIME_CUM

THREAD_NICE_PRIPROC_NICE_PRI

THREAD_NONDISK_LOGL_READPROC_NONDISK_LOGL_READ

THREAD_NONDISK_LOGL_READ_CUMPROC_NONDISK_LOGL_READ_CUM

THREAD_NONDISK_LOGL_WRITEPROC_NONDISK_LOGL_WRITE

THREAD_NONDISK_LOGL_WRITE_CUMPROC_NONDISK_LOGL_WRITE_CUM

THREAD_NONDISK_PHYS_READPROC_NONDISK_PHYS_READ

THREAD_NONDISK_PHYS_READ_CUMPROC_NONDISK_PHYS_READ_CUM

THREAD_NONDISK_PHYS_WRITEPROC_NONDISK_PHYS_WRITE

THREAD_NONDISK_PHYS_WRITE_CUMPROC_NONDISK_PHYS_WRITE_CUM

THREAD_OPENPROC_OPEN

HP GlancePlus (11.02)Page 115 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_OPEN_CUMPROC_OPEN_CUM

THREAD_OTHER_IO_WAIT_PCTPROC_OTHER_IO_WAIT_PCT

THREAD_OTHER_IO_WAIT_PCT_CUMPROC_OTHER_IO_WAIT_PCT_CUM

THREAD_OTHER_IO_WAIT_TIMEPROC_OTHER_IO_WAIT_TIME

THREAD_OTHER_IO_WAIT_TIME_CUMPROC_OTHER_IO_WAIT_TIME_CUM

THREAD_OTHER_WAIT_PCTPROC_OTHER_WAIT_PCT

THREAD_OTHER_WAIT_PCT_CUMPROC_OTHER_WAIT_PCT_CUM

THREAD_OTHER_WAIT_TIMEPROC_OTHER_WAIT_TIME

THREAD_OTHER_WAIT_TIME_CUMPROC_OTHER_WAIT_TIME_CUM

THREAD_PAGEFAULTPROC_PAGEFAULT

THREAD_PAGEFAULT_RATEPROC_PAGEFAULT_RATE

THREAD_PAGEFAULT_RATE_CUMPROC_PAGEFAULT_RATE_CUM

THREAD_PARENT_PROC_IDPROC_PARENT_PROC_ID

THREAD_PIPE_WAIT_PCTPROC_PIPE_WAIT_PCT

THREAD_PIPE_WAIT_PCT_CUMPROC_PIPE_WAIT_PCT_CUM

THREAD_PIPE_WAIT_TIMEPROC_PIPE_WAIT_TIME

THREAD_PIPE_WAIT_TIME_CUMPROC_PIPE_WAIT_TIME_CUM

THREAD_PRIPROC_PRI

THREAD_PRI_WAIT_PCTPROC_PRI_WAIT_PCT

THREAD_PRI_WAIT_PCT_CUMPROC_PRI_WAIT_PCT_CUM

THREAD_PRI_WAIT_TIMEPROC_PRI_WAIT_TIME

THREAD_PRI_WAIT_TIME_CUMPROC_PRI_WAIT_TIME_CUM

THREAD_PRMIDPROC_PRMID

THREAD_PROC_ARGV1PROC_PROC_ARGV1

THREAD_PROC_CMDPROC_PROC_CMD

THREAD_PROC_IDPROC_PROC_ID

THREAD_PROC_NAMEPROC_PROC_NAME

THREAD_RPC_WAIT_PCTPROC_RPC_WAIT_PCT

THREAD_RPC_WAIT_PCT_CUMPROC_RPC_WAIT_PCT_CUM

THREAD_RPC_WAIT_TIMEPROC_RPC_WAIT_TIME

THREAD_RPC_WAIT_TIME_CUMPROC_RPC_WAIT_TIME_CUM

THREAD_RUN_TIMEPROC_RUN_TIME

THREAD_SCHEDULERPROC_SCHEDULER

HP GlancePlus (11.02)Page 116 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_SEM_WAIT_PCTPROC_SEM_WAIT_PCT

THREAD_SEM_WAIT_PCT_CUMPROC_SEM_WAIT_PCT_CUM

THREAD_SEM_WAIT_TIMEPROC_SEM_WAIT_TIME

THREAD_SEM_WAIT_TIME_CUMPROC_SEM_WAIT_TIME_CUM

THREAD_SIGNALPROC_SIGNAL

THREAD_SIGNAL_CUMPROC_SIGNAL_CUM

THREAD_SLEEP_WAIT_PCTPROC_SLEEP_WAIT_PCT

THREAD_SLEEP_WAIT_PCT_CUMPROC_SLEEP_WAIT_PCT_CUM

THREAD_SLEEP_WAIT_TIMEPROC_SLEEP_WAIT_TIME

THREAD_SLEEP_WAIT_TIME_CUMPROC_SLEEP_WAIT_TIME_CUM

THREAD_SOCKET_WAIT_PCTPROC_SOCKET_WAIT_PCT

THREAD_SOCKET_WAIT_PCT_CUMPROC_SOCKET_WAIT_PCT_CUM

THREAD_SOCKET_WAIT_TIMEPROC_SOCKET_WAIT_TIME

THREAD_SOCKET_WAIT_TIME_CUMPROC_SOCKET_WAIT_TIME_CUM

THREAD_STARTTIMEPROC_STARTTIME

THREAD_STATEPROC_STATE

THREAD_STOP_REASONPROC_STOP_REASON

THREAD_STOP_REASON_FLAGPROC_STOP_REASON_FLAG

THREAD_STREAM_WAIT_PCTPROC_STREAM_WAIT_PCT

THREAD_STREAM_WAIT_PCT_CUMPROC_STREAM_WAIT_PCT_CUM

THREAD_STREAM_WAIT_TIMEPROC_STREAM_WAIT_TIME

THREAD_STREAM_WAIT_TIME_CUMPROC_STREAM_WAIT_TIME_CUM

THREAD_SWAPPROC_SWAP

THREAD_SWAP_CUMPROC_SWAP_CUM

THREAD_SYS_WAIT_PCTPROC_SYS_WAIT_PCT

THREAD_SYS_WAIT_PCT_CUMPROC_SYS_WAIT_PCT_CUM

THREAD_SYS_WAIT_TIMEPROC_SYS_WAIT_TIME

THREAD_SYS_WAIT_TIME_CUMPROC_SYS_WAIT_TIME_CUM

THREAD_TERM_IO_WAIT_PCTPROC_TERM_IO_WAIT_PCT

THREAD_TERM_IO_WAIT_PCT_CUMPROC_TERM_IO_WAIT_PCT_CUM

THREAD_TERM_IO_WAIT_TIMEPROC_TERM_IO_WAIT_TIME

THREAD_TERM_IO_WAIT_TIME_CUMPROC_TERM_IO_WAIT_TIME_CUM

THREAD_THREAD_COUNTPROC_THREAD_COUNT

HP GlancePlus (11.02)Page 117 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

THREAD_THREAD_IDPROC_THREAD_ID

THREAD_TIMEPROC_TIME

THREAD_TOP_CPU_INDEXPROC_TOP_CPU_INDEX

THREAD_TOP_DISK_INDEXPROC_TOP_DISK_INDEX

THREAD_TOTAL_WAIT_TIMEPROC_TOTAL_WAIT_TIME

THREAD_TOTAL_WAIT_TIME_CUMPROC_TOTAL_WAIT_TIME_CUM

THREAD_TTYPROC_TTY

THREAD_TTY_DEVPROC_TTY_DEV

THREAD_UIDPROC_UID

THREAD_USER_NAMEPROC_USER_NAME

THREAD_USER_THREAD_IDPROC_USER_THREAD_ID

THREAD_USRPRIPROC_USRPRI

THREAD_VOLUNTARY_CSWITCHPROC_VOLUNTARY_CSWITCH

THREAD_VOLUNTARY_CSWITCH_CUMPROC_VOLUNTARY_CSWITCH_CUM

Network by Logical Detail Metrics
BYNETIF_LOGL_INTERVALBYNETIF_LOGL_INTERVAL

BYNETIF_LOGL_INTERVAL_CUMBYNETIF_LOGL_INTERVAL_CUM

BYNETIF_LOGL_IN_PACKETBYNETIF_LOGL_IN_PACKET

BYNETIF_LOGL_IN_PACKET_RATEBYNETIF_LOGL_IN_PACKET_RATE

BYNETIF_LOGL_IN_PACKET_RATE_CUMBYNETIF_LOGL_IN_PACKET_RATE_CUM

BYNETIF_LOGL_IP_ADDRESSBYNETIF_LOGL_IP_ADDRESS

BYNETIF_LOGL_NAMEBYNETIF_LOGL_NAME

BYNETIF_LOGL_OUT_PACKETBYNETIF_LOGL_OUT_PACKET

BYNETIF_LOGL_OUT_PACKET_RATEBYNETIF_LOGL_OUT_PACKET_RATE

BYNETIF_LOGL_OUT_PACKET_RATE_CUMBYNETIF_LOGL_OUT_PACKET_RATE_CUM

Transaction Client Metrics
TT_CLIENT_ABORTTT_ABORT

TT_CLIENT_ABORT_CUMTT_ABORT_CUM

TT_CLIENT_ABORT_WALL_TIMETT_ABORT_WALL_TIME

TT_CLIENT_ABORT_WALL_TIME_CUMTT_ABORT_WALL_TIME_CUM

TT_CLIENT_ADDRESSTT_CLIENT_ADDRESS

TT_CLIENT_ADDRESS_FORMATTT_CLIENT_ADDRESS_FORMAT

HP GlancePlus (11.02)Page 118 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

TT_CLIENT_TRAN_IDTT_CLIENT_TRAN_ID

TT_CLIENT_COUNTTT_COUNT

TT_CLIENT_COUNT_CUMTT_COUNT_CUM

TT_CLIENT_FAILEDTT_FAILED

TT_CLIENT_FAILED_CUMTT_FAILED_CUM

TT_CLIENT_FAILED_WALL_TIMETT_FAILED_WALL_TIME

TT_CLIENT_FAILED_WALL_TIME_CUMTT_FAILED_WALL_TIME_CUM

TT_CLIENT_INTERVALTT_INTERVAL

TT_CLIENT_INTERVAL_CUMTT_INTERVAL_CUM

TT_CLIENT_SLO_COUNTTT_SLO_COUNT

TT_CLIENT_SLO_COUNT_CUMTT_SLO_COUNT_CUM

TT_CLIENT_UPDATETT_UPDATE

TT_CLIENT_UPDATE_CUMTT_UPDATE_CUM

TT_CLIENT_WALL_TIMETT_WALL_TIME

TT_CLIENT_WALL_TIME_CUMTT_WALL_TIME_CUM

TT_CLIENT_WALL_TIME_PER_TRANTT_WALL_TIME_PER_TRAN

TT_CLIENT_WALL_TIME_PER_TRAN_CUMTT_WALL_TIME_PER_TRAN_CUM

Transaction Instance Metrics
TT_INSTANCE_IDTT_INSTANCE_ID

TT_INSTANCE_PROC_IDTT_INSTANCE_PROC_ID

TT_INSTANCE_START_TIMETT_INSTANCE_START_TIME

TT_INSTANCE_STOP_TIMETT_INSTANCE_STOP_TIME

TT_INSTANCE_THREAD_IDTT_INSTANCE_THREAD_ID

TT_INSTANCE_UPDATE_COUNTTT_INSTANCE_UPDATE_COUNT

TT_INSTANCE_UPDATE_TIMETT_INSTANCE_UPDATE_TIME

TT_INSTANCE_WALL_TIMETT_INSTANCE_WALL_TIME

Transaction User Defined Measurement Metrics
TT_USER_MEASUREMENT_AVGTT_USER_MEASUREMENT_AVG

TT_USER_MEASUREMENT_COUNTTT_USER_MEASUREMENT_COUNT

TT_USER_MEASUREMENT_MAXTT_USER_MEASUREMENT_MAX

TT_USER_MEASUREMENT_MINTT_USER_MEASUREMENT_MIN

TT_USER_MEASUREMENT_NAMETT_USER_MEASUREMENT_NAME

HP GlancePlus (11.02)Page 119 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

TT_USER_MEASUREMENT_STRING1024_VALUETT_USER_MEASUREMENT_
STRING1024_VALUE

TT_USER_MEASUREMENT_STRING32_VALUETT_USER_MEASUREMENT_STRING32_
VALUE

TT_USER_MEASUREMENT_TYPETT_USER_MEASUREMENT_TYPE

TT_USER_MEASUREMENT_VALUETT_USER_MEASUREMENT_VALUE

Transaction Client User Defined Measurement Metrics
TT_CLIENT_USER_MEASUREMENT_AVGTT_USER_MEASUREMENT_AVG

TT_CLIENT_USER_MEASUREMENT_COUNTTT_USER_MEASUREMENT_COUNT

TT_CLIENT_USER_MEASUREMENT_MAXTT_USER_MEASUREMENT_MAX

TT_CLIENT_USER_MEASUREMENT_MINTT_USER_MEASUREMENT_MIN

TT_CLIENT_USER_MEASUREMENT_NAMETT_USER_MEASUREMENT_NAME

TT_CLIENT_USER_MEASUREMENT_STRING1024_VALUETT_USER_MEASUREMENT_
STRING1024_VALUE

TT_CLIENT_USER_MEASUREMENT_STRING32_VALUETT_USER_MEASUREMENT_
STRING32_VALUE

TT_CLIENT_USER_MEASUREMENT_TYPETT_USER_MEASUREMENT_TYPE

TT_CLIENT_USER_MEASUREMENT_VALUETT_USER_MEASUREMENT_VALUE

Transaction Instance User Defined Measurement Metrics
TT_INSTANCE_USER_MEASUREMENT_AVGTT_USER_MEASUREMENT_AVG

TT_INSTANCE_USER_MEASUREMENT_COUNTTT_USER_MEASUREMENT_COUNT

TT_INSTANCE_USER_MEASUREMENT_MAXTT_USER_MEASUREMENT_MAX

TT_INSTANCE_USER_MEASUREMENT_MINTT_USER_MEASUREMENT_MIN

TT_INSTANCE_USER_MEASUREMENT_NAMETT_USER_MEASUREMENT_NAME

TT_INSTANCE_USER_MEASUREMENT_STRING1024_VALUETT_USER_
MEASUREMENT_STRING1024_VALUE

TT_INSTANCE_USER_MEASUREMENT_STRING32_VALUETT_USER_MEASUREMENT_
STRING32_VALUE

TT_INSTANCE_USER_MEASUREMENT_TYPETT_USER_MEASUREMENT_TYPE

TT_INSTANCE_USER_MEASUREMENT_VALUETT_USER_MEASUREMENT_VALUE

PRM By Volume Group Metrics
PRM_BYVG_GROUP_ENTITLEMENTPRM_BYVG_GROUP_ENTITLEMENT

PRM_BYVG_GROUP_UTILPRM_BYVG_GROUP_UTIL

PRM_BYVG_INTERVALPRM_BYVG_INTERVAL

HP GlancePlus (11.02)Page 120 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

PRM_BYVG_INTERVAL_CUMPRM_BYVG_INTERVAL_CUM

PRM_BYVG_PRM_GROUPIDPRM_BYVG_PRM_GROUPID

PRM_BYVG_PRM_GROUPNAMEPRM_BYVG_PRM_GROUPNAME

PRM_BYVG_REQUESTPRM_BYVG_REQUEST

PRM_BYVG_REQUEST_CUMPRM_BYVG_REQUEST_CUM

PRM_BYVG_REQUEST_QUEUEPRM_BYVG_REQUEST_QUEUE

PRM_BYVG_TRANSFERPRM_BYVG_TRANSFER

PRM_BYVG_TRANSFER_CUMPRM_BYVG_TRANSFER_CUM

By Logical System Metrics
BYLS_CPU_CYCLE_ENTL_MAXBYLS_CPU_CYCLE_ENTL_MAX

BYLS_CPU_CYCLE_ENTL_MINBYLS_CPU_CYCLE_ENTL_MIN

BYLS_CPU_ENTL_MAXBYLS_CPU_ENTL_MAX

BYLS_CPU_ENTL_MINBYLS_CPU_ENTL_MIN

BYLS_CPU_ENTL_UTILBYLS_CPU_ENTL_UTIL

BYLS_CPU_PHYSCBYLS_CPU_PHYSC

BYLS_CPU_PHYS_TOTAL_TIMEBYLS_CPU_PHYS_TOTAL_TIME

BYLS_CPU_PHYS_TOTAL_TIME_CUMBYLS_CPU_PHYS_TOTAL_TIME_CUM

BYLS_CPU_PHYS_TOTAL_UTILBYLS_CPU_PHYS_TOTAL_UTIL

BYLS_CPU_TOTAL_UTILBYLS_CPU_TOTAL_UTIL

BYLS_DISPLAY_NAMEBYLS_DISPLAY_NAME

BYLS_IP_ADDRESSBYLS_IP_ADDRESS

BYLS_LS_HOSTNAMEBYLS_LS_HOSTNAME

BYLS_LS_IDBYLS_LS_ID

BYLS_LS_MODEBYLS_LS_MODE

BYLS_LS_NAMEBYLS_LS_NAME

BYLS_LS_OSTYPEBYLS_LS_OSTYPE

BYLS_LS_PROC_IDBYLS_LS_PROC_ID

BYLS_LS_SHAREDBYLS_LS_SHARED

BYLS_LS_STATEBYLS_LS_STATE

BYLS_LS_UUIDBYLS_LS_UUID

BYLS_MEM_ENTLBYLS_MEM_ENTL

BYLS_MEM_ENTL_MAXBYLS_MEM_ENTL_MAX

HP GlancePlus (11.02)Page 121 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYLS_MEM_ENTL_MINBYLS_MEM_ENTL_MIN

BYLS_MEM_ENTL_UTILBYLS_MEM_ENTL_UTIL

BYLS_MEM_FREEBYLS_MEM_FREE

BYLS_MEM_FREE_UTILBYLS_MEM_FREE_UTIL

BYLS_MEM_HEALTHBYLS_MEM_HEALTH

BYLS_MEM_PHYSBYLS_MEM_PHYS

BYLS_MEM_PHYS_UTILBYLS_MEM_PHYS_UTIL

BYLS_MEM_USEDBYLS_MEM_USED

BYLS_NUM_CPUBYLS_NUM_CPU

BYLS_NUM_DISKBYLS_NUM_DISK

BYLS_NUM_NETIFBYLS_NUM_NETIF

BYLS_UPTIME_SECONDSBYLS_UPTIME_SECONDS

By Hba Metrics
BYHBA_AVG_SERVICE_TIMEBYHBA_AVG_SERVICE_TIME

BYHBA_AVG_WAIT_TIMEBYHBA_AVG_WAIT_TIME

BYHBA_BUSY_TIMEBYHBA_BUSY_TIME

BYHBA_BYTE_RATEBYHBA_BYTE_RATE

BYHBA_BYTE_RATE_CUMBYHBA_BYTE_RATE_CUM

BYHBA_CLASSBYHBA_CLASS

BYHBA_DEVNAMEBYHBA_DEVNAME

BYHBA_DEVNOBYHBA_DEVNO

BYHBA_DRIVERBYHBA_DRIVER

BYHBA_IDBYHBA_ID

BYHBA_INTERVALBYHBA_INTERVAL

BYHBA_INTERVAL_CUMBYHBA_INTERVAL_CUM

BYHBA_IOBYHBA_IO

BYHBA_IO_RATEBYHBA_IO_RATE

BYHBA_IO_RATE_CUMBYHBA_IO_RATE_CUM

BYHBA_NAMEBYHBA_NAME

BYHBA_READBYHBA_READ

BYHBA_READ_BYTE_RATEBYHBA_READ_BYTE_RATE

BYHBA_READ_BYTE_RATE_CUMBYHBA_READ_BYTE_RATE_CUM

HP GlancePlus (11.02)Page 122 of 821

Dictionary of Operating System Metrics
Chapter 2: Metric Names by Data Class

BYHBA_READ_RATEBYHBA_READ_RATE

BYHBA_READ_RATE_CUMBYHBA_READ_RATE_CUM

BYHBA_REQUEST_QUEUEBYHBA_REQUEST_QUEUE

BYHBA_STATEBYHBA_STATE

BYHBA_THROUGHPUT_UTILBYHBA_THROUGHPUT_UTIL

BYHBA_TIMEBYHBA_TIME

BYHBA_TYPEBYHBA_TYPE

BYHBA_UTILBYHBA_UTIL

BYHBA_WRITEBYHBA_WRITE

BYHBA_WRITE_BYTE_RATEBYHBA_WRITE_BYTE_RATE

BYHBA_WRITE_BYTE_RATE_CUMBYHBA_WRITE_BYTE_RATE_CUM

BYHBA_WRITE_RATEBYHBA_WRITE_RATE

BYHBA_WRITE_RATE_CUMBYHBA_WRITE_RATE_CUM

HP GlancePlus (11.02)Page 123 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Metric Definitions
APP_ACTIVE_APP

The number of applications that had processes active (consuming cpu resources) during the
interval.

APP_ACTIVE_APP_PRM

The number of PRM groups with at least one process that had activity during the interval.

APP_ACTIVE_PROC

An active process is one that exists and consumes someCPU time. APP_ACTIVE_PROC is the
sum of the alive-process-time/interval-time ratios of every process belonging to an application that
is active (uses any CPU time) during an interval.

The following diagram of a four second interval showing two processes, A and B, for an application
should be used to understand the above definition. Note the difference between active processes,
which consumeCPU time, and alive processes whichmerely exist on the system.

----------- Seconds -----------
1 2 3 4

Proc
---- ---- ---- ---- ----
A live live live live

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval, but consumes no CPU. A's contribution to
APP_ALIVE_PROC is 4*1/4. A contributes 0*1/4 to APP_ACTIVE_PROC. B's contribution to
APP_ALIVE_PROC is 3*1/4. B contributes 2*1/4 to APP_ACTIVE_PROC. Thus, for this interval,
APP_ACTIVE_PROC equals 0.5 and APP_ALIVE_PROC equals 1.75.

Because a process may be alive but not active, APP_ACTIVE_PROC will always be less than or
equal to APP_ALIVE_PROC.

This metric indicates the number of processes in an application group that are competing for the
CPU. This metric is useful, along with other metrics, for comparing loads placed on the system by
different groups of processes.

On non HP-UX systems, this metric is derived from sampled process data. Since the data for a
process is not available after the process has died on this operating system, a process whose life is
shorter than the sampling interval may not be seen when the samples are taken. Thus this metric
may be slightly less than the actual value. Increasing the sampling frequency captures amore
accurate count, but the overhead of collectionmay also rise.

HP GlancePlus (11.02)Page 124 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_ALIVE_PROC

An alive process is one that exists on the system. APP_ALIVE_PROC is the sum of the alive-
process-time/interval-time ratios for every process belonging to a given application.

The following diagram of a four second interval showing two processes, A and B, for an application
should be used to understand the above definition. Note the difference between active processes,
which consumeCPU time, and alive processes whichmerely exist on the system.

----------- Seconds -----------
1 2 3 4

Proc
---- ---- ---- ---- ----
A live live live live

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval but consumes no CPU. A's contribution to
APP_ALIVE_PROC is 4*1/4. A contributes 0*1/4 to APP_ACTIVE_PROC. B's contribution to
APP_ALIVE_PROC is 3*1/4. B contributes 2*1/4 to APP_ACTIVE_PROC. Thus, for this interval,
APP_ACTIVE_PROC equals 0.5 and APP_ALIVE_PROC equals 1.75.

Because a process may be alive but not active, APP_ACTIVE_PROC will always be less than or
equal to APP_ALIVE_PROC.

On non HP-UX systems, this metric is derived from sampled process data. Since the data for a
process is not available after the process has died on this operating system, a process whose life is
shorter than the sampling interval may not be seen when the samples are taken. Thus this metric
may be slightly less than the actual value. Increasing the sampling frequency captures amore
accurate count, but the overhead of collectionmay also rise.

APP_COMPLETED_PROC

The number of processes in this group that completed during the interval.

On non HP-UX systems, this metric is derived from sampled process data. Since the data for a
process is not available after the process has died on this operating system, a process whose life is
shorter than the sampling interval may not be seen when the samples are taken. Thus this metric
may be slightly less than the actual value. Increasing the sampling frequency captures amore
accurate count, but the overhead of collectionmay also rise.

APP_CPU_NICE_TIME

The time, in seconds, that processes in this group were using the CPU in user mode at a nice
priority during the interval.

HP GlancePlus (11.02)Page 125 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_NICE_UTIL

The percentage of time that processes in this group were using the CPU in user mode at a nice
priority during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 126 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_CPU_NNICE_TIME

The time, in seconds, that processes in this group were using the CPU in user mode at a nice
priority calculated from using negative nice values during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_NNICE_UTIL

The percentage of time that processes in this group were using the CPU in user mode at a nice
priority calculated from using negative nice values during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.

HP GlancePlus (11.02)Page 127 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_NORMAL_TIME

The time, in seconds, that processes in this group were in user mode at a normal priority during the
interval.

Normal priority user mode CPU excludes CPU used at real-time and nice priorities. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values
normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_NORMAL_UTIL

The percentage of time that processes in this group were in user mode running at normal priority
during the interval. Normal priority user mode CPU excludes CPU used at real-time and nice
priorities.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 128 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_CPU_REALTIME_TIME

The time, in seconds, that the processes in this group were in user mode at a “realtime” priority
during the interval. “Realtime” priority is 0-127. On platforms other than HPUX, If the ignore_mt flag
is set(true) in parm file, this metric will report values normalized against the number of active cores
in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_REALTIME_UTIL

The percentage of time that processes in this group were in user mode at a “realtime” priority during
the interval. “Realtime” priority is 0-127.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 129 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_CPU_SYS_MODE_TIME

The time, in seconds, during the interval that the CPU was in systemmode for processes in this
group.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_SYS_MODE_UTIL

The percentage of time during the interval that the CPU was used in systemmode for processes in
this group.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

High system CPU utilizations are normal for IO intensive groups. Abnormally high system CPU
utilization can indicate that a hardware problem is causing a high interrupt rate. It can also indicate
programs that are not making efficient system calls. On platforms other than HPUX, If the ignore_
mt flag is set(true) in parm file, this metric will report values normalized against the number of active
cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 130 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_TOTAL_TIME

The total CPU time, in seconds, devoted to processes in this group during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_TOTAL_UTIL

The percentage of the total CPU time devoted to processes in this group during the interval. This
indicates the relative CPU load placed on the system by processes in this group.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

Large values for this metric may indicate that this group is causing a CPU bottleneck. This would
be normal in a computation-bound workload, but might mean that processes are using excessive
CPU time and perhaps looping.

If the “other” application shows significant amounts of CPU, youmay want to consider tuning your
parm file so that process activity is accounted for in known applications.

HP GlancePlus (11.02)Page 131 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_CPU_TOTAL_UTIL =
APP_CPU_SYS_MODE_UTIL +
APP_CPU_USER_MODE_UTIL

NOTE: OnWindows, the sum of the APP_CPU_TOTAL_UTILmetrics may not equal GBL_CPU_
TOTAL_UTIL. Microsoft states that “this is expected behavior” because theGBL_CPU_TOTAL_
UTILmetric is taken from the NT performance library Processor objects while the APP_CPU_
TOTAL_UTILmetrics are taken from the Process objects. Microsoft states that there can be CPU
time accounted for in the Processor system objects that may not be seen in the Process objects.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_TOTAL_UTIL_CUM

The average CPU time per interval for processes in this group over the cumulative collection time,
or since the last PRM configuration change on HP-UX.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

HP GlancePlus (11.02)Page 132 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_USER_MODE_TIME

The time, in seconds, that processes in this group were in user mode during the interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_CPU_USER_MODE_UTIL

The percentage of time that processes in this group were using the CPU in user mode during the
interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

High user mode CPU percentages are normal for computation-intensive groups. Low values of
user CPU utilization compared to relatively high values for APP_CPU_SYS_MODE_UTIL can
indicate a hardware problem or improperly tuned programs in this group.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total

HP GlancePlus (11.02)Page 133 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_DISK_FS_IO_RATE

The number of file system disk IOs for processes in this group during the interval. Only local disks
are counted in this measurement. NFS devices are excluded.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

APP_DISK_LOGL_IO_RATE

The number of logical IOs per second for processes in this group during the interval. Only local
disks are counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

HP GlancePlus (11.02)Page 134 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_DISK_LOGL_READ

The number of logical reads for processes in this group during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

APP_DISK_LOGL_READ_RATE

The number of logical reads per second for processes in this group during the interval. Only local
disks are counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

APP_DISK_LOGL_WRITE

The number of logical writes for processes in this group during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 135 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

APP_DISK_LOGL_WRITE_RATE

The number of logical writes per second for processes in this group during the interval. Only local
disks are counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

APP_DISK_PHYS_IO_RATE

The number of physical IOs per second for processes in this group during the interval.

APP_DISK_PHYS_READ

The number of physical reads for processes in this group during the interval.

HP GlancePlus (11.02)Page 136 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_DISK_PHYS_READ_RATE

The number of physical reads per second for processes in this group during the interval.

APP_DISK_PHYS_WRITE

The number of physical writes for processes in this group during the interval.

APP_DISK_PHYS_WRITE_RATE

The number of physical writes per second for processes in this group during the interval.

APP_DISK_RAW_IO_RATE

The total number of raw IOs for processes in this group during the interval. Only accesses to local
disk devices are counted.

APP_DISK_SUBSYSTEM_QUEUE

The average number of processes or kernel threads in this group that were blocked on the disk
subsystem (waiting for their file system IOs to complete) during the interval.

This is the sum of processes or kernel threads in the DISK, INODE, CACHE and CDFS wait
states. It does not include processes or kernel threads doing raw IO to disk devices.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 137 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_DISK_SUBSYSTEM_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked on the disk
subsystem (waiting for their file system IOs to complete) during the interval.

This is the sum of processes or kernel threads in the DISK, INODE, CACHE and CDFS wait
states. It does not include processes or kernel threads doing raw IO to disk devices.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_DISK_SYSTEM_IO_RATE

The number of physical IOs per second generated by the kernel for file systemmanagement (inode
accesses or updates) for processes in this group during the interval.

APP_DISK_VM_IO_RATE

The number of virtual memory IOs per secondmade on behalf of processes in this group during the
interval.

IOs to user file data are not included in this metric unless they were done via themmap(2) system
call.

APP_INTERVAL

The amount of time in the interval.

HP GlancePlus (11.02)Page 138 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

APP_IO_BYTE

The number of characters (in KB) transferred for processes in this group to all devices during the
interval. This includes IO to disk, terminal, tape and printers.

APP_IO_BYTE_RATE

The number of characters (in KB) per second transferred for processes in this group to all devices
during the interval. This includes IO to disk, terminal, tape and printers.

APP_IPC_SUBSYSTEM_QUEUE

The average number of processes or kernel threads in this group blocked on the InterProcess
Communication (IPC) subsystems (waiting for their interprocess communication activity to
complete) during the interval.

This is the sum of processes or kernel threads in the IPC, MSG, SEM, PIPE, SOCKT (that is,
sockets) and STRMS (that is, streams IO) wait states.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
(IPC + MSG + SEM + PIPE + SOCKT + STRMS) divided by the interval time.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

HP GlancePlus (11.02)Page 139 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_IPC_SUBSYSTEM_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked on the InterProcess
Communication (IPC) subsystems (waiting for their interprocess communication activity to
complete) during the interval.

This is the sum of processes or kernel threads in the IPC, MSG, SEM, PIPE, SOCKT (that is,
sockets) and STRMS (that is, streams IO) wait states.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 140 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_MAJOR_FAULT

The number of major page faults that required a disk IO for processes in this group during the
interval.

APP_MAJOR_FAULT_RATE

The number of major page faults per second that required a disk IO for processes in this group
during the interval.

APP_MEM_QUEUE

The average number of processes or kernel threads in this group blocked onmemory (waiting for
virtual memory disk accesses to complete) during the interval.

This typically happens when processes or kernel threads are allocating a large amount of memory.
It can also happen when processes or kernel threads access memory that has been paged out to
disk (deactivated) because of overall memory pressure on the system. Note that large programs
can block on VM disk access when they are initializing, bringing their text and data pages into
memory.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_MEM_RES

OnUnix systems, this is the sum of the size (in MB) of resident memory for processes in this group
that were alive at the end of the interval. This consists of text, data, stack, and sharedmemory
regions.

On HP-UX, since PROC_MEM_RES typically takes shared region references into account, this
approximates the total resident (physical) memory consumed by all processes in this group.

HP GlancePlus (11.02)Page 141 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On all other Unix systems, this is the sum of the resident memory region sizes for all processes in
this group. When the resident memory size for processes includes shared regions, such as shared
memory and library text and data, the shared regions are countedmultiple times in this sum. For
example, if the application contains four processes that are attached to a 500MB sharedmemory
region that is all resident in physical memory, then 2000MB is contributed towards the sum in this
metric. As such, this metric can overestimate the resident memory being used by processes in this
group when they sharememory regions.

Refer to the help text for PROC_MEM_RES for additional information.

OnWindows, this is the sum of the size (in MB) of the working sets for processes in this group
during the interval. The working set counts memory pages referenced recently by the threads
making up this group. Note that the size of the working set is often larger than the amount of
pagefile space consumed.

APP_MEM_UTIL

OnUnix systems, this is the approximate percentage of the system's physical memory used as
resident memory by processes in this group that were alive at the end of the interval. This metric
summarizes process private and sharedmemory in each application.

OnWindows, this is an estimate of the percentage of the system's physical memory allocated for
working set memory by processes in this group during the interval.

On HP-UX, this consists of text, data, stack, as well the process' portion of sharedmemory regions
(such as, shared libraries, text segments, and shared data). The sum of the shared region pages is
typically divided by the number of references.

APP_MEM_VIRT

OnUnix systems, this is the sum (in MB) of virtual memory for processes in this group that were
alive at the end of the interval. This consists of text, data, stack, and sharedmemory regions.

On HP-UX, since PROC_MEM_VIRT typically takes shared region references into account, this
approximates the total virtual memory consumed by all processes in this group.

On all other Unix systems, this is the sum of the virtual memory region sizes for all processes in
this group. When the virtual memory size for processes includes shared regions, such as shared
memory and library text and data, the shared regions are countedmultiple times in this sum. For
example, if the application contains four processes that are attached to a 500MB sharedmemory
region, then 2000MB is reported in this metric. As such, this metric can overestimate the virtual
memory being used by processes in this group when they sharememory regions.

OnWindows, this is the sum (in MB) of paging file space used for all processes in this group during
the interval. Groups of processes may have working set sizes (APP_MEM_RES) larger than the
size of their pagefile space.

HP GlancePlus (11.02)Page 142 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_MEM_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked onmemory (waiting
for virtual memory disk accesses to complete) during the interval.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_MINOR_FAULT

The number of minor page faults satisfied in memory (a page was reclaimed from one of the free
lists) for processes in this group during the interval.

APP_MINOR_FAULT_RATE

The number of minor page faults per second satisfied in memory (pages were reclaimed from one of
the free lists) for processes in this group during the interval.

APP_NAME

The name of the application (up to 20 characters). This comes from the parm file where the
applications are defined.

HP GlancePlus (11.02)Page 143 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The application called “other” captures all processes not aggregated into applications specifically
defined in the parm file. In other words, if no applications are defined in the parm file, then all
process data would be reflected in the “other” application.

APP_NAME_PRM_GROUPNAME

The PRM group name. The PRM group configuration is kept in the PRM configuration file.

APP_NETWORK_SUBSYSTEM_QUEUE

The average number of processes or kernel threads in this group were blocked on the network
subsystem (waiting for their network activity to complete) during the interval.

This is the sum of processes or kernel threads in the LAN, NFS, and RPC wait states. This does
not include processes or kernel threads blocked on SOCKT (that is, socket) waits, as some
processes or kernel threads sit idle in SOCKT waits for long periods.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_NETWORK_SUBSYSTEM_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked on the network
subsystem (waiting for their network activity to complete) during the interval.

This is the sum of processes or kernel threads in the LAN, NFS, and RPC wait states. This does
not include processes or kernel threads blocked on SOCKT (that is, socket) waits, as some
processes or kernel threads sit idle in SOCKT waits for long periods.

This is calculated as the accumulated time that all processes or kernel threads in this group spent
blocked on (LAN + NFS + RPC) divided by the interval time.

HP GlancePlus (11.02)Page 144 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_NUM

The sequentially assigned number of this application or, on Solaris, the project ID when application
grouping by project is enabled.

APP_OTHER_IO_QUEUE

The average number of processes or kernel threads in this group that were blocked on “other IO”
during the interval. “Other IO” includes all IO directed at a device (connected to the local computer)
which is not a terminal or LAN. Examples of “other IO” devices are local printers, tapes,
instruments, and disks. Time waiting for character (raw) IO to disks is included in this
measurement. Time waiting for file systembuffered IO to disks will typically been seen as IO or
CACHE wait. Time waiting for IO to NFS disks is reported as NFS wait.

This is calculated as the accumulated time that all processes or kernel threads in this group spent
blocked on other IO divided by the interval time.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

HP GlancePlus (11.02)Page 145 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_OTHER_IO_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked on “other IO” during
the interval. “Other IO” includes all IO directed at a device (connected to the local computer) which
is not a terminal or LAN. Examples of “other IO” devices are local printers, tapes, instruments, and
disks. Time waiting for character (raw) IO to disks is included in this measurement. Time waiting
for file systembuffered IO to disks will typically been seen as IO or CACHE wait. Time waiting for
IO to NFS disks is reported as NFS wait.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_PRI

OnUnix systems, this is the average priority of the processes in this group during the interval.

HP GlancePlus (11.02)Page 146 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnWindows, this is the average base priority of the processes in this group during the interval.

APP_PRI_QUEUE

The average number of processes or kernel threads in this group blocked on PRI (waiting for their
priority to become high enough to get the CPU) during the interval.

This is calculated as the accumulated time that all processes or kernel threads in this group spent
blocked on PRI divided by the interval time.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_PRI_STD_DEV

The standard deviation of priorities of the processes in this group during the interval.

This metric is available on HP-UX 10.20.

APP_PRI_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked on PRI (waiting for
their priority to become high enough to get the CPU) during the interval.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

HP GlancePlus (11.02)Page 147 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_PRM_CPUCAP_MODE

The PRMCPU CapMode state on this system:

0 = PRM is not installed or not
configured.

1 = CPU Cap Mode is not enabled
(PRM CPU entitlements are
in effect)

2 = CPU Cap Mode is enabled
(The PRM CPU entitlements
behave as caps or limits)

APP_PRM_CPU_ENTITLEMENT

The PRMCPU entitlement for this PRMGroup ID entry as defined in the PRM configuration file.

APP_PRM_CPU_TOTAL_UTIL_CUM

The average CPU time per interval for processes in this group over the cumulative collection time,
or since the last PRM configuration change.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 148 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

APP_PRM_DISK_STATE

The PRMDISK state on this system:

0 = PRM is not installed or no
disk specification

1 = reset (PRM is installed in
reset condition or no disk
specification)

2 = configured/disabled (The PRM
disk management is configured)

3 = enabled/configured (The PRM
disk management is enabled and
volume groups are configured)

4 = enabled/unconfigured (The PRM
disk management is enabled,
however, no volume groups are
configured)

HP GlancePlus (11.02)Page 149 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_PRM_GROUPID

The PRMGroup ID. The PRM group configuration is kept in the PRM configuration file.

APP_PRM_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

APP_PRM_MEM_AVAIL

PRM available memory is the amount of physical memory less the amount of memory reserved for
the kernel and system processes running in the PRM_SYS group 0. PRM available memory is a
dynamic value that changes with system usage.

APP_PRM_MEM_ENTITLEMENT

The PRMMEM entitlement for this PRMGroup ID entry as defined in the PRM configuration file.

APP_PRM_MEM_STATE

The PRMMEM state on this system:

0 = PRM is not installed or no
memory specification

1 = reset (PRM is installed in
reset condition or no memory
specification)

2 = configured/disabled (The PRM

HP GlancePlus (11.02)Page 150 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

memory scheduler is configured,
but the standard HP-UX
scheduler is in effect)

3 = enabled (The PRM memory
scheduler is configured and
in effect)

APP_PRM_MEM_UPPERBOUND

The PRMMEM upperbound for this PRMGroup ID entry as defined in the PRM configuration file.

APP_PRM_MEM_UTIL

The percent of PRMmemory used by processes (process private space plus a process' portion of
sharedmemory) within the PRM groups during the interval.

PRM available memory is the amount of physical memory less the amount of memory reserved for
the kernel and system processes running in the PRM_SYS group 0. PRM available memory is a
dynamic value that changes with system usage.

APP_PRM_STATE

The PRMCPU state on this system:

0 = PRM is not installed
1 = reset (PRM is configured with

only the system group. The
standard HP-UX CPU scheduler
is in effect)

2 = configured/disabled (the PRM
CPU scheduler is configured,
but the standard HP-UX
scheduler is in effect)

3 = enabled (the PRM CPU scheduler
is configured and in effect)

APP_PRM_SUSPENDED_PROC

The number of processes within the PRM groups that were suspended during the interval.

HP GlancePlus (11.02)Page 151 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_PROC_RUN_TIME

The average run time for processes in this group that completed during the interval.

On non HP-UX systems, this metric is derived from sampled process data. Since the data for a
process is not available after the process has died on this operating system, a process whose life is
shorter than the sampling interval may not be seen when the samples are taken. Thus this metric
may be slightly less than the actual value. Increasing the sampling frequency captures amore
accurate count, but the overhead of collectionmay also rise.

APP_SAMPLE

The number of samples of process data that have been averaged or accumulated during this
sample.

APP_SEM_QUEUE

The average number of processes or kernel threads in this group that were blocked onsemaphores
(waiting for their semaphore operations to complete) during the interval.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_SEM_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked onsemaphores
(waiting for their semaphore operations to complete) during the interval.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

HP GlancePlus (11.02)Page 152 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_SLEEP_QUEUE

The average number of processes or kernel threads in this group that were blocked on SLEEP
(waiting to awaken from sleep system calls) during the interval. A process or kernel thread enters
the SLEEP state by putting itself to sleep using system calls such as sleep, wait, pause, sigpause,
sigsuspend, poll and select.

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 153 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

APP_SLEEP_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked on SLEEP (waiting
to awaken from sleep system calls) during the interval. A process or kernel thread enters the
SLEEP state by putting itself to sleep using system calls such as sleep, wait, pause, sigpause,
sigsuspend, poll and select.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

The Application QUEUE metrics, which are based on block states, represent the average number
of process or kernel thread counts, not actual queues, within the context of a specific application.

The ApplicationWAIT PCTmetrics, which are also based on block states, represent the
percentage of processes or kernel threads that were alive on the system within the context of a
specific application. These values will vary greatly depending on the application.

No direct comparison is reasonable with the Global Queuemetrics since they represent the average
number of all processes or kernel threads that were alive on the system. As such, the Application
WAIT PCTmetrics cannot be summed or compared with global values easily. In addition, the sum
of each ApplicationWAIT PCT for all applications will not equal 100% since these values will vary
greatly depending on the number of processes or kernel threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

APP_TERM_IO_QUEUE

The average number of processes or kernel threads in this group that were blocked on terminal IO
(waiting for their terminal IO to complete) during the interval.

This metric is available on HP-UX 10.20.

APP_TERM_IO_WAIT_PCT

The percentage of time processes or kernel threads in this group were blocked on terminal IO
(waiting for terminal IO to complete) during the interval.

A percentage of time spent in a wait state is calculated as the accumulated time kernel threads
belonging to processes in this group spent waiting in this state, divided by accumulated alive time
of kernel threads belonging to processes in this group during the interval.

HP GlancePlus (11.02)Page 154 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example, assume an application has 20 kernel threads. During the interval, ten kernel threads
slept the entire time, while ten kernel threads waited on terminal input. As a result, the application
wait percent values would be 50% for SLEEP and 50% for TERM (that is, terminal IO).

This metric is available on HP-UX 10.20.

APP_TIME

The end time of themeasurement interval.

BYCPU_ACTIVE

Indicates whether or not this CPU is online. A CPU that is online is considered active.

For HP-UX and certain versions of Linux, the sar(1M) command allows you to check the status of
the system CPUs.

For SUN and DEC, the commands psrinfo(1M) and psradm(1M) allow you to check or change the
status of the system CPUs.

For AIX, the pstat(1) command allows you to check the status of the system CPUs.

BYCPU_CPU_CLOCK

The clock speed of the CPU in the current slot. The clock speed is in MHz for the selected CPU.

The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This
means that there is no way to find out types, speeds, as well as hardware IDs or any other
information that is used to determine the number of cores, the number of threads, the
HyperThreading state, etc... If the agent (or Glance) is started while some of the CPUs are
disabled, some of thesemetrics will be “na”, somewill be based on what is visible at startup time.
All information will be updated if/when additional CPUs are enabled and information about them
becomes available. The configuration counts will remain at the highest discovered level (i.e. if
CPUs are then disabled, themaximum number of CPUs/cores/etc... will remain at the highest
observed level). It is recommended that the agent be started with all CPUs enabled.

On Linux, this value is always rounded up to the next MHz.

BYCPU_CPU_CSWITCH_TIME

The time, in seconds, that this CPU was performing context switches during the interval. On HP-
UX, this includes context switches that result in the execution of a different process and those
caused by a process stopping, then resuming, with no other process running in themeantime. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 155 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_CSWITCH_TIME_CUM

The time, in seconds, that this CPU was performing context switches over the cumulative
collection time. On HP-UX, this includes context switches that result in the execution of a different
process and those caused by a process stopping, then resuming, with no other process running in
themeantime.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 156 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYCPU_CPU_CSWITCH_UTIL

The percentage of time that this CPU was performing context switches during the interval. On HP-
UX, this includes context switches that result in the execution of a different process and those
caused by a process stopping, then resuming, with no other process running in themeantime. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_CSWITCH_UTIL_CUM

The percentage of time that this CPU was performing context switches over the cumulative
collection time. On HP-UX, this includes context switches that result in the execution of a different
process and those caused by a process stopping, then resuming, with no other process running in
themeantime.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 157 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_INTERRUPT_TIME

The time, in seconds, that this CPU was performing interrupt processing during the interval. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_INTERRUPT_TIME_CUM

The time, in seconds, that this CPU was performing interrupt processing over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On

HP GlancePlus (11.02)Page 158 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_INTERRUPT_UTIL

The percentage of time that this CPU was performing interrupt processing during the interval. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_INTERRUPT_UTIL_CUM

The percentage of time that this CPU was performing interrupt processing over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 159 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NICE_TIME

The time, in seconds, that this CPU was in user mode at a nice priority during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19. On platforms other than HPUX, If the ignore_mt flag is
set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 160 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYCPU_CPU_NICE_TIME_CUM

The time, in seconds, that this CPU was in user mode at a nice priority over the cumulative
collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NICE_UTIL

The percentage of time that this CPU was in user mode at a nice priority during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19. On platforms other than HPUX, If the ignore_mt flag is
set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.

HP GlancePlus (11.02)Page 161 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NICE_UTIL_CUM

The average percentage of time that this CPU was in user mode at a nice priority over the
cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.

HP GlancePlus (11.02)Page 162 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NNICE_TIME

The time, in seconds, that this CPU was in user mode at a nice priority calculated from processes
with negative nice values during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19. On platforms other than HPUX, If the ignore_mt flag is
set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NNICE_TIME_CUM

The time, in seconds, that this CPU was in user mode at a nice priority calculated from processes
with negative nice values over the cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 163 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NNICE_UTIL

The percentage of time that this CPU was in user mode at a nice priority calculated from processes
with negative nice values during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19. On platforms other than HPUX, If the ignore_mt flag is
set(true) in parm file, this metric will report values normalized against the number of active cores in
the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NNICE_UTIL_CUM

The average percentage of time that this CPU was in user mode at a nice priority calculated from
processes with negative nice values over the cumulative collection time.

HP GlancePlus (11.02)Page 164 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NORMAL_TIME

The time, in seconds, that this CPU was running in user mode at a normal priority during the
interval. Normal priority user mode CPU excludes CPU used at real-time and nice priorities. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be

HP GlancePlus (11.02)Page 165 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NORMAL_TIME_CUM

The time, in seconds, that this CPU was running in user mode at a normal priority over the
cumulative collection time. Normal priority user mode CPU excludes CPU used at real-time and
nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NORMAL_UTIL

The percentage of time that this CPU was running in user mode at a normal priority during the
interval. Normal priority user mode CPU excludes CPU used at real-time and nice priorities. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 166 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_NORMAL_UTIL_CUM

The average percentage of time that this CPU was running in user mode at a normal priority over
the cumulative collection time. Normal priority user mode CPU excludes CPU used at real-time
and nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 167 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYCPU_CPU_REALTIME_TIME

The time, in seconds, that this CPU was running at a realtime priority during the interval. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_REALTIME_TIME_CUM

The time, in seconds, that this CPU was running at a realtime priority over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all

HP GlancePlus (11.02)Page 168 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_REALTIME_UTIL

The percentage of time that this CPU was running at a realtime priority during the interval. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_REALTIME_UTIL_CUM

The percentage of time that this CPU was running at a realtime priority over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 169 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYSCALL_TIME

The time, in seconds, that this CPU was running in systemmode (not including interrupt, context
switch, trap or vfault CPU) during the last interval. On platforms other than HPUX, If the ignore_mt
flag is set(true) in parm file, this metric will report values normalized against the number of active
cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYSCALL_TIME_CUM

The time, in seconds, that this CPU was running in systemmode (not including interrupt, context
switch, trap or vfault CPU) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 170 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYSCALL_UTIL

The percentage of time that this CPU was running in systemmode (not including interrupt, context
switch, trap or vfault CPU) during the interval. On platforms other than HPUX, If the ignore_mt flag
is set(true) in parm file, this metric will report values normalized against the number of active cores
in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYSCALL_UTIL_CUM

The average percentage of time that this CPU was running in systemmode (not including interrupt,
context switch, trap or vfault CPU) over the cumulative collection time.

HP GlancePlus (11.02)Page 171 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYS_MODE_TIME

The time, in seconds, that this CPU (or logical processor) was in systemmode during the interval.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.

HP GlancePlus (11.02)Page 172 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYS_MODE_TIME_CUM

The time, in seconds, that this CPU (or logical processor) was in systemmode over the cumulative
collection time.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYS_MODE_UTIL

The percentage of time that this CPU (or logical processor) was in systemmode during the interval.

HP GlancePlus (11.02)Page 173 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_SYS_MODE_UTIL_CUM

The percentage of time that this CPU (or logical processor) was in systemmode over the
cumulative collection time.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 174 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_TOTAL_TIME

The total time, in seconds, that this CPU (or logical processor) was not idle during the interval.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_TOTAL_TIME_CUM

The total time, in seconds, that this CPU (or logical processor) was not idle over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times

HP GlancePlus (11.02)Page 175 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_TOTAL_UTIL

The percentage of time that this CPU (or logical processor) was not idle during the interval.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_TOTAL_UTIL_CUM

The average percentage of time that this CPU (or logical processor) was not idle over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 176 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_TRAP_TIME

The time, in seconds, this CPU was in trap handler code during the interval. On platforms other
than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_TRAP_TIME_CUM

The time, in seconds, this CPU was in trap handler code over the cumulative collection time.

HP GlancePlus (11.02)Page 177 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_TRAP_UTIL

The percentage of time this CPU was in trap handler code during the interval. On platforms other
than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 178 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYCPU_CPU_TRAP_UTIL_CUM

The average percentage of time this CPU was in trap handler code over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_USER_MODE_TIME

The time, in seconds, during the interval that this CPU (or logical processor) was in user mode.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority. On platforms other than HPUX, If the ignore_mt flag
is set(true) in parm file, this metric will report values normalized against the number of active cores
in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 179 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_USER_MODE_TIME_CUM

The time, in seconds, that this CPU (or logical processor) was in user mode over the cumulative
collection time. User CPU is the time spent in user mode at a normal priority, at real-time priority
(on HP-UX, AIX, andWindows systems), and at a nice priority.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 180 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYCPU_CPU_USER_MODE_UTIL

The percentage of time that this CPU (or logical processor) was in user mode during the interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority. On platforms other than HPUX, If the ignore_mt flag
is set(true) in parm file, this metric will report values normalized against the number of active cores
in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_USER_MODE_UTIL_CUM

The average percentage of time that this CPU (or logical processor) was in user mode over the
cumulative collection time. User CPU is the time spent in user mode at a normal priority, at real-
time priority (on HP-UX, AIX, andWindows systems), and at a nice priority.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 181 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_VFAULT_TIME

The time, in seconds, this CPU was handling page faults during the interval. On platforms other
than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_VFAULT_TIME_CUM

The time, in seconds, this CPU was handling page faults over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On

HP GlancePlus (11.02)Page 182 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_VFAULT_UTIL

The percentage of time this CPU was handling page faults during the interval. On platforms other
than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized
against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CPU_VFAULT_UTIL_CUM

The average percentage of time this CPU was handling page faults over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 183 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

BYCPU_CSWITCH

The number of context switches for this CPU during the interval.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

BYCPU_CSWITCH_CUM

The number of context switches for this CPU over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 184 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

BYCPU_CSWITCH_RATE

The average number of context switches per second for this CPU during the interval.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

BYCPU_CSWITCH_RATE_CUM

The average number of context switches per second for this CPU over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

BYCPU_ID

The ID number of this CPU. On someUnix systems, such as SUN, CPUs are not sequentially
numbered.

BYCPU_INTERRUPT

The number of device interrupts for this CPU during the interval.

On HP-UX, a value of “na” is displayed on a system with multiple CPUs.

HP GlancePlus (11.02)Page 185 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYCPU_INTERRUPT_RATE

The average number of device interrupts per second for this CPU during the interval.

On HP-UX, a value of “na” is displayed on a system with multiple CPUs.

BYCPU_INTERRUPT_STATE

A text string indicating whether the current processor is “enabled” or “disabled” for servicing IO
interrupts.

BYCPU_LAST_PROC_ID

The process id (pid) of the last process to have used this CPU.

BYCPU_LAST_THREAD_ID

The thread ID (TID) number of the last kernel thread to have used this CPU.

BYCPU_LAST_USER_THREAD_ID

The user thread ID number of the last user thread to have used this CPU within the context of its
associated process. A process may havemultiple user threads. This indicates themost recently
executed user thread of the process identified in BYCPU_LAST_PROC_ID.

BYCPU_RUN_QUEUE_15_MIN

This represents the 15minute load average for this processor.

BYCPU_RUN_QUEUE_1_MIN

This represents the 1minute load average for this processor.

BYCPU_RUN_QUEUE_5_MIN

This represents the 5minute load average for this processor.

BYCPU_STATE

A text string indicating the current state of a processor.

HP GlancePlus (11.02)Page 186 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this is either “Enabled”, “Disabled” or “Unknown”. On AIX, this is either “Idle/Offline” or
“Online”. On all other systems, this is either “Offline”, “Online” or “Unknown”.

BYDSKDETAIL_LABEL

The type of entry this disk device is associated with - could be a partition, file system directory,
logical volume, or volume group.

BYDSKDETAIL_NAME

The name of the partition, file system directory, logical volume, or volume group this disk device is
associated with.

BYDSK_AVG_QUEUE_TIME

The average time, in milliseconds, that a disk request spent waiting in the queue during the interval.
For example, a value of 1.14 would indicate that disk requests during the last interval spent on
average slightly longer than one-thousandths of a second wating in the queue of this device.

BYDSK_AVG_READ_QUEUE_TIME

The average time, in milliseconds, that a disk read request spent waiting in the queue during the
interval. For example, a value of 1.14 would indicate that disk read requests during the last interval
spent on average slightly longer than one-thousandths of a second waiting in the queue of this
device.

BYDSK_AVG_READ_SERVICE_TIME

The average time, in milliseconds, that this disk device spent processing each disk read request
during the interval. For example, a value of 5.14 would indicate that disk read requests during the
last interval took on average slightly longer than five one-thousandths of a second to complete for
this device.

This is ameasure of the speed of the disk, because slower disk devices typically show a larger
average read service time. Average read service time is also dependent on factors such as the
distribution of I/O requests over the interval and their locality. It can also be influenced by disk
driver and controller features such as I/Omerging and command queueing. Note that this write
service time is measured from the perspective of the kernel, not the disk device itself. For
example, if a disk device can find the requested data in its cache, the average service time could be
quicker than the speed of the physical disk hardware.

This metric can be used to help determine which disk devices are takingmore time than usual to
process read requests.

HP GlancePlus (11.02)Page 187 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_AVG_SERVICE_TIME

The average time, in milliseconds, that this disk device spent processing each disk request during
the interval. For example, a value of 5.14 would indicate that disk requests during the last interval
took on average slightly longer than five one-thousandths of a second to complete for this device.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

This is ameasure of the speed of the disk, because slower disk devices typically show a larger
average service time. Average service time is also dependent on factors such as the distribution of
I/O requests over the interval and their locality. It can also be influenced by disk driver and
controller features such as I/Omerging and command queueing. Note that this service time is
measured from the perspective of the kernel, not the disk device itself. For example, if a disk
device can find the requested data in its cache, the average service time could be quicker than the
speed of the physical disk hardware.

This metric can be used to help determine which disk devices are takingmore time than usual to
process requests.

BYDSK_AVG_WRITE_QUEUE_TIME

The average time, in milliseconds, that a disk write request spent waiting in the queue during the
interval. For example, a value of 1.14 would indicate that disk write requests during the last interval
spent on average slightly longer than one-thousandths of a second waiting in the queue of this
device.

BYDSK_AVG_WRITE_SERVICE_TIME

The average time, in milliseconds, that this disk device spent processing each disk write request
during the interval. For example, a value of 5.14 would indicate that disk write requests during the
last interval took on average slightly longer than five one-thousandths of a second to complete for
this device.

This is ameasure of the speed of the disk, because slower disk devices typically show a larger
average write service time. Average write service time is also dependent on factors such as the
distribution of I/O requests over the interval and their locality. It can also be influenced by disk
driver and controller features such as I/Omerging and command queueing. Note that this write
service time is measured from the perspective of the kernel, not the disk device itself. For
example, if a disk device can find the requested data in its cache, the average service time could be
quicker than the speed of the physical disk hardware.

This metric can be used to help determine which disk devices are takingmore time than usual to
process write requests.

HP GlancePlus (11.02)Page 188 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_BUS

The name of the bus interface used by this disk.

BYDSK_BUSY_TIME

The time, in seconds, that this disk device was busy transferring data during the interval.

On HP-UX, this is the time, in seconds, during the interval that the disk device had IO in progress
from the point of view of the Operating System. In other words, the time, in seconds, the disk was
busy servicing requests for this device.

BYDSK_CONTROLLER

The disk controller name. This information is only available for disks using the hpib or hpfl
interfaces.

BYDSK_DEVNAME

The name of this disk device.

On HP-UX, the name identifying the specific disk spindle is the hardware path which specifies the
address of the hardware components leading to the disk device.

On SUN, these names are the same disk names displayed by “iostat”.

On AIX, this is the path name string of this disk device. This is the fsname parameter in the
mount(1M) command. If more than one file system is contained on a device (that is, the device is
partitioned), this is indicated by an asterisk (“*”) at the end of the path name.

OnOSF1, this is the path name string of this disk device. This is the file-system parameter in the
mount(1M) command.

OnWindows, this is the unit number of this disk device.

BYDSK_DEVNO

Major / Minor number of the device.

BYDSK_DIRNAME

The name of the file system directory mounted on this disk device. If more than one file system is
mounted on this device, “Multiple FS” is seen.

HP GlancePlus (11.02)Page 189 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_DISKNAME

The device special file(DSF) representing this disk. This metric only gives the last component in the
DSF path.

On HP-UX 11iv1 and 11iv2, the DSF is of the form /dev/dsk/c#t#d# and hence value of
DISKNAME metric will be “c#t#d#”

OnHP-UX 11iv3, this metric gives the path independent DSF name. So value of DISKNAME
metric will be “disk#”. See intro(7) for more details.

BYDSK_FS_IO_RATE

The number of physical file system reads and writes per second to this disk device during the
interval.

BYDSK_FS_READ

The number of physical file system reads from this disk device during the interval.

BYDSK_FS_READ_RATE

The number of physical file system reads per second from this disk device during the interval.

BYDSK_FS_WRITE

The number of physical file system writes to this disk device during the interval.

BYDSK_FS_WRITE_RATE

The number of physical file system writes per second to this disk device during the interval.

BYDSK_ID

The ID of the current disk device.

BYDSK_INTERVAL

The amount of time in the interval.

HP GlancePlus (11.02)Page 190 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYDSK_LOGL_BYTE_RATE

The number of logical read or write KBs per second to this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_BYTE_RATE_CUM

The average number of KBs of logical read or writes to this disk device over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 191 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_IO_RATE

The total number of logical IOs per second for this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_IO_RATE_CUM

The average number of logical IOs per second over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_READ

The number of logical reads for this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned

HP GlancePlus (11.02)Page 192 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_READ_BYTE_RATE

The number of logical read KBs per second from this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_READ_BYTE_RATE_CUM

The average number of logical KBs per second read from this disk device over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_READ_RATE

The number of logical reads per second for this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

HP GlancePlus (11.02)Page 193 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_LOGL_READ_RATE_CUM

The average number of logical reads per second for this disk device over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_WRITE

The number of logical writes for this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_WRITE_BYTE_RATE

The number of logical writes KBs per second to this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_WRITE_BYTE_RATE_CUM

The average number of KBs of logical writes per second to this disk device over the cumulative
collection time.

HP GlancePlus (11.02)Page 194 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_WRITE_RATE

The number of logical writes per second for this disk device during the interval.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_LOGL_WRITE_RATE_CUM

The average number of logical writes per second for this disk device over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 195 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the logical IO rates by disk device cannot be obtained in amulti-disk LVM configuration
because there is no reasonablemeans of tying logical IO transactions to physical spindles spanned
on the logical volume. Therefore, if you have amulti-disk LVM configuration, you always see “na”
for this metric.

BYDSK_PHYS_BYTE

The number of KBs of physical IOs transferred to or from this disk device during the interval.

On Unix systems, all types of physical disk IOs are counted, including file system, virtual memory,
and raw IO.

BYDSK_PHYS_BYTE_RATE

The average KBs per second transferred to or from this disk device during the interval.

On Unix systems, all types of physical disk IOs are counted, including file system, virtual memory,
and raw IO.

BYDSK_PHYS_BYTE_RATE_CUM

The average number of KBs per second of physical reads and writes to or from this disk device over
the cumulative collection time.

OnUnix systems, this includes all types of physical disk IOs including file system, virtual memory,
and raw IOs.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYDSK_PHYS_IO

The number of physical IOs for this disk device during the interval.

HP GlancePlus (11.02)Page 196 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnUnix systems, all types of physical disk IOs are counted, including file system, virtual memory,
and raw reads.

BYDSK_PHYS_IO_RATE

The average number of physical IO requests per second for this disk device during the interval.

On Unix systems, all types of physical disk IOs are counted, including file system IO, virtual
memory and raw IO.

BYDSK_PHYS_IO_RATE_CUM

The average number of physical reads and writes per second for this disk device over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYDSK_PHYS_READ

The number of physical reads for this disk device during the interval.

On Unix systems, all types of physical disk reads are counted, including file system, virtual
memory, and raw reads.

On AIX, this is an estimated value based on the ratio of read bytes to total bytes transferred. The
actual number of reads is not tracked by the kernel. This is calculated as

BYDSK_PHYS_READ =
BYDSK_PHYS_IO *
(BYDSK_PHYS_READ_BYTE /
BYDSK_PHYS_IO_BYTE)

HP GlancePlus (11.02)Page 197 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_PHYS_READ_BYTE

The KBs transferred from this disk device during the interval.

On Unix systems, all types of physical disk reads are counted, including file system, virtual
memory, and raw IO.

BYDSK_PHYS_READ_BYTE_RATE

The average KBs per second transferred from this disk device during the interval.

On Unix systems, all types of physical disk reads are counted, including file system, virtual
memory, and raw IO.

BYDSK_PHYS_READ_BYTE_RATE_CUM

The average number of KBs per second of physical reads from this disk device over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYDSK_PHYS_READ_RATE

The average number of physical reads per second for this disk device during the interval.

On Unix systems, all types of physical disk reads are counted, including file system, virtual
memory, and raw reads.

On AIX, this is an estimated value based on the ratio of read bytes to total bytes transferred. The
actual number of reads is not tracked by the kernel. This is calculated as

BYDSK_PHYS_READ_RATE =
BYDSK_PHYS_IO_RATE *

HP GlancePlus (11.02)Page 198 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

(BYDSK_PHYS_READ_BYTE /
BYDSK_PHYS_IO_BYTE)

BYDSK_PHYS_READ_RATE_CUM

The average number of physical reads per second for this disk device over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYDSK_PHYS_WRITE

The number of physical writes for this disk device during the interval.

On Unix systems, all types of physical disk writes are counted, including file system IO, virtual
memory IO, and raw writes.

On AIX, this is an estimated value based on the ratio of write bytes to total bytes transferred
because the actual number of writes is not tracked by the kernel. This is calculated as

BYDSK_PHYS_WRITE =
BYDSK_PHYS_IO *
(BYDSK_PHYS_WRITE_BYTE /
BYDSK_PHYS_IO_BYTE)

BYDSK_PHYS_WRITE_BYTE

The KBs transferred to this disk device during the interval.

HP GlancePlus (11.02)Page 199 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnUnix systems, all types of physical disk writes are counted, including file system, virtual
memory, and raw IO.

BYDSK_PHYS_WRITE_BYTE_RATE

The average KBs per second transferred to this disk device during the interval.

On Unix systems, all types of physical disk writes are counted, including file system, virtual
memory, and raw IO.

BYDSK_PHYS_WRITE_BYTE_RATE_CUM

The average number of KBs per second of physical writes to this disk device over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYDSK_PHYS_WRITE_RATE

The average number of physical writes per second for this disk device during the interval.

On Unix systems, all types of physical disk writes are counted, including file system IO, virtual
memory IO, and raw writes.

On AIX, this is an estimated value based on the ratio of write bytes to total bytes transferred. The
actual number of writes is not tracked by the kernel. This is calculated as

BYDSK_PHYS_WRITE_RATE =
BYDSK_PHYS_IO_RATE *
(BYDSK_PHYS_WRITE_BYTE /
BYDSK_PHYS_IO_BYTE)

HP GlancePlus (11.02)Page 200 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_PHYS_WRITE_RATE_CUM

The average number of physical writes per second for this disk device over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYDSK_PRODUCT_ID

The disk product ID.

BYDSK_QUEUE_0_UTIL

The percentage of intervals during which there were no IO requests pending for this disk device
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 201 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for
these intervals was 0, 1.5, 0, and 3, then the value for this metric would be 50% since 50% of the
intervals had a zero queue length.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

BYDSK_QUEUE_2_UTIL

The percentage of intervals during which there were 1 or 2 IO requests pending for this disk device
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for
these intervals was 0, 1, 0, and 2, then the value for this metric would be 50% since 50% of the
intervals had a 1-2 queue length.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

BYDSK_QUEUE_4_UTIL

The percentage of intervals during which there were 3 or 4 IO requests waiting to use this disk
device over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 202 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for
these intervals was 0, 3, 0, and 4, then the value for this metric would be 50% since 50% of the
intervals had a 3-4 queue length.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

BYDSK_QUEUE_8_UTIL

The percentage of intervals during which there were between 5 and 8 IO requests pending for this
disk device over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for
these intervals was 0, 8, 0, and 5, then the value for this metric would be 50% since 50% of the
intervals had a 5-8 queue length.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

HP GlancePlus (11.02)Page 203 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_QUEUE_X_UTIL

The percentage of intervals during which there weremore than 8 IO requests pending for this disk
device over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For example if 4 intervals have passed (that is, 4 screen updates) and the average queue length for
these intervals was 0, 9, 0, and 10, then the value for this metric would be 50% since 50% of the
intervals had queue length greater than 8.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

BYDSK_RAW_IO_RATE

The number of raw reads or writes per secondmade to this disk device during the interval.

BYDSK_RAW_READ

The number of physical raw reads made from this disk device during the interval.

BYDSK_RAW_READ_RATE

The number of raw reads per secondmade from this disk device during the interval.

BYDSK_RAW_WRITE

The number of physical raw writes made to this disk device during the interval.

HP GlancePlus (11.02)Page 204 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_RAW_WRITE_RATE

The number of raw writes per secondmade to this disk device during the interval.

BYDSK_REQUEST_QUEUE

The average number of IO requests that were in the wait queue for this disk device during the
interval. These requests are the physical requests (as opposed to logical IO requests).

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

BYDSK_SYSTEM_IO

The number of physical system reads or writes to this disk device during the interval.

BYDSK_SYSTEM_IO_RATE

The number of physical system reads or writes per second to this disk device during the interval.

BYDSK_SYSTEM_READ_RATE

The number of physical system reads per second from this disk device during the interval.

BYDSK_SYSTEM_WRITE_RATE

The number of physical system writes per second to this disk device during the interval.

BYDSK_TIME

The time of day of the interval.

BYDSK_UTIL

OnHP-UX, this is the percentage of the time during the interval that the disk device had IO in
progress from the point of view of the Operating System. In other words, the utilization or
percentage of time busy servicing requests for this device.

On the non-HP-UX systems, this is the percentage of the time that this disk device was busy
transferring data during the interval.

HP GlancePlus (11.02)Page 205 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

This is ameasure of the ability of the IO path tomeet the transfer demands being placed on it.
Slower disk devices may show a higher utilization with lower IO rates than faster disk devices such
as disk arrays. A value of greater than 50% utilization over timemay indicate that this device or its
IO path is a bottleneck, and the access pattern of the workload, database, or files may need
reorganizing for better balance of disk IO load.

BYDSK_UTIL_CUM

OnHP-UX, this is the percentage of the time that this disk device had IO in progress from the point
of view of the Operating System over the cumulative collection time. In other words, this is the
utilization or percentage of time busy servicing requests for this device.

On all other Unix systems, this is the percentage of the time that this disk device was busy
transferring data over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

This is ameasure of the ability of the IO path tomeet the transfer demands being placed on it.
Slower disk devices may show a higher utilization with lower IO rates than faster disk devices such
as disk arrays. A value of greater than 50% utilization over timemay indicate that this device or its
IO path is a bottleneck, and the access pattern of the workload, database, or files may need
reorganizing for better balance of disk IO load.

BYDSK_VENDOR_ID

The disk vendor ID. This information is only available for disks using the scsi interface.

HP GlancePlus (11.02)Page 206 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYDSK_VM_IO

The number of virtual memory IOs to this disk device during the interval.

BYDSK_VM_IO_RATE

The number of virtual memory IOs per second to this disk device during the interval.

BYDSK_VM_READ_RATE

The number of virtual memory reads per second from this disk device during the interval.

BYDSK_VM_WRITE_RATE

The number of virtual memory writes per second to this disk device during the interval.

BYHBA_AVG_SERVICE_TIME

This is the average time, in milli seconds, this device took to service one request. This metric is
supported on HP-UX 11iv3 and above.

BYHBA_AVG_WAIT_TIME

This is the time, in milli seconds, that a request had to wait in the device queue before getting
processed. This metric is supported on HP-UX 11iv3 and above.

BYHBA_BUSY_TIME

This is the time in seconds, during the interval that the device had IO in progress from the point of
view of the Operating System. In other words, the time, in seconds, the device was busy servicing
requests. This metric is supported on HP-UX 11iv3 and above.

BYHBA_BYTE_RATE

The average KBs per second transferred to or from this card during the interval. This metric is
supported on HP-UX 11iv3 and above.

HP GlancePlus (11.02)Page 207 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYHBA_BYTE_RATE_CUM

The average KBs per second transferred to or from this card during the cumulative collection
interval. This metric is supported on HP-UX 11iv3 and above.

BYHBA_CLASS

The class of the Host Bus Adaptor. This metric is supported on HP-UX 11iv3 and above.

BYHBA_DEVNAME

The hardware path of the Host Bus Adaptor. This metric is supported on HP-UX 11iv3 and above.

BYHBA_DEVNO

Major / Minor number of the device. This metric is supported on HP-UX 11iv3 and above.

BYHBA_DRIVER

Name of driver handling the Host Bus Adaptor. This metric is supported on HP-UX 11iv3 and
above.

BYHBA_ID

The instance number of the Host Bus Adaptor. This metric is supported on HP-UX 11iv3 and
above.

BYHBA_INTERVAL

The amount of time in the interval. This metric is supported on HP-UX 11iv3 and above.

BYHBA_INTERVAL_CUM

The amount of time over the cumulative collection time. This metric is supported on HP-UX 11iv3
and above.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 208 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYHBA_IO

Number of IO requests handled by the HBA in this interval. This metric is supported on HP-UX
11iv3 and above.

