Get.ltl Base

Ta I Tailoring Guide
e = e Release 1.3.1

December 2000

Peregrine Systems, Inc.

3611 Valley Centre Drive I [ ] w. - -
San Diego, CA 92130 '*? ! ! ;v

Www.peregrine.com S Yy S TE M s°

The Infrastructure Management Company™



© 2000 by Peregrine Systems, Inc. 3611 Valley Centre Drive, San Diego, CA 92130 U.SA.

All Rights Reserved. Information contained in this document is proprietary to Peregrine Systems, Incorpo-
rated, and may be used or disclosed only with written permission from Peregrine Systems, Inc. This book,
or any part thereof, may not be reproduced without the prior written permission of Peregrine Systems, Inc.
This document refers to numerous products by their trade names. In most, if not all, cases these designations
are claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems is aregistered trademark of Peregrine Systems, Inc.

Microsoft, Windows, and Windows NT are either trademarks or registered trademarks of Microsoft Corpo-
ration in the United States and/or other countries.

The Motive logo, Motive Communications, Motive Duet, Motive Duet Server, Motive Solo, Mative Solo
Server, Motive Support Tuner, Motive Support Portal, Motive Studio, Motive Support Desktop, Motive
ActiveLink, Motive ActiveSense, and Motive Integration Server are trademarks or registered trademarks of
Motive Communications, Inc.

Javaand JavaScript are trademarks of Sun Microsystems, Inc. Solarisisaregistered trademark in the United
States and other countries licensed exclusively through Sun Microsystems. The code examples provided
herein are for illustrative purposes only and are not intended for actual customer use without additional cus-
tomization and proper testing prior to deployment.

This document and the related software described in this manual is supplied under license or nondisclosure

agreement and may be used or copied only in accordance with the terms of the agreement. The information
in this document is subject to change without notice and does not represent a commitment on the part of Per-
egrine Systems, Inc.

The names of companies and individual s used in the sample database and in examplesin the manuals arefic-

titious and are intended to illustrate the use of the software. Any resemblance to actual companies or individ-
uals, whether past or present, is purely coincidental.

This edition applies to version 1.3.1 of the licensed program.



Contents

Introduction

ADOUL thiS ManUAL .......cooeviii e

Organization of the Manual ...

Conventions Used in this Manual...........ccoooiveiiiiiiiiiiiie e

Get.lt! Base Architecture Overview

High Level ArchiteCture. ..o

Archway Internal ArchiteCture .........cccooveiiiiiiiiii e

ArChWay REQUESTES ....cooiiiiiiiieiii ittt a e
o3 €] 011 T O PEERUR
The DocuMENt MANAGET .......uueiiiiiieiaeaie ettt
WEDIICAtIONS .....eiieiee e

Introduction to Document Schemas

Definition of a Document SChemMa......cooviiiiviiiiiiiiieeeeeeeee e

Using Schemas in a Weblication ........cccccccciiiiiiiiiiiie e

AssetCenter Templates

Working with the Templates ......cccccccveeee e,

The ASSet TEMPIALE .....cccceiiieeeee e
The Budget Template............ueeiiiiiiiiiaieee e
The Contract TEMPIALE .......vvviiiiiiieeieee e
The Employee TemMPIAte ........eeueiiiiiiiiiiiiiieeee e
The Inventory Move, Add, Change Template
The Work Order Template ...........coeeviiiiiiiiiiiiieeee e

Contents



Tailoring Get.It! Base

F N o 1YV N o 11 =T o3 (0= SRS 5-2
V=T o] To= 1uTo] o I o To (<= APPSR PSPPSR 5-2
Before YOU MaKe ChANQES ......uiiiiiiiiiiiiiie ittt ettt e e e et e e e e e e e e e e e annbenbeeeeees 5-4
FlE STTUCTUIES ...ttt e e oo e oottt e et e e e e e e e e b bbb ettt e e aaaeeeaaannbbsbneeeaeas 5-4
Application DefiNItioN Fle..........oo ettt e et e e e e e e s e e e e e e e nnnes 5-5
Archway.ini USE Of PACKAGES .....coiiiiiiiiie ettt ettt e e e e e bt e e e e e e nee e e e e nnnes 5-5
PreSentation FOIAEIS .........uii ittt b e et e ettt e bt et e e nnbae e b s 5-6
COMMON COMPONENES ...ttttieeeiiteietee e e e e e s e e e es s eb et r et eeeetetaeaaaeasassa s s tababeeebaeeeeeeeaaaeaeaasassenssssssasnnnnnes 5-6
Displaying FOrm INfOrM@tiON .........coeiiiiiieiee e e e e e e e e e e e e s e s s reereeeees 5-6
DebUGQING CRaNQES ... ..ttt et e e e e e e s ab bbbt e et e e e e e e e e e annbnbebeeaeaaeaaas 5-8
Where to Make the MOAIfICAtIONS ..........uviiiiiiiiiie e e e 5-9
NECESSArY INFOIMALION ...ttt e e e e e e e e s bbb r e e e e e e e e e e e e annenneeees 5-10
Running the woui | d COMMEANG .....c.cooiiiiiiiiee e e e e e e e s e e e e e e e e e s e e nnrernneees 5-10
Changing FOIrM CONTENTS ..iiiiiii i e e e et e e s st e e e e aaeeeesesannnntareraereeeaaeaean 5-11
Yo (o [T aTo TN o] 1 o 10 = o £ RS 5-12
Data for the NeW Field (SCIPLS) ... ee ettt e e e e e et e e e et e e e e e snbeneeaeeeanneeeaeaan 5-14

SPIIt FrameES (FOMMNIS) ..ttt et e et e e e e e e e s e sanb bbb e e aeaaaaaeeeaaaannnes 5-15
LOCANZING YOUI CRABNGES ... .uiiieiiiiieiiee e ie e et e e e e e e e s s s s s e e e e e e e s e s s et eeaeeaeeeessasnnrnnesneeees 5-15
PN [o T Yo T ST T=1 o KT (o Jr= TS =1 1o - OSSO 5-17
Undefined SCREMa FIEIAS ........coi i s 5-17
Changing SCrPt BERAVIOT .....oooiiiieeeee et e et a e e e e e e e e aeeeaaa e as 5-20
(0T oo 1o To BN IS Yol 1 | APPSO PPPSTRT 5-20
Integrating a New File With Get.It! BASE .......uuuiiiiiiiiiiie e r e e e e e e e aeee s 5-23
T C=Te =] T = LU SR 5-23
AddiNg @ URL @S @ MOAUIE .......ooiiiie ettt ettt e e et e e e e e nr e e e e e s neee e e e nneees 5-23

AddING @ URL @S @N ACLVILY ..ottt ettt ee e e ettt e e e s ettt e e e e e st e e e e e e e nnbeeeaeaannneeaeeaanneees 5-24

AdAING @ NEW MOUUIB.......eeieiiii et e et e et e e e e e e e e e e bbb e eeeaaaaaeaeas 5-25
Adding a Feature from ASSELCENTET ......uiiiiiiiiii e e e e e e eeeeas 5-26
0 = | PP PPRTPI 5-28
(O101S] (o] 14T aTo (10 1) PSPPSRI 5-28
(G115 (0] 1 1 T4 =2 TP UPROPPPPTPR 5-29

L 0] o)V PP PPPTPURTRR 5-29

[0 TP PTTPTPTP TN 5-29

iv Contents



[ [0 L=V ST L0 ST U RO RSORPPO 5-29

REIMOVE ..ottt ettt oottt e e e h ettt e e ettt e e e e b et e e e e anbn e eeeean 5-30

Y= = Tot A 0] 1 (=] o | S PR PSTR 5-30

Get.It! Base WebIlication COMPONENTS........ooiuuiiiiea ettt e e e ee e e s nee e e e e e e nneeeaean 5-30

PerSONAI ULIHTIES ...ttt ettt e ettt e e e ettt e e e e e e sntteee e e e ennteeeeeeeennnneaaaeanns 5-30

Create NEW (WED PAGE) ... eeeeeiuiiiiie ettt ettt e e ettt e e e e ettt e e e e e et e e e e s e s be e e e e e e nsbaeeeeaannnaseeeeannneeaaeann 5-31

CRANGE LABYOUL ...ttt ettt et e ettt e e e e e e e e e e e e e bbbt bt e ee e e e e e e e e annbabnsneeaaaaaaass 5-32

=] 6oz VoL N F= LY To T= Lo PR U PPTP PR 5-33

] = L AN TP UPRPPPR 5-33

POrtal COMPONENTS ...ttt e et e e e e e e e e e e e be e e e e aasabteeaeeeastaaeeeesnstbateeessssanaaeeeans 5-34

S oT0] g r= o= (o o] 2RSS PRSR TR 5-35

SPOIAI-COMPONENTS ...ttt ettt e e e ettt e e e e e e et e e e e e e abeeeeeaaansbeeeee e nnteeeeaeannnnseaeeannnneeaeaanns 5-35

S o L1 bR PUSPRUTPRRRR 5-36

o] c= U = (0T 1 PP PPRTURPTRRN 5-37

SKINS @Nd StYIESNEEIS ...t e e e e e e e 5-38

Creating NEW STYIESNEELS ... ..ciiiii et r e e e e e e e e s s aareaeeeeaeas 5-38

(DT =Tod (o] g ] (U110 = PSP USPUSPURRP 5-39

KIML USBIGE .. eeee ettt e e e oot e oo oo e ekttt et e e ettt e e e e e e e e e e e e ea e e e e e R nab e b b be e e e e be et e eeaaeeaaaaeaas 5-41

DS I (2)1= Ty 1o = SRR SURRR 5-41

NS e (=T 0] o] 1) USROS 5-41

JAVA SOUICE COAE (EXAMPIE) ... iiiiiie ettt ettt e e e e e e et e e e s e ebb et e e e s eabaeeaesennneeees 5-42

EXTEINAI JAVASCIIPIS ... .veiteei ettt e ettt e ettt e et e e e e st e e e e e e tb et e e e e e tasteeaeeesnsbaaeeeesasbbaaeeeeensnnnaeeeans 5-42

Production ENVIFONMENT . ..ottt e e et e e e e e e e e s bbb e e e e e e e aaaeeeaaannnes 5-43
Adapters

SEIVICECENTEN AGAPTET ...ttt e oottt e e e e e e e e e s e e e ba ettt e e e e aee e s e s aanbenbeaeeeeaaaaaeas 6-2

ATChWAY.INT PArAMELEIS ..ottt ettt e e e e e e e s et be s be e e e e e aeeeaaesannbnnbeneeees 6-2

ServiceCenter EVEeNt HANAIING .......oooiiiiiiie et e e e e e e s 6-2

USING the _BVENT PATAMELET ....eiiiiiiiiiii ettt e e e e et e e e e e eab e ee e e e e sbbb e e e e e s entbeeeeesaabreeeasaeneees 6-3

Troubleshooting the ServiceCenter Database CONNECHION .........cceeveiiiviiiiiiiieieeee e ee e 6-4

F NS E Y =L (0= N L cT AN - o (=Y PSSR 6-5

INT PBIAMETEIS ...ttt ettt e e e e e e e ettt e e e e e e s s e e e e e e et e e e ae s s nnnbne e e e 6-5

Troubleshooting the AssetCenter Database CONNECHION ..........ciiiiieiiiiiiiiiiiiieieie e 6-7

ASSELCENLEr FEAIUIE LINKS ... iiiiiiiiiieii ettt e e e e et e e e e e nae s 6-7

N B O o =T o ] =] S SRUPUR PPN 6-9

PaXo (o 1aTo Ir= BN | B =] O AN F=T o) (=] GO PSP TP 6-10

Verifying the SYSIEM DSN .. ..uuiiiii it e e e e e e e st e e e e et a et e e e s e taeeeeeeaaareeaeensssees 6-10

Contents Y



Updating the ArChWay.iNi FilE .......ioi i e e e e e e st are e e e e srbaraaeaaans 6-12

Validating the JDBC Adapter CONNECHION .......ccciiiiiiie e ieiiiiee ettt s et e e e e e e e e e sanens 6-13

Adding the New Database SetliNgS .......uuuuriiiiiiiee e s s e e e e e e erreeeeee e 6-14
Updating the AdmMIN.XMI FIIE ... e e e et e e e e e eatbe e e e e e anneeeaeaaans 6-14
Creating an Interface t0 the Database ..........cooiiiiiiiiiiii e 6-16
Preventing LOSt CONNECHONS .......iiiiie ettt e st e e e e s e s e s r e e e e e e e e e s e annrnreneneees 6-17
Calling @ STOred PrOoCEAUIE..........oeieeeeeeee ettt e e e e e e e e bbb ae e e e e e e e e e e annnes 6-18
USING @ URL ettt e ettt e et e ettt e e e e e a s bt e e e e e e mntbe e e e e annbbeeeaeesnnaneaaeeaannneeaeaanns 6-19

L0 = T IS Tox | PSSP RSP SOURRPR 6-19

Using a Document INSErt OF UPAALE .........coiiuiiiiieiiiiiii et e et e e e e e e e et ae e e e e sstbaae e e e e snnrraaeaeans 6-19

DY o F= T o} (=] SO R P PR 6-21
Connecting LDAP 10 GeLItI BASE ......uiiiiiiiiieiiiiee ettt e e e e 6-21
Updating the archway.ini FilE.........covici i e e e eee e 6-21

o T T o = T o L= ST SRR 6-22
Verifying Adapter CONMNECTIONS ....cooii ettt e e e e e e e bbbt e e ee e e e e e e s e e nneebeeeeas 6-25
[0 o T T =SSO 6-26

Localization Support

General LOCAlIZAtIoN SEEPS .....ciiiiitiei it e ettt ettt e e e e e e s e e nba b be e e e e aaaeaeeaannans 7-1
ATCRIVES .ottt oottt e e ettt e e e ekttt e e e e bbbt e e e e e b bttt e e e ba b e e e e e e bbe e e e e abereeeeann 7-2
Externalizing ECMASCIIPT MESSAGES ...cciiiiiiiiitieeet it e ettt e e e e et e e e e e e e e e e e e eneneneeee s 7-2
Externalizing ECMAScript
MesSages With VariabI@s .......ccoiiiiiiiie e e e s r e e e e e e e e aen e nnrnnes 7-3
Externalizing Messages in XSL TEMPIALES ....uuuiiiiiiieei et e e e e 7-4
JAPANESE LOCAIR ...ttt e et e e e e e e e bbb ettt e e e e e e e e e e e bbb b e reeaeaaaaa s 7-5

Weblication Reference

WEDBIICAION SITUCTUIE......oiiiiiieieeitit et e e e e e e e e e e e e et et e et e e e e e e ae e bbb e e e e e e e e eaeeeeaaaeees A-1
V=T o1 1T ot= 1A o] o N IF= Vo 1< ST U UTT TP A-2
= ] o] [ 07= 11 (o] b TP PPPPPPPRRRT A-2
2 110 0 (U= OSSR A-3

vi Contents



R 0] 11 1 > PP A-6
S (=0 11 1T PP OTPUPT A-8
o0 01 0T 1= o1 PRI A-9
L0100 18 {T=1 (o £SO PR P TP A-10
1121 [0 1= T o] 1= > PP UPR A-11
= (o 110 o > PP T TP PTTPPI A-13
LAY R = I PP RTPP PP PPRPPP A-14
LI =2 TSP UP TR A-16
R ] 0 TSRS A-16
R 11T 1 A-17
[T N 1 o TU L= RSO UESRUTRRRRR A-18
=] [T PP P TP A-18
(7] 1010 410 T 1Y/ 0 1= USSR RSUPRRRR A-20
0] (U091 0 1S o TR TP TSP A-23
B 1111010 )PP A-23
R 1] (0 PP UT PRSPPI A-25
1] 0 A-26
1] o 10T e S R = (o PRI A-27
[0 o0 el QS R (=T ) PP RSRSPRRRR A-27
<iNPUt> (COMDBDO/SEIECTION BOX) ....eiiiieiiiiie ettt ettt e e ettt e e e et ee e e e anneeee e e e ennnneeaeeaans A-28
0] o 10T el (o] s T=Tod 1 o o) 4 IR PSPPSR A-29
[0 o 10T e (2 - To 1o ) PSPPSR A-30