BYHBA_IO_RATE

The average number of IO requests per second for this device during the interval. This metric is
supported on HP-UX 11iv3 and above.

BYHBA_IO_RATE_CUM

The average number of reads and writes per second for this card over the cumulative collection
time. This metric is supported on HP-UX 11iv3 and above.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYHBA_NAME

The name of the Host Bus Adaptor. This metric is supported on HP-UX 11iv3 and above.

HP GlancePlus (11.02)Page 209 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYHBA_READ

The number of reads for this IO card during the interval. This metric is supported on HP-UX 11iv3
and above.

BYHBA_READ_BYTE_RATE

The average KBs per second read from this card during the interval. This metric is supported on
HP-UX 11iv3 and above.

BYHBA_READ_BYTE_RATE_CUM

The average KBs per second read from this card during the cumulative collection interval. This
metric is supported on HP-UX 11iv3 and above.

BYHBA_READ_RATE

The number of reads for this IO card during the interval. This metric is supported on HP-UX 11iv3
and above.

BYHBA_READ_RATE_CUM

The average number of reads per second for this card over the cumulative collection time. This
metric is supported on HP-UX 11iv3 and above.

BYHBA_REQUEST_QUEUE

The average number of IO requests that were in the wait queue for this disk device during the
interval. These requests are the physical requests (as opposed to logical IO requests). This metric
is supported on HP-UX 11iv3 and above.

BYHBA_STATE

The state of the Host Bus Adaptor(“Active”/“Closed”). This metric is supported on HP-UX 11iv3
and above.

BYHBA_THROUGHPUT_UTIL

Percentage of IO bandwidth utilized by the Host Bus Adaptor. This metric is supported on HP-UX
11iv3 and above.

HP GlancePlus (11.02)Page 210 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYHBA_TIME

The time of day of the interval. This metric is supported on HP-UX 11iv3 and above.

BYHBA_TYPE

The type of device. “HBA” for HBA card and “TAPE” for tape drives. This metric is supported on
HP-UX 11iv3 and above.

BYHBA_UTIL

Percentage of time HBA was busy servicing the IO requests in this interval. This metric is
supported on HP-UX 11iv3 and above.

BYHBA_WRITE

The number of writes for this IO card during the interval. This metric is supported on HP-UX 11iv3
and above.

BYHBA_WRITE_BYTE_RATE

The average KBs per second written to this card during the interval. This metric is supported on
HP-UX 11iv3 and above.

BYHBA_WRITE_BYTE_RATE_CUM

The average KBs per second written to this card during the interval. This metric is supported on
HP-UX 11iv3 and above.

BYHBA_WRITE_RATE

The number of writes for this IO card during the interval. This metric is supported on HP-UX 11iv3
and above.

BYHBA_WRITE_RATE_CUM

The average number of writes per second for this card over the cumulative collection time. This
metric is supported on HP-UX 11iv3 and above.

HP GlancePlus (11.02)Page 211 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYLS_CPU_CYCLE_ENTL_MAX

On vMA, for a host, logical system and resource pool this value indicates themaximum processor
capacity, in MHz, configured for the entity. If themaximum processor capacity is not configured for
the entity, a value of “-3” will be displayed in PA and “ul”(unlimited) in other clients.

On HPUX, themaximum processor capacity, in MHz, configured for this logical system.

BYLS_CPU_CYCLE_ENTL_MIN

On vMA, for a host, logical system and resource pool this value indicates theminimum processor
capacity, in MHz, configured for the entity.

On HPUX, theminimum processor capacity, in MHz, configured for this logical system.

BYLS_CPU_ENTL_MAX

Themaximum CPU units configured for a logical system.

OnHP-UX HPVM, this metric indicates themaximum percentage of physical CPU that a virtual
CPU of this logical system can get.

On AIX SPLPAR, this metric is equivalent to “Maximum Capacity“ field of 'lparstat -i' command.

ForWPARs, it is themaximum percentage of CPU that aWPAR can have even if there is no
contention for CPU. WPAR shares CPU units of its global environment.

On Hyper-V host, for Root partition, this metric is NA.

On vMA, for a host, themetric is equivalent to total number of cores on the host. For a resource pool
and a logical system, this metrics indicates themaximum CPU units configured for it.

BYLS_CPU_ENTL_MIN

Theminimum CPU units configured for this logical system.

OnHP-UX HPVM, this metric indicates theminimum percentage of physical CPU that a virtual
CPU of this logical system is guaranteed.

On AIX SPLPAR, this metric is equivalent to “Minimum Capacity“ field of 'lparstat -i' command.

ForWPARs, it is theminimum CPU share assigned to aWPAR that is guaranteed. WPAR shares
CPU units of its global environment.

On Hyper-V host, for Root partition, this metric is NA.

On vMA, for a host, themetric is equivalent to total number of cores on the host. For a resource pool
and a logical system, this metrics indicates the guranteedminimum CPU units configured for it.

On Solaris Zones, this metrics indicates the configuredminimum CPU percentage reserved for a
logical system.

For Solaris Zones, this metric is calculated as:

HP GlancePlus (11.02)Page 212 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYLS_CPU_ENTL_MIN = (BYLS_CPU_SHARES_PRIO / Pool-Cpu-Shares)

where, Pool-Cpu-Shares is the total CPU shares available with CPU pool the zone is associated
with. Pool-Cpu-Shares is addition of BYLS_CPU_SHARES_PRIO values for all active zones
associated with this pool.

BYLS_CPU_ENTL_UTIL

Percentage of entitled processing units (guaranteed processing units allocated to this logical
system) consumed by the logical system.

On a HP-UX HPVM host themetric indicates the logical system's CPU utilization with respect to
minimum CPU entitlement.

On HP-UX HPVM host, this metric is calculated as: BYLS_CPU_ENTL_UTIL = (BYLS_CPU_
PHYSC / (BYLS_CPU_ENTL_MIN * BYLS_NUM_CPU)) * 100

On AIX, this metric is calculated as: BYLS_CPU_ENTL_UTIL = (BYLS_CPU_PHYSC / BYLS_
CPU_ENTL) * 100

OnWPAR, this metric is calculated as: BYLS_CPU_ENTL_UTIL = (BYLS_CPU_PHYSC /
BYLS_CPU_ENTL_MAX) * 100 This metric matches “%Resc” of topas command (insideWPAR)

On Solaris Zones, themetric indicates the logical system's CPU utilization with respect to
minimum CPU entitlement. This metric is calculated as:

BYLS_CPU_ENTL_UTIL = (BYLS_CPU_TOTAL_UTIL / BYLS_CPU_SHARES_PRIO) * 100

If a Solaris zone is not assigned a CPU entitlement value then a CPU entitlement value is derived
for this zone based on total CPU entitlement associated with the CPU pool this zone is attached to.

On Hyper-V host, for Root partition, this metric is NA.

On vMA, for a host the value is same as BYLS_CPU_PHYS_TOTAL_UTIL while for logical
system and resource pool the value is the percentage of processing units consumedw.r.t minimum
CPU entitlement.

BYLS_CPU_PHYSC

This metric indicates the number of CPU units utilized by the logical system.

On an Uncapped logical system, this value will be equal to the CPU units capacity used by the
logical system during the interval. This can bemore than the value entitled for a logical system.

BYLS_CPU_PHYS_TOTAL_TIME

Total time in seconds, spent by the logical system on the physical CPUs.

OnHPUX, this information is updated internally every 10 seconds so it may take that long for these
values to be updated in PA/Glance.

HP GlancePlus (11.02)Page 213 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On vMA, the value indicates the time spent in seconds on the physical CPU. by logical system or
host or resource pool,

BYLS_CPU_PHYS_TOTAL_TIME_CUM

Total time in seconds, spent by the logical system on physical CPUs, from the start of
measurement.

BYLS_CPU_PHYS_TOTAL_UTIL

Percentage of total time the physical CPUs were utilized by this logical system during the interval.

On HPUX, this information is updated internally every 10 seconds so it may take that long for these
values to be updated in PA/Glance.

On Solaris, this metric is calculated with respect to the available active physical CPUs on the
system.

On AIX, this metric is equivalent to sum of BYLS_CPU_PHYS_USER_MODE_UTIL and BYLS_
CPU_PHYS_SYS_MODE_UTIL.

For AIX lpars, themetric is calculated with respect to the available physical CPUs in the pool to
which this LPAR belongs to.

For AIX wpars, themetric is calculated with respect to the available physical CPUs in the resource
set or Global Environment.

On vMA, the value indicates percentage of total time the physical CPUs were utilized by logical
system or host or resource pool,

BYLS_CPU_TOTAL_UTIL

Percentage of total time the logical CPUs were not idle during this interval.

This metric is calculated against the number of logical CPUs configured for this logical system.

For AIX wpars, themetric represents the percentage of time the physical CPUs were not idle during
this interval.

BYLS_DISPLAY_NAME

On vMA, this metric indicates the name of the host or logical system or resource pool.

On HPVM, this metric indicates the Virtual Machine name of the logical systemand is equivalent to
“Virtual Machine Name” field of 'hpvmstatus' command.

On AIX the value is as returned by the command “uname -n” (that is, the string returned from the
“hostname” program).

HP GlancePlus (11.02)Page 214 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Solaris Zones, this metric indicates the zone name and is equivalent to 'NAME' field of
'zoneadm list -vc' command.

OnHyper-V host, this metric indicates the Virtual Machine name of the logical systemand is
equivalent to the Name displayed in Hyper-V Manager. For Root partition, the value is always
“Root”.

BYLS_IP_ADDRESS

This metric indicates IP Address of the particular logical system.

On vMA, this metric indicates the IP Address for a host and a logical system while for a resource
pool the value is NA.

BYLS_LS_HOSTNAME

This is the DNS registered name of the system.

OnHyper-V host, this metric is NA if the logical system is not active or Hyper-V Integration
Components are not installed on it.

On vMA, for a host and logical system themetric is the Fully Qualified Domain Name, while for
resource pool the value is NA.

BYLS_LS_ID

An unique identifier of the logical system.

OnHPVM, this metric is a numeric id and is equivalent to “VM # ” field of 'hpvmstatus' command.

On AIX LPAR, this metric indicates partition number and is equivalent to “Partition Number” field of
'lparstat -i' command. For aix wpar, this metric represents the partition number and is equivalent to
“uname -W” from inside wpar.

On Solaris Zones, this metric indicates the zone id and is equivalent to 'ID' field of 'zoneadm list -
vc' command.

OnHyper-V host, this metric indicates the PID of the process corresponding to this logical system.
For Root partition, this metric is NA.

On vMA, this metric is a unique identifier for a host, resource pool and a logical system. The value
of this metric may change for an instance across collection intervals.

BYLS_LS_MODE

This metric indicates whether the CPU entitlement for the logical system is Capped or Uncapped.

On AIX SPLPAR, this metric is same as “Mode” field of 'lparstat -i' command.

ForWPARs, this metric is always CAPPED.

HP GlancePlus (11.02)Page 215 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On vMA, the value is Capped for a host and Uncapped for a logical system. For resource pool, the
value is Uncapped or Capped depending on whether the reservation is expandable or not for it.

On Solaris Zones, this metric is “Capped” when the zone is assigned CPU shares and is attached
to a valid CPU pool.

BYLS_LS_NAME

This is the name of the computer.

On HPVM, this metric indicates the Virtual Machine name of the logical systemand is equivalent to
“Virtual Machine Name” field of 'hpvmstatus' command.

On AIX the value is as returned by the command “uname -n” (that is, the string returned from the
“hostname” program).

On vMA, this metric is a unique identifier for host, resource pool and a logical system. The value of
this metric remains the same, for an instance, across collection intervals.

On Solaris Zones, this metric indicates the zone name and is equivalent to 'NAME' field of
'zoneadm list -vc' command.

OnHyper-V host, this metric indicates the name of the XML file which has configuration information
of the logical system. This file will be present under the logical system's installation directory
indicated by BYLS_LS_PATH. For Root partition, the value is always “Root”.

BYLS_LS_OSTYPE

TheGuest OS this logical system is hosting.

On HPVM, themetric can have following values: HP-UX Linux Windows OpenVMS Other
Unknown

OnHyper-V host, themetric can have following values: Windows Other

OnHyper-V host, this metric is NA if the logical system is not active or Hyper-V Integration
Components are not installed on it.

On vMA, themetric can have the following values for host and logical system: ESX/ESXi followed
by version or ESX-Serv (applicable only for a host) Linux Windows Solaris Unknown The value is
NA for resource pool

BYLS_LS_PROC_ID

OnHPVM host and Hyper-V host, each VM is manifested as a process. These processes have the
executable name hpvmapp for HPVM and vmwp.exe for Hyper-V host. This metric will have the
PID of the process corresponding to this logical system.

OnHPVM, typically hpvmapp has the option -d whose argument is the name of the VM.

OnHyper-V host, for Root partition, this metric is NA.

HP GlancePlus (11.02)Page 216 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYLS_LS_SHARED

This metric indicates whether the physical CPUs are dedicated to this logical system or shared.

On HPUX HPVM, and Hyper-V host,this metric is always “Shared”.

On vMA, the value is “Dedicated” for host, and “Shared” for logical system and resource pool.

On AIX SPLPAR, this metric is equivalent to “Type” field of 'lparstat -i' command. For AIX
wpars,this metric will be always “Shared”.

On Solaris Zones, this metric is “Dedicated” when this zone is attached to a CPU pool not shared
by any other zone.

BYLS_LS_STATE

The state of this logical system.

OnHPVM, the logical systems can have one of the following states: UnknownOther invalid Up
Down Boot Crash ShutdownHung

On vMA, this metric can have one of the following states for a host: on off unknown The values for a
logical system can be one of the following: on off suspended unknown The value is NA for resource
pool.

On Solaris Zones, the logical systems can have one of the following states: configured incomplete
installed ready running shutting downmounted

On AIX lpars, the logical system will be always active. On AIX wpars, the logical systems can
have one of the following states: Broken Transitional Defined Active Loaded Paused Frozen Error

A logical system on a Hyper-V host can have the following states: unknown enabled disabled
paused suspended starting snapshtngmigrating saving stopping deleted pausing resuming

BYLS_LS_UUID

UUID of this logical system. This Id uniquely identifies this logical system across multiple hosts.

On Hyper-V host, for Root partition, this metric is NA.

On vMA, for a logical system or a host, the value indicates the UUID appended to display_name of
the system. For a resource pool the value is hostname of the host where resource pool is hosted
followed by the unique id of resource pool.

BYLS_MEM_ENTL

The entitledmemory configured for this logical system (in MB).

On Hyper-V host, for Root partition, this metric is NA.

On vMA, for host the value is the physical memory available in the system and for logical system
this metric indicates theminimummemory configured while for resource pool the value is NA.

HP GlancePlus (11.02)Page 217 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYLS_MEM_ENTL_MAX

Themaximum amount of memory configured for a logical system, in MB.

The value of this metric will be “-3” in PA and “ul” in other clients if entitlement is 'Unlimited' for a
logical system.

On AIX LPARs, this metric will be “na”.

On vMA, this metric indicates themaximum amount of memory configured for a resource pool or a
logical system. For a host, the value is the amount of physical memory available in the system.

OnHPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”.

BYLS_MEM_ENTL_MIN

Theminimum amount of memory configured for the logical system, in MB.

On AIX LPARs, this metric will be “na”.

On vMA, this metric indicates the reserved amount of memory configured for a host, resource pool
or a logical system.

OnHPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”.

BYLS_MEM_ENTL_UTIL

The percentage of entitledmemory in use during the interval.

On vMA, for a logical system or a host, the value indicates percentage of entitledmemory in use
during the interval by it. On vMA, for a resource pool, this metric is “na”.

On HPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”.

BYLS_MEM_FREE

The amount of freememory on the logical system, in MB.

On vMA, for a host and logical system, it is the amount of memory not allocated. For a resource
pool the value is “na”.

On HPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”.

HP GlancePlus (11.02)Page 218 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYLS_MEM_FREE_UTIL

The percentage of memory that is free at the end of the interval.

On vMA, for a resource pool the value is NA.

OnHPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”.

BYLS_MEM_HEALTH

On vMA, for a host, it is a number that indicates the state of thememory. Low number indicates
system is not under memory pressure. For a logical system and resource pool the value is “na”.

On vMA, the values are defined as:

0 - High - indicates free memory is available and no memory
pressure.

1 - Soft
2 - Hard
3 - Low - indicates there is a pressure for free memory.

OnHPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”. For relevant guests, these values represent the level of memory
pressure, 0 being none and 3 being very high.

BYLS_MEM_PHYS

On vMA, for host the value is the physical memory available in the system and for logical system
this metric indicates theminimummemory configured. On vMA, for a resource pool, this metric is
“na”.

On HPVM, this metric matches the data in the “Memory Details” section of “hpvmstatus -V”, when
the dynamic memory driver is not enabled, and it matches the data in the “Dynamic Memory
Information” section when the dynamic memory driver is active. The dynamic memory driver is
currently only available on guests running HPUX 11iv3 or newer versions.

BYLS_MEM_PHYS_UTIL

The percentage of physical memory used during the interval.

On vMA, themetric indicates the percentage of physical memory used by a host, logical system.

On vMA, for a resource pool, this metric is “na”.

HP GlancePlus (11.02)Page 219 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”.

BYLS_MEM_USED

The amount of memory used by the logical system at the end of the interval.

On vMA, this applies to hosts, resource pools and logical systems.

On vMA, for a resource pool, this metric is “na”.

On HPVM, this metric is valid for HPUX guests running 11iv3 or newer releases, with the dynamic
memory driver active. Running “hpvmstatus -V” will indicate whether the driver is active. For all
other guests, the value is “na”.

BYLS_NUM_CPU

The number of virtual CPUs configured for this logical system. This metric is equivalent to GBL_
NUM_CPU on the corresponding logical system.

OnHPVM, themaximum CPUs a logical system can have is 4 with respect to HPVM 3.x.

On AIX SPLPAR, the number of CPUs can be configured irrespective of the available physical
CPUs in the pool this logical system belongs to. For AIX wpars, this metric represents the logical
CPUs of the global environment.

On vMA, for a host themetric is the number of physical CPU threads on the host. For a logical
system, themetric is the number of virtual cpus configured.For a resource pool themetric is NA.

On Solaris Zones, this metric represents number of CPUs in the CPU pool this zone is attached to.
This metric value is equivalent to GBL_NUM_CPU inside corresponding non-global zone.

BYLS_NUM_DISK

The number of disks configured for this logical system. Only local disk devices and optical devices
present on the system are counted in this metric.

On vMA, for a host themetric is the number of disks configured for the host . For a logical system,
themetric is the number of logical disk devices present on the logical system. For a resource pool
themetric is NA.

For AIX wpars, this metric will be “na”.

On Hyper-V host, this metric value is equivalent to GBL_NUM_DISK inside corresponding Hyper-V
guest.

On Hyper-V host, this metric is NA if the logical system is not active.

HP GlancePlus (11.02)Page 220 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYLS_NUM_NETIF

The number of network interfaces configured for this logical system.

On LPAR, this metric includes the loopback interface.

On Hyper-V host, this metric value is equivalent to GBL_NUM_NETWORK inside corresponding
Hyper-V guest.

On Solaris Zones, this metric value is equivalent to GBL_NUM_NETWORK inside corresponding
non-global zone.

OnHyper-V host, this metric is NA if the logical system is not active.

On vMA, for a host themetric is the number of network adapters on the host. For a logical system,
themetric is the number of network interfaces configured for the logical system. For a resource pool
themetric is NA.

BYLS_UPTIME_SECONDS

The uptime of this logical system in seconds.

On AIX LPARs, this metric will be “na”.

On vMA, for a host and logical system themetric is the uptime in seconds while for a resource pool
themetric is NA.

BYNETIF_COLLISION

The number of physical collisions that occurred on the network interface during the interval. A rising
rate of collisions versus outbound packets is an indication that the network is becoming
increasingly congested. This metric does not currently include deferred packets.

This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.

For HP-UX, this will be the same as the sum of the “Single Collision Frames“, ”Multiple Collision
Frames“, ”Late Collisions“, and ”Excessive Collisions“ values from the output of the ”lanadmin“
utility for the network interface. Remember that “lanadmin” reports cumulative counts. As of the
HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.

For most other Unix systems, this is the same as the sum of the “Coll” column from the “netstat -i”
command (“collisions” from the “netstat -i -e” command on Linux) for a network device. See also
netstat(1).

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

AIX does not support the collision count for the ethernet interface. The collision count is supported
for the token ring (tr) and loopback (lo) interfaces. For more information, please refer to the
netstat(1) man page.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

HP GlancePlus (11.02)Page 221 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_COLLISION_1_MIN_RATE

The number of physical collisions per minute on the network interface during the interval. A rising
rate of collisions versus outbound packets is an indication that the network is becoming
increasingly congested. This metric does not currently include deferred packets.

This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_COLLISION_RATE

The number of physical collisions per second on the network interface during the interval. A rising
rate of collisions versus outbound packets is an indication that the network is becoming
increasingly congested. This metric does not currently include deferred packets.

This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

HP GlancePlus (11.02)Page 222 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_COLLISION_RATE_CUM

The average number of physical collisions per second on the network interface over the cumulative
collection time. A rising rate of collisions versus outbound packets is an indication that the network
is becoming increasingly congested. This metric does not currently include deferred packets.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This data is not collected for non-broadcasting devices, such as loopback (lo), and is always zero.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_ERROR

The number of physical errors that occurred on the network interface during the interval. An
increasing number of errors may indicate a hardware problem in the network.

On Unix systems, this data is not available for loop-back (lo) devices and is always zero.

For HP-UX, this will be the same as the sum of the “Inbound Errors” and “Outbound Errors” values
from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports

HP GlancePlus (11.02)Page 223 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

cumulative counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity
on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs”
(TX-ERR on Linux) from the “netstat -i” command for a network device. See also netstat(1).

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_ERROR_1_MIN_RATE

The number of physical errors per minute on the network interface during the interval.

On Unix systems, this data is not available for loop-back (lo) devices and is always zero.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_ERROR_RATE

The number of physical errors per second on the network interface during the interval.

On Unix systems, this data is not available for loop-back (lo) devices and is always zero.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

HP GlancePlus (11.02)Page 224 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

BYNETIF_ERROR_RATE_CUM

The average number of physical errors per second on the network interface over the cumulative
collection time.

OnUnix systems, this data is not available for loop-back (lo) devices and is always zero.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric will be N/A.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

HP GlancePlus (11.02)Page 225 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNETIF_ID

The ID number of the network interface.

BYNETIF_INTERVAL

The amount of time in the interval.

BYNETIF_INTERVAL_CUM

The amount of time over the cumulative collection time.

BYNETIF_IN_BYTE

The number of KBs received from the network via this interface during the interval. Only the bytes
in packets that carry data are included in this rate.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_IN_BYTE_RATE

The number of KBs per second received from the network via this interface during the interval. Only
the bytes in packets that carry data are included in this rate.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,

HP GlancePlus (11.02)Page 226 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_IN_BYTE_RATE_CUM

The average number of KBs per second received from the network via this interface over the
cumulative collection time. Only the bytes in packets that carry data are included in this rate.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_IN_PACKET

The number of successful physical packets received through the network interface during the
interval. Successful packets are those that have been processed without errors or collisions.

For HP-UX, this will be the same as the sum of the “Inbound Unicast Packets“ and ”Inbound Non-
Unicast Packets“ values from the output of the “lanadmin” utility for the network interface.

HP GlancePlus (11.02)Page 227 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and beyond,
“netstat -i” shows network activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of the “Ipkts” column (RX-OK on Linux)
from the “netstat -i” command for a network device. See also netstat(1).

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_IN_PACKET_RATE

The number of successful physical packets per second received through the network interface
during the interval. Successful packets are those that have been processed without errors or
collisions.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_IN_PACKET_RATE_CUM

The average number of physical packets per second received through the network interface over
the cumulative collection time.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

HP GlancePlus (11.02)Page 228 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_LOGL_INTERVAL

The amount of time in the interval.

On systems with large numbers of Interface Protocol (IP) addresses, themeasurement code now
dynamically determines the interval for updating the BYNETIF_LOGL_* metrics. This reduces the
collection overhead for thesemetrics in Glance andGPM. For the interval, it looks at how many IP
addresses there are. The update interval for the BYNETIF_LOGL_* metrics is then set as follows:

* For 1 - 20 IP addresses, the
counters are updated at the normal
sampling interval.

* For 21 - 120 IP addresses, the
counters are updated at an
interval (in seconds) equal to the
number of IP addresses.

* For more than 120 IP addresses,
the counters are updated every 120
seconds.

HP GlancePlus (11.02)Page 229 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example, if Glance or GPM is run with 5-second update intervals on an 11.0 system with 200 IP
addresses configured, the information shown in the Network detail screens will only change once
every 2minutes. The data reflects all activity over that time so no information is lost.

BYNETIF_LOGL_INTERVAL_CUM

The amount of time over the cumulative collection time.

OnHP-UX 11.0 and beyond for Glance andGPM, this metric is updated at the BYNETIF_LOGL_
INTERVAL time. On systems with large numbers of IP addresses, the BYNETIF_LOGL_
INTERVAL can be greater than the sampling interval.

BYNETIF_LOGL_IN_PACKET

The number of successful logical packets received through the logical interface during the interval.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This is the same as the “Ipkts” column from the “netstat -i” command for a network device. See
also netstat(1).

On HP-UX 11.0 and beyond for Glance andGPM, this metric is updated at the BYNETIF_LOGL_
INTERVAL time. On systems with large numbers of IP addresses, the BYNETIF_LOGL_
INTERVAL can be greater than the sampling interval.

BYNETIF_LOGL_IN_PACKET_RATE

The number of successful logical packets per second received through the logical interface during
the interval.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

HP GlancePlus (11.02)Page 230 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX 11.0 and beyond for Glance andGPM, this metric is updated at the BYNETIF_LOGL_
INTERVAL time. On systems with large numbers of IP addresses, the BYNETIF_LOGL_
INTERVAL can be greater than the sampling interval.

BYNETIF_LOGL_IN_PACKET_RATE_CUM

The average number of logical packets per second received through the logical interface over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

On HP-UX 11.0 and beyond for Glance andGPM, this metric is updated at the BYNETIF_LOGL_
INTERVAL time. On systems with large numbers of IP addresses, the BYNETIF_LOGL_
INTERVAL can be greater than the sampling interval.

BYNETIF_LOGL_IP_ADDRESS

The Internet IP address of this logical network interface. See also netstat(1).

BYNETIF_LOGL_NAME

The name of the logical network interface. These are the same names that appear in the “Name”
column of the “netstat -i” command output.

HP GlancePlus (11.02)Page 231 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNETIF_LOGL_OUT_PACKET

The number of successful logical packets sent through the logical interface during the interval.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This is the same as the “Opkts” column from the “netstat -i” command for a network device. See
also netstat(1).

On HP-UX 11.0 and beyond for Glance andGPM, this metric is updated at the BYNETIF_LOGL_
INTERVAL time. On systems with large numbers of IP addresses, the BYNETIF_LOGL_
INTERVAL can be greater than the sampling interval.

BYNETIF_LOGL_OUT_PACKET_RATE

The number of successful logical packets per second sent through the logical interface during the
interval.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

On HP-UX 11.0 and beyond for Glance andGPM, this metric is updated at the BYNETIF_LOGL_
INTERVAL time. On systems with large numbers of IP addresses, the BYNETIF_LOGL_
INTERVAL can be greater than the sampling interval.

BYNETIF_LOGL_OUT_PACKET_RATE_CUM

The average number of logical packets per second sent through the logical interface over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 232 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

On HP-UX 11.0 and beyond for Glance andGPM, this metric is updated at the BYNETIF_LOGL_
INTERVAL time. On systems with large numbers of IP addresses, the BYNETIF_LOGL_
INTERVAL can be greater than the sampling interval.

BYNETIF_NAME

The name of the network interface.

For HP-UX 11.0 and beyond, these are the same names that appear in the “Description” field of the
“lanadmin” command output.

On all other Unix systems, these are the same names that appear in the “Name” column of the
“netstat -i” command.

Some examples of device names are:

lo - loop-back driver
ln - Standard Ethernet driver
en - Standard Ethernet driver
le - Lance Ethernet driver
ie - Intel Ethernet driver
tr - Token-Ring driver
et - Ether Twist driver
bf - fiber optic driver

All of the device names will have the unit number appended to the name. For example, a loop-back
device in unit 0 will be “lo0”.

On vMA for Lan cards which are of type ESXVLan, this metric contains the vmnic<number> as first
half and the second half is the ESX host name.

HP GlancePlus (11.02)Page 233 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNETIF_NET_MTU

The size of themaximum transfer unit (MTU) for this interface.

BYNETIF_NET_SPEED

The speed of this interface. This is the bandwidth in Mega bits/sec.

BYNETIF_NET_TYPE

The type of network device the interface communicates through.

Lan - local area network card
Loop - software loopback

interface (not tied to a
hardware device)

Loop6 - software loopback
interface IPv6 (not tied
to a hardware device)

Serial - serial modem port
Vlan - virtual lan
Wan - wide area network card
Tunnel - tunnel interface
Apa - HP LinkAggregate Interface (APA)
Other - hardware network interface

type is unknown.
ESXVLan - The card type belongs to network cards of ESX hosts which
are

monitored on vMA.

BYNETIF_OUT_BYTE

The number of KBs sent to the network via this interface during the interval. Only the bytes in
packets that carry data are included in this rate.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,

HP GlancePlus (11.02)Page 234 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_OUT_BYTE_RATE

The number of KBs per second sent to the network via this interface during the interval. Only the
bytes in packets that carry data are included in this rate.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_OUT_BYTE_RATE_CUM

The average number of KBs per second sent to the network via this interface over the cumulative
collection time. Only the bytes in packets that carry data are included in this rate.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 235 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_OUT_PACKET

The number of successful physical packets sent through the network interface during the interval.
Successful packets are those that have been processed without errors or collisions.

For HP-UX, this will be the same as the sum of the “Outbound Unicast Packets“ and ”Outbound
Non-Unicast Packets“ values from the output of the “lanadmin” utility for the network interface.
Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and beyond,
“netstat -i” shows network activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of the “Opkts” column (TX-OK on Linux)
from the “netstat -i” command for a network device. See also netstat(1).

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_OUT_PACKET_RATE

The number of successful physical packets per second sent through the network interface during
the interval. Successful packets are those that have been processed without errors or collisions.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

HP GlancePlus (11.02)Page 236 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_OUT_PACKET_RATE_CUM

The average number of successful physical packets per second sent through the network interface
over the cumulative collection time.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

HP GlancePlus (11.02)Page 237 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNETIF_PACKET_RATE

The number of successful physical packets per second sent and received through the network
interface during the interval. Successful packets are those that have been processed without errors
or collisions.

If BYNETIF_NET_TYPE is “ESXVLan”, then this metric shows the values for the Lan card in the
host.

Physical statistics are packets recorded by the network drivers. These numbers most likely will not
be the same as the logical statistics. The values returned for the loopback interface will show “na”
for the physical statistics since there is no network driver activity.

Logical statistics are packets seen only by the Interface Protocol (IP) layer of the networking
subsystem. Not all packets seen by IP will go out and come in through a network driver. An
example is the loopback interface (127.0.0.1). Pings or other network generating commands (ftp,
rlogin, and so forth) to 127.0.0.1 will not change physical driver statistics. Pings to IP addresses on
remote systems will change physical driver statistics.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

BYNETIF_QUEUE

The length of the outbound queue at the time of the last sample. This metric will be the same as the
“OutboundQueue Length” values from the output of “lanadmin” utility.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

OnHP-UX, this metric is only available for LAN interfaces. ForWAN (Wide-Area Network)
interfaces such as ATM and X.25, with interface names such as el, cip/ixe, and netisdn, this metric
returns “na”.

BYNETIF_UTIL

The percentage of bandwidth used with respect to the total available bandwidth on a given network
interface at the end of the interval.

On vMA this value will be N/A for those Lan cards which are of type ESXVLan.

BYNFSOP_CLIENT_COUNT

The number of operations that the local machine processed as a client for the current host during
the interval.

HP GlancePlus (11.02)Page 238 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNFSOP_CLIENT_COUNT_CUM

The number of operations that the local machine processed as a client for the current host over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFSOP_CLIENT_TIME

The time, in seconds, spent to service an NFS operation (as an NFS client) during the last interval.
This is measured from the time the operation gets onto the physical network until the time a reply is
received from the network. In other words, this is the “service time” less the local machine's
software overhead.

BYNFSOP_CLIENT_TIME_CUM

The time, in seconds, spent to service an NFS operation (as an NFS client) over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 239 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This is measured from the time the operation gets onto the physical network until the time a reply is
received from the network. In other words, this is the “service time” less the local machine's
software overhead.

BYNFSOP_INTERVAL

The amount of time in the interval.

BYNFSOP_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFSOP_NAME

Stringmnemonic for the NFS operation. One of the following:

NFS Version 2

Name Operation/Action

getattr Return the current

attributes of a file.
setattr Set the attributes of a

file and returns the new
attributes.

lookup Return the attributes of
a file.

readlink Return the string in the
symbolic link of a file.

read Return data from a file.

HP GlancePlus (11.02)Page 240 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

write Put data into a file.
create Create a file.
remove Remove a file.
rename Give a file a new name.
link Create a hard link to a

file.
symlink Create a symbolic link

to a file.
mkdir Create a directory.
rmdir Remove a directory.
readdir Read a directory entry.
statfs Return mounted file

system information.
null Verify NFS services.

No actual work done.
writecache Not used in HP-UX.
root Not used in HP-UX.

NFS Version 3

Name Operation/Action

getattr Return the current

attributes of a file.
setattr Set the attributes of a

file and returns the new
attributes.

lookup Return the attributes of
a file.

access Check access permissions
of a user.

readlink Return the string in the
symbolic link of a file.

read Return data from a file.
write Put data into a file.
create Create a file.
mkdir Make a directory.
symlink Create a symbolic link

to a file.
mknod Create a special device.
remove Remove a file.
rmdir Remove a directory.
rename Give a file a new name.
link Create a hard link to a

file.
readdir Read a directory entry.
readdirplus Extended read of a

directory entry.
fsstat Get dynamic file

system information.

HP GlancePlus (11.02)Page 241 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

fsinfo Get static file
system information.

pathconf Retrieve POSIX
information.

commit Commit cached data on
server to stable
storage.

null Verify NFS services.
No actual work done.

BYNFSOP_SERVER_COUNT

The number of NFS operations that the local machine performed as a server to the current host for
this current operation type during the interval.

BYNFSOP_SERVER_COUNT_CUM

The number of NFS operations that the local machine performed as a server to the current host for
this operation type over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFSOP_SERVER_TIME

The time, in seconds, that the local machine spent servicing each NFS operation as a NFS server
for the current host during the interval. This is measured from the time the operation gets onto the
physical network until the time a reply is received from the network. In other words, this is the
“service time” less the local machine's software overhead.

HP GlancePlus (11.02)Page 242 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNFSOP_SERVER_TIME_CUM

The time, in seconds, that the local machine spent servicing each NFS operation as a NFS server
for the current host over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This is measured from the time the operation gets onto the physical network until the time a reply is
received from the network. In other words, this is the “service time” less the local machine's
software overhead.

BYNFS_CLIENT_PHYS_TIME

The time, in seconds, that the local machine spent to service all NFS operations (as an NFS client)
to this host entry during the interval.

This is measured from the time the operation gets onto the physical network until the time a reply is
received from the network. In other words, this is the “service time” less the local machine's
software overhead.

BYNFS_CLIENT_PHYS_TIME_CUM

The time, in seconds, that the local machine spent to service all NFS operations (as a NFS client)
to this host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 243 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This is measured from the time the operation gets onto the physical network until the time a reply is
received from the network. In other words, this is the “service time” less the local machine's
software overhead.

BYNFS_CLIENT_READ_BYTE_RATE

The number of KBs per second transferred during the interval by the NFS read operations where the
local machine was acting as a client for this host.

BYNFS_CLIENT_READ_BYTE_RATE_CUM

The average number of KBs per second transferred by the NFS read operations where the local
machine was acting as a client for this host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFS_CLIENT_READ_RATE

The number of NFS read operations per second where the local machine was acting as a client to
this NFS host entry during the interval.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

HP GlancePlus (11.02)Page 244 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNFS_CLIENT_READ_RATE_CUM

The average number of NFS read operations per second where the local machine was acting as a
client to this NFS host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

BYNFS_CLIENT_SERVICE

The number of NFS IO operations processed by the local machine acting as a client for this host
entry during the interval. This is sometimes referred to as the “service count.”

BYNFS_CLIENT_SERVICE_CUM

The number of NFS IO operations processed by the local machine acting as a client to this host
entry over the cumulative collection time. This is sometimes referred to as the “service count.”

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 245 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFS_CLIENT_SERVICE_QUEUE

The local machine's number of pending NFS client read or write operations to this NFS host at the
end of the interval. This value increases as the service time to the NFS host increases and/or as
the rate of client requests increases.

A large value is an indication that either the NFS server is busy, or the local machine is a heavy
user of the current server, or both.

BYNFS_CLIENT_SERVICE_QUEUE_CUM

The local machine's average number of pending NFS client read or write operations to this NFS
host over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

The length of this queue increases as the service time to the NFS host increases and/or as the rate
of the local machine's requests increases. A large value is an indication that either the NFS server
is busy, or the local machine is a heavy user of the current server, or both.

BYNFS_CLIENT_SERVICE_TIME

The time, in seconds, spent for the local machine acting as an client to service all NFS operations
for this host entry during the interval.

This is the time from the point that the local machine (as a client) originates the request to the point
a reply is received including IO buffering, NFS and network software layer delays, physical network
latency, and NFS server service time. This is sometimes referred to as “service time” and can be
thought of as the round-trip time.

HP GlancePlus (11.02)Page 246 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNFS_CLIENT_SERVICE_TIME_CUM

The time, in seconds, spent for the local machine acting as a NFS client for this host entry to
service all NFS operations over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This is the time from the point that the local machine (as a client) originates the request to the point
a reply is received including IO buffering, NFS and network software layer delays, physical network
latency, and NFS server service time. This is sometimes referred to as “service time” and can be
thought of as the round-trip time.

BYNFS_CLIENT_WRITE_BYTE_RATE

The number of KBs per second transferred by the NFS write operation where the local machine was
acting as a client for this host entry during the interval.

BYNFS_CLIENT_WRITE_BYTE_RATE_CUM

The average number of KBs per second transferred by the NFS write operation where the local
machine was acting as a client for this host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 247 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFS_CLIENT_WRITE_RATE

The number of NFS write operations per second where the local machine was acting as a client to
this NFS host entry during the interval.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

BYNFS_CLIENT_WRITE_RATE_CUM

The average number of NFS write operations per second where the local machine was acting as a
client to this NFS host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

BYNFS_HOSTNAME

The Internet host name of this NFS entry.

An NFS host is added if there are already NFS directories mounted or whenever any IO activity is
seen, either server or client activity. It remains listed as long as the current midaemon program is
running even if all NFS file systems are unmounted.

HP GlancePlus (11.02)Page 248 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A host on the network can act both as a client, or as a server at the same time. If an NFS host acts
as both client and as a server, it is only listed once.

BYNFS_HOST_IP_ADDRESS

The Internet host IP address of this NFS entry.

BYNFS_INTERVAL

The amount of time in the interval.

BYNFS_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFS_LAST_PROC_ID

The PID of the last process to generate or receive NFS traffic for this NFS host.

If the host is acting as a server (that is, the local machine is the client), then the last process may
be either a user application or the biod daemon.

If the host entry is acting as a client (that is, the local machine is the server), then this process is
always the nfsd daemon.

BYNFS_SERVER_READ_BYTE_RATE

The number of KBs per second transferred during the interval by the NFS read operations where the
local machine was acting as a server to this host.

HP GlancePlus (11.02)Page 249 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNFS_SERVER_READ_BYTE_RATE_CUM

The average number of KBs per second transferred by the NFS read operations where the local
machine was acting as a server to this host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFS_SERVER_READ_RATE

The number of NFS read operations per second where the local machine was acting as a server for
this NFS host entry during the interval.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

BYNFS_SERVER_READ_RATE_CUM

The average number of NFS read operations per second where the local machine was acting as a
server for this NFS host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 250 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

BYNFS_SERVER_SERVICE

The number of NFS IO operations processed by the local machine acting as a server to this host
entry during the interval. This is sometimes referred to as the “service count.”

BYNFS_SERVER_SERVICE_CUM

The number of NFS IO operations processed by the local machine acting as a server to this host
entry over the cumulative collection time. This is sometimes referred to as the “service count.”

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFS_SERVER_SERVICE_TIME

The time, in seconds, spent for the local machine acting as a NFS server to this host entry to
process the client's operations during the interval. This includes all of the time from the point that
the operation is received to the point where a reply is sent back to the client, which includes
software overhead and any local disk IOs.

BYNFS_SERVER_SERVICE_TIME_CUM

The time, in seconds, spent over the cumulative collection time for the local machine acting as a
NFS server to this host entry to process the client's operations. This includes all of the time from

HP GlancePlus (11.02)Page 251 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

the point that the operation is received to the point where a reply is sent back to the client, which
includes software overhead and any local disk IOs.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYNFS_SERVER_WRITE_BYTE_RATE

The number of KBs per second transferred by the NFS write operation where the local machine was
acting as a server to this host entry during the interval.

BYNFS_SERVER_WRITE_BYTE_RATE_CUM

The average number of KBs per second transferred by the NFS write operation where the local
machine was acting as a server to this host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 252 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYNFS_SERVER_WRITE_RATE

The number of NFS write operations per second where the local machine was acting as a server for
this NFS host entry during the interval.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

BYNFS_SERVER_WRITE_RATE_CUM

The average number of NFS write operations per second where the local machine was acting as a
server for this NFS host entry over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

BYOP_CLIENT_COUNT

The number of current NFS operations that the local machine has processed as a NFS client during
the interval.

A host on the network can act both as a client, or as a server at the same time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 253 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYOP_CLIENT_COUNT_CUM

The number of current NFS operations that the local machine has processed as a NFS client over
the cumulative collection time.

A host on the network can act both as a client, or as a server at the same time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYOP_INTERVAL

The amount of time in the interval.

BYOP_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 254 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYOP_NAME

Stringmnemonic for the NFS operation. One of the following:

For NFS Version 2

Name Operation/Action

getattr Return the current

attributes of a file.
setattr Set the attributes of a

file and returns the new
attributes.

lookup Return the attributes of
a file.

readlink Return the string in the
symbolic link of a file.

read Return data from a file.
write Put data into a file.
create Create a file.
remove Remove a file.
rename Give a file a new name.
link Create a hard link to a

file.
symlink Create a symbolic link

to a file.
mkdir Create a directory.
rmdir Remove a directory.
readdir Read a directory entry.
statfs Return mounted file

system information.
null Verify NFS service

connections and timing.
On HP-UX, no actual work
done.

writecache Flush the server write
cache if a special write
cache exists. Most
systems use the file

HP GlancePlus (11.02)Page 255 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

buffer cache and not a
special server cache.
Not used on HP-UX.

root Find root file system
handle (probably
obsolete).
Not used on HP-UX.

For NFS Version 3

Name Operation/Action

getattr Return the current

attributes of a file.
setattr Set the attributes of a

file and returns the new
attributes.

lookup Return the attributes of
a file.

access Check access permissions
of a user.

readlink Return the string in the
symbolic link of a file.

read Return data from a file.
write Put data into a file.
create Create a file.
mkdir Make a directory.
symlink Create a symbolic link

to a file.
mknod Create a special device.
remove Remove a file.
rmdir Remove a directory.
rename Give a file a new name.
link Create a hard link to a

file.
readdir Read a directory entry.
readdirplus Extended read of a

directory entry.
fsstat Get dynamic file

system information.
fsinfo Get static file

system information.
pathconf Retrieve POSIX

information.
commit Commit cached data on

server to stable
storage.

null Verify NFS services.
No actual work done.

HP GlancePlus (11.02)Page 256 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYOP_SERVER_COUNT

The number of current NFS operations that the local machine has processed as a NFS server
during the interval.

A host on the network can act both as a client, or as a server at the same time.

BYOP_SERVER_COUNT_CUM

The number of current NFS operations that the local machine has processed as a NFS server over
the cumulative collection time.

A host on the network can act both as a client, or as a server at the same time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

BYSWP_SWAP_PRI

The priority of this swap device. This value is set by either the swapon(1M) command, or by the
“pri=” field in /etc/fstab.

On HP-UX, swap space is used by the lower value priorities first. Since device swap is faster than
file system swap, it is advisable to have lower values for device swap. The legal values for priority
range from 0 to 10.

OnHP-UX, the “memory” swap area has no priority and will be shown as -1. This indicates that
usingmemory as a swap area is only done after all other swap resources have been exhausted.
This is true in extreme cases of memory pressure forcing the kernel to swap the entire process to
disk. In cases of process deactivation, thememory pseudo swap actually has the highest priority -
deactivated pages are not moved - they are simply marked as deactivated and the space they
occupy is considered pseudo swap.

On Linux, swap space is used by the higher value priorities first. The legal values for priority range
from 0 to 32767. The system assigns negative priority values if no priority is specified during the
creation of swap area. See swapon(8) for details.

HP GlancePlus (11.02)Page 257 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

BYSWP_SWAP_SPACE_AVAIL

The capacity (in MB) for swapping in this swap area.

On HP-UX, for “device” type swap, this value is constant. However, for “filesys” swap this value
grows as needed. File system swap grows in units of “SWCHUNKS” x DEV_BSIZE bytes, which
is typically 2MB. This metric is similar to the “AVAIL” parameters returned from
/usr/sbin/swapinfo. For “memory” type swap, this value also grows as needed or as possible, given
that any memory reserved for swap cannot be used for normal virtual memory. Note that this is
potential swap space. Since swap is allocated in fixed (SWCHUNK) sizes, not all of this space
may actually be usable. For example, on a 61MB disk using 2MB swap size allocations, 1MB
remains unusable and is considered wasted space.

On SUN, this is the same as (blocks * .5)/1024, reported by the “swap -l” command.

On AIX, this metric is set to “na” for inactive swap devices.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

BYSWP_SWAP_SPACE_NAME

OnUnix systems, this is the name of the device file or file system where the swap space is
located.

On HP-UX, part of the system's physical memory may be allocated as a pseudo-swap device. It is
enabled by setting the “SWAPMEM_ON” kernel parameter to 1.

On SunOS 5.X, part of the system's physical memory may be allocated as a pseudo-swap device.
Also note, “/tmp” is usually configured as amemory based file system and is not used for swap
space. Therefore, it will not be listed with the swap devices. This is noted because “df” uses the
label “swap” for the “/tmp” file system whichmay be confusing. See tmpfs(7).

BYSWP_SWAP_SPACE_USED

The amount of swap space (in MB) used in this area.

On HP-UX, this value is similar to the “USED” column returned by the /usr/sbin/swapinfo
command.

On SUN, “Used” indicates amount written to disk (or locked inmemory), rather than reserved.
Swap space is reserved (by decrementing a counter) when virtual memory for a program is created.
This is the same as (blocks - free) * .5/1024, reported by the “swap -l” command.

On SUN, global swap space is tracked through the operating system. Device swap space is
tracked through the devices. For this reason, the amount of swap space usedmay differ between
the global and by-devicemetrics. Sometimes pages that aremarked to be swapped to disk by the
operating system are never swapped. The operating system records this as used swap space, but
the devices do not, since no physical IOs occur. (Metrics with the prefix “GBL” are global and
metrics with the prefix “BYSWP” are by device.)

On AIX, this metric is set to “na” for inactive swap devices.

HP GlancePlus (11.02)Page 258 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

BYSWP_SWAP_TYPE

The type of swap space allocated on the system.

OnHP-UX and SUN, types of swap space are device, file system (“filesys”), or memory. “Device”
swap is accessed directly without going through the file system, and is therefore faster than
“filesys” swap. “Filesys” swap can be to a local or NFS mounted swap file. “Memory” swap is
space in the system's physical memory reserved for pseudo-swap for running processes. Using
pseudo-swapmeans the pages are simply locked inmemory rather than copied to a swap area.

On SUN, note that “/tmp” is usually configured as amemory based file system and is not used for
swap space. Therefore, it will not be listed with the swap devices, and “swap” or “tmpfs” will not be
swap types. This is noted because “df” uses the label “swap” for the “/tmp” file system whichmay
be confusing. See tmpfs(7).

On AIX, “Device” swap is accessed directly without going through the file system. For “Device”
swap, the device is specially allocated for swapping purpose only. The device can be logical
volume, “lv” or remote file system, “remote fs”. The swap is often referred as paging to paging
space.

FSDETAIL_LABEL

The type of entry this file system is associated with. It could be a device, partition, logical volume,
or volume group.

FSDETAIL_NAME

The name of the device, partition, logical volume, or volume group this file system is associated
with.

FS_BLOCK_SIZE

Themaximum block size of this file system, in bytes.

A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these
unmounted file systems are not displayed until remounted.

FS_DEVNAME

OnUnix systems, this is the path name string of the current device.

OnWindows, this is the disk drive string of the current device.

HP GlancePlus (11.02)Page 259 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this is the “fsname” parameter in themount(1M) command. For NFS devices, this
includes the name of the node exporting the file system. It is possible that a process may mount a
device using themount(2) system call. This call does not update the “/etc/mnttab” and its name is
blank. This situation is rare, and should be corrected by syncer(1M). Note that once a device is
mounted, its entry is displayed, even after the device is unmounted, until themidaemon process
terminates.

On SUN, this is the path name string of the current device, or “tmpfs” for memory based file
systems. See tmpfs(7).

FS_DEVNO

OnUnix systems, this is themajor andminor number of the file system.

OnWindows, this is the unit number of the disk device on which the logical disk resides.

The scope collector logs the value of this metric in decimal format.

FS_DIRNAME

OnUnix systems, this is the path name of themount point of the file system.

OnWindows, this is the drive letter associated with the selected disk partition.

On HP-UX, this is the path name of themount point of the file system if the logical volume has a
mounted file system. This is the directory parameter of themount(1M) command for most entries.
Exceptions are:

* For lvm swap areas, this field
contains “lvm swap device”.

* For logical volumes with no
mounted file systems, this field
contains “Raw Logical Volume”
(relevant only to Perf Agent).

OnHP-UX, the file names are in the same order as shown in the “/usr/sbin/mount -p” command.
File systems are not displayed until they exhibit IO activity once themidaemon has been started.
Also, once a device is displayed, it continues to be displayed (even after the device is unmounted)
until themidaemon process terminates.

On SUN, only “UFS”, “HSFS” and “TMPFS” file systems are listed. Seemount(1M) andmnttab(4).
“TMPFS” file systems arememory based filesystems and are listed here for convenience. See
tmpfs(7).

On AIX, seemount(1M) and filesystems(4). OnOSF1, seemount(2).

HP GlancePlus (11.02)Page 260 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

FS_FILE_IO_RATE

The number of file system related physical IOs per second directed to this file system during the
interval.

This value is similar to the values returned by the vmstat -d command except that vmstat reports all
IOs and does not break them out by file system. Also, vmstat reports IOs from the kernel's view,
whichmay get broken down by the disk driver into multiple physical IOs. Since this metric reports
values from the disk driver's point of view, it is more accurate than vmstat.

FS_FILE_IO_RATE_CUM

The average number of file IOs per second directed to this file system over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This value is similar to the values returned by the vmstat -d command except that vmstat reports all
IOs and does not break them out by file system. Also, vmstat reports IOs from the kernel's view,
whichmay get broken down by the disk driver into multiple physical IOs. Since this metric reports
values from the disk driver's point of view, it is more accurate than vmstat.

FS_FRAG_SIZE

The fundamental file system block size, in bytes.

A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these
unmounted file systems are not displayed until remounted.

FS_INODE_UTIL

Percentage of this file system'sinodes in use during the interval.

HP GlancePlus (11.02)Page 261 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these
unmounted file systems are not displayed until remounted.

FS_INTERVAL

The amount of time in the interval.

FS_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_IS_LVM

Returns true (1) if this file system is a logical volume or 0 if a hard-partitioned file system.

FS_LOGL_IO_RATE

The number of logical IOs per second directed to this file system during the interval. Logical IOs are
generated by calling the read() or write() system calls.

FS_LOGL_IO_RATE_CUM

The average number of logical IOs per second directed to this file system over the cumulative
collection time. Logical IOs are generated by calling the read() or write() system calls.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 262 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_LOGL_READ_BYTE_RATE

The number of logical read KBs per second from this file system during the interval.

FS_LOGL_READ_BYTE_RATE_CUM

The average number of logical read KBs per second from this file system over the cumulative
collection time. Logical reads are generated by calling the read() system call.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_LOGL_READ_RATE

The number of logical reads per second directed to this file system during the interval. Logical
reads are generated by calling the read() system call.

FS_LOGL_READ_RATE_CUM

The average number of logical reads per second directed to this file system over the cumulative
collection time. Logical reads are generated by calling the read() system call.

HP GlancePlus (11.02)Page 263 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_LOGL_WRITE_BYTE_RATE

The number of logical writes KBs per second to this file system during the interval.

FS_LOGL_WRITE_BYTE_RATE_CUM

The average number of logical write KBs per second to this file system over the cumulative
collection time. Logical writes are generated by calling the write() system call.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_LOGL_WRITE_RATE

The number of logical writes per second directed to this file system during the interval. Logical
writes are generated by calling the write() system call.

HP GlancePlus (11.02)Page 264 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

FS_LOGL_WRITE_RATE_CUM

The average number of logical writes per second directed to this file system over the cumulative
collection time. Logical writes are generated by calling the write() system call.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_MAX_INODES

Number of configured file systeminodes.

A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these
unmounted file systems are not displayed until remounted.

FS_MAX_SIZE

Maximum number that this file system could obtain if full, in MB.

Note that this is the user space capacity - it is the file system space accessible to non root users.
Onmost Unix systems, the df command shows the total file system capacity which includes the
extra file system space accessible to root users only.

The equivalent fields to look at are “used” and “avail”. For the target file system, to calculate the
maximum size in MB, use

FS Max Size = (used + avail)/1024

A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these
unmounted file systems are not displayed until remounted.

On HP-UX, this metric is updated at 4minute intervals to minimize collection overhead.

HP GlancePlus (11.02)Page 265 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

FS_PHYS_IO_RATE

The number of physical IOs per second directed to this file system during the interval.

FS_PHYS_IO_RATE_CUM

The average number of physical IOs per second directed to this file system over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_PHYS_READ_BYTE_RATE

The number of physical KBs per second read from this file system during the interval.

FS_PHYS_READ_BYTE_RATE_CUM

The average number of KBs per second of physical reads from this file system over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 266 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_PHYS_READ_RATE

The number of physical reads per second directed to this file system during the interval.

On Unix systems, physical reads are generated by user file access, virtual memory access
(paging), file systemmanagement, or raw device access.

FS_PHYS_READ_RATE_CUM

The average number of physical reads per second directed to this file system over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_PHYS_WRITE_BYTE_RATE

The number of physical KBs per second written to this file system during the interval.

FS_PHYS_WRITE_BYTE_RATE_CUM

The average number of KBs per second of physical writes to this file system over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 267 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_PHYS_WRITE_RATE

The number of physical writes per second directed to this file system during the interval.

FS_PHYS_WRITE_RATE_CUM

The average number of physical writes per second directed to this file system over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

FS_SPACE_RESERVED

The amount of file system space inMBs reserved for superuser allocation.

On AIX, this metric is typically zero because by default AIX does not reserve any file system space
for the superuser.

FS_SPACE_USED

The amount of file system space inMBs that is being used.

HP GlancePlus (11.02)Page 268 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

FS_SPACE_UTIL

Percentage of the file system space in use during the interval.

Note that this is the user space capacity - it is the file system space accessible to non root users.
Onmost Unix systems, the df command shows the total file system capacity which includes the
extra file system space accessible to root users only.

A value of “na” may be displayed if the file system is not mounted. If the product is restarted, these
unmounted file systems are not displayed until remounted.

On HP-UX, this metric is updated at 4minute intervals to minimize collection overhead.

FS_TYPE

A string indicating the file system type. On Unix systems, some of the possible types are:

hfs - user file system
ufs - user file system
ext2 - user file system
cdfs - CD-ROM file system
vxfs - Veritas (vxfs) file system
nfs - network file system
nfs3 - network file system

Version 3

OnWindows, some of the possible types are:

NTFS - New Technology File System
FAT - 16-bit File Allocation

Table
FAT32 - 32-bit File Allocation

Table

FAT uses a 16-bit file allocation table entry (216 clusters).

FAT32 uses a 32-bit file allocation table entry. However, Windows 2000 reserves the first 4 bits of
a FAT32 file allocation table entry, whichmeans FAT32 has a theoretical maximum of 228
clusters. NTFS is native file system of Windows NT and beyond.

FS_VM_IO_RATE

The number of virtual memory IOs per second directed to this file system during the interval.

HP GlancePlus (11.02)Page 269 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

FS_VM_IO_RATE_CUM

The average number of virtual memory IOs per second directed to this file system over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_ACTIVE_CPU

The number of CPUs online on the system.

For HP-UX and certain versions of Linux, the sar(1M) command allows you to check the status of
the system CPUs.

For SUN and DEC, the commands psrinfo(1M) and psradm(1M) allow you to check or change the
status of the system CPUs.

For AIX, the pstat(1) command allows you to check the status of the system CPUs.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment if
RSET is not configured for the SystemWPAR. If RSET is configured for the SystemWPAR, this
metric value will report the number of CPUs in the RSET.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_ACTIVE_CPU_CORE

This metric provides the total number of active CPU cores on a physical system.

GBL_ACTIVE_PROC

An active process is one that exists and consumes someCPU time. GBL_ACTIVE_PROC is the
sum of the alive-process-time/interval-time ratios of every process that is active (uses any CPU
time) during an interval.

HP GlancePlus (11.02)Page 270 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The following diagram of a four second interval during which two processes exist on the system
should be used to understand the above definition. Note the difference between active processes,
which consumeCPU time, and alive processes whichmerely exist on the system.

----------- Seconds -----------
1 2 3 4

Proc
---- ---- ---- ---- ----
A live live live live

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval but consumes no CPU. A's contribution to
GBL_ALIVE_PROC is 4*1/4. A contributes 0*1/4 to GBL_ACTIVE_PROC. B's contribution to
GBL_ALIVE_PROC is 3*1/4. B contributes 2*1/4 to GBL_ACTIVE_PROC. Thus, for this interval,
GBL_ACTIVE_PROC equals 0.5 andGBL_ALIVE_PROC equals 1.75.

Because a process may be alive but not active, GBL_ACTIVE_PROC will always be less than or
equal to GBL_ALIVE_PROC.

This metric is a good overall indicator of the workload of the system. An unusually large number of
active processes could indicate a CPU bottleneck.

To determine if the CPU is a bottleneck, compare this metric with GBL_CPU_TOTAL_UTIL and
GBL_RUN_QUEUE. If GBL_CPU_TOTAL_UTIL is near 100 percent andGBL_RUN_QUEUE is
greater than one, there is a bottleneck.

On non HP-UX systems, this metric is derived from sampled process data. Since the data for a
process is not available after the process has died on this operating system, a process whose life is
shorter than the sampling interval may not be seen when the samples are taken. Thus this metric
may be slightly less than the actual value. Increasing the sampling frequency captures amore
accurate count, but the overhead of collectionmay also rise.

GBL_ALIVE_PROC

An alive process is one that exists on the system. GBL_ALIVE_PROC is the sum of the alive-
process-time/interval-time ratios for every process.

The following diagram of a four second interval during which two processes exist on the system
should be used to understand the above definition. Note the difference between active processes,
which consumeCPU time, and alive processes whichmerely exist on the system.

----------- Seconds -----------
1 2 3 4

Proc
---- ---- ---- ---- ----
A live live live live

HP GlancePlus (11.02)Page 271 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

B live/CPU live/CPU live dead

Process A is alive for the entire four second interval but consumes no CPU. A's contribution to
GBL_ALIVE_PROC is 4*1/4. A contributes 0*1/4 to GBL_ACTIVE_PROC. B's contribution to
GBL_ALIVE_PROC is 3*1/4. B contributes 2*1/4 to GBL_ACTIVE_PROC. Thus, for this interval,
GBL_ACTIVE_PROC equals 0.5 andGBL_ALIVE_PROC equals 1.75.

Because a process may be alive but not active, GBL_ACTIVE_PROC will always be less than or
equal to GBL_ALIVE_PROC.

On non HP-UX systems, this metric is derived from sampled process data. Since the data for a
process is not available after the process has died on this operating system, a process whose life is
shorter than the sampling interval may not be seen when the samples are taken. Thus this metric
may be slightly less than the actual value. Increasing the sampling frequency captures amore
accurate count, but the overhead of collectionmay also rise.

GBL_BLANK

A string of blanks.

GBL_BOOT_TIME

The date and time when the system was last booted.

GBL_CACHE_QUEUE

The average number of processes or kernel threads blocked on CACHE (waiting for the file
systembuffer cache to be updated) during the interval. Processes or kernel threads doing raw IO to
a disk are not included in this measurement. As this number rises, it is an indication of a disk or
memory bottleneck.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
CACHE divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being

HP GlancePlus (11.02)Page 272 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_CACHE_WAIT_PCT

The percentage of time processes or kernel threads were blocked on cache (waiting for the file
systembuffer cache to be updated) during the interval. Processes or kernel threads doing raw IO to
a disk are not included in this measurement.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
CACHE divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_CACHE_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on CACHE
(waiting for the file systembuffer cache to be updated) during the interval. Processes or kernel
threads doing raw IO to a disk are not included in this measurement.

GBL_CDFS_QUEUE

The average number of processes or kernel threads blocked on CDFS (waiting for their Compact
Disk file system IO to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
CDFS divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

HP GlancePlus (11.02)Page 273 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_CDFS_WAIT_PCT

The percentage of time processes or kernel threads were blocked on CDFS (waiting for their
Compact Disk file system IO to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
CDFS divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_CDFS_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on CDFS
(waiting for their Compact Disk file system IO to complete) during the interval.

GBL_COLLECTOR

ASCII field containing collector name and version. The collector namewill appear as either
“SCOPE/xx V.UU.FF.LF” or “Coda RV.UU.FF.LF”. xx identifies the platform; V = version, UU =
update level, FF = fix level, and LF = lab fix id. For example, SCOPE/UX C.04.00.00; or Coda
A.07.10.04.

HP GlancePlus (11.02)Page 274 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_COMPLETED_PROC

The number of processes that terminated during the interval.

On non HP-UX systems, this metric is derived from sampled process data. Since the data for a
process is not available after the process has died on this operating system, a process whose life is
shorter than the sampling interval may not be seen when the samples are taken. Thus this metric
may be slightly less than the actual value. Increasing the sampling frequency captures amore
accurate count, but the overhead of collectionmay also rise.

GBL_CPU_CLOCK

The clock speed of the CPUs inMHz if all of the processors have the same clock speed.
Otherwise, “na” is shown if the processors have different clock speeds. Note that Linux supports
dynamic frequency scaling and if it is enabled then there can be a change in CPU speed with
varying load.

GBL_CPU_CSWITCH_TIME

The time, in seconds, that the CPU spent context switching during the interval.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_CSWITCH_TIME_CUM

The time, in seconds, that the CPU spent context switching over the cumulative collection time.
On HP-UX, this includes context switches that result in the execution of a different process and

HP GlancePlus (11.02)Page 275 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

those caused by a process stopping, then resuming, with no other process running in themeantime.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_CSWITCH_UTIL

The percentage of time that the CPU spent context switching during the interval.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 276 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_CSWITCH_UTIL_CUM

The percentage of time that the CPU spent context switching over the cumulative collection time.
On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 277 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_CSWITCH_UTIL_HIGH

The highest percentage of time during any one interval that the CPU spent context switching over
the cumulative collection time. On HP-UX, this includes context switches that result in the
execution of a different process and those caused by a process stopping, then resuming, with no
other process running in themeantime.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_IDLE_TIME

The time, in seconds, that the CPU was idle during the interval. This is the total idle time, including
waiting for I/O.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online.

On AIX SystemWPARs, this metric value is calculated against physical cpu time.

HP GlancePlus (11.02)Page 278 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Solaris non-global zones, this metric is N/A. On platforms other than HPUX, If the ignore_mt
flag is set(true) in parm file, this metric will report values normalized against the number of active
cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_IDLE_TIME_CUM

The time, in seconds, that the CPU was idle over the cumulative collection time. This is the total
idle time, including waiting for I/O.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number
of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted

HP GlancePlus (11.02)Page 279 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_IDLE_UTIL

The percentage of time that the CPU was idle during the interval. This is the total idle time,
including waiting for I/O.

OnUnix systems, this is the same as the sum of the “%idle” and “%wio” fields reported by the “sar -
u” command.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online.

On Solaris non-global zones, this metric is N/A. On platforms other than HPUX, If the ignore_mt
flag is set(true) in parm file, this metric will report values normalized against the number of active
cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_IDLE_UTIL_CUM

The percentage of time that the CPU was idle over the cumulative collection time. This is the total
idle time, including waiting for I/O.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 280 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number
of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_IDLE_UTIL_HIGH

The highest percentage of time that the CPU was idle during any one interval over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 281 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_INTERRUPT_TIME

The time, in seconds, that the CPU spent processing interrupts during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On Hyper-V host, this metric is NA.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_INTERRUPT_TIME_CUM

The time, in seconds, that the CPU spent processing interrupts over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 282 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_INTERRUPT_UTIL

The percentage of time that the CPU spent processing interrupts during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On Hyper-V host, this metric is NA.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be

HP GlancePlus (11.02)Page 283 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_INTERRUPT_UTIL_CUM

The percentage of time that the CPU spent processing interrupts over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 284 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_INTERRUPT_UTIL_HIGH

The highest percentage of time that the CPU spent processing interrupts during any one interval
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_MT_ENABLED

OnAIX, this metric indicates if this (Logical) System has SMT enabled or not.

Other platforms, this metric shows either HyperThreading(HT) is Enabled or Disabled/Not
Supported.

On Linux, this state is dynamic: if HyperThreading is enabled but all the CPUs have only one logical
processor enabled, this metric will report that HT is disabled.

On AIX SystemWPARs, this metric is NA.

HP GlancePlus (11.02)Page 285 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnWindows, this metric will be “na” onWindows Server 2003 Itanium systems.

GBL_CPU_NICE_TIME

The time, in seconds, that the CPU was in user mode at a nice priority during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NICE_TIME_CUM

The time, in seconds, that the CPU was in user mode at a nice priority over the cumulative
collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 286 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NICE_UTIL

The percentage of time that the CPU was in user mode at a nice priority during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 287 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_NICE_UTIL_CUM

The percentage of time that the CPU was in user mode at a nice priority over the cumulative
collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NICE_UTIL_HIGH

The highest percentage of time during any one interval that the CPU was in user mode at a nice
priority over the cumulative collection time.

HP GlancePlus (11.02)Page 288 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NNICE_TIME

The time, in seconds, that the CPU was in user mode at a nice priority calculated from processes
with negative nice values during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total

HP GlancePlus (11.02)Page 289 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NNICE_TIME_CUM

The time, in seconds, that the CPU was in user mode at a nice priority calculated from processes
with negative nice values over the cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 290 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NNICE_UTIL

The percentage of time that the CPU was in user mode at a nice priority calculated from processes
with negative nice values during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NNICE_UTIL_CUM

The percentage of time that the CPU was in user mode at a nice priority calculated from processes
with negative nice values over the cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 291 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NNICE_UTIL_HIGH

The highest percentage of time during any one interval that the CPU was in user mode at a nice
priority calculated from processes with negative nice values over the cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 292 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NORMAL_TIME

The time, in seconds, that the CPU was in user mode at normal priority during the interval. Normal
priority user mode CPU excludes CPU used at real-time and nice priorities.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 293 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_NORMAL_TIME_CUM

The time, in seconds, that the CPU was in user mode at normal priority over the cumulative
collection time. Normal priority user mode CPU excludes CPU used at real-time and nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NORMAL_UTIL

The percentage of time that the CPU was in user mode at normal priority during the interval.
Normal priority user mode CPU excludes CPU used at real-time and nice priorities.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 294 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_NORMAL_UTIL_CUM

The percentage of time that the CPU was in user mode at normal priority over the cumulative
collection time. Normal priority user mode CPU excludes CPU used at real-time and nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 295 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_NORMAL_UTIL_HIGH

The highest percentage of time that the CPU was in user mode at normal priority during any one
interval over the cumulative collection time. Normal priority user mode CPU excludes CPU used at
real-time and nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_QUEUE

The average number of processes or kernel threads using the CPU plus all of those processes or
kernel threads blocked on PRIORITY (waiting for their priority to become high enough to get the
CPU) during the interval. This metric is an indicator of CPU demands among the active processes
or kernel threads.

HP GlancePlus (11.02)Page 296 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

To determine if the CPU is a bottleneck, compare this metric with GBL_CPU_TOTAL_UTIL. If
GBL_CPU_TOTAL_UTIL is near 100 percent andGBL_CPU_QUEUE is greater than four, there is
a high probability of a CPU bottleneck.

This is calculated as (the CPU time used plus the accumulated time that all processes or kernel
threads spent blocked on PRI (that is, priority)) divided by the interval time.

The difference between this metric andGBL_PRI_QUEUE is that it includes the processes or
kernel threads using the CPU, if any.

HP-UX RUN/PRI/CPU Queue differences for multi-cpu systems:

For example, let's assumewe're using a system with eight processors. We start eight CPU
intensive threads that consume almost all of the CPU resources. The approximate values shown
for the CPU related queuemetrics would be:

GBL_RUN_QUEUE = 1.0
GBL_PRI_QUEUE = 0.1
GBL_CPU_QUEUE = 1.0

Assumewe start an additional eight CPU intensive threads. The approximate values now shown
are:

GBL_RUN_QUEUE = 2.0
GBL_PRI_QUEUE = 8.0
GBL_CPU_QUEUE = 16.0

At this point, we have sixteen CPU intensive threads running on the eight processors. Keeping the
definitions of the three queuemetrics in mind, the run queue is 2 (that is, 16 / 8); the pri queue is 8
(only half of the threads can be active at any given time); and the cpu queue is 16 (half of the
threads waiting in the cpu queue that are ready to run, plus one for each active thread).

This illustrates that the run queue is the average of number of threads waiting in the runqueue for all
processors; the pri queue is the number of threads that are blocked on “PRI” (priority); and the cpu
queue is the number of threads in the cpu queue that are ready to run, including the threads using
the CPU.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being

HP GlancePlus (11.02)Page 297 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_CPU_REALTIME_TIME

The time, in seconds, that the CPU was in user mode at a realtime priority during the interval.
Running at a realtime priority means that the process or kernel thread was run using the rtprio
command or the rtprio system call to alter its priority. Realtime priorities range from zero to 127 and
are absolute priorities, meaning the realtime process with the lowest priority runs as long as it wants
to. Since this can have a huge impact on the system, the realtime CPU is tracked separately to
make visible the effect of using realtime priorities.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_REALTIME_TIME_CUM

The time, in seconds, that the CPU was in user mode at a realtime priority over the cumulative
collection time. Running at a realtime priority means that the process or kernel thread was run
using the rtprio command or the rtprio system call to alter its priority. Realtime priorities range from
zero to 127 and are absolute priorities, meaning the realtime process with the lowest priority runs as
long as it wants to. Since this can have a huge impact on the system, the realtime CPU is tracked
separately to make visible the effect of using realtime priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 298 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_REALTIME_UTIL

The percentage of time that the CPU was in user mode at a realtime priority during the interval.
Running at a realtime priority means that the process or kernel thread was run using the rtprio
command or the rtprio system call to alter its priority. Realtime priorities range from zero to 127 and
are absolute priorities, meaning the realtime process with the lowest priority runs as long as it wants
to. Since this can have a huge impact on the system, the realtime CPU is tracked separately to
make visible the effect of using realtime priorities.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 299 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_REALTIME_UTIL_CUM

The percentage of time that the CPU was in user mode at a realtime priority over the cumulative
collection time. Running at a realtime priority means that the process or kernel thread was run
using the rtprio command or the rtprio system call to alter its priority. Realtime priorities range from
zero to 127 and are absolute priorities, meaning the realtime process with the lowest priority runs as
long as it wants to. Since this can have a huge impact on the system, the realtime CPU is tracked
separately to make visible the effect of using realtime priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_REALTIME_UTIL_HIGH

The highest percentage of time that the CPU was in user mode at a realtime priority during any one
interval over the cumulative collection time. Running at a realtime priority means that the process

HP GlancePlus (11.02)Page 300 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

or kernel thread was run using the rtprio command or the rtprio system call to alter its priority.
Realtime priorities range from zero to 127 and are absolute priorities, meaning the realtime process
with the lowest priority runs as long as it wants to. Since this can have a huge impact on the
system, the realtime CPU is tracked separately to make visible the effect of using realtime
priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_SYSCALL_TIME

The time, in seconds, that the CPU was in systemmode (excluding interrupt, context switch, trap,
or vfault CPU) during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 301 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_SYSCALL_TIME_CUM

The time, in seconds, that the CPU was in systemmode (excluding interrupt, context switch, trap,
or vfault CPU) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 302 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_SYSCALL_UTIL

The percentage of time that the CPU was in systemmode (excluding interrupt, context switch,
trap, or vfault CPU) during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_SYSCALL_UTIL_CUM

The percentage of time that the CPU was in systemmode (excluding interrupt, context switch,
trap, or vfault CPU) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total

HP GlancePlus (11.02)Page 303 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_SYSCALL_UTIL_HIGH

The highest percentage of time that the CPU was in systemmode (excluding interrupt, context
switch, trap, or vfault CPU) during any one interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be

HP GlancePlus (11.02)Page 304 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_SYS_MODE_TIME

The time, in seconds, that the CPU was in systemmode during the interval.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

On AIX SystemWPARs, this metric value is calculated against physical cpu time.