S [0 o 10T el (1 [ [T o ) PSP PRSPPI A-30
[0 o0 e (B - 1= ) PSPPSR A-31
[0 o 10T e (1Y o] 0=V ) U RSRSTPRRRR A-31

11 1T A-32
Reusable Form Components (SUDFOIMS) .....uuuiiiiiiiiiiiie e A-33
Yo [o L4 To ] = LN 1= Vo 1SS A-35
R 0110 1] PP PP A-35
Additional FUNCHIONALITY ....eeeiiiiiiie et e e e e et e e e e e e e e e e neneeneeees A-36
Searchable POPUP WINOOW .........oiii ettt e e e e e e e e e reeeaaae s A-36
Defining NeW POPUP WINAOWS .....cooiiiieiie ittt ettt e ettt e e e e ettt ee e e e enbaeeae e s ernneeaeeannes A-36

Document Schema DTD

Contents Vii



DOCUMENT SCREMA FIIES ... et e et e et e e st e e et s s eaa e s s tb e e enanaaes B-1

SCNEMA ATTTIDULES ..ttt ettt e e e e e e e e e e b b be e e e aaaeeeeeaannns B-2
o (o ToI0 [ 1 [=] 01 TP PPPUPUPTRRT B-2
=TS (1o Ie (o Lo 0 1 41T 0 e I T £ S P B-2
= L] o UL (=TT OUPPPPPPPTRRT B-3
oo ]| =T o 1 o] o PR SRP B-5
ServiceCenter-SPecCifiCc AIDULES ......... i e e e e e e e aaeees B-5

JavaScript

SYoa g1 o o 11T a Yo 1Y, F= U = Vo = OSSPSR C-1
INItIAliZAION FIle FOIMAL...... .ttt e s e e e snneeee s C-1

WItING A POIING ROULINE ...ttt e e ettt e e e ekttt e e e e e e neeeee e e s anaeeaeaaannes C-2

REAA HISTOIY AITAY ...ttt ettt e e e e e e e e e s bbbt b et e e e e aaa e e e e e e nnbbbebeeeaaaaaans C-2
= Lo A U I o 11 = o | S US C-3
Searchable POPUP WINUOW .......coooiiiiiiiiiiee ettt e e e e e e s et e e e e e e e e e e e aannnns C-14
PasSing EXTErNal JAVASCIIPT ..ot e oottt ettt et e e e e e e s s e et bbb e e e e e e aaaeeeeaanannranes C-5

viii

Contents



Chapter 1
Introduction

The Get.It! Base product is comprised of the Archway servlet engine without

any packaged weblications. This engine provides an HTTP-based interface to
Peregrine’s product line, including ServiceCenter and AssetCenter, and access
to other databases using the JDBC adapter.

Get.It! Base includes:

e Adapters: ServiceCenter, AssetCenter, JDBC, LDAP, and e-mail.
e Get.It! run-time environment, including JRun.

® A login screen and portal.

e AssetCenter weblication templates for creating pages that will access data
about Assets, IMAC, Work Orders, Employees, Budgets, and Contracts.

Common forms and files are included within the . . . \ apps\ common\ directory.
This common package includes the following.

e Admin
¢ Common lookup
¢ Form components

e Schema files

About this Manual
To use this manual effectively, you should have working knowledge of both
XML and JScript.

e Operating guides, reference manuals, and other documentation for your PC
hardware and operating software.

e The Get.It! Base Installation and Administration guide tells how to install,
configure, and administer Get.It! Base.

¢ JRun documentation located in the . ..\ JRun\ docs directory.

Get.It! Base Tailoring Guide 1-1



Organization of the Manual

1-2

This manual is organized by main function. The following table illustrates
those parts of the manual that you need to reference to find the information

you need.

To Find This

Look Here

Background information; how to use this
manual.

Chapter 1: Introduction

Information about the Archway Architecture;
archway requests; scripting; the Document
Manager; basic information about
weblications.

Chapter 2: Get.It! Base
Architecture Overview

Introduction to document schema definitions;
definition of a document schema; and using a
schema in a weblication.

Chapter 3: Introduction to
Document Schemas

Templates you can use with AssetCenter

Chapter 4: AssetCenter
Templates

Steps on how to tailor Get.It! Base; where to
save your changes; changing scripts, schemas,
components of a weblication; integrating a new
module into Get.It! Base.

Chapter 5: Tailoring Get.It! Base

Information about the Get.It! Base adapters,
including instructions for connecting to a
database using the JDBC adapter.

Chapter 6: Adapters

Gives information about the supported
languages: English, French, German, Italian,
and Japanese.

Chapter 7: Localization Support

The weblication structure; descriptions of
individual elements and attributes (tags) used
in documents; reusable form components.

Appendix A: Weblication
Reference

Document schema files; schema attributes;
tags you can use in schemas.

Appendix B: Document Schema
DTD

Java Script functions for a variety of processes.

Appendix C: JavaScript

About this Manual



Conventions Used in this Manual

Most screen shots in this manual come from the Windows version of Get.It!
and are included as examples only. In some cases, the Peregrine Systems prod-
ucts, AssetCenter and ServiceCenter, have been used for examples of screens
and to create sample XML or JScript code.

Screens are shown using the Get.It! Classic stylesheet.

The following documentation conventions are used in this guide:

Object

Font

Example

Button

Bold

Click Next.

Directory path/file name

Courier New

C\Program Fil es\getit\
| ogi n. asp

Courier New

var nmsgTi cket = new Message( "Problen' );

msgTi cket.set( "_event", "epnt" );

The ellipsis (. . . ) is used to indicate that portions of
a script have been omitted because they are not
needed for the current topic. Samples of code are not
entire files, but they are representative of the
information being discussed in a particular section.

Note: Many of the examples and sample scripts shown in this guide use
AssetCenter and ServiceCenter specific file names and data, but you
can adapt the information for use with any system.

Introduction

1-3






Chapter 2
Get.It! Base Architecture Overview

Many of the examples
and sample scripts
shown in this chapter
use AssetCenter and
ServiceCenter specific
file names and data, but
you can adapt the
information for use with
any system.

This chapter introduces Archway, the architecture behind Get.It! Base. This
architecture offers a simple and extensible way of creating a Web interface to
Peregrine’s existing systems, including AssetCenter and ServiceCenter, or to
any other database. Templates are provided for use with AssetCenter.

The architecture has been designed to allow you to create a Web interface
that:

e Offers services to everyone in an organization
e Offers access everywhere users need it

e Offers support related to everything in the infrastructure that helps
employees get things done

The Get.It! Base architecture is designed to make services available to users
through common interfaces like Web browsers, handheld computers (PalmPi-
lot), or mobile phones. The applications are designed to provide a wide range
of services, from helping a user with a PC problem, to allowing the creation of
a purchase request, to reporting a problem with the employee's office space.

Get.It! Base Tailoring Guide 2-1



High Level Architecture

Get.It! Base applications and interfaces are implemented using basic building

blocks that include:

HTTP A simple and widely supported protocol for sending client
requests to a server. Variations such as HTTPS provide
security as well.

XML A documentation meta-language that allows you to format
data, which can then be displayed through a Web browser.
Unlike HTML, you create your own XML tags and define them
any way you want.

Commercial web The services provided by the Archway architecture can be

servers served from any commercial Web server, including IIS,
Apache, Netscape Enterprise Server, or the Java Web Server.

Common clients Applications can be built to be deployed via Web browsers (IE,
Netscape), handheld devices (Palm Pilot), or mobile phones
(through HDML).

The following diagram illustrates the architecture:

TEMPLATES ARCHWAY
(JSP/ASP) P (XML, Queries, ADAPTER
WEB BROWSER Events, DB) DATABASE
A
HAND-HELD
DEVICE WEB SERVER
(PalmPilot) (IS, Apache, Netscape, etc.)
TELEPHONE

Fig. 2.1 The architecture

At the center of the architecture is a component named Archway. This compo-
nent listens to HTTP requests from arbitrary clients, routes the requests to an
appropriate server, and returns data or documents. The requests supported by
Archway can vary, but they fundamentally consist of queries, data updates, or
system events.

2-2 High Level Architecture




For example, a client can contact Archway and ask to query a database for a
list of problem tickets. Another client could contact Archway and supply it
with a new purchase request that should be entered into the database.

All requests and responses are formatted using XML (Extensible Markup
Language). XML provides a readable self-describing syntax for defining docu-
ments. For example, a problem ticket expressed in XML could appear as fol-
lows:

<probl en>

<nunber > PMb670 </ nunber>

<contact> Joe Smth </contact>

<description> My printer is out of paper </description>
</ pr obl en»

Clients that interact with Archway can do anything they need with the XML
that is returned as a response. Very frequently, the client initiating the
request is a user interface such as a Web browser. Such a client could easily
display the XML documents returned by Archway. However, to be of better
use, the XML documents are often displayed within a formatted HTML page.
This is accomplished by using Java’s JSP (Java Server Pages).

JSP provides a syntax for creating HTML pages that is pre-processed by the
Web server before being sent to the browser. During this processing, XML data
obtained from Archway is merged into the HTML page.

Archway’s architecture includes special support for automatically generating
the pages (i.e. HTML, JSP) that make up a weblication.

Get.It! Base Architecture Overview 2-3



Archway Internal Architecture

2-4

The internal design of Archway is simple and flexible. Archway is imple-
mented as a Java servlet—a Java application executed by a Web server. HTTP
requests sent to the Web server are forwarded to the Archway servlet for pro-
cessing. When all processing is complete, the Web server returns the output
generated by Archway.

Each request is interpreted to determine its destination. Specifically, Archway
is able to communicate with a variety of back-end systems, including the
AssetCenter or ServiceCenter products from Peregrine. Requests can be han-
dled in one of three ways:

1. A request can be sent directly to an adapter that talks to a back-end
server. For instance, a query request for opened tickets could be forwarded
to an adapter capable of communicating with ServiceCenter.

2. A request can be sent to a script interpreter hosted by Archway. This is a
very powerful feature. It allows you to define your own application-specific
services. Within a script, calls can be made back to Archway to access the
back-end system with database operations and events.

3. Finally, a request can be sent to a component known as a Document
Manager. This component provides automated services for combining
logical documents.

Archway Internal Architecture



The following diagram illustrates the internal Archway architecture.

Archway

Script Runner —_— Adapter D Doc Manager

]
CPRED

SC Adapter AC Adapter JDBC Adapter

Database Database

Fig. 2.2 Archway's internal architecture

Archway communicates with back-end systems with the help of specialized
adapters that support a predefined set of interfaces for performing connec-
tions, database operations, events, and authentication. All adapters use DLLs
to communicate with each application.

Messages can be routed to a script interpreter hosted by Archway. The inter-
preter supports ECMAScript. JavaScript (Netscape) and JScript (Microsoft)
were both created based upon the original ECMAScript language.

Messages can be routed to the Document Manager component. This compo-
nent reads special schema definitions that describe application documents for
logical entities such as a Purchase Request, Problem Ticket, or Product Cata-
log. The Document Manager uses these schemas to automatically generate
database operations that query, insert, or update such documents.

Get.It! Base Architecture Overview 2-5



Archway Requests

Archway supports a variety of requests, all of which are based on two basic
technologies: HT'TP and XML. The HTTP protocol defines a simple way for cli-
ents to request data from a server. The requests are stateless and a client/
server connection is maintained only during the duration of the request. All
this brings several advantages to Archway, including the ability to support a
large load of requests with the help of any of today’s commercial Web servers.

Another important advantage is that any system capable of making HTTP
requests can contact Archway. This includes Web browsers, of course. But in
addition, all modern programming environments support HTTP. This makes
it very simple to write new adapters that communicate with Peregrine servers
without the need of specialized APIs.

From a simple point of view, an HTTP connection consists of:
e A client request
e A server response

The messages exchanged normally have a number of header lines and some
content lines. For this discussion, let’s focus on two principal parts of a
request:

Query String  This represents the parameters sent along with the URL
for the HTTP connection.

For instance, consider the following URL:
http://prgn/servlet/archway?hel | o&wor | d.

This URL is made up of a server locator (htt p:// prgn/
servl et/ archway) and a query string (hel | o&wor | d).

Content A request can also include an arbitrary amount of data
appended to the request. This data could follow any
format, but for Archway, the data is always formatted as
XML.

Archway uses the query string of a request to determine what it has been

asked to do. The following query string syntax is expected:

ar chway?t ar get . conmand&par anrval ue&par anrval ue&...

2-6 Archway Internal Architecture



Let’s consider each part of the request.

Target The name of a target object that should handle the
request. Archway’s job is to forward requests to a system
and return the response. Thus, the target could be
ServiceCenter, AssetCenter, or another database. As we
will see, the target may also be the name of a Script
Object that contains customizable logic for handling the
request.

Command The command describes the action that the target object
should take. By default, there are five basic actions that
may be supported: query, update, insert, delete, and
event. However, when the target is a Script Object, the
action can be any function defined by the script.

Param=Value An arbitrary number of parameters can be passed along
with the request. The encoding of these parameters is the
same as that used by CGI (the Common Gateway
Interface). This makes it seamless to make Archway calls
from a Web page. As with CGI, data sent by a browser is
provided by fields embedded in an HTML form. This data
is automatically formatted as a CGI request in a way that
Archway understands.

The following are some sample URLs that illustrate the power of contacting
Archway with HTTP requests that return XML documents. These samples are
intended as an introduction.

ar chway?sc. query& t abl e=pr obsumary&priority. code=1

This sends a query request to ServiceCenter for all records in the pr obsunmary
table with a priority code of 1.

ar chway?ac. query& t abl e=amAsset & r et urn=Brand; nPri ce; Mbdel &
count =2

This sends a query request to AssetCenter for the first two records in the
amProduct table. Only the Brand, mPrice, and Model fields are returned for
each record.

ar chway?t est . hel | oWor | d&gr eeti ng=Hel | o

This sample sends a helloWorld request to a script object named test.

Get.It! Base Architecture Overview 2-7



Scripting

2-8

You could try URLs like these from a Web browser to see firsthand how the
Archway requests work. The figure below illustrates this by showing the XML
results of a query for products from AssetCenter.

3 http: /flocalhost-8080/prgn/ servlet/archway?ac.querpk_table=amProducttBrand=IBM&_return=Brand:mP -__. =]

| Fle Edt View Go Favoites Help :-
= .9 .9 [+ N B (4 $ 8 K &
| Back  Fowerd  Stop  Refiesh Home | Seach Favoles Histow Channels | Fulbroen Mal  F

J Address I hitpe//prgn/serviet/archway?ac.quenyd_table=amProductiBrand=IEME_retur=Brand;mPrice Modeli_count=2 j i ] Links

-
<?xml version="1.0"7><recordset _count="2" _countFound="2" _mwore="1" _start="0"> I
<amProducts>
<Brand>IBN</Brand>
<mPrice>179,.00</mPrice>
<Model>10/100 ETHERNET CARDEUS ADAPTER F/</Model>
</amProduct>
<amProduct>
<Brand>IBM</Brand>
<mPrice>299.00</mPrice>
<Model>10/20GE TRS IDE INTERNAL TAPE DRIVE</Model:>
</amProduct>
</recordsec>

|@ Done | l_ ’_ ’_ ?3 Local intranet zone
Fig. 2.3 Testing URLs from a Web browser

:\\lii

A great deal of Archway’s flexibility and power comes from its support of the
ECMAScript language. This enables application developers to define arbitrary
code that handles client requests. ECMAScript is a standard version of the
language originally made popular by Netscape (JavaScript) and later adopted
by Microsoft (JScript).

ECMAScript is a very powerful language, but it allows for simple tasks to be
accomplished in a simple manner. Its syntax is similar to that of Java, and yet
traditional JavaScript is not Java. While this is true, one interesting aspect of
Archway’s ECMA support is that it includes the ability to access any arbitrary
Java object. This makes Archway scripts even more powerful since they have
all the power of Java available within the easy programming syntax of ECMA-
Script.