OnHyper-V host, this metric indicates the time spent in Hypervisor code.

GBL_CPU_SYS_MODE_TIME_CUM

The time, in seconds, that the CPU was in systemmode over the cumulative collection time.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 305 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

On AIX SystemWPARs, this metric value is calculated against physical cpu time.

GBL_CPU_SYS_MODE_UTIL

Percentage of time the CPU was in systemmode during the interval.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

This metric is a subset of the GBL_CPU_TOTAL_UTIL percentage.

This is NOT ameasure of the amount of time used by system daemon processes, sincemost
system daemons spend part of their time in user mode and part in system calls, like any other
process.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 306 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

High systemmodeCPU percentages are normal for IO intensive applications. Abnormally high
systemmodeCPU percentages can indicate that a hardware problem is causing a high interrupt
rate. It can also indicate programs that are not calling system calls efficiently. On a logical system,
this metric indicates the percentage of time the logical processor was in kernel mode during this
interval.

On Hyper-V host, this metric indicates the percentage of time spent in Hypervisor code.

GBL_CPU_SYS_MODE_UTIL_CUM

The percentage of time that the CPU was in systemmode over the cumulative collection time.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 307 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_TOTAL_TIME

The total time, in seconds, that the CPU was not idle in the interval.

This is calculated as

GBL_CPU_TOTAL_TIME =
GBL_CPU_USER_MODE_TIME +
GBL_CPU_SYS_MODE_TIME

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

On AIX SystemWPARs, this metric value is calculated against physical cpu time.

GBL_CPU_TOTAL_TIME_CUM

The total time that the CPU was not idle over the cumulative collection time.

HP GlancePlus (11.02)Page 308 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

On AIX SystemWPARs, this metric value is calculated against physical cpu time.

GBL_CPU_TOTAL_UTIL

Percentage of time the CPU was not idle during the interval.

This is calculated as

GBL_CPU_TOTAL_UTIL =
GBL_CPU_USER_MODE_UTIL +
GBL_CPU_SYS_MODE_UTIL

HP GlancePlus (11.02)Page 309 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

GBL_CPU_TOTAL_UTIL +
GBL_CPU_IDLE_UTIL = 100%

This metric varies widely onmost systems, depending on the workload. A consistently high CPU
utilization can indicate a CPU bottleneck, especially when other indicators such as GBL_RUN_
QUEUE andGBL_ACTIVE_PROC are also high. High CPU utilization can also occur on systems
that are bottlenecked onmemory, because the CPU spends more time paging and swapping.

NOTE: OnWindows, this metric may not equal the sum of the APP_CPU_TOTAL_UTILmetrics.
Microsoft states that “this is expected behavior“ because this GBL_CPU_TOTAL_UTILmetric is
taken from the performance library Processor objects while the APP_CPU_TOTAL_UTILmetrics
are taken from the Process objects. Microsoft states that there can be CPU time accounted for in
the Processor system objects that may not be seen in the Process objects. On a logical system,
this metric indicates the logical utilization with respect to number of processors available for the
logical system (GBL_NUM_CPU).

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_TOTAL_UTIL_CUM

The percentage of total CPU time that the processor was not idle over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 310 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_TOTAL_UTIL_HIGH

The highest percentage of total CPU time during any one interval that the processor was not idle
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

HP GlancePlus (11.02)Page 311 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_TRAP_TIME

The time the CPU was in trap handler code during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_TRAP_TIME_CUM

The time, in seconds, the CPU was in trap handler code over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 312 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_TRAP_UTIL

The percentage of time the CPU was executing trap handler code during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 313 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_TRAP_UTIL_CUM

The percentage of time the CPU was in trap handler code over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_TRAP_UTIL_HIGH

The highest percentage of time during any one interval the CPU was in trap handler code over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 314 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_USER_MODE_TIME

The time, in seconds, that the CPU was in user mode during the interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.

HP GlancePlus (11.02)Page 315 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

On AIX SystemWPARs, this metric value is calculated against physical cpu time.

OnHyper-V host, this metric indicates the time spent in guest code.

GBL_CPU_USER_MODE_TIME_CUM

The time, in seconds, that the CPU was in user mode over the cumulative collection time.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

On AIX SystemWPARs, this metric value is calculated against physical cpu time.

HP GlancePlus (11.02)Page 316 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_USER_MODE_UTIL

The percentage of time the CPU was in user mode during the interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

This metric is a subset of the GBL_CPU_TOTAL_UTIL percentage.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

High user mode CPU percentages are normal for computation-intensive applications. Low values
of user CPU utilization compared to relatively high values for GBL_CPU_SYS_MODE_UTIL can
indicate an application or hardware problem. On a logical system, this metric indicates the
percentage of time the logical processor was in user mode during this interval.

On Hyper-V host, this metric indicates the percentage of time spent in guest code.

GBL_CPU_USER_MODE_UTIL_CUM

The percentage of time that the CPU was in user mode over the cumulative collection time.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 317 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_VFAULT_TIME

The time, in seconds, the CPU was handling page faults during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 318 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_VFAULT_TIME_CUM

The time, in seconds, the CPU was handling page faults over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_VFAULT_UTIL

The percentage of time the CPU was handling page faults during the interval.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

HP GlancePlus (11.02)Page 319 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_VFAULT_UTIL_CUM

The percentage of time the CPU was handling page faults over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 320 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_CPU_VFAULT_UTIL_HIGH

The highest percentage of time during any one interval the CPU was handling page faults over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available. On platforms other than HPUX, If the ignore_mt flag is set(true) in
parm file, this metric will report values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

GBL_CPU_WAIT_UTIL

The percentage of time during the interval that the CPU was idle and there were processes waiting
for physical IOs to complete.

On a system with multiple CPUs, this metric is normalized. That is, the CPU used over all
processors is divided by the number of processors online. This represents the usage of the total
processing capacity available.

HP GlancePlus (11.02)Page 321 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Solaris non-global zones, this metric is N/A. On platforms other than HPUX, If the ignore_mt
flag is set(true) in parm file, this metric will report values normalized against the number of active
cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

On Linux, this includes CPU steal time (shown as '%steal' in 'sar' and 'st' in 'vmstat').

GBL_CSWITCH_RATE

The average number of context switches per second during the interval.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

OnWindows, this includes switches from one thread to another either inside a single process or
across processes. A thread switch can be caused either by one thread asking another for
information or by a thread being preempted by another higher priority thread becoming ready to run.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_CSWITCH_RATE_CUM

The average number of context switches per second over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 322 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

GBL_CSWITCH_RATE_HIGH

The highest number of context switches per second during any interval over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, this includes context switches that result in the execution of a different process and
those caused by a process stopping, then resuming, with no other process running in themeantime.

GBL_DISK_FS_BYTE

The number of file system KBs (or MBs if specified) physically transferred to or from the disk during
the interval. Only local disks are counted in this measurement. NFS devices are excluded.

These are bytes transferred by user file system access and do not include bytes transferred via
virtual memory IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception
is user files accessed via themmap(2) call, which will not show their bytes transferred in this
category. They appear under virtual memory bytes transferred.

GBL_DISK_FS_BYTE_CUM

The number of file system KBs (or MBs if specified) transferred to or from the disk over the
cumulative collection time. Only local disks are counted in this measurement. NFS devices are
excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 323 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are bytes transferred by user file system access and do not include bytes transferred via
virtual memory IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception
is user files accessed via themmap(2) call, which will not show their bytes transferred in this
category. They appear under virtual memory bytes transferred.

GBL_DISK_FS_IO

The total of physical file system disk reads and writes during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

GBL_DISK_FS_IO_CUM

The total of file system disk physical reads and writes over the cumulative collection time. Only
local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 324 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

GBL_DISK_FS_IO_PCT

The percentage of file system generated physical IOs of the total physical IOs during the interval.
Only local disks are counted in this measurement. NFS devices are excluded.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

GBL_DISK_FS_IO_PCT_CUM

The percentage of file system generated physical IOs of the total physical IOs over the cumulative
collection time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

GBL_DISK_FS_IO_RATE

The total of file system disk physical reads and writes per second during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files

HP GlancePlus (11.02)Page 325 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

GBL_DISK_FS_IO_RATE_CUM

The number of file system physical disk reads and writes per second over the cumulative collection
time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

GBL_DISK_FS_READ

The number of file system disk reads during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

These are physical reads generated by user file system access and do not include virtual memory
reads, system reads (inode access), or reads relating to raw disk access. An exception is user files
accessed via themmap(2) call, which does not show their physical reads in this category. They
appear under virtual memory reads.

GBL_DISK_FS_READ_RATE

The number of file system disk reads per second during the interval. Only local disks are counted in
this measurement. NFS devices are excluded.

These are physical reads generated by user file system access and do not include virtual memory
reads, system reads (inode access), or reads relating to raw disk access. An exception is user files
accessed via themmap(2) call, which does not show their physical reads in this category. They
appear under virtual memory reads.

HP GlancePlus (11.02)Page 326 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_FS_WRITE

The number of file system disk writes during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

These are physical writes generated by user file system access and do not include virtual memory
writes, system writes (inode updates), or writes relating to raw disk access. An exception is user
files accessed via themmap(2) call, which does not show their physical writes in this category.
They appear under virtual memory writes.

GBL_DISK_FS_WRITE_RATE

The number of file system disk writes per second during the interval. Only local disks are counted
in this measurement. NFS devices are excluded.

These are physical writes generated by user file system access and do not include virtual memory
writes, system writes (inode updates), or writes relating to raw disk access. An exception is user
files accessed via themmap(2) call, which does not show their physical writes in this category.
They appear under virtual memory writes.

GBL_DISK_LOGL_BYTE_RATE

The number of KBs transferred per second via disk IO calls during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

GBL_DISK_LOGL_IO

The number of logical IOs made during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored

HP GlancePlus (11.02)Page 327 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_IO_CUM

The number of logical IOs made over the cumulative collection time. Only local disks are counted
in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_IO_RATE

The number of logical IOs per second during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

HP GlancePlus (11.02)Page 328 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_IO_RATE_CUM

The average number of logical IOs per second over the cumulative collection time. Only local disks
are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

HP GlancePlus (11.02)Page 329 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_LOGL_READ

Onmost systems, this is the number of logical reads made during the interval. On SUN, this is the
number of logical block reads made during the interval. OnWindows, this includes both buffered
(cached) read requests and unbuffered reads.

Only local disks are counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_READ_BYTE

The number of KBs transferred through logical reads during the last interval. Only local disks are
counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

GBL_DISK_LOGL_READ_BYTE_CUM

The number of KBs transferred through logical reads over the cumulative collection time. Only local
disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 330 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

GBL_DISK_LOGL_READ_BYTE_RATE

The number of KBs transferred per second via logical reads during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

GBL_DISK_LOGL_READ_CUM

Onmost systems, this is the total number of logical reads made over the cumulative collection
time. On SUN, this is the total number of logical block reads over the cumulative collection time.
Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

HP GlancePlus (11.02)Page 331 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_READ_PCT

Onmost systems, this is the percentage of logical reads of the total logical IO during the interval.
On SUN, this is the percentage of logical block reads of the total logical IOs during the interval.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_READ_PCT_CUM

Onmost systems, this is the percentage of logical reads of the total logical IOs over the cumulative
collection time. On SUN, this is the percentage of logical block reads of the total logical IOs over
the cumulative collection time. Only local disks are counted in this measurement. NFS devices
are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 332 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_READ_RATE

Onmost systems, this is The average number of logical reads per secondmade during the interval.
On SUN, this is the average number of logical block reads per secondmade during the interval. On
Windows, this includes both buffered (cached) read requests and unbuffered reads.

Only local disks are counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

HP GlancePlus (11.02)Page 333 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_LOGL_READ_RATE_CUM

Onmost Unix systems, this is the average number of logical reads per second over the cumulative
collection time. On SUN, this is the average number of logical block reads per second over the
cumulative collection time. Only local disks are counted in this measurement. NFS devices are
excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_WRITE

Onmost systems, this is the number of logical writes made during the interval. On SUN, this is the
number of logical block writes during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

HP GlancePlus (11.02)Page 334 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_WRITE_BYTE

The number of KBs transferred via logical writes during the last interval. Only local disks are
counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

GBL_DISK_LOGL_WRITE_BYTE_CUM

The number of KBs transferred via logical writes over the cumulative collection time. Only local
disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

HP GlancePlus (11.02)Page 335 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_LOGL_WRITE_BYTE_RATE

The number of KBs per second transferred via logical writes during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

GBL_DISK_LOGL_WRITE_CUM

Onmost systems, this is the total number of logical writes made over the cumulative collection
time. On SUN, this is the total number of logical block writes over the cumulative collection time.
Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

HP GlancePlus (11.02)Page 336 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_LOGL_WRITE_PCT

Onmost systems, this is the percentage of logical writes of the logical IO during the interval. On
SUN, this is the percentage of logical block writes of the total logical block IOs during the interval.
Only local disks are counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_WRITE_PCT_CUM

Onmost systems, this is the percentage of logical writes of the total logical IO over the cumulative
collection time. On SUN, this is the percentage of logical block writes of the total logical block IOs
over the cumulative collection time. Only local disks are counted in this measurement. NFS
devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

HP GlancePlus (11.02)Page 337 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_LOGL_WRITE_RATE

Onmost systems, this is the average number of logical writes per secondmade during the interval.
On SUN, this is the average number of logical block writes per second during the interval. Only
local disks are counted in this measurement. NFS devices are excluded.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_DISK_LOGL_WRITE_RATE_CUM

Onmost systems, this is the average number of logical writes per second of the total logical IOs
over the cumulative collection time. On SUN, this is the average number of logical block writes per
second of the total logical block IOs over the cumulative collection time. Only local disks are
counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 338 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

GBL_DISK_PHYS_BYTE

The number of KBs transferred to and from disks during the interval. The bytes for all types of
physical IOs are counted. Only local disks are counted in this measurement. NFS devices are
excluded.

It is not directly related to the number of IOs, since IO requests can be of differing lengths.

On Unix systems, this includes file system IO, virtual memory IO, and raw IO.

OnWindows, all types of physical IOs are counted.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_BYTE_RATE

The average number of KBs per second at which data was transferred to and from disks during the
interval. The bytes for all types physical IOs are counted. Only local disks are counted in this

HP GlancePlus (11.02)Page 339 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

measurement. NFS devices are excluded.

This is ameasure of the physical data transfer rate. It is not directly related to the number of IOs,
since IO requests can be of differing lengths.

This is an indicator of how much data is being transferred to and from disk devices. Large spikes in
this metric can indicate a disk bottleneck.

On Unix systems, all types of physical disk IOs are counted, including file system, virtual memory,
and raw reads.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_IO

The number of physical IOs during the interval. Only local disks are counted in this measurement.
NFS devices are excluded.

OnUnix systems, all types of physical disk IOs are counted, including file system IO, virtual
memory IO and raw IO.

OnHP-UX, this is calculated as

GBL_DISK_PHYS_IO =
GBL_DISK_FS_IO +
GBL_DISK_VM_IO +
GBL_DISK_SYSTEM_IO +
GBL_DISK_RAW_IO

OnSUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_IO_CUM

The total number of physical IOs over the cumulative collection time. Only local disks are counted
in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 340 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_IO_RATE

The number of physical IOs per second during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

OnUnix systems, all types of physical disk IOs are counted, including file system IO, virtual
memory IO and raw IO.

OnHP-UX, this is calculated as

GBL_DISK_PHYS_IO_RATE =
GBL_DISK_FS_IO_RATE +
GBL_DISK_VM_IO_RATE +
GBL_DISK_SYSTEM_IO_RATE +
GBL_DISK_RAW_IO_RATE

OnSUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

HP GlancePlus (11.02)Page 341 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_PHYS_IO_RATE_CUM

The number of physical IOs per second over the cumulative collection time. Only local disks are
counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ

The number of physical reads during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

OnUnix systems, all types of physical disk reads are counted, including file system, virtual
memory, and raw reads.

On HP-UX, there aremany reasons why there is not a direct correlation between the number of
logical IOs and physical IOs. For example, small sequential logical reads may be satisfied from the
buffer cache, resulting in fewer physical IOs than logical IOs. Conversely, large logical IOs or small
random IOs may result in more physical than logical IOs. Logical volumemappings, logical disk
mirroring, and disk striping also tend to remove any correlation.

On HP-UX, this is calculated as

GBL_DISK_PHYS_READ =
GBL_DISK_FS_READ +
GBL_DISK_VM_READ +
GBL_DISK_SYSTEM_READ +
GBL_DISK_RAW_READ

OnSUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by

HP GlancePlus (11.02)Page 342 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_READ_BYTE

The number of KBs physically transferred from the disk during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

OnUnix systems, all types of physical disk reads are counted, including file system, virtual
memory, and raw reads.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ_BYTE_CUM

The number of KBs (or MBs if specified) physically transferred from the disk over the cumulative
collection time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

HP GlancePlus (11.02)Page 343 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_PHYS_READ_BYTE_RATE

The average number of KBs transferred from the disk per second during the interval. Only local
disks are counted in this measurement. NFS devices are excluded.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_READ_CUM

The total number of physical reads over the cumulative collection time. Only local disks are
counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ_PCT

The percentage of physical reads of total physical IO during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

HP GlancePlus (11.02)Page 344 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_READ_PCT_CUM

The percentage of physical reads of total physical IO over the cumulative collection time. Only
local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_READ_RATE

The number of physical reads per second during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

OnUnix systems, all types of physical disk reads are counted, including file system, virtual
memory, and raw reads.

On HP-UX, this is calculated as

GBL_DISK_PHYS_READ_RATE =
GBL_DISK_FS_READ_RATE +
GBL_DISK_VM_READ_RATE +
GBL_DISK_SYSTEM_READ_RATE +
GBL_DISK_RAW_READ_RATE

OnSUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

HP GlancePlus (11.02)Page 345 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_READ_RATE_CUM

The average number of physical reads per second over the cumulative collection time. Only local
disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE

The number of physical writes during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

OnUnix systems, all types of physical disk writes are counted, including file system IO, virtual
memory IO, and raw writes.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

OnHP-UX, there aremany reasons why there is not a direct correlation between logical IOs and
physical IOs. For example, small logical writes may end up entirely in the buffer cache, and later
generate fewer physical IOs when written to disk due to the larger IO size. Or conversely, small
logical writes may require physical prefetching of the corresponding disk blocks before the data is
merged and posted to disk. Logical volumemappings, logical disk mirroring, and disk striping also
tend to remove any correlation.

On HP-UX, this is calculated as

HP GlancePlus (11.02)Page 346 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_PHYS_WRITE =
GBL_DISK_FS_WRITE +
GBL_DISK_VM_WRITE +
GBL_DISK_SYSTEM_WRITE +
GBL_DISK_RAW_WRITE

OnSUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_WRITE_BYTE

The number of KBs (or MBs if specified) physically transferred to the disk during the interval. Only
local disks are counted in this measurement. NFS devices are excluded.

OnUnix systems, all types of physical disk writes are counted, including file system IO, virtual
memory IO, and raw writes.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE_BYTE_CUM

The number of KBs (or MBs if specified) physically transferred to the disk over the cumulative
collection time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 347 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE_BYTE_RATE

The average number of KBs transferred to the disk per second during the interval. Only local disks
are counted in this measurement. NFS devices are excluded.

OnUnix systems, all types of physical disk writes are counted, including file system IO, virtual
memory IO, and raw writes.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_WRITE_CUM

The total number of physical writes over the cumulative collection time. Only local disks are
counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

HP GlancePlus (11.02)Page 348 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_PHYS_WRITE_PCT

The percentage of physical writes of total physical IO during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

OnHP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

GBL_DISK_PHYS_WRITE_PCT_CUM

The percentage of physical writes of total physical IO over the cumulative collection time. Only
local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

GBL_DISK_PHYS_WRITE_RATE

The number of physical writes per second during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 349 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnUnix systems, all types of physical disk writes are counted, including file system IO, virtual
memory IO, and raw writes.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

OnHP-UX, this is calculated as

GBL_DISK_PHYS_WRITE_RATE =
GBL_DISK_FS_WRITE_RATE +
GBL_DISK_VM_WRITE_RATE +
GBL_DISK_SYSTEM_WRITE_RATE +
GBL_DISK_RAW_WRITE_RATE

OnSUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_PHYS_WRITE_RATE_CUM

The number of physical writes per second over the cumulative collection time. Only local disks are
counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

HP GlancePlus (11.02)Page 350 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_QUEUE

The average number of processes or kernel threads blocked on disk (in a “queue” within the disk
drivers waiting for their file system disk IO to complete) during the interval. Processes or kernel
threads doing raw IO to a disk are not included in this measurement. As this number rises, it is an
indication of a disk bottleneck.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
DISK divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_DISK_RAW_BYTE

The number of KBs (or MBs if specified) transferred to or from a raw disk during the interval. Only
local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_RAW_BYTE_CUM

The number of KBs (or MBs if specified) transferred to or from a raw disk over the cumulative
collection time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 351 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_RAW_IO

The total number of raw reads and writes during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

On Sun, tape drive accesses are included in raw IOs, but not in physical IOs. To determine if raw
IO is tape access versus disk access, compare the global physical disk accesses to the total raw,
block, and vm IOs. If the totals are the same, the raw IO activity is to a disk, floppy, or CD drive.
Check physical IO data for each individual disk device to isolate a device. If the totals are different,
there is raw IO activity to a non-disk device like a tape drive.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_DISK_RAW_IO_CUM

The total number of raw IOs over the cumulative collection time. Only local disks are counted in
this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Sun, tape drive accesses are included in raw IOs, but not in physical IOs. To determine if raw
IO is tape access versus disk access, compare the global physical disk accesses to the total raw,
block, and vm IOs. If the totals are the same, the raw IO activity is to a disk, floppy, or CD drive.
Check physical IO data for each individual disk device to isolate a device. If the totals are different,
there is raw IO activity to a non-disk device like a tape drive.

GBL_DISK_RAW_IO_PCT

The percentage of raw IOs to total physical IOs made during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 352 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Sun, tape drive accesses are included in raw IOs, but not in physical IOs. To determine if raw
IO is tape access versus disk access, compare the global physical disk accesses to the total raw,
block, and vm IOs. If the totals are the same, the raw IO activity is to a disk, floppy, or CD drive.
Check physical IO data for each individual disk device to isolate a device. If the totals are different,
there is raw IO activity to a non-disk device like a tape drive.

GBL_DISK_RAW_IO_PCT_CUM

The percentage of physical raw IOs to total physical IOs made over the cumulative collection time.
Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Sun, tape drive accesses are included in raw IOs, but not in physical IOs. To determine if raw
IO is tape access versus disk access, compare the global physical disk accesses to the total raw,
block, and vm IOs. If the totals are the same, the raw IO activity is to a disk, floppy, or CD drive.
Check physical IO data for each individual disk device to isolate a device. If the totals are different,
there is raw IO activity to a non-disk device like a tape drive.

GBL_DISK_RAW_IO_RATE

The total number of raw reads and writes per second during the interval. Only accesses to local
disk devices are counted.

On Sun, tape drive accesses are included in raw IOs, but not in physical IOs. To determine if raw
IO is tape access versus disk access, compare the global physical disk accesses to the total raw,
block, and vm IOs. If the totals are the same, the raw IO activity is to a disk, floppy, or CD drive.
Check physical IO data for each individual disk device to isolate a device. If the totals are different,
there is raw IO activity to a non-disk device like a tape drive.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

HP GlancePlus (11.02)Page 353 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_RAW_IO_RATE_CUM

The average number of raw IOs over the cumulative collection time. Only local disks are counted in
this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Sun, tape drive accesses are included in raw IOs, but not in physical IOs. To determine if raw
IO is tape access versus disk access, compare the global physical disk accesses to the total raw,
block, and vm IOs. If the totals are the same, the raw IO activity is to a disk, floppy, or CD drive.
Check physical IO data for each individual disk device to isolate a device. If the totals are different,
there is raw IO activity to a non-disk device like a tape drive.

GBL_DISK_RAW_READ

The number of raw reads during the interval. Only accesses to local disk devices are counted.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_DISK_RAW_READ_RATE

The number of raw reads per second during the interval. Only accesses to local disk devices are
counted.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_DISK_RAW_WRITE

The number of raw writes during the interval. Only accesses to local disk devices are counted.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

HP GlancePlus (11.02)Page 354 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_RAW_WRITE_RATE

The number of raw writes per second during the interval. Only accesses to local disk devices are
counted.

On Sun, tape drive accesses are included in raw IOs, but not in physical IOs. To determine if raw
IO is tape access versus disk access, compare the global physical disk accesses to the total raw,
block, and vm IOs. If the totals are the same, the raw IO activity is to a disk, floppy, or CD drive.
Check physical IO data for each individual disk device to isolate a device. If the totals are different,
there is raw IO activity to a non-disk device like a tape drive.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_DISK_REM_FS_BYTE

The number of remote file system KBs (or MBs if specified) physically transferred to or from the
remotemachine during the interval.

These are bytes transferred by user file system access and do not include bytes transferred via
virtual memory IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception
is user files accessed via themmap(2) call, which will not show their bytes transferred in this
category. They appear under virtual memory bytes transferred.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_FS_BYTE_CUM

The number of remote file system KBs (or MBs if specified) transferred to or from the remote
machine over the cumulative collection time.

These are bytes transferred by user file system access and do not include bytes transferred via
virtual memory IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception
is user files accessed via themmap(2) call, which will not show their bytes transferred in this
category. They appear under virtual memory bytes transferred.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 355 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_FS_IO

The total of remote physical file system reads and writes during the last interval.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

OnHP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_FS_IO_CUM

The total of remote file systemphysical reads and writes over the cumulative collection time.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

HP GlancePlus (11.02)Page 356 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_FS_IO_PCT

The percentage of remote file system generated physical IOs of the total remote physical IOs
during the interval.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

OnHP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_FS_IO_PCT_CUM

The percentage of remote file system generated physical IOs of the total remote physical IOs over
the cumulative collection time.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_FS_IO_RATE

The total of remote file systemphysical reads and writes per second during the interval.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files

HP GlancePlus (11.02)Page 357 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

OnHP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_FS_IO_RATE_CUM

The total of remote file system physical reads and writes per second over the cumulative collection
time.

These are physical IOs generated by user file system access and do not include virtual memory
IOs, system IOs (inode updates), or IOs relating to raw disk access. An exception is user files
accessed via themmap(2) call, which will not show their physical IOs in this category. They
appear under virtual memory IOs.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_LOGL_READ

The number of remote logical reads made during the interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_READ_BYTE

The number of KBs transferred via remote logical reads during the last interval.

HP GlancePlus (11.02)Page 358 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_READ_BYTE_CUM

The number of KBs transferred via remote logical reads over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_READ_CUM

The total number of remote logical reads made over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 359 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_READ_PCT

The percentage of remote logical reads to the total remote logical IO during the interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_READ_PCT_CUM

The percentage of remote logical reads of the total remote logical IO over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_READ_RATE

The average number of remote logical reads per secondmade during the interval.

HP GlancePlus (11.02)Page 360 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_READ_RATE_CUM

The average number of remote logical reads per secondmade over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE

The number of remote logical writes made during the interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE_BYTE

The number of KBs transferred via remote logical writes during the last interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is

HP GlancePlus (11.02)Page 361 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE_BYTE_CUM

The number of KBs transferred via remote logical writes over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE_CUM

The total number of remote logical writes made over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 362 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE_PCT

The percentage of remote logical writes of the total remote logical IO during the interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE_PCT_CUM

The percentage of remote logical writes of the total remote logical IO over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE_RATE

The average number of remote logical writes per secondmade during the last interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is

HP GlancePlus (11.02)Page 363 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_LOGL_WRITE_RATE_CUM

The percentage of remote logical writes of the total remote logical IO over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

GBL_DISK_REM_PHYS_READ

The number of remote physical reads during the interval. This includes all types of physical reads,
including VM and raw.

This is calculated as

GBL_DISK_REM_PHYS_READ =
GBL_DISK_REM_FS_READ +
GBL_DISK_REM_VM_READ +
GBL_DISK_REM_SYSTEM_READ +
GBL_DISK_REM_RAW_READ

OnHP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

HP GlancePlus (11.02)Page 364 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_PHYS_READ_BYTE

The number of physical read KBs during the interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_READ_BYTE_CUM

The number of physical read KBs (or MBs if specified) since collection was started or over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_READ_CUM

The total number of remote physical reads over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 365 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_READ_PCT

The percentage of remote physical reads of total remote physical IO during the interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_READ_PCT_CUM

The percentage of remote physical reads of total remote physical IO over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_READ_RATE

The number of remote physical reads per second during the interval. This includes all types of
physical reads, including VM and raw.

This is calculated as

HP GlancePlus (11.02)Page 366 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_PHYS_READ_RATE =
GBL_DISK_REM_FS_READ_RATE +
GBL_DISK_REM_VM_READ_RATE +
GBL_DISK_REM_SYSTEM_READ_RATE +
GBL_DISK_REM_RAW_READ_RATE

OnHP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_READ_RATE_CUM

The average number of remote physical reads per second over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE

The number of physical writes during the interval. All types of remote physical writes are counted,
including VM and raw, are counted.

This is calculated as

GBL_DISK_REM_PHYS_WRITE =
GBL_DISK_REM_FS_WRITE +
GBL_DISK_REM_VM_WRITE +
GBL_DISK_REM_SYSTEM_WRITE +
GBL_DISK_REM_RAW_WRITE

HP GlancePlus (11.02)Page 367 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE_BYTE

The number of physical write KBs (or MBs if specified) during the interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE_BYTE_CUM

The number of physical write KBs (or MBs if specified) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE_CUM

The total number of physical writes over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 368 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE_PCT

The percentage of physical writes of total remote physical IO during the interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE_PCT_CUM

The percentage of physical writes of total remote physical IO over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE_RATE

The number of remote physical writes per second during the interval. All types of remote physical
writes, including VM and raw, are counted.

This is calculated as

HP GlancePlus (11.02)Page 369 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_PHYS_WRITE_RATE =
GBL_DISK_REM_FS_WRITE_RATE +
GBL_DISK_REM_VM_WRITE_RATE +
GBL_DISK_REM_SYSTEM_WRITE_RATE +
GBL_DISK_REM_RAW_WRITE_RATE

OnHP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_PHYS_WRITE_RATE_CUM

The number of physical writes per second over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

GBL_DISK_REM_RAW_BYTE

The number of remote KBs (or MBs if specified) transferred to or from a raw disk during the interval.
On HP-UX, remote raw disk IO typically occurs when a client accesses a server disk in raw mode.

GBL_DISK_REM_RAW_BYTE_CUM

The number of remote KBs (or MBs if specified) transferred to or from a raw disk over the
cumulative collection time. On HP-UX, remote raw disk IO typically occurs when a client
accesses a server disk in raw mode.

HP GlancePlus (11.02)Page 370 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_REM_RAW_IO

The number of remote raw IOs during the interval. On HP-UX, remote raw disk IO typically occurs
when a client accesses a server disk in raw mode.

GBL_DISK_REM_RAW_IO_CUM

The total number of remote raw IOs over the cumulative collection time. On HP-UX, remote raw
disk IO typically occurs when a client accesses a server disk in raw mode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_REM_RAW_IO_PCT

The percentage of remote raw IOs to total remote physical disk IOs made during the interval. On
HP-UX, remote raw disk IO typically occurs when a client accesses a server disk in raw mode.

HP GlancePlus (11.02)Page 371 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_RAW_IO_PCT_CUM

The percentage of remote raw IOs to total remote physical disk IOs made over the cumulative
collection time. On HP-UX, remote raw disk IO typically occurs when a client accesses a server
disk in raw mode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_REM_RAW_IO_RATE

The total number of remote raw IOs per second during the interval. On HP-UX, remote raw disk IO
typically occurs when a client accesses a server disk in raw mode.

GBL_DISK_REM_RAW_IO_RATE_CUM

The average number of remote raw IOs over the cumulative collection time. On HP-UX, remote
raw disk IO typically occurs when a client accesses a server disk in raw mode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 372 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_SYSTEM_BYTE

The number of remote KBs (or MBs if specified) transferred by the kernel from or to the remote
machine for file systemmanagement access or updates during the interval.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_SYSTEM_BYTE_CUM

The number of remote KBs (or MBs if specified) transferred by the kernel to or from the remote
machine for file systemmanagement access or updates over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_SYSTEM_IO

The number of remote physical IOs generated by the kernel for file systemmanagement (inode
accesses or updates) during the interval.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

HP GlancePlus (11.02)Page 373 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_SYSTEM_IO_CUM

The number of remote physical reads and writes generated by the kernel for file system
management (inode accesses or updates) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_SYSTEM_IO_PCT

The percentage of remote physical IOs generated by the kernel for file systemmanagement (inode
accesses or updates) to the total number of remote physical IOs during the interval.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_SYSTEM_IO_PCT_CUM

The percentage of remote physical IOs generated by the kernel for file systemmanagement (inode
updates) to the total number of remote physical disk IOs over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 374 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_SYSTEM_IO_RATE

The number of remote physical IOs per second generated by the kernel for file systemmanagement
(inode accesses or updates) during the interval.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

GBL_DISK_REM_SYSTEM_IO_RATE_CUM

The number of remote physical reads and writes per second generated by the kernel over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are IOs for file systemmanagement (inode access or updates) and do not include IOs to user
data.

On HP-UX, remote file system IO typically occurs during client file system access of a network file
systemmounted on the server. A remote file system IO does not necessarily imply that a physical
IO occurs on the remote (server) system.

HP GlancePlus (11.02)Page 375 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_VM_BYTE

The number of remote virtual memory KBs (or MBs if specified) transferred to or from the remote
machine during the interval.

User file data transfers are not included in this metric unless they were done via themmap(2)
system call.

On HP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

GBL_DISK_REM_VM_BYTE_CUM

The number of remote virtual memory KBs (or MBs if specified) transferred to or from the remote
machine over the cumulative collection time. These are bytes transferred due to paging or
swapping.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

User file data transfers are not included in this metric unless they were done via themmap(2)
system call.

On HP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

GBL_DISK_REM_VM_IO

The total number of remote virtual memory IOs made during the interval. These are physical IOs
related to paging or swapping.

IOs to user file data are not included in this metric unless they were done via themmap(2) system
call.

HP GlancePlus (11.02)Page 376 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

GBL_DISK_REM_VM_IO_CUM

The total number of remote virtual memory IOs over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

IOs to user file data are not included in this metric unless they were done via themmap(2) system
call.

On HP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

GBL_DISK_REM_VM_IO_PCT

The percentage of remote virtual memory IO requests of total remote physical IOs during the
interval.

IOs to user file data are not included in this metric unless they were done via themmap(2) system
call.

On HP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

HP GlancePlus (11.02)Page 377 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_REM_VM_IO_PCT_CUM

The percentage of remote virtual memory IOs of the total number of remote physical IOs over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

IOs to user file data are not included in this metric unless they were done via themmap(2) system
call.

On HP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

GBL_DISK_REM_VM_IO_RATE

The number of remote virtual memory IOs per secondmade during the interval. These are physical
IOs related to paging, swapping, or memory mapped file allocations.

IOs to user file data are not included in this metric unless they were done via themmap(2) system
call.

On HP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

GBL_DISK_REM_VM_IO_RATE_CUM

The number of remote virtual memory IOs per secondmade over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 378 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

IOs to user file data are not included in this metric unless they were done via themmap(2) system
call.

On HP-UX, remote VM IO is typically seen on a client system that is paging in text from or paging
out data pages to a server system. Paging in from the server system can occur when the client is
loading a program which requires the text pages to be fetched from the server. Paging out occurs
when client system data pages are swapped out to a remote swap device on the server system.

GBL_DISK_REQUEST_QUEUE

The total length of all of the disk queues at the end of the interval.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

On SUN, if a CD drive is powered off, or no CD is inserted in the CD drive at boottime, the
operating system does not provide performance data for that device. This can be determined by
checking the “by-disk” data when provided in a product. If the CD drive has an entry in the list of
active disks on a system, then data for that device is being collected.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_SUBSYSTEM_QUEUE

The average number of processes or kernel threads blocked on the disk subsystem (in a “queue”
waiting for their file system disk IO to complete) during the interval. This is the sum of processes or
kernel threads in the DISK, INODE, CACHE and CDFS wait states. Processes or kernel threads
doing raw IO to a disk are not included in this measurement. As this number rises, it is an indication
of a disk bottleneck.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
(DISK + INODE + CACHE + CDFS) divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

HP GlancePlus (11.02)Page 379 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_DISK_SUBSYSTEM_WAIT_PCT

The percentage of time processes or kernel threads were blocked on the disk subsystem (waiting
for their file system IOs to complete) during the interval. This is the sum of processes or kernel
threads in the DISK, INODE, CACHE and CDFS wait states.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
(DISK + INODE + CACHE + CDFS) divided by the accumulated time that all processes or kernel
threads were alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_DISK_SYSTEM_BYTE

The number of KBs (or MBs if specified) transferred by the kernel from or to the disk for file system
management access or updates during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 380 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

GBL_DISK_SYSTEM_BYTE_CUM

The number of KBs (or MBs if specified) transferred by the kernel to or from disk for file system
management access or updates over the cumulative collection time.

Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

GBL_DISK_SYSTEM_IO

The number of physical disk IOs generated by the kernel for file systemmanagement (inode
accesses or updates) during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_SYSTEM_IO_CUM

The number of physical disk IOs generated by the kernel for file systemmanagement (inode
accesses or updates) over the cumulative collection time.

Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 381 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_SYSTEM_IO_PCT

The percentage of physical disk IOs generated by the kernel for file systemmanagement (inode
accesses or updates) to the total number of physical disk IOs during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_SYSTEM_IO_PCT_CUM

The percentage of physical IOs generated by the kernel for file systemmanagement (inode
updates) to the total number of physical disk IOs over the cumulative collection time.

Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_SYSTEM_IO_RATE

The number of physical disk IOs per second generated by the kernel for file systemmanagement
(inode accesses or updates) during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 382 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_SYSTEM_IO_RATE_CUM

The number of physical disk IOs per second generated by the kernel for file systemmanagement
(inode accesses or updates) over the cumulative collection time. This rate does not include IOs to
user data.

Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_SYSTEM_READ

Number of physical disk reads generated by the kernel for file systemmanagement (inode
accesses) during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_SYSTEM_READ_RATE

Number of physical disk reads per second generated by the kernel for file systemmanagement
(inode accesses) during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_SYSTEM_WRITE

Number of physical disk writes generated by the kernel for file systemmanagement (inode updates)
during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 383 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_SYSTEM_WRITE_RATE

Number of physical disk writes per second generated by the kernel for file systemmanagement
(inode updates) during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_TIME_PEAK

The time, in seconds, during the interval that the busiest disk was performing IO transfers. This is
for the busiest disk only, not all disk devices. This counter is based on an end-to-endmeasurement
for each IO transfer updated at queue entry and exit points.

Only local disks are counted in this measurement. NFS devices are excluded.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_UTIL

OnHP-UX, this is the average percentage of time during the interval that all disks had IO in
progress from the point of view of the Operating System. This is the average utilization for all disks.

On all other Unix systems, this is the average percentage of disk in use time of the total interval
(that is, the average utilization).

Only local disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_UTIL_PEAK

The utilization of the busiest disk during the interval.

On HP-UX, this is the percentage of time during the interval that the busiest disk device had IO in
progress from the point of view of the Operating System.

On all other systems, this is the percentage of time during the interval that the busiest disk was
performing IO transfers.

It is not an average utilization over all the disk devices. Only local disks are counted in this
measurement. NFS devices are excluded.

Some Linux kernels, typically 2.2 and older kernels, do not support the instrumentation needed to
provide values for this metric. This metric will be “na” on the affected kernels. The “sar -d”
commandwill also not be present on these systems. Distributions andOS releases that are known
to be affected include: TurboLinux 7, SuSE 7.2, and Debian 3.0.

A peak disk utilization of more than 50 percent often indicates a disk IO subsystem bottleneck
situation. A bottleneck may not be in the physical disk drive itself, but elsewhere in the IO path.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

HP GlancePlus (11.02)Page 384 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_UTIL_PEAK_CUM

The average utilization of the busiest disk in each interval over the cumulative collection time.
Utilization is the percentage of time in use versus the time in themeasurement interval. For each
interval a different disk may be the busiest. Only local disks are counted in this measurement.
NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_DISK_UTIL_PEAK_HIGH

The highest utilization of any disk during any interval over the cumulative collection time.
Utilization is the percentage of time in use versus the time in themeasurement interval. Only local
disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 385 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_UTIL_PEAK_OTHERS

The non-VM IO percent of the total utilization percent of the busiest disk during the interval.
Utilization is the percentage of time in use versus the time in themeasurement interval. Only local
disks are counted in this measurement. NFS devices are excluded.

GBL_DISK_UTIL_PEAK_VM

The VM IO percent of the total utilization percent of the busiest disk during the interval. Utilization
is the percentage of time in use versus the time in themeasurement interval. Only local disks are
counted in this measurement. NFS devices are excluded.

GBL_DISK_VM_BYTE

The number of virtual memory KBs (or MBs if specified) transferred to or from the disk during the
interval. Only local disks are counted in this measurement. NFS devices are excluded.

OnHP-UX, the user file data transfers are not included in this metric unless they were done via the
mmap(2) system call.

GBL_DISK_VM_BYTE_CUM

The number of virtual memory KBs (or MBs if specified) transferred to or from the disk over the
cumulative collection time. Only local disks are counted in this measurement. NFS devices are
excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the user file data transfers are not included in this metric unless they were done via the
mmap(2) system call.

HP GlancePlus (11.02)Page 386 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_VM_IO

The total number of virtual memory IOs made during the interval. Only local disks are counted in
this measurement. NFS devices are excluded.

OnHP-UX, the IOs to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On SUN, when a file is accessed, it is memory mapped by the operating system. Accesses
generate virtual memory IOs. Reading a file generates block IOs as the file's inode information is
cached. File writes are a combination of posting tomemory mapped allocations (VM IOs) and
posting updated inode information to disk (block IOs).

On SUN, this metric is calculated by subtracting raw and block IOs from physical IOs. Tape drive
accesses are included in the raw IOs, but not in the physical IOs. Therefore, when tape drive
accesses are occurring on a system, all virtual memory and raw IO is counted as raw IO. For
example, youmay see heavy raw IO occurring during system backup. Raw IOs for disks are
counted in the physical IOs. To determine if the raw IO is tape access versus disk access,
compare the global physical disk accesses to the total of raw, block, and VM IOs. If the totals are
the same, the raw IO activity is to a disk, floppy, or CD drive. Check physical IO data for each
individual disk device to isolate a device. If the totals are different, there is raw IO activity to a non-
disk device like a tape drive.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_VM_IO_CUM

The total number of virtual memory IOs over the cumulative collection time.

Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the IOs to user file data are not included in this metric unless they were done via the
mmap(2) system call.

HP GlancePlus (11.02)Page 387 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On SUN, when a file is accessed, it is memory mapped by the operating system. Accesses
generate virtual memory IOs. Reading a file generates block IOs as the file's inode information is
cached. File writes are a combination of posting tomemory mapped allocations (VM IOs) and
posting updated inode information to disk (block IOs).

On SUN, this metric is calculated by subtracting raw and block IOs from physical IOs. Tape drive
accesses are included in the raw IOs, but not in the physical IOs. Therefore, when tape drive
accesses are occurring on a system, all virtual memory and raw IO is counted as raw IO. For
example, youmay see heavy raw IO occurring during system backup. Raw IOs for disks are
counted in the physical IOs. To determine if the raw IO is tape access versus disk access,
compare the global physical disk accesses to the total of raw, block, and VM IOs. If the totals are
the same, the raw IO activity is to a disk, floppy, or CD drive. Check physical IO data for each
individual disk device to isolate a device. If the totals are different, there is raw IO activity to a non-
disk device like a tape drive.

GBL_DISK_VM_IO_PCT

OnHP-UX and AIX, this is the percentage of virtual memory IO requests of total physical disk IOs
during the interval.

On the other Unix systems, this is the percentage of virtual memory IOs of the total number of
physical IOs during the interval.

Only local disks are counted in this measurement. NFS devices are excluded.

OnHP-UX, the IOs to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On SUN, when a file is accessed, it is memory mapped by the operating system. Accesses
generate virtual memory IOs. Reading a file generates block IOs as the file's inode information is
cached. File writes are a combination of posting tomemory mapped allocations (VM IOs) and
posting updated inode information to disk (block IOs).

On SUN, this metric is calculated by subtracting raw and block IOs from physical IOs. Tape drive
accesses are included in the raw IOs, but not in the physical IOs. Therefore, when tape drive
accesses are occurring on a system, all virtual memory and raw IO is counted as raw IO. For
example, youmay see heavy raw IO occurring during system backup. Raw IOs for disks are
counted in the physical IOs. To determine if the raw IO is tape access versus disk access,
compare the global physical disk accesses to the total of raw, block, and VM IOs. If the totals are
the same, the raw IO activity is to a disk, floppy, or CD drive. Check physical IO data for each
individual disk device to isolate a device. If the totals are different, there is raw IO activity to a non-
disk device like a tape drive.

GBL_DISK_VM_IO_PCT_CUM

The percentage of virtual memory IOs of the total number of physical IOs over the cumulative
collection time.

Only local disks are counted in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 388 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the IOs to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On SUN, when a file is accessed, it is memory mapped by the operating system. Accesses
generate virtual memory IOs. Reading a file generates block IOs as the file's inode information is
cached. File writes are a combination of posting tomemory mapped allocations (VM IOs) and
posting updated inode information to disk (block IOs).

On SUN, this metric is calculated by subtracting raw and block IOs from physical IOs. Tape drive
accesses are included in the raw IOs, but not in the physical IOs. Therefore, when tape drive
accesses are occurring on a system, all virtual memory and raw IO is counted as raw IO. For
example, youmay see heavy raw IO occurring during system backup. Raw IOs for disks are
counted in the physical IOs. To determine if the raw IO is tape access versus disk access,
compare the global physical disk accesses to the total of raw, block, and VM IOs. If the totals are
the same, the raw IO activity is to a disk, floppy, or CD drive. Check physical IO data for each
individual disk device to isolate a device. If the totals are different, there is raw IO activity to a non-
disk device like a tape drive.

GBL_DISK_VM_IO_RATE

The number of virtual memory IOs per secondmade during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

OnHP-UX, the IOs to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On SUN, when a file is accessed, it is memory mapped by the operating system. Accesses
generate virtual memory IOs. Reading a file generates block IOs as the file's inode information is
cached. File writes are a combination of posting tomemory mapped allocations (VM IOs) and
posting updated inode information to disk (block IOs).

On SUN, this metric is calculated by subtracting raw and block IOs from physical IOs. Tape drive
accesses are included in the raw IOs, but not in the physical IOs. Therefore, when tape drive
accesses are occurring on a system, all virtual memory and raw IO is counted as raw IO. For
example, youmay see heavy raw IO occurring during system backup. Raw IOs for disks are
counted in the physical IOs. To determine if the raw IO is tape access versus disk access,

HP GlancePlus (11.02)Page 389 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

compare the global physical disk accesses to the total of raw, block, and VM IOs. If the totals are
the same, the raw IO activity is to a disk, floppy, or CD drive. Check physical IO data for each
individual disk device to isolate a device. If the totals are different, there is raw IO activity to a non-
disk device like a tape drive.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_VM_IO_RATE_CUM

OnHP-UX and AIX, this is the number of virtual memory IOs per secondmade over the cumulative
collection time.

On the other Unix systems, the number of virtual memory IOs per secondmade over the
cumulative collection time.

Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the IOs to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On SUN, when a file is accessed, it is memory mapped by the operating system. Accesses
generate virtual memory IOs. Reading a file generates block IOs as the file's inode information is
cached. File writes are a combination of posting tomemory mapped allocations (VM IOs) and
posting updated inode information to disk (block IOs).

On SUN, this metric is calculated by subtracting raw and block IOs from physical IOs. Tape drive
accesses are included in the raw IOs, but not in the physical IOs. Therefore, when tape drive
accesses are occurring on a system, all virtual memory and raw IO is counted as raw IO. For
example, youmay see heavy raw IO occurring during system backup. Raw IOs for disks are
counted in the physical IOs. To determine if the raw IO is tape access versus disk access,
compare the global physical disk accesses to the total of raw, block, and VM IOs. If the totals are
the same, the raw IO activity is to a disk, floppy, or CD drive. Check physical IO data for each
individual disk device to isolate a device. If the totals are different, there is raw IO activity to a non-
disk device like a tape drive.

HP GlancePlus (11.02)Page 390 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_VM_READ

The number of virtual memory reads made during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

OnHP-UX, the reads to user file data are not included in this metric unless they were accessed via
themmap(2) system call.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_VM_READ_CUM

The number of virtual memory reads made over the cumulative collection time. Only local disks are
counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the reads to user file data are not included in this metric unless they were accessed via
themmap(2) system call.

GBL_DISK_VM_READ_RATE

The number of virtual memory reads per secondmade during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

OnHP-UX, the reads to user file data are not included in this metric unless they were accessed via
themmap(2) system call.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_VM_READ_RATE_CUM

The average number of virtual memory reads per secondmade over the cumulative collection time.
Only local disks are counted in this measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 391 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the reads to user file data are not included in this metric unless they were accessed via
themmap(2) system call.

GBL_DISK_VM_READ_RATE_HIGH

The highest number of virtual memory reads per secondmade during any interval over the
cumulative collection time. Only local disks are counted in this measurement. NFS devices are
excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the reads to user file data are not included in this metric unless they were accessed via
themmap(2) system call.

GBL_DISK_VM_WRITE

The number of virtual memory writes made during the interval. Only local disks are counted in this
measurement. NFS devices are excluded.

HP GlancePlus (11.02)Page 392 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the writes to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On AIX SystemWPARs, this metric is NA.

GBL_DISK_VM_WRITE_CUM

The number of virtual memory writes made over the cumulative collection time. Only local disks
are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the writes to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

GBL_DISK_VM_WRITE_RATE

The number of virtual memory writes per secondmade during the interval. Only local disks are
counted in this measurement. NFS devices are excluded.

OnHP-UX, the writes to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On AIX SystemWPARs, this metric is NA.

HP GlancePlus (11.02)Page 393 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_DISK_VM_WRITE_RATE_CUM

The average number of virtual memory writes per secondmade over the cumulative collection
time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the writes to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

GBL_DISK_VM_WRITE_RATE_HIGH

The highest number of virtual memory writes per secondmade during any interval over the
cumulative collection time. Only local disks are counted in this measurement. NFS devices are
excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 394 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the writes to user file data are not included in this metric unless they were done via the
mmap(2) system call.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

GBL_DISK_WAIT_PCT

The percentage of time processes or kernel threads were blocked on DISK (waiting in a disk driver
for their disk IO to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
DISK divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_DISK_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on DISK
(waiting in a disk driver for their disk IO to complete) during the interval.

GBL_FS_SPACE_UTIL_PEAK

The percentage of occupied disk space to total disk space for the fullest file system found during
the interval. Only locally mounted file systems are counted in this metric.

This metric can be used as an indicator that at least one file system on the system is running out of
disk space.

OnUnix systems, CDROM and PC file systems are also excluded. This metric can exceed 100
percent. This is because a portion of the file system space is reserved as a buffer and can only be
used by root. If the root user has made the file system grow beyond the reserved buffer, the

HP GlancePlus (11.02)Page 395 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

utilization will be greater than 100 percent. This is a dangerous situation since if the root user totally
fills the file system, the systemmay crash.

OnWindows, CDROM file systems are also excluded.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_GMTOFFSET

The difference, in minutes, between local time andGMT (GreenwichMean Time).

GBL_GRAPHICS_QUEUE

The average number of processes or kernel threads blocked on graphics (waiting for their graphics
operations to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
GRAPH (that is, graphics) divide by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_GRAPHICS_WAIT_PCT

The percentage of time processes or kernel threads were blocked on graphics (waiting for their
graphics operations to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
GRAPH (that is, graphics) divide by the accumulated time that all processes or kernel threads were
alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

HP GlancePlus (11.02)Page 396 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_GRAPHICS_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on graphics
(waiting for their graphics operations to complete) during the interval.

GBL_IGNORE_MT

This boolean value indicates whether the CPU normalization is on or off. If themetric value is
“true”, CPU relatedmetrics in the global class will report values which are normalized against the
number of active cores on the system.

If themetric value is “false”, CPU relatedmetrics in the global class will report values which are
normalized against the number of CPU threads on the system.

If CPU MultiThreading is turned off this configuration option is a no-op and themetric value will be
“true”.

On Linux, this metric will only report “true” if this configuration is on and if the kernel provides
enough information to determine whether MultiThreading is turned on.

OnHPUX, this metric will report “na” if the processor doesn't support the feature.

GBL_INODE_QUEUE

The average number of processes or kernel threads blocked onINODE (waiting for an inode to be
updated or to become available) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
INODE divided by the interval time.

Inodes are used to store information about files within the file system. Every file has at least two
inodes associated with it (one for the directory and one for the file itself). The information stored in
an inode includes the owners, timestamps, size, and an array of indices used to translate logical
block numbers to physical sector numbers. There is a separate inodemaintained for every view of
a file, so if two processes have the same file open, they both use the same directory inode, but
separate inodes for the file.

HP GlancePlus (11.02)Page 397 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_INODE_WAIT_PCT

The percentage of time processes or kernel threads were blocked onINODE (waiting for an inode to
be updated or to become available) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
INODE divided by the accumulated time that all processes or kernel threads were alive during the
interval.

Inodes are used to store information about files within the file system. Every file has at least two
inodes associated with it (one for the directory and one for the file itself). The information stored in
an inode includes the owners, timestamps, size, and an array of indices used to translate logical
block numbers to physical sector numbers. There is a separate inodemaintained for every view of
a file, so if two processes have the same file open, they both use the same directory inode, but
separate inodes for the file.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 398 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_INODE_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked onINODE
(waiting for an inode to be updated or to become available) during the interval.

GBL_INTERRUPT

The number of IO interrupts during the interval.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_INTERRUPT_RATE

The average number of IO interrupts per second during the interval.

On HPUX and SUN this value includes clock interrupts. To get non-clock device interrupts,
subtract clock interrupts from the value.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

GBL_INTERRUPT_RATE_CUM

The average number of IO interrupts per second over the cumulative collection time.

OnHPUX and SUN this value includes clock interrupts. To get non-clock device interrupts,
subtract clock interrupts from the value.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_INTERRUPT_RATE_HIGH

The highest number of IO interrupts per second during any one interval over the cumulative
collection time.

HP GlancePlus (11.02)Page 399 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX and SUN this value includes clock interrupts. To get non-clock device interrupts,
subtract clock interrupts from the value.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_INTERVAL

The amount of time in the interval.

This measured interval is slightly larger than the desired or configured interval if the collection
program is delayed by a higher priority process and cannot sample the data immediately.

GBL_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 400 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_IPC_QUEUE

The average number of processes or kernel threads blocked onInterProcess Communication (IPC)
(waiting for their interprocess communication calls to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
IPC divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_IPC_SUBSYSTEM_QUEUE

The average number of processes or kernel threads blocked on the InterProcess Communication
(IPC) subsystems (waiting for their interprocess communication activity to complete) during the
interval. This is the sum of processes or kernel threads in the IPC, MSG, SEM, PIPE, SOCKT
(that is, sockets) and STRMS (that is, streams IO) wait states.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
(IPC + MSG + SEM + PIPE + SOCKT + STRMS) divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 401 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_IPC_SUBSYSTEM_WAIT_PCT

The percentage of time processes or kernel threads were blocked on the InterProcess
Communication (IPC) subsystems (waiting for their interprocess communication activity to
complete) during the interval. This is the sum of processes or kernel threads in the IPC, MSG,
SEM, PIPE, SOCKT (that is, sockets) and STRMS (that is, streams IO) wait states.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
(IPC + MSG + SEM + PIPE + SOCKT + STRMS) divided by the accumulated time that all
processes or kernel threads were alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_IPC_WAIT_PCT

The percentage of time processes or kernel threads were blocked onInterProcess Communication
(IPC) (waiting for their interprocess communication calls to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
IPC divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the

HP GlancePlus (11.02)Page 402 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_IPC_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked
onInterProcess Communication (IPC) (waiting for their interprocess communication calls to
complete) during the interval.

GBL_JAVAARG

This boolean value indicates whether the java class overloadingmechanism is enabled or not. This
metric will be set when the javaarg flag in the parm file is set. Themetric affected by this setting is
PROC_PROC_ARGV1. This setting is useful to construct parm file java application definitions
using the argv1= keyword.

GBL_JOBCTL_QUEUE

The average number of processes or kernel threads blocked on job control (having been stopped
with the job control facilities) during the interval. Job control waits include waiting at a debug
breakpoint, as well as being blocked attempting to write (from background) to a terminal which has
the “stty tostop” option set.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on job
control divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 403 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_JOBCTL_WAIT_PCT

The percentage of time processes or kernel threads were blocked on job control (having been
stopped with the job control facilities) during the interval. Job control waits include waiting at a
debug breakpoint, as well as being blocked attempting to write (from background) to a terminal
which has the “stty tostop” option set.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on job
control divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_JOBCTL_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on job control
(having been stopped with the job control facilities) during the interval. Job control waits include
waiting at a debug breakpoint, as well as being blocked attempting to write (from background) to a
terminal which has the “stty tostop” option set.

GBL_LAN_QUEUE

The average number of processes or kernel threads blocked on LAN (waiting for their IO over the
LAN to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
LAN divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

HP GlancePlus (11.02)Page 404 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_LAN_WAIT_PCT

The percentage of time processes or kernel threads were blocked on LAN (waiting for their IO over
the LAN to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
LAN divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_LAN_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on LAN
(waiting for their IO over the LAN to complete) during the interval.

GBL_LOADAVG

The 1minute load average of the system obtained at the time of logging.

On windows this is the load average of the system over the interval. Load average on windows is
the average number of threads that have been waiting in ready state during the interval. This is

HP GlancePlus (11.02)Page 405 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

obtained by checking the number of threads in ready state every sub proc interval, accumulating
them over the interval and averaging over the interval.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_LOADAVG15

The 15minute load average of the system obtained at the time of logging.

GBL_LOADAVG5

The 5minute load average of the system obtained at the time of logging.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_LOST_MI_TRACE_BUFFERS

The number of trace buffers lost by themeasurement processing daemon.

OnHP-UX systems, if this value is > 0, themeasurement subsystem is not keeping up with the
system events that generate traces.

For other Unix systems, if this value is > 0, themeasurement subsystem is not keeping up with the
ARM API calls that generate traces.

Note: The value reported for this metric will roll over to 0 once it crosses INTMAX.

GBL_LS_ROLE

Indicates whether Perf Agent is installed on Logical system or host or standalone system. This
metric will be either “GUEST”, “HOST” or “STAND”.

GBL_LS_TYPE

The virtulization technology if applicable. The value of this metric is “HPVM” on HP-UX host,
“LPAR” on AIX LPAR, “Sys WPAR” on systemWPAR, “Zone” on Solaris Zones, “VMware” on
recognized VMware ESX guest and VMware ESX Server console, “Hyper-V” on Hyper-V host, else
“NoVM”.

In conjunction with GBL_LS_ROLE this metric could be used to identify the environment in which
Perf Agent/Glance is running. For example, if GBL_LS_ROLE is “Guest” andGBL_LS_TYPE is
“VMware” then PA/Glance is running on a VMware Guest.

HP GlancePlus (11.02)Page 406 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_LS_UUID

UUID of this logical system. This Id uniquely identifies this logical system in the virtualized
enviroments. On a standalone system the value of this metrics is 'na'.

GBL_MACHINE

An ASCII string representing the Processor Architecture. Andmachine hardwaremodel is
represented by GBL_MACHINE_MODELmetric.

GBL_MACHINE_MODEL

The CPU model. This is similar to the information returned by the GBL_MACHINE metric and the
uname command(except for Solaris 10 x86/x86_64). However, this metric returns more information
on some processors.

On HP-UX, this is the same information returned by themodel command.

GBL_MEMFS_BLK_CNT

The number of systemmemory blocks used by Memory based FileSystem (MemFS).

GBL_MEMFS_SWP_CNT

The number of systemmemory blocks swapped by Memory based FileSystem (MemFS).

GBL_MEM_ACTIVE_VIRT

The total virtual memory (in MBs unless otherwise specified) allocated for processes that are
currently on the run queue or processes that have executed recently. This is the sum of the virtual
memory sizes of the data and stack regions for these processes.

On HP-UX, this is the sum of the virtual memory of all processes which have had a thread run in the
last 20 seconds.

On AIX SystemWPARs, this metric is NA.

GBL_MEM_ACTIVE_VIRT_UTIL

The percentage of total virtual memory active at the end of the interval.

Active virtual memory is the virtual memory associated with processes that are currently on the run
queue or processes that have executed recently. This is the sum of the virtual memory sizes of the
data and stack regions for these processes.

HP GlancePlus (11.02)Page 407 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this is the sum of the virtual memory of all processes which have had a thread run in the
last 20 seconds.

GBL_MEM_AVAIL

The amount of physical available memory in the system (in MBs unless otherwise specified).

OnWindows, memory resident operating system code and data is not included as available
memory.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_CACHE

The amount of physical memory (in MBs unless otherwise specified) used by the buffer cache
during the interval.

On HP-UX 11i v2 and below, the buffer cache is amemory pool used by the system to stage disk
IO data for the driver.

On HP-UX 11i v3 and above this metric value represents the usage of the file systembuffer cache
which is still being used for file systemmetadata.

On SUN, this value is obtained by multiplying the system page size times the number of buffer
headers (nbuf). For example, on a SPARCstation 10 the buffer size is usually (200 (page size
buffers) * 4096 (bytes/page) = 800 KB). If ZFS is configured, this includes ZFS ARC cache usage
during the interval.

On SUN, the buffer cache is amemory pool used by the system to cache inode, indirect block and
cylinder group related disk accesses. This is different from the traditional concept of a buffer cache
that also holds file system data. On Solaris 5.X, as file data is cached, accesses to it show up as
virtual memory IOs. File data caching occurs throughmemory mappingmanaged by the virtual
memory system, not through the buffer cache. The “nbuf” value is dynamic, but it is very hard to
create a situation where thememory cachemetrics change, sincemost systems havemore than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more
heavily utilized on NFS file servers.

On AIX, this value should beminimal sincemost disk IOs are done throughmemory mapped files.

GBL_MEM_CACHE_HIT

OnHP-UX, the number of buffer cache reads resolved from the buffer cache (rather than going to
disk) during the interval. Buffer cache reads can occur as a result of a logical read (for example, file
read system call), a read generated by a client, a read-ahead on behalf of a logical read or a system
procedure.

On HP-UX, this metric is obtained by measuring the number of buffered read calls that were
satisfied by the data that was in the file system buffer cache. Reads that are not in the buffer cache
result in disk IO. raw IO and virtual memory IO, are not counted in this metric.

HP GlancePlus (11.02)Page 408 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On SUN, the number of physical reads resolved frommemory (rather than going to disk) during the
interval. This includes inode, indirect block and cylinder group related disk reads, plus file reads
from files memory mapped by the virtual memory IO system.

On AIX, the number of disk reads that were satisfied in the file systembuffer cache (rather than
going to disk) during the interval.

On AIX, the traditional file system buffer cache is not normally used, since files are implicitly
memory mapped and the access is through the virtual memory system rather than the buffer
cache. However, if a file is read as a block device (e.g /dev/hdisk1), the file system buffer cache is
used, making this metric meaningful in that situation. If no IO through the buffer cache occurs
during the interval, this metric is 0.

GBL_MEM_CACHE_HIT_CUM

OnHP-UX, the number of buffer cache reads resolved from the buffer cache (rather than going to
disk) over the cumulative collection time. Buffer cache reads can occur as a result of a logical read
(for example, file read system call), a read generated by a client, a read-ahead on behalf of a logical
read or a system procedure.

On HP-UX, this metric is obtained by measuring the number of buffered read calls that were
satisfied by the data that was in the file system buffer cache. Reads that are not in the buffer cache
result in disk IO. raw IO and virtual memory IO, are not counted in this metric.

On SUN, the number of physical reads resolved frommemory (rather than going to disk) over the
cumulative collection time. This includes inode, indirect block and cylinder group related disk
reads, plus file reads from files memory mapped by the virtual memory IO system.

On AIX, the number of disk reads that were satisfied in the file systembuffer cache (rather than
going to disk) over the cumulative collection time.

On AIX, the traditional file system buffer cache is not normally used, since files are implicitly
memory mapped and the access is through the virtual memory system rather than the buffer
cache. However, if a file is read as a block device (e.g /dev/hdisk1), the file system buffer cache is
used, making this metric meaningful in that situation. If no IO through the buffer cache occurs
during the interval, this metric is 0.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 409 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_CACHE_HIT_PCT

OnHP-UX, the percentage of buffer cache reads resolved from the buffer cache (rather than going
to disk) during the interval. Buffer cache reads can occur as a result of a logical read (for example,
file read system call), a read generated by a client, a read-ahead on behalf of a logical read or a
system procedure.

On HP-UX, this metric is obtained by measuring the number of buffered read calls that were
satisfied by the data that was in the file system buffer cache. Reads to filesystem file buffers that
are not in the buffer cache result in disk IO. Reads to raw IO and virtual memory IO (including
memory mapped files), do not go through the filesystem buffer cache, and so are not relevant to this
metric.

On HP-UX, a low cache hit rate may indicate low efficiency of the buffer cache, either because
applications have poor data locality or because the buffer cache is too small. Overly large buffer
cache sizes can lead to amemory bottleneck. The buffer cache should be sized small enough so
that pageouts do not occur even when the system is busy. However, in the case of VxFS, all
memory-mapped IOs show up as page ins/page outs and are not a result of memory pressure.

On AIX, the percentage of disk reads that were satisfied in the file systembuffer cache (rather than
going to disk) during the interval.

On AIX, the traditional file system buffer cache is not normally used, since files are implicitly
memory mapped and the access is through the virtual memory system rather than the buffer
cache. However, if a file is read as a block device (e.g /dev/hdisk1), the file system buffer cache is
used, making this metric meaningful in that situation. If no IO through the buffer cache occurs
during the interval, this metric is 0.

On the remaining Unix systems, this is the percentage of logical reads satisfied in memory (rather
than going to disk) during the interval. This includes inode, indirect block and cylinder group related
disk reads, plus file reads from files memory mapped by the virtual memory IO system.

OnWindows, this is the percentage of buffered reads satisfied in the buffer cache (rather than going
to disk) during the interval. This metric is obtained by measuring the number of buffered read calls
that were satisfied by the data that was in the system buffer cache. Reads that are not in the buffer
cache result in disk IO. Unbuffered IO and virtual memory IO (includingmemory mapped files), are
not counted in this metric.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_MEM_CACHE_HIT_PCT_CUM

OnHP-UX, this is the average percentage of buffer cache reads resolved from the buffer cache
(rather than going to disk) over the cumulative collection time. Buffer cache reads can occur as a
result of a logical read (for example, file read system call), a read generated by a client, a read-
ahead on behalf of a logical read or a system procedure.

On SUN, this is the percentage of physical reads that were satisfied in memory (rather than going to
disk) over the cumulative collection time. This includes inode, indirect block and cylinder group
related disk reads, plus file reads from files memory mapped by the virtual memory IO system.

HP GlancePlus (11.02)Page 410 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On AIX, this is the percentage of physical reads satisfied in the file systembuffer cache (rather than
going to disk) over the cumulative collection time.

On AIX, the traditional file system buffer cache is not normally used, since files are implicitly
memory mapped and the access is through the virtual memory system rather than the buffer
cache. However, if a file is read as a block device (e.g /dev/hdisk1), the file system buffer cache is
used, making this metric meaningful in that situation. If no IO through the buffer cache occurs
during the interval, this metric is 0.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_CACHE_HIT_PCT_HIGH

OnHP-UX, this is the highest interval percentage of buffer cache reads resolved from the buffer
cache (rather than going to disk) over the cumulative collection time. Buffer cache reads can occur
as a result of a logical read (for example, file read system call), a read generated by a client, a read-
ahead on behalf of a logical read or a system procedure.

On SUN, this is the highest interval percentage of physical reads satisfied in memory (rather than
going to disk) over the cumulative collection time. This includes inode, indirect block and cylinder
group related disk reads, plus file reads from files memory mapped by the virtual memory IO
system.

On AIX, this is the highest interval percentage of physical reads satisfied in the file systembuffer
cache (rather than going to disk) over the cumulative collection time.

On AIX, the traditional file system buffer cache is not normally used, since files are implicitly
memory mapped and the access is through the virtual memory system rather than the buffer
cache. However, if a file is read as a block device (e.g /dev/hdisk1), the file system buffer cache is
used, making this metric meaningful in that situation. If no IO through the buffer cache occurs
during the interval, this metric is 0.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 411 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_CACHE_UTIL

The percentage of physical memory used by the buffer cache during the interval.

On HP-UX 11i v2 and below, the buffer cache is amemory pool used by the system to stage disk
IO data for the driver.

On HP-UX 11i v3 and above this metric value represents the usage of the file systembuffer cache
which is still being used for file systemmetadata.

On SUN, this percentage is based on calculating the buffer cache size by multiplying the system
page size times the number of buffer headers (nbuf). For example, on a SPARCstation 10 the
buffer size is usually (200 (page size buffers) * 4096 (bytes/page) = 800 KB). If ZFS is configured,
this includes ZFS ARC cache utilization during the interval.

On SUN, the buffer cache is amemory pool used by the system to cache inode, indirect block and
cylinder group related disk accesses. This is different from the traditional concept of a buffer cache
that also holds file system data. On Solaris 5.X, as file data is cached, accesses to it show up as
virtual memory IOs. File data caching occurs throughmemory mappingmanaged by the virtual
memory system, not through the buffer cache. The “nbuf” value is dynamic, but it is very hard to
create a situation where thememory cachemetrics change, sincemost systems havemore than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more
heavily utilized on NFS file servers.

On AIX, this value should beminimal sincemost disk IOs are done throughmemory mapped files.
OnWindows the value reports 'copy read hit %' and 'Pin read hit %'.

GBL_MEM_CACHE_WRITE_HIT

The number of write cache hits - logical writes that did not result in physical IOs during the interval.

A cache write hit occurs when a logical write request is issued to a disk file block that is already
mapped in a buffer that is in a delayed write state. This metric gives an indication of how many
physical IOs are eliminated as a result of buffering logical write requests. Physical IOs are
eliminated in environments where asynchronous writes are done (see the O_SYNC flag in open(2))
to the same file blocks before being explicitly written to the disk or flushed to disk by the syncher
process. Environments that attempt to minimize the chance of file system data loss by issuing
synchronous writes or by using shorter syncer intervals will see fewer cache write hits.

HP GlancePlus (11.02)Page 412 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

During a short interval, the number of physical writes can exceed the number of logical write
requests. This would yield a negative number of “write hits”. If this occurs in an interval, “na” will be
returned.

GBL_MEM_CACHE_WRITE_HIT_CUM

The number of write cache hits - logical writes that did not result in physical IOs over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

A cache write hit occurs when a logical write request is issued to a disk file block that is already
mapped in a buffer that is in a delayed write state. This metric gives an indication of how many
physical IOs are eliminated as a result of buffering logical write requests. Physical IOs are
eliminated in environments where asynchronous writes are done (see the O_SYNC flag in open(2))
to the same file blocks before being explicitly written to the disk or flushed to disk by the syncher
process. Environments that attempt to minimize the chance of file system data loss by issuing
synchronous writes or by using shorter syncer intervals will see fewer cache write hits.

GBL_MEM_CACHE_WRITE_HIT_PCT

The percentage of logical disk writes that did not result in physical disk IOs during the interval.