It is beyond the scope of this document to describe all aspects of ECMAScript-
ing. One reason for adopting this language is that it is standard, well known,
and widely documented. Numerous references and guides exist for the lan-
guage.

Archway Internal Architecture



ECMAScript, JavaScript, and JScript tend to vary in some way or another.
This is especially true in the APIs for what is known as Client Side JavaS-
cript. This is the type of scripting supported by a browser to allow dynamic
manipulation of what gets displayed within a Web page. However, none of this
really matters in the context of Archway. Archway uses what is known as Core
JavaScript. This is the subset of the language that is independent of any cli-
ent side (browser) features. Archway executes all script code on the server
while processing a request. When the script is finished executing, its response
is sent back as XML to the client.

Much of the ability to write useful scripts comes from a very small set of
Scriptable Objects that are supplied with the Archway architecture. Two of
the main objects provided are:

Messenger This object allows any script to send messages back to
Archway. For example, through the messenger, a script
can ask Archway to send a query to AssetCenter or an
event to ServiceCenter.

Message This object encapsulates XML documents in a very easy
to use API. With this object, scripts can very easily build
and interpret complex XML documents.

Below are samples of ECMAScript that illustrate the ease of programming
provided by these objects. The first script executes a query against
AssetCenter:

function pnoEvent ( nsg )
{
var msgProducts;
nsgProducts = archway. sendQuery(
"ac", "SELECT Brand, nPrice FROM AnProduct”, 0, 10 );
return nsgProducts;

}

Here is another sample script that sends a PMO event to ServiceCenter:

function getCatal og( nmsg )
{

var nsgEvent;

var nmsgResponse;

nsgEvent = new Message( "pm" );

nsgEvent . set ( "contact.nane", nsg.get("UserNane") );
nsgEvent . set ( $ax.field. name, nsg.get( "Description" ) );
nsgResponse = archway. sendEvent ( "sc", nsgEvent );

return nsgResponse;

Get.It! Base Architecture Overview 2-9



The Document Manager

Archway uses XML to exchange data and documents between clients and the
supported back-end systems. Fundamentally, the XML data returned by Arch-
way is obtained by executing queries against one or more systems. The queries
could be executed by a direct URL request or indirectly within an ECMAS-
cript.

Simple queries are only capable of returning record sets of data. However, cli-
ents are more often interested in exchanging documents. A Document is a log-
ical entity built up of several pieces of data that can come from various
physical database sources. For example, consider a Product document. Prod-
ucts have a number of individual fields such as Price or Brand. They also
may have collections of other related documents, such as a collection of Ven-
dors. Below is sample XML for a Product document:

<product >
<brand> | BM </ br and>
<nodel > Thi nkPad 770 </ nodel >
<price> 1250 </price>
<vendor s>
<vendor >
<name> Best Buy </nane>
<phone> 267- 8967 </phone>
</vendor >
<vendor >
<nane> Super City </nanme>
<phone> 267-8967 </ phone>
<vendor >
</ vendor s>
</ pr oduct >

Building such a Product document can certainly be accomplished by running
several queries and putting the results together in an XML message. An
ECMAScript is a perfect place to code such logic.

However, there is an even better way to build documents with the use of Arch-
way’s Document Manager. This component provides the very important ser-
vice of processing logical Document Schema Definitions and automatically
generating queries or database operations to create and process these docu-
ments.

Archway Internal Architecture



Weblications

Here is a small example of a document schema that defines what Product doc-
uments should look like:

<docunent nane="Product">

<attribute nane="1d" type="nuni/>
<attribute nane="Brand" type="string"/>
<attribute nane="Mdel" type="string"/>
<attribute nane="Price" type="noney"/ >

<col | ecti on nanme="Suppliers">
<docunent nane="Supplier">
<attribute nanme="Nane" type="string"/>
<attribute nanme="Phone" type="string"/>
</ docunent >
</ col | ection>
</ docunent >

Note: The principal concept to notice is that a document schema describes the
fields and collections that make up a document. The details on how to
construct document schemas are documented in Chapter 3,
"Introduction to Document Schemas."

The Document Manager can be accessed with direct URL calls to Archway, as
well as from ECMAScripts. Here is a sample script that retrieves Product doc-
uments:

function Product( nsg )

{
}

return archway. sendDocQuery( "ac", "Product", msg );

If an application is to be deployed on a Web browser, there remains one piece
that must be defined to create the application: the screens and the flow for
navigating among them.

Web browsers display screens defined in HTML. The screens can contain data
retrieved from the server, and they may also provide entry fields for sending
input data back to the server.

To understand how Archway fits in with the creation of browser interfaces,
let’s start by considering the example of setting up a Web page that lets a user
create a new ServiceCenter ticket. Defining this page in HTML might appear
as follows:

Get.It! Base Architecture Overview 2-11



2-12

<formaction="http://prgn/archway?sc. pmo" net hod="GET" >
<i nput type="text" name="contact.nane"> <br>

<input type="text" nane="$ax.field.nane"> <br>

<i nput type="submit" val ue="Cpen"/>

</forne

The first line in the code above defines an HTML form. All forms have an
action property that tells the browser where to send the data typed in by the
user. In this case, we see that data will be sent to

http://prgn/ archway?sc. pno

The next two lines contain input fields, each associated with a named field:
cont act. nane and $ax. fi el d. name.

In essence, the HTML above sends a PMO message to ServiceCenter though
Archway. The data typed into the entry fields are passed in as PMO parame-
ters.

What about using HTML to display data retrieved via Archway? As men-
tioned earlier, Archway is designed to return XML documents that can be
merged into an HTML page using technologies such as JSP or ASP. Below is a
sample snippet of JSP that sends Archway a query for ServiceCenter tickets
and displays the results in an HTML table.

<htm >
<t abl e>
<%
Message nsg = nessenger. sendQuery(
" SELECT nunber, bri ef.descripti on FROM probsumary" );
List list = nsg.getList( "probsumary" );
for (int iCurrent = 0; iCurrent < list.getLength(); iCurrent++ )
{
%
<tr>
<td> <% list.get( iCurrent, "nunmber" ) % </td>
<td> <% list.get( iCurrent, "brief.description" ) % </td>
</tr>
<%
}
%>
</t abl e>
</htm >

The code above is basically an HTML page with Java code mixed in. The Java
code uses a few objects defined by Archway. These are shown in bold, and they
include:

¢ A messenger that talks to Archway

¢ A message class that encapsulates XML responses

Archway Internal Architecture



Activities —

Actions

e A list object that allows easy navigation of a result set.

While these two samples of code are interesting to understand, it is not neces-
sary to learn much if anything about HTML, JSP, or ASP development to
write a Weblication with Archway. This is because Archway provides some
additional tools that automatically generate the underlying HTML and JSP
code that makes up an application.

Before introducing these tools, consider the following page showing a table
with results from a catalog search. (Note: The following screen is from Pere-
grine’s Get.It! product and is not part of the Get.It! Base templates.)

et.lltl Search Results \
e N ..

User mmccoel
Form: catalog

Actiity. catalog
Module: request

Form Title

Form
Contents

Fig. 2.4 Example of a weblication window

This page is part of a weblication. It conforms to a predefined template that
determines a regular layout and placement of several components within a
browser page. The actual template is customizable, and therefore not all
weblications have to look as the one pictured above.

The creation of the page above is made possible by three ingredients:

e XSL Layout templates—These templates define the layout and
organization of items in a Web page. They are defined using the Extensible
Stylesheet Language (XSL). This is an XML-based language that is used to
format Web pages out of XML data. There are many good Web sites for
learning more about XSL. The World Wide Web Consortium (W3C)
provides the latest XSL specifications.

Get.It! Base Architecture Overview 2-13



2-14

¢ Cascading Style Sheets (CSS)—All aesthetic aspects of a Web page are
defined separately in a CSS file. This includes specifications for colors,
fonts, alignment rules, and special effects.

e Weblication Definition—The actual application specific portions of a
weblication are defined using a concise high level XML description.

Defining weblications in this manner has several advantages. First, it is much
simpler than having to hand code numerous HTML and JSP pages. Second, it
makes it easy to define a consistent look and feel to a Web site. A simple
change to a template is quickly propagated to what could be hundreds of page
files. Finally, the pages created automatically for a weblication include a num-
ber of features to deal with user authentication, security, access rights, and
session tracking.

To illustrate this further, here is the XML weblication description for the form
displayed in Figure 2.4:

<f or m name="cat al og" onl oad="procure. get Cat al og" >

<title> CGet.Desktop </title>

<i nstructions>
Here are the itens found in this category. You may click on any
one to see a detailed description, or you nay sinply enter a
count to add itens to your order.

</instructions>

<tabl e record="Product" rows="10">
<link target-form="product"” field="1d"/>

<col um | abel =" Count" field="nCount" type="select"/>
<col um | abel =" Br and" field="Brand"/>
<col um | abel =" Mbdel " field="Mdel"/>
<colum | abel ="Pri ce" field="Price"/>

</tabl e>
<actions target-activity="review' >
<submt nane="bTabl e"> Add to shopping cart </submt>
<back/ >
</ actions>
</forne

Just this small amount of XML is responsible for almost the entire window in
Figure 2.4. An Archway tool parses this definition and generates the neces-
sary HTML and JSP code that creates proper input to the browser. Compare
this to the JSP and HTML code shown at the top of this section, and it is
quickly evident that the weblication approach provides a much simpler way to
define applications.

There are a few things worth highlighting in this XML definition. First, notice
that the form has an onl oad property. It specifies that when constructing the
page, an Archway script named get Cat al og should be invoked. This script is

defined to return Product documents.

For instance, each product could have the following XML definition:

Archway Internal Architecture



<Pr oduct >
<Brand> X </ Brand>
<Mbdel > Y </ Mbdel >
<Price> Z </ Price>
</ Pr oduct >

This XML data is easily incorporated into the HTML page. The form defines a
table element that references fields in the XML Product description, and
Archway takes care of generating the proper code to extract the fields from the
XML documents.

Again, this is just an introduction to the concept of a weblication. This is prob-
ably the most important part of the Archway architecture to understand
because it is directly related to the ability to define Get.It! Base applications.
Details on the weblication definition language are documented in Appendix A,
"Weblication Reference." In addition, related information can be found in
Chapter 5, "Tailoring Get.It! Base."

Get.It! Base Architecture Overview 2-15






Chapter 3
Introduction to Document Schemas

The Archway Document class provides Archway weblications and scripts with
the service of processing logical Document Schema Definitions and imple-
menting the physical database access operations for querying and construct-
ing documents.

For example, consider a “Product” document. Products have a number of indi-
vidual fields such as Price and Brand. They also have collections of other sub-
documents such as a collection of Vendors.

The queries that create a document vary depending on the physical schema of
the system hosting the Product data. To understand how to construct these
queries, the class reads an XML Document Type Definition (DTD) file.

The DTD file contains Base Document Definitions that define the fields, collec-
tions, and nested documents that make up a logical Document.

In addition, the DTD file defines Derived Document Definitions with physical
database schema information for building a base document out of data found
in a specific system. A Derived Document Definition may define physical table
and field information for some (but not all) of the fields in a Base Document.

Definition of a Document Schema

A document is defined as a collection of one or more A¢tributes. Each attribute
is a “field” in the document. For example, a Product document may have a
Price attribute and zero or more nested Documents. This allows documents to
be nested inside each other recursively for zero or more nested Collections. A
Collection is a Document attribute which in turn has a list of one or more
nested documents. For instance, a Product may have a Suppliers collection
with one or more Supplier documents.

Get.It! Base Tailoring Guide 3-1



The following is an example that demonstrates most elements of the XML
schema for defining documents:

<documnent s nane="base" >

<!-- Product Docunent -->

<docunent nane="Product">
<attribute nane="1d" type="nuni/>
<attribute nane="Brand" type="string"/>
<attribute nane="Mdel" type="string"/>
<attribute nane="Price" type="noney"/ >
<l-- Here is an exanple of a nested docunent reference -->

<col | ecti on nanme="Suppliers">
<docunent nane="Supplier"/>
</col |l ecti on>
</ docunent >

<!-- Supplier Docunment -->

<docunent name="Supplier">
<attribute name="Nane" type="string"/>
<attribute name="Price" type="noney"/ >

</ docunent >

</ docunent s>

The following is a more complete sample XML DTD of a Product document.
The sample shows some additional, important concepts:

¢ Schemas are organized into "base" and "derived" versions. In the examples
that follow, the first is a base schema and the second is a derived schema.

¢ Derived (adapter specific) schemas map to a specific system and are used to
generate queries. A derived schema must map to an adapter from which
the information will be accessed.

¢ Nested documents can be defined in place or as references.

Definition of a Document Schema



Ina“base” schema
the document is ™\

<?xm version="1.0"7?>

Nane: schenma. xm

Aut hor: Davi d Baron

Dat e: 10/ 99
<schema>

<docunent s nanme="base" >

defined within the
schema.

This is an example
of a referenced
nested document.

This is an example
of a nested
document in place.

Introduction to Docu

<!-- Product Docunent -->
<document nane="Product">

<attribute nanme="1d"

<attribute nane="Certification"
<attribute nane="Category"
<attribute nane="Brand"
<attribute nane="Model "
<attribute nane="Comment"
<attribute nane="Price"
<attribute nane="Description"
<attri bute nane="Photol d"
<attribute nane="Iconl d"

<col | ecti on nanme="Suppliers">
<docunent nanme="Supplier"/>
</ col |l ecti on>

<col | ecti on nanme="St ocks">
<docunent name="St ock">
<attribute nane="Nane"
<attribute name="Quantity"
</ docunent >
</ col |l ecti on>

</ docunent >

<!-- Supplier Document -->

<docunent nane="Supplier">
<attribute nanme="Nane"
<attribute nanme="Price"
<attribute name="Delivery

ment Schemas

type="nuni/>

type="string"/>
type="string"/>
type="string"/>
type="string"/>
type="string"/>
type="noney"/ >
type="string"/>
type="nunber"/ >
type="nunber"/ >

<I-- Here is an exanple of a nested docunment reference -->

<I-- Here is an exanple of a nested docunment definition -->

type="string"/>
type="string"/>

type="string"/>
type="noney"/ >
type="time"/>

3-3



e e e e >
In a derived schema, <docunents nane="ac">
the document is
created by information <!-- AC Product Docunent -->
which is accessed from <docunent nane="Product" t abl e="anPr oduct " >
another system. In this
example, the data wil <attribute name="1d" pat h="1Prodl d"/>
be accessed in the <attribute name="Catergory" pat h="Cat egory. Narme"/ >
“amProduct” table from <attribute name="Comment" pat h=" Conment . nenCommrent "/ >
within AssetCenter. <attribute name="Price" pat h="nPrice"/>
<attribute nane="Photol d" pat h="1 Phot ol d"/ >
<attribute nane="Iconld" path="I1conl d"/ >
<attribute nane="Description" pat h="cf _Description"/>
<col | ecti on name="St ocks" >
<docunent nane="St ock" t abl e="anPr odSt ockLi ne" >
<attribute name="Nane" pat h="St ock. Nane"/ >
<attribute name="Quantity" pat h="| Total Qy"/>
</ docunent >
</col |l ection>
</ docunent >
<!-- Supplier Document -->
<docunent name="Supplier" t abl e="anPr odSupp" >
<attribute nanme="Nane" pat h="Suppl i er. Name"/ >
<attribute name="Price" pat h="nPrice"/>
<attribute name="Delivery" pat h="t sDel i vDel ay"/ >
<attribute name="Avail able" path="I Q@ yAvail"/>
<attribute name="URL" path="Product.fv_Manufacturer URL"/>
</ docunent >
</ docunent s>
<| s e —p————(——————
Done
s e e e e |
</ schema>

3-4

Definition of a Document Schema



Using Schemas in a Weblication

In using Document and Schema support, “document” type archway messages
are available to ECMAScripts. Here is a script that queries for a list of Prod-
uct documents (sendDocQuery):

function getCatal og( nmsg )
{

}

The DocumentManager also supports SQL-like queries. For instance, you can
query as in the following example:

return archway. sendDocQuery( "ac", "Product", nsg );

ar chway. sendDocQuery( "ac", "SELECT Brand, Descri pti on FROM Pr oduct
WHERE Cat egor y=' Deskt op’ ORDER BY Brand", 0, -1 );

You can also accomplish Document querying in the following manner:

nmsgParam set ( " _return", "Brand; Description” );
nsgParam set ( "Category", "Desktop" );
nsgParam set ( " _sort", "Brand" );

archway. sendDocQuery( "ac", "Product", nsgParam 0, -1 );

Use the SQL queries sparingly, especially in a weblication, because this
method defeats one of the main purposes for setting up the DocumentMan-
ager. In a weblication setting you do not want hard-coded queries in your
scripts. All fields that go in the nsgPar amare served for us by the weblication
forms. This makes tailoring much easier. However, for certain script situa-
tions, the new syntax offers some coding comfort. Other calls include
sendDocl nsert and sendDocUpdat e. See the Messenger API for details.

The docunent object works together with data provided by woui | d to do the fol-
lowing:

e Automatically create all queries that comprise a document.

e Use parameters passed into a script to filter the resulting Document result
set. For instance, to search for Products with a particular Brand, Model, or
Certification, the calling weblication needs a form with Brand, Model, or
Certification fields. These are automatically added to the query if they are
applicable to the document search.

e While wbui | d generates forms from an XML weblication, it builds a list of
document fields used by the form. This list is passed to the document
search, allowing the Document class to limit the queries to those fields that
will be used. This is very significant as it can eliminate the need for
numerous sub-queries.

Introduction to Document Schemas 3-5






Chapter 4
AssetCenter Templates

There are six AssetCenter templates included with Get.It! Base:
You must have

Peregrine’s AssetCenter ° Assets
installed to use these e Budgets
templates.

¢ Contracts

¢ Employees/Person Management

¢ Inventory Move, Add, Change (IMAC)
¢ Work Orders

These files are located in the j scri pt, schema, and webl i cat i on folders in the
...getit\ apps\acwdirectory. See “Working with the Templates” on page 4-3
for details about each template.

Note: If you are going to make modifications to the templates, copy the
template files into the . . . getit\ apps\ user directory before making
changes. If you do not save modified files in the user directory, they will
be overlaid when you install future versions of Get.It! Base.

When you open Get.It! Base in a Web browser and log in, only the Work Order
Management and Asset Browser modules are displayed in the Portal. In order
to see the other templates, you must change the user rights to give access to
the other templates. This can be done two ways:

e Modify the ar chway. i ni file to include the user rights. This will give
everyone on the system full access to all modules.

¢ In AssetCenter, modify specific user profiles to include user rights. This
limits access to the users you want to have access to each module.

The user rights are:

e getit.asset—gives access to the Assets module (default access to all
users).

e getit.assetrw—gives access to the IMAC module.

* acw. enpl oyee—gives access to the Employees/Person Management
module.

e acw budget —gives access to the Budgets module.

Get.It! Base Tailoring Guide 4-1



4-2

® acw contract —gives access to the Contracts module.

® acw wor kor der —gives access to the Work Orders module (default access to

all users).

e getit.adnm n—gives access to the Administration module.

Along with the weblication templates are schemas which link to AssetCenter
tables. You can find the schemas in the ...\ getit\ apps\ acw schema\ direc-
tory. The following chart shows which tables in AssetCenter the schemas are

linked to.

Schema AssetCenter Table
acwassetlight.xml amAsset
acwbudget.xml amBudget
acwcontract.xml amContract
acwcontractasset.xml amAstCntrDesc
acwcontractassetlight.xml amAstCntrDesc
acwcontractrent.xml amCntrRent
acwcontractrentlight.xml amCntrRent
acwexpenseline.xml amExpenseLine
acwexpenselineLight.xml amExpenseLine
acwworkorder.xml amWorkOrder

We also include jscripts in Get.It! Base. You can find the schemas in the
...\getit\apps\acwhjscript\ directory. The following chart shows the
jscripts that are provided.

JScript Description

acwasset.js Query for assets matching selected options.

acwbudget.js Query for budgets matching selected options.

acwcontract.js Query for contracts matching selected options.

acwemployee.js Query for employees matching selected options.

acwimac.js Query for assets matching selected options and
allows you to change, move, and replace assets.

acwworkorder.js Query for work orders matching selected options.




Working with the Templates

Each template links back to show a view of AssetCenter through a Web
browser. The templates are designed to be basic guides to get you started on
building your own weblications.

The Asset Template

The Asset template is in a file called acwasset . xm . You can use it to search
for an asset by brand, model, category, asset tag, or status. The figure below
shows the Asset template.

Search for Assets

You may search by filling in one or more of these fields

Brand: lﬁ[

Model: l—

Category: I j
Stock Location: lﬁ

Asset Tag: l—

Status: lﬁ

User's Last Name: l—

Serial Number: li

T

Fig. 4.1 The Asset template window

The Budget Template

The Budget template is in the file called acwbudget . xn . You can use it to
search for and display general information and details of budgets. The figures
below show the Budget template.

AssetCenter Templates 4-3



Search for budget

You may search budgets according following criteria.

Filter on foll ng fields
Name:
Type:

I

Fig. 4.2 The Budget template window

Search for budget

You may get the detail of the following budgets

Budget Name Budget # Start d Type
General Operations 2000 DEMO-FCTO1 14189 1243199 Operation
Warehouse Operations 1999 DEMO-FCTOZ 1189 123199 Operation
Training 1992 DEMO-FCT10 141/99 123199 Operation
Basic investments 1999 DEMO-INWD1 14193 1203199 Investment
New site DEMO-INYD2 1189 125199 Investment
Technical Eguipment Renewal DEMO-INWO3 141/99 1243199 Investrrent
5. 1999 DEMO-ITDN 14189 1243199 Operation
Market Research 1999 DEMO-MITO 1199 123189 Research
Communication & Marketing 1299 DEMO-MKTOZ 141/99 123199 Communication
Mew Product Range Research DEMO-REDO1 1H/89  12/31/92 Research

b

[rores |

Fig. 4.3 The Budget template search results window

4-4 Working with the Templates



The Contract Template

The Contract template is in the file called acwcont ract . xm . You can use it to
search for and display general information and details of the contracts. The
figures below show the Contract template.

Search for Contracts

You may search by filling in one or maore of these fields

Reference:

Contract #:

Contract type: lﬁ

Start Dale:m m lE[ lm B
End Date: m mmm B

[Seoe |

Fig. 4.4 The Contract template window

Search for Contracts

You may search by filling in one or more of these fields

Reference Gontract # Start End Type
DEMO-MAIZ CL-27881 141799 1213193 Maintenance
DEMO-LICA 4566144 1241698 1213199 Licence
DEMO-INS1 AXA-A377329 171799 1231799 Insurance
DEMO-LEAZ IL-347677 171799 MasterLease
DEMO-LEAS IL-7636090 141799 12131101 LeaseSchedule
000001 300 3603 IMaintenance
000002 3600 3603 Maintenance
C0ooon3 3ma0 3B03 Maintenance
000004 3/8/00 3803 Maintenance
000005 3/6/00 3603 Maintenance

New Search

Fig. 4.5 The Contract template search results window

AssetCenter Templates 4-5



The Employee Template

The Employee template is in the file called acwenpl oyee. xm . You can use it to
search for and display general information and details of the employees. The
figures below show the Employee template.

Search for Employee details

You may search by filling in the following filter. You will then be able to modify the following fields of the
selected employee
Phane number, Comments

Filter on Employee Identification and location
Mr/Mrs: . -

Last Name:
First Name:

Location: "%

» Employees
=

==

Search for Employees

You may search by filling in one ar mare of these fields

Filter on Employee Identification

Mr/Mrs: ~| | LastName: First Name:
Filter on Person location

Location: s

Mr/Mrs Last Name First Name Phone Location
Adrnin (408) 536-6000

M. Hartke Richard (550) 572-9000 001- Office
Mrs: Listel Susan (B50) 572-9000 001 - Reception
Ilr. Bell Gerald 0187 345 9802 026 - Ofice
Irs Mitsuka Annita 0181 345 9803 0268 - Office
tlrs: Tossi Michaela 0181 345 5604 030 - Office
T Colombao Gerald 0181 345 9805 024 - Office
helr. Mankowicz Darinic (0181 345 5806 025 - Office
hrs. Merchand Micole 0181 345 5803 027 - Office
Mres Landau Wera (B50) 572-0000 010 - Office

Fig. 4.7 The Employee template search results window

4-6 Working with the Templates



The Inventory Move, Add, Change Template

The IMAC template is in the file called acwi nac. xn . You can use it to search

for and display information about assets, view and change configuration
details of assets, replace an asset, and search for a parent or replacement

asset. The figures below show the IMAC template.

AssetCenter Templates

Asset changes

You can move assets to new locations for existing assets, or simply update the current status of any
asset

Please enter the search criteria for the asset(s) you wish to find and press the search button.

Bran "

Model: l—

Category: l—;l
Stock Location: lﬁ

Asset Tag: l—

Status: l—;[

User's Last Hame: l—

Serial Humber: l—

[5ev |

Fig. 4.8 The IMAC search template window

4-7



Select an asset

Here are the assets that matched your guery. Please select an item to view its details and make updates

Brand Model Category Asset Tag Status
Intel Express 8100 Router Router DEMO-NTR1 Mew
Microgoft Office 87 Pro Productivity tools DEMO-0FF1 Installed
Microsoft Outlook 98 Software DEMO-5FT2 Installed
Hewlett Packard Netserver LCI PI-333 Server DEMO-5RW3 In use
1BM Model 9577 KNG Desktop DKTO00001

1B Madel 9577 KNG Desktop DKTO0000Z

1B Model 8577KNG Desktop DKTO00003

=1 Model B577KNG Desktop DKTO00004

1BM Model 9577 KNG Desktop DKTO00005

1BM Model 9577 KNG Desktop DKTO00006

Fig. 4.9 The IMAC template search results window

DKTO000001 Details =

Please update any of the fields below as necessary and press the Save button,

Brand: B BarCode: [ |
Modsl: Widal D577 KNG AssetTag: [DKDDDODI |
Serial No:
Status: - Assignment: -
Installation Date:m IE lm T | user Nicholas Siisser

Stock Location:
Parent and Location

Parent Asset: (none) BN
Location: /San Mateo site/Building 02/Warehouse/001 - Hall/ %
Comments

Registered Features ]

Bus type 154

Total capacity of all hard drives 540.0 ME

Parallel port address #1 0.0

CPU type 4BEDR2

CPU speed 66.0 MHz d|

Fig. 4.10 The IMAC template asset detail window

4-8 Working with the Templates



The Work Order Template

The Work Order template is in the file called acwwor kor der . xmi . You can use
it to search for and display information about work orders assigned to the cur-
rent user. The figures below show the Work Order template.

Fig. 4.11 The Work Order template window

AssetCenter Templates

Update work orders assighed to Hartke

You may search by filling in the following filter. You will then be able to modify the following fields of the

selected work order:
Worktire, Status, Diagnosis

Status: w > Closed -

Work

Status  Deadline

order

WOO0DD03  Motified

WOD0O0OO4  Motifisd

WOO0DDO7  Motified

WODOOOOB  Motifisd

\WOD0o00S In 12/3100

Progress  03:56 AM

WOD00O10  Motifisd

WOO00011  Scheduled

WOO00O12 - Motifisd

1/9/01 06:00
Pr

P
Urgent
Urgent
Urgent
Urgent
Urgent
Urgent
Urgent

Urgent

ity Requester T

Asset
ag

DKT000003
DKTO00004
DKTO00023
DKTO00034
DKTO00035
DKTO00036
DRTO00M47

DKTO00148

Filter on your list
Work order Identification

Location
/3an Mateo site/Building
02farehouseD03 - Hall!

f3an Mateo site/Building
02AMarehouse/002 - Hall/

/3an Mateo site/Building
0M72nd FloorD02 - Offices

f3an Mateo site/Building
M42nd FloorD03 - Officel

/3an Mateo site/Building
0M72nd FloorD04 - Officel

f3an Mateo site/Building
0M/2nd FloorD01- Office/

/3an Mateo site/Building
02ffarehouses

FAriane Building/30th
Floor/010 - Office/

fAriane Buildina/30th

[

4-9



Detail of work order WO000008 assigned to Hartke

You can update the diagnosis and the total time spent on this work order

Requester information

For: Gerardin, Christian Phone #: (650) 572-9003
on Asset: DKTO00034 Priority: Urgent
Location: fSan Mateo site/Building 01/2nd FloorD03 - Office/

Time line

DeadLine: Planned duration:0 h
Planned Start: Planned End:
Status: Notified

Start:

Work Time Days:[1 | Hours:[5 | Minutes:|0

Problem description

Information (411)

Diagnosis

8 ‘L

New Search Re open Go Back
[ ew Search ] Updata | Re apen [ GoBack |

|&] Done [ [ [T& Localintranet 2

Fig. 4.12 The Work Order detail template window

4-10 Working with the Templates



Chapter 5
Tailoring Get.It! Base

This chapter describes how to customize individual features of a weblication’s
appearance and performance. It does not tell you how to create a weblication
from the start nor does it explain how to code in XML, JavaScript or other lan-
guages. Before you use this product you should have a thorough understand-
ing of creating weblications using these languages and have in-depth
knowledge of browsers and the Web.

In this chapter we will explain how to:

¢ Change the wording or labels in a form

¢ Add or remove fields on a form

e Add fields to the Documents exchanged with the system
¢ Change the behavior of a script

e Change the layout of a weblication

¢ Add or remove modules

e Translate your modifications into the supported languages

Get.It! Base Tailoring Guide 5-1



Archway Architecture

The Archway architecture is designed to accommodate the types of tailoring
mentioned above.

Before you tailor Get.It! Base, we highly recommend you have an understand-
ing of the archway architecture. See “Get.It! Base Architecture Overview” on
page 2-1 for explanations of several concepts and terms that are used through-
out this chapter. For a description of the weblication tags, see Appendix A,
"Weblication Reference" at the back of this manual.

Weblication Toolset

Before doing any tailoring, you may want to review the various ingredients
that make up a weblication. See Chapter 2, "Get.It! Base Architecture Over-
view" for an introduction to weblications.

Before you make
changes to the

weblication, use the

Admin Module to set . . . e
“Debug scripting” in Webh.CE.lthIl XML The XML files that define application modules, activities, and
the General Definitions forms.
Execiutlon Settlngs ) ECMA Scripts ECMA script files that implement application specific
and “Show form info behavior.
in the Weblication
Settings to true. Document Schema | The XML definitions that describe the data that should be
Definitions queried or updated to create XML documents that can be
interchanged with Archway by a client such as a weblication.
Stylesheets The colors and fonts used for pages in a weblication.
Layout Templates | Templates that define the layout and component construction
rules for creating pages in a Weblication.
WBUILD The executable tool used to compile a weblication.
5-2 Archway Architecture




Tailoring Get.It! Base

The components listed here play different roles in the overall weblication defi-
nition. The deployment of a weblication requires a compilation step that takes
all of the ingredients and generates a set of Web pages that are installed into a

Web server directory:

Weblication (XML)

Templates (XSL)

Stylesheets (CsS)

HTML/JSP

When you make changes to a Weblication definition, you need to re-generate the Web pages by
running woui | d appl i cat i on from a command prompt at the directory ...getit\bin\.

Fig. 5.1 The Weblication toolset at work

5-3



Before You Make Changes

File Structures

5-4

Since the source for the weblication is provided with the product, you can
make any changes you want to a Get.It! Base weblication. Before you start to
modify Get.It! Base, there are a few items you will need to know and set
regardless of the change you are making. These tips make the process of mod-
ifying Get.It! Base much easier.

The templates that come with Get.It! Base are stored in the . .. getit\ apps
directory. The XML files, schemas, and scripts used to make up the template
are grouped by application within this directory into packages. Packages
make it easy for you to determine which files, schemas, and scripts are used
for each application.

Each package should contain the XML files,
schemas, and scripts that make up each application.
The common folder holds the files that are used in
more than one application.