A cache write hit occurs when a logical write request is issued to a disk file block that is already
mapped in a buffer that is in a delayed write state. This metric gives an indication of how many
physical IOs are eliminated as a result of buffering logical write requests. Physical IOs are
eliminated in environments where asynchronous writes are done (see the O_SYNC flag in open(2))
to the same file blocks before being explicitly written to the disk or flushed to disk by the syncher
process. Environments that attempt to minimize the chance of file system data loss by issuing
synchronous writes or by using shorter syncer intervals will see fewer cache write hits.

During a short interval, the number of physical writes can exceed the number of logical write
requests. This would yield a negative number of “write hits”. If this occurs in an interval, “na” will be
returned.

HP GlancePlus (11.02)Page 413 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_CACHE_WRITE_HIT_PCT_CUM

The percentage of logical disk writes that did not result in physical disk IOs over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

A cache write hit occurs when a logical write request is issued to a disk file block that is already
mapped in a buffer that is in a delayed write state. This metric gives an indication of how many
physical IOs are eliminated as a result of buffering logical write requests. Physical IOs are
eliminated in environments where asynchronous writes are done (see the O_SYNC flag in open(2))
to the same file blocks before being explicitly written to the disk or flushed to disk by the syncher
process. Environments that attempt to minimize the chance of file system data loss by issuing
synchronous writes or by using shorter syncer intervals will see fewer cache write hits.

GBL_MEM_DNLC_HIT

The number of times a pathname component was found in the directory name lookup cache (rather
than requiring a disk read to find a file) during the interval.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an

HP GlancePlus (11.02)Page 414 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_HIT_CUM

The number of times a pathname component was found in the directory name lookup cache (rather
than requiring a disk read to find a file) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

HP GlancePlus (11.02)Page 415 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_HIT_PCT

The percentage of time a pathname component was found in the directory name lookup cache
(rather than requiring a disk read to find a file) during the interval.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

HP GlancePlus (11.02)Page 416 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

On Solaris non-global zones, this metric shows data from the global zone.

GBL_MEM_DNLC_HIT_PCT_CUM

The percentage of time a pathname component was found in the directory name lookup cache
(rather than requiring a disk read to find a file) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

HP GlancePlus (11.02)Page 417 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_HIT_PCT_HIGH

The highest percentage of time during any one interval that a pathname component was found in the
directory name lookup cache (rather than requiring a disk read to find a file) over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode

HP GlancePlus (11.02)Page 418 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_LONGS

The number of times a pathname component was too long to be found in the directory name lookup
cache during the interval.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

HP GlancePlus (11.02)Page 419 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_LONGS_CUM

The number of times a pathname component was too long to be found in the directory name lookup
cache over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode

HP GlancePlus (11.02)Page 420 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_LONGS_PCT

The percentage of time a pathname component was too long to be found in the directory name
lookup cache during the interval.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

HP GlancePlus (11.02)Page 421 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_LONGS_PCT_CUM

The percentage of time a pathname component was too long to be found in the directory name
lookup cache over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode

HP GlancePlus (11.02)Page 422 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_DNLC_LONGS_PCT_HIGH

The highest percentage of time during any one interval that a pathname component was too long to
be found in the directory name lookup cache over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 423 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

On SUN, long file names (greater than 30 characters) are not cached and are a type of cachemiss.
“Enters”, or cache data updates, are not included in this data. The DNLC size is: (maxusers * 17) +
90

GBL_MEM_FILE_PAGE_CACHE

The amount of physical memory (in MBs unless otherwise specified) used by the file cache during
the interval. File cache is amemory pool used by the system to stage disk IO data for the driver.

This metric is supported on HP-UX 11iv3 and above. The filecache_min and filecache_max
tunables control the filecachememory usage on the system. The filecache_min tunable specifies
the amount of physical memory that is guaranteed to be available for filecache on the system. The
filecachememory usage can grow beyond filecache_min, up to the limit set by the filecache_max
tunable. The Virtual Memory(VM) subsystem always pre reserves 'filecache_min' tunable value
worth of pages on the system for filecache, even in the case of filecache under utilization (actual

HP GlancePlus (11.02)Page 424 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

filecache utilization < filecache_min value). This preservedmemory by the VM is not available for
the user. In this scenario, this metric will show the 'filecache_min' as the filecache value, rather
than showing the actual filecache utilization.

On Linux, this metric is equal to 'cached' value of 'free -m' command output.

GBL_MEM_FILE_PAGE_CACHE_UTIL

The percentage of physical_memory used by the file cache during the interval. File cache is a
memory pool used by the system to stage disk IO data for the driver.

This metric is supported on HP-UX 11iv3 and above. The filecache_min and filecache_max
tunables control the filecachememory usage on the system. The filecache_min tunable specifies
the amount of physical memory that is guaranteed to be available for filecache on the system. The
filecachememory usage can grow beyond filecache_min, up to the limit set by the filecache_max
tunable. The Virtual Memory(VM) subsystem always pre reserves 'filecache_min' tunable value
worth of pages on the system for filecache, even in the case of filecache under utilization (actual
filecache utilization < filecache_min value). This preservedmemory by the VM is not available for
the user. In this scenario, this metric will show the 'filecache_min' as the filecache value, rather
than showing the actual filecache utilization.

On Linux, this metric is derived from 'cached' value of 'free -m' command output.

GBL_MEM_FREE

The amount of memory not allocated (in MBs unless otherwise specified). As this value drops, the
likelihood increases that swapping or paging out to disk may occur to satisfy new memory
requests.

On SUN, low values for this metric may not indicate a truememory shortage. This metric can be
influenced by the VMM (Virtual Memory Management) system. On uncapped solaris zones, the
metric indicates the amount of memory that is available across the whole system that is not
consumed by the global zone and other non-global zones. In case of capped solaris zones, the
metric indicates the amount of memory that is not consumed by this zone against thememory cap
set.

On Linux, this metric is sum of 'free' and 'cached' memory.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

Locality Domainmetrics are available on HP-UX 11iv2 and above. GBL_MEM_FREE and
LDOM_MEM_FREE, as well as thememory utilizationmetrics derived from them, may not always
fully match. GBL_MEM_FREE represents freememory in the kernel's reservation layer while
LDOM_MEM_FREE shows actual free pages. If memory has been reserved but not actually
consumed from the Locality Domains, the two values won't match. BecauseGBL_MEM_FREE
includes pre-reservedmemory, the GBL_MEM_* metrics are a better indicator of actual memory
consumption in most situations.

HP GlancePlus (11.02)Page 425 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_FREE_UTIL

The percentage of physical memory that was free at the end of the interval.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGEIN

The total number of page ins from the disk during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

OnHP-UX, this is the same as the “page ins” value from the “vmstat -s” command. On AIX, this is
the same as the “paging space page ins” value. Remember that “vmstat -s” reports cumulative
counts.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGEIN_BYTE

The number of KBs (or MBs if specified) of page ins during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_CUM

The number of KBs (or MBs if specified) of page ins over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 426 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_RATE

The number of KBs per second of page ins during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_RATE_CUM

The average number of KBs per second of page ins over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_BYTE_RATE_HIGH

The highest number of KBs per second of page ins during any interval over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 427 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_CUM

The total number of page ins from the disk over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_RATE

The total number of page ins per second from the disk during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

OnHP-UX and AIX, this is the same as the “pi” value from the vmstat command.

HP GlancePlus (11.02)Page 428 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Solaris, this is the same as the sum of the “epi” and “api” values from the “vmstat -p” command,
divided by the page size in KB.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGEIN_RATE_CUM

The average number of page ins per second over the cumulative collection time. This includes
pages paged in from paging space and, except for AIX, from the file system.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEIN_RATE_HIGH

The highest number of page ins per second from disk during any interval over the cumulative
collection time.

OnHP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT

The total number of page outs to the disk during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

HP GlancePlus (11.02)Page 429 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this is the same as the “page outs” value from the “vmstat -s” command. OnHP-UX
11iv3 and above this includes filecache page outs also. On AIX, this is the same as the “paging
space page outs” value. Remember that “vmstat -s” reports cumulative counts.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGEOUT_BYTE

The number of KBs (or MBs if specified) of page outs during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGEOUT_BYTE_CUM

The number of KBs (or MBs if specified) of page outs over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_BYTE_RATE

The number of KBs (or MBs if specified) per second of page outs during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

HP GlancePlus (11.02)Page 430 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnWindows, this includes paging activity for both file systems and paging space.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGEOUT_BYTE_RATE_CUM

The average number of KBs per second of page outs over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_BYTE_RATE_HIGH

The highest number of KBs per second of page outs during any interval over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 431 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_CUM

The total number of page outs to the disk over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_RATE

The total number of page outs to the disk per second during the interval.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

OnHP-UX and AIX, this is the same as the “po” value from the vmstat command.

On Solaris, this is the same as the sum of the “epo” and “apo” values from the “vmstat -p”
command, divided by the page size in KB.

OnWindows, this counter also includes paging traffic on behalf of the system cache to access file
data for applications and somay be high when there is nomemory pressure.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

HP GlancePlus (11.02)Page 432 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_PAGEOUT_RATE_CUM

The average number of page outs to the disk per second over the cumulative collection time. This
includes pages paged out to paging space and, except for AIX, to the file system.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

GBL_MEM_PAGEOUT_RATE_HIGH

The highest number of page outs per second to disk during any interval over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, Linux and AIX, this reflects paging activity betweenmemory and paging
space. It does not include activity betweenmemory and file systems.

OnWindows, this includes paging activity for both file systems and paging space.

HP GlancePlus (11.02)Page 433 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_PAGE_FAULT

The number of page faults that occurred during the interval.

On Linux this metric is available only on 2.6 and above kernel versions.

GBL_MEM_PAGE_FAULT_CUM

The number of page faults that occurred over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_PAGE_FAULT_RATE

The number of page faults per second during the interval.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGE_FAULT_RATE_CUM

The average number of page faults per second over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 434 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_PAGE_FAULT_RATE_HIGH

The highest page fault per second during any interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_PAGE_REQUEST

The number of page requests to or from the disk during the interval.

On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to the
file system.

OnWindows, this includes pages paged to or from both paging space and the file system.

OnHP-UX, this is the same as the sun of the “page ins” and “page outs” values from the “vmstat -s”
command. On AIX, this is the same as the sum of the “paging space page ins” and “paging space
page outs” values. Remember that “vmstat -s” reports cumulative counts.

OnWindows, this counter also includes paging traffic on behalf of the system cache to access file
data for applications and somay be high when there is nomemory pressure.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGE_REQUEST_CUM

The total number of page requests to or from the disk over the cumulative collection time.

HP GlancePlus (11.02)Page 435 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or
from the file system.

OnWindows, this includes pages paged to or from both paging space and the file system.

OnWindows, this counter also includes paging traffic on behalf of the system cache to access file
data for applications and somay be high when there is nomemory pressure.

GBL_MEM_PAGE_REQUEST_RATE

The number of page requests to or from the disk per second during the interval.

On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or
from the file system.

OnWindows, this includes pages paged to or from both paging space and the file system.

OnHP-UX and AIX, this is the same as the sum of the “pi” and “po” values from the vmstat
command.

On Solaris, this is the same as the sum of the “epi”, “epo”, “api”, and “apo” values from the “vmstat -
p” command, divided by the page size in KB.

Higher than normal rates can indicate either amemory or a disk bottleneck. Compare GBL_DISK_
UTIL_PEAK andGBL_MEM_UTIL to determine which resource is more constrained. High rates
may also indicatememory thrashing caused by a particular application or set of applications. Look
for processes with highmajor fault rates to identify the culprits.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PAGE_REQUEST_RATE_CUM

The average number of page requests to or from the disk per second over the cumulative collection
time.

HP GlancePlus (11.02)Page 436 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or
from the file system.

OnWindows, this includes pages paged to or from both paging space and the file system.

GBL_MEM_PAGE_REQUEST_RATE_HIGH

The highest number of page requests per second during any interval over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, Solaris, and AIX, this includes pages paged to or from the paging space and not to or
from the file system.

OnWindows, this includes pages paged to or from both paging space and the file system.

GBL_MEM_PAGE_SIZE_MAX

Themaximum page size allowed for amemory region on the system.

HP GlancePlus (11.02)Page 437 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_PG_SCAN

The number of pages scanned by the pageout daemon (or by the Clock Hand on AIX) during the
interval. The clock hand algorithm is used to control page aging on the system.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PG_SCAN_CUM

The number of pages scanned by the pageout daemon (or by the Clock Hand on AIX) over the
cumulative collection time. The clock hand algorithm is used to control page aging on the system.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_PG_SCAN_RATE

The number of pages scanned per second by the pageout daemon (or by the Clock Hand on AIX,
“vmstat -s” pages examined by clock) during the interval. The clock hand algorithm is used to
control page aging on the system.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_PG_SCAN_RATE_CUM

The average number of pages scanned per second by the pageout daemon (or by the Clock Hand
on AIX) over the cumulative collection time. The clock hand algorithm is used to control page aging
on the system.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 438 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_PG_SCAN_RATE_HIGH

The highest number of pages scanned per second by the pageout daemon (or by the Clock Hand on
AIX) during any interval over the cumulative collection time. The clock hand algorithm is used to
control page aging on the system.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_PHYS

The amount of physical memory in the system (in MBs unless otherwise specified).

On HP-UX, banks with badmemory are not counted. Note that on somemachines, the Processor
Dependent Code (PDC) code uses the upper 1MB of memory and thus reports less than the actual
physical memory of the system. Thus, on a system with 256MB of physical memory, this metric
and dmesg(1M)might only report 267,386,880 bytes (255MB). This is all the physical memory that
software on themachine can access.

OnWindows, this is the total memory available, whichmay be slightly less than the total amount of
physical memory present in the system. This value is also reported in the Control Panel's About
Windows NT help topic.

HP GlancePlus (11.02)Page 439 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Linux, this is the amount of memory given by dmesg(1M). If the value is not available in kernel
ring buffer, then the sum of systemmemory and available memory will be reported as physical
memory.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_QUEUE

The average number of processes or kernel threads blocked onmemory (waiting for virtual memory
disk accesses to complete) during the interval. This typically happens when processes or kernel
threads are allocating a large amount of memory. It can also happen when processes or kernel
threads access memory that has been paged out to disk (swap) because of overall memory
pressure on the system. Note that large programs can block on VM disk access when they are
initializing, bringing their text and data pages intomemory. When this metric rises, it can be an
indication of amemory bottleneck, especially if overall systemmemory utilization (GBL_MEM_
UTIL) is near 100% and there is also swapout or page out activity.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
memory divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_MEM_SWAP

The total number of swap ins and swap outs (or deactivations and reactivations on HP-UX) during
the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not

HP GlancePlus (11.02)Page 440 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN

The number of swap ins (or reactivations on HP-UX) during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, this is the same as the “swap ins” value from the “vmstat -s” command. Remember
that “vmstat -s” reports cumulative counts.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN_BYTE

The number of KBs transferred in from disk due to swap ins (or reactivations on HP-UX) during the
interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

HP GlancePlus (11.02)Page 441 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_SWAPIN_BYTE_CUM

The number of KBs transferred in from disk due to swap ins (or reactivations on HP-UX) over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

HP GlancePlus (11.02)Page 442 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_SWAPIN_BYTE_RATE

The number of KBs per second transferred from disk due to swap ins (or reactivations on HP-UX)
during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_SWAPIN_BYTE_RATE_CUM

The number of KBs per second transferred from disk due to swap ins (or reactivations on HP-UX)
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a

HP GlancePlus (11.02)Page 443 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN_BYTE_RATE_HIGH

The highest number of KBs per second transferred from disk due to swap ins (or reactivations on
HP-UX) during any interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in

HP GlancePlus (11.02)Page 444 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN_CUM

The number of swap ins (or reactivations on HP-UX) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN_RATE

The number of swap ins (or reactivations on HP-UX) per second during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the

HP GlancePlus (11.02)Page 445 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_SWAPIN_RATE_CUM

The average number of swap ins (or reactivations on HP-UX) per second over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in

HP GlancePlus (11.02)Page 446 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPIN_RATE_HIGH

The highest number of swap ins (or reactivations on HP-UX) per second during any interval over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT

The number of swap outs (or deactivations on HP-UX) during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, this is the same as the “swap outs” values from the “vmstat -s” command. Remember
that “vmstat -s” reports cumulative counts.

HP GlancePlus (11.02)Page 447 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_BYTE

The number of KBs (or MBs if specified) transferred out to disk due to swap outs (or deactivations
on HP-UX) during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_SWAPOUT_BYTE_CUM

The number of KBs (or MBs if specified) transferred out to disk due to swap outs (or deactivations
on HP-UX) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 448 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_BYTE_RATE

The number of KBs (or MBs if specified) per second transferred out to disk due to swap outs (or
deactivations on HP-UX) during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in

HP GlancePlus (11.02)Page 449 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_SWAPOUT_BYTE_RATE_CUM

The average number of KBs (or MBs if specified) per second transferred out to disk due to swap
outs (or deactivations on HP-UX) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_BYTE_RATE_HIGH

The highest number of KBs (or MBs if specified) per second transferred out to disk due to swap outs
(or deactivations on HP-UX) during any interval over the cumulative collection time.

HP GlancePlus (11.02)Page 450 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_CUM

The number of swap outs (or deactivations on HP-UX) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 451 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_RATE

The number of swap outs (or deactivations on HP-UX) per second during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

On Solaris non-global zones with UncappedMemory scenario, this metric value is same as seen in
global zone.

GBL_MEM_SWAPOUT_RATE_CUM

The number of swap outs (or deactivations on HP-UX) per second over the cumulative collection
time.

HP GlancePlus (11.02)Page 452 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAPOUT_RATE_HIGH

The highest number of swap outs (or deactivations on HP-UX) per second during any interval over
the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 453 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAP_1_MIN_RATE

The number of swap ins and swap outs (or deactivations/reactivations on HP-UX) per minute during
the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAP_CUM

The total number of swap ins and swap outs (or deactivations and reactivations on HP-UX) over the
cumulative collection time.

HP GlancePlus (11.02)Page 454 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAP_RATE

The total number of swap ins and swap outs (or deactivations and reactivations on HP-UX) per
second during the interval.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out

HP GlancePlus (11.02)Page 455 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAP_RATE_CUM

The average number of swap ins and swap outs (or deactivations and reactivations on HP-UX) per
second over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SWAP_RATE_HIGH

The highest number of swap ins and swap outs (or deactivations and reactivations on HP-UX) per
second during any interval over the cumulative collection time.

HP GlancePlus (11.02)Page 456 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Linux and AIX, swapmetrics are equal to the corresponding pagemetrics.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

GBL_MEM_SYS

The amount of physical memory (in MBs unless otherwise specified) used by the system (kernel)
during the interval. Systemmemory does not include the buffer cache. On HP-UX and Linux this
does not include filecache also.

On HP-UX 11.0, this metric does not include some kinds of dynamically allocated kernel memory.
This has always been reported in the GBL_MEM_USER* metrics.

On HP-UX 11.11 and beyond, this metric includes some kinds of dynamically allocated kernel
memory.

On Solaris non-global zones, this metric shows value as 0.

HP GlancePlus (11.02)Page 457 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_MEM_SYS_AND_CACHE_UTIL

The percentage of physical memory used by the system (kernel) and the buffer cache at the end of
the interval.

On HP-UX 11iv3, this includes file cache also.

On HP-UX 11.0, this metric does not include some kinds of dynamically allocated kernel memory.
This has always been reported in the GBL_MEM_USER* metrics.

On HP-UX 11.11 and beyond, this metric includes some kinds of dynamically allocated kernel
memory.

On Solaris non-global zones, this metric is N/A.

GBL_MEM_SYS_UTIL

The percentage of physical memory used by the system during the interval.

Systemmemory does not include the buffer cache. On HP-UX and Linux this does not include
filecache also.

On HP-UX 11.0, this metric does not include some kinds of dynamically allocated kernel memory.
This has always been reported in the GBL_MEM_USER* metrics.

On HP-UX 11.11 and beyond, this metric includes some kinds of dynamically allocated kernel
memory.

On Solaris non-global zones, this metric shows value as 0.

GBL_MEM_USER

The amount of physical memory (in MBs unless otherwise specified) allocated to user code and
data at the end of the interval. User memory regions include code, heap, stack, and other data
areas including sharedmemory. This does not includememory for buffer cache. On HP-UX and
Linux this does not include filecache also.

On HP-UX 11.0, this metric includes some kinds of dynamically allocated kernel memory.

On HP-UX 11.11 and beyond, this metric does not include some kinds of dynamically allocated
kernel memory. This is now reported in the GBL_MEM_SYS* metrics.

Large fluctuations in this metric can be caused by programs which allocate large amounts of
memory and then either release thememory or terminate. A slow continual increase in this metric
may indicate a program with amemory leak.

GBL_MEM_USER_UTIL

The percent of physical memory allocated to user code and data at the end of the interval. This
metric shows the percent of memory owned by user memory regions such as user code, heap,
stack and other data areas including sharedmemory. This does not includememory for buffer

HP GlancePlus (11.02)Page 458 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

cache. On HP-UX and Linux this does not include filecache also. On HP-UX 11.0, this metric
includes some kinds of dynamically allocated kernel memory.

On HP-UX 11.11 and beyond, this metric does not include some kinds of dynamically allocated
kernel memory. This is now reported in the GBL_MEM_SYS* metrics.

Large fluctuations in this metric can be caused by programs which allocate large amounts of
memory and then either release thememory or terminate. A slow continual increase in this metric
may indicate a program with amemory leak.

GBL_MEM_UTIL

The percentage of physical memory in use during the interval. This includes systemmemory
(occupied by the kernel), buffer cache and user memory.

On HP-UX 11iv3 and above, this includes file cache also.

On HP-UX, this calculation is done using the byte values for physical memory and usedmemory,
and is thereforemore accurate than comparing the reported kilobyte values for physical memory
and usedmemory.

On Linux, the value of this metric includes buffer cache when the cachemem parameter in the parm
file is set to user.

On SUN, high values for this metric may not indicate a truememory shortage. This metric can be
influenced by the VMM (Virtual Memory Management) system.

Locality Domainmetrics are available on HP-UX 11iv2 and above. GBL_MEM_FREE and
LDOM_MEM_FREE, as well as thememory utilizationmetrics derived from them, may not always
fully match. GBL_MEM_FREE represents freememory in the kernel's reservation layer while
LDOM_MEM_FREE shows actual free pages. If memory has been reserved but not actually
consumed from the Locality Domains, the two values won't match. BecauseGBL_MEM_FREE
includes pre-reservedmemory, the GBL_MEM_* metrics are a better indicator of actual memory
consumption in most situations.

GBL_MEM_UTIL_CUM

The average percentage of physical memory in use over the cumulative collection time. This
includes systemmemory (occupied by the kernel), buffer cache and user memory.

On HP-UX 11iv3 and above, this includes file cache also.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 459 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_UTIL_HIGH

The highest percentage of physical memory in use in any interval over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_MEM_VIRT

The total private virtual memory (in MBs unless otherwise specified) at the end of the interval. This
is the sum of the virtual allocation of private data and stack regions for all processes.

GBL_MEM_WAIT_PCT

The percentage of time processes or kernel threads were blocked on VM (waiting for virtual memory
resources to become available) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
VM divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

HP GlancePlus (11.02)Page 460 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_MEM_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on VM
(waiting for virtual memory resources to become available) during the interval.

GBL_MI_LOST_PROC

The number of processes themeasurement layer has lost the ability to update during the interval.
This is an indication the system activity might require themidaemon be restarted with a larger
process count. See themidaemonman page for additional information on the -pids parameter.

GBL_MI_LOST_PROC_CUM

The total number of processes themeasurement layer has lost the ability to update during the
cumulative collection interval.

GBL_MI_PROC_ENTRIES

The number of process entries allocated in themidaemon sharedmemory area.

GBL_MI_THREAD_ENTRIES

The number of thread entries allocated in themidaemon sharedmemory area.

GBL_MSG_QUEUE

The average number of processes or kernel threads blocked onmessages (waiting for their
message queue calls to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
MESG (that is, messages) divided by the interval time.

HP GlancePlus (11.02)Page 461 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_MSG_WAIT_PCT

The percentage of time processes or kernel threads were blocked onmessages (waiting for their
message queue calls to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
MESG (that is, messages) divided by the accumulated time that all processes or kernel threads
were alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_MSG_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked onmessages
(waiting for their message queue calls to complete) during the interval.

HP GlancePlus (11.02)Page 462 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NETWORK_SUBSYSTEM_QUEUE

The average number of processes or kernel threads blocked on the network subsystem (waiting for
their network activity to complete) during the interval. This is the sum of processes or kernel
threads in the LAN, NFS, and RPC wait states. This does not include processes or kernel threads
blocked on SOCKT (that is, sockets) waits, as some processes or kernel threads sit idle in SOCKT
waits for long periods.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
(LAN + NFS + RPC) divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_NETWORK_SUBSYSTEM_WAIT_PCT

The percentage of time processes or kernel threads were blocked on the network subsystem
(waiting for their network activity to complete) during the interval. This is the sum of processes or
kernel threads in the LAN, NFS, and RPC wait states. This does not include processes or kernel
threads blocked on SOCKT (that is, sockets) waits, as some processes or kernel threads sit idle in
SOCKT waits for long periods.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
(LAN + NFS + RPC) divided by the accumulated time that all processes or kernel threads were
alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

HP GlancePlus (11.02)Page 463 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_NET_COLLISION

The number of collisions that occurred on all network interfaces during the interval. A rising rate of
collisions versus outbound packets is an indication that the network is becoming increasingly
congested. This metric does not include deferred packets.

This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Single Collision Frames“, ”Multiple Collision
Frames“, ”Late Collisions“, and ”Excessive Collisions“ values from the output of the ”lanadmin“
utility for the network interface. Remember that “lanadmin” reports cumulative counts. As of the
HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of the “Coll” column from the “netstat -i”
command (“collisions” from the “netstat -i -e” command on Linux) for a network device. See also
netstat(1).

AIX does not support the collision count for the ethernet interface. The collision count is supported
for the token ring (tr) and loopback (lo) interfaces. For more information, please refer to the
netstat(1) man page.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_COLLISION_1_MIN_RATE

The number of collisions per minute on all network interfaces during the interval. This metric does
not include deferred packets.

This does not include data for loopback interface.

Collisions occur on any busy network, but abnormal collision rates could indicate a hardware or
software problem.

AIX does not support the collision count for the ethernet interface. The collision count is supported
for the token ring (tr) and loopback (lo) interfaces. For more information, please refer to the
netstat(1) man page.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

HP GlancePlus (11.02)Page 464 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NET_COLLISION_CUM

The number of collisions that occurred on all network interfaces over the cumulative collection
time. A rising rate of collisions versus outbound packets is an indication that the network is
becoming increasingly congested. This metric does not include deferred packets.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For HP-UX, this will be the same as the sum of the “Single Collision Frames“, ”Multiple Collision
Frames“, ”Late Collisions“, and ”Excessive Collisions“ values from the output of the ”lanadmin“
utility for the network interface. Remember that “lanadmin” reports cumulative counts. For this
release and beyond, “netstat -i” shows network activity on the logical level (IP) only.

For other Unix systems, this is the same as the sum of the “Coll” column from the “netstat -i”
command (“collisions” from the “netstat -i -e” command on Linux) for a network device. See also
netstat(1).

AIX does not support the collision count for the ethernet interface. The collision count is supported
for the token ring (tr) and loopback (lo) interfaces. For more information, please refer to the
netstat(1) man page.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_COLLISION_PCT

The percentage of collisions to total outbound packet attempts during the interval. Outbound
packet attempts include both successful packets and collisions.

This does not include data for loopback interface.

A rising rate of collisions versus outbound packets is an indication that the network is becoming
increasingly congested.

This metric does not currently include deferred packets.

HP GlancePlus (11.02)Page 465 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

AIX does not support the collision count for the ethernet interface. The collision count is supported
for the token ring (tr) and loopback (lo) interfaces. For more information, please refer to the
netstat(1) man page.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_COLLISION_PCT_CUM

The percentage of collisions to total outbound packet attempts over the cumulative collection time.
Outbound packet attempts include both successful packets and collisions.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

A rising rate of collisions versus outbound packets is an indication that the network is becoming
increasingly congested.

This metric does not currently include deferred packets.

AIX does not support the collision count for the ethernet interface. The collision count is supported
for the token ring (tr) and loopback (lo) interfaces. For more information, please refer to the
netstat(1) man page.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_COLLISION_RATE

The number of collisions per second on all network interfaces during the interval. This metric does
not include deferred packets.

This does not include data for loopback interface.

HP GlancePlus (11.02)Page 466 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A rising rate of collisions versus outbound packets is an indication that the network is becoming
increasingly congested.

AIX does not support the collision count for the ethernet interface. The collision count is supported
for the token ring (tr) and loopback (lo) interfaces. For more information, please refer to the
netstat(1) man page.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_DEFERRED

The number of outbound deferred packets due to the network being in use during the interval.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_DEFERRED_CUM

The number of outbound deferred packets due to the network being in use over the cumulative
collection time.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

HP GlancePlus (11.02)Page 467 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NET_DEFERRED_PCT

The percentage of deferred packets to total outbound packet attempts during the interval.
Outbound packet attempts include both packets successfully transmitted and those that were
deferred.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_DEFERRED_PCT_CUM

The percentage of deferred packets to total outbound packet attempts over the cumulative
collection time. Outbound packet attempts include both packets successfully transmitted and
those that were deferred.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_DEFERRED_RATE

The number of deferred packets per second on all network interfaces during the interval.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

HP GlancePlus (11.02)Page 468 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NET_DEFERRED_RATE_CUM

The number of deferred packets per second on all network interfaces over the cumulative collection
time.

This does not include data for loopback interface. The cumulative collection time is defined from
the point in time when either: a) the process (or thread) was first started, or b) the performance tool
was first started, or c) the cumulative counters were reset (relevant only to Glance, if available for
the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_ERROR

The number of errors that occurred on all network interfaces during the interval.

This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Inbound Errors” and “Outbound Errors” values
from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin” reports
cumulative counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity
on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs”
(TX-ERR on Linux) from the “netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_ERROR_1_MIN_RATE

The number of errors per minute on all network interfaces during the interval. This rate should
normally be zero or very small. A large error rate can indicate a hardware or software problem.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

HP GlancePlus (11.02)Page 469 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NET_ERROR_CUM

The number of errors that occurred on all network interfaces over the cumulative collection time.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For HP-UX, this will be the same as the total sum of the “Inbound Errors” and “Outbound Errors”
values from the output of the “lanadmin” utility for the network interface. Remember that “lanadmin”
reports cumulative counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network
activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs”
(TX-ERR on Linux) from the “netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_ERROR_RATE

The number of errors per second on all network interfaces during the interval.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_ERROR

The number of inbound errors that occurred on all network interfaces during the interval.

A large number of errors may indicate a hardware problem on the network.

HP GlancePlus (11.02)Page 470 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Inbound Errors” values from the output of the
“lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative counts.
As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level
(IP) only.

For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs”
(TX-ERR on Linux) from the “netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_IN_ERROR_CUM

The number of inbound errors that occurred on all network interfaces over the cumulative collection
time.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

A large number of errors may indicate a hardware problem on the network.

For HP-UX, this will be the same as the total sum of the “Inbound Errors” values from the output of
the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative
counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical
level (IP) only.

For all other Unix systems, this is the same as the sum of “Ierrs” (RX-ERR on Linux) and “Oerrs”
(TX-ERR on Linux) from the “netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

HP GlancePlus (11.02)Page 471 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NET_IN_ERROR_PCT

The percentage of inbound network errors to total inbound packet attempts during the interval.
Inbound packet attempts include both packets successfully received and those that encountered
errors.

This does not include data for loopback interface.

A large number of errors may indicate a hardware problem on the network. The percentage of
inbound errors to total packets attempted should remain low.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_ERROR_PCT_CUM

The percentage of inbound network errors to total inbound packet attempts over the cumulative
collection time. Inbound packet attempts include both packets successfully received and those
that encountered errors.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

A large number of errors may indicate a hardware problem on the network. The percentage of
inbound errors to total packets attempted should remain low.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_IN_ERROR_RATE

The number of inbound errors per second on all network interfaces during the interval.

HP GlancePlus (11.02)Page 472 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This does not include data for loopback interface.

A large number of errors may indicate a hardware problem on the network. The percentage of
inbound errors to total packets attempted should remain low.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_ERROR_RATE_CUM

The average number of inbound errors per second on all network interfaces over the cumulative
collection time.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_IN_PACKET

The number of successful packets received through all network interfaces during the interval.
Successful packets are those that have been processed without errors or collisions.

This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Inbound Unicast Packets“ and ”Inbound Non-
Unicast Packets“ values from the output of the “lanadmin” utility for the network interface.
Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and beyond,
“netstat -i” shows network activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of the “Ipkts” column (RX-OK on Linux)
from the “netstat -i” command for a network device. See also netstat(1).

HP GlancePlus (11.02)Page 473 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

OnWindows system, the packet size for NBT connections is defined as 1 Kbyte.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IN_PACKET_CUM

The number of successful packets received through all network interfaces over the cumulative
collection time. Successful packets are those that have been processed without errors or
collisions.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For HP-UX, this will be the same as the total sum of the “Inbound Unicast Packets“ and ”Inbound
Non-Unicast Packets“ values from the output of the “lanadmin” utility for the network interface.
Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and beyond,
“netstat -i” shows network activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of the “Ipkts” column (RX-OK on Linux)
from the “netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_IN_PACKET_RATE

The number of successful packets per second received through all network interfaces during the
interval. Successful packets are those that have been processed without errors or collisions.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

OnWindows system, the packet size for NBT connections is defined as 1 Kbyte.

HP GlancePlus (11.02)Page 474 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_IP_FRAGMENTS_RECEIVED

The number of valid IPv4 datagram fragments received by the host.

GBL_NET_IP_FWD_DATAGRAMS

The number of IPv4 datagrams this host has forwarded. In other words, the number of IPv4
datagrams for which this host has been used as a router.

GBL_NET_IP_REASSEMBLY_REQUIRED

The number of IPv4 datagram fragments sent to this host for local delivery which required
reassembly before being given to the Upper Layer Protocol(s).

GBL_NET_OUTQUEUE

The sum of the outbound queue lengths for all network interfaces (BYNETIF_QUEUE). This metric
is derived from the same source as the OutboundQueue Length shown in the lanadmin(1M)
program.

This does not include data for loopback interface.

For most interfaces, the outbound queue is usually zero. When the value is non-zero over a period
of time, the network may be experiencing a bottleneck. Determine which network interface has a
non-zero queue and compare its traffic levels to normal. Also see if processes are blocking on
network wait states.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_OUT_ERROR

The number of outbound errors that occurred on all network interfaces during the interval.

This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Outbound Errors” values from the output of the
“lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative counts.
As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical level
(IP) only.

For all other Unix systems, this is the same as the sum of “Oerrs” (TX-ERR on Linux) from the
“netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

HP GlancePlus (11.02)Page 475 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NET_OUT_ERROR_CUM

The number of outbound errors that occurred on all network interfaces over the cumulative
collection time.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For HP-UX, this will be the same as the total sum of the “Outbound Errors” values from the output of
the “lanadmin” utility for the network interface. Remember that “lanadmin” reports cumulative
counts. As of the HP-UX 11.0 release and beyond, “netstat -i” shows network activity on the logical
level (IP) only.

For all other Unix systems, this is the same as the sum of “Oerrs” (TX-ERR on Linux) from the
“netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_OUT_ERROR_PCT

The percentage of outbound network errors to total outbound packet attempts during the interval.
Outbound packet attempts include both packets successfully sent and those that encountered
errors.

This does not include data for loopback interface.

The percentage of outbound errors to total packets attempted to be transmitted should remain low.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

HP GlancePlus (11.02)Page 476 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NET_OUT_ERROR_PCT_CUM

The percentage of outbound network errors to total outbound packet attempts over the cumulative
collection time. Outbound packet attempts include both packets successfully sent and those that
encountered errors.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

The percentage of outbound errors to total packets attempted to be transmitted should remain low.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_OUT_ERROR_RATE

The number of outbound errors per second on all network interfaces during the interval.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_OUT_ERROR_RATE_CUM

The number of outbound errors per second on all network interfaces over the cumulative collection
time.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 477 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_OUT_PACKET

The number of successful packets sent through all network interfaces during the last interval.
Successful packets are those that have been processed without errors or collisions.

This does not include data for loopback interface.

For HP-UX, this will be the same as the sum of the “Outbound Unicast Packets“ and ”Outbound
Non-Unicast Packets“ values from the output of the “lanadmin” utility for the network interface.
Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release and beyond,
“netstat -i” shows network activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of the “Opkts” column (TX-OK on Linux)
from the “netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

OnWindows system, the packet size for NBT connections is defined as 1 Kbyte.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_OUT_PACKET_CUM

The number of successful packets sent through all network interfaces over the cumulative
collection time. Successful packets are those that have been processed without errors or
collisions.

This does not include data for loopback interface.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 478 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For HP-UX, this will be the same as the total sum of the “Outbound Unicast Packets“ and
”Outbound Non-Unicast Packets“ values from the output of the “lanadmin” utility for the network
interface. Remember that “lanadmin” reports cumulative counts. As of the HP-UX 11.0 release
and beyond, “netstat -i” shows network activity on the logical level (IP) only.

For all other Unix systems, this is the same as the sum of the “Opkts” column (TX-OK on Linux)
from the “netstat -i” command for a network device. See also netstat(1).

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

GBL_NET_OUT_PACKET_RATE

The number of successful packets per second sent through the network interfaces during the
interval. Successful packets are those that have been processed without errors or collisions.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

OnWindows system, the packet size for NBT connections is defined as 1 Kbyte.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_PACKET

The total number of successful inbound and outbound packets for all network interfaces during the
interval. These are the packets that have been processed without errors or collisions.

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

OnWindows system, the packet size for NBT connections is defined as 1 Kbyte.

GBL_NET_PACKET_RATE

The number of successful packets per second (both inbound and outbound) for all network
interfaces during the interval. Successful packets are those that have been processed without
errors or collisions.

HP GlancePlus (11.02)Page 479 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This does not include data for loopback interface.

This metric is updated at the sampling interval, regardless of the number of IP addresses on the
system.

OnWindows system, the packet size for NBT connections is defined as 1 Kbyte.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_NET_UTIL_PEAK

It is the utilisation of themost used network interfaces at the end of the interval.

GBL_NFS_CALL

The number of NFS calls the local system has made as either a NFS client or server during the
interval.

This includes both successful and unsuccessful calls. Unsuccessful calls are those that cannot be
completed due to resource limitations or LAN packet errors.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

On AIX SystemWPARs, this metric is NA.

GBL_NFS_CALL_RATE

The number of NFS calls per second the systemmade as either a NFS client or NFS server during
the interval.

Each computer can operate as both a NFS server, and as an NFS client.

This metric includes both successful and unsuccessful calls. Unsuccessful calls are those that
cannot be completed due to resource limitations or LAN packeterrors.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

On AIX SystemWPARs, this metric is NA.

GBL_NFS_CLIENT_BAD_CALL

The number of failed NFS client calls during the interval. Calls fail due to lack of system resources
(lack of virtual memory) as well as network errors.

HP GlancePlus (11.02)Page 480 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_CLIENT_BAD_CALL_CUM

The number of failed NFS client calls over the cumulative collection time. Calls fail due to lack of
system resources (lack of virtual memory) as well as network errors.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_CLIENT_BIOD

The current number of biods running (both idle and active) at the end of the interval.

GBL_NFS_CLIENT_BYTE

The total number of KBs the local machine has sent or received as an NFS client during the interval.

Each computer can operate as both an NFS server, and as a NFS client.

GBL_NFS_CLIENT_BYTE_CUM

The total number of KBs the local machine has sent or received as an NFS client over the
cumulative collection time.

Each computer can operate as both an NFS server, and as a NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 481 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_CLIENT_CALL

The number of NFS calls the local machine has processed as a NFS client during the interval.
Calls are the system calls used to initiate physical NFS operations. These calls are not always
successful due to resource constraints or LAN errors, whichmeans that the call rate should exceed
the IO rate. This metric includes both successful and unsuccessful calls.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

GBL_NFS_CLIENT_CALL_CUM

The number of NFS calls the local machine has processed as a NFS client over the cumulative
collection time. Calls are the system calls used to initiate physical NFS operations. These calls
are not always successful due to resource constraints or LAN errors, whichmeans that the call rate
should exceed the IO rate. This metric includes both successful and unsuccessful calls.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

GBL_NFS_CLIENT_CALL_RATE

The number of NFS calls the local machine has processed as a NFS client per second during the
interval. Calls are the system call used to initiate physical NFS operations. These calls are not

HP GlancePlus (11.02)Page 482 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

always successful due to resource constraints or LAN errors, whichmeans that the call rate should
exceed the IO rate. This metric includes both successful and unsuccessful calls.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

GBL_NFS_CLIENT_IDLE_BIOD

The current number of biods inactive at the end of the interval. A value of zero indicates a potential
bottleneck for the NFS client.

GBL_NFS_CLIENT_IO

The number of NFS IOs the local machine has completed as an NFS client during the interval. This
number represents physical IOs sent by the client in contrast to a call which is an attempt to initiate
these operations.

Each computer can operate as both an NFS server, and as a NFS client.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_CLIENT_IO_CUM

The number of NFS IOs the local machine has completed as an NFS client over the cumulative
collection time. This number represents physical IOs sent by the client in contrast to a call which is
an attempt to initiate these operations.

Each computer can operate as both an NFS server, and as a NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

HP GlancePlus (11.02)Page 483 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_CLIENT_IO_PCT

The percentage of NFs IOs the local machine has completed as an NFS client versus total NFS
IOs completed during the interval. This number represents physical IOs sent by the client in
contrast to a call which is an attempt to initiate these operations.

Each computer can operate as both an NFS server, and as a NFS client.

A percentage greater than 50 indicates that this machine is actingmore as a client. A percentage
less than 50 indicates this machine is actingmore as a server for others.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_CLIENT_IO_PCT_CUM

The percentage of NFS IOs the local machine has completed as an NFS client versus total NFS
IOs completed over the cumulative collection time. This number represents physical IOs sent by
the client in contrast to a call which is an attempt to initiate these operations.

Each computer can operate as both an NFS server, and as a NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

A percentage greater than 50 indicates that this machine is actingmore as a client. A percentage
less than 50 indicates this machine is actingmore as a server for others.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_CLIENT_IO_RATE

The number of NFS IOs per second the local machine has completed as an NFS client during the
interval. This number represents physical IOs sent by the client in contrast to a call which is an
attempt to initiate these operations.

Each computer can operate as both an NFS server, and as a NFS client.

HP GlancePlus (11.02)Page 484 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_CLIENT_IO_RATE_CUM

The number of NFS IOs per second the local machine has completed as an NFS client over the
cumulative collection time. This number represents physical IOs sent by the client in contrast to a
call which is an attempt to initiate these operations.

Each computer can operate as both an NFS server, and as a NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_CLIENT_PHYS_TIME

The time, in seconds, spent to service all NFS operations as a NFS client during the last interval.
This is measured from the time the operation gets onto the physical network until the time a reply is
received from the network. In other words, this is the “service time” less the local machine's
software overhead.

GBL_NFS_CLIENT_PHYS_TIME_CUM

The time, in seconds, spent to service all NFS operations as a NFS client over the cumulative
collection time. This is measured from the time the operation gets onto the physical network until
the time a reply is received from the network. In other words, this is the “service time” less the local
machine's software overhead.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 485 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_CLIENT_READ_BYTE_RATE

The number of KBs per second the system received as an NFS client doing read operations during
the interval.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

GBL_NFS_CLIENT_READ_BYTE_RATE_CUM

The average number of KBs per second the system received as an NFS client doing read
operations over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

HP GlancePlus (11.02)Page 486 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_CLIENT_READ_RATE

The number of NFS “read” operations per second the system generated as an NFS client during the
interval.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

GBL_NFS_CLIENT_READ_RATE_CUM

The average number of NFS “read” operations per second the system generated as an NFS client
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

GBL_NFS_CLIENT_SERVICE_QUEUE

The number of pending NFS client operations during the interval. This value increases as the
service time increases and/or as the rate of client requests increases.

GBL_NFS_CLIENT_SERVICE_QUEUE_CUM

The average number of pending NFS client operations per interval over the cumulative collection
time. Queue length increases as the service time increases and/or as the rate of client requests
increases.

HP GlancePlus (11.02)Page 487 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_CLIENT_SERVICE_TIME

The time, in seconds, spent to service all NFS operations as a NFS client during the last interval.
This is the time from the point that the client originates the requests to the point replies are received
including IO buffering, NFS and network software layer delays, physical network latency, and NFS
server service time. It is not ameasure of the average response time per NFS request. This can be
thought of as the round-trip time for all NFS requests made during the interval.

GBL_NFS_CLIENT_SERVICE_TIME_CUM

The time, in seconds, spent to service all NFS operations as a NFS client over the cumulative
collection time. This is the time from the point that the client originates the request to the point a
reply is received including IO buffering, NFS and network software layer delays, physical network
latency, and NFS server service time. It is not ameasure of the average response time per nfs
request. This can be thought of as the round-trip time for all nfs requests.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 488 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_CLIENT_WRITE_BYTE_RATE

The number of KBs per second the system sent over the network as an NFS client doing write
operations during the interval.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

GBL_NFS_CLIENT_WRITE_BYTE_RATE_CUM

The average number of KBs per second the system sent over the network as an NFS client doing
write operations over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

GBL_NFS_CLIENT_WRITE_RATE

The number of NFS “write” operations per second the system generated as an NFS client during the
interval.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

HP GlancePlus (11.02)Page 489 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_CLIENT_WRITE_RATE_CUM

The average number of NFS “write” operations per second the system generated as an NFS client
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

GBL_NFS_LOGL_READ

The number of logical reads made to NFS disks by the local machine as a NFS client during the
interval.

Each computer can operate as both a NFS server, and as an NFS client. For this metric the local
machine is acting as a NFS client (that is, the disks are remote) since if it were acting as a server
the logical disk requests would be going to local disks. These logical requests do not necessarily
result in a physical IO request across the NFS link.

GBL_NFS_LOGL_READ_BYTE

The number of KBs transferred through logical reads to NFS disks by the local machine during the
interval. Note that these are transfers by read calls, not physical IO.

GBL_NFS_LOGL_READ_BYTE_CUM

The number of KBs transferred through logical reads to NFS disks by the local machine over the
cumulative collection time. Note that these are transfers by read calls, not physical IO.

HP GlancePlus (11.02)Page 490 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_LOGL_READ_CUM

The total number of logical reads made to NFS disks by the local machine as a NFS client over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Each computer can operate as both a NFS server, and as an NFS client. For this metric the local
machine is acting as an NFS client (the disks are remote) since if it were acting as a server the
logical disk requests would be going to local disks. These logical requests do not necessarily result
in a physical IO request across the NFS link.

GBL_NFS_LOGL_READ_PCT

The percentage of logical reads to total logical reads and writes to NFS disks by the local machine
during the interval.

HP GlancePlus (11.02)Page 491 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_LOGL_READ_PCT_CUM

The average percentage of logical reads to total logical reads and writes to NFS disks by the local
machine over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_LOGL_READ_RATE

The number of logical reads per secondmade to NFS disks by the local machine during the interval.

GBL_NFS_LOGL_READ_RATE_CUM

The average number of logical reads per secondmade to NFS disks by the local machine over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 492 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_LOGL_WRITE

The number of logical writes made to NFS disks by the local machine during the interval.

Each computer can operate as both a NFS server, and as a NFS client. For this metric the local
machine is acting as an NFS client (the disks are remote) since if it were acting as a server the
logical disk requests would be going to local disks. These logical requests do not necessarily result
in a physical IO request across the NFS link.

GBL_NFS_LOGL_WRITE_BYTE

The number of KBs transferred through logical writes to NFS disks by the local machine during the
interval. Note that these are transfers by write calls, not physical IO.

GBL_NFS_LOGL_WRITE_BYTE_CUM

The number of KBs transferred through logical writes to NFS disks by the local machine over the
cumulative collection time. Note that these are transfers by write calls, not physical IO.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_LOGL_WRITE_CUM

The total number of logical writes made to NFS disks by the local machine over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 493 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Each computer can operate as both a NFS server, and as a NFS client. For this metric the local
machine is acting as an NFS client (the disks are remote) since if it were acting as a server the
logical disk requests would be going to local disks. These logical requests do not necessarily result
in a physical IO request across the NFS link.

GBL_NFS_LOGL_WRITE_PCT

The percentage of logical writes to total logical reads and writes to NFS disks by the local machine
during the interval.

GBL_NFS_LOGL_WRITE_PCT_CUM

The average percentage of logical writes to total logical IO to NFS disks by the local machine over
the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_LOGL_WRITE_RATE

The number of logical writes per secondmade to NFS disks by the local machine during the
interval.

HP GlancePlus (11.02)Page 494 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_LOGL_WRITE_RATE_CUM

The average number of logical writes per secondmade to NFS disks by the local machine over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_QUEUE

The average number of processes or kernel threads blocked on NFS (waiting for their network file
system IO to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
NFS divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 495 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_SERVER_BAD_CALL

The number of failed NFS server calls during the interval. Calls fail due to lack of system resources
(lack of virtual memory) as well as network errors.

GBL_NFS_SERVER_BAD_CALL_CUM

The number of failed NFS server calls over the cumulative collection time. Calls fail due to lack of
system resources (lack of virtual memory) as well as network errors.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_SERVER_BYTE

The number of KBs the local machine has processed as a NFS server during the interval.

Each computer can operate as both a NFS server, and as an NFS client.

GBL_NFS_SERVER_BYTE_CUM

The number of KBs the local machine has processed as a NFS server over the cumulative
collection time.

Each computer can operate as both a NFS server, and as an NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 496 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_SERVER_CALL

The number of NFS calls the local machine has processed as a NFS server during the interval.

Calls are the system calls used to initiate physical NFS operations. These calls are not always
successful due to resource constraints or LAN errors, whichmeans that the call rate could exceed
the IO rate. This metric includes both successful and unsuccessful calls.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

GBL_NFS_SERVER_CALL_CUM

The number of NFS calls the local machine has processed as a NFS server over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Calls are the system calls used to initiate physical NFS operations. These calls are not always
successful due to resource constraints or LAN errors, whichmeans that the call rate could exceed
the IO rate. This metric includes both successful and unsuccessful calls.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

HP GlancePlus (11.02)Page 497 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_SERVER_CALL_RATE

The number of NFS calls the local machine has processed per second as a NFS server during the
interval.

Calls are the system calls used to initiate physical NFS operations. These calls are not always
successful due to resource constraints or LAN errors, whichmeans that the call rate could exceed
the IO rate. This metric includes both successful and unsuccessful calls.

NFS calls include create, remove, rename, link, symlink, mkdir, rmdir, statfs, getattr, setattr,
lookup, read, readdir, readlink, write, writecache, null and root operations.

GBL_NFS_SERVER_IO

The number of NFS IOs the local machine has completed as an NFS server during the interval.
This number represents physical IOs received by the serverein contrast to a call which is an
attempt to initiate these operations.

Each computer can operate as both a NFS server, and as an NFS client.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_SERVER_IO_CUM

The number of NFS IOs the local machine has completed as an NFS server over the cumulative
collection time. This number represents physical IOs received by the server n contrast to a call
which is an attempt to initiate these operations.

Each computer can operate as both a NFS server, and as an NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

HP GlancePlus (11.02)Page 498 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_SERVER_IO_PCT

The percentage of NFS IOs the local machine has completed as an NFS server versus total NFS
IOs completed during the interval. This number represents physical IOs received by the server in
contrast to a call which is an attempt to initiate these operations.

Each computer can operate as both a NFS server, and as an NFS client.

A percentage greater than 50 indicates that this machine is actingmore as a server for others. A
percentage less than 50 indicates this machine is actingmore as a client.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_SERVER_IO_PCT_CUM

The percentage of NFs IOs the local machine has completed as an NFS server versus total NFS
IOs completed over the cumulative collection time. This number represents physical IOs received
by the server in contrast to a call which is an attempt to initiate these operations.

Each computer can operate as both a NFS server, and as an NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

A percentage greater than 50 indicates that this machine is actingmore as a server for others. A
percentage less than 50 indicates this machine is actingmore as a client.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_SERVER_IO_RATE

The number of NFS IOs per second the local machine has completed as an NFS server during the
interval. This number represents physical IOs received by the server in contrast to a call which is
an attempt to initiate these operations.

Each computer can operate as both a NFS server, and as an NFS client.

HP GlancePlus (11.02)Page 499 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_SERVER_IO_RATE_CUM

The number of NFS IOs per second the local machine has completed as an NFS server over the
cumulative collection time. This number represents physical IOs received by the server in contrast
to a call which is an attempt to initiate these operations.

Each computer can operate as both a NFS server, and as an NFS client.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS IOs include reads and writes from successful calls to getattr, setattr, lookup, read, readdir,
readlink, write, and writecache.

GBL_NFS_SERVER_READ_BYTE_RATE

The number of KBs per second the system sent as a NFS server responding to NFS read
operations from client nodes during the interval.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

GBL_NFS_SERVER_READ_BYTE_RATE_CUM

The average number of KBs per second the system sent as an NFS server responding to NFS read
operations from client nodes over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 500 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

GBL_NFS_SERVER_READ_RATE

The number of NFS “read” operations per second the system processed as an NFS server during
the interval.

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

GBL_NFS_SERVER_READ_RATE_CUM

The average number of NFS “read” operations per second the system processed as an NFS server
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 501 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

NFS Version 2 read operations consist of getattr, lookup, readlink, readdir, null, root, statfs, and
read.

NFS Version 3 read operations consist of getattr, lookup, access, readlink, read, readdir,
readdirplus, fsstat, fsinfo, and null.

GBL_NFS_SERVER_SERVICE_TIME

The time, in seconds, spent for the NFS server to process the client's operations during the
interval. This includes all of the time from the point that the operations are received to the point
where a reply is sent back to the client, which includes software overhead and any local disk IOs.
This is not an average service time per operation; it is the total service time for all operations
processed during the interval.

GBL_NFS_SERVER_SERVICE_TIME_CUM

The time, in seconds, spent for the NFS server to process the client's operations over the
cumulative collection time. This includes all of the time from the point that the operations are
received to the point where a reply is sent back to the client, which includes software overhead and
any local disk IOs. This is not an average service time per operation; it is the total service time for
all operations processed.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_NFS_SERVER_WRITE_BYTE_RATE

The number of KBs per second the system received over the network as an NFS server performing
write operations for client nodes during the interval.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

HP GlancePlus (11.02)Page 502 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NFS_SERVER_WRITE_BYTE_RATE_CUM

The average number of KBs per second the system received over the network as an NFS server
performing write operations for client nodes over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

GBL_NFS_SERVER_WRITE_RATE

The number of NFS “write” operations per second the system processed as an NFS server during
the interval.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

GBL_NFS_SERVER_WRITE_RATE_CUM

The average number of NFS “write” operations per second the system processed as an NFS server
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 503 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

NFS Version 2 write operations consist of setattr, write, writecache, create, remove, rename, link,
symlink, mkdir, and rmdir.

NFS Version 3 write operations consist of setattr, write, create, mkdir, symlink, mknod, remove,
rmdir, rename, link, pathconf, and commit.

GBL_NFS_WAIT_PCT

The percentage of time processes or kernel threads were blocked on NFS (waiting for their network
file system IO to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
NFS divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_NFS_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on NFS
(waiting for their network file system IO to complete) during the interval.

HP GlancePlus (11.02)Page 504 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NODENAME

OnUnix systems, this is the name of the computer as returned by the command “uname -n” (that is,
the string returned from the “hostname” program).

OnWindows, this is the name of the computer as returned by GetComputerName.

GBL_NUM_ACTIVE_LS

This indicates the number of LS hosted in a system that are active . If Perf Agent is installed in a
guest or in a standalone system this value will be 0.

On Solaris non-global zones, this metric shows value as 0.

GBL_NUM_APP

The number of applications defined in the parm file plus one (for “other”).

The application called “other” captures all other processes not defined in the parm file.

You can define up to 999 applications.

GBL_NUM_APP_PRM

The number of PRM groups configured - 1 per PRMGroup ID. HP-UX supports up to 64 unique
PRMGroups.

GBL_NUM_CPU

The number of physical CPUs on the system. This includes all CPUs, either online or offline. For
HP-UX and certain versions of Linux, the sar(1M) command allows you to check the status of the
system CPUs. For SUN and DEC, the commands psrinfo(1M) and psradm(1M) allow you to check
or change the status of the system CPUs. For AIX, this metric indicates themaximum number of
CPUs the system ever had.

On a logical system, this metric indicates the number of virtual CPUs configured. When hardware
threads are enabled, this metric indicates the number of logical processors.

On Solaris non-global zones with Uncapped CPUs, this metric shows data from the global zone.

On AIX SystemWPARs, this metric value is identical to the value on AIX Global Environment.

The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This
means that there is no way to find out types, speeds, as well as hardware IDs or any other
information that is used to determine the number of cores, the number of threads, the
HyperThreading state, etc... If the agent (or Glance) is started while some of the CPUs are
disabled, some of thesemetrics will be “na”, somewill be based on what is visible at startup time.
All information will be updated if/when additional CPUs are enabled and information about them
becomes available. The configuration counts will remain at the highest discovered level (i.e. if

HP GlancePlus (11.02)Page 505 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

CPUs are then disabled, themaximum number of CPUs/cores/etc... will remain at the highest
observed level). It is recommended that the agent be started with all CPUs enabled.

GBL_NUM_CPU_CORE

This metric provides the total number of CPU cores on a physical system. On VMs, this metric
shows information according to resources available on that VM. On non HP-UX system, this
metric is equivalent to active CPU cores. On AIX SystemWPARs, this metric value is identical to
the value on AIX Global Environment. OnWindows, this metric will be “na” onWindows Server
2003 Itanium systems.

The Linux kernel currently doesn't provide any metadata information for disabled CPUs. This
means that there is no way to find out types, speeds, as well as hardware IDs or any other
information that is used to determine the number of cores, the number of threads, the
HyperThreading state, etc... If the agent (or Glance) is started while some of the CPUs are
disabled, some of thesemetrics will be “na”, somewill be based on what is visible at startup time.
All information will be updated if/when additional CPUs are enabled and information about them
becomes available. The configuration counts will remain at the highest discovered level (i.e. if
CPUs are then disabled, themaximum number of CPUs/cores/etc... will remain at the highest
observed level). It is recommended that the agent be started with all CPUs enabled.

GBL_NUM_DISK

The number of disks on the system. Only local disk devices are counted in this metric.

On HP-UX, this is a count of the number of disks on the system that have ever had activity over the
cumulative collection time.

On Solaris non-global zones, this metric shows value as 0.

On AIX SystemWPARs, this metric shows value as 0.

GBL_NUM_HBA

The number of Host Bus adaptors on the system. This metric is supported on HP-UX 11iv3 and
above.

GBL_NUM_LDOM

The number of active Locality Domains in the system.

GBL_NUM_LS

This indicates the number of LS hosted in a system. If Perf Agent is installed in a guest or in a
standalone system this value will be 0.

On Solaris non-global zones, this metric shows value as 0.

HP GlancePlus (11.02)Page 506 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NUM_NETWORK

The number of network interfaces on the system. This includes the loopback interface. On certain
platforms, this also include FDDI, Hyperfabric, ATM, Serial Software interfaces such as SLIP or
PPP, andWide Area Network interfaces (WAN) such as ISDN or X.25. The “netstat -i” command
also displays the list of network interfaces on the system.

GBL_NUM_SOCKET

The number of physical cpu sockets on the system. On VMs, this metric shows information
according to resources available on that VM.

OnWindows, this metric will be “na” onWindows Server 2003 Itanium systems.

GBL_NUM_SWAP

The number of configured swap areas.

GBL_NUM_TAPE

The number of Tape devices attached to the system. This metric is supported on HP-UX 11iv3 and
above.

GBL_NUM_TT

The number of unique Transaction Tracker (TT) transactions that have been registered on this
system.

GBL_NUM_USER

The number of users logged in at the time of the interval sample. This is the same as the command
“who | wc -l”.

For Unix systems, the information for this metric comes from the utmp file which is updated by the
login command. For more information, read theman page for utmp. Some applications may create
users on the system without using login and updating the utmp file. These users are not reflected in
this count.

This metric can be a general indicator of system usage. In a networked environment, however,
users may maintain inactive logins on several systems.

OnWindows, the information for this metric comes from the Server Sessions counter in the
Performance Libraries Server object. It is a count of the number of users using this machine as a
file server.

HP GlancePlus (11.02)Page 507 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_NUM_VG

The number of available volume groups.

GBL_NUM_VSWITCH

The number of virtual switches configured on the host system.

GBL_OSKERNELTYPE

This indicates the word size of the current kernel on the system. Some hardware can load the 64-
bit kernel or the 32-bit kernel.

GBL_OSKERNELTYPE_INT

This indicates the word size of the current kernel on the system. Some hardware can load the 64-
bit kernel or the 32-bit kernel.

GBL_OSNAME

A string representing the name of the operating system. On Unix systems, this is the same as the
output from the “uname -s” command.

GBL_OSRELEASE

The current release of the operating system.

Onmost Unix systems, this is same as the output from the “uname -r” command.

On AIX, this is the actual patch level of the operating system. This is similar to what is returned by
the command “lslpp -l bos.rte” as themost recent level of the COMMITTED BaseOS Runtime. For
example, “5.2.0”.

GBL_OSVERSION

A string representing the version of the operating system. This is the same as the output from the
“uname -v” command. This string is limited to 20 characters, and as a result, the complete version
namemight be truncated.

OnWindows, this is a string representing the service pack installed on the operating system.

HP GlancePlus (11.02)Page 508 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_OTHER_IO_QUEUE

The average number of processes or kernel threads blocked on “other IO” during the interval. “Other
IO” includes all IO directed at a device (connected to the local computer) which is not a terminal or
LAN. Examples of “other IO” devices are local printers, tapes, instruments, and disks. Time
waiting for character (raw) IO to disks is included in this measurement. Time waiting for file
systembuffered IO to disks will typically been seen as IO or CACHE wait. Time waiting for IO to
NFS disks is reported as NFS wait.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
other IO divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_OTHER_IO_WAIT_PCT

The percentage of time processes or kernel threads were blocked on “other IO” during the interval.
“Other IO” includes all IO directed at a device (connected to the local computer) which is not a
terminal or LAN. Examples of “other IO” devices are local printers, tapes, instruments, and disks.
Time waiting for character (raw) IO to disks is included in this measurement. Time waiting for file
systembuffered IO to disks will typically been seen as IO or CACHE wait. Time waiting for IO to
NFS disks is reported as NFS wait.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
other IO divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not

HP GlancePlus (11.02)Page 509 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_OTHER_IO_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on “other IO”
during the interval. “Other IO” includes all IO directed at a device (connected to the local computer)
which is not a terminal or LAN. Examples of “other IO” devices are local printers, tapes,
instruments, and disks. Time waiting for character (raw) IO to disks is included in this
measurement. Time waiting for file systembuffered IO to disks will typically been seen as IO or
CACHE wait. Time waiting for IO to NFS disks is reported as NFS wait.

GBL_OTHER_QUEUE

The average number of processes or kernel threads blocked on other (unknown) activities during
the interval. This includes processes or kernel threads that were started and subsequently
suspended before themidaemonwas started and have not been resumed, or the block state is
unknown.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
OTHER divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_OTHER_WAIT_PCT

The percentage of time processes or kernel threads were blocked on other (unknown) activities
during the interval. This includes processes or kernel threads that were started and subsequently

HP GlancePlus (11.02)Page 510 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

suspended before themidaemonwas started and have not been resumed, or the block state is
unknown.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
OTHER divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_OTHER_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on other
(unknown) activities during the interval. This includes processes or kernel threads that were started
and subsequently suspended before themidaemonwas started and have not been resumed, or the
block state is unknown.

GBL_PIPE_QUEUE

The average number of processes or kernel threads blocked onPIPE (waiting for pipe
communication to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
PIPE divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

HP GlancePlus (11.02)Page 511 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_PIPE_WAIT_PCT

The percentage of time processes or kernel threads were blocked onPIPE (waiting for pipe
communication to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
PIPE divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_PIPE_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked onPIPE
(waiting for pipe communication to complete) during the interval.

GBL_PRI_QUEUE

The average number of processes or kernel threads blocked on PRI (waiting for their priority to
become high enough to get the CPU) during the interval.

To determine if the CPU is a bottleneck, compare this metric with GBL_CPU_TOTAL_UTIL. If
GBL_CPU_TOTAL_UTIL is near 100 percent andGBL_PRI_QUEUE is greater than three, there is
a high probability of a CPU bottleneck.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
PRI divided by the interval time.

HP-UX RUN/PRI/CPU Queue differences for multi-cpu systems:

HP GlancePlus (11.02)Page 512 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example, let's assumewe're using a system with eight processors. We start eight CPU
intensive threads that consume almost all of the CPU resources. The approximate values shown
for the CPU related queuemetrics would be:

GBL_RUN_QUEUE = 1.0
GBL_PRI_QUEUE = 0.1
GBL_CPU_QUEUE = 1.0

Assumewe start an additional eight CPU intensive threads. The approximate values now shown
are:

GBL_RUN_QUEUE = 2.0
GBL_PRI_QUEUE = 8.0
GBL_CPU_QUEUE = 16.0

At this point, we have sixteen CPU intensive threads running on the eight processors. Keeping the
definitions of the three queuemetrics in mind, the run queue is 2 (that is, 16 / 8); the pri queue is 8
(only half of the threads can be active at any given time); and the cpu queue is 16 (half of the
threads waiting in the cpu queue that are ready to run, plus one for each active thread).

This illustrates that the run queue is the average of number of threads waiting in the runqueue for all
processors; the pri queue is the number of threads that are blocked on “PRI” (priority); and the cpu
queue is the number of threads in the cpu queue that are ready to run, including the threads using
the CPU.

Note that if the value for GBL_PRI_QUEUE greatly exceeds the value for GBL_RUN_QUEUE,
this may be a side-effect of themeasurement interface having lost trace data. In this case, check
the value of the GBL_LOST_MI_TRACE_BUFFERS metric. If there has been buffer loss, you can
correct the value of GBL_PRI_QUEUE by restarting themidaemon and the performance tools. You
can use the /opt/perf/bin/midaemon -T command to force immediate shutdown of themeasurement
interface.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 513 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_PRI_WAIT_PCT

The percentage of time processes or kernel threads were blocked on PRI (waiting for their priority to
become high enough to get the CPU) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
PRI divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_PRI_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on PRI
(waiting for their priority to become high enough to get the CPU) during the interval.

GBL_PRM_MEM_UTIL

The total percent of memory used by processes within the PRM groups during the interval. This
does not include system processes (processes attached to PRM group 0).

GBL_PROC_RUN_TIME

The average run time, in seconds, for processes that terminated during the interval.

GBL_PROC_SAMPLE

The number of process data samples that have been averaged into global metrics (such as GBL_
ACTIVE_PROC) that are based on process samples.

HP GlancePlus (11.02)Page 514 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_RPC_QUEUE

The average number of processes or kernel threads blocked on RPC (waiting for their remote
procedure calls to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
RPC divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_RPC_WAIT_PCT

The percentage of time processes or kernel threads were blocked on RPC (waiting for their remote
procedure calls to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
RPC divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 515 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_RPC_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on RPC
(waiting for their remote procedure calls to complete) during the interval.

GBL_RUN_QUEUE

OnUNIX systems except Linux, this is the average number of threads waiting in the runqueue over
the interval. The average is computed against the number of times the run queue is occupied
instead of time. The average is updated by the kernel at a fine grain interval, only when the run
queue is occupied. It is not averaged against the interval and can therefore bemisleading for long
intervals when the run queue is empty most or part of the time. This valuematches runq-sz reported
by the “sar -q” command. TheGBL_LOADAVG* metrics are better indicators of run queue pressure.

On Linux andWindows, this is instantaneous value obtained at the time of logging. On Linux, it
shows the number of threads waiting in the runqueue. OnWindows, it shows the Processor Queue
Length.

On Unix systems, GBL_RUN_QUEUE will typically be a small number. Larger than normal values
for this metric indicate CPU contention among threads. This CPU bottleneck is also normally
indicated by 100 percent GBL_CPU_TOTAL_UTIL. It may beOK to haveGBL_CPU_TOTAL_
UTIL be 100 percent if no other threads are waiting for the CPU. However, if GBL_CPU_TOTAL_
UTIL is 100 percent andGBL_RUN_QUEUE is greater than the number of processors, it indicates
a CPU bottleneck.

OnWindows, the Processor Queue reflects a count of process threads which are ready to execute.
A thread is ready to execute (in the Ready state) when the only resource it is waiting on is the
processor. TheWindows operating system itself has many system threads which intermittently
use small amounts of processor time. Several low priority threads intermittently wake up and
execute for very short intervals. Depending on when the collection process samples this queue,
theremay be none or several of these low-priority threads trying to execute. Therefore, even on an
otherwise quiescent system, the Processor Queue Length can be high. High values for this metric
during intervals where the overall CPU utilization (gbl_cpu_total_util) is low do not indicate a
performance bottleneck. Relatively high values for this metric during intervals where the overall
CPU utilization is near 100% can indicate a CPU performance bottleneck.

HP-UX RUN/PRI/CPU Queue differences for multi-cpu systems:

For example, let's assumewe're using a system with eight processors. We start eight CPU
intensive threads that consume almost all of the CPU resources. The approximate values shown
for the CPU related queuemetrics would be:

GBL_RUN_QUEUE = 1.0
GBL_PRI_QUEUE = 0.1
GBL_CPU_QUEUE = 1.0

Assumewe start an additional eight CPU intensive threads. The approximate values now shown
are:

HP GlancePlus (11.02)Page 516 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_RUN_QUEUE = 2.0
GBL_PRI_QUEUE = 8.0
GBL_CPU_QUEUE = 16.0

At this point, we have sixteen CPU intensive threads running on the eight processors. Keeping the
definitions of the three queuemetrics in mind, the run queue is 2 (that is, 16 / 8); the pri queue is 8
(only half of the threads can be active at any given time); and the cpu queue is 16 (half of the
threads waiting in the cpu queue that are ready to run, plus one for each active thread).

This illustrates that the run queue is the average of number of threads waiting in the runqueue for all
processors; the pri queue is the number of threads that are blocked on “PRI” (priority); and the cpu
queue is the number of threads in the cpu queue that are ready to run, including the threads using
the CPU.

On Solaris non-global zones, this metric shows data from the global zone.

GBL_RUN_QUEUE_CUM

OnUNIX systems except Linux, this is the average number of threads waiting in the runqueue over
the cumulative collection time.

On Linux, this is approximately the number of threads waiting in the runqueue over the cumulative
collection time.

OnWindows, this is approximately the average Processor Queue Length over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

In this case, this metric is a cumulative average of data that was collected as an average. This
metric is derived from GBL_RUN_QUEUE.

HP-UX RUN/PRI/CPU Queue differences for multi-cpu systems:

For example, let's assumewe're using a system with eight processors. We start eight CPU
intensive threads that consume almost all of the CPU resources. The approximate values shown
for the CPU related queuemetrics would be:

HP GlancePlus (11.02)Page 517 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_RUN_QUEUE = 1.0
GBL_PRI_QUEUE = 0.1
GBL_CPU_QUEUE = 1.0

Assumewe start an additional eight CPU intensive threads. The approximate values now shown
are:

GBL_RUN_QUEUE = 2.0
GBL_PRI_QUEUE = 8.0
GBL_CPU_QUEUE = 16.0

At this point, we have sixteen CPU intensive threads running on the eight processors. Keeping the
definitions of the three queuemetrics in mind, the run queue is 2 (that is, 16 / 8); the pri queue is 8
(only half of the threads can be active at any given time); and the cpu queue is 16 (half of the
threads waiting in the cpu queue that are ready to run, plus one for each active thread).

This illustrates that the run queue is the average of number of threads waiting in the runqueue for all
processors; the pri queue is the number of threads that are blocked on “PRI” (priority); and the cpu
queue is the number of threads in the cpu queue that are ready to run, including the threads using
the CPU.

GBL_RUN_QUEUE_HIGH

OnUNIX systems except Linux, this is the highest value of average number of threads waiting in
the runqueue during any interval over the cumulative collection time.

On Linux, this is the highest value of number of threads waiting in the runqueue during any interval
over the cumulative collection time.