The following folders should be created for each
application package. Some packages can also
contain folders that are specific just to that

BX Exploring - My Computer M=l E3
File Edt “iew Toolz Help

| &0l Folders application.
=-{_ getit ;| jscript= The script files for the applica-
B-E3 apps tion.
L:H:l asw presentation = Common browser-side presen-
D [zcrpt _ tation files. Most presentation
-0 presentation files are generated by the
D schema J wbuild command and are not
- weblication stored in source control.
H-C0 commaon ) .
553 poral schema = Thg schema files for the appli-
583 user cation.
#-{Z7 bin weblication = The XML files that make up the
-{Z] config application.
-] docs
-] presentation Store all files you create and changes you make to
o -] templates | _’|;| the templates in the .../getit/apps/user/ folder.
Changes to the XML files should be stored in the

weblication folder within the user directory, and
changes to schemas should be stored in the schema

folder.

Before You Make Changes



Application Definition File

In this sample, we
use “Get.It!” as the
application name.
The application
name entered in this
file is what you enter
as the parameter in
the wbuild
command.

Applications must be defined within a file that lists the packages that are to
be included for deployment. This file is called the getit.xm file and is shown
below.

<application nane="e" appnane="getit" home="portal "
navi gat e="Tr eeMenu" >

<title> AssetCenter Wb Powered by Cet.It! </title>

<nodul es>

Li st of packages inported by this deploynent configuration.
The "contents" attribute is optional: when specified it hel ps
deternmine the order in which content nodul e files are incl uded.
When not specified, all files found ina a package folder are
included in al phabetical order.

- - - ... ... .. ... .. .. ... .. .. .. ., . T, T, T . . T . . . T . . T T . T T . T T T . T T T T S T T S . T T T - - >
<package name="conmon" />
<package name="acw' cont ent s="acwasset; acw nac; acwbudget;
acwcontract; acwenpl oyee; acwwor korder"/>
<package nanme="portal " />
</ nodul es>
<| - - - - - - - - .- T . - . T, . . T, . . . . . . . . . . . . . T . . . T T T T T T T T T T
I nclude a user section that allows user custoni zation
ey ——p——(———(—————
<user >
<package nanme="user"/>
</ user >

</ appl i cation>

Archway.ini Use of Packages

Tailoring Get.It! Base

You must enter a field in the archway.ini file in order to support packages:
webl i cation=getit.xm

The “weblication” parameter tells Get.It! Base which application has been
deployed. At run time, Get.It! Base reads the application definition file to
know which packages are included in the execution. This is important because
it is used by Get.It! Base to locate scripts and schemas.

An alternate method, Ar chway. get Packages() is now available for run-time
information about packages.

5-5



Presentation Folders

The presentation folder is a placeholder that contains no checked-in files. This
folder should only contain generated files. You can define presentation folders
with specific files and images, that are not automatically generated, in the
individual packages. Wui | d pulls all presentation files into the top-level pre-
sent at i on folder. You should never check in any files in this top level folder.

Common Components

Some of the images, forms, schemas, and XML files are used more than once
within the Get.It! Base weblication. These common components of the webli-
cation are stored in the . . . geti t\ apps\ common directory.

EX Exploring - My Computer [_ (O] x|
File Edit View Tooks Help The common folder holds the images,
|ﬁ’«|| Folders scripts, presentation files, schemas,
=[] gelitbase =] and XML files that are used by more
=1 apps than one application package.
B0 aow
ElCl comman
§ @A jecript

-] presentation
{1 schema J
§EC weblication

-] portal

-1 bin
F] docs
-] presentation
[#

f-1 templates LI

Fig. 5.2 The common folder.

Displaying Form Information

5-6

In a weblication, a form may contain detail fields for an item in the back-end
system. For example, an asset form might show information about a product,
including the model, brand, list price, and so forth. We have created an option
in the Settings activity in the Administration Module that allows you to dis-
play the information you can use to find the form you want to change.

If “Show form info” is set to true, three lines of information are displayed on
the left of the window as shown in the following sample:

Before You Make Changes



Module = The name
of the XML file inthe
...getit\apps\
directory.
Activity/Form =
Use these as search
criteria to locate the
exact form you want
to change.

Tailoring Get.It! Base

Welcome Hartke Select Content | Help | Log out
[0
5 Budget Management @ Contract Management
ﬁ Person Management @o Work Order Management

& [T 1% Local intianet 7

Fig. 5.3 Showing the forms information

Use the form statistics to determine the XML file you want to modify, and to
search this file to find the exact form to change.

The “module” tells us which file to edit. Look in ...\ getit\apps\applica-
ti onpackage\ webl i cati on\ <nmodul e>. xni . In the sample above, the file is

[ ogi n. xm . Within that file, look for <nodul e name="1 ogi n”. The following is
the actual line you will find:

<nmodul e nane="1| ogi n" access="anonynous" appnenu="fal se"
apphead="f al se" >

The “Activity” tells us which activity to look for within that module. Search for
<activity name="“nmai n”>. The following is the actual line you will find:

<activity name="nmin">

The “form” tells us which form to edit within the activity, and the module.
Search for <form name="“start”. The following is the actual line you will find:

<form nanme="start" onload="login.init">

If what you want to change is the title of the module or activity, however, the
form information you find is not what you want to change. To find where you
would change the titles, try the following method:

For any given <nodul e>. xni , look at the lines immediately following the <nod-
ul e name="...” > declaration at the beginning of the file and change the data
there. Look at the adni n. xni file.

<nmodul e nane="adm n” access="getit.adm n”>

5-7



<title> Admi nistration </title>
<descri ption
i mage="i cons/ adm n. gi f"
short ="Admi n"
| ong="Server settings, execution |logs, control panel, ..." [>

What each line tells us:
<nmodul e nane="adm n” access="getit.adm n”>

This tells us which named User Right the user needs in order to access this
module.

<title> Adm nistration </title>
Data to show on the left hand side (in the activities) within the module.

<descri ption
i mage="i cons/ adm n. gi f"

Identifies the graphic to show on the main menu.
short="Adm n”
Name to use on the main menu.
| ong="Server settings, execution |logs, control panel, ..." [>

The long description shows at the bottom of the browser when you point to the
short name on the menu.

You can change the names of the module or activity in this area of any XML
file.

Debugging Changes

5-8

We recommend you set all “debug” options in the archway. i ni file to ¢rue to
make it easier to determine what is going on in the changes you make.

1. Log into the Get.It! Base Administration Module by logging into Get.It!
with a user ID that has administration rights.

2. Click Admin to access the Get.It! Base Administration Module.
In the activities, click Settings.

In the section titled General Execution Options, enter a path and file name
in the Log file field. This is where the debug information will be stored.

Set the Debug logging option to true.
Set the Debug scripting option to true.

Click Save to save your changes (scroll down to below the settings table to
find the Save button).

Before You Make Changes



8. Be sure to set the debug options back to false before you release your
changes to your entire user base.

You should also enter the following line into a script you are changing; it will
output debug information to the archway log file as specified in the Get.It!
Base Administration Module Settings. Whatever you type for String Value is
what will appear in the ar chway. | og file.

env. debugl og( String Val ue);

Where “string value” is equal to an explanation of the area you are debugging.
You may want to make the string value equal to the outcome you are expect-
ing.

Where to Make the Modifications

Tailoring Get.It! Base

If you change the standard templates or files we include, your changes will be
lost the next time you install a new version of Get.It! Base. To prevent this, a
directory called “user” has been included within the ...\ getit\apps\ direc-
tory. The install process will not overwrite changes you store in the . . . user\
directory. When you create a new file, you can save it directly under the
...\getit\apps\ directory.

Within the “user” directory you will need three directories called “schema,”
“jseript,” and “weblication.” Verify that these directories exist in the
...getit\apps\user\ directory. The “weblication” directory includes some
samples.

e Ifyou are updating a schema, save the updated file in the schena directory.
e Ifyou are updating a script, save it in the j scri pt directory.

e Ifyou are updating an XML file, save the updates in the webl i cati on
directory.

The following instructions give a general description of how to update a stan-
dard file or template in Get.It! Base.

1. Open the file you want to change. This could be a schema file, an
application file, or a script.

2. Use the Save As command to save the file into the . . . \ geti t\ apps\ user\
directory. All files saved in the correct subfolder (schema, jscript,
weblication) in this directory are read by the wbui | d command.

3. Make your changes and save the file.

Run woui | d appl i cati on, where “application” is the name of the
application you are changing.

You can test how this works using the following method:

5-9



1. Find the sample prgn. xn file in the
...getit\apps\user\weblication\sanpl es\ directory. You can use any of
the files in this directory as a test, but in this example we will use the
prgn. xni file.

2. Copy the prgn. xni file from the ...\ sanpl es\ directory into the
...getit\apps\user\weblication\ directory. After running the wbui | d
command, log into Get.It! Base and you will see a new “PRGN” option.

Necessary Information

When you create a new file there are four items you must have at the begin-
ning and end of every file. (In the sample below, replace xxx with the name of
the module and yyy with the name of the activity.)

<nmodul e nanme="xxx">
<activities>
<activity nanme="yyy">
<f or ns>

</fornms>

</activity>

</activities>
</ nodul e>

These items are needed in order to make the new file work within the weblica-
tion.

Running the wbui | d Command

The wbui | d command takes all of the pieces and generates a set of Web pages
that are installed into a Web server directory. You can enter parameters to
have specific applications compiled.

wbui | d application = Compiles the application you enter. Replace appli-
cation with the name of the application you want to
compile, such as woui I d getit. Runwbouild getit
unless you have created your own application defi-
nition file. The valid application parameters are
those set in the Application Definition file. See
“Application Definition File” on page 5-5 for more
information on this file.

5-10 Before You Make Changes



1. Display a command prompt. One method of doing this is to use
Start>Programs>Command Prompt. Change the directory to
...\ getit\bin. (To change the directory, first ensure you are at the
correct directory, for example a C: > by typing C. and pressing ENTER. You
should see C:\ > as your prompt. Then type cd programfiles\getit\bin
and press ENTER. You should now see C: >Progr am Fi | es\ geti t\ bi n> as
your prompt.)

2. Type wbuil d application at the prompt and press ENTER. Where
application is the name of the application package you want to recompile.
The woui | d command processes all weblication files in each package. It
will list all the processing it is going through. When the processing is
complete, you can minimize or close the window.

Changing Form Contents

Tailoring Get.It! Base

Each form in a weblication is defined by a <f or n» element in its appropriate
module file. This is where form contents are declared, including things such as
Title, Instructions, Fields, Menus, Tables, Links, and Action Buttons.

You can add to or delete from these contents. In the example below, we will
add a field to a form.

5-11



Adding Form Fields

To add a field to a form, consider the following example, which shows the
details for a specific product in a company catalog.

I PRO IS00 9.1GB 256MB 512K 6X6

Make sure the

L h | =
form statistics are o
displayed. See L et
e . Actwity: catal:
Displaying Form Mot ...w.:
Information” on —
page 5-6 for Y Adein
instructions.

Awailability from Vendor:
Vendor Name Availability
Aailabilitg lroim Stack

Humber o order: [| &
Fig. 5.4 Adding afield to a form

The form contains detail fields for the product, including the model, brand, list
price, and so forth. The Form Statistics tells us exactly where to go for the
form definition: we're viewing the product form in the catalog activity of the
request module (and, therefore, found in r equest . xni ).

1. Open the file you want to change.

The request . xn . . . .
file is not part of the 2. Find the form you want to change in the file by using the Form Statistics.

standard templates In this example it would be the form named product in the activity named
included in Get.It! catalog. The form is defined in the following manner:

Base. The process _u " —u "

for adding a field to <f or m nanme="product" onl oad="procure. get Product" >

the form i the <title field="Mdel"> $$(Mdel) </title>

<fields>
same, however. <field nane="i mage" type="inage" field="Photol d"/>
<br eak/ >
<field name="brand" | abel ="Brand" field="Brand"/>

<field nane="descri ption" |abel ="Description"
field="Description"/>
<field nane="price" |abel ="List Price" field="Price"/>
<field nane="coments" | abel =" Conments" fiel d="Coment"/>
<link nane="infos" |abel ="Mre Info" target-field="URL"
wi ndow="true"/>
<br eak/ >
<field nane="vendor" | abel ="Availability from Vendor"/>
</fields>

5-12 Changing Form Contents



<t abl e record="Supplier">
<col um | abel ="Vendor Nane" fiel d="Name"/>
<col um | abel =" Avai l ability" fiel d="Avail able"/>

<col um | abel =" Del ay" field="Delivery"/>
<colum | abel ="Pri ce" field="Price"/>
</tabl e>
</forne

Consider how to add a Delivery field to the form that displays the average
time it takes for the catalog item to be available once ordered. This is achieved
by adding a field entry to the form, as shown below. The revised XML below
contains this new field:

<f or m name="product" onl oad="procure. get Product ">
<title field="Mdel"> $$(Mdel) </title>

<fields>
<field nane="i mage" type="inage" field="Photol d"/>
<br eak/ >
<field nane="brand" | abel ="Brand" field="Brand"/>

<field nane="descri ption" |abel ="Description"
field="Description"/>
<field nane="price" |abel ="List Price" field="Price"/>
<field nane="Delivery" field="Delivery"/>
<field nane="coments" | abel ="Conments" fiel d="Coment"/>
<link nane="infos" |abel ="Mre Info" target-field="URL"
wi ndow="t rue"/>
<br eak/ >
<field nane="vendor" | abel ="Availability from Vendor"/>
</fields>
<tabl e record="Supplier">
<col um | abel ="Vendor Nane" fiel d="Nanme"/>
<col um | abel =" Avai l ability" fiel d="Avail able"/>

<col um | abel =" Del ay" field="Delivery"/>
<col um | abel ="Price" field="Price"/>
</t abl e>
<forn >

3. After making this modification, run the wbui | d getit command to
regenerate the form. See “Running the wbui | d Command” on page 5-10 if
you need instructions.

Tailoring Get.It! Base 5-13



The modified window in the browser is displayed below.

MPRQ /500 9.1GE 256MB 512K 6X6

Usar: mmecool
F rnduet
<t catabog
Madule: request
-

Avaitobility

Hurbis o andus: [1| &

Go Bock

Fig. 5.5 With the new “ Delivery” field.

Data for the New Field (Scripts)

A remaining question is where does the Delivery field actually come from?
All data available to a script is provided by its onl oad script. This is defined in
the form’s declaration:

<f or m name="product" onl oad="procure. get Product" >

As shown, the form in our example relies on the get Product function of the
procur e script file. This script is designed to return product documents. The
product document schema includes the Delivery field we just added.

This tells us that the type of change described in this section is possible as
long as the data for a new field is already provided by the form’s script. This is
not always the case. In order to display new fields, it is sometimes necessary
to modify Document Schemas or even the script logic. See “Adding Fields to a
Schema” on page 5-17 for details.

5-14 Changing Form Contents



Split Frames (forms)

If you are working with forms, you have the option of displaying two or more
forms on a single page. This allows a master list of items to be displayed on
top and the details of a selected item to be displayed at the bottom. The follow-
ing example illustrates the use of r ows to accomplish this. Modify the bold text
to accommodate your frame dimension requirements.

<form nanme="start” type="franeset” rows="335,*">

<redirect name="list” target-form="results”/>
<redirect name="detail” target-activity="detail”/>
</forne

Localizing Your Changes

The translated *.str
files are created
only if the
“resolveAppStrings”
field in the
archway.inifile is set
to True. If it is set to
False, only the
English string file is
created.

Tailoring Get.It! Base

If you want to translate the change you have made to other authorized lan-
guages, use the following steps. See Chapter 7, "Localization Support" for
more information on localizing your changes.

1. Make sure you verify the change is working in the English version of the
weblication and that wbui | d has been run.

Open a command prompt and run strbui |l d getit. This will create the
STR files for the languages you have set in the Administration Module
Settings.

2. Ifyour allowed languages include more than English (based on the entries
in the Locale field in the Administration Module Settings), you will need
to update the appropriate string files with the translation of the new field
you added. For this example, we will update the French file.

5-15



5-16

3. Openthegetit_fr.str file and search for the field you just added. In this

In this example, we
are using Notepad
to update the file. If
you use a different
program, your
window may look
different.

example, search for “Delivery.”

Ei| getit_frsti - Notepad _gx
File Edt Seach Help

WEB_e_vequest_catalog product Name_Stock COLLABEL, “Nom du stock’ = HE =]
WEB_e_vequest_catalog_product_Quantity_stock_GOLLABEL, “Disponibilité" =

VEB_e_request_catalog_product_nCount_LABEL, "Quantité 3 commander”
UEB_e_request_catalog product_additem ACTION, “Ajouter au panier”
WEB_e_vequest_catalog product_back AGTION,
WEB_e_request_catalog_bundle_TITLE, “Gonfiguration standard $3(Model)"
VEB_e_request_catalog_bundle Brand_LABEL, “Harque"”

Find what:  [Delivery

I Match case

[ Erdei |

Ditection el |
€ Down

et T St -
( WEB_e_request_catalog_bundle TIBIIAEN LABEL, “Disponibilité" )

Tt T = = T
WEB_e_request_catalog_bundle 1_LABEL, “Informations complémentaires™
UEB_e_request_catalog bundle 6 LABEL, “Contenu de la configuration standard"
WEB_e_vequest_catalog bundle Photold ProductComposition COLLABEL, "

WEB_e_vequest_catalog_bundle_Description_ProductComposition_COLLABEL, “Description

VEB_e_request_catalog_bundle_nCount_LABEL, "Quantité 3 commander
UEB_e_request_catalog bundle_additem ACTION, “Ajouter au panier
WEB_e_vequest_catalog bundle_back_ACTION, "
VEB_e_vequest_catalog_search_TITLE, “Rechercher dans le catalogue”

VEB e_request_catalog_search_INSTR, “"Utilisez les champs ci-dessous pour préciser votre recherche i

UEB_e_request_catalog search Brand_LABEL, “Hargue
WEB_e_vequest_catalog search Hodel LABEL, “Hoddle"
WEB_e_vequest_catalog_search_Gertification_LABEL, “Catégorie™
VEB_e_request_catalog_search_catalog_ACTION, “Rechercher”
UEB_e_request_catalog search_back_ACTION,
WEB_e_vequest_search TITLE, "Rechercher dans le catalogue"
WEB_e_request_search_SHORTDESG, “Rechercher dans le catalogue™
VEB_e_request_search_LONGDESC, “Rechercher un produit spécifique”
UEB_e_request_search_search_TITLE, “Rechercher dans le catalogue

WEB_e_vequest_search_search_INSTR, “Utilisez les champs ci-dessous pour préciser uotre recherche =**

WEB_e_vequest_search_search_Brand_LABEL, “Marque du produit”
VEB_e_request_search_search_todel_LABEL, "Nom du modéle"
UEB_e_request_search_search_Category LABEL, “Catégorie!
WEB_e_vequest_search_search_catalog AGTION, “Rechercher
WEB_e_vequest_search_search_back_ACTION, ™
VEB_e_request_review TITLE, "Contenu de votre panier™
UEB_e_request_review SHORTDESC, "Uotre panier'

WEB_e_vequest_vevieu LONGDESC, “Uisualiser uotre panier et, le cas échéant, effectuer des modifications”

WEB_e_vequest_veview cart_TITLE, “Panier”

UEB_e_request revieuw cart_INSTR, "Articles ajoutds 3 votre demande. Cliquez sur un enregistrement pour afficher le détail ou
le modifier. Uous pouvez galement saisir uos modifications directement dans le tableau ci-dessous.™

WEB_e_vequest_veview cart_nCount_Product_COLLABEL, “Quantité"
VEB_e_request_review cart_Brand_Product_COLLABEL, “Margque
UEB_e_request_review cart_Hodel Product COLLABEL, “Hodale"
WEB_e_vequest_vevieuw cart_Price Product COLLABEL, “Pri
WEB_e_vequest_veview cart_Total_Product_COLLABEL, “Total"

VEB_e_request_review cart_mGrandTotal LABEL, “Hontant total”

Fig. 5.6 Translating the new field.

The new field will show blank quotes unless this string has been
previously translated into this language. Type the translation of the string
into the blank quotes. In the example above, we have typed the translation

for Delivery.

Save the file. Do not save it into a user directory.

Log into Get.It! Base and verify that the translation was successful.

Changing Form Contents



Adding Fields to a Schema

Most of the scripts in Peregrine Systems’ Weblications use Archway's Docu-
ment Manager to exchange data with back-end systems. See “The Document
Manager” on page 2-10 for information about the Document Manager.

One of the main reasons for using the Document Manager is that it makes
customization possible without the need to modify database operations hard
coded in scripts. If your customization needs call for adding more data to a
document, you can do it by extending the appropriate Document Schema.

Undefined Schema Fields

Modifications of
the schema are
restricted to
fields that exist
in the database.

Tailoring Get.It! Base

To add a field that is not yet defined in the schema, consider the example of a
user entering a request.

Get&ltl Status for request REQ000038:; Pending approval
i Bk

Uger: mmeceool

- when would you like this and what Is it for?
F-.-lrn reguest Date: 41 B Puipose: D
Acthity: detail wha Is this for and where should it be deliverad?

Madule: statiss First: Matthe Location:
Last: M Puldress:
Fhone: i

t Home Statie:
& Admin Zip Code:

b Redquast Which dapartment is paying for this?

Corsl Center: Comments: ) =

Proje

a
Nudget: Attachments: |- Selocts EEN
Count Brand Model Descripti
1 1BM M PRO IWS00 9. 168 255MB 512K BYE 1B M PRC

Gramd Total: £2 5.4

Fig. 5.7 Adding information to a schema

The form allows the user to specify a request purpose, delivery date, cost cen-
ter, and so forth. Now, assume that we want to add a new field to track the
requester's Internal Credit Number—a company-specific number given to
each employee.

The new company-specific field obviously does not exist out-of-the-box in the
schema associated with this form. The XML file used by this particular form is
the request document and the schema is the file that defines which fields are
available.

Each schema file contains a generic document definition, followed by one or
more system-specific derivations. In other words, the first portion of the
schema defines the fields for Get.It! Base, and the second portion of the
schema maps the Get.It! Base field to the field in a table in one of the back-end
systems. Use the following steps to add a new field:

5-17



1. Open the schema file you want to change. In this example we will use the

request.xml schema file.
The r equest . xni

file is not part of the 2. Find the “request” generic document definition, which is shown below:

standard templates

sent with Get.It! <docunent name="Request">

Base. The process <attribute nane="|d" type="nunt/ >

foraddlng.a field to <attribute name="Approval Status" type="num'/ >

a schema is the <attribute name="Budget" type="string"/>

same, however. <attribute name="Conment" type="string"/>
<attribute nane="Cost Center" type="string"/>

</ docunent >

3. To add our new Internal Credit Number, we start by inserting the field
into the “request” generic document definition:

<docunent nane="Request">

<attribute nane="1d" type="nuni/>
<attribute nane="Approval Status" type="nuni/>
<attribute nane="Budget" type="string"/>
<attribute nane="Comrent" type="string"/>
<attribute nane="Cost Center" type="string"/>
<attribute nane="ICN' type="nun'/ >

</ docunent >

This new line defines a new numeric field named | CN The field has been
added to the generic schema definition. This definition is generic because
it is not tied to any specific back-end system. However, we also need to
extend the back-end system specific request schema.

4. Each schema file contains a generic document definition followed by one
or more system-specific derivations. Here is the line added to that
definition:

<docunent s nane="ac">

<I-- AC Request Docunent -->
<docunent nane="Request" t abl e="anRequest " >
<attribute nane="1d" field="|Reqld"/>
<attribute nane="Approval Stat us" fiel d="seAppr Status"/>
<attribute nane="Budget" fi el d="Budget . Nane"
I'i nk="1Budgl d* |inktabl e="anBudget" |inkfiel d="Name"/>
<attribute nane="Coment" fiel d=" Comment . menConment "
i nk="1 Comment | d" | i nkt abl e="anConment "
li nkfiel d="menComent" |inktype="hard"/>
<attribute nane="CostCenter" field="CostCenter.Title"
Iink="1Costld" |I|inktable="anCostCenter" I|inkfield="Title"/>
<attribute nanme="1CN' field="Field2"/>

5-18 Adding Fields to a Schema



</ docunent >
</ docunent s>

The purpose of entries in the back-end system specific schema is to define
the mapping between a logical document field and its physical database
counterpart. In this case, we’ve mapped the new ICN attribute to Field2 in
the table called “amRequest.” Field2 is a customizable generic field in the
back-end system database, and in this example we have chosen to use it
for storing the ICN number.

5. After making this modification, run wbui | d getit to regenerate the form.
See “Running the wbui | d Command” on page 5-10 if you need
instructions.

With just these two new lines in the request document schema, the Weblica-
tion is now capable of tracking a new field with every request. Now we can add
the field to any form in the same way described in the previous section.

Tailoring Get.It! Base 5-19



Changing Script Behavior

The Get.It! Base architecture is designed to minimize the need for script
changes; however, you can customize the logic of an Archway script. The Docu-
ment Manager minimizes the number of modifications you will need to make,
because, as described in the last section, you can modify the type of data
returned by a script by simply updating the appropriate Document Schema.

However, for those times when you must modify a script, the Archway’s script
model allows you to make modifications without having to alter the base code
shipped by Peregrine. You just create your own version of the function in a
user-derived script. As with all other items you modify, store your user-derived
scripts in a directory separate from the scripts shipped by Peregrine. This
directory isin ... getit\apps\user\jscript\.

Changing JScript

5-20

Consider the following example. The following screenshot shows a form in the
Resources module. The form is used to enter data describing a request.

Submit New Reguest

Dt [Gop Bl [1o8 (00008 0 |Purpose: |
il [1dmi Sl 3 betp:/acalbosygetive ... P E3

ke [ @ | Budget Lookup r

] a foudgee......
Bulect indhvidual roquest ins o o e ——— ]
Gou Brand _Modal nication & Maskining 1 .
] - M F s 9 1| | Desion & Raassceh 1950 !

[i -

BT

Fig. 5.8 Changing Jcript.

This form includes selection boxes that are populated with valid choices
obtained by queries against the database. For this example, we will add
another field to this form to capture the requester’s Department in the com-
pany. To accomplish this, we will need to modify the form’s script to query for a
list of valid department names that can be shown in a new select box.

Changing Script Behavior



1. Determine which script is used. You can do this by looking at the form’s
onl oad scri pt, which is specified in the form's XML definition. Use the
Form Statistics to determine where to look in the XML file. In Figure 5.8
above, the form is defined in the submit activity of the request module.

2. Open the file you want to change. In this example we are using a file from
the Get.Resources! module, which is not part of Get.It! Base. However, the
steps to modify a script are the same.

3. Search for the form you want to change, using the Form Statistics shown
on the Web page. In this example the form is named submit, in the activity
named submit. Here is the form's declaration:

<f orm nanme="subm t" onl oad="procure. get O der Par anet er s" >

4. Determine the name of the JScript file by looking at the onload element.
The get Or der Par anet er s function of the procure script is responsible for
gathering data for the form. The contents of the script can be found in the
procure. | s script file.

5. Open the script file you need to change. In this example it is called
procure.js.

6. If you are changing a standard template, save the file in the
...\getit\apps\user\jscript\ directory.

7. Find the query within the script that you want to change. In this example
we have located the following code:

function get Order Paraneters( nmsg )

{

/1 Get the list of Budgets

nsg = new Message();

nsg. add( "_return", "Name" );

nsg. add( "_sort", "Nane" );

nsg = ar chway. sendDocQuery( "ac", "Budget", nsg );
nsgResponse. add( nsg );

8. Now you need to extend the work of the default script to include a new
query. In this example we will extend the query to find the company
department names. The following is the new user function in its entirety
and then we will walk through each of its lines of code:

Tailoring Get.It! Base 5-21



function get Order Paraneters( nsg )

{

var msgResul t;
var msgDepartnments;

/1 Call base function to perform standard queries
nsgResult = this. parent.get OrderParaneters( nsg );

/1 Query for departnents
nmsgDepartments = ar chway. sendDocQuery(
"ac", "SELECT Nane from anEnpl Dept WHERE bDepart ment =1" );

/1 Add departnents to overall resopnse
nsgResul t. add( nsgDepartnents );

return nsgResult;

9. Save your changes.

This procedure defines a new function with the same name as the one we are
trying to extend (get O der Par anet er s). The new function is stored in a new
user script file with the same name as the base script file (procure. j s). By
doing this, we are guaranteed that Archway will invoke our new function
instead of the base version.

Within the function, we included a call to the base function:
nmsgResult = this. parent. get OrderParaneters( nsg );

It is not mandatory to do this. However, by calling the parent function, we pre-
serve the base queries and only add our new query on top. In some cases, you
will want to bypass the original behavior altogether.

Next, we query for the data of interest:

nsgDepartments = archway. sendQuer y(
"ac", "SELECT Nane from anEnpl Dept WHERE bDepart nent =1" );

This gives us a result set with a list of department names. Finally, the list is
added to the result set obtained from the base function:

nmsgResul t. add( nmsgDepartnments );

The only remaining task is to add the actual department field to the weblica-
tion form. See “Changing Form Contents” on page 5-11 for step-by-step
instructions.

5-22 Changing Script Behavior



Integrating a New File with Get.It! Base

The method you use to integrate new templates into Get.It! Base depends on
the type of template you want to integrate.

Integrating a URL

If you are linking a template that can be accessed through a Web browser
using a URL, you can add the product as a new module or as an activity on an
existing module.

Select Content | Help | Lag out

w Asset IMAC Management

Fig. 5.9 Adding a URL as a module or as an activity

Adding a URL as a Module

If you add the URL as a module, users can access it through a button on the
main menu and on the menu bar.

1. Create a new XML file. You can either create all the code yourself or you
can copy code from an existing template. The following instructions walk
you through copying code from existing templates.

2. Open a file from one of the Get.It! Base templates that most closely
matches the module you want to add. There are also samples in the
...\getit\apps\user\weblication\sanpl es directory.

3. Copy the tags from the existing file and paste them into the new XML file
you created in step 1.

Tailoring Get.It! Base 5-23



7.

Update the module name with the name of the product you are
integrating. Make sure to change the module name, title, image, short
description, and long description to match the module you are adding.
Update the “target-url” with the URL of the product you are integrating.

Save the new file. Make sure it has an extension of .xm .

Run wbui I d getit. See “Running the wbui | d Command” on page 5-10 if
you need detailed instructions.

Log out and log back in to Get.It! Base and the new module is available.

Adding a URL as an Activity

5-24

If you add a URL as an activity, users can access it through a link on the activ-
ity list in an existing module.

1.

Log into Get.It! Base and determine the module in which you want the
new activity to be available.

Determine if there is an activity that behaves similarly to the activity you
are adding. For example, is there an existing activity that links to a
different URL?

Open the XML file from an existing application package (in the
...getit\apps\ directory) for the module into which you want to
integrate the new activity.

Find the section of the XML file where the activities are defined and enter
the following, replacing the Peregrine information with the information
for the URL you want to integrate.

Activity: link to Peregrine

<activity name="prgn">

<description
short ="Peregrine"
long="Link to Peregrine’s web site."
target-url ="http://ww. peregrine.conf

</activity>

5.

Update the name of the activity to be the name of the product you are
integrating. Make sure to change the activity name, short description, and
long description to match the product you are integrating. Update the
“target-url” with the URL of the product you are integrating.

Save your changes.

Run woui | d. See “Running the wbui | d Command” on page 5-10 if you
need detailed instructions.

Log out and log back in to Get.It! Base and the new activity is available.

Integrating a New File with Get.It! Base



Adding a New Module

Tailoring Get.It! Base

To add a new module, you copy an existing XML file, make your updates, and
then save the new module to the .. .\ getit\apps\user\weblication\ direc-
tory. You define the module in the new XML file and then add it to the Webli-
cation when you import it.

To start, determine an existing XML file that is the closest to the new module.

1.

5.