GBL_SAMPLE

The number of data samples (intervals) that have occurred over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 518 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

GBL_SEM_QUEUE

The average number of processes or kernel threads blocked onsemaphores (waiting for their
semaphore operations to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
PRI (that is, priority) divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SEM_WAIT_PCT

The percentage of time processes or kernel threads were blocked onsemaphores (waiting on a
semaphore operation) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
SEM (that is, semaphores) divided by the accumulated time that all processes or kernel threads
were alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the

HP GlancePlus (11.02)Page 519 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SEM_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked
onsemaphores (waiting for their semaphore operations to complete) during the interval.

GBL_SERIALNO

OnHP-UX, this is the ID number of the computer as returned by the command “uname -i”. If this
value is not available, an empty string is returned.

On SUN, this is the ASCII representation of the hardware-specific serial number. This is printed in
hexadecimal as presented by the “hostid” commandwhen possible. If that is not possible, the
decimal format is provided instead.

On AIX, this is themachine ID number as returned by the command “uname -m”. This number has
the form xxyyyyyymmss. For the RISC System/6000, “xx” position is always 00. The “yyyyyy”
positions contain the unique ID number for the central processing unit (cpu). While “mm” represents
themodel number, and “ss” is the submodel number (always 00).

On Linux, this is the ASCII representation of the hardware-specific serial number, as returned by
the command “hostid”.

GBL_SLEEP_QUEUE

The average number of processes or kernel threads blocked on SLEEP (waiting to awaken from
sleep system calls) during the interval. A process or kernel thread enters the SLEEP state by
putting itself to sleep using system calls such as sleep, wait, pause, sigpause, sigsuspend, poll
and select.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
SLEEP divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the

HP GlancePlus (11.02)Page 520 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SLEEP_WAIT_PCT

The percentage of time processes or kernel threads were blocked on SLEEP (waiting to awaken
from sleep system calls) during the interval. A process or kernel thread enters the SLEEP state by
putting itself to sleep using system calls such as sleep, wait, pause, sigpause, sigsuspend, poll
and select.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
SLEEP divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SLEEP_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on SLEEP
(waiting to awaken from sleep system calls) during the interval. A process or kernel thread enters
the SLEEP state by putting itself to sleep using system calls such as sleep, wait, pause, sigpause,
sigsuspend, poll and select.

GBL_SOCKET_QUEUE

The average number of processes or kernel threads blocked on sockets (waiting for their IO to
complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
SOCKT (that is, sockets) divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

HP GlancePlus (11.02)Page 521 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SOCKET_WAIT_PCT

The percentage of time processes or kernel threads were blocked on sockets (waiting for their IO to
complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
SOCKT (that is, sockets) divided by the accumulated time that all processes or threads were alive
during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SOCKET_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on sockets
(waiting for their IO to complete) during the interval.

GBL_STARTDATE

The date that the collector started.

HP GlancePlus (11.02)Page 522 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_STARTED_PROC

The number of processes that started during the interval.

GBL_STARTED_PROC_RATE

The number of processes that started per second during the interval.

GBL_STARTTIME

The time of day that the collector started.

GBL_STATDATE

The date at the end of the interval, based on local time.

GBL_STATTIME

An ASCII string representing the time at the end of the interval, based on local time.

GBL_STREAM_QUEUE

The average number of processes or kernel threads blocked on streams IO (waiting for a streams
IO operation to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
STRMS (that is, streams IO) divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

HP GlancePlus (11.02)Page 523 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_STREAM_WAIT_PCT

The percentage of time processes or kernel threads were blocked on streams IO (waiting for a
streams IO operation to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
STRMS (that is, streams IO) divided by the accumulated time that all processes or kernel threads
were alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_STREAM_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on streams IO
(waiting for a streams IO operation to complete) during the interval.

GBL_SWAP_RESERVED_ONLY_UTIL

The percentage of available swap space reserved (for currently running programs), but not yet used.

Swap spacemust be reserved (but not allocated) before virtual memory can be created. Swap
space locations are actually assigned (used) when a page is actually written to disk.

On HP-UX, when compared to the “swapinfo -mt” command results, this is calculated as:

Util = ((USED: reserve)
/ (AVAIL: total)) * 100

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

HP GlancePlus (11.02)Page 524 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_SWAP_SPACE_AVAIL

The total amount of potential swap space, in MB.

OnHP-UX, this is the sum of the device swap areas enabled by the swapon command, the
allocated size of any file system swap areas, and the allocated size of pseudo swap inmemory if
enabled. Note that this is potential swap space. This is the same as (AVAIL: total) as reported by
the “swapinfo -mt” command.

On SUN, this is the total amount of swap space available from the physical backing store devices
(disks) plus the amount currently available frommainmemory. This is the same as (used +
available) /1024, reported by the “swap -s” command.

On Linux, this is same as (Swap: total) as reported by the “free -m” command.

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_SWAP_SPACE_AVAIL_KB

The total amount of potential swap space, in KB.

OnHP-UX, this is the sum of the device swap areas enabled by the swapon command, the
allocated size of any file system swap areas, and the allocated size of pseudo swap inmemory if
enabled. Note that this is potential swap space. Since swap is allocated in fixed (SWCHUNK)
sizes, not all of this spacemay actually be usable. For example, on a 61MB disk using 2MB swap
size allocations, 1MB remains unusable and is considered wasted space.

OnHP-UX, this is the same as (AVAIL: total) as reported by the “swapinfo -t” command.

On SUN, this is the total amount of swap space available from the physical backing store devices
(disks) plus the amount currently available frommainmemory. This is the same as (used +
available)/1024, reported by the “swap -s” command.

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

On AIX SystemWPARs, this metric is NA.

GBL_SWAP_SPACE_DEVICE_UTIL

OnHP-UX, this is the percentage of device swap space currently in use of the total swap space
available. This does not include file system or remote swap space.

OnHP-UX, note that available swap is only potential swap space. Since swap is allocated in fixed
(SWCHUNK) sizes, not all of this spacemay actually be usable. For example, on a 61MB disk
using 2MB swap size allocations, 1MB remains unusable and is considered wasted space.

HP GlancePlus (11.02)Page 525 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Consequently, 100 percent utilization on a single device is not always obtainable. The wasted
swap space, and the remainder of allocated SWCHUNKs that have not been used is what is
reported in the hold field of the /usr/sbin/swapinfo command.

OnHP-UX, when compared to the “swapinfo -mt” command results, this is calculated as:

Util = ((USED: dev) sum
/ (AVAIL: total)) * 100

OnSUN, this is the percentage of total system device swap space currently in use. This metric
only gives the percentage of swap space used from the available physical swap device space, and
does not include thememory that can be used for swap. (On SunOS 5.X, the virtual swap swapfs
can allocate swap space frommemory.)

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

GBL_SWAP_SPACE_FS_UTIL

OnHP-UX, this is the percentage file system swap space currently in use of the total swap space
available. This includes both local and NFS file system swap. Since file system swap is dynamic
(it grows in SWCHUNK sizes as needed and is not bounded as device swap is), this number
fluctuates as more swap is allocated.

When compared to the “swapinfo -mt” command results, this is calculated as:

Util = ((USED: fs) sum
/ (AVAIL: total)) * 100

OnSinix, this is the percentage of swap space in use of the total swap space provided on regular
files that were configured for swap.

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

GBL_SWAP_SPACE_RESERVED

The amount of swap space (in MB) reserved for the swapping and paging of programs currently
executing. Process pages swapped include data (heap and stack pages), bss (data uninitialized at
the beginning of process execution), and the process user area (uarea). Sharedmemory regions
also require the reservation of swap space.

Swap space is reserved (by decrementing a counter) when virtual memory for a program is created,
but swap is only used when a page or swap to disk is actually done or the page is locked inmemory
if swapping tomemory is enabled. Virtual memory cannot be created if swap space cannot be
reserved.

On HP-UX, this is the same as (USED: total) as reported by the “swapinfo -mt” command.

HP GlancePlus (11.02)Page 526 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On SUN, this is the same as used/1024, reported by the “swap -s” command.

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

GBL_SWAP_SPACE_RESERVED_UTIL

This is the percentage of available swap space currently reserved for running processes.

Reserved utilization = (amount of swap space reserved / amount of swap space available) * 100

OnHP-UX, swap spacemust be reserved (but not allocated) before virtual memory can be
created. If all of available swap is reserved, then no new processes or virtual memory can be
created. Swap space locations are actually assigned (used) when a page is actually written to disk.

On HP-UX, note that available swap is only potential swap space. Since swap is allocated in fixed
(SWCHUNK) sizes, not all of this spacemay actually be usable. For example, on a 61MB disk
using 2MB swap size allocations, 1MB remains unusable and is considered wasted space.
Consequently, 100 percent utilization on a single device is not always obtainable.

When compared to the “swapinfo -mt” command results, this is calculated as:

Util = ((USED: total)
/ (AVAIL: total)) * 100

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

GBL_SWAP_SPACE_USED

The amount of swap space used, in MB.

OnHP-UX, “Used” indicates written to disk (or locked inmemory), rather than reserved. This is the
same as (USED: total - reserve) as reported by the “swapinfo -mt” command.

On SUN, “Used” indicates amount written to disk (or locked inmemory), rather than reserved.
Swap space is reserved (by decrementing a counter) when virtual memory for a program is created.
This is the same as (bytes allocated)/1024, reported by the “swap -s” command.

On Linux, this is same as (Swap: used) as reported by the “free -m” command.

On AIX SystemWPARs, this metric is NA.

On Solaris non-global zones, this metric is N/A. On Unix systems, this metric is updated every 30
seconds or the sampling interval, whichever is greater.

HP GlancePlus (11.02)Page 527 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_SWAP_SPACE_USED_UTIL

This is the percentage of swap space used.

OnHP-UX, “Used%” indicates percentage of swap space written to disk (or locked inmemory),
rather than reserved. This is the same as percentage of ((USED: total - reserve)/total)*100, as
reported by the “swapinfo -mt” command.

On SUN, “Used%” indicates percentage of swap space written to disk (or locked inmemory),
rather than reserved. Swap space is reserved (by decrementing a counter) when virtual memory for
a program is created. This is the same as percentage of ((bytes allocated)/total)*100, reported by
the “swap -s” command.

On SUN, global swap space is tracked through the operating system. Device swap space is
tracked through the devices. For this reason, the amount of swap space usedmay differ between
the global and by-devicemetrics. Sometimes pages that aremarked to be swapped to disk by the
operating system are never swapped. The operating system records this as used swap space, but
the devices do not, since no physical IOs occur. (Metrics with the prefix “GBL” are global and
metrics with the prefix “BYSWP” are by device.)

On Linux, this is same as percentage of ((Swap: used)/total)*100, as reported by the “free -m”
command.

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

GBL_SWAP_SPACE_UTIL

The percent of available swap space that was being used by running processes in the interval.

OnWindows, this is the percentage of virtual memory, which is available to user processes, that is
in use at the end of the interval. It is not an average over the entire interval. It reflects the ratio of
committedmemory to the current commit limit. The limit may be increased by the operating system
if the paging file is extended. This is the same as (Committed Bytes / Commit Limit) * 100 when
comparing the results to PerformanceMonitor.

On HP-UX, swap spacemust be reserved (but not allocated) before virtual memory can be
created. If all of available swap is reserved, then no new processes or virtual memory can be
created. Swap space locations are actually assigned (used) when a page is actually written to disk
or locked inmemory (pseudo swap inmemory). This is the same as (PCT USED: total) as reported
by the “swapinfo -mt” command.

OnUnix systems, this metric is ameasure of capacity rather than performance. As this metric
nears 100 percent, processes are not able to allocate any morememory and new processes may
not be able to run. Very low swap utilization values may indicate that toomuch area has been
allocated to swap, and better use of disk space could bemade by reallocating some swap partitions
to be user filesystems.

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

HP GlancePlus (11.02)Page 528 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On AIX SystemWPARs, this metric is NA.

GBL_SWAP_SPACE_UTIL_CUM

The average percentage of available swap space currently in use (has memory belonging to
processes paged or swapped out on it) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, note that available swap is only potential swap space. Since swap is allocated in fixed
(SWCHUNK) sizes, not all of this spacemay actually be usable. For example, on a 61MB disk
using 2MB swap size allocations, 1MB remains unusable and is considered wasted space.
Consequently, 100 percent utilization on a single device is not always obtainable.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

GBL_SWAP_SPACE_UTIL_HIGH

The highest average percentage of available swap space currently in use (has memory belonging to
processes paged or swapped out on it) in any interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 529 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, note that available swap is only potential swap space. Since swap is allocated in fixed
(SWCHUNK) sizes, not all of this spacemay actually be usable. For example, on a 61MB disk
using 2MB swap size allocations, 1MB remains unusable and is considered wasted space.
Consequently, 100 percent utilization on a single device is not always obtainable.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

GBL_SYSCALL

The number of system calls during the interval.

High system call rates are normal on busy systems, especially with IO intensive applications.
Abnormally high system call rates may indicate problems such as a “hung” terminal that is stuck in
a loop generating read system calls.

GBL_SYSCALL_RATE

The average number of system calls per second during the interval.

High system call rates are normal on busy systems, especially with IO intensive applications.
Abnormally high system call rates may indicate problems such as a “hung” terminal that is stuck in
a loop generating read system calls.

On HP-UX, system call rates affect the overhead of themidaemon.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

OnHP-UX, compare this metric to GBL_DISK_LOGL_IO_RATE to see if high system callrates
correspond to high disk IO. GBL_CPU_SYSCALL_UTIL shows the CPU utilization due to
processing system calls.

GBL_SYSCALL_RATE_CUM

The average number of system calls per second over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 530 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

GBL_SYSCALL_RATE_HIGH

The highest number of system calls per second during any interval over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

HP GlancePlus (11.02)Page 531 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_SYSTEM_ID

The network node hostname of the system. This is the same as the output from the “uname -n”
command.

OnWindows, the name obtained from GetComputerName.

GBL_SYSTEM_TYPE

OnUnix systems, this is either themodel of the system or the instruction set architecture of the
system.

OnWindows, this is the processor architecture of the system.

GBL_SYSTEM_UPTIME_HOURS

The time, in hours, since the last system reboot.

GBL_SYSTEM_UPTIME_SECONDS

The time, in seconds, since the last system reboot.

GBL_SYS_QUEUE

The average number of processes or kernel threads blocked on SYSTM (that is, system resources)
during the interval. These resources include data structures from the LVM, VFS, UFS, JFS, and
Disk Quota subsystems. “SYSTM” is the “catch-all” wait state for blocks on system resources that
are not common enough or long enough to warrant their own stop state.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
SYSTM divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being

HP GlancePlus (11.02)Page 532 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SYS_WAIT_PCT

The percentage of time processes or kernel threads were blocked on SYSTM (that is, system
resources) during the interval. These resources include data structures from the LVM, VFS, UFS,
JFS, and Disk Quota subsystems. “SYSTM” is the “catch-all” wait state for blocks on system
resources that are not common enough or long enough to warrant their own stop state.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
SYSTM divided by the accumulated time that all processes or kernel threads were alive during the
interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_SYS_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on SYSTM
(that is, system resources) during the interval. These resources include data structures from the
LVM, VFS, UFS, JFS, and Disk Quota subsystems. “SYSTM” is the “catch-all” wait state for
blocks on system resources that are not common enough or long enough to warrant their own stop
state.

GBL_TERM_IO_QUEUE

The average number of processes or kernel threads blocked on terminal IO (waiting for their
terminal IO to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
TERM (that is, terminal IO) divided by the interval time.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

HP GlancePlus (11.02)Page 533 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_TERM_IO_WAIT_PCT

The percentage of time processes or kernel threads were blocked on terminal IO (waiting for
terminal IO to complete) during the interval.

This is calculated as the accumulated time that all processes or kernel threads spent blocked on
TERM (that is, terminal IO) divided by the accumulated time that all processes or kernel threads
were alive during the interval.

TheGlobal QUEUE metrics, which are based on block states, represent the average number of
process or kernel thread counts, not actual queues.

TheGlobal WAIT PCTmetrics, which are also based on block states, represent the percentage of
all processes or kernel threads that were alive on the system.

No direct comparison is reasonable with the ApplicationWAIT PCTmetrics since they represent
percentages within the context of a specific application and cannot be summed or compared with
global values easily. In addition, the sum of each ApplicationWAIT PCT for all applications will not
equal 100% since these values will vary greatly depending on the number of processes or kernel
threads in each application.

For example, the GBL_DISK_SUBSYSTEM_QUEUE values can be low, while the APP_DISK_
SUBSYSTEM_WAIT_PCT values can be high. In this case, there aremany processes on the
system, but there are only a very small number of processes in the specific application that is being
examined and there is a high percentage of those few processes that are blocked on the disk I/O
subsystem.

GBL_TERM_IO_WAIT_TIME

The accumulated time, in seconds, that all processes or kernel threads were blocked on terminal IO
(waiting for their terminal IO to complete) during the interval.

GBL_THRESHOLD_PROCCPU

The process CPU threshold specified in the parm file.

HP GlancePlus (11.02)Page 534 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

GBL_THRESHOLD_PROCDISK

The process disk threshold specified in the parm file.

GBL_THRESHOLD_PROCIO

The process IO threshold specified in the parm file.

GBL_THRESHOLD_PROCMEM

The process memory threshold specified in the parm file.

GBL_TT_OVERFLOW_COUNT

The number of new transactions that could not bemeasured because theMeasurement Processing
Daemon's (midaemon)Measurement Performance Database is full. If this happens, the default
Measurement Performance Database size is not large enough to hold all of the registered
transactions on this system. This can be remedied by stopping and restarting themidaemon
process using the -smdvss option to specify a larger Measurement Performance Database size.
The current Measurement Performance Database size can be checked using themidaemon -sizes
option.

LDOM_ACTIVE

This metric indicates whether the Locality Domain is active or not.

LDOM_ID

The identifier for the Locality Domain. This identifier is 'na' for global and cross-LDOMmemory.

LDOM_MEM_AVAIL

The amount of physical memory avail in the Locality Domain.

LDOM_MEM_AVAIL_DEL

The amount of memory that can be on-line deleted from the Locality Domain.

HP GlancePlus (11.02)Page 535 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

LDOM_MEM_FREE

The amount of freememory in the Locality Domain.

Locality Domainmetrics are available on HP-UX 11iv2 and above. GBL_MEM_FREE and
LDOM_MEM_FREE, as well as thememory utilizationmetrics derived from them, may not always
fully match. GBL_MEM_FREE represents freememory in the kernel's reservation layer while
LDOM_MEM_FREE shows actual free pages. If memory has been reserved but not actually
consumed from the Locality Domains, the two values won't match. BecauseGBL_MEM_FREE
includes pre-reservedmemory, the GBL_MEM_* metrics are a better indicator of actual memory
consumption in most situations.

LDOM_MEM_FREE_DEL

The amount of freememory that can be on-line deleted from the Locality Domain.

LDOM_MEM_TYPE

LDOM_MEM_UTIL

The percentage of memory in use in the Locality Domain during the interval

Locality Domainmetrics are available on HP-UX 11iv2 and above. GBL_MEM_FREE and
LDOM_MEM_FREE, as well as thememory utilizationmetrics derived from them, may not always
fully match. GBL_MEM_FREE represents freememory in the kernel's reservation layer while
LDOM_MEM_FREE shows actual free pages. If memory has been reserved but not actually
consumed from the Locality Domains, the two values won't match. BecauseGBL_MEM_FREE
includes pre-reservedmemory, the GBL_MEM_* metrics are a better indicator of actual memory
consumption in most situations.

LDOM_MEM_UTIL_HIGH

The highest percentage of memory in the Locality Domain in use during any interval over the
cumulative collection time.

LDOM_NUM_CPU

The number of enabled CPUs in the Locality Domain

LDOM_PHYS_ID

The architecture dependent physical identifier for the Locality Domain. This identifier is 'na' for
global memory.

HP GlancePlus (11.02)Page 536 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

LVDETAIL_LABEL

The type of entry this volume group or logical volume is associated with, which can be a device,
partition, file system, logical volume, or volume group.

LVDETAIL_NAME

The name of the device, partition, file system, logical volume, or volume group this volume group or
logical volume is associated with.

LV_AVG_READ_SERVICE_TIME

The average time, in milliseconds, that this logical volume spent processing each read request
during the interval. For example, a value of 5.14 would indicate that read requests during the last
interval took on average slightly longer than five one-thousandths of a second to complete for this
device.

This metric can be used to help determine which logical volumes are takingmore time than usual to
process requests.

This metric is reported as “na” for LVM.

OnHP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

LV_AVG_WRITE_SERVICE_TIME

The average time, in milliseconds, that this logical volume spent processing each write request
during the interval. For example, a value of 5.14 would indicate that write requests during the last
interval took on average slightly longer than five one-thousandths of a second to complete for this
device.

This metric can be used to help determine which logical volumes are takingmore time than usual to
process requests.

This metric is reported as “na” for LVM.

OnHP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

LV_CACHE_HIT

The number of requests successfully satisfied from theMirrorWrite Cache (MWC) during the
interval.

HP GlancePlus (11.02)Page 537 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TheMirrorWrite Cache tracks each write of mirrored data to the physical volumes andmaintains a
record of any mirrored writes not yet successfully completed at the time of a system crash.

This metric is reported as “na” for VERITAS VolumeManager.

On HP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

LV_CACHE_MISS

The number of requests that were not satisfied from theMirrorWrite Cache (MWC) during the
interval.

TheMWC is disabled with the lvchange(1M) command (“lvchange -M n...”), whichmay increase
system performance, but slow down recovery in the event of a system failure.

This metric is reported as “na” for VERITAS VolumeManager.

On HP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

LV_CACHE_QUEUE

The number of requests queued to theMirrorWrite Cache (MWC) at the end of the interval.

TheMWC is only used for volumemirroring and its use degrades performance, as extra work is
required during disk writes tomaintain theMirrorWrite Cache.

TheMWC is disabled with the lvchange(1M) command (“lvchange -M n...”), whichmay increase
system performance, but slow down recovery in the event of a system failure.

This metric is reported as “na” for VERITAS VolumeManager.

On HP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

LV_CACHE_SIZE

The number of entries in this logical volume group's MirrorWrite Cache (MWC). The size of this
cache is determined by the kernel's logical volume code and is not configurable.

TheMWC is optional and only used for volumemirroring. TheMWC tracks each write of mirrored
data to the physical volumes andmaintains a record of any mirrored writes not yet successfully
completed at the time of a system crash.

HP GlancePlus (11.02)Page 538 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TheMWC is disabled with the lvchange(1M) command (“lvchange -M n...”), whichmay increase
system performance, but slow down recovery in the event of a system failure.

This metric is reported as “na” for VERITAS VolumeManager.

On HP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

LV_DEVNO

Major / Minor number of this logical volume.

OnHP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

Disk groups in the VERITAS VolumeManager do not have device files. Therefore, “na” is reported
for this metric since it is not applicable.

LV_DIRNAME

The path name of this logical volume or volume/disk group.

OnHP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

For LVM logical volumes, this is the name used as a parameter to the lvdisplay(1M) command. For
volume groups, this is the name used as a parameter to the vgdisplay(1M) command.

The entry referred to as the “/dev/vgXX/group” entry shows the internal resources used by the LVM
software tomanage the logical volumes.

LV_GROUP_NAME

OnHP-UX, this is the name of this volume/disk group associated with a logical volume.

On SUN and AIX, this is the name of this volume group associated with a logical volume. On SUN,
this metric is applicable only for the Veritas LVM.

OnHP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

HP GlancePlus (11.02)Page 539 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

LV_INTERVAL

The amount of time in the interval.

LV_INTERVAL_CUM

The amount of time over the cumulative collection time, or since the last configuration change.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

LV_OPEN_LV

The number of logical volumes currently opened in this volume group (or disk group, if HP-UX). An
entry of “na” indicates that there are no logical volumes open in this volume group and there are no
active disks in this volume group.

OnHP-UX, the extra entry (referred to as the “/dev/vgXX/group” entry), shows the internal
resources used by the LVM software tomanage the logical volumes.

OnHP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

On SUN, this metric is reported as “na” for logical volumes andmetadevices since it is not
applicable.

LV_READ_BYTE_RATE

The number of physical KBs per second read from this logical volume during the interval.

Note that bytes read from the buffer cache are not included in this calculation.

HP GlancePlus (11.02)Page 540 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

LV_READ_BYTE_RATE_CUM

The average number of physical KBs per second read from this logical volume over the cumulative
collection time, or since the last configuration change.

Note that bytes read from the buffer cache are not included in this calculation.

On SUN, DiskSuite metadevices are not supported. This metric is reported as “na” for volume
groups since it is not applicable.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

LV_READ_RATE

The number of physical reads per second for this logical volume during the interval.

This may not correspond to the physical read rate from a particular disk drive since a logical volume
may be composed of many disk drives or it may be a subset of a disk drive. An individual physical
read from one logical volumemay spanmultiple individual disk drives.

Since this is a physical read rate, theremay not be any correspondence to the logical read rate
sincemany small reads are satisfied in the buffer cache, and large logical read requests must be
broken up into physical read requests.

LV_READ_RATE_CUM

The average number of physical reads per second for this volume over the cumulative collection
time, or since the last configuration change.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 541 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

LV_TYPE

Either “G” or “V”, indicating either a volume/disk group (“G”) or a logical volume (“V”). On SUN, it
can also be a Disk Suite meta device (“S”).

On HP-UX 11i and beyond, data is available from VERITAS VolumeManager (VxVM). LVM
(Logical VolumeManager) uses the terminology “volume group” to describe a set of related
volumes. VERITAS VolumeManager uses the terminology “disk group” to describe a collection of
VM disks. For additional information on VERITAS VolumeManager, see vxintro(1M).

LV_WRITE_BYTE_RATE

The number of KBs per second written to this logical volume during the interval.

LV_WRITE_BYTE_RATE_CUM

The average number of KBs per second written to this logical volume over the cumulative collection
time, or since the last configuration change.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

LV_WRITE_RATE

The number of physical writes per second to this logical volume during the interval.

HP GlancePlus (11.02)Page 542 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

This may not correspond to the physical write rate to a particular disk drive since a logical volume
may be composed of many disk drives or it may be a subset of a disk drive.

Since this is a physical write rate, theremay not be any correspondence to the logical write rate
sincemany small writes are combined in the buffer cache, andmany large logical writes must be
broken up.

LV_WRITE_RATE_CUM

The average number of physical writes per second to this volume over the cumulative collection
time, or since the last configuration change.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

PRM_BYVG_GROUP_ENTITLEMENT

The PRMDisk entitlement for this PRMGroup ID entry as defined in the PRM configuration file.
Theremust be exactly one volume group record for every PRM group record. The sum of the disk
entitlements must be 100 percent for each volume group.

PRM_BYVG_GROUP_UTIL

A group's current percentage of disk bandwidth relative to other PRM groups' usage of the same
volume group.

PRM_BYVG_INTERVAL

The amount of time in the interval.

PRM_BYVG_INTERVAL_CUM

The amount of time over the cumulative collection time.

HP GlancePlus (11.02)Page 543 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

PRM_BYVG_PRM_GROUPID

The PRMGroup ID. The PRMGroup ID is kept in the PRM configuration file.

PRM_BYVG_PRM_GROUPNAME

The PRM group name. The PRM group name is kept in the PRM configuration file.

PRM_BYVG_REQUEST

The number of KBs (or MBs if specified) the PRM group requested to have read from or written to
the logical volumes in the current volume group during the interval.

The PRM_BYVG_* metrics report on the total bytes requested/transferred for a specified volume
group. The byte counts are the total of various IO requests which result in physical IO activity.
These requests may include:

- Raw IO directed to a raw logical
volume

- Delayed Buffer Cache writes
- Buffer Cache misses that cause

reads
- Large IO that bypasses buffer

cache
- Virtual Memory Paging Activity

Since the PRM configuration is dynamic, the collectionmay be restarted. Two intervals are
required before the new values are reported. The first interval after the collection is restarted
displays n/a (not available) for all of the counts.

HP GlancePlus (11.02)Page 544 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PRM_BYVG_REQUEST_CUM

The number of KBs (or MBs if specified) the PRM group requested be read from or written to the
logical volumes in the current volume group over the cumulative collection time, or since the last
configuration change.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

The PRM_BYVG_* metrics report on the total bytes requested/transferred for a specified volume
group. The byte counts are the total of various IO requests which result in physical IO activity.
These requests may include:

- Raw IO directed to a raw logical
volume

- Delayed Buffer Cache writes
- Buffer Cache misses that cause

reads
- Large IO that bypasses buffer

cache
- Virtual Memory Paging Activity

Since the PRM configuration is dynamic, the collectionmay be restarted. Two intervals are
required before the new values are reported. The first interval after the collection is restarted
displays n/a (not available) for all of the counts.

PRM_BYVG_REQUEST_QUEUE

The request queue length for the specified volume group.

PRM_BYVG_TRANSFER

The number of KBs (or MBs if specified) the PRM group has read from or written to the logical
volumes in the current volume group during the interval.

HP GlancePlus (11.02)Page 545 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The PRM_BYVG_* metrics report on the total bytes requested/transferred for a specified volume
group. The byte counts are the total of various IO requests which result in physical IO activity.
These requests may include:

- Raw IO directed to a raw logical
volume

- Delayed Buffer Cache writes
- Buffer Cache misses that cause

reads
- Large IO that bypasses buffer

cache
- Virtual Memory Paging Activity

Since the PRM configuration is dynamic, the collectionmay be restarted. Two intervals are
required before the new values are reported. The first interval after the collection is restarted
displays n/a (not available) for all of the counts.

PRM_BYVG_TRANSFER_CUM

The number of KBs (or MBs if specified) the PRM group has read from or written to the logical
volumes in the current volume group over the cumulative collection time, or since the last
configuration change.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

The PRM_BYVG_* metrics report on the total bytes requested/transferred for a specified volume
group. The byte counts are the total of various IO requests which result in physical IO activity.
These requests may include:

- Raw IO directed to a raw logical
volume

- Delayed Buffer Cache writes
- Buffer Cache misses that cause

reads

HP GlancePlus (11.02)Page 546 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

- Large IO that bypasses buffer
cache

- Virtual Memory Paging Activity

Since the PRM configuration is dynamic, the collectionmay be restarted. Two intervals are
required before the new values are reported. The first interval after the collection is restarted
displays n/a (not available) for all of the counts.

PROCSYSCALL_ACTIVE_CUM

The number of different system calls called by this process during the time it has been enabled for
system call profiling.

PROCSYSCALL_CALL_COUNT

The number of system calls made to this function by this process during the interval.

PROCSYSCALL_CALL_COUNT_CUM

The number of system calls made by this process to this function during the time it has been
enabled for system call profiling.

PROCSYSCALL_CALL_ID

The ID number of the system call. System calls are sequentially numbered starting with one.

PROCSYSCALL_CALL_NAME

The system call name.

PROCSYSCALL_CALL_RATE

The number of system calls per secondmade by this process to this function during the last
interval.

PROCSYSCALL_CALL_RATE_CUM

The average number of system calls per secondmade by this process to this function during the
time it has been enabled for system call profiling.

HP GlancePlus (11.02)Page 547 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROCSYSCALL_INTERVAL

The amount of time in the interval.

PROCSYSCALL_INTERVAL_CUM

The time, in seconds, system call data has been collected for this process.

PROCSYSCALL_TOTAL_TIME

The elapsed time, in seconds, this process was in this system call. This valuemaybe greater then
the interval time since the system call may have been started before the interval started.

PROCSYSCALL_TOTAL_TIME_CUM

The total elapsed time, in seconds, that this process was in this system call. This valuemaybe
greater than the cumulative interval time since the system call may have been started before data
collection.

PROC_APP_ID
THREAD_APP_ID

The ID number of the application to which the process (or kernel thread, if HP-UX/Linux Kernel 2.6
and above) belonged during the interval.

Application “other” always has an ID of 1. There can be up to 999 user-defined applications, which
are defined in the parm file.

PROC_APP_NAME
THREAD_APP_NAME

The application name of a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above).

Processes (or kernel threads, if HP-UX/Linux Kernel 2.6 and above) are assigned into application
groups based upon rules in the parm file. If a process does not fit any rules in this file, it is assigned
to the application “other.”

The rules include decisions based upon pathname, user ID, priority, and so forth. As these values
change during the life of a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above), it is re-
assigned to another application. This re-evaluation is done every measurement interval.

HP GlancePlus (11.02)Page 548 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CACHE_WAIT_PCT
THREAD_CACHE_WAIT_PCT

The percentage of time the process or kernel thread was blocked on CACHE (waiting for the file
systembuffer cache to be updated) during the interval. Processes or kernel threads doing raw IO to
a disk are not included in this measurement. Processes and kernel threads doing buffered IO to
disks normally spendmore time blocked on CACHE and IO than on DISK.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_CACHE_WAIT_PCT_CUM
THREAD_CACHE_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on CACHE (waiting for
the file systembuffer cache to be updated) over the cumulative collection time. Processes or kernel
threads doing raw IO to a disk are not included in this measurement.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 549 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_CACHE_WAIT_TIME
THREAD_CACHE_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on CACHE (waiting for the file
systembuffer cache to be updated) during the interval. Processes or kernel threads doing raw IO to
a disk are not included in this measurement.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_CACHE_WAIT_TIME_CUM
THREAD_CACHE_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on CACHE (waiting for the file
systembuffer cache to be updated) over the cumulative collection time. Processes or kernel
threads doing raw IO to a disk are not included in this measurement.

HP GlancePlus (11.02)Page 550 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_CDFS_WAIT_PCT
THREAD_CDFS_WAIT_PCT

The percentage of time the process or kernel thread was blocked on CDFS (waiting for its Compact
Disk file system IO to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 551 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CDFS_WAIT_PCT_CUM
THREAD_CDFS_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on CDFS (waiting for its
Compact Disk file system IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 552 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CDFS_WAIT_TIME
THREAD_CDFS_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on CDFS (waiting in the CD-
ROM driver for Compact Disc file system IO to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_CDFS_WAIT_TIME_CUM
THREAD_CDFS_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on CDFS (waiting in the CD-
ROM driver for Compact Disc file system IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_CLOSE
THREAD_CLOSE

The number of file closes made by the process or kernel thread during the interval. This
corresponds to the number of close(2) system calls.

HP GlancePlus (11.02)Page 553 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_CLOSE_CUM
THREAD_CLOSE_CUM

The number of file closes made by the process or kernel thread over the cumulative collection time.
This corresponds to the number of close(2) system calls.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_CPU_ALIVE_SYS_MODE_UTIL
THREAD_CPU_ALIVE_SYS_MODE_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
in systemmode as a percentage of the time it is alive during the interval. On platforms other than
HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against
the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 554 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_ALIVE_TOTAL_UTIL
THREAD_CPU_ALIVE_TOTAL_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
as a percentage of the time it is alive during the interval. On platforms other than HPUX, If the
ignore_mt flag is set(true) in parm file, this metric will report values normalized against the number
of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_ALIVE_USER_MODE_UTIL
THREAD_CPU_ALIVE_USER_MODE_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
in user mode as a percentage of the time it is alive during the interval. On platforms other than
HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values normalized against
the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 555 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_CSWITCH_TIME
THREAD_CPU_CSWITCH_TIME

The time, in seconds, that the process or kernel thread spent in context switching during the
interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_CSWITCH_TIME_CUM
THREAD_CPU_CSWITCH_TIME_CUM

The time, in seconds, that the selected process or kernel thread spent in context switching over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 556 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_CSWITCH_UTIL
THREAD_CPU_CSWITCH_UTIL

The percentage of time spent in context switching the current process or kernel thread during the
interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 557 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_CSWITCH_UTIL_CUM
THREAD_CPU_CSWITCH_UTIL_CUM

The average percentage of time spent in context switching the process or kernel thread over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 558 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_INTERRUPT_TIME
THREAD_CPU_INTERRUPT_TIME

The time, in seconds, that the process or kernel thread spent processing interrupts during the
interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_INTERRUPT_TIME_CUM
THREAD_CPU_INTERRUPT_TIME_CUM

The time, in seconds, that the process or kernel thread spent processing interrupts over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 559 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_INTERRUPT_UTIL
THREAD_CPU_INTERRUPT_UTIL

The percentage of time that this process or kernel thread was in interrupt mode during the last
interval. Interrupt modemeans that interrupts were being handled while the process or kernel
thread was loaded and running on the CPU. The interrupts may have been generated by any
process, not just the running process, but they were handled while the process or kernel thread was
running andmay have had an impact on the performance of this process or kernel thread.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be

HP GlancePlus (11.02)Page 560 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_INTERRUPT_UTIL_CUM
THREAD_CPU_INTERRUPT_UTIL_CUM

The average percentage of time that this process or kernel thread was in interrupt mode over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 561 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_LAST_USED
THREAD_CPU_LAST_USED

The ID number of the processor that last ran the process (or kernel thread, if HP-UX/Linux Kernel
2.6 and above). For uni-processor systems, this value is always zero.

On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel
thread characteristic. If this metric is reported for a process, the value for its last executing kernel
thread is given. For example, if a process has multiple kernel threads and kernel thread one is the
last to execute during the interval, themetric value for kernel thread one is assigned to the process.

PROC_CPU_NICE_TIME
THREAD_CPU_NICE_TIME

The time, in seconds, that this niced process or kernel thread was using the CPU in user mode
during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 562 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_NICE_TIME_CUM
THREAD_CPU_NICE_TIME_CUM

The time, in seconds, that this niced process or kernel thread was in user mode over the cumulative
collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 563 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_NICE_UTIL
THREAD_CPU_NICE_UTIL

The percentage of time that this niced process or kernel thread was in user mode during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_NICE_UTIL_CUM
THREAD_CPU_NICE_UTIL_CUM

The average percentage of time that this niced process or kernel thread was in user mode over the
cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 564 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_NNICE_TIME
THREAD_CPU_NNICE_TIME

The time, in seconds, that this negatively niced process or kernel thread was using the CPU in user
mode during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

HP GlancePlus (11.02)Page 565 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_NNICE_TIME_CUM
THREAD_CPU_NNICE_TIME_CUM

The time, in seconds, that this negatively niced process or kernel thread was in user mode over the
cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 566 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_NNICE_UTIL
THREAD_CPU_NNICE_UTIL

The percentage of time that this negatively niced process or kernel thread was in user mode during
the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 567 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_NNICE_UTIL_CUM
THREAD_CPU_NNICE_UTIL_CUM

The average percentage of time that this negatively niced process or kernel thread was in user
mode over the cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 568 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_NORMAL_TIME
THREAD_CPU_NORMAL_TIME

The time, in seconds, that the selected process or kernel thread was in user mode at normal priority
during the interval. Normal priority user mode CPU excludes CPU used at real-time and nice
priorities.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_NORMAL_TIME_CUM
THREAD_CPU_NORMAL_TIME_CUM

The time, in seconds, that the selected process or kernel thread was in user mode at normal priority
over the cumulative collection time. Normal priority user mode CPU excludes CPU used at real-
time and nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 569 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_NORMAL_UTIL
THREAD_CPU_NORMAL_UTIL

The percentage of time that this process or kernel thread was in user mode at a normal priority
during the interval. “At a normal priority” means the neither rtprio or nice had been used to alter the
priority of the process or kernel thread during the interval. Normal priority user mode CPU excludes
CPU used at real-time and nice priorities.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all

HP GlancePlus (11.02)Page 570 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_NORMAL_UTIL_CUM
THREAD_CPU_NORMAL_UTIL_CUM

The average percentage of time a process or kernel thread was in user mode at normal priority over
the cumulative collection time. Normal priority user mode CPU excludes CPU used at real-time
and nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be

HP GlancePlus (11.02)Page 571 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_REALTIME_TIME
THREAD_CPU_REALTIME_TIME

The time, in seconds, that the selected process or kernel thread was in user mode at a realtime
priority during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_REALTIME_TIME_CUM
THREAD_CPU_REALTIME_TIME_CUM

The time, in seconds, that the selected process or kernel thread was in user mode at a realtime
priority over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 572 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_REALTIME_UTIL
THREAD_CPU_REALTIME_UTIL

The percentage of time that this process or kernel thread was at a realtime priority during the
interval. The realtime CPU is separated out to allow users to see the effect of using the realtime
facilities to alter priority.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 573 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_REALTIME_UTIL_CUM
THREAD_CPU_REALTIME_UTIL_CUM

The percentage of time that the CPU was in user mode executing the current process or kernel
thread at a realtime priority over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted

HP GlancePlus (11.02)Page 574 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_SWITCHES
THREAD_CPU_SWITCHES

The number of times the process or kernel thread was switched to another processor during the
interval. For uni-processor systems, this value is always zero.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_CPU_SWITCHES_CUM
THREAD_CPU_SWITCHES_CUM

The number of times the process or kernel thread was switched to another processor over the
cumulative collection time. For uni-processor systems, this value is always zero.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 575 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_SYSCALL_TIME
THREAD_CPU_SYSCALL_TIME

The time, in seconds, that this process or kernel thread spent executing system calls in system
mode, excluding interrupt or context processing, during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_SYSCALL_TIME_CUM
THREAD_CPU_SYSCALL_TIME_CUM

The time, in seconds, that this process or kernel thread spent executing system calls in system
mode, excluding interrupt or context processing, over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 576 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_SYSCALL_UTIL
THREAD_CPU_SYSCALL_UTIL

The percentage of the total CPU time this process or kernel thread spent in systemmode
(excluding interrupt, context switch, trap, or vfault CPU) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 577 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_SYSCALL_UTIL_CUM
THREAD_CPU_SYSCALL_UTIL_CUM

The average percentage of the total CPU time this process or kernel thread spent in systemmode
(excluding interrupt, context switch, trap, or vfault CPU) during the interval.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

HP GlancePlus (11.02)Page 578 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_CPU_SYS_MODE_TIME
THREAD_CPU_SYS_MODE_TIME

The CPU time in systemmode in the context of the process (or kernel thread, if HP-UX/Linux
Kernel 2.6 and above) during the interval.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_SYS_MODE_TIME_CUM
THREAD_CPU_SYS_MODE_TIME_CUM

The CPU time in systemmode in the context of the process (or kernel thread, if HP-UX/Linux
Kernel 2.6 and above) over the cumulative collection time.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 579 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_SYS_MODE_UTIL
THREAD_CPU_SYS_MODE_UTIL

The percentage of time that the CPU was in systemmode in the context of the process (or kernel
thread, if HP-UX/Linux Kernel 2.6 and above) during the interval.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

Unlike the global and application CPU metrics, process CPU is not averaged over the number of
processors on systems with multiple CPUs. Single-threaded processes can use only one CPU at
a time and never exceed 100% CPU utilization.

High systemmodeCPU utilizations are normal for IO intensive programs. Abnormally high system
CPU utilization can indicate that a hardware problem is causing a high interrupt rate. It can also
indicate programs that are not using system calls efficiently.

A classic “hung shell” shows up with very high systemmodeCPU because it gets stuck in a loop
doing terminal reads (a system call) to a device that never responds.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for

HP GlancePlus (11.02)Page 580 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_SYS_MODE_UTIL_CUM
THREAD_CPU_SYS_MODE_UTIL_CUM

The average percentage of time that the CPU was in systemmode in the context of the process (or
kernel thread, if HP-UX/Linux Kernel 2.6 and above) over the cumulative collection time.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 581 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Unlike the global and application CPU metrics, process CPU is not averaged over the number of
processors on systems with multiple CPUs. Single-threaded processes can use only one CPU at
a time and never exceed 100% CPU utilization.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_TOTAL_TIME
THREAD_CPU_TOTAL_TIME

The total CPU time, in seconds, consumed by a process (or kernel thread, if HP-UX/Linux Kernel
2.6 and above) during the interval.

Unlike the global and application CPU metrics, process CPU is not averaged over the number of
processors on systems with multiple CPUs. Single-threaded processes can use only one CPU at
a time and never exceed 100% CPU utilization.

On HP-UX, the total CPU time is the sum of the CPU time components for a process or kernel
thread, including system, user, context switch, interrupts processing, realtime, and nice utilization
values.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The

HP GlancePlus (11.02)Page 582 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_TOTAL_TIME_CUM
THREAD_CPU_TOTAL_TIME_CUM

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
over the cumulative collection time. CPU time is in seconds unless otherwise specified.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This is calculated as

PROC_CPU_TOTAL_TIME_CUM =
PROC_CPU_SYS_MODE_TIME_CUM +
PROC_CPU_USER_MODE_TIME_CUM

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive

HP GlancePlus (11.02)Page 583 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_TOTAL_UTIL
THREAD_CPU_TOTAL_UTIL

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
as a percentage of the total CPU time available during the interval.

Unlike the global and application CPU metrics, process CPU is not averaged over the number of
processors on systems with multiple CPUs. Single-threaded processes can use only one CPU at
a time and never exceed 100% CPU utilization.

On HP-UX, the total CPU utilization is the sum of the CPU utilization components for a process or
kernel thread, including system, user, context switch, interrupts processing, realtime, and nice
utilization values.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online.

On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted

HP GlancePlus (11.02)Page 584 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_TOTAL_UTIL_CUM
THREAD_CPU_TOTAL_UTIL_CUM

The total CPU time consumed by a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
as a percentage of the total CPU time available over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Unlike the global and application CPU metrics, process CPU is not averaged over the number of
processors on systems with multiple CPUs. Single-threaded processes can use only one CPU at
a time and never exceed 100% CPU utilization.

On HP-UX, the total CPU utilization is the sum of the CPU utilization components for a process or
kernel thread, including system, user, context switch, interrupts processing, realtime, and nice
utilization values.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

HP GlancePlus (11.02)Page 585 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_TRAP_COUNT
THREAD_CPU_TRAP_COUNT

The number of times the CPU was in trap handler code for this process or kernel thread during the
interval.

On HP-UX, all exceptions (including faults) cause traps. These include pfaults (protection faults),
vfaults (virtual faults), time slice expiration (rescheduling), zero divide, illegal or privileged
instructions, single-stepping, breakpoints, and so on. The kernel trap handler code will switch trap
counters for vfaults and pfaults to fault counters when appropriate. As such, the trap count
excludes vfaults and pfaults.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_CPU_TRAP_COUNT_CUM
THREAD_CPU_TRAP_COUNT_CUM

The number of times the CPU was in trap handler code for this process or kernel thread over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 586 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all exceptions (including faults) cause traps. These include pfaults (protection faults),
vfaults (virtual faults), time slice expiration (rescheduling), zero divide, illegal or privileged
instructions, single-stepping, breakpoints, and so on. The kernel trap handler code will switch trap
counters for vfaults and pfaults to fault counters when appropriate. As such, the trap count
excludes vfaults and pfaults.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_CPU_USER_MODE_TIME
THREAD_CPU_USER_MODE_TIME

The time, in seconds, the process (or kernel threads, if HP-UX/Linux Kernel 2.6 and above) was
using the CPU in user mode during the interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_USER_MODE_TIME_CUM
THREAD_CPU_USER_MODE_TIME_CUM

The time, in seconds, the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) was
using the CPU in user mode over the cumulative collection time. collection time.

HP GlancePlus (11.02)Page 587 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.
On platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_USER_MODE_UTIL
THREAD_CPU_USER_MODE_UTIL

The percentage of time the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) was
using the CPU in user mode during the interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

HP GlancePlus (11.02)Page 588 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Unlike the global and application CPU metrics, process CPU is not averaged over the number of
processors on systems with multiple CPUs. Single-threaded processes can use only one CPU at
a time and never exceed 100% CPU utilization.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_CPU_USER_MODE_UTIL_CUM
THREAD_CPU_USER_MODE_UTIL_CUM

The average percentage of time the process (or kernel thread, if HP_UX/Linux Kernel 2.6 and
above) was using the CPU in user mode over the cumulative collection time.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 589 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Unlike the global and application CPU metrics, process CPU is not averaged over the number of
processors on systems with multiple CPUs. Single-threaded processes can use only one CPU at
a time and never exceed 100% CPU utilization.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Onmulti-processor HP-UX systems, processes which have component kernel threads executing
simultaneously on different processors could have resource utilization sums over 100%. The
maximum percentage is 100% times the number of CPUs online. On platforms other than HPUX, If
the ignore_mt flag is set(true) in parm file, this metric will report values normalized against the
number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

PROC_DISK_FS_READ
THREAD_DISK_FS_READ

Number of file system physical disk reads made by a process or kernel thread during the interval.
Only local disks are counted in this measurement. NFS devices are excluded.

These are physical reads generated by user file system access and do not include virtual memory
reads, system reads (inode access), or reads relating to raw disk access. An exception is user files
accessed via themmap(2) call, which does not show their physical reads in this category. They
appear under virtual memory reads.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is

HP GlancePlus (11.02)Page 590 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_FS_READ_CUM
THREAD_DISK_FS_READ_CUM

Number of file system physical disk reads made by a process or kernel thread over the cumulative
collection time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are physical reads generated by user file system access and do not include virtual memory
reads, system reads (inode access), or reads relating to raw disk access. An exception is user files
accessed via themmap(2) call, which does not show their physical reads in this category. They
appear under virtual memory reads.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_FS_READ_RATE
THREAD_DISK_FS_READ_RATE

The number of file system physical disk reads made by a process or kernel thread during the
interval. Only local disks are counted in this measurement. NFS devices are excluded.

These are physical reads generated by user file system access and do not include virtual memory
reads, system reads (inode access), or reads relating to raw disk access. An exception is user files
accessed via themmap(2) call, which does not show their physical reads in this category. They
appear under virtual memory reads.

HP GlancePlus (11.02)Page 591 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_FS_WRITE
THREAD_DISK_FS_WRITE

Number of file system physical disk writes made by a process or kernel thread during the interval.
Only local disks are counted in this measurement. NFS devices are excluded.

These are physical writes generated by user file system access and do not include virtual memory
writes, system writes (inode updates), or writes relating to raw disk access. An exception is user
files accessed via themmap(2) call, which does not show their physical writes in this category.
They appear under virtual memory writes.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_FS_WRITE_CUM
THREAD_DISK_FS_WRITE_CUM

Number of file system physical disk writes made by a process or kernel thread over the cumulative
collection time. Only local disks are counted in this measurement. NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 592 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are physical writes generated by user file system access and do not include virtual memory
writes, system writes (inode updates), or writes relating to raw disk access. An exception is user
files accessed via themmap(2) call, which does not show their physical writes in this category.
They appear under virtual memory writes.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_FS_WRITE_RATE
THREAD_DISK_FS_WRITE_RATE

The number of file system physical disk writes made by a process or kernel thread during the
interval. Only local disks are counted in this measurement. NFS devices are excluded.

These are physical writes generated by user file system access and do not include virtual memory
writes, system writes (inode updates), or writes relating to raw disk access. An exception is user
files accessed via themmap(2) call, which does not show their physical writes in this category.
They appear under virtual memory writes.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_IO
THREAD_DISK_LOGL_IO

The number of logical IOs made by (or for) a process or kernel thread during the interval. NFS
mounted disks are not included in this list.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

HP GlancePlus (11.02)Page 593 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk).

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_IO_CUM
THREAD_DISK_LOGL_IO_CUM

The number of logical IOs made by (or for) a process or kernel thread over the cumulative collection
time. NFS mounted disks are not included in this list.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk).

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_IO_RATE
THREAD_DISK_LOGL_IO_RATE

The number of logical IOs per secondmade by (or for) a process or kernel thread during the interval.
NFS mounted disks are not included in this list.

HP GlancePlus (11.02)Page 594 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

For processes which run for less than themeasurement interval, this metric is normalized over the
measurement interval. For example, a process ran for 1 second and did 50 IOs during its life. If the
measurement interval is 5 seconds, it is reported as having done 10 IOs per second. If the
measurement interval is 60 seconds, it is reported as having done 50/60 or 0.83 IOs per second.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk).

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_IO_RATE_CUM
THREAD_DISK_LOGL_IO_RATE_CUM

The average number of logical IOs per secondmade by (or for) a process or kernel thread over the
cumulative collection time. Only local disks are counted in this measurement. NFS devices are
excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 595 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Onmany Unix systems, there are several reasons why logical IOs may not correspond with
physical IOs. Logical IOs may not always result in a physical disk access, since the datamay
already reside in memory -- either in the buffer cache, or in virtual memory if the IO is to amemory
mapped file. Several logical IOs may all map to the same physical page or block. In these two
cases, logical IOs are greater than physical IOs.

The reverse can also happen. A single logical write can cause a physical read to fetch the block to
be updated from disk, and then cause a physical write to put it back on disk. A single logical IO can
require more than one physical page or block, and these can be found on different disks. Mirrored
disks further distort the relationship between logical and physical IO, since physical writes are
doubled.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_READ
THREAD_DISK_LOGL_READ

The number of disk logical reads made by a process or kernel thread during the interval. Calls
destined for NFS mounted files are not counted.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_READ_CUM
THREAD_DISK_LOGL_READ_CUM

The number of disk logical reads made by a process or kernel thread over the cumulative collection
time. Calls destined for NFS mounted files are not counted.

HP GlancePlus (11.02)Page 596 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_READ_RATE
THREAD_DISK_LOGL_READ_RATE

The number of logical reads per secondmade by (or for) a process or kernel thread during the
interval. Calls destined for NFS mounted files are not counted.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk).

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 597 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_LOGL_WRITE
THREAD_DISK_LOGL_WRITE

Number of disk logical writes made by a process or kernel thread during the interval. Calls destined
for NFS mounted files are not counted.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_WRITE_CUM
THREAD_DISK_LOGL_WRITE_CUM

Number of disk logical writes made by a process or kernel thread over the cumulative collection
time. Calls destined for NFS mounted files are not counted.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 598 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_LOGL_WRITE_RATE
THREAD_DISK_LOGL_WRITE_RATE

The number of logical writes per secondmade by (or for) a process or kernel thread during the
interval. NFS mounted disks are not included in this list.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk).

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_PHYS_IO_RATE
THREAD_DISK_PHYS_IO_RATE

The average number of physical disk IOs per secondmade by the process or kernel thread during
the interval.

For processes which run for less than themeasurement interval, this metric is normalized over the
measurement interval. For example, a process ran for 1 second and did 50 IOs during its life. If the
measurement interval is 5 seconds, it is reported as having done 10 IOs per second. If the
measurement interval is 60 seconds, it is reported as having done 50/60 or 0.83 IOs per second.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

HP GlancePlus (11.02)Page 599 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_PHYS_IO_RATE_CUM
THREAD_DISK_PHYS_IO_RATE_CUM

The number of physical disk IOs per secondmade by the selected process or kernel thread over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for

HP GlancePlus (11.02)Page 600 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_PHYS_READ
THREAD_DISK_PHYS_READ

The number of physical reads made by (or for) a process or kernel thread during the last interval.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk). NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_PHYS_READ_CUM
THREAD_DISK_PHYS_READ_CUM

The number of physical reads made by (or for) a process or kernel thread over the cumulative
collection time.

HP GlancePlus (11.02)Page 601 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk). NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_PHYS_READ_RATE
THREAD_DISK_PHYS_READ_RATE

The number of physical reads per secondmade by (or for) a process or kernel thread during the
interval.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk). NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 602 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_PHYS_WRITE
THREAD_DISK_PHYS_WRITE

The number of physical writes made by (or for) a process or kernel thread during the last interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_PHYS_WRITE_CUM
THREAD_DISK_PHYS_WRITE_CUM

The number of physical writes made by (or for) a process or kernel thread over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 603 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_PHYS_WRITE_RATE
THREAD_DISK_PHYS_WRITE_RATE

The number of physical writes per secondmade by (or for) a process or kernel thread during the
interval.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk). NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 604 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_DISK_RAW_READ
THREAD_DISK_RAW_READ

Number of raw reads made for a process or kernel thread during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_RAW_READ_CUM
THREAD_DISK_RAW_READ_CUM

Number of raw reads made for a process or kernel thread over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 605 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_RAW_READ_RATE
THREAD_DISK_RAW_READ_RATE

Rate of raw reads made for a process or kernel thread during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_RAW_WRITE
THREAD_DISK_RAW_WRITE

Number of raw writes made for a process or kernel thread during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_RAW_WRITE_CUM
THREAD_DISK_RAW_WRITE_CUM

Number of raw writes made for a process or kernel thread over the cumulative collection time.

HP GlancePlus (11.02)Page 606 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_RAW_WRITE_RATE
THREAD_DISK_RAW_WRITE_RATE

Rate of raw writes made for a process or kernel thread during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_LOGL_READ
THREAD_DISK_REM_LOGL_READ

The number of remote logical reads made by a process or kernel thread during the last interval.

HP GlancePlus (11.02)Page 607 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_LOGL_READ_CUM
THREAD_DISK_REM_LOGL_READ_CUM

The number of remote logical reads made by a process or kernel thread over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 608 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_REM_LOGL_READ_RATE
THREAD_DISK_REM_LOGL_READ_RATE

The number of remote logical reads per secondmade by (or for) a process or kernel thread during
the interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_LOGL_WRITE
THREAD_DISK_REM_LOGL_WRITE

Number of remote logical writes made by a process or kernel thread during the interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_LOGL_WRITE_CUM
THREAD_DISK_REM_LOGL_WRITE_CUM

Number of remote logical writes made by a process or kernel thread over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 609 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_LOGL_WRITE_RATE
THREAD_DISK_REM_LOGL_WRITE_RATE

The number of remote logical writes per secondmade by (or for) a process or kernel thread during
the interval.

On HP-UX, the remote logical IOs include all IO requests generated on a local client to a remotely
mounted file system or disk. If the logical request is satisfied on the local client (that is, the data is
in a local memory buffer), a physical request is not generated. Otherwise, a physical IO request is
made to the remotemachine to read/write the data. Note that, in either case, a logical IO request is
made.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_PHYS_READ
THREAD_DISK_REM_PHYS_READ

The number of remote physical reads made by (or for) a process or kernel thread during the interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is

HP GlancePlus (11.02)Page 610 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_PHYS_READ_CUM
THREAD_DISK_REM_PHYS_READ_CUM

The number of remote physical reads made by (or for) a process or kernel thread over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_PHYS_READ_RATE
THREAD_DISK_REM_PHYS_READ_RATE

The number of remote physical reads per secondmade by (or for) a process or kernel thread during
the interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 611 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_REM_PHYS_WRITE
THREAD_DISK_REM_PHYS_WRITE

The number of physical writes made by (or for) a process or kernel thread during the interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_REM_PHYS_WRITE_CUM
THREAD_DISK_REM_PHYS_WRITE_CUM

The number of physical writes made by (or for) a process or kernel thread over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 612 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_REM_PHYS_WRITE_RATE
THREAD_DISK_REM_PHYS_WRITE_RATE

The number of physical writes per secondmade by (or for) a process or kernel thread during the
interval.

On HP-UX, if an IO cannot be satisfied in a local client machine's memory buffer, a remote physical
IO request is generated. This may or may not require a physical disk IO on the remote system. In
either case, the remote IO request is considered a physical request on the local client machine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_SUBSYSTEM_WAIT_PCT
THREAD_DISK_SUBSYSTEM_WAIT_PCT

The percentage of time the process or kernel thread was blocked on the disk subsystem (waiting for
its file system IOs to complete) during the interval. This includes time spent waiting in the DISK,
INODE, CACHE, and CDFS wait states. It does not include processes doing raw IO to disk
devices.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 613 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_SUBSYSTEM_WAIT_PCT_CUM
THREAD_DISK_SUBSYSTEM_WAIT_PCT_CUM

The percentage of time the process or kernel thread was blocked on the disk subsystem (waiting for
its file system IOs to complete) over the cumulative collection time. This includes time spent
waiting in the DISK, INODE, CACHE, and CDFS wait states. It does not include processes doing
raw IO to disk devices.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 614 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_SUBSYSTEM_WAIT_TIME
THREAD_DISK_SUBSYSTEM_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on the disk subsystem (waiting
for its file system IOs to complete) during the interval. This includes time spent waiting in the
DISK, INODE, CACHE, and CDFS wait states. It does not include processes doing raw IO to disk
devices.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_DISK_SUBSYSTEM_WAIT_TIME_CUM
THREAD_DISK_SUBSYSTEM_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on the disk subsystem (waiting
for its file system IOs to complete) over the cumulative collection time. This includes time spent
waiting in the DISK, INODE, CACHE, and CDFS wait states. It does not include processes doing
raw IO to disk devices.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 615 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_SYSTEM_IO
THREAD_DISK_SYSTEM_IO

Number of file systemmanagement physical disk IOs made for a process or kernel thread during
the interval.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_SYSTEM_IO_RATE
THREAD_DISK_SYSTEM_IO_RATE

The number of file systemmanagement physical disk IOs per secondmade for a process or kernel
thread during the interval.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_SYSTEM_READ
THREAD_DISK_SYSTEM_READ

Number of file systemmanagement physical disk reads made for a process or kernel thread during
the interval.

HP GlancePlus (11.02)Page 616 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_SYSTEM_READ_CUM
THREAD_DISK_SYSTEM_READ_CUM

Number of file systemmanagement physical disk reads made for a process or kernel thread over
the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 617 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_DISK_SYSTEM_WRITE
THREAD_DISK_SYSTEM_WRITE

Number of file systemmanagement physical disk writes made for a process or kernel thread during
the interval.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_SYSTEM_WRITE_CUM
THREAD_DISK_SYSTEM_WRITE_CUM

Number of file systemmanagement physical disk writes made for a process or kernel thread over
the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

HP GlancePlus (11.02)Page 618 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_VM_IO
THREAD_DISK_VM_IO

The number of virtual memory IOs made for a process or kernel thread during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_VM_IO_RATE
THREAD_DISK_VM_IO_RATE

The number of virtual memory IOs per secondmade for a process or kernel thread during the
interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_VM_READ
THREAD_DISK_VM_READ

Number of virtual memory reads made for a process or kernel thread during the interval.

HP GlancePlus (11.02)Page 619 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_VM_READ_CUM
THREAD_DISK_VM_READ_CUM

Number of virtual memory reads made for a process or kernel thread over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_VM_WRITE
THREAD_DISK_VM_WRITE

Number of virtual memory writes made for a process or kernel thread during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

HP GlancePlus (11.02)Page 620 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_VM_WRITE_CUM
THREAD_DISK_VM_WRITE_CUM

Number of virtual memory writes made for a process or kernel thread over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISK_WAIT_PCT
THREAD_DISK_WAIT_PCT

The percentage of time the process or kernel thread was blocked on DISK (waiting in the disk
drivers for file system disk IO to complete) during the interval. The time spent waiting in the disk
drivers is usually very small. Most of the time, processes doing file system IO are waiting on IO or
CACHE. Processes waiting for character (raw) IO to a disk device are usually waiting on IO.

HP GlancePlus (11.02)Page 621 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_DISK_WAIT_PCT_CUM
THREAD_DISK_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on DISK (waiting in the
disk drivers for file system disk IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

HP GlancePlus (11.02)Page 622 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_DISK_WAIT_TIME
THREAD_DISK_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on DISK (waiting in a disk
driver for its disk IO to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_DISK_WAIT_TIME_CUM
THREAD_DISK_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on DISK (waiting in a disk
driver for its disk IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 623 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_DISPATCH
THREAD_DISPATCH

The number of times the process or kernel thread was made the executing process on the CPU
over the interval. This includes dispatches associated with a context switch because some other
process or kernel thread had the CPU, as well as those dispatches caused by the process or kernel
thread stopping, then resuming, with no other process or kernel thread running in themeantime.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_DISPATCH_CUM
THREAD_DISPATCH_CUM

The number of times the process or kernel thread was made the executing process on the CPU
over the cumulative collection time. This includes dispatches associated with a context switch
because some other process or kernel thread had the CPU, as well as those dispatches caused by
the process or kernel thread stopping, then resuming, with no other process or kernel thread running
in themeantime.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 624 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_EUID
THREAD_EUID

The Effective User ID of a process(or kernel thread, if HP-UX/Linux Kernel 2.6 and above).

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_FILE_COUNT

The number of times this file is opened currently. Terminal devices are often openedmore than
once by several different processes.

PROC_FILE_MODE

A text string summarizing the type of openmode:

rd/wr Opened for input & output
read Opened for input only
write Opened for output only

PROC_FILE_NAME

The path name or identifying information about the open file descriptor. If the path name string
exceeds 40 characters in length, the beginning and the end of the path is shown and themiddle of
the name is replaced by “...”.

An attempt is made to obtain the file path name by either searching the current cylinder group to find
directory entries that point to the currently opened inode, or by searching the kernel name cache.
Since looking up file path names would require high disk overhead, some names may not be
resolved. If the path name can not be resolved, a string is returned indicating the type and inode
number of the file.

For HP-UX 11.0 releases, the path name information of a file descriptor may correspond to streams
device files, such as /dev/tcp and /dev/udp, which are not explicitly opened by the process. These
files are opened by networking functions called by the process to access remote systems.

HP GlancePlus (11.02)Page 625 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For the string format including an inode number, youmay use the ncheck(1M) program to display
the file path name relative to themount point. Sometimes files may be deleted before they are
closed. In these cases, the process file table may still have the inode even though the file is not
actually present and as a result, ncheck will fail.

In the following example, note that the file system name has been included to avoid the overhead of
ncheck searching all of the file systems for the inode number.

If the following file information was displayed:

Note that the following examples would all appear on one line.

<reg,vxfs,/var,/dev/vg00/lvol8,inode:702>

and then from that display, the following ncheck commandwas entered:

ncheck -i 702 -F vxfs /dev/vg00/lvol8

An output like the following would be generated:

/dev/vg00/lvol8:
702 /adm/cron/log

Since in this example /var is mounted on lvol8 of vg00, the full path namewould be
/var/adm/cron/log.

The string shown representing inode information when the path is not available is as follows:

<type,domain,filesys,volume,inode:n>

where:

The file type can be one of:
blk - Block device
chr - Character device
dir - Directory file
fifo - FIFO
lnk - Soft file link
reg - Regular file
sock - Socket
emptydir - Mknod created

directory - no
files

ukn - Unknown vtype

The file domain can be one of:
ufs - Unix file system
nfs - NFS

HP GlancePlus (11.02)Page 626 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

vxfs - Veritas file system
cdfs - CDROM file system
nfs_spec - NFS special device

file
nfs_bdev - NFS device file -

block mode access
nfs_fifo - FIFO file access

over NFS
dev_vn - Generic vnode -

temp type used by
kernel

dummy - OSF's file on file
mount file system

pipe - Pipe
ukn - Unknown vfs type

The filesys is the file systemmount point.

The volume field indicates the logical volume, if applicable.

For HP-UX 10.30 and earlier releases, if the file descriptor represents an open socket, the output
format will contain the domain and protocol, followed by the IP address.

For HP-UX 11.0 and later, if the file descriptor represents a Unix address family socket which is
used for IPC on the local host, its path namewill be resolved if possible. For example:

unix /tmp/.AgentSockets/A

If the local socket pathname cannot be resolved, the socket address will be shown, for example:

unix -> 0x0339a200

For HP-UX 11.0 and later, if the file descriptor is a socket for internetwork communications (for
example, udp or tcp), the socket address, domain, and protocol will be displayed respectively. The
bound IP address and port number will also be displayed when available. For example:

<socket: 0x03189800,inet,tcp,INADDR_ANY:2121>
<socket: 0x031bd400,inet,udp,15.8.157.15:123>

PROC_FILE_NUMBER

The file number of the current open file.

HP GlancePlus (11.02)Page 627 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_FILE_OFFSET

The decimal value of the next access position of the current file at the end of the interval. If the
open file is a tty, this is the total number of bytes sent and received since the file was first opened.

PROC_FILE_OPEN

Number of files the current process has remaining open as of the end of the interval.

PROC_FILE_TYPE

A text string describing the type of the current file. This is one of:

block Block special device
chr Character device
dir Directory
fifo FIFO
file Simple file
link Symbolic File link
network Network channel device
other An unknown file type
pipe Named pipe (FIFO)
reg Regular file
socket Socket
streams Streams

PROC_FORCED_CSWITCH
THREAD_FORCED_CSWITCH

The number of times that the process (or kernel thread, if HP-UX) was preempted by an external
event and another process (or kernel thread, if HP-UX) was allowed to execute during the interval.

Examples of reasons for a forced switch include expiration of a time slice or returning from a
system call with a higher priority process (or kernel thread, if HP-UX) ready to run.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 628 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_FORCED_CSWITCH_CUM
THREAD_FORCED_CSWITCH_CUM

The number of times the process (or kernel thread, if HP-UX) was preempted by an external event
and another process (or kernel thread, if HP-UX) was allowed to execute over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Examples of reasons for a forced switch include expiration of a time slice or returning from a
system call with a higher priority process (or kernel thread, if HP-UX) ready to run.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_FORK
THREAD_FORK

The total number of fork and vforksystem calls executed by this process during the interval.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_FORK_CUM
THREAD_FORK_CUM

The number of fork or vforksystem calls made by a process over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 629 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_GRAPHICS_WAIT_PCT
THREAD_GRAPHICS_WAIT_PCT

The percentage of time the process or kernel thread was blocked on graphics (waiting for graphics
operations to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_GRAPHICS_WAIT_PCT_CUM
THREAD_GRAPHICS_WAIT_PCT_CUM

The percentage of time the process or kernel thread was blocked on graphics (waiting for graphics
operations to complete) over the cumulative collection time.

HP GlancePlus (11.02)Page 630 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_GRAPHICS_WAIT_TIME
THREAD_GRAPHICS_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on graphics (waiting for their
graphics operations to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 631 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_GRAPHICS_WAIT_TIME_CUM
THREAD_GRAPHICS_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on graphics (waiting for their
graphics operations to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_GROUP_ID
THREAD_GROUP_ID

Onmost systems, this is the real group ID number of the process (or kernel thread, if HP-UX/Linux
Kernel 2.6 and above). On AIX, this is the effective group ID number of the process.

On HP-UX, this is the effective group ID number of the process if not in setgid mode.

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_GROUP_NAME
THREAD_GROUP_NAME

The group name (from /etc/group) of a process(or kernel thread, if HP-UX/Linux Kernel 2.6 and
above).

The group identifier is obtained from searching the /etc/passwd file using the user ID (uid) as a key.
Therefore, if more than one account is listed in /etc/passwdwith the same user ID (uid) field, the

HP GlancePlus (11.02)Page 632 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

first one is used. If no entry can be found for the user ID in /etc/passwd, the group name is the uid
number. If nomatching entry in /etc/group can be found, the group ID is returned as the group
name.

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_INODE_WAIT_PCT
THREAD_INODE_WAIT_PCT

The percentage of time the process or kernel thread was blocked onINODE (waiting for an inode to
be updated or to become available) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_INODE_WAIT_PCT_CUM
THREAD_INODE_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked onINODE (waiting for an
inode to be updated or to become available) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 633 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_INODE_WAIT_TIME
THREAD_INODE_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked onINODE (waiting for an inode
to be updated or to become available) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 634 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_INODE_WAIT_TIME_CUM
THREAD_INODE_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked onINODE (waiting for an inode
to be updated or to become available) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_INTEREST
THREAD_INTEREST

A string containing the reason(s) why the process or thread is of interest, based on the thresholds
specified in the parm file.

An 'A' indicates that the process or thread exceeds the process CPU threshold, computed using
the actual time the process or thread was alive during the interval.

A 'C' indicates that the process or thread exceeds the process CPU threshold, computed using the
collection interval. Currently, the sameCPU threshold is used for both CPU interest reasons.

A 'D' indicates that the process or thread exceeds the process disk IO threshold.

An 'I' indicates that the process or thread exceeds the IO threshold.

An 'M' indicates that the process exceeds the process memory threshold. This interest reason is
only meaningful for processes and therefore not shown for threads.

New processes or threads are identified with an 'N', terminated processes or threads are identified
with a 'K'.

HP GlancePlus (11.02)Page 635 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Note that the parm file 'nonew', 'nokill' and 'shortlived' settings are logging only options and
therefore ignored in Glance components.

PROC_INTERRUPTS
THREAD_INTERRUPTS

The number of interrupts during the interval.

PROC_INTERRUPTS_CUM
THREAD_INTERRUPTS_CUM

The number of interrupts over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

PROC_INTERVAL
THREAD_INTERVAL

The amount of time in the interval. This is the same value for all processes (and kernel threads, if
HP-UX/Linux Kernel 2.6 and above), regardless of whether they were alive for the entire interval.

Note, calculations such as utilizations or rates are calculated using this standardized process
interval (PROC_INTERVAL), rather than the actual alive time during the interval (PROC_
INTERVAL_ALIVE). Thus, if a process was only alive for 1 second and used the CPU during its
entire life (1 second), but the process sample interval was 5 seconds, it would be reported as using
1/5 or 20% CPU utilization, rather than 100% CPU utilization.

PROC_INTERVAL_ALIVE
THREAD_INTERVAL_ALIVE

The number of seconds that the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above)
was alive during the interval. This may be less than the time of the interval if the process (or kernel

HP GlancePlus (11.02)Page 636 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

thread, if HP-UX/Linux Kernel 2.6 and above) was new or died during the interval.