Open an XML file from an existing application package (in the
...getit\apps\ directory) that you want to change, or that does a similar
action to what you want the new module to do. If no existing XML closely
matches what you want to do, we recommend you still open a file to use as
a guide.

Update the applicable portions of the file, including header information,
nested tags, and so forth. Update the new XML file until it includes all the
functions that you want it to do. Use the instructions in the previous
sections of this chapter.

If you need to populate tables in the new module, you may need to create a
new script in the ...\ getit\apps\user\jscript\ directory. Copy an
existing script, just as you did to create the new XML file. When you save
the new script, be sure to include the . j s extension on the file name. See
“Changing JScript” on page 5-20 for instructions on updating a script file.

Run wbui I d getit. See “Running the wbui | d Command” on page 5-10 if
you need detailed instructions.

Log out and back into Get.It! Base to see the changes you have made.

Modules can be removed from a weblication by removing their entry in the
...\getit\apps\user\ directories (if they are modules you created) or from
the getit.xnl file if they are modules that came with Get.It! Base.

5-25



Adding a Feature from AssetCenter

5-26

Within AssetCenter, features may be added to track information not provided
for by the out-of-the-box database schemas. The Get.It! Base weblication
allows features to be incorporated as well, allowing customization of the data-
bases and screens for use by all users.

1. Add the feature to the desired table within AssetCenter. This should be
done in the typical AssetCenter fashion.

2. Add access to the feature using amUserRight entry. You must give access
to the feature by modifying the amUserRight table. Select the
amUserRight entries for which the new feature is relevant and provide
access to users as necessary.

3. Add the feature to a schema. Once the feature has been created within
AssetCenter, add it to the weblication’s schema. An excerpt from the
request.xn schema is shown below. The addition has been highlighted in
bold. See “Adding Fields to a Schema” on page 5-17 for details on updating
a schema.

<schema>

<docunent s nane="base">

<!-- Request Docunent -->
<docunment name="Request">
<attribute nane="1d" type="nuni/>

<attribute name="Test Feature" type="string"/>

</ docunent >
</ docunent s>

<document s nane="ac">

<!-- AC Request Docunent -->
<docunent nanme="Request" t abl e="anRequest " >
<attribute nane="1d" field="1Reqld"/>

<attribute name="Test Feature" field="fv_TestReq"/>
</ docunent >
</ docunent s>

Adding a Feature from AssetCenter



Tailoring Get.It! Base

4. Add the feature to an application. After the feature is referenced in the
schema, you need to incorporate it into the screen definitions. See

“Changing Form Contents” on page 5-11 for details on updating an
application.

5. An example is given here from the ... getit\apps\request.xm :

<l-- This formrequests order information for submission -->
<f orm nane="submi t" onl oad="procure. get O der Par anet er s" >

<title> Request Information </title>

<i nstructions>
Pl ease provide the followi ng information necessary
for submitting your request.

</instructions>

<fields>

<i nput | abel ="Purpose" type="text" fiel d="Purpose"
si ze="50"/>

<i nput | abel ="Test Feature" type="text"
field="TestFeature" />
</fields>

6. Runwbuild getit.See “Running the wbui | d Command” on page 5-10 if
you need detailed instructions.

5-27



Portal

The Portal is the Get.It! Base interface, customizable to your specific require-
ments. There are numerous Components that comprise the Portal. Each Com-
ponent has a different function, some of which are also customizable. You can
modify the layout, open and close Components, or remove Components from
the interface. The Portal that you receive upon installing Get.It! Base will look
similar to the following.

‘Welcome Hartke Select Content | Help | Log out
Application Menu
User: Hartke g ‘ W) Asset Browser %& Work Order Management
calculator 4 OX @ module Menu S oB

@ Assets %& Work orders

Fig. 5.10 The Portal with all components turned on

Within Portal you have access to many components. The components are
divided into two categories. The first category is Weblications, including Appli-
cation Menu and Module Menu. The second category is Personal Utilities,
including Calendar, Calculator, Weather, Stock Quotes, Top News, Business
News, Technology, Sports News, and Date And Time.

Note: If you are using Netscape Navigator as your default browser, some
screens may appear differently than shown. Notes are given where
differences occur.

Customizing (GUI)

The Get.It! Base Portal is a dynamic interface. You can move and remove all
Components. The Stock Quotes Component is modifiable, so you can specify
which quotes to display. Each Component contains a toolbar in its upper-right

5-28 Portal



corner. Depending on the type of Component, each corner will contain Custom-
ize (wrench), Copy (superimposed windows), Move (vertical arrows), Hide
(dash), and Remove (X) options.

2Ry Rermouve

Customize / Hide/Show
Moue

Fig. 5.11 Window Tools

Customize

The Customize option is for customizing the Component. Not all Components
are customizable (e.g., News, Sports). Clicking on the Customize button will
link you to the Change Layout screen, where you can modify the layout. To
save your modifications, click Save at the bottom of the screen.

Copy

Copy allows you to copy a Component. The only Component that you can copy
is the Problem Tickets Component. When you copy the Problem Tickets Com-
ponent, the second Component will be identified by its title within the title bar
(e.g., Problem Tickets: Copy 1).

Move

The Move arrows move Components up and down. You cannot move a Compo-
nent left and right. To move a Component, up press the Up arrow. Pressing an
arrow will move the Component by one increment. For instance, if the
Weather Component is on top and the Stock Quotes is directly beneath, press-
ing the Down arrow on the Weather Component will move it one notch place,
or below the Stock Quotes Component.

Hide/Show

Hide closes the Component, reducing the window to a menu bar with select-
able options (i.e., Window Tools). If a Component is in a Hidden state, then the
option becomes Show. Pressing the Show button will display the Component.
The Hide and Show buttons alternate.

Tailoring Get.It! Base 5-29



Remove

Clicking the Remove button removes the selected Component from the por-
tal. When you click Remove, a prompt will appear: Remove This Component?
Click OK to remove the Component or Cancel to void the process. You can
always reinstate a Component once it is removed by pressing the Select Con-
tent link and then selecting the desired Component.

Select Content

Clicking on Select Contents links you to Customize My Home Page. Within
this page are two main features, each containing multiple options that allow
you to customize your home page (or Portal). Each feature allows various
selections to be made. All of these features are available as Components on
your front page.

You do not have the option of customizing all Components. For instance, if you
select the Weather option located within Personal Utilities, you will not have
the option of locating the forecast for your specific area. Selecting the Weather
option provides a United States map with various forecasts from around the
country. There are other Components that are customizable. For instance, the
Stock Quotes option allows you to edit the displayed stock (the default for this
option is PRGN). All of the news options are provided by iSyndicate and are
not customizable.

Get.It! Base Weblication Components

Personal Utilities

5-30

Get.It! Base includes an application menu as a Weblication Components. A
check mark in the box means that the option is selected and that it will appear
on your home page. Click the Save button located at the bottom of the Select
Contents screen.

The Personal Utilities section allows you to customize your home page with a
variety of up-to-date options. You can select items from the latest business
news to the date and time. Select each option (check box) that you want for the
home page and click the Save button located at the bottom of the page.

Portal



Component Function

Calendar A monthly calendar. This component can be viewed using MS
Internet Explorer 4.0 or higher.

Calculator A standard calculator. This component can be viewed using
MS Internet Explorer 4.0 or higher.

Weather A map of the United States containing various forecasts
around the country.

Stock Quotes The latest quotes of your most frequented stocks.

Top News The latest headlines provided by iSyndicate.

Business News All things business provided by iSyndicate.

Technology All things technological provided by iSyndicate.

Sports News All things sport provided by iSyndicate.

Date and Time Your choice of Coordinated Universal Time (UTC or GMT) or

Standard Local Time.

Create New (Web page)

Create New, located at the bottom of the Select Content page, allows you to
create a new Web page. To create a new page you must insert a Title, a Dis-
play URL Link, and a Configure URL Link. The Title is the title of the page.
This is synonymous with the HTML <Ti t | e> tag. The Display URL (Uniform
Resource Locator) Link is the address where the page will be located. The
Configure URL Link is where the page will be configured. There are also two
options for page layout: Wide and Narrow.

For instance, in the Display URL Link you can insert ht t p: / / <your -
host >geti t/ti medat e. asp if you are running Microsoft’s IIS or JSP (java serv-
let pages).

For the Configure URL Link you can insert htt p: / / <your -

host >/ getit/timedate_confi gure. asp or JSP. The Date And Time compo-
nent uses the JSP version. The ASP version is included as an example of how
to incorporate Active Server Page technology within Get.It! Base.

Tailoring Get.It! Base 5-31



Tite: I

Display URL Link: Iht,t,p: Iy

Configure URL Link: I http: /fF

" Wide (¢ Narrow

Fig. 5.12 Create A New Page

To create a new page:

Click on Select Content.

Click Create New (at the bottom of the page).
Insert a Title.

Insert a Display URL Link.

Insert a Configure URL Link.

Click Save.

S o e

Change Layout

Your Portal or home page is divided into two areas: Narrow for the left and
Wide for the right.

The Narrow section occupies about one-third of the screen; the Wide section
occupies about two-thirds of the screen. These proportions are not modifiable.
Within both the Narrow Components and Wide Components sections are Up,
Down, and Remove buttons. These buttons either move or delete a component.
All active components are listed within the drop-down box.

To move a component up or down, or to remove it, first select the component in
the drop-down box and use the arrow and delete keys to its right. Press the
Save button at the bottom of the screen to save all changes of your layout. You
may modify the layout at any time. While this functionality exists within the
Portal or main page, the Change Layout option allows you to customize the
look more efficiently.

5-32 Portal



Narrow Components (shown on the left)

I Calendar = |

IR

Wide Components (showr on the right)

Ijl.pplicat:i vl

xR

Fig. 5.13 Change Layout

Netscape Navigator

Portal API

Tailoring Get.It! Base

If you are using Netscape Navigator as your default browser, the Change Lay-
out link allows you to move components either up or down. This feature is the
same as the Component Move button (for Internet Explorer users).

The Get.It! Base Portal is customizable. You can add, remove, and modify com-
ponents. The Portal also gives you the opportunity to use HTML plug-ins or
Active X components.

Located within the following directory are samples of code, each containing
highlighted script (in bold) that should be modified when making it user-spe-
cific.

...\getit\src\apps\user\weblication\sanples

These samples include (1) Adding A New Module, (2) Overriding A Form, and
(3) Adding A New Portal Component. Each of these samples is explained,
detailing those sections of the code that must be modified when you initiate
changes.

Sample Function

Add Module Adds a new module menu entry associated with another Web
site.

Override Form Changes the login form to remove the Register option.

Add Portal Adds components to the generic Portal components by

Component changing the AppMenu portal-component to display a
simple test phrase, adds a new component to the utility
category, and adds another component to a brand new
category.

5-33



Portal Components

Similar to the <conponent > tag, the <port al - conponent s> tag defines the indi-
vidual windows found on the home page. These windows can be moved, mini-
mized, and configured to provide the user with a concise view of multiple
aspects of the Get.It! Base environment. Portal components can also be linked
to third-party plug-ins like news and weather, so that all the resources of the
Internet can be brought together.

The default Portal components are defined in a file called pl ugi ns. xni
located in the . . .\ apps\ portal \ webl i cati on\ directory. This file is struc-
tured as follows:

<portal - conponent s>

5-34

<portal -category nane="getit">

<title> Get.It! Weblication Conponents </title>

<portal - conponent nane="nodul enenu">
<l-- TODO Update to store user’s favorite links -->
<title> Module Menu </title>
<i nstructions>
Quick links to the various nodul es that nake up this application.
</instructions>
<cont ent s>
<apprenu/ >
</ content s>
</ portal - conponent >

<| - - - - - - - - - - - - - - - - - - - - - - - T
AppMenu
e e e s>
<portal - component nane="appnenu">
<l-- TODO Update to store user’'s favorite links -->
<title> Application Menu </title>
<instructions>
Quick links to the various Get.It! applications.
</instructions>
<content s>
<appnenu type="title"/>
</ content s>
</ portal - conponent >
<| - - - - - - - - - - - - - - - - - - - - - - - - - - T
Cust om Conponent Cont ai ner
s>
<portal - conponent nanme="custon display="hi dden">
<cont ent s>
Portal



<cust om portal - conponent/ >

</ contents>
<confi gure>

<custom portal -configure/>
</ confi gure>
</ portal - conponent >

</ portal - cat egory>

</ portal - component s>

<portal-category>

Attribute

Description

name

Defines part of the name used in the construction of the JSP
file name.

<title>

Portal components are divided into categories. These
categories define the caption that appears in the “Select
Content” form that you can use for selecting the Components
that you want on your home page.

<portal-component>

The portal component defines the content and configuration forms that are

linked together.

Attribute

Description

name

Defines part of the name used in the construction of the JSP
file name.

copy

If copy="true”, then an icon appears on the component
toolbar that allows the configuration of a component to be
duplicated. Use this in conjunction with <confi gur e> to
create multiple copies of a component configured to display
different information.

adapt er

Defines the adapter that is required to support this
component. If that adapter is not accessible, then the
component will not be listed in the “Select Content” form.

br owser

Defines the browser that is required to display this
component. If a user uses a different browser, the component
will not be listed in the “Select Content” form.

Tailoring Get.It! Base

5-35




<plugin>

5-36

Attribute Description

access Defines the access right that the user must possess to access
this component. If a user does not have this access right, the
component will not be listed in the “Select Content” form.

<title> Defines the caption that appears on the toolbar of the

component and next to the checkbox of the “Select Content”
form.

<i nstructions>

Defines the text that describes the purpose of the component
in the “Select Content” form.

<cont ent s>

The contents of this element can be any weblication element,

like <t abl e> or <fi el dt abl e>. This tag is equivalent to the
<f or n» tag, including the ability to specify an onload script to
gather data for the elements contained within.

<confi gure>

This optional form defines configuration parameters to be
used by the <cont ent s> form. If this tag is present, a wrench
icon appears in the portal components toolbar. This tag is
equivalent to the <f or n» tag. The result of this form submit is
stored as <conponent . att ri but es> that are passed in the
msg parameter of the <cont ent s> onload function.

A plug-in element provides the user with the ability to reference third-party
URLs to be included in a portal component. The URL can point to an HTML,
JSP, or ASP page, or a GIF or JPG file from anywhere on the Internet.

Attribute Description

hr ef Defines the URL address of the resource.

post If the post attribute is set to “true”, then the data stored in
<conponent . attri but es> (see <confi gur e> above) will be
passed as post data to the URL.

I D If the optional ID attribute is defined, the HTML response

received from the URL will be scanned, and the HTML
element with the given ID will be extracted from the result,
discarding all other page information.

Portal




Portal Plug-Ins

Tailoring Get.It! Base

Portal allows the use of plug-ins, small software programs that plug into a
larger application to provide additional functionality. Plug-ins permit the
browser to access and execute files embedded in HTML documents that are in
formats the browser would not recognize such as animation, video, and audio
files. Most plug-ins are proprietary.

The following XML script defines reusable plug-in components such as Stock
Quotes. The complete version of this file can be found in pl ugi n. xni .

<!--Ceneric Conponent Sanples-->
<portal - conponent s>
<portal -category name="getit”>
<title>Get.It! Weblication Conponents</title>

<! --Cust om Conponent Contai ner-->
<portal - conponent nane="custoni displ ay="hi dden” >
<cont ent s>
<cust om portal - conponent/ >
</ cont ent s>
<confi gure>
<cust om portal -configure/>
</ confi gure>
</ portal - conponent >

<! --Yahoo Stock Quotes-->
<portal - conponent nane="stockquotes” col unm="narrow’ >
<title>Stock Quotes</title>
<instructions>Mnitor your personal portfolio.</instructions>
<contents onl oad="portal . get St ockQuot es” >
<tabl e record="MWPortfolio”>
<col um | abel =" Synbol " fi el d=" Synbol "/ >
<columm | abel ="Price” field="Price”/>
<col um | abel =" Change” fi el d=" Change”/>
<col um | abel =" Li nk” fi el d="Li nk”/>
<link target-url="redirect.jsp” field="Link"/>
</t abl e>
</ content s>
<configure onl oad="portal . editStockQotes”>
<list-builder field="Synbol” size="5" default="PRGN >
<src type="edit” |abel =" Synmbol” record="Synbol Choi ces”
di spl ayl i st="Synbol ” val uel i st="Synbol "/ >
<dest | abel ="My Portfolio” record="MyPortfolio”
di spl ayl i st="Synbol " val uel i st="Synbol "/ >
</list-builder>
</ confi gure>
</ portal - configure>

5-37



Skins and Stylesheets

New skins and stylesheets can be selected from either the Skins & Stylesheets
Portal Component or by using the navigational tree menu. There are several
predefined themes, each consisting of a skin (images and graphics) and a
stylesheet (fonts, colors, and special background images). You can select a new
Skin, Stylesheet, or Both from the drop-down selection box located on the Por-
tal home page or through the Skins and Stylesheets link.