PROC_INTERVAL_CUM
THREAD_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On SUN, AIX, andOSF1, this differs from PROC_RUN_TIME in that PROC_RUN_TIME may not
include all of the first and last sample interval times and PROC_INTERVAL_CUM does.

PROC_IOCTL
THREAD_IOCTL

The number of file ioctls made by the process during the interval. ioctls that result in data read from
or written to a device are not counted. These are counted under disk and non-disk read and writes.

This metric is no longer collected on HP-UX 11.0 and beyond.

PROC_IOCTL_CUM
THREAD_IOCTL_CUM

The number of file ioctls made by the process over the cumulative collection time. ioctls that result
in data read from or written to a device are not counted. These are counted under disk and non-disk
reads and writes.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 637 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

This metric is no longer collected on HP-UX 11.0 and beyond.

PROC_IO_BYTE
THREAD_IO_BYTE

OnHP-UX, this is the total number of physical IO KBs (unless otherwise specified) that was used
by this process or kernel thread, either directly or indirectly, during the interval.

On all other systems, this is the total number of physical IO KBs (unless otherwise specified) that
was used by this process during the interval. IOs include disk, terminal, tape and network IO.

OnHP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on
behalf of the process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but
exclude all NFS traffic.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

On SUN, counts in theMB ranges in general can be attributed to disk accesses and counts in the
KB ranges can be attributed to terminal IO. This is useful when looking for processes with heavy
disk IO activity. This may vary depending on the sample interval length.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

HP GlancePlus (11.02)Page 638 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_IO_BYTE_CUM
THREAD_IO_BYTE_CUM

OnHP-UX, this is the total number of physical IO KBs (unless otherwise specified) that was used
by this process or kernel thread, either directly or indirectly, over the cumulative collection time.

On all other systems, this is the total number of physical IO KBs (unless otherwise specified) that
was used by this process over the cumulative collection time. IOs include disk, terminal, tape and
network IO.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on
behalf of the process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but
exclude all NFS traffic.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

HP GlancePlus (11.02)Page 639 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_IO_BYTE_RATE
THREAD_IO_BYTE_RATE

OnHP-UX, this is the number of physical IO KBs per second that was used by this process or
kernel thread, either directly or indirectly, during the interval.

On all other systems, this is the number of physical IO KBs per second that was used by this
process during the interval. IOs include disk, terminal, tape and network IO.

OnHP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on
behalf of the process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but
exclude all NFS traffic.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

On SUN, counts in theMB ranges in general can be attributed to disk accesses and counts in the
KB ranges can be attributed to terminal IO. This is useful when looking for processes with heavy
disk IO activity. This may vary depending on the sample interval length.

Certain types of disk IOs are not counted by AIX at the process level, so they are excluded from
this metric.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_IO_BYTE_RATE_CUM
THREAD_IO_BYTE_RATE_CUM

OnHP-UX, this is the average number of physical IO KBs per second that was used by this
process or kernel thread, either directly or indirectly, over the cumulative collection time.

On all other systems, this is the average number of physical IO KBs per second that was used by
this process over the cumulative collection time. IOs include disk, terminal, tape and network IO.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 640 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, indirect IOs include paging and deactivation/reactivation activity done by the kernel on
behalf of the process or kernel thread. Direct IOs include disk, terminal, tape, and network IO, but
exclude all NFS traffic.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

On SUN, counts in theMB ranges in general can be attributed to disk accesses and counts in the
KB ranges can be attributed to terminal IO. This is useful when looking for processes with heavy
disk IO activity. This may vary depending on the sample interval length.

Linux release versions vary with regards to the amount of process-level IO statistics that are
available. Some kernels instrument only disk IO, while some provide statistics for all devices
together (including tty and other devices with disk IO).

When it is available from your specific release of Linux, the PROC_DISK_PHYS* metrics will
report pages of disk IO specifically. The PROC_IO* metrics will report the sum of all types of IO
including disk IO, in Kilobytes or KB rates. Thesemetrics will have “na” values on kernels that do
not support the instrumentation.

For multi-threaded processes, some Linux kernels only report IO statistics for themain thread. In
that case, patches are available that will allow the process instrumentation to report the sum of all
thread's IOs, and will also enable per-thread reporting.

PROC_IPC_SUBSYSTEM_WAIT_PCT
THREAD_IPC_SUBSYSTEM_WAIT_PCT

The percentage of time the process or kernel thread was blocked on the InterProcess
Communication (IPC) subsystems (waiting for its interprocess communication activity to
complete) during the interval. This is the sum of processes or kernel threads in the IPC, MSG,
SEM, PIPE, SOCKT (that is, sockets) and STRMS (that is, streams IO) wait states.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

HP GlancePlus (11.02)Page 641 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_IPC_SUBSYSTEM_WAIT_PCT_CUM
THREAD_IPC_SUBSYSTEM_WAIT_PCT_CUM

The percentage of time process or kernel thread was blocked on the InterProcess Communication
(IPC) subsystems (waiting for its interprocess communication activity to complete) over the
cumulative collection time. This is the sum of processes or kernel threads in the IPC, MSG, SEM,
PIPE, SOCKT (that is, sockets) and STRMS (that is, streams IO) wait states.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

HP GlancePlus (11.02)Page 642 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_IPC_SUBSYSTEM_WAIT_TIME
THREAD_IPC_SUBSYSTEM_WAIT_TIME

The time, in seconds, the process or kernel thread was blocked on the InterProcess
Communication (IPC) subsystems (waiting for its interprocess communication activity to
complete) during the interval. This is the sum of processes or kernel threads in the IPC, MSG,
SEM, PIPE, SOCKT (that is, sockets) and STRMS (that is, streams IO) wait states.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_IPC_SUBSYSTEM_WAIT_TIME_CUM
THREAD_IPC_SUBSYSTEM_WAIT_TIME_CUM

The time, in seconds, the process or kernel thread was blocked on the InterProcess
Communication (IPC) subsystems (waiting for its interprocess communication activity to
complete) over the cumulative collection time. This is the sum of processes or kernel threads in the
IPC, MSG, SEM, PIPE, SOCKT (that is, sockets) and STRMS (that is, streams IO) wait states.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 643 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_IPC_WAIT_PCT
THREAD_IPC_WAIT_PCT

The percentage of time the process or kernel thread was blocked onIPC (waiting for interprocess
communication calls to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_IPC_WAIT_PCT_CUM
THREAD_IPC_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked onIPC waiting for
interprocess communication calls to complete over the cumulative collection time.

HP GlancePlus (11.02)Page 644 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_IPC_WAIT_TIME
THREAD_IPC_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked onInterProcess
Communication (IPC) (waiting for its interprocess communication calls to complete) during the
interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that

HP GlancePlus (11.02)Page 645 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_IPC_WAIT_TIME_CUM
THREAD_IPC_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked onInterProcess
Communication (IPC) (waiting for its interprocess communication calls to complete) over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_JOBCTL_WAIT_PCT
THREAD_JOBCTL_WAIT_PCT

The percentage of time during the interval the process or kernel thread was blocked on job control
(having been stopped with the job control facilities) during the interval. Job control waits include
waiting at a debug breakpoint, as well as being blocked attempting to write (from background) to a
terminal which has the “stty tostop” option set.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

HP GlancePlus (11.02)Page 646 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_JOBCTL_WAIT_PCT_CUM
THREAD_JOBCTL_WAIT_PCT_CUM

The percentage of time the process or kernel thread was blocked on job control (having been
stopped with the job control facilities) over the cumulative collection time. Job control waits include
waiting at a debug breakpoint, as well as being blocked attempting to write (from background) to a
terminal which has the “stty tostop” option set.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

HP GlancePlus (11.02)Page 647 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_JOBCTL_WAIT_TIME
THREAD_JOBCTL_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on job control (having been
stopped with the job control facilities) during the interval. Job control waits include waiting at a
debug breakpoint, as well as being blocked attempting to write (from background) to a terminal
which has the “stty tostop” option set.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_JOBCTL_WAIT_TIME_CUM
THREAD_JOBCTL_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on job control (having been
stopped with the job control facilities) over the cumulative collection time. Job control waits include

HP GlancePlus (11.02)Page 648 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

waiting at a debug breakpoint, as well as being blocked attempting to write (from background) to a
terminal which has the “stty tostop” option set.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_LAN_WAIT_PCT
THREAD_LAN_WAIT_PCT

The percentage of time the process or kernel thread was blocked on LAN (waiting for IO over the
LAN to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for

HP GlancePlus (11.02)Page 649 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_LAN_WAIT_PCT_CUM
THREAD_LAN_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on LAN (waiting for IO
over the LAN to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 650 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_LAN_WAIT_TIME
THREAD_LAN_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on LAN (waiting for IO over the
LAN to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_LAN_WAIT_TIME_CUM
THREAD_LAN_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on LAN (waiting for IO over the
LAN to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_LDOM_COUNT

The number of Locality Domains the process can potentially obtain memory from.

HP GlancePlus (11.02)Page 651 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_LDOM_ID

The identifier for the Locality Domain. This identifier is 'na' for global and cross-LDOMmemory.

PROC_LDOM_PCT

The percentage of memory this process utilizes in this Locality Domain.

PROC_LDOM_PRIVATE

The amount of private resident memory the process utilizes in this Locality Domain.

PROC_LDOM_SHARED

The amount of shared resident memory the process utilizes in this Locality Domain.

PROC_LDOM_SUM_PRIVATE

The amount of private resident memory the process utilizes across all Locality Domains.

PROC_LDOM_SUM_SHARED

The amount of shared resident memory the process utilizes across all Locality Domains.

PROC_LDOM_SUM_TOTAL

The total amount of resident memory the process utilizes across all Locality Domains.

PROC_LDOM_SUM_WEIGHTED

The total amount of resident memory the process utilizes across all Locality Domains, taking into
account the number of references for shared pages.

This amount is weighted by the number of references. For example, if the process regions include
100Mb of shared pages and these pages are shared with a single other process, the weighted count
will be 50Mb for each process.

This is amore realistic indicator of the actual memory the process utilizes.

PROC_LDOM_TOTAL

The total amount of resident memory the process utilizes in this Locality Domain.

HP GlancePlus (11.02)Page 652 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_LDOM_TYPE

PROC_LDOM_WEIGHTED

The total amount of resident memory the process utilizes in this Locality Domain, taking into
account the number of references for shared pages.

This amount is weighted by the number of references. For example, if the process regions include
100Mb of shared pages and these pages are shared with a single other process, the weighted count
will be 50Mb for each process.

This is amore realistic indicator of the actual memory the process utilizes.

PROC_MAJOR_FAULT
THREAD_MAJOR_FAULT

Number of major page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and
above) during the interval.

On HP-UX, major page faults andminor page faults are a subset of vfaults (virtual faults). Stack
and heap accesses can cause vfaults, but do not result in a disk page having to be loaded into
memory.

PROC_MAJOR_FAULT_CUM
THREAD_MAJOR_FAULT_CUM

Number of major page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and
above) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 653 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, major page faults andminor page faults are a subset of vfaults (virtual faults). Stack
and heap accesses can cause vfaults, but do not result in a disk page having to be loaded into
memory.

PROC_MEM_PRIVATE_RES
THREAD_MEM_PRIVATE_RES

The size (in KB) of resident memory of private regions only, such as data and stack, currently
consumed by this process.

On HP-UX, this metric is initialized only when themenu option “Process Memory Region” is
activated for the process. A value of “na” is displayed otherwise.

A value of “na” is displayed when this information is unobtainable.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_MEM_RES
THREAD_MEM_RES

The size (in KB) of resident memory allocated for the process(or kernel thread, if HP-UX/Linux
Kernel 2.6 and above).

On HP-UX, the calculation of this metric differs depending on whether this process has used any
CPU time since themidaemon process was started. This metric is less accurate and does not
include sharedmemory regions in its calculation when the process has been idle since the
midaemonwas started.

On HP-UX, for processes that use CPU time subsequent to midaemon startup, the resident
memory is calculated as

RSS = sum of private region pages +
(sum of shared region pages /
number of references)

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

This value is only updated when a process uses CPU. Thus, under memory pressure, this value
may be higher than the actual amount of resident memory for processes which are idle because
their memory pages may no longer be resident or the reference count for shared segments may
have changed.

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

A value of “na” is displayed when this information is unobtainable. This informationmay not be
obtainable for some system (kernel) processes. It may also not be available for <defunct>
processes.

HP GlancePlus (11.02)Page 654 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On AIX, this is the same as the RSS value shown by “ps v”.

OnWindows, this is the number of KBs in the working set of this process. The working set
includes thememory pages touched recently by the threads of the process. If freememory in the
system is above a threshold, then pages are left in the working set even if they are not in use.
When freememory falls below a threshold, pages are trimmed from the working set, but not
necessarily paged out to disk frommemory. If those pages are subsequently referenced, they will
be page faulted back into the working set. Therefore, the working set is a general indicator of the
memory resident set size of this process, but it will vary depending on the overall status of memory
on the system. Note that the size of the working set is often larger than the amount of pagefile
space consumed (PROC_MEM_VIRT).

PROC_MEM_RES_HIGH
THREAD_MEM_RES_HIGH

The largest value of resident memory (in KB) during its lifetime.

See the description for PROC_MEM_RES for details about how resident memory is determined.

A value of “na” is displayed when this information is unobtainable.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_MEM_SHARED_RES
THREAD_MEM_SHARED_RES

The size (in KB) of resident memory of shared regions only, such as shared text, sharedmemory,
and shared libraries.

On HP-UX, this value is not affected by the reference count. A value of “na” is displayed when this
information is unobtainable.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_MEM_VFAULT_COUNT
THREAD_MEM_VFAULT_COUNT

The number of times the CPU handled vfaults on behalf of this process or kernel thread during the
interval. On HP-UX, major page faults andminor page faults are a subset of vfaults (virtual faults).
Stack and heap accesses can cause vfaults, but do not result in a disk page having to be loaded
intomemory.

On HP-UX, all exceptions (including faults) cause traps. These include pfaults (protection faults),
vfaults (virtual faults), time slice expiration (rescheduling), zero divide, illegal or privileged
instructions, single-stepping, breakpoints, and so on. The kernel trap handler code will switch trap
counters for vfaults and pfaults to fault counters when appropriate. As such, the trap count
excludes vfaults and pfaults.

HP GlancePlus (11.02)Page 655 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_MEM_VFAULT_COUNT_CUM
THREAD_MEM_VFAULT_COUNT_CUM

The number of times the CPU handled vfaults on behalf of this process or kernel thread over the
cumulative collection time. On HP-UX, major page faults andminor page faults are a subset of
vfaults (virtual faults). Stack and heap accesses can cause vfaults, but do not result in a disk page
having to be loaded intomemory.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, all exceptions (including faults) cause traps. These include pfaults (protection faults),
vfaults (virtual faults), time slice expiration (rescheduling), zero divide, illegal or privileged
instructions, single-stepping, breakpoints, and so on. The kernel trap handler code will switch trap
counters for vfaults and pfaults to fault counters when appropriate. As such, the trap count
excludes vfaults and pfaults.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_MEM_VIRT
THREAD_MEM_VIRT

The size (in KB) of virtual memory allocated for the process(or kernel thread, if HP-UX/Linux Kernel
2.6 and above).

HP GlancePlus (11.02)Page 656 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this consists of the sum of the virtual set size of all privatememory regions used by this
process, plus this process' share of memory regions which are shared by multiple processes. For
processes that use CPU time, the value is divided by the reference count for those regions which
are shared.

On HP-UX, this metric is less accurate and does not reflect the reference count for shared regions
for processes that were started prior to themidaemon process and have not used any CPU time
since themidaemonwas started.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

On all other Unix systems, this consists of private text, private data, private stack and shared
memory. The reference count for sharedmemory is not taken into account, so the value of this
metric represents the total virtual size of all regions regardless of the number of processes sharing
access.

Note also that lazy swap algorithms, sparse address spacemalloc calls, andmemory-mapped file
access can result in large VSS values. On systems that provide Glancememory regions detail
reports, the drilldown detail per memory region is useful to understand the nature of memory
allocations for the process.

A value of “na” is displayed when this information is unobtainable. This informationmay not be
obtainable for some system (kernel) processes. It may also not be available for <defunct>
processes.

OnWindows, this is the number of KBs the process has used in the paging file(s). Paging files are
used to store pages of memory used by the process, such as local data, that are not contained in
other files. Examples of memory pages which are contained in other files include pages storing a
program's .EXE and .DLL files. These would not be kept in pagefile space. Thus, often programs
will have amemory working set size (PROC_MEM_RES) larger than the size of its pagefile space.

On Linux this value is rounded to PAGESIZE.

PROC_MEM_WAIT_PCT
THREAD_MEM_WAIT_PCT

The percentage of time the process or kernel thread was blocked onmemory (waiting for memory
resources to become available) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on

HP GlancePlus (11.02)Page 657 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_MEM_WAIT_PCT_CUM
THREAD_MEM_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked onmemory (waiting for
memory resources to become available) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for

HP GlancePlus (11.02)Page 658 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_MEM_WAIT_TIME
THREAD_MEM_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on VM (waiting for virtual
memory resources to become available) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_MEM_WAIT_TIME_CUM
THREAD_MEM_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on VM (waiting for virtual
memory resources to become available) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 659 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_MINOR_FAULT
THREAD_MINOR_FAULT

Number of minor page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and
above) during the interval.

On HP-UX, major page faults andminor page faults are a subset of vfaults (virtual faults). Stack
and heap accesses can cause vfaults, but do not result in a disk page having to be loaded into
memory.

PROC_MINOR_FAULT_CUM
THREAD_MINOR_FAULT_CUM

Number of minor page faults for this process (or kernel thread, if HP-UX/Linux Kernel 2.6 and
above) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, major page faults andminor page faults are a subset of vfaults (virtual faults). Stack
and heap accesses can cause vfaults, but do not result in a disk page having to be loaded into
memory.

PROC_MSG_RECEIVED
THREAD_MSG_RECEIVED

The number of socket messages received by a process or kernel thread during the interval. This
does not include SYSV messages (msgrcv).

PROC_MSG_RECEIVED_CUM
THREAD_MSG_RECEIVED_CUM

The total number of socket messages received by a process or kernel thread over the cumulative
collection time. This does not include SYSV messages (msgrcv).

HP GlancePlus (11.02)Page 660 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

PROC_MSG_SENT
THREAD_MSG_SENT

The number of socket messages sent by a process or kernel thread during the interval. This does
not include SYSV messages (msgsnd).

PROC_MSG_SENT_CUM
THREAD_MSG_SENT_CUM

The total number of socket messages sent by a process or kernel thread over the cumulative
collection time. This does not include SYSV messages (msgsnd).

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 661 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_MSG_WAIT_PCT
THREAD_MSG_WAIT_PCT

The percentage of time the process or kernel thread was blocked onmessages (waiting for
message queue operations to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_MSG_WAIT_PCT_CUM
THREAD_MSG_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked onmessages (waiting for
message queue operations to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 662 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_MSG_WAIT_TIME
THREAD_MSG_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked onmessages (waiting for
message queue operations to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_MSG_WAIT_TIME_CUM
THREAD_MSG_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked onmessages (waiting for
message queue operations to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 663 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_NFS_WAIT_PCT
THREAD_NFS_WAIT_PCT

The percentage of time the process or kernel thread was blocked on NFS (waiting for network file
system IO to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 664 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_NFS_WAIT_PCT_CUM
THREAD_NFS_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on NFS (waiting for
network file system IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_NFS_WAIT_TIME
THREAD_NFS_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on NFS (waiting for its network
file system IO to complete) during the interval.

HP GlancePlus (11.02)Page 665 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_NFS_WAIT_TIME_CUM
THREAD_NFS_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on NFS (waiting for its network
file system IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_NICE_PRI
THREAD_NICE_PRI

The nice priority for the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) when it
was last dispatched. The value is a bias used to adjust the priority for the process.

On AIX, the nice user value, makes a process less favored than it otherwise would be, has a range
of 0-40 with a default value of 20. The value of PUSER is always added to the value of nice to
weight the user process down below the range of priorities expected to be in use by system jobs
like the scheduler and special wait queues.

On all other Unix systems, the value ranges from 0 to 39. A higher value causes a process (or
kernel thread, if HP-UX/Linux Kernel 2.6 and above) to be dispatched less.

HP GlancePlus (11.02)Page 666 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_NONDISK_LOGL_READ
THREAD_NONDISK_LOGL_READ

The number of non-disk logical reads (that is, calls to read(2)) made by a process or kernel thread
during the interval.

“Non-disk” devices include terminals, tapes, and so forth on the local or remotemachine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_NONDISK_LOGL_READ_CUM
THREAD_NONDISK_LOGL_READ_CUM

The number of non-disk logical reads (that is, calls to read(2)) made by a process or kernel thread
over the cumulative collection time.

“Non-disk” devices include terminals, tapes, and so forth on the local or remotemachine.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 667 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_NONDISK_LOGL_WRITE
THREAD_NONDISK_LOGL_WRITE

The number of non-disk logical writes (that is, calls to write(2)) made by a process or kernel thread
during the interval.

“Non-disk” devices include terminals, tapes, and so forth on the local or remotemachine.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_NONDISK_LOGL_WRITE_CUM
THREAD_NONDISK_LOGL_WRITE_CUM

The number of non-disk logical writes (that is, calls to write(2)) made by a process or kernel thread
over the cumulative collection time.

“Non-disk” devices include terminals, tapes, and so forth on the local or remotemachine.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_NONDISK_PHYS_READ
THREAD_NONDISK_PHYS_READ

The number of physical non-disk reads made by a process or kernel thread during the interval to
buffered/block devices, such as a tape drive.

HP GlancePlus (11.02)Page 668 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_NONDISK_PHYS_READ_CUM
THREAD_NONDISK_PHYS_READ_CUM

The number of local/remote physical non-disk reads made by a process or kernel thread over the
cumulative collection time to buffered/block devices, such as a tape drive.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_NONDISK_PHYS_WRITE
THREAD_NONDISK_PHYS_WRITE

The number of local/remote physical non-disk writes made by a process or kernel thread during the
interval to buffered/block devices, such as a tape drive.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 669 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_NONDISK_PHYS_WRITE_CUM
THREAD_NONDISK_PHYS_WRITE_CUM

Number of local/remote physical non-disk writes made by a process or kernel thread over the
cumulative collection time to buffered/block devices, such as a tape drive.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_OPEN
THREAD_OPEN

The number of file, socket, or pipe opens made by the process or kernel thread during the interval.
This corresponds to the number of open(2) system calls.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_OPEN_CUM
THREAD_OPEN_CUM

The number of file, socket, or pipe opens made by the process or kernel thread over the cumulative
collection time. This corresponds to the number of open(2) system calls.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 670 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_OTHER_IO_WAIT_PCT
THREAD_OTHER_IO_WAIT_PCT

The percentage of time the process or kernel thread was blocked on “other IO” during the interval.
“Other IO” includes all IO directed at a device (connected to the local computer) which is not a
terminal or LAN. Examples of “other IO” devices are local printers, tapes, instruments, and disks.
Time waiting for character (raw) IO to disks is included in this measurement. Time waiting for file
systembuffered IO to disks will typically been seen as IO or CACHE wait. Time waiting for IO to
NFS disks is reported as NFS wait.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 671 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_OTHER_IO_WAIT_PCT_CUM
THREAD_OTHER_IO_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on “other IO” over the
cumulative collection time. “Other IO” includes all IO directed at a device (connected to the local
computer) which is not a terminal or LAN. Examples of “other IO” devices are local printers, tapes,
instruments, and disks. Time waiting for character (raw) IO to disks is included in this
measurement. Time waiting for file systembuffered IO to disks will typically been seen as IO or
CACHE wait. Time waiting for IO to NFS disks is reported as NFS wait.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 672 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_OTHER_IO_WAIT_TIME
THREAD_OTHER_IO_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on other IO during the interval.
“Other IO” includes all IO directed at a device (connected to the local computer) which is not a
terminal or LAN. Examples of “other IO” devices are local printers, tapes, instruments, and disks.
Time waiting for character (raw) IO to disks is included in this measurement. Time waiting for file
systembuffered IO to disks will typically been seen as IO or CACHE wait. Time waiting for IO to
NFS disks is reported as NFS wait.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_OTHER_IO_WAIT_TIME_CUM
THREAD_OTHER_IO_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on “other IO” over the
cumulative collection time. “Other IO” includes all IO directed at a device (connected to the local
computer) which is not a terminal or LAN. Examples of “other IO” devices are local printers, tapes,
instruments, and disks. Time waiting for character (raw) IO to disks is included in this
measurement. Time waiting for file systembuffered IO to disks will typically been seen as IO or
CACHE wait. Time waiting for IO to NFS disks is reported as NFS wait.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 673 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_OTHER_WAIT_PCT
THREAD_OTHER_WAIT_PCT

The percentage of time the process or kernel thread was blocked on other (unknown) activities
during the interval. This includes processes or kernel threads that were started and subsequently
suspended before themidaemonwas started and have not been resumed, or the block state is
unknown.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_OTHER_WAIT_PCT_CUM
THREAD_OTHER_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on other (unknown)
activities over the cumulative collection time. This includes processes or kernel threads that were
started and subsequently suspended before themidaemonwas started and have not been
resumed, or the block state is unknown.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 674 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_OTHER_WAIT_TIME
THREAD_OTHER_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on other (unknown) activities
during the interval. This includes processes or kernel threads that were started and subsequently
suspended before themidaemonwas started and have not been resumed, or the block state is
unknown.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_OTHER_WAIT_TIME_CUM
THREAD_OTHER_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on other (unknown) activities
over the cumulative collection time. This includes processes or kernel threads that were started

HP GlancePlus (11.02)Page 675 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

and subsequently suspended before themidaemonwas started and have not been resumed, or the
block state is unknown.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_PAGEFAULT
THREAD_PAGEFAULT

The number of page faults that occurred during the interval for the process(or kernel threads, if HP-
UX/Linux Kernel 2.6 and above).

PROC_PAGEFAULT_RATE
THREAD_PAGEFAULT_RATE

The number of page faults per second that occurred during the interval for the process(or kernel
threads, if HP-UX/Linux Kernel 2.6 and above).

PROC_PAGEFAULT_RATE_CUM
THREAD_PAGEFAULT_RATE_CUM

The average number of page faults per second that occurred over the cumulative collection time for
the process(or kernel threads, if HP-UX/Linux Kernel 2.6 and above).

HP GlancePlus (11.02)Page 676 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_PARENT_PROC_ID
THREAD_PARENT_PROC_ID

The parent process' PID number.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_PIPE_WAIT_PCT
THREAD_PIPE_WAIT_PCT

The percentage of time the process or kernel thread was blocked onPIPE (waiting for pipe
communication to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_PIPE_WAIT_PCT_CUM
THREAD_PIPE_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked onPIPE (waiting for pipe
communication to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 677 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_PIPE_WAIT_TIME
THREAD_PIPE_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked onPIPE (waiting for pipe
communication to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 678 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_PIPE_WAIT_TIME_CUM
THREAD_PIPE_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked onPIPE (waiting for pipe
communication to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_PRI
THREAD_PRI

OnUnix systems, this is the dispatch priority of a process (or kernel thread, if HP-UX/Linux Kernel
2.6 and above) at the end of the interval. The lower the value, themore likely the process is to be
dispatched.

OnWindows, this is the current base priority of this process.

On HP-UX, whenever the priority is changed for the selected process or kernel thread, the new
value will not be reflected until the process or kernel thread is reactivated if it is currently idle (for
example, SLEEPing).

On HP-UX, the lower the value, themore the process or kernel thread is likely to be dispatched.
Values between zero and 127 are considered to be “real-time” priorities, which the kernel does not
adjust. Values above 127 are normal priorities and aremodified by the kernel for load balancing.
Some special priorities are used in the HP-UX kernel and subsystems for different activities.
These values are described in /usr/include/sys/param.h. Priorities less than PZERO 153 are not
signalable.

HP GlancePlus (11.02)Page 679 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Note that on HP-UX, many network-related programs such as inetd, biod, and rlogind run at priority
154 which is PPIPE. Just because they run at this priority does not mean they are using pipes. By
examining the open files, you can determine if a process or kernel thread is using pipes.

For HP-UX 10.0 and later releases, priorities between -32 and -1 can be seen for processes or
kernel threads using the Posix Real-time Schedulers. When specifying a Posix priority, the value
enteredmust be in the range from 0 through 31, which the system then remaps to a negative
number in the range of -1 through -32. Refer to the rtschedman pages for more information.

On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel
thread characteristic. If this metric is reported for a process, the value for its last executing kernel
thread is given. For example, if a process has multiple kernel threads and kernel thread one is the
last to execute during the interval, themetric value for kernel thread one is assigned to the process.

On AIX, values for priority range from 0 to 127. Processes running at priorities less than PZERO
(40) are not signalable.

OnWindows, the higher the value themore likely the process or thread is to be dispatched. Values
for priority range from 0 to 31. Values of 16 and above are considered to be “realtime” priorities.
Threads within a process can raise and lower their own base priorities relative to the process's base
priority.

PROC_PRI_WAIT_PCT
THREAD_PRI_WAIT_PCT

The percentage of time during the interval the process or kernel thread was blocked on priority
(waiting for its priority to become high enough to get the CPU).

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 680 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_PRI_WAIT_PCT_CUM
THREAD_PRI_WAIT_PCT_CUM

The percentage of time the process or kernel thread was blocked on priority over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_PRI_WAIT_TIME
THREAD_PRI_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on PRI (waiting for its priority
to become high enough to get the CPU) during the interval.

HP GlancePlus (11.02)Page 681 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_PRI_WAIT_TIME_CUM
THREAD_PRI_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on PRI (waiting for its priority
to become high enough to get the CPU) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_PRMID
THREAD_PRMID

The PRMGroup ID this process is assigned to. The PRM group configuration is kept in the PRM
configuration file.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

HP GlancePlus (11.02)Page 682 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_PROC_ARGV1
THREAD_PROC_ARGV1

The first argument (argv[1]) of the process argument list or the second word of the command line, if
present. (For kernel threads, if HP-UX/Linux Kernel 2.6 and above this metric returns the value of
the associated process). The HP Performance Agent logs the first 32 characters of this metric.

For releases that support the parm file javaarg flag, this metric may not be the first argument. When
javaarg=true, the value of this metric is replaced (for java processes only) by the java class or jar
name. This can then be useful to construct parm file java application definitions using the argv1=
keyword.

PROC_PROC_CMD
THREAD_PROC_CMD

The full command line with which the process was initiated. (For kernel threads, if HP-UX/Linux
Kernel 2.6 and above this metric returns the value of the associated process).

On HP-UX, themaximum length returned depends upon the version of the OS, but typically up to
1020 characters are available.

On other Unix systems, themaximum length is 4095 characters.

On Linux, if the command string exceeds 4096 characters, the kernel instrumentationmay not
report any value.

If the command line contains special characters, such as carriage return and tab, these characters
will be converted to , , and so on.

PROC_PROC_ID
THREAD_PROC_ID

The process ID number (or PID) of this process(or associated process for kernel threads, if
HPUX/LInux Kernel 2.6 and above) that is used by the kernel to uniquely identify the process.
Process numbers are reused, so they only identify a process for its lifetime.

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_PROC_NAME
THREAD_PROC_NAME

The process(or kernel thread, if HP-UX/Linux Kernel 2.6 and above) program name. It is limited to
16 characters.

On Unix systems, this is derived from the 1st parameter to the exec(2) system call.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

HP GlancePlus (11.02)Page 683 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnWindows, the “System Idle Process” is not reported by Perf Agent since Idle is a process that
runs to occupy the processors when they are not executing other threads. Idle has one thread per
processor.

PROC_REGION_FILENAME

The file path that corresponds to the front store file of amemory region. For text and data regions,
this is the name of the program; for shared libraries it is the library name.

Certain “special” names are displayed if there is no actual “front store” for amemory region. These
special names correspond to the region type (for example, <stack>). If the name is “<mmap>”,
then this is amemory region without “front store,” created by the system call mmap(2).

If the file format includes an inode number, use the program ncheck (1M) to display the filename
relative to themount point. Sometimes files may be deleted before they are closed. In these
cases, the process file table may still have the inode even though the file is not actually present and
as a result, ncheck will fail.

In the following example, note that the file system name has been included to avoid the overhead of
searching all of the file systems for the inode number.

If the following file namewas displayed:

<vxfs,/,/dev/root,inode:926>

and then from that display, the following ncheck commandwas entered:

ncheck -i 926 -F vxfs /dev/root

An output like the following would be generated:

/dev/root:
926 /etc/utmpx

The string for an inode is as follows:

<www,xxx,yyy,zzz,inode:nnnn>

where:

www: Is the file type:
“reg” - Regular file
“dir” - Directory file
“blk” - Block device
“chr” - Character device
“lnk” - Soft file link
“sock” - Socket

HP GlancePlus (11.02)Page 684 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

“fifo” - FIFO

xxx: Is the file domain; such as,
“ufs” - Unix file system
“nfs” - NFS
“vxfs” - Veritas file system

yyy: Is the mount point.
zzz: Is the file system.

OnHP-UX 11.0, the file type is not shown since it will always be “reg” for regular files, which are
mmappable.

If a program is “hard linked” (that is, two directories pointing to the same inode), then a different
namemay be reported for the text and data regions than is actually running. This often happens
with the HPTERM program, which is often hard-linked to HELPVIEW. Use the “-i” option of the “ls”
command to see the inode numbers.

PROC_REGION_LOCKED

The amount of memory (in KBs unless otherwise indicated) that is locked. Memory is typically
“locked” by calls to plock(2), datalock(3C), or shmctl(2). In addition to the number of pages locked,
this metric includes the number of bytes (rounded up to the nearest page) used by the kernel to
store the virtual memory structures allocated to track the pages in thememory region. Hence if the
region pages are locked inmemory, the virtual memory management structures for that regionmust
also be locked. As a result, one could see the number of bytes locked exceed the virtual memory
size of a region.

This metric is currently unavailable on HP-UX 11.0.

PROC_REGION_PAGE_COUNT_1_4KB

The number of pages of size 4KB allocated to this memory region.

PROC_REGION_PAGE_COUNT_2_16KB

The number of pages of size 16KB allocated to this memory region.

PROC_REGION_PAGE_COUNT_3_64KB

The number of pages of size 64KB allocated to this memory region.

PROC_REGION_PAGE_COUNT_4_256KB

The number of pages of size 256KB allocated to this memory region.

HP GlancePlus (11.02)Page 685 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_REGION_PAGE_COUNT_5_1MB

The number of pages of size 1MB allocated to this memory region.

PROC_REGION_PAGE_COUNT_6_4MB

The number of pages of size 4MB allocated to this memory region.

PROC_REGION_PAGE_COUNT_7_16MB

The number of pages of size 16MB allocated to this memory region.

PROC_REGION_PAGE_COUNT_8_64MB

The number of pages of size 64MB allocated to this memory region.

PROC_REGION_PAGE_COUNT_9_256MB

The number of pages of size 256MB allocated to this memory region. Even though 11.11 and later
releases support page sizes larger than 64Mb, only 11.23 and newer releases report this data.
Versions older than 11.23 adjust 64Mb page counts to include larger page sizes (for instance, one
256Mb page will be counted as 4 64Mb pages).

PROC_REGION_PAGE_COUNT_B_1GB

The number of pages of size 1GB allocated to this memory region. Even though 11.11 and later
releases support page sizes larger than 64Mb, only 11.23 and newer releases report this data.
Versions older than 11.23 adjust 64Mb page counts to include larger page sizes (for instance, one
256Mb page will be counted as 4 64Mb pages).

PROC_REGION_PAGE_COUNT_B_4GB

The number of pages of size 4GB allocated to this memory region. Even though 11.11 and later
releases support page sizes larger than 64Mb, only 11.23 and newer releases report this data.
Versions older than 11.23 adjust 64Mb page counts to include larger page sizes (for instance, one
256Mb page will be counted as 4 64Mb pages).

PROC_REGION_PAGE_SIZE_HINT

The recommended or default size for pages allocated to this memory region. The chatr(1)
command can be used to change the page size hint requested for a program's text and data regions.

HP GlancePlus (11.02)Page 686 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_REGION_PRIVATE_SHARED_FLAG

A text indicator of either privatememory (Priv) or shared (Shared) for this memory region. Private
memory is only being used by the current process. Sharedmemory is mapped into the address
space of other processes.

PROC_REGION_REF_COUNT

The number of processes sharing this memory region.

For private regions this value is 1. For shared regions, this value is the number of processes
sharing the region.

This metric is currently unavailable on HP-UX 11.0.

PROC_REGION_RES

The size (in KBs unless otherwise indicated) of the resident memory occupied by this memory
region.

On HP-UX 11.0 and beyond, this value is not affected by the reference count.

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

PROC_REGION_RES_DATA

The size (in KBs unless otherwise indicated) of the total resident memory occupied by data regions
of this process. This value is not affected by the reference count since all data regions are private.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

PROC_REGION_RES_OTHER

The size (in KBs unless otherwise indicated) of the total resident memory occupied by regions of
this process that are not text, data, stack, or sharedmemory.

On HP-UX 11.0 and beyond, this value is not affected by the reference count.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

HP GlancePlus (11.02)Page 687 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_REGION_RES_SHMEM

The size (in KBs unless otherwise indicated) of the total resident memory occupied by shared
memory regions of this process.

On HP-UX 11.0 and beyond, this value is not affected by the reference count.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

In other words, the sum of this value for all processes exceeds the actual memory occupied since
somememory is shared.

PROC_REGION_RES_STACK

The size (in KBs unless otherwise indicated) of the total resident memory occupied by stack
regions of this process.

On HP-UX, stack regions are always private and will have a reference count of one. The stack, in
this case, refers to the kernel stack, not the user stack. For a threadedOS, each kernel thread will
have one kernel stack.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

PROC_REGION_RES_TEXT

The size (in KBs unless otherwise indicated) of the total resident memory occupied by text regions
of this process.

On HP-UX 11.0 and beyond, this value is not affected by the reference count.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

In other words, the sum of this value for all processes exceeds the actual memory occupied since
somememory is shared.

HP GlancePlus (11.02)Page 688 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_REGION_TYPE

A text name for the type of this memory region. It can be one of the following:

DATA Data region
LIBDAT Shared Library data
LIBTXT Shared Library text
STACK Stack region
TEXT Text (that is, code)

OnHP-UX, it can also be one of the following:

GRAPH Frame buffer lock page
IOMAP IO region (iomap)
MEMMAP Memory-mapped file,

which includes shared
libraries (text and
data), or memory
created by calls to
mmap(2)

NULLDR Null pointer dereference
shared page (see below)

RSESTA Itanium Registered stack
engine region

SIGSTK Signal stack region
UAREA User Area region
UNKNWN Region of unknown type

OnHP-UX, a whole page is allocated for NULL pointer dereferencing, which is reported as the
NULLDR area. If the program is compiled with the “-z” option (which disallows NULL
dereferencing), this area is missing. Shared libraries are accessed as memory mapped files, so
that the code will show up as “MEMMAP/Shared” and data will show up as “MEMMAP/Priv”.

On SUN, it can also be one of the following:

BSS Static initialized data
MEMMAP Memory mapped files
NULLDR Null pointer dereference

shared page (see below).
SHMEM Shared memory
UNKNWN Region of unknown type

OnSUN, programs might have an area for NULL pointer dereferencing, which is reported as the
NULLDR area. Special segment types that are supported by the kernel that are used for frame
buffer devices or other purposes are typed as UNKNWN. The following kernel processes are
examples of this: sched, pageout, and fsflush.

On AIX, as of mid-2010, the OS only provides information for text and data.

HP GlancePlus (11.02)Page 689 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_REGION_VIRT

The size (in KBs unless otherwise indicated) of the virtual memory occupied by this memory region.

This value is not affected by the reference count.

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always
be zero. Note also that the total virtual sizemay not match the sum of the regions due to
inconsistencies in the AIX measurement interfaces.

PROC_REGION_VIRT_ADDRS

The virtual address of this memory region displayed in hexadecimal showing the space and offset
of the region.

On HP-UX, this is a 64-bit (96-bit on a 64-bit OS) hexadecimal value indicating the space and space
offset of the region.

PROC_REGION_VIRT_DATA

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by data regions of
this process. This value is not affected by the reference count since all data regions are private.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always
be zero. Note also that the total virtual sizemay not match the sum of the regions due to
inconsistencies in the AIX measurement interfaces.

PROC_REGION_VIRT_OTHER

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by regions of this
process that are not text, data, stack, or sharedmemory.

This value is not affected by the reference count.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

HP GlancePlus (11.02)Page 690 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always
be zero. Note also that the total virtual sizemay not match the sum of the regions due to
inconsistencies in the AIX measurement interfaces.

PROC_REGION_VIRT_SHMEM

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by shared
memory regions of this process.

Note that this memory is shared by other processes and this figure is reported in their metrics also.

This value is not affected by the reference count.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

The number of references is a count of the number of attachments to thememory region.
Attachments, for shared regions, may come from several processes sharing the samememory, a
single process with multiple attachments, or combinations of these.

On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always
be zero. Note also that the total virtual sizemay not match the sum of the regions due to
inconsistencies in the AIX measurement interfaces.

PROC_REGION_VIRT_STACK

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by stack regions
of this process.

Stack regions are always private and will have a reference count of one.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always
be zero. Note also that the total virtual sizemay not match the sum of the regions due to
inconsistencies in the AIX measurement interfaces.

PROC_REGION_VIRT_TEXT

The size (in KBs unless otherwise indicated) of the total virtual memory occupied by text regions of
this process. This value is not affected by the reference count.

This metric is specific to the process as a whole and will not change its value. If this metric is used
in a glance adviser script, only pick up one value. Do not sum the values since the same value is
shown for all regions.

HP GlancePlus (11.02)Page 691 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On AIX, as of mid-2010, the OS only provides information for text and data. Other sizes will always
be zero. Note also that the total virtual sizemay not match the sum of the regions due to
inconsistencies in the AIX measurement interfaces.

PROC_RPC_WAIT_PCT
THREAD_RPC_WAIT_PCT

The percentage of time the process or kernel thread was blocked on RPC (waiting for remote
procedure calls to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_RPC_WAIT_PCT_CUM
THREAD_RPC_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on RPC (waiting for
remote procedure calls to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 692 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_RPC_WAIT_TIME
THREAD_RPC_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on RPC (waiting for its remote
procedure calls to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_RPC_WAIT_TIME_CUM
THREAD_RPC_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on RPC (waiting for its remote
procedure calls to complete) over the cumulative collection time.

HP GlancePlus (11.02)Page 693 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_RUN_TIME
THREAD_RUN_TIME

The elapsed time since a process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above) started,
in seconds.

This metric is less than the interval time if the process (or kernel thread, if HP-UX/Linux Kernel 2.6
and above) was not alive during the entire first or last interval.

On a threaded operating system such as HP-UX 11.0 and beyond, this metric is available for a
process or kernel thread.

PROC_SCHEDULER
THREAD_SCHEDULER

The scheduling policy for this process or kernel thread.

The available scheduling policies are:

HPUX - HP-UX normal timeshare
NOAGE - HP-UX timeshare without

usage decay
RTPRIO - HP-UX Real-time
FIFO - Posix First In/First Out
RR - Posix Round-Robin

HP GlancePlus (11.02)Page 694 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

RR2 - Posix Round-Robin with a
per-priority time slice
interval

On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel
thread characteristic. If this metric is reported for a process, the value for its last executing kernel
thread is given. For example, if a process has multiple kernel threads and kernel thread one is the
last to execute during the interval, themetric value for kernel thread one is assigned to the process.

PROC_SEM_WAIT_PCT
THREAD_SEM_WAIT_PCT

The percentage of time the process or kernel thread was blocked onsemaphores (waiting on a
semaphore operation to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SEM_WAIT_PCT_CUM
THREAD_SEM_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked onsemaphores (waiting
on a semaphore operation to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process

HP GlancePlus (11.02)Page 695 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SEM_WAIT_TIME
THREAD_SEM_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked onsemaphores (waiting on a
semaphore operation to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 696 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_SEM_WAIT_TIME_CUM
THREAD_SEM_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked onsemaphores (waiting on a
semaphore operation to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_SIGNAL
THREAD_SIGNAL

Number of signals seen by the current process (or kernel thread, if HP-UX) during the lifetime of the
process or kernel thread.

PROC_SIGNAL_CUM
THREAD_SIGNAL_CUM

Number of signals seen by the current process (or kernel thread, if HP-UX) over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 697 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

PROC_SLEEP_WAIT_PCT
THREAD_SLEEP_WAIT_PCT

The percentage of time the process or kernel thread was blocked on SLEEP (waiting to awaken
from sleep system calls) during the interval. A process or kernel thread enters the SLEEP state by
putting itself to sleep using system calls such as sleep, wait, pause, sigpause, sigsuspend, poll
and select.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SLEEP_WAIT_PCT_CUM
THREAD_SLEEP_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on SLEEP (waiting to
awaken from sleep system calls) over the cumulative collection time. A process or kernel thread
enters the SLEEP state by putting itself to sleep using system calls such as sleep, wait, pause,
sigpause, sigsuspend, poll and select.

HP GlancePlus (11.02)Page 698 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SLEEP_WAIT_TIME
THREAD_SLEEP_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on SLEEP (waiting to awaken
from sleep system calls) during the interval. A process or kernel thread enters the SLEEP state by
putting itself to sleep using system calls such as sleep, wait, pause, sigpause, sigsuspend, poll
and select.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that

HP GlancePlus (11.02)Page 699 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_SLEEP_WAIT_TIME_CUM
THREAD_SLEEP_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on SLEEP (waiting to awaken
from sleep system calls) over the cumulative collection time. A process or kernel thread enters the
SLEEP state by putting itself to sleep using system calls such as sleep, wait, pause, sigpause,
sigsuspend, poll and select.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_SOCKET_WAIT_PCT
THREAD_SOCKET_WAIT_PCT

The percentage of time the process or kernel thread was blocked on sockets (waiting for their IO to
complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

HP GlancePlus (11.02)Page 700 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SOCKET_WAIT_PCT_CUM
THREAD_SOCKET_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on sockets (waiting for
their IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on

HP GlancePlus (11.02)Page 701 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SOCKET_WAIT_TIME
THREAD_SOCKET_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on sockets (waiting for its IO to
complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_SOCKET_WAIT_TIME_CUM
THREAD_SOCKET_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on sockets (waiting for its IO to
complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that

HP GlancePlus (11.02)Page 702 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_STARTTIME
THREAD_STARTTIME

The creation date and time of the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above).

PROC_STATE
THREAD_STATE

A text string summarizing the current state of a process (or kernel thread, if HP-UX/Linux Kernel 2.6
and above), either:

new This is the first interval
the process has been
displayed.

active Process is continuing.
died Process expired during

the interval.

PROC_STOP_REASON
THREAD_STOP_REASON

A text string describing what caused the process (or kernel thread, if HP-UX/Linux Kernel 2.6 and
above) to stop executing. For example, if the process is waiting for a CPU while higher priority
processes are executing, then its block reason is PRI. A complete list of block reasons follows:

String Reason for Process Block

CACHE Waiting at the buffer cache
level trying to lock down a
buffer cache structure, or
waiting for an IO operation
to or from a buffer cache to
complete. File system access
will block on IO more often
than CACHE on HP-UX 11.x.

CDFS Waiting for CD-ROM file
system node structure
allocation or locks while

HP GlancePlus (11.02)Page 703 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

accessing a CD-ROM device
through the file system.

died Process terminated during
the interval.

DISK Waiting for an IO operation
to complete at the logical
device manager or disk
driver level. Waits from
raw disk IO and diagnostic
requests can be seen here.
Buffered IO requests can
also block on DISK, but will
more often be seen waiting
on “IO”. CDFS access will
block on “CDFS”. Virtual
memory activity will block
on “VM”.

GRAPH Waiting for a graphics card
or framebuf semaphore
operation.

INODE Waiting while accessing
an inode structure. This
includes inode gets and
waiting due to inode locks.

IO Waiting for IO to local
disks, printers, tapes, or
instruments to complete
(above the driver, but below
the buffer cache). Both file
system and raw disk access
can block in this state.
CDFS access will block on
“CDFS”. Virtual memory
activity will block on “VM”.

IPC Waiting for a process or
kernel thread event (that
is, waiting for a child to
receive a signal). This
includes both inter and
intra process or kernel
thread operations, such as
IPC locks, kernel thread
mutexes, and database IPC
operations. System V

HP GlancePlus (11.02)Page 704 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

message queue operations
will block on “MESG”, while
semaphore operations will
block on “SEM”.

JOBCL Waiting for tracing resume,
debug resume, or job control
start. A background process
incurs this block when
attempting to write to a
terminal set with “stty
tostop“. On HP-UX 11i,
scheduler activation threads
(user threads) will show
this block.

LAN Waiting for a network IO
completion. This includes
waiting on the LAN hardware
and low level LAN device
driver. It does not include
waiting on the higher level
network software such as the
streams based transport or
NFS, which has its own stop
state.

MESG Waiting for a System V
message queue operation such
as msgrcv or msgsnd.

new Process was created (via the
fork/vfork system calls)
during the interval.

NFS Waiting for a Networked File
System request to complete.
This includes both NFS V2
and V3 requests. This does
not include stops where
kernel threads or deamons
are waiting for a NFS event
or request (such as biod or
nfsd). These will block on
SLEEP to show they are
waiting for some activity.

NONE Zombie process - waiting to
die.

HP GlancePlus (11.02)Page 705 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OTHER The process was started
before the midaemon was
started and has not been
resumed, or the block state
is unknown.

PIPE Waiting for operations
involving pipes. This
includes opening, closing,
reading, and writing using
pipes. Named pipes will
block on PIPE.

PRI Waiting because a higher
priority process is running,
or waiting for a spinlock or
alpha semaphore.

RPC Waiting for remote procedure
call operations to complete.
This includes both NFS and
DCE RPC requests.

SEM Waiting for a System V
semaphore operation (such as
semop, semget, or semctl) or
waiting for a memory mapped
file semaphore operation
(such as msem_init or
msem_lock).

SLEEP Waiting because the process
put itself to sleep using
system calls such as sleep,
wait, pause, sigpause, poll,
sigsuspend and select. This
is the standard stop reason
for idle system daemons.

SOCKT Waiting for an operation to
complete while accessing a
device through a socket.
This is used primarily in
networking code and includes
all protocols using sockets
(X25, UDP, TCP, and so on).

STRMS Waiting for an operation to
complete while accessing a
“streams” device. This is

HP GlancePlus (11.02)Page 706 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

the normal stop reason for
kernel threads and daemons
waiting for a streams event.
This includes the network
transport and pseudo
terminal IO requests. For
example, waiting for a read
on a streams device or
waiting for an internal
streams synchronization.

SYSTM Waiting for access to a
system resource or lock.
These resources include data
structures from the LVM,
VFS, UFS, JFS, and Disk
Quota subsystems. “SYSTM”
is the “catch-all” wait
state for blocks on system
resources that are not
common enough or long enough
to warrant their own stop
state.

TERM Waiting for a non-streams
terminal transfer (tty or
pty).

VM Waiting for a virtual memory
operation to complete, or
waiting for free memory, or
blocked while creating/
accessing a virtual memory
structure.

For a process or kernel thread currently running, the last reason it was stopped before obtaining the
CPU is shown.

OnHP-UX 11.0 and beyond, mikslp.text (located in /opt/perf/lib) contains the blocking functions
and their corresponding block states for use by midaemon.

On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel
thread characteristic. If this metric is reported for a process, the value for its last executing kernel
thread is given. For example, if a process has multiple kernel threads and kernel thread one is the
last to execute during the interval, themetric value for kernel thread one is assigned to the process.

HP GlancePlus (11.02)Page 707 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_STOP_REASON_FLAG
THREAD_STOP_REASON_FLAG

A numeric value for the stop reason. This is used by scopeux instead of the ASCII string returned
by PROC_STOP_REASON in order to conserve space in the log file.

On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel
thread characteristic. If this metric is reported for a process, the value for its last executing kernel
thread is given. For example, if a process has multiple kernel threads and kernel thread one is the
last to execute during the interval, themetric value for kernel thread one is assigned to the process.

PROC_STREAM_WAIT_PCT
THREAD_STREAM_WAIT_PCT

The percentage of time the process or kernel thread was blocked on streams IO (waiting for a
streams IO operation to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_STREAM_WAIT_PCT_CUM
THREAD_STREAM_WAIT_PCT_CUM

The average percentage of time the process or thread was blocked on streams IO (waiting for a
streams IO operation to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 708 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_STREAM_WAIT_TIME
THREAD_STREAM_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on streams IO (waiting for a
streams IO operation to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

HP GlancePlus (11.02)Page 709 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_STREAM_WAIT_TIME_CUM
THREAD_STREAM_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on streams IO (waiting for a
streams IO operation to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_SWAP
THREAD_SWAP

The number of times the process or kernel thread was deactivated during the interval.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

HP GlancePlus (11.02)Page 710 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_SWAP_CUM
THREAD_SWAP_CUM

The number of times the process or kernel thread was deactivated over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, process swapping was replaced by a combination of paging and deactivation. Process
deactivation occurs when the system is thrashing or when the amount of freememory falls below a
critical level. The swapper thenmarks certain processes for deactivation and removes them from
the run queue. Pages within the associatedmemory regions are reused or paged out by the
memory management vhand process in favor of pages belonging to processes that are not
deactivated. Unlike traditional process swapping, deactivatedmemory pages may or may not be
written out to the swap area, because a process could be reactivated before the paging occurs.

To summarize, a process swap-out on HP-UX is a process deactivation. A swap-in is a
reactivation of a deactivated process. Swapmetrics that report swap-out bytes now represent
bytes paged out to swap areas from deactivated regions. Because these pages are pushed out
over time based onmemory demands, these counts aremuch smaller than HP-UX 9.x counts
where the entire process was written to the swap area when it was swapped-out. Likewise, swap-in
bytes now represent bytes paged in as a result of reactivating a deactivated process and reading in
any pages that were actually paged out to the swap area while the process was deactivated.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_SYS_WAIT_PCT
THREAD_SYS_WAIT_PCT

The percentage of time the process or kernel thread was blocked on system resources during the
interval. These resources include data structures from the LVM, VFS, UFS, JFS, and Disk Quota

HP GlancePlus (11.02)Page 711 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

subsystems. “SYSTM” is the “catch-all” wait state for blocks on system resources that are not
common enough or long enough to warrant their own stop state.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SYS_WAIT_PCT_CUM
THREAD_SYS_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on SYSTM (that is,
system resources) over the cumulative collection time. These resources include data structures
from the LVM, VFS, UFS, JFS, and Disk Quota subsystems. “SYSTM” is the “catch-all” wait state
for blocks on system resources that are not common enough or long enough to warrant their own
stop state.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 712 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

PROC_SYS_WAIT_TIME
THREAD_SYS_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on SYSTM (that is, system
resources) during the interval. These resources include data structures from the LVM, VFS, UFS,
JFS, and Disk Quota subsystems. “SYSTM” is the “catch-all” wait state for blocks on system
resources that are not common enough or long enough to warrant their own stop state.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_SYS_WAIT_TIME_CUM
THREAD_SYS_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on SYSTM (that is, system
resources) over the cumulative collection time. These resources include data structures from the
LVM, VFS, UFS, JFS, and Disk Quota subsystems. “SYSTM” is the “catch-all” wait state for
blocks on system resources that are not common enough or long enough to warrant their own stop
state.

HP GlancePlus (11.02)Page 713 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_TERM_IO_WAIT_PCT
THREAD_TERM_IO_WAIT_PCT

The percentage of time the process or kernel thread was blocked on terminal IO (waiting for its
terminal IO to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 714 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_TERM_IO_WAIT_PCT_CUM
THREAD_TERM_IO_WAIT_PCT_CUM

The average percentage of time the process or kernel thread was blocked on terminal IO (waiting for
its terminal IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. Alive kernel threads and kernel threads that have
died during the interval are included in the summation.

A percentage of time spent in a wait state is calculated as the time a kernel thread (or all kernel
threads of a process) spent waiting in this state, divided by the alive time of the kernel thread (or all
kernel threads of the process) during the interval.

If this metric is reported for a kernel thread, the percentage value is for that single kernel thread. If
this metric is reported for a process, the percentage value is calculated with the sum of the wait and
alive times of all of its kernel threads.

For example, if a process has 2 kernel threads, one sleeping for the entire interval and one waiting
on terminal input for the interval, the process wait percent values will be 50% on Sleep and 50% on
Terminal. The kernel thread wait values will be 100% on Sleep for the first kernel thread and 100%
on Terminal for the second kernel thread.

For another example, consider the same process as above, with 2 kernel threads, one of which was
created half-way through the interval, and which then slept for the remainder of the interval. The
other kernel thread was waiting for terminal input for half the interval, then used the CPU actively for
the remainder of the interval. The process wait percent values will be 33% on Sleep and 33% on
Terminal (each one third of the total alive time). The kernel thread wait values will be 100% on
Sleep for the first kernel thread and 50% on Terminal for the second kernel thread.

HP GlancePlus (11.02)Page 715 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_TERM_IO_WAIT_TIME
THREAD_TERM_IO_WAIT_TIME

The time, in seconds, that the process or kernel thread was blocked on terminal IO (waiting for its
terminal IO to complete) during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_TERM_IO_WAIT_TIME_CUM
THREAD_TERM_IO_WAIT_TIME_CUM

The time, in seconds, that the process or kernel thread was blocked on terminal IO (waiting for its
terminal IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_THREAD_COUNT
THREAD_THREAD_COUNT

The total number of kernel threads for the current process.

On Linux systems with Kernel 2.5 and below, every thread has its own process ID so this metric
will always be 1.

HP GlancePlus (11.02)Page 716 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On Solaris systems, this metric reflects the total number of Light Weight Processes (LWPs)
associated with the process.

PROC_THREAD_ID
THREAD_THREAD_ID

The thread ID number of this kernel thread, used to uniquely identify it. On Linux systems this
metric shall be available from Linux Kernel 2.6 onwards.

PROC_TIME
THREAD_TIME

The time the data for the process (or kernel threads, if HP-UX/Linux Kernel 2.6 and above) was
collected, in local time.

PROC_TOP_CPU_INDEX
THREAD_TOP_CPU_INDEX

The index of the process which consumed themost CPU during the interval. From this index, the
process PID, process name, and CPU utilization can be obtained. (Even for kernel threads if
HPUX/Linux Kernel 2.6 and above this metric returns the index of the process)

This metric is used by the Performance Tools to index into the Data collection interface's internal
table. This is not ametric that will be interesting to Tool users.

PROC_TOP_DISK_INDEX
THREAD_TOP_DISK_INDEX

The index of the process which did themost physical IOs during the last interval.

On HP-UX, note that NFS mounted disks are not considered in this calculation.

With this index, the PID, process name, and IOs per second can be obtained.

This metric is used by the Performance Tools to index into the Data collection interface's internal
table. This is not ametric that will be interesting to Tool's users.

PROC_TOTAL_WAIT_TIME
THREAD_TOTAL_WAIT_TIME

The total time, in seconds, that the process or kernel thread spent blocked during the interval.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that

HP GlancePlus (11.02)Page 717 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_TOTAL_WAIT_TIME_CUM
THREAD_TOTAL_WAIT_TIME_CUM

The total time that the process or kernel thread spent blocked over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process wait time is calculated
by summing the wait times of its kernel threads. If this metric is reported for a kernel thread, the
value is the wait time of that single kernel thread. If this metric is reported for a process, the value
is the sum of the wait times of all of its kernel threads. Alive kernel threads and kernel threads that
have died during the interval are included in the summation. For multi-threaded processes, the wait
times can exceed the length of themeasurement interval.

PROC_TTY
THREAD_TTY

The controlling terminal for a process(or kernel threads, if HP-UX/Linux Kernel 2.6 and above). This
field is blank if there is no controlling terminal. On HP-UX, Linux, and AIX, this is the same as the
“TTY” field of the ps command.

On all other Unix systems, the controlling terminal name is found by searching the directories
provided in the /etc/ttysrch file. Seeman page ttysrch(4) for details. Thematching criteria field
(“M”, “F” or “I” values) of the ttysrch file is ignored. If a terminal is not found in one of the ttysrch file
directories, the following directories are searched in the order here: “/dev”, “/dev/pts”, “/dev/term”
and “dev/xt”. When amatch is found in one of the “/dev” subdirectories, “/dev/” is not displayed as
part of the terminal name. If nomatch is found in the directory searches, themajor andminor
numbers of the controlling terminal are displayed. In most cases, this value is the same as the
“TTY” field of the ps command.

OnHP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

HP GlancePlus (11.02)Page 718 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

PROC_TTY_DEV
THREAD_TTY_DEV

The device number of the controlling terminal for a process(or kernel threads, if HP-UX/Linux Kernel
2.6 and above).

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_UID
THREAD_UID

The real UID (user ID number) of a process(or kernel threads, if HP-UX/Linux Kernel 2.6 and
above). This is the UID returned from the getuid system call.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_USER_NAME
THREAD_USER_NAME

OnUnix systems, this is real user name of a process or the login account (from /etc/passwd) of a
process (or kernel thread, if HP-UX/Linux Kernel 2.6 and above). If more than one account is listed
in /etc/passwdwith the same user ID (uid) field, the first one is used. If an account cannot be found
that matches the uid field, then the uid number is returned. This would occur if the account was
removed after a process was started.

OnWindows, this is the process owner account name, without the domain name this account
resides in.

On HP-UX, this metric is specific to a process. If this metric is reported for a kernel thread, the
value for its associated process is given.

PROC_USER_THREAD_ID
THREAD_USER_THREAD_ID

The user thread ID number of the last user thread to execute within the context of this process or
kernel thread. User threads IDs are used to identify user-level threads of execution within the
context of a process. A process may have one or more user threads even if there is only one kernel
thread.

PROC_USRPRI
THREAD_USRPRI

The user priority for the process or kernel thread is set by the kernel during scheduling. This value
becomes the actual process or kernel thread priority once it returns to user mode from kernel mode.

HP GlancePlus (11.02)Page 719 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The calculation of the user priority is based on the process or kernel thread CPU usage and the nice
value.

On a threaded operating system, such as HP-UX 11.0 and beyond, this metric represents a kernel
thread characteristic. If this metric is reported for a process, the value for its last executing kernel
thread is given. For example, if a process has multiple kernel threads and kernel thread one is the
last to execute during the interval, themetric value for kernel thread one is assigned to the process.

PROC_VOLUNTARY_CSWITCH
THREAD_VOLUNTARY_CSWITCH

The number of times a process (or kernel thread, if HP-UX) has given up the CPU before an
external event preempted it during the interval. Examples of voluntary switches include calls to
sleep(2) and select(2).

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

PROC_VOLUNTARY_CSWITCH_CUM
THREAD_VOLUNTARY_CSWITCH_CUM

The number of times a process (or kernel thread, if HP-UX) has given up the CPU before an
external event preempted it over the cumulative collection time. Examples of voluntary switches
include calls to sleep(2) and select(2).

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On a threaded operating system, such as HP-UX 11.0 and beyond, process usage of a resource is
calculated by summing the usage of that resource by its kernel threads. If this metric is reported for
a kernel thread, the value is the resource usage by that single kernel thread. If this metric is
reported for a process, the value is the sum of the resource usage by all of its kernel threads. Alive
kernel threads and kernel threads that have died during the interval are included in the summation.

HP GlancePlus (11.02)Page 720 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

SYSCALL_ACTIVE_CUM

The number of system calls used on the system. All calls used over the cumulative collection time
are included in this count.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

SYSCALL_CALL_COUNT

The number of system calls made to this function during the interval.

They are assessed when the system call stub returns control back to the calling program/routine.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

SYSCALL_CALL_COUNT_CUM

The number of system calls made to this function over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 721 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

SYSCALL_CALL_ID

The ID number of this system call. System calls are sequentially numbered starting with one.

SYSCALL_CALL_NAME

The system call name.

SYSCALL_CALL_RATE

The number of system calls per secondmade to this function during the last interval.

They are assessed when the system call stub returns control back to the calling program/routine.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

SYSCALL_CALL_RATE_CUM

The average number of system calls per secondmade to this function over the cumulative
collection time.

HP GlancePlus (11.02)Page 722 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Due to the system call instrumentation on HP-UX, the fork and vfork system calls are double
counted. In the case of fork and vfork, one process starts the system call, but two processes exit.

HP-UX lightweight system calls, such as umask, do not show up in the Glance System Calls
display, but will get added to the global system call rates. If a process is being traced (debugged)
using standard debugging tools (such as adb or xdb), all system calls used by that process will
show up in the System Calls display while being traced.

SYSCALL_CPU_TOTAL_TIME

The CPU time, in seconds, during the interval spent executing this system calls. On platforms
other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report values
normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

SYSCALL_CPU_TOTAL_TIME_CUM

The CPU time, in seconds, over the cumulative collection time spent executing this system calls.

HP GlancePlus (11.02)Page 723 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this. On
platforms other than HPUX, If the ignore_mt flag is set(true) in parm file, this metric will report
values normalized against the number of active cores in the system.

If the ignore_mt flag is not set(false) in parm file, this metric will report values normalized against
the number of threads in the system.

This flag will be a no-op if Multithreading is turned off.

On HPUX, CPU utilization normalization is controlled by the “-ignore_mt” option of the
midaemon(1m). To change normalization from core-based to logical-cpu-based, or vice-versa, all
performance components (scopeux, glance, perfd) must be shut down and themidaemon restarted
in the desiredmode. To start themidaemonwith “-ignore_mt” by default, this option should be
added in the /etc/rc.config.d/ovpa control file. Refer to the documentation regarding ovpa startup.
Note that, on HPUX, unlike other platforms, specifying core-based normalization affects CPU,
application, process and threadmetrics.

SYSCALL_INTERVAL

The amount of time in the interval.

SYSCALL_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 724 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TBL_BUFFER_CACHE_AVAIL

The size (in KBs unless otherwise specified) of the file systembuffer cache on the system.

OnHP-UX 11i v2 and below, these buffers are used for all file system IO operations, as well as all
other block IO operations in the system (exec, mount, inode reading, and some device drivers). If
dynamic buffer cache is enabled, the system allocates a percentage of available memory not less
than dbc_min_pct nor more than dbc_max_pct, depending on the system needs at any given time.
On systems with a static buffer cache, this value will remain equal to bufpages, or not less than
dbc_min_pct nor more than dbc_max_pct.

On HP-UX 11i v3 and above the limits of the file systembuffer cache which is still being used for file
systemmetadata are automatically set to certain percentages of filecache_min and filecache_max.

On SUN, this value is obtained by multiplying the system page size times the number of buffer
headers (nbuf). For example, on a SPARCstation 10 the buffer size is usually (200 (page size
buffers) * 4096 (bytes/page) = 800 KB).

NOTE: (For SUN systems with VERITAS File System installed) Veritas implemented their Direct
I/O feature in their file system to providemechanism for bypassing the Unix system buffer cache
while retaining the on disk structure of a file system. The way in which Direct I/O works involves
the way the system buffer cache is handled by the Unix OS. Once the VERITAS file system
returns with the requested block, instead of copying the content to a system buffer page, it copies
the block into the application's buffer space. That's why if you have installed vxfs on your system,
the TBL_BUFFER_CACHE_AVAIL can exceed the TBL_BUFFER_CACHE_HWMmetric.

On SUN, the buffer cache is amemory pool used by the system to cache inode, indirect block and
cylinder group related disk accesses. This is different from the traditional concept of a buffer cache
that also holds file system data. On Solaris 5.X, as file data is cached, accesses to it show up as
virtual memory IOs. File data caching occurs throughmemory mappingmanaged by the virtual
memory system, not through the buffer cache. The “nbuf” value is dynamic, but it is very hard to
create a situation where thememory cachemetrics change, sincemost systems havemore than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more
heavily utilized on NFS file servers.

On AIX, this cache is used for all block IO.

On AIX SystemWPARs, this metric is NA.

TBL_BUFFER_CACHE_HIGH

The highest size (in KBs unless otherwise specified) of the buffer cache used in any one interval
over the cumulative collection time.

HP GlancePlus (11.02)Page 725 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_BUFFER_CACHE_MAX

OnHP-UX 11i v2 and below, this metric represents themaximum size (in KBs unless otherwise
specified) of the buffer cache. This corresponds to the kernel configuration parameter “dbc_max_
pct”. On systems with a dynamic buffer cache, the cache does not exceed this limit. On systems
with a fixed buffer cache, the cache size is equal to the value reported, which is based on the dbc_
max_pct or bufpages settings.

On HP-UX 11i v3 and above, this metric represents themaximum size (in KBs unless otherwise
specified) of the file cache. This corresponds to the kernel configuration parameter “filecache_
max”.

TBL_BUFFER_CACHE_MIN

OnHP-UX 11i v2 and below, this metric represents theminimum size (in KBs unless otherwise
specified) of the buffer cache. This corresponds to the kernel configuration parameter “dbc_min_
pct”. On systems with a dynamic buffer cache, the cache does not shrink below this limit. On
systems with a fixed buffer cache, the cache size is equal to the value reported, which is based on
the dbc_min_pct or bufpages settings.

On HP-UX 11i v3 and above, this metric represents theminimum size (in KBs unless otherwise
specified) of the file cache. This corresponds to the kernel configuration parameter “filecache_min”.

TBL_BUFFER_CACHE_USED

The size (in KBs unless otherwise specified) of the sum of the currently used buffers.

On HP-UX 11i v2 and below, this is normally greater than the amount requested due to internal
fragmentation of the buffer cache. Since this is a cache, it is normal for it to be filled. The buffer
cache is used to stage all block IOs to disk. On a dynamic buffer cache configuration, this metric is

HP GlancePlus (11.02)Page 726 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

always equal to TBL_BUFFER_CACHE_AVAIL. With dynamic buffer cache, the system
allocates a percentage of available memory not less than dbc_min_pct nor more than dbc_max_
pct, depending on the system needs at any given time. On systems with a static buffer cache, this
value will remain equal to bufpages, or not less than dbc_min_pct nor more than dbc_max_pct.
With a static buffer cache, this metric shows the amount of memory within the configured size that
is actually used.

OnHP-UX 11i v3 and above this metric value represents the usage of the file systembuffer cache
which is still being used for file systemmetadata.

On AIX, this is normally greater than the amount requested due to internal fragmentation of the
buffer cache. Since this is a cache, it is normal for it to be filled. The buffer cache is used to stage
all block IOs to disk.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_BUFFER_HEADER_AVAIL

This is themaximum number of headers pointing to buffers in the file systembuffer cache.

OnHP-UX, this is the configured number, not themaximum number. This can be set by the “nbuf”
kernel configuration parameter. nbuf is used to determine themaximum total number of buffers on
the system.

OnHP-UX, these are used tomanage the buffer cache, which is used for all block IO operations.
When nbuf is zero, this value depends on the “bufpages” size of memory (see System
Administration Tasks manual). A value of “na” indicates either a dynamic buffer cache
configuration, or the nbuf kernel parameter has been left unconfigured and allowed to “float” with the
bufpages parameter. This is not amaximum available value in a fixed buffer cache configuration.
Instead, it is the initial configured value. The actual number of used buffer headers can grow
beyond this initial value.

On SUN, this value is “nbuf”.

On SUN, the buffer cache is amemory pool used by the system to cache inode, indirect block and
cylinder group related disk accesses. This is different from the traditional concept of a buffer cache
that also holds file system data. On Solaris 5.X, as file data is cached, accesses to it show up as
virtual memory IOs. File data caching occurs throughmemory mappingmanaged by the virtual
memory system, not through the buffer cache. The “nbuf” value is dynamic, but it is very hard to
create a situation where thememory cachemetrics change, sincemost systems havemore than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more
heavily utilized on NFS file servers.

TBL_BUFFER_HEADER_USED

The number of buffer headers currently in use.

On HP-UX, this dynamic value will rarely change once the system boots. During the system
bootup, the kernel allocates a large number of buffer headers and the count is likely to stay at that
value after the bootup completes. If the value increases beyond the initial boot value, it will not
decrease. Buffer headers are allocated in kernel memory, not user memory, and therefore, will not

HP GlancePlus (11.02)Page 727 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

decrease. This value can exceed the available or configured number of buffer headers in a fixed
buffer cache configuration.

On SUN, the buffer cache is amemory pool used by the system to cache inode, indirect block and
cylinder group related disk accesses. This is different from the traditional concept of a buffer cache
that also holds file system data. On Solaris 5.X, as file data is cached, accesses to it show up as
virtual memory IOs. File data caching occurs throughmemory mappingmanaged by the virtual
memory system, not through the buffer cache. The “nbuf” value is dynamic, but it is very hard to
create a situation where thememory cachemetrics change, sincemost systems havemore than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more
heavily utilized on NFS file servers.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_BUFFER_HEADER_UTIL

The percentage of buffer headers currently used.

OnHP-UX, a value of “na” indicates either a dynamic buffer cache configuration, or the nbuf kernel
parameter has been left unconfigured and allowed to “float” with the bufpages parameter.

On SUN, the buffer cache is amemory pool used by the system to cache inode, indirect block and
cylinder group related disk accesses. This is different from the traditional concept of a buffer cache
that also holds file system data. On Solaris 5.X, as file data is cached, accesses to it show up as
virtual memory IOs. File data caching occurs throughmemory mappingmanaged by the virtual
memory system, not through the buffer cache. The “nbuf” value is dynamic, but it is very hard to
create a situation where thememory cachemetrics change, sincemost systems havemore than
adequate space for inode, indirect block, and cylinder group data caching. This cache is more
heavily utilized on NFS file servers.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_BUFFER_HEADER_UTIL_HIGH

The highest percentage of buffer header used in any one interval over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 728 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On HP-UX, a value of “na” indicates either a dynamic buffer cache configuration, or the nbuf kernel
parameter has been left unconfigured and allowed to “float” with the bufpages parameter.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_DNLC_CACHE_AVAIL

The configured number of entries in the incore directory name cache.

OnHP-UX, the directory name lookup cache is used tominimize sequential searches through
directory entries for pathname components during pathname to inode translations. Such
translations are done whenever a file is accessed through its filename. The cache holds the inode
cache table offset for recently referenced pathname components. Pathname components that
exceed 15 characters are not cached.

Any HP-UX system call that includes a path parameter can result in directory name lookup cache
activity, including but not limited to system calls such as open, stat, exec, lstat, unlink. Each
component of a path parameter is parsed and converted to an inode separately, therefore several
dnlc hits per path are possible.

High directory name cache hit rates on HP-UX will be seen on systems where pathname
component requests are frequently repeated. For example, when users or applications work in the
same directory where they repeatedly list or open the same files, cache hit rates will be high.

Unusually low cache hit rates might be seen on HP-UX systems where users or applications
access many different directories in no particular pattern. Low cache hit rates can also be an
indicator of an underconfigured inode cache. When an inode cache is too small, the kernel will more
frequently have to flush older inode cache and their corresponding directory name cache entries in
order to make room for new inode cache entries.

On HP-UX, the directory name lookup cache is static in size and is allocated in kernel memory. As
a result, it is not affected by user memory constraints. The size of the cache is stored in the kernel
variable “ncsize” and is not directly tunable by the system administrator; however, it can be
changed indirectly by tuning other tables used in the formula to compute the “ncsize”. The formula
is:

ncsize = MAX(((nproc+16+maxusers)+
32+(2*npty)),ninode)

Note that ncsize is always >= ninode which is the default size of the inode cache. This is because
the directory name cache contains inode table offsets for each cached pathname component.

HP GlancePlus (11.02)Page 729 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TBL_FILE_LOCK_AVAIL

The configured number of file or record locks that can be allocated on the system. Files and/or
records are locked by calls to lockf(2). On Linux kernel versions 2.4 and above, available file
orrecord locks is a dynamic value which can grow upto max unsigned long.

TBL_FILE_LOCK_USED

The number of file or record locks currently in use. One file can havemultiple locks. Files and/or
records are locked by calls to lockf(2).

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

TBL_FILE_LOCK_UTIL

The percentage of configured file or record locks currently in use. On Linux 2.4 and above kernel
versions, this may not give correct picture as file or record locks available may change dynamically
and can grow uptomax unsigned long.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_FILE_LOCK_UTIL_HIGH

The highest percentage of configured file or record locks that have been in use during any one
interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

HP GlancePlus (11.02)Page 730 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TBL_FILE_TABLE_AVAIL

The number of entries in the file table.

On HP-UX and AIX, this is the configuredmaximum number of the file table entries used by the
kernel to manage open file descriptors.

On HP-UX, this is the sum of the “nfile” and “file_pad” values used in kernel generation.

On SUN, this is the number of entries in the file cache. This is a size. All entries are not always in
use. The cache size is dynamic. Entries in this cache are used tomanage open file descriptors.
They are reused as files are closed and new ones are opened. The size of the cache will go up or
down in chunks as more or less space is required in the cache.

On AIX, the file table entries are dynamically allocated by the kernel if there is no entry available.
These entries are allocated in chunks.

TBL_FILE_TABLE_USED

The number of entries in the file table currently used by file descriptors.

On SUN, this is the number of file cache entries currently used by file descriptors.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_FILE_TABLE_UTIL

The percentage of file table entries currently used by file descriptors.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_FILE_TABLE_UTIL_HIGH

The highest percentage of entries in the file table used by file descriptors in any one interval over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 731 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_INODE_CACHE_AVAIL

OnHP-UX, this is the configured total number of entries for the incore inode tables on the system.
For HP-UX releases prior to 11.2x, this value reflects only the HFS inode table. For subsequent
HP-UX releases, this value is the sum of inode tables for both HFS and VxFS file systems (ninode
plus vxfs_ninode).

On HP-UX, file system directory activity is done through inodes that are stored on disk. The kernel
keeps amemory cache of active and recently accessed inodes to reduce disk IOs. When a file is
opened through a pathname, the kernel converts the pathname to an inode number and attempts to
obtain the inode information from the cache based on the filesystem type. If the inode entry is not in
the cache, the inode is read from disk into the inode cache.

OnHP-UX, the number of used entries in the inode caches are usually at or near the capacity. This
does not necessarily indicate that the configured sizes are too small because the tables may
contain recently used inodes and inodes referenced by entries in the directory name lookup cache.
When a new inode cache entry is required and a free entry does not exist, inactive entries
referenced by the directory name cache are used. If after freeing inode entries only referenced by
the directory name cache does not create enough free space, themessage “inode: table is full”
messagemay appear on the console. If this occurs, increase the size of the kernel parameter,
ninode. Low directory name cache hit ratios may also indicate an underconfigured inode cache.

OnHP-UX, the default formula for the ninode size is:

ninode = ((nproc+16+maxusers)+32+
(2*npty)+(4*num_clients))

On all other Unix systems, this is the number of entries in the inode cache. This is a size. All
entries are not always in use. The cache size is dynamic.

Entries in this cache are reused as files are closed and new ones are opened. The size of the cache
will go up or down in chunks as more or less space is required in the cache.

Inodes are used to store information about files within the file system. Every file has at least two
inodes associated with it (one for the directory and one for the file itself). The information stored in
an inode includes the owners, timestamps, size, and an array of indices used to translate logical
block numbers to physical sector numbers. There is a separate inodemaintained for every view of
a file, so if two processes have the same file open, they both use the same directory inode, but
separate inodes for the file.

HP GlancePlus (11.02)Page 732 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TBL_INODE_CACHE_HIGH

OnHP-UX andOSF1, this is the highest number of inodes that have been used in any one interval
over the cumulative collection time.

OnHP-UX, file system directory activity is done through inodes that are stored on disk. The kernel
keeps amemory cache of active and recently accessed inodes to reduce disk IOs. When a file is
opened through a pathname, the kernel converts the pathname to an inode number and attempts to
obtain the inode information from the cache based on the filesystem type. If the inode entry is not in
the cache, the inode is read from disk into the inode cache.

OnHP-UX, the number of used entries in the inode caches are usually at or near the capacity. This
does not necessarily indicate that the configured sizes are too small because the tables may
contain recently used inodes and inodes referenced by entries in the directory name lookup cache.
When a new inode cache entry is required and a free entry does not exist, inactive entries
referenced by the directory name cache are used. If after freeing inode entries only referenced by
the directory name cache does not create enough free space, themessage “inode: table is full”
messagemay appear on the console. If this occurs, increase the size of the kernel parameter,
ninode. Low directory name cache hit ratios may also indicate an underconfigured inode cache.

OnHP-UX, the default formula for the ninode size is:

ninode = ((nproc+16+maxusers)+32+
(2*npty)+(4*num_clients))

On all other Unix systems, this is the largest size of the inode cache in any one interval over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

HP GlancePlus (11.02)Page 733 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TBL_INODE_CACHE_USED

The number of inode cache entries currently in use.

On HP-UX, this is the number of “non-free” inodes currently used. Since the inode table contains
recently closed inodes as well as open inodes, the table often appears to be fully utilized. When a
new entry is needed, one can usually be found by reusing one of the recently closed inode entries.

On HP-UX, file system directory activity is done through inodes that are stored on disk. The kernel
keeps amemory cache of active and recently accessed inodes to reduce disk IOs. When a file is
opened through a pathname, the kernel converts the pathname to an inode number and attempts to
obtain the inode information from the cache based on the filesystem type. If the inode entry is not in
the cache, the inode is read from disk into the inode cache.

OnHP-UX, the number of used entries in the inode caches are usually at or near the capacity. This
does not necessarily indicate that the configured sizes are too small because the tables may
contain recently used inodes and inodes referenced by entries in the directory name lookup cache.
When a new inode cache entry is required and a free entry does not exist, inactive entries
referenced by the directory name cache are used. If after freeing inode entries only referenced by
the directory name cache does not create enough free space, themessage “inode: table is full”
messagemay appear on the console. If this occurs, increase the size of the kernel parameter,
ninode. Low directory name cache hit ratios may also indicate an underconfigured inode cache.

OnHP-UX, the default formula for the ninode size is:

ninode = ((nproc+16+maxusers)+32+
(2*npty)+(4*num_clients))

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_MSG_BUFFER_AVAIL

Themaximum achievable size (in KBs unless otherwise specified) of themessage queue buffer
pool on the system.

Eachmessage queue can contain many buffers which are created whenever a program issues a
msgsnd(2) call. Each of these buffers is allocated from this buffer pool.

Refer to the ipcs(1) man page for more information.

This value is determined by taking the product of the three kernel configuration variables “msgseg”,
“msgssz” and “msgmni”. If the value adds up to a value > 2048GB, “o/f” may be reported on some
platforms.

On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount
available is zero, this facility was not loaded when data collection began, and its data is not
obtainable. The data collector is unable to determine that a facility has been loaded once data
collection has started. If you know a new facility has been loaded, restart the data collection, and

HP GlancePlus (11.02)Page 734 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

the data for that facility will be collected. See ipcs(1) to report on interprocess communication
resources.

TBL_MSG_BUFFER_HIGH

The largest size (in KBs unless otherwise specified) of themessage queues in any one interval over
the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_MSG_BUFFER_USED

The current total size (in KBs unless otherwise specified) of all IPC message buffers. These
buffers are created by msgsnd(2) calls and released by msgrcv(2) calls.

On HP-UX andOSF1, this field corresponds to the CBYTES field of the “ipcs -qo” command.

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_MSG_TABLE_AVAIL

The configuredmaximum number of message queues that can be allocated on the system. A
message queue is allocated by a program using themsgget(2) call.

Refer to the ipcs(1) man page for more information.

On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount
available is zero, this facility was not loaded when data collection began, and its data is not
obtainable. The data collector is unable to determine that a facility has been loaded once data
collection has started. If you know a new facility has been loaded, restart the data collection, and

HP GlancePlus (11.02)Page 735 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

the data for that facility will be collected. See ipcs(1) to report on interprocess communication
resources.

TBL_MSG_TABLE_USED

OnHP-UX, this is the number of message queues currently in use.

On all other Unix systems, this is the number of message queues that have been built.

A message queue is allocated by a program using themsgget(2) call. See ipcs(1) to list the
message queues.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_MSG_TABLE_UTIL

The percentage of configuredmessage queues currently in use.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_MSG_TABLE_UTIL_HIGH

The highest percentage of configuredmessage queues that have been in use during any one
interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

HP GlancePlus (11.02)Page 736 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TBL_PROC_TABLE_AVAIL

The configuredmaximum number of the proc table entries used by the kernel to manage
processes. This number includes both free and used entries.

On HP-UX, this is set by the NPROC value during system generation.

AIX has a “dynamic” proc table, whichmeans that AVAIL has been set higher than should ever be
needed.

On AIX SystemWPARs, this metric is NA.

TBL_PROC_TABLE_USED

The number of entries in the proc table currently used by processes.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_PROC_TABLE_UTIL

The percentage of proc table entries currently used by processes.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

On Solaris non-global zones, this metric is N/A.

TBL_PROC_TABLE_UTIL_HIGH

The highest percentage of entries in the proc table used by processes in any one interval over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 737 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_PTY_AVAIL

The configured number of entries used by the pseudo-teletype driver on the system. This limits the
number of pty logins possible.

For HP-UX, both telnet and rlogin use streams devices.

Note: On Solaris 8, by default, the number of ptys is unlimited but restricted by the size of RAM. If
the number of ptys is unlimited, this metric is reported as “na”.

TBL_PTY_USED

The number of pseudo-teletype driver (pty) entries currently in use.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_PTY_UTIL

The percentage of configured pseudo-teletype driver (pty) entries currently in use.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_PTY_UTIL_HIGH

The highest percentage of configured pseudo-teletype driver (pty) entries in use during any one
interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 738 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SEM_TABLE_AVAIL

The configured number of semaphore identifiers (sets) that can be allocated on the system.

On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount
available is zero, this facility was not loaded when data collection began, and its data is not
obtainable. The data collector is unable to determine that a facility has been loaded once data
collection has started. If you know a new facility has been loaded, restart the data collection, and
the data for that facility will be collected. See ipcs(1) to report on interprocess communication
resources.

TBL_SEM_TABLE_USED

OnHP-UX, this is the number of semaphore identifiers currently in use.

On all other Unix systems, this is the number of semaphore identifiers that have been built.

A semaphore identifier is allocated by a program using the semget(2) call. See ipcs(1) to list
semaphores.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SEM_TABLE_UTIL

The percentage of configured semaphores identifiers currently in use.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SEM_TABLE_UTIL_HIGH

The highest percentage of configured semaphore identifiers that have been in use during any one
interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 739 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SHMEM_ACTIVE

The size (in KBs unless otherwise specified) of the sharedmemory segments that have running
processes attached to them. This may be less than the amount of sharedmemory used on the
system because a sharedmemory segment may exist and not have any process attached to it.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SHMEM_AVAIL

Themaximum achievable size (in MB unless otherwise specified) of the sharedmemory pool on the
system.

This is a theoretical maximum determined by multiplying the configuredmaximum number of
sharedmemory entries (shmmni) by themaximum size of each sharedmemory segment
(shmmax). Your systemmay not have enough virtual memory to actually reach this theoretical limit
- one cannot allocatemore sharedmemory than the available reserved space configured for virtual
memory.

It should be noted that this value does not include any architectural limitations. (For example, on a
32-bit kernel, there is an addressing limit of 1.75 GB.). If the value adds up to a value > 2048TB,
“o/f” may be reported on some platforms.

On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount
available is zero, this facility was not loaded when data collection began, and its data is not
obtainable. The data collector is unable to determine that a facility has been loaded once data
collection has started. If you know a new facility has been loaded, restart the data collection, and
the data for that facility will be collected. See ipcs(1) to report on interprocess communication
resources.

TBL_SHMEM_REQUESTED

The size (in KBs unless otherwise specified) of the sum of the currently requested sharedmemory
segments.

This may bemore than sharedmemory used if any segments are swapped out. It alsomay be less
than sharedmemory used due to internal fragmentation of the sharedmemory pool.

HP GlancePlus (11.02)Page 740 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnUnix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SHMEM_TABLE_AVAIL

The configured number of sharedmemory segments that can be allocated on the system.

On SUN, the InterProcess Communication facilities are dynamically loadable. If the amount
available is zero, this facility was not loaded when data collection began, and its data is not
obtainable. The data collector is unable to determine that a facility has been loaded once data
collection has started. If you know a new facility has been loaded, restart the data collection, and
the data for that facility will be collected. See ipcs(1) to report on interprocess communication
resources.

TBL_SHMEM_TABLE_USED

OnHP-UX, this is the number of sharedmemory segments currently in use.

On all other Unix systems, this is the number of sharedmemory segments that have been built.
This includes sharedmemory segments with no processes attached to them.

A sharedmemory segment is allocated by a program using the shmget(2) call. Also refer to ipcs(1).

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SHMEM_TABLE_UTIL

The percentage of configured sharedmemory segments currently in use.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SHMEM_TABLE_UTIL_HIGH

The highest percentage of configured sharedmemory segments that have been in use during any
one interval over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 741 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TBL_SHMEM_USED

The size (in KBs unless otherwise specified) of the sharedmemory segments.

Additionally, it includes memory segments to which no processes are attached. If a shared
memory segment has zero attachments, the spacemay not always be allocated inmemory. See
ipcs(1) to list sharedmemory segments.

On Unix systems, this metric is updated every 30 seconds or the sampling interval, whichever is
greater.

TTBIN_TRANS_COUNT
TT_CLIENT_BIN_TRANS_COUNT

The number of completed transactions in this range during the last interval.

TTBIN_TRANS_COUNT_CUM
TT_CLIENT_BIN_TRANS_COUNT_CUM

The number of completed transactions in this range over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 742 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TTBIN_UPPER_RANGE

The upper range (transaction time) for this TT bin.

There are amaximum of nine user-defined transaction response time bins (TTBIN_UPPER_
RANGE). The last bin, which is not specified in the transaction configuration file (ttdconf.mwc on
Windows or ttd.conf on UNIX platforms), is the overflow bin and will always have a value of -2
(overflow). Note that the values specified in the transaction configuration file cannot exceed
2147483.6, which is the number of seconds in 24.85 days. If the user specifies any values greater
than 2147483.6, the numbers reported for those bins or Service Level Objectives (SLO) will be -2.

TT_ABORT
TT_CLIENT_ABORT

The number of aborted transactions during the last interval for this transaction.

TT_ABORT_CUM
TT_CLIENT_ABORT_CUM

The number of aborted transactions over the cumulative collection time for this transaction.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_ABORT_WALL_TIME
TT_CLIENT_ABORT_WALL_TIME

The total time, in seconds, of all aborted transactions during the last interval for this transaction.

HP GlancePlus (11.02)Page 743 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_ABORT_WALL_TIME_CUM
TT_CLIENT_ABORT_WALL_TIME_CUM

The total time, in seconds, of all aborted transactions over the cumulative collection time for this
transaction class.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_APPNO

The registered ARM Application/User ID for this transaction class.

TT_APP_NAME

The registered ARM Application name.

TT_CACHE_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
CACHE during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

HP GlancePlus (11.02)Page 744 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CACHE_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
CACHE over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

HP GlancePlus (11.02)Page 745 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_CDFS_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
CDFS (waiting in the CD-ROM driver for Compact Disc file system IO to complete) during the
interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CDFS_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of transaction was blocked on CDFS
(waiting in the CD-ROM driver for Compact Disc file system IO to complete) over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

HP GlancePlus (11.02)Page 746 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CLIENT_ADDRESS
TT_INSTANCE_CLIENT_ADDRESS

The correlator address. This is the address where the child transaction originated.

TT_CLIENT_ADDRESS_FORMAT
TT_INSTANCE_CLIENT_ADDRESS_FORMAT

The correlator address format. This shows the protocol family for the client network address. Refer
to the ARM API Guide for the list and description of supported address formats.

TT_CLIENT_CORRELATOR_COUNT

The number of client or child transaction correlators this transaction has started over the cumulative
collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 747 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_CLIENT_TRAN_ID
TT_INSTANCE_CLIENT_TRAN_ID

A numerical ID that uniquely identifies the transaction class in this correlator.

TT_COUNT
TT_CLIENT_COUNT

The number of completed transactions during the last interval for this transaction.

TT_COUNT_CUM
TT_CLIENT_COUNT_CUM

The number of completed transactions over the cumulative collection time for this transaction.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_CPU_CSWITCH_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction spent in context
switching during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and

HP GlancePlus (11.02)Page 748 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_CSWITCH_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction spent in context
switching over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

HP GlancePlus (11.02)Page 749 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_CPU_INTERRUPT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction spent processing
interrupts during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_INTERRUPT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction spent processing
interrupts over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which

HP GlancePlus (11.02)Page 750 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_NICE_TIME_PER_TRAN

The average time, in seconds, that each niced instance of the transaction was using the CPU in
user mode during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_NICE_TIME_PER_TRAN_CUM

The average time, in seconds, that each niced instance of the transaction was in user mode over
the cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

HP GlancePlus (11.02)Page 751 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_NNICE_TIME_PER_TRAN

The average time, in seconds, that each negatively niced instance of the transaction was using the
CPU in user mode during the interval.

On HP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

HP GlancePlus (11.02)Page 752 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_NNICE_TIME_PER_TRAN_CUM

The average time, in seconds, that each negatively niced instance of the transaction was in user
mode over the cumulative collection time.

OnHP-UX, the NICE metrics include positive nice value CPU time only. Negative nice value CPU
is broken out into NNICE (negative nice) metrics. Positive nice values range from 20 to 39.
Negative nice values range from 0 to 19.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource

HP GlancePlus (11.02)Page 753 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_NORMAL_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was in user mode at
normal priority during the interval.

Normal priority user mode CPU excludes CPU used at real-time and nice priorities.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_NORMAL_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was in user mode at
normal priority over the cumulative collection time. Normal priority user mode CPU excludes CPU
used at real-time and nice priorities.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 754 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_REALTIME_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was in user mode at
a realtime priority during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_REALTIME_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was in user mode at
a realtime priority over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 755 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_SYSCALL_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was in system
mode, excluding interrupt or context processing, during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances

HP GlancePlus (11.02)Page 756 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_SYSCALL_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was in system
mode, excluding interrupt or context processing, over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_SYS_MODE_TIME_PER_TRAN

The average CPU time in systemmode in the context of each completed instance of the
transaction during the interval.

HP GlancePlus (11.02)Page 757 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_SYS_MODE_TIME_PER_TRAN_CUM

The average CPU time in systemmode in the context of each completed instance of the
transaction over the cumulative collection time.

A process operates in either systemmode (also called kernel mode on Unix or privilegedmode on
Windows) or user mode. When a process requests services from the operating system with a
system call, it switches into themachine's privileged protectionmode and runs in systemmode.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which

HP GlancePlus (11.02)Page 758 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_TOTAL_TIME_PER_TRAN

The average total CPU time, in seconds, consumed by each completed instance of the transaction
during the interval.

Total CPU time is the sum of the CPU time components for a process or kernel thread, including
system, user, context switch, interrupt processing, realtime, and nice utilization values.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_TOTAL_TIME_PER_TRAN_CUM

The average total CPU time consumed by each completed instance of the transaction over the
cumulative collection time. CPU time is in seconds unless otherwise specified.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 759 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_CPU_USER_MODE_TIME_PER_TRAN

The average time, in seconds, each completed instance of the transaction was using the CPU in
user mode during the interval.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

HP GlancePlus (11.02)Page 760 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_CPU_USER_MODE_TIME_PER_TRAN_CUM

The average time, in seconds, each completed instance of the transaction was using the CPU in
user mode over the cumulative collection time.

User CPU is the time spent in user mode at a normal priority, at real-time priority (on HP-UX, AIX,
andWindows systems), and at a nice priority.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

HP GlancePlus (11.02)Page 761 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_DISK_FS_READ_PER_TRAN

The average number of file system physical disk reads made by each completed instance of the
transaction during the interval. Only local disks are counted in this measurement. NFS devices are
excluded.

These are physical reads generated by user file system access and do not include virtual memory
reads, system reads (inode access), or reads relating to raw disk access. An exception is user files
accessed via themmap(2) call, which does not show their physical reads in this category. They
appear under virtual memory reads.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_FS_READ_PER_TRAN_CUM

The average number of file system physical disk reads made by each completed instance of the
transaction over the cumulative collection time. Only local disks are counted in this measurement.
NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 762 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are physical reads generated by user file system access and do not include virtual memory
reads, system reads (inode access), or reads relating to raw disk access. An exception is user files
accessed via themmap(2) call, which does not show their physical reads in this category. They
appear under virtual memory reads.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_FS_WRITE_PER_TRAN

The average number of file system physical disk writes made by each completed instance of the
transaction during the interval. Only local disks are counted in this measurement. NFS devices are
excluded.

These are physical writes generated by user file system access and do not include virtual memory
writes, system writes (inode updates), or writes relating to raw disk access. An exception is user
files accessed via themmap(2) call, which does not show their physical writes in this category.
They appear under virtual memory writes.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not

HP GlancePlus (11.02)Page 763 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_FS_WRITE_PER_TRAN_CUM

The average number of file system physical disk writes made by each completed instance of the
transaction over the cumulative collection time. Only local disks are counted in this measurement.
NFS devices are excluded.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

These are physical writes generated by user file system access and do not include virtual memory
writes, system writes (inode updates), or writes relating to raw disk access. An exception is user
files accessed via themmap(2) call, which does not show their physical writes in this category.
They appear under virtual memory writes.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which

HP GlancePlus (11.02)Page 764 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_LOGL_IO_PER_TRAN

The average number of logical IOs made by (or for) each completed instance of the transaction
during the interval. NFS mounted disks are not included in this list.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk).

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_LOGL_IO_PER_TRAN_CUM

The average number of logical IOs made by (or for) each completed instance of the transaction over
the cumulative collection time. NFS mounted disks are not included in this list.

HP GlancePlus (11.02)Page 765 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk).

Onmany Unix systems, logical disk IOs aremeasured by counting the read and write system calls
that are directed to disk devices. Also counted are read and write system calls made indirectly
through other system calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, writev,
send, sento, sendmsg, and ipcsend.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_LOGL_READ_PER_TRAN

The average number of disk logical reads made by each completed instance of the transaction
during the interval. Calls destined for NFS mounted files are not counted.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system

HP GlancePlus (11.02)Page 766 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_LOGL_READ_PER_TRAN_CUM

The average number of disk logical reads made by each completed instance of the transaction over
the cumulative collection time. Calls destined for NFS mounted files are not counted.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the read system calls that are
directed to disk devices. Also counted are read system calls made indirectly through other system
calls, including readv, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which

HP GlancePlus (11.02)Page 767 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_LOGL_WRITE_PER_TRAN

Average number of disk logical writes made by each completed instance of the transaction during
the interval. Calls destined for NFS mounted files are not counted.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_LOGL_WRITE_PER_TRAN_CUM

Average number of disk logical writes made by each completed instance of the transaction over the
cumulative collection time. Calls destined for NFS mounted files are not counted.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 768 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Onmany Unix systems, logical disk IOs aremeasured by counting the write system calls that are
directed to disk devices. Also counted are write system calls made indirectly through other system
calls, including writev, recvfrom, recv, recvmsg, ipcrecvcn, recfrom, send, sento, sendmsg, and
ipcsend.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_PHYS_IO_PER_TRAN

The average number of physical disk IOs per secondmade by each completed instance of the
transaction during the interval.

For transactions which run for less than themeasurement interval, this metric is normalized over
themeasurement interval. For example, a transaction ran for 1 second and did 50 IOs during its
life. If themeasurement interval is 5 seconds, it is reported as having done 10 IOs per second. If
themeasurement interval is 60 seconds, it is reported as having done 50/60 or 0.83 IOs per second.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

HP GlancePlus (11.02)Page 769 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_PHYS_IO_PER_TRAN_CUM

The average number of physical disk IOs per secondmade by each completed instance of the
transaction over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

For transactions which run for less than themeasurement interval, this metric is normalized over
themeasurement interval. For example, a transaction ran for 1 second and did 50 IOs during its
life. If themeasurement interval is 5 seconds, it is reported as having done 10 IOs per second. If
themeasurement interval is 60 seconds, it is reported as having done 50/60 or 0.83 IOs per second.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

HP GlancePlus (11.02)Page 770 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_PHYS_READ_PER_TRAN

The average number of physical reads made by (or for) each completed instance of the transaction
during the last interval.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk). NFS mounted disks are not included in this list.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_PHYS_READ_PER_TRAN_CUM

The average number of physical reads made by (or for) each completed instance of the transaction
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

HP GlancePlus (11.02)Page 771 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

OnHP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” refers to a physical drive (that is, “spindle”), not a partition on a drive (unless the partition
occupies the entire physical disk). NFS mounted disks are not included in this list.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_PHYS_WRITE_PER_TRAN

The average number of physical writes made by (or for) each completed instance of the transaction
during the last interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

HP GlancePlus (11.02)Page 772 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_PHYS_WRITE_PER_TRAN_CUM

The average number of physical writes made by (or for) each completed instance of the transaction
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all

HP GlancePlus (11.02)Page 773 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_RAW_READ_PER_TRAN

The average number of raw reads made for each completed instance of the transaction during the
interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_RAW_READ_PER_TRAN_CUM

The average number of raw reads made for each completed instance of the transaction over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 774 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_RAW_WRITE_PER_TRAN

The average number of raw writes made for each completed instance of the transaction during the
interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

HP GlancePlus (11.02)Page 775 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_RAW_WRITE_PER_TRAN_CUM

The average number of raw writes made for each completed instance of the transaction over the
cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

HP GlancePlus (11.02)Page 776 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_DISK_SYSTEM_READ_PER_TRAN

The average number of file systemmanagement physical disk reads made for each completed
instance of the transaction during the interval.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_SYSTEM_READ_PER_TRAN_CUM

The average number of file systemmanagement physical disk reads made for each instance
completed of the transaction over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 777 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_SYSTEM_WRITE_PER_TRAN

The average number of file systemmanagement physical disk writes made for each completed
instance of the transaction during the interval.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

HP GlancePlus (11.02)Page 778 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_SYSTEM_WRITE_PER_TRAN_CUM

The average number of file systemmanagement physical disk writes made for each completed
instance of the transaction over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

File systemmanagement IOs are the physical accesses required to obtain or update internal
information about the file system structure (inode access). Accesses or updates to user data are
not included in this metric.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource

HP GlancePlus (11.02)Page 779 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_VM_READ_PER_TRAN

The average number of virtual memory reads made for each completed instance of the transaction
during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_VM_READ_PER_TRAN_CUM

The average number of virtual memory reads made for each completed instance of the transaction
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 780 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_VM_WRITE_PER_TRAN

The average number of virtual memory writes made for each completed instance of the transaction
during the interval.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

HP GlancePlus (11.02)Page 781 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_DISK_VM_WRITE_PER_TRAN_CUM

The average number of virtual memory writes made for each completed instance of the transaction
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

“Disk” in this instance refers to any locally attached physical disk drives (that is, “spindles”) that
may hold file systems and/or swap. NFS mounted disks are not included in this list.

On HP-UX, since this value is reported by the drivers, multiple physical requests that have been
collapsed to a single physical operation (due to driver IOmerging) are only counted once.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_DISK_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
DISK during the interval.

HP GlancePlus (11.02)Page 782 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_DISK_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
DISK over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

HP GlancePlus (11.02)Page 783 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_FAILED
TT_CLIENT_FAILED

The number of Failed transactions during the last interval for this transaction name.

TT_FAILED_CUM
TT_CLIENT_FAILED_CUM

The number of failed transactions over the cumulative collection time for this transaction name.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_FAILED_WALL_TIME
TT_CLIENT_FAILED_WALL_TIME

The total time, in seconds, of all failed transactions during the last interval for this transaction name.

TT_FAILED_WALL_TIME_CUM
TT_CLIENT_FAILED_WALL_TIME_CUM

The total time, in seconds, of all failed transactions over the cumulative collection time for this
transaction name.

HP GlancePlus (11.02)Page 784 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_GOLDENRESOURCE_INTERVAL

The amount of time in the collection interval.

TT_GOLDENRESOURCE_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_GRAPHICS_WAIT_TIME_PER_TRAN

The average time that each completed instance of the transaction was blocked on graphics (waiting
for their graphics operations to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

HP GlancePlus (11.02)Page 785 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_GRAPHICS_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
graphics (waiting for their graphics operations to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all

HP GlancePlus (11.02)Page 786 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_INFO

The registered ARM Transaction Information for this transaction.

TT_INODE_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked
onINODE (waiting for an inode to be updated or to become available) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_INODE_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked
onINODE (waiting for an inode to be updated or to become available) over the cumulative collection
time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

HP GlancePlus (11.02)Page 787 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_INPROGRESS_COUNT

The number of transactions in progress (started, but not stopped) at the end of the interval for this
transaction class.

TT_INSTANCE_ID

A numerical ID that uniquely identifies this transaction instance at the end of the interval.

TT_INSTANCE_PROC_ID

The ID of the process that started or last updated the transaction instance.

TT_INSTANCE_START_TIME

The time this transaction instance started.

HP GlancePlus (11.02)Page 788 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_INSTANCE_STOP_TIME

The time this transaction instance stopped. If the transaction instance is currently active, the value
returned will be -1. It will be shown as “na” in Glance andGPM to indicate that the transaction
instance did not stop during the interval.

TT_INSTANCE_THREAD_ID

The ID of the kernel thread that started or last updated the transaction instance.

TT_INSTANCE_UPDATE_COUNT

The number of times this transaction instance called update since the start of this transaction
instance.

TT_INSTANCE_UPDATE_TIME

The time this transaction instance last called update. If the transaction instance is currently active,
the value returned will be -1. It will be shown as “na” in Glance andGPM to indicate that a call to
update did not occur during the interval.

TT_INSTANCE_WALL_TIME

The elapsed time since this transaction instance was started.

TT_INTERVAL
TT_CLIENT_INTERVAL

The amount of time in the collection interval.

TT_INTERVAL_CUM
TT_CLIENT_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 789 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_IPC_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked onIPC
during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_IPC_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked onIPC
over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to

HP GlancePlus (11.02)Page 790 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_JOBCTL_WAIT_TIME_PER_TRAN

The average time that each completed instance of the transaction was blocked on job control
(having been stopped with the job control facilities) during the interval. Job control waits include
waiting at a debug breakpoint, as well as being blocked attempting to write (from background) to a
terminal which has the “stty tostop” option set.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

HP GlancePlus (11.02)Page 791 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_JOBCTL_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on job
control (having been stopped with the job control facilities) over the cumulative collection time. Job
control waits include waiting at a debug breakpoint, as well as being blocked attempting to write
(from background) to a terminal which has the “stty tostop” option set.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_LAN_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
LAN (waiting for IO over the LAN to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

HP GlancePlus (11.02)Page 792 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_LAN_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
LAN (waiting for IO over the LAN to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all

HP GlancePlus (11.02)Page 793 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_MEASUREMENT_COUNT

The number of user definedmeasurements for this transaction class.

TT_MEM_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
memory during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_MEM_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
memory over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance

HP GlancePlus (11.02)Page 794 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_MSG_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
messages (waiting for message queue operations to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

HP GlancePlus (11.02)Page 795 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_MSG_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
messages (waiting for message queue operations to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_NAME

The registered transaction name for this transaction.

TT_NFS_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
NFS (waiting for its network file system IO to complete) during the interval.

HP GlancePlus (11.02)Page 796 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_NFS_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
NFS (waiting for its network file system IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

HP GlancePlus (11.02)Page 797 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_OTHER_IO_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
“other IO” during the interval. “Other IO” includes all IO directed at a device (connected to the local
computer) which is not a terminal or LAN. Examples of “other IO” devices are local printers, tapes,
instruments, and disks. Time waiting for character (raw) IO to disks is included in this
measurement. Time waiting for file systembuffered IO to disks will typically been seen as IO or
CACHE wait. Time waiting for IO to NFS disks is reported as NFS wait.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_OTHER_IO_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
“other IO” over the cumulative collection time. “Other IO” includes all IO directed at a device
(connected to the local computer) which is not a terminal or LAN. Examples of “other IO” devices
are local printers, tapes, instruments, and disks. Time waiting for character (raw) IO to disks is
included in this measurement. Time waiting for file systembuffered IO to disks will typically been
seen as IO or CACHE wait. Time waiting for IO to NFS disks is reported as NFS wait.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 798 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_OTHER_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
other (unknown) activities during the interval. This includes transactions that were started and
subsequently suspended before themidaemonwas started and have not been resumed, or the
block state is unknown.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed

HP GlancePlus (11.02)Page 799 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_OTHER_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
other (unknown) activities over the cumulative collection time. This includes transactions that were
started and subsequently suspended before themidaemonwas started and have not been
resumed, or the block state is unknown.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_PIPE_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked
onPIPE (waiting for pipe communication to complete) during the interval.

HP GlancePlus (11.02)Page 800 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_PIPE_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked
onPIPE (waiting for pipe communication to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

HP GlancePlus (11.02)Page 801 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_PRI_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
priority during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_PRI_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
priority over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the

HP GlancePlus (11.02)Page 802 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_RESOURCE_INTERVAL

The amount of time in the collection interval.

TT_RESOURCE_INTERVAL_CUM

The amount of time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 803 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_RPC_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
RPC (waiting for its remote procedure calls to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_RPC_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
RPC (waiting for its remote procedure calls to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which

HP GlancePlus (11.02)Page 804 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_SEM_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked
onsemaphores (waiting on a semaphore operation to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_SEM_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked
onsemaphores (waiting on a semaphore operation to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is

HP GlancePlus (11.02)Page 805 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_SLEEP_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
SLEEP (waiting to awaken from sleep system calls) during the interval. A transaction enters the
SLEEP state by putting itself to sleep using system calls such as sleep, wait, pause, sigpause,
sigsuspend, poll and select.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed

HP GlancePlus (11.02)Page 806 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_SLEEP_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
SLEEP (waiting to awaken from sleep system calls) over the cumulative collection time. A
transaction enters the SLEEP state by putting itself to sleep using system calls such as sleep,
wait, pause, sigpause, sigsuspend, poll and select.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

HP GlancePlus (11.02)Page 807 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_SLO_COUNT
TT_CLIENT_SLO_COUNT

The number of completed transactions that violated the defined Service Level Objective (SLO) by
exceeding the SLO threshold time during the interval.

TT_SLO_COUNT_CUM
TT_CLIENT_SLO_COUNT_CUM

The number of completed transactions that violated the defined Service Level Objective by
exceeding the SLO threshold time over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_SLO_PERCENT

The percentage of transactions which violate service level objectives.

TT_SLO_THRESHOLD

The upper range (transaction time) of the Service Level Objective (SLO) threshold value. This value
is used to count the number of transactions that exceed this user-supplied transaction time value.

TT_SOCKET_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
sockets (waiting for its IO to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

HP GlancePlus (11.02)Page 808 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_SOCKET_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
sockets (waiting for its IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all

HP GlancePlus (11.02)Page 809 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_STREAM_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
streams IO (waiting for a streams IO operation to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_STREAM_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
streams IO (waiting for a streams IO operation to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 810 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_SYS_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
system blocked on SYSTM (that is, system resources) during the interval. These resources
include data structures from the LVM, VFS, UFS, JFS, and Disk Quota subsystems. “SYSTM” is
the “catch-all” wait state for blocks on system resources that are not common enough or long
enough to warrant their own stop state.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_SYS_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
SYSTM (that is, system resources) over the cumulative collection time. These resources include

HP GlancePlus (11.02)Page 811 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

data structures from the LVM, VFS, UFS, JFS, and Disk Quota subsystems. “SYSTM” is the
“catch-all” wait state for blocks on system resources that are not common enough or long enough to
warrant their own stop state.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_TERM_IO_WAIT_TIME_PER_TRAN

The average time, in seconds, that each completed instance of the transaction was blocked on
terminal IO (waiting for its terminal IO to complete) during the interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

HP GlancePlus (11.02)Page 812 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_TERM_IO_WAIT_TIME_PER_TRAN_CUM

The average time, in seconds, that each completed instance of the transaction was blocked on
terminal IO (waiting for its terminal IO to complete) over the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which
have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

HP GlancePlus (11.02)Page 813 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_TOTAL_WAIT_TIME_PER_TRAN

The average total time that each completed instance of the transaction spent blocked during the
interval.

Per-transaction performance resourcemetrics represent an average for all completed instances of
the given transaction during the interval.

If there are no completed transaction instances during an interval, then there are no resources
accounted, even though theremay be in-progress transactions using resources which have not
completed. Resourcemetrics for in-progress transactions will be shown in the interval after they
complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance during an interval, then the resources attributed
to the transaction will represent the resources used by the process between its call to arm_start and
arm_stop, even if arm_start was called before the current interval. Thus, the resource usage time
or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances during an interval for a given transaction, then
the resources attributed to the transaction will represent an average for all completed instances
during the interval. To obtain the total accumulated resource consumption for all completed
transactions during an interval, multiply the resourcemetric by the number of completed transaction
instances during the interval (TT_COUNT).

TT_TOTAL_WAIT_TIME_PER_TRAN_CUM

The average total time that each completed instance of the transaction spent blocked during over
the cumulative collection time.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

Cumulative per-transaction performance resourcemetrics represent an average for all completed
instances of the given transaction over the cumulative collection time.

If there are no completed transaction instances over the cumulative collection time, then there are
no resources accounted, even though theremay be in-progress transactions using resources which

HP GlancePlus (11.02)Page 814 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

have not completed. Resourcemetrics for in-progress transactions will be shown in the interval
after they complete (that is, after the process has called arm_stop).

If there is only one completed transaction instance over the cumulative collection time, then the
resources attributed to the transaction will represent the resources used by the process between its
call to arm_start and arm_stop, even if arm_start was called before the current interval. Thus, the
resource usage time or wall time per transaction can exceed the current collection interval time.

If there are several completed transaction instances over the cumulative collection time for a given
transaction, then the resources attributed to the transaction will represent an average for all
completed instances over the cumulative collection time. To obtain the total accumulated resource
consumption for all completed transactions over the cumulative collection time, multiply the
resourcemetric by the number of completed transaction instances over the cumulative collection
time (TT_COUNT_CUM).

TT_TRAN_1_MIN_RATE

For this transaction name, the number of completed transactions calculated to a 1minute rate. For
example, if you completed five of these transactions in a 5minute window, the rate is one
transaction per minute.

TT_TRAN_ID

The registered ARM Transaction ID for this transaction class as returned by arm_getid(). A unique
transaction id is returned for a unique application id (returned by arm_init), tran name, andmeta data
buffer contents.

TT_UNAME

The registered ARM Transaction User Name for this transaction.

If the arm_init function has NULL for the appl_user_id field, then the user name is blank.
Otherwise, if “*” was specified, then the user name is displayed.

For example, to show the user name for the armsample1 program, use:

appl_id = arm_init(“armsample1”,“*”,0,0,0);

To ignore the user name for the armsample1 program, use:

appl_id = arm_init(“armsample1”,NULL,0,0,0);

HP GlancePlus (11.02)Page 815 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_UPDATE
TT_CLIENT_UPDATE

The number of updates during the last interval for this transaction class. This count includes update
calls for completed and in progress transactions.

TT_UPDATE_CUM
TT_CLIENT_UPDATE_CUM

The number of updates over the cumulative collection time for this transaction class. This count
includes update calls for completed and in progress transactions.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_USER_MEASUREMENT_AVG
TT_INSTANCE_USER_MEASUREMENT_AVG
TT_CLIENT_USER_MEASUREMENT_AVG

If themeasurement type is a numeric or a string, this metric returns “na”.

If themeasurement type is a counter, this metric returns the average counter differences of the
transaction or transaction instance during the last interval. The counter value is the difference
observed from a counter between the start and the stop (or last update) of a transaction.

If themeasurement type is a gauge, this returns the average of the values passed on any ARM call
for the transaction or transaction instance during the last interval.

HP GlancePlus (11.02)Page 816 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_USER_MEASUREMENT_COUNT
TT_INSTANCE_USER_MEASUREMENT_COUNT
TT_CLIENT_USER_MEASUREMENT_COUNT

This returns the total number of times the associated user definedmetric (UDM) was sampled
during the last interval.

TT_USER_MEASUREMENT_MAX
TT_INSTANCE_USER_MEASUREMENT_MAX
TT_CLIENT_USER_MEASUREMENT_MAX

If themeasurement type is a numeric or a string, this metric returns “na”.

If themeasurement type is a counter, this metric returns the highest measured counter value over
the life of the transaction or transaction instance. The counter value is the difference observed from
a counter between the start and the stop (or last update) of a transaction.

If themeasurement type is a gauge, this metric returns the highest value passed on any ARM call
over the life of the transaction or transaction instance.

TT_USER_MEASUREMENT_MIN
TT_INSTANCE_USER_MEASUREMENT_MIN
TT_CLIENT_USER_MEASUREMENT_MIN

If themeasurement type is a numeric or a string, this metric returns “na”.

If themeasurement type is a counter, this metric returns the lowest measured counter value over
the life of the transaction or transaction instance. The counter value is the difference observed from
a counter between the start and the stop (or last update) of a transaction.

If themeasurement type is a gauge, this metric returns the lowest value passed on any ARM call
over the life of the transaction or transaction instance.

TT_USER_MEASUREMENT_NAME
TT_INSTANCE_USER_MEASUREMENT_NAME
TT_CLIENT_USER_MEASUREMENT_NAME

The name of the user defined transactional measurement. The length of the string complies with
the ARM 2.0 standard, which is 44 characters long (there are 43 usable characters since this is a
NULL terminated character string).

HP GlancePlus (11.02)Page 817 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_USER_MEASUREMENT_STRING1024_VALUE
TT_INSTANCE_USER_MEASUREMENT_STRING1024_VALUE
TT_CLIENT_USER_MEASUREMENT_STRING1024_VALUE

The last value of the user definedmeasurement of type string 1024. This type is not implemented
and the value is always “na”.

TT_USER_MEASUREMENT_STRING32_VALUE
TT_INSTANCE_USER_MEASUREMENT_STRING32_VALUE
TT_CLIENT_USER_MEASUREMENT_STRING32_VALUE

The last value of the user definedmeasurement of type string 32.

TT_USER_MEASUREMENT_TYPE
TT_INSTANCE_USER_MEASUREMENT_TYPE
TT_CLIENT_USER_MEASUREMENT_TYPE

The type of the user defined transactional measurement.

1 = ARM_COUNTER32
2 = ARM_COUNTER64
3 = ARM_CNTRDIVR32
4 = ARM_GAUGE32
5 = ARM_GAUGE64
6 = ARM_GAUGEDIVR32
7 = ARM_NUMERICID32
8 = ARM_NUMERICID64
9 = ARM_STRING8 (max 8 chars)

10 = ARM_STRING32 (max 32 chars)
11 = ARM_STRING1024 (max 1024 char -- not implemented)

TT_USER_MEASUREMENT_VALUE
TT_INSTANCE_USER_MEASUREMENT_VALUE
TT_CLIENT_USER_MEASUREMENT_VALUE

The last value of the user definedmeasurement of type counter, gauge, numeric ID, or string 8.
Both 32 and 64 bit numeric types are returned as 64 bit values.

TT_WALL_TIME
TT_CLIENT_WALL_TIME

The total time, in seconds, of all transactions completed during the last interval for this transaction.

HP GlancePlus (11.02)Page 818 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

TT_WALL_TIME_CUM
TT_CLIENT_WALL_TIME_CUM

The total time, in seconds, of all transactions completed over the cumulative collection time for this
transaction.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

TT_WALL_TIME_PER_TRAN
TT_CLIENT_WALL_TIME_PER_TRAN

The average transaction time, in seconds, during the last interval for this transaction.

TT_WALL_TIME_PER_TRAN_CUM
TT_CLIENT_WALL_TIME_PER_TRAN_CUM

The average transaction time, in seconds, over the cumulative collection time for this transaction.

The cumulative collection time is defined from the point in time when either: a) the process (or
thread) was first started, or b) the performance tool was first started, or c) the cumulative counters
were reset (relevant only to Glance, if available for the given platform), whichever occurred last.

On HP-UX, all cumulative collection times and intervals start when themidaemon starts. On other
Unix systems, non-process collection time starts from the start of the performance tool, process
collection time starts from the start time of the process or measurement start time, which ever is
older. Regardless of the process start time, application cumulative intervals start from the time the
performance tool is started.

On systems where the performance components are 32-bit or where the 64-bit model is LLP64
(Windows), all INTERVAL_CUMmetrics will start reporting “o/f” (overflow) after the performance
agent (or themidaemon on HPUX) has been up for 466 days and the cumulativemetrics will fail to
report accurate data after 497 days. On Linux, Solaris and AIX, if measurement is started after the
system has been up for more than 466 days, cumulative process CPU data won't include times
accumulated prior to the performance tool's start and amessage will be logged to indicate this.

HP GlancePlus (11.02)Page 819 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

HP GlancePlus (11.02)Page 820 of 821

Dictionary of Operating System Metrics
Chapter 3: Metric Definitions

HP GlancePlus (11.02)Page 821 of 821

	Dictionary of Operating System Metrics
	Contents
	Introduction
	Metric Names by Data Class
	Global Metrics
	Table Metrics
	Process Metrics
	Application Metrics
	Process By File Metrics
	By Disk Metrics
	File System Metrics
	Logical Volume Metrics
	By Network Interface Metrics
	By Swap Metrics
	By CPU Metrics
	Process By Memory Region Metrics
	By NFS Metrics
	By NFS Operation Metrics
	By Operation Metrics
	System Call Metrics
	By Disk Detail Metrics
	File System Detail Metrics
	Logical Volume Detail Metrics
	Transaction Metrics
	Transaction Measurement Section Metrics
	By Process System Call Metrics
	Thread Metrics
	Network by Logical Detail Metrics
	Transaction Client Metrics
	Transaction Instance Metrics
	Transaction User Defined Measurement Metrics
	Transaction Client User Defined Measurement Metrics
	Transaction Instance User Defined Measurement Metrics
	PRM By Volume Group Metrics
	By Logical System Metrics
	By Hba Metrics

	Metric Definitions
	APP_ACTIVE_APP
	APP_ACTIVE_APP_PRM
	APP_ACTIVE_PROC
	APP_ALIVE_PROC
	APP_COMPLETED_PROC
	APP_CPU_NICE_TIME
	APP_CPU_NICE_UTIL
	APP_CPU_NNICE_TIME
	APP_CPU_NNICE_UTIL
	APP_CPU_NORMAL_TIME
	APP_CPU_NORMAL_UTIL
	APP_CPU_REALTIME_TIME
	APP_CPU_REALTIME_UTIL
	APP_CPU_SYS_MODE_TIME
	APP_CPU_SYS_MODE_UTIL
	APP_CPU_TOTAL_TIME
	APP_CPU_TOTAL_UTIL
	APP_CPU_TOTAL_UTIL_CUM
	APP_CPU_USER_MODE_TIME
	APP_CPU_USER_MODE_UTIL
	APP_DISK_FS_IO_RATE
	APP_DISK_LOGL_IO_RATE
	APP_DISK_LOGL_READ
	APP_DISK_LOGL_READ_RATE
	APP_DISK_LOGL_WRITE
	APP_DISK_LOGL_WRITE_RATE
	APP_DISK_PHYS_IO_RATE
	APP_DISK_PHYS_READ
	APP_DISK_PHYS_READ_RATE
	APP_DISK_PHYS_WRITE
	APP_DISK_PHYS_WRITE_RATE
	APP_DISK_RAW_IO_RATE
	APP_DISK_SUBSYSTEM_QUEUE
	APP_DISK_SUBSYSTEM_WAIT_PCT
	APP_DISK_SYSTEM_IO_RATE
	APP_DISK_VM_IO_RATE
	APP_INTERVAL
	APP_INTERVAL_CUM
	APP_IO_BYTE
	APP_IO_BYTE_RATE
	APP_IPC_SUBSYSTEM_QUEUE
	APP_IPC_SUBSYSTEM_WAIT_PCT
	APP_MAJOR_FAULT
	APP_MAJOR_FAULT_RATE
	APP_MEM_QUEUE
	APP_MEM_RES
	APP_MEM_UTIL
	APP_MEM_VIRT
	APP_MEM_WAIT_PCT
	APP_MINOR_FAULT
	APP_MINOR_FAULT_RATE
	APP_NAME
	APP_NAME_PRM_GROUPNAME
	APP_NETWORK_SUBSYSTEM_QUEUE
	APP_NETWORK_SUBSYSTEM_WAIT_PCT
	APP_NUM
	APP_OTHER_IO_QUEUE
	APP_OTHER_IO_WAIT_PCT
	APP_PRI
	APP_PRI_QUEUE
	APP_PRI_STD_DEV
	APP_PRI_WAIT_PCT
	APP_PRM_CPUCAP_MODE
	APP_PRM_CPU_ENTITLEMENT
	APP_PRM_CPU_TOTAL_UTIL_CUM
	APP_PRM_DISK_STATE
	APP_PRM_GROUPID
	APP_PRM_INTERVAL_CUM
	APP_PRM_MEM_AVAIL
	APP_PRM_MEM_ENTITLEMENT
	APP_PRM_MEM_STATE
	APP_PRM_MEM_UPPERBOUND
	APP_PRM_MEM_UTIL
	APP_PRM_STATE
	APP_PRM_SUSPENDED_PROC
	APP_PROC_RUN_TIME
	APP_SAMPLE
	APP_SEM_QUEUE
	APP_SEM_WAIT_PCT
	APP_SLEEP_QUEUE
	APP_SLEEP_WAIT_PCT
	APP_TERM_IO_QUEUE
	APP_TERM_IO_WAIT_PCT
	APP_TIME
	BYCPU_ACTIVE
	BYCPU_CPU_CLOCK
	BYCPU_CPU_CSWITCH_TIME
	BYCPU_CPU_CSWITCH_TIME_CUM
	BYCPU_CPU_CSWITCH_UTIL
	BYCPU_CPU_CSWITCH_UTIL_CUM
	BYCPU_CPU_INTERRUPT_TIME
	BYCPU_CPU_INTERRUPT_TIME_CUM
	BYCPU_CPU_INTERRUPT_UTIL
	BYCPU_CPU_INTERRUPT_UTIL_CUM
	BYCPU_CPU_NICE_TIME
	BYCPU_CPU_NICE_TIME_CUM
	BYCPU_CPU_NICE_UTIL
	BYCPU_CPU_NICE_UTIL_CUM
	BYCPU_CPU_NNICE_TIME
	BYCPU_CPU_NNICE_TIME_CUM
	BYCPU_CPU_NNICE_UTIL
	BYCPU_CPU_NNICE_UTIL_CUM
	BYCPU_CPU_NORMAL_TIME
	BYCPU_CPU_NORMAL_TIME_CUM
	BYCPU_CPU_NORMAL_UTIL
	BYCPU_CPU_NORMAL_UTIL_CUM
	BYCPU_CPU_REALTIME_TIME
	BYCPU_CPU_REALTIME_TIME_CUM
	BYCPU_CPU_REALTIME_UTIL
	BYCPU_CPU_REALTIME_UTIL_CUM
	BYCPU_CPU_SYSCALL_TIME
	BYCPU_CPU_SYSCALL_TIME_CUM
	BYCPU_CPU_SYSCALL_UTIL
	BYCPU_CPU_SYSCALL_UTIL_CUM
	BYCPU_CPU_SYS_MODE_TIME
	BYCPU_CPU_SYS_MODE_TIME_CUM
	BYCPU_CPU_SYS_MODE_UTIL
	BYCPU_CPU_SYS_MODE_UTIL_CUM
	BYCPU_CPU_TOTAL_TIME
	BYCPU_CPU_TOTAL_TIME_CUM
	BYCPU_CPU_TOTAL_UTIL
	BYCPU_CPU_TOTAL_UTIL_CUM
	BYCPU_CPU_TRAP_TIME
	BYCPU_CPU_TRAP_TIME_CUM
	BYCPU_CPU_TRAP_UTIL
	BYCPU_CPU_TRAP_UTIL_CUM
	BYCPU_CPU_USER_MODE_TIME
	BYCPU_CPU_USER_MODE_TIME_CUM
	BYCPU_CPU_USER_MODE_UTIL
	BYCPU_CPU_USER_MODE_UTIL_CUM
	BYCPU_CPU_VFAULT_TIME
	BYCPU_CPU_VFAULT_TIME_CUM
	BYCPU_CPU_VFAULT_UTIL
	BYCPU_CPU_VFAULT_UTIL_CUM
	BYCPU_CSWITCH
	BYCPU_CSWITCH_CUM
	BYCPU_CSWITCH_RATE
	BYCPU_CSWITCH_RATE_CUM
	BYCPU_ID
	BYCPU_INTERRUPT
	BYCPU_INTERRUPT_RATE
	BYCPU_INTERRUPT_STATE
	BYCPU_LAST_PROC_ID
	BYCPU_LAST_THREAD_ID
	BYCPU_LAST_USER_THREAD_ID
	BYCPU_RUN_QUEUE_15_MIN
	BYCPU_RUN_QUEUE_1_MIN
	BYCPU_RUN_QUEUE_5_MIN
	BYCPU_STATE
	BYDSKDETAIL_LABEL
	BYDSKDETAIL_NAME
	BYDSK_AVG_QUEUE_TIME
	BYDSK_AVG_READ_QUEUE_TIME
	BYDSK_AVG_READ_SERVICE_TIME
	BYDSK_AVG_SERVICE_TIME
	BYDSK_AVG_WRITE_QUEUE_TIME
	BYDSK_AVG_WRITE_SERVICE_TIME
	BYDSK_BUS
	BYDSK_BUSY_TIME
	BYDSK_CONTROLLER
	BYDSK_DEVNAME
	BYDSK_DEVNO
	BYDSK_DIRNAME
	BYDSK_DISKNAME
	BYDSK_FS_IO_RATE
	BYDSK_FS_READ
	BYDSK_FS_READ_RATE
	BYDSK_FS_WRITE
	BYDSK_FS_WRITE_RATE
	BYDSK_ID
	BYDSK_INTERVAL
	BYDSK_INTERVAL_CUM
	BYDSK_LOGL_BYTE_RATE
	BYDSK_LOGL_BYTE_RATE_CUM
	BYDSK_LOGL_IO_RATE
	BYDSK_LOGL_IO_RATE_CUM
	BYDSK_LOGL_READ
	BYDSK_LOGL_READ_BYTE_RATE
	BYDSK_LOGL_READ_BYTE_RATE_CUM
	BYDSK_LOGL_READ_RATE
	BYDSK_LOGL_READ_RATE_CUM
	BYDSK_LOGL_WRITE
	BYDSK_LOGL_WRITE_BYTE_RATE
	BYDSK_LOGL_WRITE_BYTE_RATE_CUM
	BYDSK_LOGL_WRITE_RATE
	BYDSK_LOGL_WRITE_RATE_CUM
	BYDSK_PHYS_BYTE
	BYDSK_PHYS_BYTE_RATE
	BYDSK_PHYS_BYTE_RATE_CUM
	BYDSK_PHYS_IO
	BYDSK_PHYS_IO_RATE
	BYDSK_PHYS_IO_RATE_CUM
	BYDSK_PHYS_READ
	BYDSK_PHYS_READ_BYTE
	BYDSK_PHYS_READ_BYTE_RATE
	BYDSK_PHYS_READ_BYTE_RATE_CUM
	BYDSK_PHYS_READ_RATE
	BYDSK_PHYS_READ_RATE_CUM
	BYDSK_PHYS_WRITE
	BYDSK_PHYS_WRITE_BYTE
	BYDSK_PHYS_WRITE_BYTE_RATE
	BYDSK_PHYS_WRITE_BYTE_RATE_CUM
	BYDSK_PHYS_WRITE_RATE
	BYDSK_PHYS_WRITE_RATE_CUM
	BYDSK_PRODUCT_ID
	BYDSK_QUEUE_0_UTIL
	BYDSK_QUEUE_2_UTIL
	BYDSK_QUEUE_4_UTIL
	BYDSK_QUEUE_8_UTIL
	BYDSK_QUEUE_X_UTIL
	BYDSK_RAW_IO_RATE
	BYDSK_RAW_READ
	BYDSK_RAW_READ_RATE
	BYDSK_RAW_WRITE
	BYDSK_RAW_WRITE_RATE
	BYDSK_REQUEST_QUEUE
	BYDSK_SYSTEM_IO
	BYDSK_SYSTEM_IO_RATE
	BYDSK_SYSTEM_READ_RATE
	BYDSK_SYSTEM_WRITE_RATE
	BYDSK_TIME
	BYDSK_UTIL
	BYDSK_UTIL_CUM
	BYDSK_VENDOR_ID
	BYDSK_VM_IO
	BYDSK_VM_IO_RATE
	BYDSK_VM_READ_RATE
	BYDSK_VM_WRITE_RATE
	BYHBA_AVG_SERVICE_TIME
	BYHBA_AVG_WAIT_TIME
	BYHBA_BUSY_TIME
	BYHBA_BYTE_RATE
	BYHBA_BYTE_RATE_CUM
	BYHBA_CLASS
	BYHBA_DEVNAME
	BYHBA_DEVNO
	BYHBA_DRIVER
	BYHBA_ID
	BYHBA_INTERVAL
	BYHBA_INTERVAL_CUM
	BYHBA_IO
	BYHBA_IO_RATE
	BYHBA_IO_RATE_CUM
	BYHBA_NAME
	BYHBA_READ
	BYHBA_READ_BYTE_RATE
	BYHBA_READ_BYTE_RATE_CUM
	BYHBA_READ_RATE
	BYHBA_READ_RATE_CUM
	BYHBA_REQUEST_QUEUE
	BYHBA_STATE
	BYHBA_THROUGHPUT_UTIL
	BYHBA_TIME
	BYHBA_TYPE
	BYHBA_UTIL
	BYHBA_WRITE
	BYHBA_WRITE_BYTE_RATE
	BYHBA_WRITE_BYTE_RATE_CUM
	BYHBA_WRITE_RATE
	BYHBA_WRITE_RATE_CUM
	BYLS_CPU_CYCLE_ENTL_MAX
	BYLS_CPU_CYCLE_ENTL_MIN
	BYLS_CPU_ENTL_MAX
	BYLS_CPU_ENTL_MIN
	BYLS_CPU_ENTL_UTIL
	BYLS_CPU_PHYSC
	BYLS_CPU_PHYS_TOTAL_TIME
	BYLS_CPU_PHYS_TOTAL_TIME_CUM
	BYLS_CPU_PHYS_TOTAL_UTIL
	BYLS_CPU_TOTAL_UTIL
	BYLS_DISPLAY_NAME
	BYLS_IP_ADDRESS
	BYLS_LS_HOSTNAME
	BYLS_LS_ID
	BYLS_LS_MODE
	BYLS_LS_NAME
	BYLS_LS_OSTYPE
	BYLS_LS_PROC_ID
	BYLS_LS_SHARED
	BYLS_LS_STATE
	BYLS_LS_UUID
	BYLS_MEM_ENTL
	BYLS_MEM_ENTL_MAX
	BYLS_MEM_ENTL_MIN
	BYLS_MEM_ENTL_UTIL
	BYLS_MEM_FREE
	BYLS_MEM_FREE_UTIL
	BYLS_MEM_HEALTH
	BYLS_MEM_PHYS
	BYLS_MEM_PHYS_UTIL
	BYLS_MEM_USED
	BYLS_NUM_CPU
	BYLS_NUM_DISK
	BYLS_NUM_NETIF
	BYLS_UPTIME_SECONDS
	BYNETIF_COLLISION
	BYNETIF_COLLISION_1_MIN_RATE
	BYNETIF_COLLISION_RATE
	BYNETIF_COLLISION_RATE_CUM
	BYNETIF_ERROR
	BYNETIF_ERROR_1_MIN_RATE
	BYNETIF_ERROR_RATE
	BYNETIF_ERROR_RATE_CUM
	BYNETIF_ID
	BYNETIF_INTERVAL
	BYNETIF_INTERVAL_CUM
	BYNETIF_IN_BYTE
	BYNETIF_IN_BYTE_RATE
	BYNETIF_IN_BYTE_RATE_CUM
	BYNETIF_IN_PACKET
	BYNETIF_IN_PACKET_RATE
	BYNETIF_IN_PACKET_RATE_CUM
	BYNETIF_LOGL_INTERVAL
	BYNETIF_LOGL_INTERVAL_CUM
	BYNETIF_LOGL_IN_PACKET
	BYNETIF_LOGL_IN_PACKET_RATE
	BYNETIF_LOGL_IN_PACKET_RATE_CUM
	BYNETIF_LOGL_IP_ADDRESS
	BYNETIF_LOGL_NAME
	BYNETIF_LOGL_OUT_PACKET
	BYNETIF_LOGL_OUT_PACKET_RATE
	BYNETIF_LOGL_OUT_PACKET_RATE_CUM
	BYNETIF_NAME
	BYNETIF_NET_MTU
	BYNETIF_NET_SPEED
	BYNETIF_NET_TYPE
	BYNETIF_OUT_BYTE
	BYNETIF_OUT_BYTE_RATE
	BYNETIF_OUT_BYTE_RATE_CUM
	BYNETIF_OUT_PACKET
	BYNETIF_OUT_PACKET_RATE
	BYNETIF_OUT_PACKET_RATE_CUM
	BYNETIF_PACKET_RATE
	BYNETIF_QUEUE
	BYNETIF_UTIL
	BYNFSOP_CLIENT_COUNT
	BYNFSOP_CLIENT_COUNT_CUM
	BYNFSOP_CLIENT_TIME
	BYNFSOP_CLIENT_TIME_CUM
	BYNFSOP_INTERVAL
	BYNFSOP_INTERVAL_CUM
	BYNFSOP_NAME
	BYNFSOP_SERVER_COUNT
	BYNFSOP_SERVER_COUNT_CUM
	BYNFSOP_SERVER_TIME
	BYNFSOP_SERVER_TIME_CUM
	BYNFS_CLIENT_PHYS_TIME
	BYNFS_CLIENT_PHYS_TIME_CUM
	BYNFS_CLIENT_READ_BYTE_RATE
	BYNFS_CLIENT_READ_BYTE_RATE_CUM
	BYNFS_CLIENT_READ_RATE
	BYNFS_CLIENT_READ_RATE_CUM
	BYNFS_CLIENT_SERVICE
	BYNFS_CLIENT_SERVICE_CUM
	BYNFS_CLIENT_SERVICE_QUEUE
	BYNFS_CLIENT_SERVICE_QUEUE_CUM
	BYNFS_CLIENT_SERVICE_TIME
	BYNFS_CLIENT_SERVICE_TIME_CUM
	BYNFS_CLIENT_WRITE_BYTE_RATE
	BYNFS_CLIENT_WRITE_BYTE_RATE_CUM
	BYNFS_CLIENT_WRITE_RATE
	BYNFS_CLIENT_WRITE_RATE_CUM
	BYNFS_HOSTNAME
	BYNFS_HOST_IP_ADDRESS
	BYNFS_INTERVAL
	BYNFS_INTERVAL_CUM
	BYNFS_LAST_PROC_ID
	BYNFS_SERVER_READ_BYTE_RATE
	BYNFS_SERVER_READ_BYTE_RATE_CUM
	BYNFS_SERVER_READ_RATE
	BYNFS_SERVER_READ_RATE_CUM
	BYNFS_SERVER_SERVICE
	BYNFS_SERVER_SERVICE_CUM
	BYNFS_SERVER_SERVICE_TIME
	BYNFS_SERVER_SERVICE_TIME_CUM
	BYNFS_SERVER_WRITE_BYTE_RATE
	BYNFS_SERVER_WRITE_BYTE_RATE_CUM
	BYNFS_SERVER_WRITE_RATE
	BYNFS_SERVER_WRITE_RATE_CUM
	BYOP_CLIENT_COUNT
	BYOP_CLIENT_COUNT_CUM
	BYOP_INTERVAL
	BYOP_INTERVAL_CUM
	BYOP_NAME
	BYOP_SERVER_COUNT
	BYOP_SERVER_COUNT_CUM
	BYSWP_SWAP_PRI
	BYSWP_SWAP_SPACE_AVAIL
	BYSWP_SWAP_SPACE_NAME
	BYSWP_SWAP_SPACE_USED
	BYSWP_SWAP_TYPE
	FSDETAIL_LABEL
	FSDETAIL_NAME
	FS_BLOCK_SIZE
	FS_DEVNAME
	FS_DEVNO
	FS_DIRNAME
	FS_FILE_IO_RATE
	FS_FILE_IO_RATE_CUM
	FS_FRAG_SIZE
	FS_INODE_UTIL
	FS_INTERVAL
	FS_INTERVAL_CUM
	FS_IS_LVM
	FS_LOGL_IO_RATE
	FS_LOGL_IO_RATE_CUM
	FS_LOGL_READ_BYTE_RATE
	FS_LOGL_READ_BYTE_RATE_CUM
	FS_LOGL_READ_RATE
	FS_LOGL_READ_RATE_CUM
	FS_LOGL_WRITE_BYTE_RATE
	FS_LOGL_WRITE_BYTE_RATE_CUM
	FS_LOGL_WRITE_RATE
	FS_LOGL_WRITE_RATE_CUM
	FS_MAX_INODES
	FS_MAX_SIZE
	FS_PHYS_IO_RATE
	FS_PHYS_IO_RATE_CUM
	FS_PHYS_READ_BYTE_RATE
	FS_PHYS_READ_BYTE_RATE_CUM
	FS_PHYS_READ_RATE
	FS_PHYS_READ_RATE_CUM
	FS_PHYS_WRITE_BYTE_RATE
	FS_PHYS_WRITE_BYTE_RATE_CUM
	FS_PHYS_WRITE_RATE
	FS_PHYS_WRITE_RATE_CUM
	FS_SPACE_RESERVED
	FS_SPACE_USED
	FS_SPACE_UTIL
	FS_TYPE
	FS_VM_IO_RATE
	FS_VM_IO_RATE_CUM
	GBL_ACTIVE_CPU
	GBL_ACTIVE_CPU_CORE
	GBL_ACTIVE_PROC
	GBL_ALIVE_PROC
	GBL_BLANK
	GBL_BOOT_TIME
	GBL_CACHE_QUEUE
	GBL_CACHE_WAIT_PCT
	GBL_CACHE_WAIT_TIME
	GBL_CDFS_QUEUE
	GBL_CDFS_WAIT_PCT
	GBL_CDFS_WAIT_TIME
	GBL_COLLECTOR
	GBL_COMPLETED_PROC
	GBL_CPU_CLOCK
	GBL_CPU_CSWITCH_TIME
	GBL_CPU_CSWITCH_TIME_CUM
	GBL_CPU_CSWITCH_UTIL
	GBL_CPU_CSWITCH_UTIL_CUM
	GBL_CPU_CSWITCH_UTIL_HIGH
	GBL_CPU_IDLE_TIME
	GBL_CPU_IDLE_TIME_CUM
	GBL_CPU_IDLE_UTIL
	GBL_CPU_IDLE_UTIL_CUM
	GBL_CPU_IDLE_UTIL_HIGH
	GBL_CPU_INTERRUPT_TIME
	GBL_CPU_INTERRUPT_TIME_CUM
	GBL_CPU_INTERRUPT_UTIL
	GBL_CPU_INTERRUPT_UTIL_CUM
	GBL_CPU_INTERRUPT_UTIL_HIGH
	GBL_CPU_MT_ENABLED
	GBL_CPU_NICE_TIME
	GBL_CPU_NICE_TIME_CUM
	GBL_CPU_NICE_UTIL
	GBL_CPU_NICE_UTIL_CUM
	GBL_CPU_NICE_UTIL_HIGH
	GBL_CPU_NNICE_TIME
	GBL_CPU_NNICE_TIME_CUM
	GBL_CPU_NNICE_UTIL
	GBL_CPU_NNICE_UTIL_CUM
	GBL_CPU_NNICE_UTIL_HIGH
	GBL_CPU_NORMAL_TIME
	GBL_CPU_NORMAL_TIME_CUM
	GBL_CPU_NORMAL_UTIL
	GBL_CPU_NORMAL_UTIL_CUM
	GBL_CPU_NORMAL_UTIL_HIGH
	GBL_CPU_QUEUE
	GBL_CPU_REALTIME_TIME
	GBL_CPU_REALTIME_TIME_CUM
	GBL_CPU_REALTIME_UTIL
	GBL_CPU_REALTIME_UTIL_CUM
	GBL_CPU_REALTIME_UTIL_HIGH
	GBL_CPU_SYSCALL_TIME
	GBL_CPU_SYSCALL_TIME_CUM
	GBL_CPU_SYSCALL_UTIL
	GBL_CPU_SYSCALL_UTIL_CUM
	GBL_CPU_SYSCALL_UTIL_HIGH
	GBL_CPU_SYS_MODE_TIME
	GBL_CPU_SYS_MODE_TIME_CUM
	GBL_CPU_SYS_MODE_UTIL
	GBL_CPU_SYS_MODE_UTIL_CUM
	GBL_CPU_TOTAL_TIME
	GBL_CPU_TOTAL_TIME_CUM
	GBL_CPU_TOTAL_UTIL
	GBL_CPU_TOTAL_UTIL_CUM
	GBL_CPU_TOTAL_UTIL_HIGH
	GBL_CPU_TRAP_TIME
	GBL_CPU_TRAP_TIME_CUM
	GBL_CPU_TRAP_UTIL
	GBL_CPU_TRAP_UTIL_CUM
	GBL_CPU_TRAP_UTIL_HIGH
	GBL_CPU_USER_MODE_TIME
	GBL_CPU_USER_MODE_TIME_CUM
	GBL_CPU_USER_MODE_UTIL
	GBL_CPU_USER_MODE_UTIL_CUM
	GBL_CPU_VFAULT_TIME
	GBL_CPU_VFAULT_TIME_CUM
	GBL_CPU_VFAULT_UTIL
	GBL_CPU_VFAULT_UTIL_CUM
	GBL_CPU_VFAULT_UTIL_HIGH
	GBL_CPU_WAIT_UTIL
	GBL_CSWITCH_RATE
	GBL_CSWITCH_RATE_CUM
	GBL_CSWITCH_RATE_HIGH
	GBL_DISK_FS_BYTE
	GBL_DISK_FS_BYTE_CUM
	GBL_DISK_FS_IO
	GBL_DISK_FS_IO_CUM
	GBL_DISK_FS_IO_PCT
	GBL_DISK_FS_IO_PCT_CUM
	GBL_DISK_FS_IO_RATE
	GBL_DISK_FS_IO_RATE_CUM
	GBL_DISK_FS_READ
	GBL_DISK_FS_READ_RATE
	GBL_DISK_FS_WRITE
	GBL_DISK_FS_WRITE_RATE
	GBL_DISK_LOGL_BYTE_RATE
	GBL_DISK_LOGL_IO
	GBL_DISK_LOGL_IO_CUM
	GBL_DISK_LOGL_IO_RATE
	GBL_DISK_LOGL_IO_RATE_CUM
	GBL_DISK_LOGL_READ
	GBL_DISK_LOGL_READ_BYTE
	GBL_DISK_LOGL_READ_BYTE_CUM
	GBL_DISK_LOGL_READ_BYTE_RATE
	GBL_DISK_LOGL_READ_CUM
	GBL_DISK_LOGL_READ_PCT
	GBL_DISK_LOGL_READ_PCT_CUM
	GBL_DISK_LOGL_READ_RATE
	GBL_DISK_LOGL_READ_RATE_CUM
	GBL_DISK_LOGL_WRITE
	GBL_DISK_LOGL_WRITE_BYTE
	GBL_DISK_LOGL_WRITE_BYTE_CUM
	GBL_DISK_LOGL_WRITE_BYTE_RATE
	GBL_DISK_LOGL_WRITE_CUM
	GBL_DISK_LOGL_WRITE_PCT
	GBL_DISK_LOGL_WRITE_PCT_CUM
	GBL_DISK_LOGL_WRITE_RATE
	GBL_DISK_LOGL_WRITE_RATE_CUM
	GBL_DISK_PHYS_BYTE
	GBL_DISK_PHYS_BYTE_RATE
	GBL_DISK_PHYS_IO
	GBL_DISK_PHYS_IO_CUM
	GBL_DISK_PHYS_IO_RATE
	GBL_DISK_PHYS_IO_RATE_CUM
	GBL_DISK_PHYS_READ
	GBL_DISK_PHYS_READ_BYTE
	GBL_DISK_PHYS_READ_BYTE_CUM
	GBL_DISK_PHYS_READ_BYTE_RATE
	GBL_DISK_PHYS_READ_CUM
	GBL_DISK_PHYS_READ_PCT
	GBL_DISK_PHYS_READ_PCT_CUM
	GBL_DISK_PHYS_READ_RATE
	GBL_DISK_PHYS_READ_RATE_CUM
	GBL_DISK_PHYS_WRITE
	GBL_DISK_PHYS_WRITE_BYTE
	GBL_DISK_PHYS_WRITE_BYTE_CUM
	GBL_DISK_PHYS_WRITE_BYTE_RATE
	GBL_DISK_PHYS_WRITE_CUM
	GBL_DISK_PHYS_WRITE_PCT
	GBL_DISK_PHYS_WRITE_PCT_CUM
	GBL_DISK_PHYS_WRITE_RATE
	GBL_DISK_PHYS_WRITE_RATE_CUM
	GBL_DISK_QUEUE
	GBL_DISK_RAW_BYTE
	GBL_DISK_RAW_BYTE_CUM
	GBL_DISK_RAW_IO
	GBL_DISK_RAW_IO_CUM
	GBL_DISK_RAW_IO_PCT
	GBL_DISK_RAW_IO_PCT_CUM
	GBL_DISK_RAW_IO_RATE
	GBL_DISK_RAW_IO_RATE_CUM
	GBL_DISK_RAW_READ
	GBL_DISK_RAW_READ_RATE
	GBL_DISK_RAW_WRITE
	GBL_DISK_RAW_WRITE_RATE
	GBL_DISK_REM_FS_BYTE
	GBL_DISK_REM_FS_BYTE_CUM
	GBL_DISK_REM_FS_IO
	GBL_DISK_REM_FS_IO_CUM
	GBL_DISK_REM_FS_IO_PCT
	GBL_DISK_REM_FS_IO_PCT_CUM
	GBL_DISK_REM_FS_IO_RATE
	GBL_DISK_REM_FS_IO_RATE_CUM
	GBL_DISK_REM_LOGL_READ
	GBL_DISK_REM_LOGL_READ_BYTE
	GBL_DISK_REM_LOGL_READ_BYTE_CUM
	GBL_DISK_REM_LOGL_READ_CUM
	GBL_DISK_REM_LOGL_READ_PCT
	GBL_DISK_REM_LOGL_READ_PCT_CUM
	GBL_DISK_REM_LOGL_READ_RATE
	GBL_DISK_REM_LOGL_READ_RATE_CUM
	GBL_DISK_REM_LOGL_WRITE
	GBL_DISK_REM_LOGL_WRITE_BYTE
	GBL_DISK_REM_LOGL_WRITE_BYTE_CUM
	GBL_DISK_REM_LOGL_WRITE_CUM
	GBL_DISK_REM_LOGL_WRITE_PCT
	GBL_DISK_REM_LOGL_WRITE_PCT_CUM
	GBL_DISK_REM_LOGL_WRITE_RATE
	GBL_DISK_REM_LOGL_WRITE_RATE_CUM
	GBL_DISK_REM_PHYS_READ
	GBL_DISK_REM_PHYS_READ_BYTE
	GBL_DISK_REM_PHYS_READ_BYTE_CUM
	GBL_DISK_REM_PHYS_READ_CUM
	GBL_DISK_REM_PHYS_READ_PCT
	GBL_DISK_REM_PHYS_READ_PCT_CUM
	GBL_DISK_REM_PHYS_READ_RATE
	GBL_DISK_REM_PHYS_READ_RATE_CUM
	GBL_DISK_REM_PHYS_WRITE
	GBL_DISK_REM_PHYS_WRITE_BYTE
	GBL_DISK_REM_PHYS_WRITE_BYTE_CUM
	GBL_DISK_REM_PHYS_WRITE_CUM
	GBL_DISK_REM_PHYS_WRITE_PCT
	GBL_DISK_REM_PHYS_WRITE_PCT_CUM
	GBL_DISK_REM_PHYS_WRITE_RATE
	GBL_DISK_REM_PHYS_WRITE_RATE_CUM
	GBL_DISK_REM_RAW_BYTE
	GBL_DISK_REM_RAW_BYTE_CUM
	GBL_DISK_REM_RAW_IO
	GBL_DISK_REM_RAW_IO_CUM
	GBL_DISK_REM_RAW_IO_PCT
	GBL_DISK_REM_RAW_IO_PCT_CUM
	GBL_DISK_REM_RAW_IO_RATE
	GBL_DISK_REM_RAW_IO_RATE_CUM
	GBL_DISK_REM_SYSTEM_BYTE
	GBL_DISK_REM_SYSTEM_BYTE_CUM
	GBL_DISK_REM_SYSTEM_IO
	GBL_DISK_REM_SYSTEM_IO_CUM
	GBL_DISK_REM_SYSTEM_IO_PCT
	GBL_DISK_REM_SYSTEM_IO_PCT_CUM
	GBL_DISK_REM_SYSTEM_IO_RATE
	GBL_DISK_REM_SYSTEM_IO_RATE_CUM
	GBL_DISK_REM_VM_BYTE
	GBL_DISK_REM_VM_BYTE_CUM
	GBL_DISK_REM_VM_IO
	GBL_DISK_REM_VM_IO_CUM
	GBL_DISK_REM_VM_IO_PCT
	GBL_DISK_REM_VM_IO_PCT_CUM
	GBL_DISK_REM_VM_IO_RATE
	GBL_DISK_REM_VM_IO_RATE_CUM
	GBL_DISK_REQUEST_QUEUE
	GBL_DISK_SUBSYSTEM_QUEUE
	GBL_DISK_SUBSYSTEM_WAIT_PCT
	GBL_DISK_SYSTEM_BYTE
	GBL_DISK_SYSTEM_BYTE_CUM
	GBL_DISK_SYSTEM_IO
	GBL_DISK_SYSTEM_IO_CUM
	GBL_DISK_SYSTEM_IO_PCT
	GBL_DISK_SYSTEM_IO_PCT_CUM
	GBL_DISK_SYSTEM_IO_RATE
	GBL_DISK_SYSTEM_IO_RATE_CUM
	GBL_DISK_SYSTEM_READ
	GBL_DISK_SYSTEM_READ_RATE
	GBL_DISK_SYSTEM_WRITE
	GBL_DISK_SYSTEM_WRITE_RATE
	GBL_DISK_TIME_PEAK
	GBL_DISK_UTIL
	GBL_DISK_UTIL_PEAK
	GBL_DISK_UTIL_PEAK_CUM
	GBL_DISK_UTIL_PEAK_HIGH
	GBL_DISK_UTIL_PEAK_OTHERS
	GBL_DISK_UTIL_PEAK_VM
	GBL_DISK_VM_BYTE
	GBL_DISK_VM_BYTE_CUM
	GBL_DISK_VM_IO
	GBL_DISK_VM_IO_CUM
	GBL_DISK_VM_IO_PCT
	GBL_DISK_VM_IO_PCT_CUM
	GBL_DISK_VM_IO_RATE
	GBL_DISK_VM_IO_RATE_CUM
	GBL_DISK_VM_READ
	GBL_DISK_VM_READ_CUM
	GBL_DISK_VM_READ_RATE
	GBL_DISK_VM_READ_RATE_CUM
	GBL_DISK_VM_READ_RATE_HIGH
	GBL_DISK_VM_WRITE
	GBL_DISK_VM_WRITE_CUM
	GBL_DISK_VM_WRITE_RATE
	GBL_DISK_VM_WRITE_RATE_CUM
	GBL_DISK_VM_WRITE_RATE_HIGH
	GBL_DISK_WAIT_PCT
	GBL_DISK_WAIT_TIME
	GBL_FS_SPACE_UTIL_PEAK
	GBL_GMTOFFSET
	GBL_GRAPHICS_QUEUE
	GBL_GRAPHICS_WAIT_PCT
	GBL_GRAPHICS_WAIT_TIME
	GBL_IGNORE_MT
	GBL_INODE_QUEUE
	GBL_INODE_WAIT_PCT
	GBL_INODE_WAIT_TIME
	GBL_INTERRUPT
	GBL_INTERRUPT_RATE
	GBL_INTERRUPT_RATE_CUM
	GBL_INTERRUPT_RATE_HIGH
	GBL_INTERVAL
	GBL_INTERVAL_CUM
	GBL_IPC_QUEUE
	GBL_IPC_SUBSYSTEM_QUEUE
	GBL_IPC_SUBSYSTEM_WAIT_PCT
	GBL_IPC_WAIT_PCT
	GBL_IPC_WAIT_TIME
	GBL_JAVAARG
	GBL_JOBCTL_QUEUE
	GBL_JOBCTL_WAIT_PCT
	GBL_JOBCTL_WAIT_TIME
	GBL_LAN_QUEUE
	GBL_LAN_WAIT_PCT
	GBL_LAN_WAIT_TIME
	GBL_LOADAVG
	GBL_LOADAVG15
	GBL_LOADAVG5
	GBL_LOST_MI_TRACE_BUFFERS
	GBL_LS_ROLE
	GBL_LS_TYPE
	GBL_LS_UUID
	GBL_MACHINE
	GBL_MACHINE_MODEL
	GBL_MEMFS_BLK_CNT
	GBL_MEMFS_SWP_CNT
	GBL_MEM_ACTIVE_VIRT
	GBL_MEM_ACTIVE_VIRT_UTIL
	GBL_MEM_AVAIL
	GBL_MEM_CACHE
	GBL_MEM_CACHE_HIT
	GBL_MEM_CACHE_HIT_CUM
	GBL_MEM_CACHE_HIT_PCT
	GBL_MEM_CACHE_HIT_PCT_CUM
	GBL_MEM_CACHE_HIT_PCT_HIGH
	GBL_MEM_CACHE_UTIL
	GBL_MEM_CACHE_WRITE_HIT
	GBL_MEM_CACHE_WRITE_HIT_CUM
	GBL_MEM_CACHE_WRITE_HIT_PCT
	GBL_MEM_CACHE_WRITE_HIT_PCT_CUM
	GBL_MEM_DNLC_HIT
	GBL_MEM_DNLC_HIT_CUM
	GBL_MEM_DNLC_HIT_PCT
	GBL_MEM_DNLC_HIT_PCT_CUM
	GBL_MEM_DNLC_HIT_PCT_HIGH
	GBL_MEM_DNLC_LONGS
	GBL_MEM_DNLC_LONGS_CUM
	GBL_MEM_DNLC_LONGS_PCT
	GBL_MEM_DNLC_LONGS_PCT_CUM
	GBL_MEM_DNLC_LONGS_PCT_HIGH
	GBL_MEM_FILE_PAGE_CACHE
	GBL_MEM_FILE_PAGE_CACHE_UTIL
	GBL_MEM_FREE
	GBL_MEM_FREE_UTIL
	GBL_MEM_PAGEIN
	GBL_MEM_PAGEIN_BYTE
	GBL_MEM_PAGEIN_BYTE_CUM
	GBL_MEM_PAGEIN_BYTE_RATE
	GBL_MEM_PAGEIN_BYTE_RATE_CUM
	GBL_MEM_PAGEIN_BYTE_RATE_HIGH
	GBL_MEM_PAGEIN_CUM
	GBL_MEM_PAGEIN_RATE
	GBL_MEM_PAGEIN_RATE_CUM
	GBL_MEM_PAGEIN_RATE_HIGH
	GBL_MEM_PAGEOUT
	GBL_MEM_PAGEOUT_BYTE
	GBL_MEM_PAGEOUT_BYTE_CUM
	GBL_MEM_PAGEOUT_BYTE_RATE
	GBL_MEM_PAGEOUT_BYTE_RATE_CUM
	GBL_MEM_PAGEOUT_BYTE_RATE_HIGH
	GBL_MEM_PAGEOUT_CUM
	GBL_MEM_PAGEOUT_RATE
	GBL_MEM_PAGEOUT_RATE_CUM
	GBL_MEM_PAGEOUT_RATE_HIGH
	GBL_MEM_PAGE_FAULT
	GBL_MEM_PAGE_FAULT_CUM
	GBL_MEM_PAGE_FAULT_RATE
	GBL_MEM_PAGE_FAULT_RATE_CUM
	GBL_MEM_PAGE_FAULT_RATE_HIGH
	GBL_MEM_PAGE_REQUEST
	GBL_MEM_PAGE_REQUEST_CUM
	GBL_MEM_PAGE_REQUEST_RATE
	GBL_MEM_PAGE_REQUEST_RATE_CUM
	GBL_MEM_PAGE_REQUEST_RATE_HIGH
	GBL_MEM_PAGE_SIZE_MAX
	GBL_MEM_PG_SCAN
	GBL_MEM_PG_SCAN_CUM
	GBL_MEM_PG_SCAN_RATE
	GBL_MEM_PG_SCAN_RATE_CUM
	GBL_MEM_PG_SCAN_RATE_HIGH
	GBL_MEM_PHYS
	GBL_MEM_QUEUE
	GBL_MEM_SWAP
	GBL_MEM_SWAPIN
	GBL_MEM_SWAPIN_BYTE
	GBL_MEM_SWAPIN_BYTE_CUM
	GBL_MEM_SWAPIN_BYTE_RATE
	GBL_MEM_SWAPIN_BYTE_RATE_CUM
	GBL_MEM_SWAPIN_BYTE_RATE_HIGH
	GBL_MEM_SWAPIN_CUM
	GBL_MEM_SWAPIN_RATE
	GBL_MEM_SWAPIN_RATE_CUM
	GBL_MEM_SWAPIN_RATE_HIGH
	GBL_MEM_SWAPOUT
	GBL_MEM_SWAPOUT_BYTE
	GBL_MEM_SWAPOUT_BYTE_CUM
	GBL_MEM_SWAPOUT_BYTE_RATE
	GBL_MEM_SWAPOUT_BYTE_RATE_CUM
	GBL_MEM_SWAPOUT_BYTE_RATE_HIGH
	GBL_MEM_SWAPOUT_CUM
	GBL_MEM_SWAPOUT_RATE
	GBL_MEM_SWAPOUT_RATE_CUM
	GBL_MEM_SWAPOUT_RATE_HIGH
	GBL_MEM_SWAP_1_MIN_RATE
	GBL_MEM_SWAP_CUM
	GBL_MEM_SWAP_RATE
	GBL_MEM_SWAP_RATE_CUM
	GBL_MEM_SWAP_RATE_HIGH
	GBL_MEM_SYS
	GBL_MEM_SYS_AND_CACHE_UTIL
	GBL_MEM_SYS_UTIL
	GBL_MEM_USER
	GBL_MEM_USER_UTIL
	GBL_MEM_UTIL
	GBL_MEM_UTIL_CUM
	GBL_MEM_UTIL_HIGH
	GBL_MEM_VIRT
	GBL_MEM_WAIT_PCT
	GBL_MEM_WAIT_TIME
	GBL_MI_LOST_PROC
	GBL_MI_LOST_PROC_CUM
	GBL_MI_PROC_ENTRIES
	GBL_MI_THREAD_ENTRIES
	GBL_MSG_QUEUE
	GBL_MSG_WAIT_PCT
	GBL_MSG_WAIT_TIME
	GBL_NETWORK_SUBSYSTEM_QUEUE
	GBL_NETWORK_SUBSYSTEM_WAIT_PCT
	GBL_NET_COLLISION
	GBL_NET_COLLISION_1_MIN_RATE
	GBL_NET_COLLISION_CUM
	GBL_NET_COLLISION_PCT
	GBL_NET_COLLISION_PCT_CUM
	GBL_NET_COLLISION_RATE
	GBL_NET_DEFERRED
	GBL_NET_DEFERRED_CUM
	GBL_NET_DEFERRED_PCT
	GBL_NET_DEFERRED_PCT_CUM
	GBL_NET_DEFERRED_RATE
	GBL_NET_DEFERRED_RATE_CUM
	GBL_NET_ERROR
	GBL_NET_ERROR_1_MIN_RATE
	GBL_NET_ERROR_CUM
	GBL_NET_ERROR_RATE
	GBL_NET_IN_ERROR
	GBL_NET_IN_ERROR_CUM
	GBL_NET_IN_ERROR_PCT
	GBL_NET_IN_ERROR_PCT_CUM
	GBL_NET_IN_ERROR_RATE
	GBL_NET_IN_ERROR_RATE_CUM
	GBL_NET_IN_PACKET
	GBL_NET_IN_PACKET_CUM
	GBL_NET_IN_PACKET_RATE
	GBL_NET_IP_FRAGMENTS_RECEIVED
	GBL_NET_IP_FWD_DATAGRAMS
	GBL_NET_IP_REASSEMBLY_REQUIRED
	GBL_NET_OUTQUEUE
	GBL_NET_OUT_ERROR
	GBL_NET_OUT_ERROR_CUM
	GBL_NET_OUT_ERROR_PCT
	GBL_NET_OUT_ERROR_PCT_CUM
	GBL_NET_OUT_ERROR_RATE
	GBL_NET_OUT_ERROR_RATE_CUM
	GBL_NET_OUT_PACKET
	GBL_NET_OUT_PACKET_CUM
	GBL_NET_OUT_PACKET_RATE
	GBL_NET_PACKET
	GBL_NET_PACKET_RATE
	GBL_NET_UTIL_PEAK
	GBL_NFS_CALL
	GBL_NFS_CALL_RATE
	GBL_NFS_CLIENT_BAD_CALL
	GBL_NFS_CLIENT_BAD_CALL_CUM
	GBL_NFS_CLIENT_BIOD
	GBL_NFS_CLIENT_BYTE
	GBL_NFS_CLIENT_BYTE_CUM
	GBL_NFS_CLIENT_CALL
	GBL_NFS_CLIENT_CALL_CUM
	GBL_NFS_CLIENT_CALL_RATE
	GBL_NFS_CLIENT_IDLE_BIOD
	GBL_NFS_CLIENT_IO
	GBL_NFS_CLIENT_IO_CUM
	GBL_NFS_CLIENT_IO_PCT
	GBL_NFS_CLIENT_IO_PCT_CUM
	GBL_NFS_CLIENT_IO_RATE
	GBL_NFS_CLIENT_IO_RATE_CUM
	GBL_NFS_CLIENT_PHYS_TIME
	GBL_NFS_CLIENT_PHYS_TIME_CUM
	GBL_NFS_CLIENT_READ_BYTE_RATE
	GBL_NFS_CLIENT_READ_BYTE_RATE_CUM
	GBL_NFS_CLIENT_READ_RATE
	GBL_NFS_CLIENT_READ_RATE_CUM
	GBL_NFS_CLIENT_SERVICE_QUEUE
	GBL_NFS_CLIENT_SERVICE_QUEUE_CUM
	GBL_NFS_CLIENT_SERVICE_TIME
	GBL_NFS_CLIENT_SERVICE_TIME_CUM
	GBL_NFS_CLIENT_WRITE_BYTE_RATE
	GBL_NFS_CLIENT_WRITE_BYTE_RATE_CUM
	GBL_NFS_CLIENT_WRITE_RATE
	GBL_NFS_CLIENT_WRITE_RATE_CUM
	GBL_NFS_LOGL_READ
	GBL_NFS_LOGL_READ_BYTE
	GBL_NFS_LOGL_READ_BYTE_CUM
	GBL_NFS_LOGL_READ_CUM
	GBL_NFS_LOGL_READ_PCT
	GBL_NFS_LOGL_READ_PCT_CUM
	GBL_NFS_LOGL_READ_RATE
	GBL_NFS_LOGL_READ_RATE_CUM
	GBL_NFS_LOGL_WRITE
	GBL_NFS_LOGL_WRITE_BYTE
	GBL_NFS_LOGL_WRITE_BYTE_CUM
	GBL_NFS_LOGL_WRITE_CUM
	GBL_NFS_LOGL_WRITE_PCT
	GBL_NFS_LOGL_WRITE_PCT_CUM
	GBL_NFS_LOGL_WRITE_RATE
	GBL_NFS_LOGL_WRITE_RATE_CUM
	GBL_NFS_QUEUE
	GBL_NFS_SERVER_BAD_CALL
	GBL_NFS_SERVER_BAD_CALL_CUM
	GBL_NFS_SERVER_BYTE
	GBL_NFS_SERVER_BYTE_CUM
	GBL_NFS_SERVER_CALL
	GBL_NFS_SERVER_CALL_CUM
	GBL_NFS_SERVER_CALL_RATE
	GBL_NFS_SERVER_IO
	GBL_NFS_SERVER_IO_CUM
	GBL_NFS_SERVER_IO_PCT
	GBL_NFS_SERVER_IO_PCT_CUM
	GBL_NFS_SERVER_IO_RATE
	GBL_NFS_SERVER_IO_RATE_CUM
	GBL_NFS_SERVER_READ_BYTE_RATE
	GBL_NFS_SERVER_READ_BYTE_RATE_CUM
	GBL_NFS_SERVER_READ_RATE
	GBL_NFS_SERVER_READ_RATE_CUM
	GBL_NFS_SERVER_SERVICE_TIME
	GBL_NFS_SERVER_SERVICE_TIME_CUM
	GBL_NFS_SERVER_WRITE_BYTE_RATE
	GBL_NFS_SERVER_WRITE_BYTE_RATE_CUM
	GBL_NFS_SERVER_WRITE_RATE
	GBL_NFS_SERVER_WRITE_RATE_CUM
	GBL_NFS_WAIT_PCT
	GBL_NFS_WAIT_TIME
	GBL_NODENAME
	GBL_NUM_ACTIVE_LS
	GBL_NUM_APP
	GBL_NUM_APP_PRM
	GBL_NUM_CPU
	GBL_NUM_CPU_CORE
	GBL_NUM_DISK
	GBL_NUM_HBA
	GBL_NUM_LDOM
	GBL_NUM_LS
	GBL_NUM_NETWORK
	GBL_NUM_SOCKET
	GBL_NUM_SWAP
	GBL_NUM_TAPE
	GBL_NUM_TT
	GBL_NUM_USER
	GBL_NUM_VG
	GBL_NUM_VSWITCH
	GBL_OSKERNELTYPE
	GBL_OSKERNELTYPE_INT
	GBL_OSNAME
	GBL_OSRELEASE
	GBL_OSVERSION
	GBL_OTHER_IO_QUEUE
	GBL_OTHER_IO_WAIT_PCT
	GBL_OTHER_IO_WAIT_TIME
	GBL_OTHER_QUEUE
	GBL_OTHER_WAIT_PCT
	GBL_OTHER_WAIT_TIME
	GBL_PIPE_QUEUE
	GBL_PIPE_WAIT_PCT
	GBL_PIPE_WAIT_TIME
	GBL_PRI_QUEUE
	GBL_PRI_WAIT_PCT
	GBL_PRI_WAIT_TIME
	GBL_PRM_MEM_UTIL
	GBL_PROC_RUN_TIME
	GBL_PROC_SAMPLE
	GBL_RPC_QUEUE
	GBL_RPC_WAIT_PCT
	GBL_RPC_WAIT_TIME
	GBL_RUN_QUEUE
	GBL_RUN_QUEUE_CUM
	GBL_RUN_QUEUE_HIGH
	GBL_SAMPLE
	GBL_SEM_QUEUE
	GBL_SEM_WAIT_PCT
	GBL_SEM_WAIT_TIME
	GBL_SERIALNO
	GBL_SLEEP_QUEUE
	GBL_SLEEP_WAIT_PCT
	GBL_SLEEP_WAIT_TIME
	GBL_SOCKET_QUEUE
	GBL_SOCKET_WAIT_PCT
	GBL_SOCKET_WAIT_TIME
	GBL_STARTDATE
	GBL_STARTED_PROC
	GBL_STARTED_PROC_RATE
	GBL_STARTTIME
	GBL_STATDATE
	GBL_STATTIME
	GBL_STREAM_QUEUE
	GBL_STREAM_WAIT_PCT
	GBL_STREAM_WAIT_TIME
	GBL_SWAP_RESERVED_ONLY_UTIL
	GBL_SWAP_SPACE_AVAIL
	GBL_SWAP_SPACE_AVAIL_KB
	GBL_SWAP_SPACE_DEVICE_UTIL
	GBL_SWAP_SPACE_FS_UTIL
	GBL_SWAP_SPACE_RESERVED
	GBL_SWAP_SPACE_RESERVED_UTIL
	GBL_SWAP_SPACE_USED
	GBL_SWAP_SPACE_USED_UTIL
	GBL_SWAP_SPACE_UTIL
	GBL_SWAP_SPACE_UTIL_CUM
	GBL_SWAP_SPACE_UTIL_HIGH
	GBL_SYSCALL
	GBL_SYSCALL_RATE
	GBL_SYSCALL_RATE_CUM
	GBL_SYSCALL_RATE_HIGH
	GBL_SYSTEM_ID
	GBL_SYSTEM_TYPE
	GBL_SYSTEM_UPTIME_HOURS
	GBL_SYSTEM_UPTIME_SECONDS
	GBL_SYS_QUEUE
	GBL_SYS_WAIT_PCT
	GBL_SYS_WAIT_TIME
	GBL_TERM_IO_QUEUE
	GBL_TERM_IO_WAIT_PCT
	GBL_TERM_IO_WAIT_TIME
	GBL_THRESHOLD_PROCCPU
	GBL_THRESHOLD_PROCDISK
	GBL_THRESHOLD_PROCIO
	GBL_THRESHOLD_PROCMEM
	GBL_TT_OVERFLOW_COUNT
	LDOM_ACTIVE
	LDOM_ID
	LDOM_MEM_AVAIL
	LDOM_MEM_AVAIL_DEL
	LDOM_MEM_FREE
	LDOM_MEM_FREE_DEL
	LDOM_MEM_TYPE
	LDOM_MEM_UTIL
	LDOM_MEM_UTIL_HIGH
	LDOM_NUM_CPU
	LDOM_PHYS_ID
	LVDETAIL_LABEL
	LVDETAIL_NAME
	LV_AVG_READ_SERVICE_TIME
	LV_AVG_WRITE_SERVICE_TIME
	LV_CACHE_HIT
	LV_CACHE_MISS
	LV_CACHE_QUEUE
	LV_CACHE_SIZE
	LV_DEVNO
	LV_DIRNAME
	LV_GROUP_NAME
	LV_INTERVAL
	LV_INTERVAL_CUM
	LV_OPEN_LV
	LV_READ_BYTE_RATE
	LV_READ_BYTE_RATE_CUM
	LV_READ_RATE
	LV_READ_RATE_CUM
	LV_TYPE
	LV_WRITE_BYTE_RATE
	LV_WRITE_BYTE_RATE_CUM
	LV_WRITE_RATE
	LV_WRITE_RATE_CUM
	PRM_BYVG_GROUP_ENTITLEMENT
	PRM_BYVG_GROUP_UTIL
	PRM_BYVG_INTERVAL
	PRM_BYVG_INTERVAL_CUM
	PRM_BYVG_PRM_GROUPID
	PRM_BYVG_PRM_GROUPNAME
	PRM_BYVG_REQUEST
	PRM_BYVG_REQUEST_CUM
	PRM_BYVG_REQUEST_QUEUE
	PRM_BYVG_TRANSFER
	PRM_BYVG_TRANSFER_CUM
	PROCSYSCALL_ACTIVE_CUM
	PROCSYSCALL_CALL_COUNT
	PROCSYSCALL_CALL_COUNT_CUM
	PROCSYSCALL_CALL_ID
	PROCSYSCALL_CALL_NAME
	PROCSYSCALL_CALL_RATE
	PROCSYSCALL_CALL_RATE_CUM
	PROCSYSCALL_INTERVAL
	PROCSYSCALL_INTERVAL_CUM
	PROCSYSCALL_TOTAL_TIME
	PROCSYSCALL_TOTAL_TIME_CUM
	PROC_APP_IDTHREAD_APP_ID
	PROC_APP_NAMETHREAD_APP_NAME
	PROC_CACHE_WAIT_PCTTHREAD_CACHE_WAIT_PCT
	PROC_CACHE_WAIT_PCT_CUMTHREAD_CACHE_WAIT_PCT_CUM
	PROC_CACHE_WAIT_TIMETHREAD_CACHE_WAIT_TIME
	PROC_CACHE_WAIT_TIME_CUMTHREAD_CACHE_WAIT_TIME_CUM
	PROC_CDFS_WAIT_PCTTHREAD_CDFS_WAIT_PCT
	PROC_CDFS_WAIT_PCT_CUMTHREAD_CDFS_WAIT_PCT_CUM
	PROC_CDFS_WAIT_TIMETHREAD_CDFS_WAIT_TIME
	PROC_CDFS_WAIT_TIME_CUMTHREAD_CDFS_WAIT_TIME_CUM
	PROC_CLOSETHREAD_CLOSE
	PROC_CLOSE_CUMTHREAD_CLOSE_CUM
	PROC_CPU_ALIVE_SYS_MODE_UTILTHREAD_CPU_ALIVE_SYS_MODE_UTIL
	PROC_CPU_ALIVE_TOTAL_UTILTHREAD_CPU_ALIVE_TOTAL_UTIL
	PROC_CPU_ALIVE_USER_MODE_UTILTHREAD_CPU_ALIVE_USER_MODE_UTIL
	PROC_CPU_CSWITCH_TIMETHREAD_CPU_CSWITCH_TIME
	PROC_CPU_CSWITCH_TIME_CUMTHREAD_CPU_CSWITCH_TIME_CUM
	PROC_CPU_CSWITCH_UTILTHREAD_CPU_CSWITCH_UTIL
	PROC_CPU_CSWITCH_UTIL_CUMTHREAD_CPU_CSWITCH_UTIL_CUM
	PROC_CPU_INTERRUPT_TIMETHREAD_CPU_INTERRUPT_TIME
	PROC_CPU_INTERRUPT_TIME_CUMTHREAD_CPU_INTERRUPT_TIME_CUM
	PROC_CPU_INTERRUPT_UTILTHREAD_CPU_INTERRUPT_UTIL
	PROC_CPU_INTERRUPT_UTIL_CUMTHREAD_CPU_INTERRUPT_UTIL_CUM
	PROC_CPU_LAST_USEDTHREAD_CPU_LAST_USED
	PROC_CPU_NICE_TIMETHREAD_CPU_NICE_TIME
	PROC_CPU_NICE_TIME_CUMTHREAD_CPU_NICE_TIME_CUM
	PROC_CPU_NICE_UTILTHREAD_CPU_NICE_UTIL
	PROC_CPU_NICE_UTIL_CUMTHREAD_CPU_NICE_UTIL_CUM
	PROC_CPU_NNICE_TIMETHREAD_CPU_NNICE_TIME
	PROC_CPU_NNICE_TIME_CUMTHREAD_CPU_NNICE_TIME_CUM
	PROC_CPU_NNICE_UTILTHREAD_CPU_NNICE_UTIL
	PROC_CPU_NNICE_UTIL_CUMTHREAD_CPU_NNICE_UTIL_CUM
	PROC_CPU_NORMAL_TIMETHREAD_CPU_NORMAL_TIME
	PROC_CPU_NORMAL_TIME_CUMTHREAD_CPU_NORMAL_TIME_CUM
	PROC_CPU_NORMAL_UTILTHREAD_CPU_NORMAL_UTIL
	PROC_CPU_NORMAL_UTIL_CUMTHREAD_CPU_NORMAL_UTIL_CUM
	PROC_CPU_REALTIME_TIMETHREAD_CPU_REALTIME_TIME
	PROC_CPU_REALTIME_TIME_CUMTHREAD_CPU_REALTIME_TIME_CUM
	PROC_CPU_REALTIME_UTILTHREAD_CPU_REALTIME_UTIL
	PROC_CPU_REALTIME_UTIL_CUMTHREAD_CPU_REALTIME_UTIL_CUM
	PROC_CPU_SWITCHESTHREAD_CPU_SWITCHES
	PROC_CPU_SWITCHES_CUMTHREAD_CPU_SWITCHES_CUM
	PROC_CPU_SYSCALL_TIMETHREAD_CPU_SYSCALL_TIME
	PROC_CPU_SYSCALL_TIME_CUMTHREAD_CPU_SYSCALL_TIME_CUM
	PROC_CPU_SYSCALL_UTILTHREAD_CPU_SYSCALL_UTIL
	PROC_CPU_SYSCALL_UTIL_CUMTHREAD_CPU_SYSCALL_UTIL_CUM
	PROC_CPU_SYS_MODE_TIMETHREAD_CPU_SYS_MODE_TIME
	PROC_CPU_SYS_MODE_TIME_CUMTHREAD_CPU_SYS_MODE_TIME_CUM
	PROC_CPU_SYS_MODE_UTILTHREAD_CPU_SYS_MODE_UTIL
	PROC_CPU_SYS_MODE_UTIL_CUMTHREAD_CPU_SYS_MODE_UTIL_CUM
	PROC_CPU_TOTAL_TIMETHREAD_CPU_TOTAL_TIME
	PROC_CPU_TOTAL_TIME_CUMTHREAD_CPU_TOTAL_TIME_CUM
	PROC_CPU_TOTAL_UTILTHREAD_CPU_TOTAL_UTIL
	PROC_CPU_TOTAL_UTIL_CUMTHREAD_CPU_TOTAL_UTIL_CUM
	PROC_CPU_TRAP_COUNTTHREAD_CPU_TRAP_COUNT
	PROC_CPU_TRAP_COUNT_CUMTHREAD_CPU_TRAP_COUNT_CUM
	PROC_CPU_USER_MODE_TIMETHREAD_CPU_USER_MODE_TIME
	PROC_CPU_USER_MODE_TIME_CUMTHREAD_CPU_USER_MODE_TIME_CUM
	PROC_CPU_USER_MODE_UTILTHREAD_CPU_USER_MODE_UTIL
	PROC_CPU_USER_MODE_UTIL_CUMTHREAD_CPU_USER_MODE_UTIL_CUM
	PROC_DISK_FS_READTHREAD_DISK_FS_READ
	PROC_DISK_FS_READ_CUMTHREAD_DISK_FS_READ_CUM
	PROC_DISK_FS_READ_RATETHREAD_DISK_FS_READ_RATE
	PROC_DISK_FS_WRITETHREAD_DISK_FS_WRITE
	PROC_DISK_FS_WRITE_CUMTHREAD_DISK_FS_WRITE_CUM
	PROC_DISK_FS_WRITE_RATETHREAD_DISK_FS_WRITE_RATE
	PROC_DISK_LOGL_IOTHREAD_DISK_LOGL_IO
	PROC_DISK_LOGL_IO_CUMTHREAD_DISK_LOGL_IO_CUM
	PROC_DISK_LOGL_IO_RATETHREAD_DISK_LOGL_IO_RATE
	PROC_DISK_LOGL_IO_RATE_CUMTHREAD_DISK_LOGL_IO_RATE_CUM
	PROC_DISK_LOGL_READTHREAD_DISK_LOGL_READ
	PROC_DISK_LOGL_READ_CUMTHREAD_DISK_LOGL_READ_CUM
	PROC_DISK_LOGL_READ_RATETHREAD_DISK_LOGL_READ_RATE
	PROC_DISK_LOGL_WRITETHREAD_DISK_LOGL_WRITE
	PROC_DISK_LOGL_WRITE_CUMTHREAD_DISK_LOGL_WRITE_CUM
	PROC_DISK_LOGL_WRITE_RATETHREAD_DISK_LOGL_WRITE_RATE
	PROC_DISK_PHYS_IO_RATETHREAD_DISK_PHYS_IO_RATE
	PROC_DISK_PHYS_IO_RATE_CUMTHREAD_DISK_PHYS_IO_RATE_CUM
	PROC_DISK_PHYS_READTHREAD_DISK_PHYS_READ
	PROC_DISK_PHYS_READ_CUMTHREAD_DISK_PHYS_READ_CUM
	PROC_DISK_PHYS_READ_RATETHREAD_DISK_PHYS_READ_RATE
	PROC_DISK_PHYS_WRITETHREAD_DISK_PHYS_WRITE
	PROC_DISK_PHYS_WRITE_CUMTHREAD_DISK_PHYS_WRITE_CUM
	PROC_DISK_PHYS_WRITE_RATETHREAD_DISK_PHYS_WRITE_RATE
	PROC_DISK_RAW_READTHREAD_DISK_RAW_READ
	PROC_DISK_RAW_READ_CUMTHREAD_DISK_RAW_READ_CUM
	PROC_DISK_RAW_READ_RATETHREAD_DISK_RAW_READ_RATE
	PROC_DISK_RAW_WRITETHREAD_DISK_RAW_WRITE
	PROC_DISK_RAW_WRITE_CUMTHREAD_DISK_RAW_WRITE_CUM
	PROC_DISK_RAW_WRITE_RATETHREAD_DISK_RAW_WRITE_RATE
	PROC_DISK_REM_LOGL_READTHREAD_DISK_REM_LOGL_READ
	PROC_DISK_REM_LOGL_READ_CUMTHREAD_DISK_REM_LOGL_READ_CUM
	PROC_DISK_REM_LOGL_READ_RATETHREAD_DISK_REM_LOGL_READ_RATE
	PROC_DISK_REM_LOGL_WRITETHREAD_DISK_REM_LOGL_WRITE
	PROC_DISK_REM_LOGL_WRITE_CUMTHREAD_DISK_REM_LOGL_WRITE_CUM
	PROC_DISK_REM_LOGL_WRITE_RATETHREAD_DISK_REM_LOGL_WRITE_RATE
	PROC_DISK_REM_PHYS_READTHREAD_DISK_REM_PHYS_READ
	PROC_DISK_REM_PHYS_READ_CUMTHREAD_DISK_REM_PHYS_READ_CUM
	PROC_DISK_REM_PHYS_READ_RATETHREAD_DISK_REM_PHYS_READ_RATE
	PROC_DISK_REM_PHYS_WRITETHREAD_DISK_REM_PHYS_WRITE
	PROC_DISK_REM_PHYS_WRITE_CUMTHREAD_DISK_REM_PHYS_WRITE_CUM
	PROC_DISK_REM_PHYS_WRITE_RATETHREAD_DISK_REM_PHYS_WRITE_RATE
	PROC_DISK_SUBSYSTEM_WAIT_PCTTHREAD_DISK_SUBSYSTEM_WAIT_PCT
	PROC_DISK_SUBSYSTEM_WAIT_PCT_CUMTHREAD_DISK_SUBSYSTEM_WAIT_PCT_CUM
	PROC_DISK_SUBSYSTEM_WAIT_TIMETHREAD_DISK_SUBSYSTEM_WAIT_TIME
	PROC_DISK_SUBSYSTEM_WAIT_TIME_CUMTHREAD_DISK_SUBSYSTEM_WAIT_TIME_CUM
	PROC_DISK_SYSTEM_IOTHREAD_DISK_SYSTEM_IO
	PROC_DISK_SYSTEM_IO_RATETHREAD_DISK_SYSTEM_IO_RATE
	PROC_DISK_SYSTEM_READTHREAD_DISK_SYSTEM_READ
	PROC_DISK_SYSTEM_READ_CUMTHREAD_DISK_SYSTEM_READ_CUM
	PROC_DISK_SYSTEM_WRITETHREAD_DISK_SYSTEM_WRITE
	PROC_DISK_SYSTEM_WRITE_CUMTHREAD_DISK_SYSTEM_WRITE_CUM
	PROC_DISK_VM_IOTHREAD_DISK_VM_IO
	PROC_DISK_VM_IO_RATETHREAD_DISK_VM_IO_RATE
	PROC_DISK_VM_READTHREAD_DISK_VM_READ
	PROC_DISK_VM_READ_CUMTHREAD_DISK_VM_READ_CUM
	PROC_DISK_VM_WRITETHREAD_DISK_VM_WRITE
	PROC_DISK_VM_WRITE_CUMTHREAD_DISK_VM_WRITE_CUM
	PROC_DISK_WAIT_PCTTHREAD_DISK_WAIT_PCT
	PROC_DISK_WAIT_PCT_CUMTHREAD_DISK_WAIT_PCT_CUM
	PROC_DISK_WAIT_TIMETHREAD_DISK_WAIT_TIME
	PROC_DISK_WAIT_TIME_CUMTHREAD_DISK_WAIT_TIME_CUM
	PROC_DISPATCHTHREAD_DISPATCH
	PROC_DISPATCH_CUMTHREAD_DISPATCH_CUM
	PROC_EUIDTHREAD_EUID
	PROC_FILE_COUNT
	PROC_FILE_MODE
	PROC_FILE_NAME
	PROC_FILE_NUMBER
	PROC_FILE_OFFSET
	PROC_FILE_OPEN
	PROC_FILE_TYPE
	PROC_FORCED_CSWITCHTHREAD_FORCED_CSWITCH
	PROC_FORCED_CSWITCH_CUMTHREAD_FORCED_CSWITCH_CUM
	PROC_FORKTHREAD_FORK
	PROC_FORK_CUMTHREAD_FORK_CUM
	PROC_GRAPHICS_WAIT_PCTTHREAD_GRAPHICS_WAIT_PCT
	PROC_GRAPHICS_WAIT_PCT_CUMTHREAD_GRAPHICS_WAIT_PCT_CUM
	PROC_GRAPHICS_WAIT_TIMETHREAD_GRAPHICS_WAIT_TIME
	PROC_GRAPHICS_WAIT_TIME_CUMTHREAD_GRAPHICS_WAIT_TIME_CUM
	PROC_GROUP_IDTHREAD_GROUP_ID
	PROC_GROUP_NAMETHREAD_GROUP_NAME
	PROC_INODE_WAIT_PCTTHREAD_INODE_WAIT_PCT
	PROC_INODE_WAIT_PCT_CUMTHREAD_INODE_WAIT_PCT_CUM
	PROC_INODE_WAIT_TIMETHREAD_INODE_WAIT_TIME
	PROC_INODE_WAIT_TIME_CUMTHREAD_INODE_WAIT_TIME_CUM
	PROC_INTERESTTHREAD_INTEREST
	PROC_INTERRUPTSTHREAD_INTERRUPTS
	PROC_INTERRUPTS_CUMTHREAD_INTERRUPTS_CUM
	PROC_INTERVALTHREAD_INTERVAL
	PROC_INTERVAL_ALIVETHREAD_INTERVAL_ALIVE
	PROC_INTERVAL_CUMTHREAD_INTERVAL_CUM
	PROC_IOCTLTHREAD_IOCTL
	PROC_IOCTL_CUMTHREAD_IOCTL_CUM
	PROC_IO_BYTETHREAD_IO_BYTE
	PROC_IO_BYTE_CUMTHREAD_IO_BYTE_CUM
	PROC_IO_BYTE_RATETHREAD_IO_BYTE_RATE
	PROC_IO_BYTE_RATE_CUMTHREAD_IO_BYTE_RATE_CUM
	PROC_IPC_SUBSYSTEM_WAIT_PCTTHREAD_IPC_SUBSYSTEM_WAIT_PCT
	PROC_IPC_SUBSYSTEM_WAIT_PCT_CUMTHREAD_IPC_SUBSYSTEM_WAIT_PCT_CUM
	PROC_IPC_SUBSYSTEM_WAIT_TIMETHREAD_IPC_SUBSYSTEM_WAIT_TIME
	PROC_IPC_SUBSYSTEM_WAIT_TIME_CUMTHREAD_IPC_SUBSYSTEM_WAIT_TIME_CUM
	PROC_IPC_WAIT_PCTTHREAD_IPC_WAIT_PCT
	PROC_IPC_WAIT_PCT_CUMTHREAD_IPC_WAIT_PCT_CUM
	PROC_IPC_WAIT_TIMETHREAD_IPC_WAIT_TIME
	PROC_IPC_WAIT_TIME_CUMTHREAD_IPC_WAIT_TIME_CUM
	PROC_JOBCTL_WAIT_PCTTHREAD_JOBCTL_WAIT_PCT
	PROC_JOBCTL_WAIT_PCT_CUMTHREAD_JOBCTL_WAIT_PCT_CUM
	PROC_JOBCTL_WAIT_TIMETHREAD_JOBCTL_WAIT_TIME
	PROC_JOBCTL_WAIT_TIME_CUMTHREAD_JOBCTL_WAIT_TIME_CUM
	PROC_LAN_WAIT_PCTTHREAD_LAN_WAIT_PCT
	PROC_LAN_WAIT_PCT_CUMTHREAD_LAN_WAIT_PCT_CUM
	PROC_LAN_WAIT_TIMETHREAD_LAN_WAIT_TIME
	PROC_LAN_WAIT_TIME_CUMTHREAD_LAN_WAIT_TIME_CUM
	PROC_LDOM_COUNT
	PROC_LDOM_ID
	PROC_LDOM_PCT
	PROC_LDOM_PRIVATE
	PROC_LDOM_SHARED
	PROC_LDOM_SUM_PRIVATE
	PROC_LDOM_SUM_SHARED
	PROC_LDOM_SUM_TOTAL
	PROC_LDOM_SUM_WEIGHTED
	PROC_LDOM_TOTAL
	PROC_LDOM_TYPE
	PROC_LDOM_WEIGHTED
	PROC_MAJOR_FAULTTHREAD_MAJOR_FAULT
	PROC_MAJOR_FAULT_CUMTHREAD_MAJOR_FAULT_CUM
	PROC_MEM_PRIVATE_RESTHREAD_MEM_PRIVATE_RES
	PROC_MEM_RESTHREAD_MEM_RES
	PROC_MEM_RES_HIGHTHREAD_MEM_RES_HIGH
	PROC_MEM_SHARED_RESTHREAD_MEM_SHARED_RES
	PROC_MEM_VFAULT_COUNTTHREAD_MEM_VFAULT_COUNT
	PROC_MEM_VFAULT_COUNT_CUMTHREAD_MEM_VFAULT_COUNT_CUM
	PROC_MEM_VIRTTHREAD_MEM_VIRT
	PROC_MEM_WAIT_PCTTHREAD_MEM_WAIT_PCT
	PROC_MEM_WAIT_PCT_CUMTHREAD_MEM_WAIT_PCT_CUM
	PROC_MEM_WAIT_TIMETHREAD_MEM_WAIT_TIME
	PROC_MEM_WAIT_TIME_CUMTHREAD_MEM_WAIT_TIME_CUM
	PROC_MINOR_FAULTTHREAD_MINOR_FAULT
	PROC_MINOR_FAULT_CUMTHREAD_MINOR_FAULT_CUM
	PROC_MSG_RECEIVEDTHREAD_MSG_RECEIVED
	PROC_MSG_RECEIVED_CUMTHREAD_MSG_RECEIVED_CUM
	PROC_MSG_SENTTHREAD_MSG_SENT
	PROC_MSG_SENT_CUMTHREAD_MSG_SENT_CUM
	PROC_MSG_WAIT_PCTTHREAD_MSG_WAIT_PCT
	PROC_MSG_WAIT_PCT_CUMTHREAD_MSG_WAIT_PCT_CUM
	PROC_MSG_WAIT_TIMETHREAD_MSG_WAIT_TIME
	PROC_MSG_WAIT_TIME_CUMTHREAD_MSG_WAIT_TIME_CUM
	PROC_NFS_WAIT_PCTTHREAD_NFS_WAIT_PCT
	PROC_NFS_WAIT_PCT_CUMTHREAD_NFS_WAIT_PCT_CUM
	PROC_NFS_WAIT_TIMETHREAD_NFS_WAIT_TIME
	PROC_NFS_WAIT_TIME_CUMTHREAD_NFS_WAIT_TIME_CUM
	PROC_NICE_PRITHREAD_NICE_PRI
	PROC_NONDISK_LOGL_READTHREAD_NONDISK_LOGL_READ
	PROC_NONDISK_LOGL_READ_CUMTHREAD_NONDISK_LOGL_READ_CUM
	PROC_NONDISK_LOGL_WRITETHREAD_NONDISK_LOGL_WRITE
	PROC_NONDISK_LOGL_WRITE_CUMTHREAD_NONDISK_LOGL_WRITE_CUM
	PROC_NONDISK_PHYS_READTHREAD_NONDISK_PHYS_READ
	PROC_NONDISK_PHYS_READ_CUMTHREAD_NONDISK_PHYS_READ_CUM
	PROC_NONDISK_PHYS_WRITETHREAD_NONDISK_PHYS_WRITE
	PROC_NONDISK_PHYS_WRITE_CUMTHREAD_NONDISK_PHYS_WRITE_CUM
	PROC_OPENTHREAD_OPEN
	PROC_OPEN_CUMTHREAD_OPEN_CUM
	PROC_OTHER_IO_WAIT_PCTTHREAD_OTHER_IO_WAIT_PCT
	PROC_OTHER_IO_WAIT_PCT_CUMTHREAD_OTHER_IO_WAIT_PCT_CUM
	PROC_OTHER_IO_WAIT_TIMETHREAD_OTHER_IO_WAIT_TIME
	PROC_OTHER_IO_WAIT_TIME_CUMTHREAD_OTHER_IO_WAIT_TIME_CUM
	PROC_OTHER_WAIT_PCTTHREAD_OTHER_WAIT_PCT
	PROC_OTHER_WAIT_PCT_CUMTHREAD_OTHER_WAIT_PCT_CUM
	PROC_OTHER_WAIT_TIMETHREAD_OTHER_WAIT_TIME
	PROC_OTHER_WAIT_TIME_CUMTHREAD_OTHER_WAIT_TIME_CUM
	PROC_PAGEFAULTTHREAD_PAGEFAULT
	PROC_PAGEFAULT_RATETHREAD_PAGEFAULT_RATE
	PROC_PAGEFAULT_RATE_CUMTHREAD_PAGEFAULT_RATE_CUM
	PROC_PARENT_PROC_IDTHREAD_PARENT_PROC_ID
	PROC_PIPE_WAIT_PCTTHREAD_PIPE_WAIT_PCT
	PROC_PIPE_WAIT_PCT_CUMTHREAD_PIPE_WAIT_PCT_CUM
	PROC_PIPE_WAIT_TIMETHREAD_PIPE_WAIT_TIME
	PROC_PIPE_WAIT_TIME_CUMTHREAD_PIPE_WAIT_TIME_CUM
	PROC_PRITHREAD_PRI
	PROC_PRI_WAIT_PCTTHREAD_PRI_WAIT_PCT
	PROC_PRI_WAIT_PCT_CUMTHREAD_PRI_WAIT_PCT_CUM
	PROC_PRI_WAIT_TIMETHREAD_PRI_WAIT_TIME
	PROC_PRI_WAIT_TIME_CUMTHREAD_PRI_WAIT_TIME_CUM
	PROC_PRMIDTHREAD_PRMID
	PROC_PROC_ARGV1THREAD_PROC_ARGV1
	PROC_PROC_CMDTHREAD_PROC_CMD
	PROC_PROC_IDTHREAD_PROC_ID
	PROC_PROC_NAMETHREAD_PROC_NAME
	PROC_REGION_FILENAME
	PROC_REGION_LOCKED
	PROC_REGION_PAGE_COUNT_1_4KB
	PROC_REGION_PAGE_COUNT_2_16KB
	PROC_REGION_PAGE_COUNT_3_64KB
	PROC_REGION_PAGE_COUNT_4_256KB
	PROC_REGION_PAGE_COUNT_5_1MB
	PROC_REGION_PAGE_COUNT_6_4MB
	PROC_REGION_PAGE_COUNT_7_16MB
	PROC_REGION_PAGE_COUNT_8_64MB
	PROC_REGION_PAGE_COUNT_9_256MB
	PROC_REGION_PAGE_COUNT_B_1GB
	PROC_REGION_PAGE_COUNT_B_4GB
	PROC_REGION_PAGE_SIZE_HINT
	PROC_REGION_PRIVATE_SHARED_FLAG
	PROC_REGION_REF_COUNT
	PROC_REGION_RES
	PROC_REGION_RES_DATA
	PROC_REGION_RES_OTHER
	PROC_REGION_RES_SHMEM
	PROC_REGION_RES_STACK
	PROC_REGION_RES_TEXT
	PROC_REGION_TYPE
	PROC_REGION_VIRT
	PROC_REGION_VIRT_ADDRS
	PROC_REGION_VIRT_DATA
	PROC_REGION_VIRT_OTHER
	PROC_REGION_VIRT_SHMEM
	PROC_REGION_VIRT_STACK
	PROC_REGION_VIRT_TEXT
	PROC_RPC_WAIT_PCTTHREAD_RPC_WAIT_PCT
	PROC_RPC_WAIT_PCT_CUMTHREAD_RPC_WAIT_PCT_CUM
	PROC_RPC_WAIT_TIMETHREAD_RPC_WAIT_TIME
	PROC_RPC_WAIT_TIME_CUMTHREAD_RPC_WAIT_TIME_CUM
	PROC_RUN_TIMETHREAD_RUN_TIME
	PROC_SCHEDULERTHREAD_SCHEDULER
	PROC_SEM_WAIT_PCTTHREAD_SEM_WAIT_PCT
	PROC_SEM_WAIT_PCT_CUMTHREAD_SEM_WAIT_PCT_CUM
	PROC_SEM_WAIT_TIMETHREAD_SEM_WAIT_TIME
	PROC_SEM_WAIT_TIME_CUMTHREAD_SEM_WAIT_TIME_CUM
	PROC_SIGNALTHREAD_SIGNAL
	PROC_SIGNAL_CUMTHREAD_SIGNAL_CUM
	PROC_SLEEP_WAIT_PCTTHREAD_SLEEP_WAIT_PCT
	PROC_SLEEP_WAIT_PCT_CUMTHREAD_SLEEP_WAIT_PCT_CUM
	PROC_SLEEP_WAIT_TIMETHREAD_SLEEP_WAIT_TIME
	PROC_SLEEP_WAIT_TIME_CUMTHREAD_SLEEP_WAIT_TIME_CUM
	PROC_SOCKET_WAIT_PCTTHREAD_SOCKET_WAIT_PCT
	PROC_SOCKET_WAIT_PCT_CUMTHREAD_SOCKET_WAIT_PCT_CUM
	PROC_SOCKET_WAIT_TIMETHREAD_SOCKET_WAIT_TIME
	PROC_SOCKET_WAIT_TIME_CUMTHREAD_SOCKET_WAIT_TIME_CUM
	PROC_STARTTIMETHREAD_STARTTIME
	PROC_STATETHREAD_STATE
	PROC_STOP_REASONTHREAD_STOP_REASON
	PROC_STOP_REASON_FLAGTHREAD_STOP_REASON_FLAG
	PROC_STREAM_WAIT_PCTTHREAD_STREAM_WAIT_PCT
	PROC_STREAM_WAIT_PCT_CUMTHREAD_STREAM_WAIT_PCT_CUM
	PROC_STREAM_WAIT_TIMETHREAD_STREAM_WAIT_TIME
	PROC_STREAM_WAIT_TIME_CUMTHREAD_STREAM_WAIT_TIME_CUM
	PROC_SWAPTHREAD_SWAP
	PROC_SWAP_CUMTHREAD_SWAP_CUM
	PROC_SYS_WAIT_PCTTHREAD_SYS_WAIT_PCT
	PROC_SYS_WAIT_PCT_CUMTHREAD_SYS_WAIT_PCT_CUM
	PROC_SYS_WAIT_TIMETHREAD_SYS_WAIT_TIME
	PROC_SYS_WAIT_TIME_CUMTHREAD_SYS_WAIT_TIME_CUM
	PROC_TERM_IO_WAIT_PCTTHREAD_TERM_IO_WAIT_PCT
	PROC_TERM_IO_WAIT_PCT_CUMTHREAD_TERM_IO_WAIT_PCT_CUM
	PROC_TERM_IO_WAIT_TIMETHREAD_TERM_IO_WAIT_TIME
	PROC_TERM_IO_WAIT_TIME_CUMTHREAD_TERM_IO_WAIT_TIME_CUM
	PROC_THREAD_COUNTTHREAD_THREAD_COUNT
	PROC_THREAD_IDTHREAD_THREAD_ID
	PROC_TIMETHREAD_TIME
	PROC_TOP_CPU_INDEXTHREAD_TOP_CPU_INDEX
	PROC_TOP_DISK_INDEXTHREAD_TOP_DISK_INDEX
	PROC_TOTAL_WAIT_TIMETHREAD_TOTAL_WAIT_TIME
	PROC_TOTAL_WAIT_TIME_CUMTHREAD_TOTAL_WAIT_TIME_CUM
	PROC_TTYTHREAD_TTY
	PROC_TTY_DEVTHREAD_TTY_DEV
	PROC_UIDTHREAD_UID
	PROC_USER_NAMETHREAD_USER_NAME
	PROC_USER_THREAD_IDTHREAD_USER_THREAD_ID
	PROC_USRPRITHREAD_USRPRI
	PROC_VOLUNTARY_CSWITCHTHREAD_VOLUNTARY_CSWITCH
	PROC_VOLUNTARY_CSWITCH_CUMTHREAD_VOLUNTARY_CSWITCH_CUM
	SYSCALL_ACTIVE_CUM
	SYSCALL_CALL_COUNT
	SYSCALL_CALL_COUNT_CUM
	SYSCALL_CALL_ID
	SYSCALL_CALL_NAME
	SYSCALL_CALL_RATE
	SYSCALL_CALL_RATE_CUM
	SYSCALL_CPU_TOTAL_TIME
	SYSCALL_CPU_TOTAL_TIME_CUM
	SYSCALL_INTERVAL
	SYSCALL_INTERVAL_CUM
	TBL_BUFFER_CACHE_AVAIL
	TBL_BUFFER_CACHE_HIGH
	TBL_BUFFER_CACHE_MAX
	TBL_BUFFER_CACHE_MIN
	TBL_BUFFER_CACHE_USED
	TBL_BUFFER_HEADER_AVAIL
	TBL_BUFFER_HEADER_USED
	TBL_BUFFER_HEADER_UTIL
	TBL_BUFFER_HEADER_UTIL_HIGH
	TBL_DNLC_CACHE_AVAIL
	TBL_FILE_LOCK_AVAIL
	TBL_FILE_LOCK_USED
	TBL_FILE_LOCK_UTIL
	TBL_FILE_LOCK_UTIL_HIGH
	TBL_FILE_TABLE_AVAIL
	TBL_FILE_TABLE_USED
	TBL_FILE_TABLE_UTIL
	TBL_FILE_TABLE_UTIL_HIGH
	TBL_INODE_CACHE_AVAIL
	TBL_INODE_CACHE_HIGH
	TBL_INODE_CACHE_USED
	TBL_MSG_BUFFER_AVAIL
	TBL_MSG_BUFFER_HIGH
	TBL_MSG_BUFFER_USED
	TBL_MSG_TABLE_AVAIL
	TBL_MSG_TABLE_USED
	TBL_MSG_TABLE_UTIL
	TBL_MSG_TABLE_UTIL_HIGH
	TBL_PROC_TABLE_AVAIL
	TBL_PROC_TABLE_USED
	TBL_PROC_TABLE_UTIL
	TBL_PROC_TABLE_UTIL_HIGH
	TBL_PTY_AVAIL
	TBL_PTY_USED
	TBL_PTY_UTIL
	TBL_PTY_UTIL_HIGH
	TBL_SEM_TABLE_AVAIL
	TBL_SEM_TABLE_USED
	TBL_SEM_TABLE_UTIL
	TBL_SEM_TABLE_UTIL_HIGH
	TBL_SHMEM_ACTIVE
	TBL_SHMEM_AVAIL
	TBL_SHMEM_REQUESTED
	TBL_SHMEM_TABLE_AVAIL
	TBL_SHMEM_TABLE_USED
	TBL_SHMEM_TABLE_UTIL
	TBL_SHMEM_TABLE_UTIL_HIGH
	TBL_SHMEM_USED
	TTBIN_TRANS_COUNTTT_CLIENT_BIN_TRANS_COUNT
	TTBIN_TRANS_COUNT_CUMTT_CLIENT_BIN_TRANS_COUNT_CUM
	TTBIN_UPPER_RANGE
	TT_ABORTTT_CLIENT_ABORT
	TT_ABORT_CUMTT_CLIENT_ABORT_CUM
	TT_ABORT_WALL_TIMETT_CLIENT_ABORT_WALL_TIME
	TT_ABORT_WALL_TIME_CUMTT_CLIENT_ABORT_WALL_TIME_CUM
	TT_APPNO
	TT_APP_NAME
	TT_CACHE_WAIT_TIME_PER_TRAN
	TT_CACHE_WAIT_TIME_PER_TRAN_CUM
	TT_CDFS_WAIT_TIME_PER_TRAN
	TT_CDFS_WAIT_TIME_PER_TRAN_CUM
	TT_CLIENT_ADDRESSTT_INSTANCE_CLIENT_ADDRESS
	TT_CLIENT_ADDRESS_FORMATTT_INSTANCE_CLIENT_ADDRESS_FORMAT
	TT_CLIENT_CORRELATOR_COUNT
	TT_CLIENT_TRAN_IDTT_INSTANCE_CLIENT_TRAN_ID
	TT_COUNTTT_CLIENT_COUNT
	TT_COUNT_CUMTT_CLIENT_COUNT_CUM
	TT_CPU_CSWITCH_TIME_PER_TRAN
	TT_CPU_CSWITCH_TIME_PER_TRAN_CUM
	TT_CPU_INTERRUPT_TIME_PER_TRAN
	TT_CPU_INTERRUPT_TIME_PER_TRAN_CUM
	TT_CPU_NICE_TIME_PER_TRAN
	TT_CPU_NICE_TIME_PER_TRAN_CUM
	TT_CPU_NNICE_TIME_PER_TRAN
	TT_CPU_NNICE_TIME_PER_TRAN_CUM
	TT_CPU_NORMAL_TIME_PER_TRAN
	TT_CPU_NORMAL_TIME_PER_TRAN_CUM
	TT_CPU_REALTIME_TIME_PER_TRAN
	TT_CPU_REALTIME_TIME_PER_TRAN_CUM
	TT_CPU_SYSCALL_TIME_PER_TRAN
	TT_CPU_SYSCALL_TIME_PER_TRAN_CUM
	TT_CPU_SYS_MODE_TIME_PER_TRAN
	TT_CPU_SYS_MODE_TIME_PER_TRAN_CUM
	TT_CPU_TOTAL_TIME_PER_TRAN
	TT_CPU_TOTAL_TIME_PER_TRAN_CUM
	TT_CPU_USER_MODE_TIME_PER_TRAN
	TT_CPU_USER_MODE_TIME_PER_TRAN_CUM
	TT_DISK_FS_READ_PER_TRAN
	TT_DISK_FS_READ_PER_TRAN_CUM
	TT_DISK_FS_WRITE_PER_TRAN
	TT_DISK_FS_WRITE_PER_TRAN_CUM
	TT_DISK_LOGL_IO_PER_TRAN
	TT_DISK_LOGL_IO_PER_TRAN_CUM
	TT_DISK_LOGL_READ_PER_TRAN
	TT_DISK_LOGL_READ_PER_TRAN_CUM
	TT_DISK_LOGL_WRITE_PER_TRAN
	TT_DISK_LOGL_WRITE_PER_TRAN_CUM
	TT_DISK_PHYS_IO_PER_TRAN
	TT_DISK_PHYS_IO_PER_TRAN_CUM
	TT_DISK_PHYS_READ_PER_TRAN
	TT_DISK_PHYS_READ_PER_TRAN_CUM
	TT_DISK_PHYS_WRITE_PER_TRAN
	TT_DISK_PHYS_WRITE_PER_TRAN_CUM
	TT_DISK_RAW_READ_PER_TRAN
	TT_DISK_RAW_READ_PER_TRAN_CUM
	TT_DISK_RAW_WRITE_PER_TRAN
	TT_DISK_RAW_WRITE_PER_TRAN_CUM
	TT_DISK_SYSTEM_READ_PER_TRAN
	TT_DISK_SYSTEM_READ_PER_TRAN_CUM
	TT_DISK_SYSTEM_WRITE_PER_TRAN
	TT_DISK_SYSTEM_WRITE_PER_TRAN_CUM
	TT_DISK_VM_READ_PER_TRAN
	TT_DISK_VM_READ_PER_TRAN_CUM
	TT_DISK_VM_WRITE_PER_TRAN
	TT_DISK_VM_WRITE_PER_TRAN_CUM
	TT_DISK_WAIT_TIME_PER_TRAN
	TT_DISK_WAIT_TIME_PER_TRAN_CUM
	TT_FAILEDTT_CLIENT_FAILED
	TT_FAILED_CUMTT_CLIENT_FAILED_CUM
	TT_FAILED_WALL_TIMETT_CLIENT_FAILED_WALL_TIME
	TT_FAILED_WALL_TIME_CUMTT_CLIENT_FAILED_WALL_TIME_CUM
	TT_GOLDENRESOURCE_INTERVAL
	TT_GOLDENRESOURCE_INTERVAL_CUM
	TT_GRAPHICS_WAIT_TIME_PER_TRAN
	TT_GRAPHICS_WAIT_TIME_PER_TRAN_CUM
	TT_INFO
	TT_INODE_WAIT_TIME_PER_TRAN
	TT_INODE_WAIT_TIME_PER_TRAN_CUM
	TT_INPROGRESS_COUNT
	TT_INSTANCE_ID
	TT_INSTANCE_PROC_ID
	TT_INSTANCE_START_TIME
	TT_INSTANCE_STOP_TIME
	TT_INSTANCE_THREAD_ID
	TT_INSTANCE_UPDATE_COUNT
	TT_INSTANCE_UPDATE_TIME
	TT_INSTANCE_WALL_TIME
	TT_INTERVALTT_CLIENT_INTERVAL
	TT_INTERVAL_CUMTT_CLIENT_INTERVAL_CUM
	TT_IPC_WAIT_TIME_PER_TRAN
	TT_IPC_WAIT_TIME_PER_TRAN_CUM
	TT_JOBCTL_WAIT_TIME_PER_TRAN
	TT_JOBCTL_WAIT_TIME_PER_TRAN_CUM
	TT_LAN_WAIT_TIME_PER_TRAN
	TT_LAN_WAIT_TIME_PER_TRAN_CUM
	TT_MEASUREMENT_COUNT
	TT_MEM_WAIT_TIME_PER_TRAN
	TT_MEM_WAIT_TIME_PER_TRAN_CUM
	TT_MSG_WAIT_TIME_PER_TRAN
	TT_MSG_WAIT_TIME_PER_TRAN_CUM
	TT_NAME
	TT_NFS_WAIT_TIME_PER_TRAN
	TT_NFS_WAIT_TIME_PER_TRAN_CUM
	TT_OTHER_IO_WAIT_TIME_PER_TRAN
	TT_OTHER_IO_WAIT_TIME_PER_TRAN_CUM
	TT_OTHER_WAIT_TIME_PER_TRAN
	TT_OTHER_WAIT_TIME_PER_TRAN_CUM
	TT_PIPE_WAIT_TIME_PER_TRAN
	TT_PIPE_WAIT_TIME_PER_TRAN_CUM
	TT_PRI_WAIT_TIME_PER_TRAN
	TT_PRI_WAIT_TIME_PER_TRAN_CUM
	TT_RESOURCE_INTERVAL
	TT_RESOURCE_INTERVAL_CUM
	TT_RPC_WAIT_TIME_PER_TRAN
	TT_RPC_WAIT_TIME_PER_TRAN_CUM
	TT_SEM_WAIT_TIME_PER_TRAN
	TT_SEM_WAIT_TIME_PER_TRAN_CUM
	TT_SLEEP_WAIT_TIME_PER_TRAN
	TT_SLEEP_WAIT_TIME_PER_TRAN_CUM
	TT_SLO_COUNTTT_CLIENT_SLO_COUNT
	TT_SLO_COUNT_CUMTT_CLIENT_SLO_COUNT_CUM
	TT_SLO_PERCENT
	TT_SLO_THRESHOLD
	TT_SOCKET_WAIT_TIME_PER_TRAN
	TT_SOCKET_WAIT_TIME_PER_TRAN_CUM
	TT_STREAM_WAIT_TIME_PER_TRAN
	TT_STREAM_WAIT_TIME_PER_TRAN_CUM
	TT_SYS_WAIT_TIME_PER_TRAN
	TT_SYS_WAIT_TIME_PER_TRAN_CUM
	TT_TERM_IO_WAIT_TIME_PER_TRAN
	TT_TERM_IO_WAIT_TIME_PER_TRAN_CUM
	TT_TOTAL_WAIT_TIME_PER_TRAN
	TT_TOTAL_WAIT_TIME_PER_TRAN_CUM
	TT_TRAN_1_MIN_RATE
	TT_TRAN_ID
	TT_UNAME
	TT_UPDATETT_CLIENT_UPDATE
	TT_UPDATE_CUMTT_CLIENT_UPDATE_CUM
	TT_USER_MEASUREMENT_AVGTT_INSTANCE_USER_MEASUREMENT_AVGTT_CLIENT_USER_MEASURE...
	TT_USER_MEASUREMENT_COUNTTT_INSTANCE_USER_MEASUREMENT_COUNTTT_CLIENT_USER_MEA...
	TT_USER_MEASUREMENT_MAXTT_INSTANCE_USER_MEASUREMENT_MAXTT_CLIENT_USER_MEASURE...
	TT_USER_MEASUREMENT_MINTT_INSTANCE_USER_MEASUREMENT_MINTT_CLIENT_USER_MEASURE...
	TT_USER_MEASUREMENT_NAMETT_INSTANCE_USER_MEASUREMENT_NAMETT_CLIENT_USER_MEASU...
	TT_USER_MEASUREMENT_STRING1024_VALUETT_INSTANCE_USER_MEASUREMENT_STRING1024_V...
	TT_USER_MEASUREMENT_STRING32_VALUETT_INSTANCE_USER_MEASUREMENT_STRING32_VALUE...
	TT_USER_MEASUREMENT_TYPETT_INSTANCE_USER_MEASUREMENT_TYPETT_CLIENT_USER_MEASU...
	TT_USER_MEASUREMENT_VALUETT_INSTANCE_USER_MEASUREMENT_VALUETT_CLIENT_USER_MEA...
	TT_WALL_TIMETT_CLIENT_WALL_TIME
	TT_WALL_TIME_CUMTT_CLIENT_WALL_TIME_CUM
	TT_WALL_TIME_PER_TRANTT_CLIENT_WALL_TIME_PER_TRAN
	TT_WALL_TIME_PER_TRAN_CUMTT_CLIENT_WALL_TIME_PER_TRAN_CUM