New stylesheets can be created using the User schenes. xm file in the
...\getit\tenpl at es\ css\ directory and the cssbui | d command. Working
within the User schenes. xni file, you must copy an entire <schenme> definition
and then paste it in the same file. Rename the new <scheme> by changing the
<nane>. .. </ nane> element. Do not modify the names or locations of images
because this will break the skin.

Creating New Stylesheets

1. Right-click on the User schenes. xni file, located within the
...\getit\tenpl at es\ css\ directory, and deselect the Read-Only
attribute.

Open the User schenes. xn file.
Copy the first <scheme>. . . </ schenme> (this is named “blues”).
Paste the new <scheme> definition in the same file.

Rename the new <schene> (between the <nane>. . . </ nane> element).

S

Modify applicable font colors and images (do not modify any of the
elements).

7. Save the file.

8. Open a Command Prompt and run cssbui | d.

Note: You must restart JRun to see the new stylesheet in the Stylesheets
drop-down box.

All Skin and Stylesheet selections are predefined, thereby allowing you to
quickly create a new portal design without modifying CSS, XML, or HTM files.
It is important to understand the file structure when working with Skins and
Stylesheets. The purpose of the directory structure is to provide image organi-
zation and user-friendly customization. You do not need to hard-code paths.
All paths are dynamic and filled at run time, allowing for instant updates
without recompiling. You must use JSP files to process image paths. Other file

5-38 Skins and Stylesheets



formats will not be parsed by the JavaServlet engine. Do not modify the
css. xm file. If you add any new CSS files or Skins, save them in the
...\getit\apps\user\presentation\ directory as a backup.

All image paths in the generated JSP are similar to the following.
Skinned Images

<i ng src="<%ski ns¥%<%def aul t ski n%/ buttons/ back_button. gif">
Non-Skinned Images

<img src="<%l 0go% " > and <i ng src="<%i mages% /spacer.gif”>
The paths are set by Ar chway. i ni as in the following.

| ogo=i mages/ | ogos/ | ogo_getit_green.gif
i mages=i nages

ski ns=i mages/ ski ns/

def aul t ski n=cl assi c

When adding new images you will need to decide how it fits within the appli-
cation structure. But remember that you will not create a fully qualified path
for the image. In most instances the XSL file will suffice for the first half of the
path.

All images are referenced in the XSL using token replacement, as in the fol-
lowing.

$$1 M3 but t ons/ your _but ton. gi f)
$$1 M3(i cons/ your _button. gif)
$$1 M3 backgr ounds/ your _button. gi f)

There are other versions of this use in the XSL, as in the following.

$$I M <xsl : vari abl e nanme="your var”/>)

$$1 M @ mage)

Directory Structure

The following directory structure applies to all images, logos, and skins. All
directories are dynamic, generated at run time.

Tailoring Get.It! Base 5-39



5-40

B Exploring - C:\Program Files\getit...
File Edit “iew Toolz Help

All Folders

Kl

1 attachments
i
B0 help

-1 baja

E|{:| classic

-1 backgrounds
0 buttons
A2 iean:

20 nav_menu

{:I forest

{:I hightech

{0 midnight | I;l
3

Fig. 5.14 Skins/Stylesheets Directory Sructure

Directory

Purpose

Images

Generally, do not place images here. Use this directory only for
images not set by skins, in other words, images that will never
change and are common to all skins (e.g., spacer. gi f, a
transparent GIF for forcing spaces in table cells or forced
breaks).

Logo

This is for application logos such as the Get.It! Base logo.
These are not part of skins so they will never be affected in a
skin or stylesheet change.

Skins

No images should be placed in this level. This file is for the
organization of lower level skins directories.

Classic

The default skin. This directory can be copied, renamed, and
placed within the ski ns directory. You can also place images
at this level that do not fit elsewhere. You can also create new
directories to further categorize images at this level.

Backgrounds

All background images are placed in this file.

Banners

Currently empty, but suggested for organizing large banner-
like images.

Photos

Suggested for any images used in applications.

Skins and Stylesheets



XML Usage

XSL (example)

JSP (example)

Tailoring Get.It! Base

Directory Purpose

Buttons Defined as any graphic that is used as a button in the browser,
except for icons.

Icons Defined as the main button-like images used as the
navigational elements in the application menu @i.e., oval-
shaped image: . . . graphi cs\ | ogo\i con).

Nav_menu Used for all navigational sidebar or menu true images.

Portal Used for all portal and portal component-related graphics.

<nmodul e nane="b2badmi n" access="getit.b2badm n">
<title> B2BAdmin </title>
<descri ption
i mage="i cons/order.gif"
short =" B2BAdm n"
| ong="Manage B2B sites and catal og data" />
<col ums>
<col um>
<fields>

<link target-url="e_b2bshop_return_b2blist.jsp"
par am="Li st Acti on=Cat al ogUpdat e" i mage="i cons/ capturecatitens.gif">
Capture Catalog Itens </link>

<link target-fornm="ConfigureSites" image="icons/configsites.gif">
Configure Sites </link>

<link target-form="CheckVersions" inage="icons/updateobjects.gif">
Update Objects </Iink>

<link target-form="BillingOptions"

i mage="icons/billingoptions.gif"> Billing Settings </link>
</fields>

</ col um>

G obal _vars. xsl contains all the path variables for XSL docunents.
<inmg src="{$ski ns}{$defaul t skin}/{description/ @nmage}"
al i gn="absni ddl e" border="0"/>

This is the minimum requirement in any JSP to parse the dynamic paths.

<%@ page | anguage="j ava" buffer="16kb"

5-41




i nport="com peregrine.archway.*, com peregrine.archway.jsp.*,
comperegrine.util.*, java.util.~*,

java. beans. *,java.io.*,java. net.*" %

<%@i ncl ude fil e="gl obal s.jsp"%

<i ng src="<%ski ns%<%def aul t ski n%/ buttons/back_button.gif”>

JAVA Source Code (example)

out.println( "<IM5G SRC="" + Archway. getlni().getProperty( "skins",
"i mages/skins/" ) + Archway.getlni().getProperty( "defaultskin",
"classic" ) + "/buttons/cal endar.gif' BORDER=0/></A>" );

}

External JavaScripts

5-42

This is more difficult in that any images written to the browser will not be
affected by the skins. This is because JSP expressions for establishing image
paths cannot be parsed. This can be resolved by creating variables in a JSP
that is referenced by external JavaScript. The Logi n. j sp file is a good exam-
ple. Make sure your var s are loaded before the external JavaScript file.

Note that all JavaScript var s are hard-coded into the XSL and then passed
onto the Logi n. j sp. Logi n. j sp requires the external Menubui | der . j s file
because global JavaScript var s are established ahead of the Menubui | der. j s
call. They are then used by the JS file and parsed by the JSP to provide all
necessary paths.

<script |anguage="JavaScript">
var m expandedl con = "<ing
src=" <Y%ski ns¥%<%def aul t ski n%/ nav_nenu/ expand. gi f' wi dt h="12"
hei ght =" 14' border='0"/>";
var mcol | apsedl con = "<ing
src=" <% ski ns%<%-def aul t ski n%/ nav_menu/ col | apse. gi f' w dt h="12"
hei ght =" 14' border="0"'/>";
var msel ectedl con = "<ing
src=" <Y%ski ns¥%<%def aul t ski n%/ nav_nenu/ sel ect. gi f' wi dth=" 12
hei ght =" 14' border="0"/>";
var m.nosel ectedl con = "<ing
src=" <% ski ns%<%-def aul t ski n%/ nav_menu/ nosel ect. gi f' w dth="12"
hei ght =" 14' border='0"'/>";
var mbl anklcon = "<ing
src=" <% ski ns¥%<%-def aul t ski n%/ nav_nenu/ bl ank. gi f' wi dth="12'
hei ght =" 14' border="0"/>";
</script>

<script |anguage="JavaScri ptl.2" SRC="js/nenubuilder.js">
</script>

Skins and Stylesheets



Production Environment

Before you enter the production environment you should note a few settings to
help your transition.

java.argsin (jrun n/jsmdefaul t/properties/jsmproperties)

Be sure to set this parameter to something like the following.

j ava. args=- Xnx128m

This defines the size of heap memory given to JRun’s Java VirtualMachine,
providing 128 MB of memory. Larger settings may be appropriate on larger
systems.

debugscript (archway.ini)

This should be set to false. Failing to do so will cause slower execution and
substantial memory consumption.

scripttinmeout (archway.ini)

This specifies the number of seconds allotted to each user to execute a script.
The default setting is 30 seconds. If a user script runs longer than this maxi-
mum time-out value then all script operations are aborted.

Proper setting of this option is important to prevent run-away scripts from
stopping all servers.

| ogstdout (archway.ini)

This should be set to false to avoid duplicate logging sent to the st dout file,
potentially consuming disk space.

sessiontineout (archway.ini)

Specifies the number of milliseconds to allow inactive sessions to exist before
they expire. The default setting is as follows.

sessi ont i meout =600000

This gives users 10 minutes before expiration. Sometimes smaller time limits
may be appropriate. This setting is important because it ensures proper
cleanup of old sessions that may potentially be holding on to required memory
resources.

Tailoring Get.It! Base 5-43



5-44

maxscri ptrunners (archway.ini)

This setting controls the size of the FESI ScriptRunner pool created for Arch-
way. A proper setting should rarely be greater than 10 (the default). Each
ScriptRunner can consume a significant amount of memory, yet the efficiency
of the system does not increase with a number of script runners greater than
10.

maxquer ycount (ar chway. i ni)

If this parameter is set, it can limit the number of records that Archway will
fetch for any given query. It is a good idea to set this parameter as a safety
measure against runaway queries or bad scripts that attempt to fetch thou-
sands of records into a single XML response. In some instances a system will
need to process a large number of records. But the recommendation in such
scenarios is to perform several queries for smaller record chunks. The Start
and Count parameters to sendDocQuery() help accomplish this.

Production Environment



Chapter 6

Adapters

Get.It! Base ships with several adapters you can use to connect to one or more
databases. The following adapters are included with Get.It! Base:

AssetCenter adapter—provides a connection to Peregrine’s AssetCenter.

ServiceCenter adapter—provides a connection to Peregrine’s
ServiceCenter.

JDBC adapter—allows you to establish a full database connection to
databases other than AssetCenter or ServiceCenter.

LDAP adapter—provides you with a centralized source for information
about the people within an organization, eliminating the need to maintain
user data in more than one location.

E-mail adapter—allows you to connect to an external mail server.

This chapter includes detailed information about each adapter. There is also a
section at the end of the chapter that contains information about the log files
produced by JRun, ServiceCenter, AssetCenter, and the archway connector.
These log files can be helpful in troubleshooting connectivity problems.

Get.It! Base Tailoring Guide 6-1



ServiceCenter Adapter

This section includes information about the ar chway. i ni parameters that are
specific to ServiceCenter, ServiceCenter event handling, and tips for trouble-
shooting the Get.It! Base connection to ServiceCenter.

Archway.ini Parameters

The ar chway. i ni file contains parameters that are specific to ServiceCenter.
The following table lists the parameters and gives a description of each.

SC Parameter Description

scadmin An administrator login must be defined in order to
connect to ServiceCenter. The default is falcon, the
sample administrator login supplied with ServiceCenter.

scadminpassword By default, no admin password is required.

scanonymous With this login, requests sent to archway are processed
without going through the Get.It! Base user interface.
Used by the scriptpoller function. The default is falcon.

scanonymouspassword By default, no anonymous password is required.

schost The host name for your ServiceCenter installation. The
default is localhost.

scport The port number for your ServiceCenter installation.
The default port number for a full client is 12670.

sclog The location of the scl og file. The default is
C.\Program Fi |l es\getit\sc.|og.

ServiceCenter Event Handling

The ServiceCenter adapter provides a detailed event i n record that will give
status when an event fails to execute or fails to create an eventout response.

The following is an example of an event i n record. The record was generated
because an illegal approver tried to send an approval event:

6-2 ServiceCenter Adapter



<eventin>
<evtype>approval </ evt ype>
<evtime></evtine>
<evsysse(>3991bif f 0036f 001</ evsysseq>
<evusrse>3991bif f 0036f 001</ evusr seq>
<evsysopt ></ evsysopt >
<evuser >Hart ke</ evuser >
<evpswd></ evpswd>
<evsepchar >"</ evsepchar >
<evfiel ds>*ocng”QL102"appr ove* Har t ke </ evfi el ds>
<evexpi r e>0</ evexpi r e>
<evst at us>error </ evst at us>
<evnunber ></ evnunber >
<evlist></evlist>
<evti nest anp>2000- 08- 09T19: 40: 05+00: 00</ evt i nest anp>
<evcount ></ evcount >
<evnet nne</ evnet nne
<evcode></ evcode>
<evmsg>
<entry>Cannot execute application: es.approval </entry>
<entry>Unrecoverable error in application: es.approval on
panel decide.exit</entry>
<entry>You are not authorized to access Request Mynt Quotes.
</entry>
</ evnsg>
<evi d></evi d>
<sysnodcount >1</ sysnodcount >
<sysnoduser >N A</ sysnoduser >
<sysnodt i me>2000- 08- 09T19: 40: 05+00: 00</ sysnodt i me>

</ eventin>

The Archway script can use this information as necessary. For instance, it may
display the evnsg error messages returned by the RAD application, or mes-
sages indicating that an event has failed because of customized Format Con-
trol rules.

Using the _event parameter

Adapters

The “_event” parameter can be used in a script to specify the name of the
event to be used in an SCDocManager operation.

If an _event parameter is not defined, the standard insert or update attributes
of the document are used. Refer to “ServiceCenter-Specific Attributes” in
Appendix B for information on the insert and update attributes.



The following is an example of the use of the _event parameter:

var nsgTi cket = new Message( "Problent );

nsgTi cket.set( "_event", "epnt" );
/1 Tell SCDocManager to use an epnt event for this update
ar chway. sendDocUpdat e( "sc", nsgTi cket );

These lines will override the default insert and update attributes and instruct
the SCDocManager to use the attributes defined in the script instead.

Troubleshooting the ServiceCenter Database Connection

6-4

If you are having trouble making a connection between Get.It! Base and the
ServiceCenter database, verify the following:

1. Check the Control Panel page in the Admin module to confirm the
database connectivity status. See “Verifying Adapter Connections” on page
6-25.

2. If“sc” is disconnected, verify that the ServiceCenter service is running
(the ServiceCenter console has been started).

3. Ifthe ServiceCenter service was not running and you have started it, you
need to restart JRun to establish the connection.

4. Verify that you have ServiceCenter full client connectivity by starting a
client that is pointed to the port listed in the ar chway. i ni file.

Archway.ini Parameters



AssetCenter Adapter

This section includes information about the ar chway. i ni parameters that are
specific to AssetCenter, tips for troubleshooting the AssetCenter connection,
and tells how to set AssetCenter feature links.

INI Parameters

The following table lists the ar chway. i ni AssetCenter parameters and gives a
description of each.

AC Parameter Description

acadmin An administrator login must be defined in order to connect to
AssetCenter. The default is Admin, the sample administrator
login supplied with AssetCenter.

acadminpassword By default, no admin password is required.

acanonymous With this login, requests sent to archway are processed
without going through the Get.It! Base user interface. Used by
the scriptpoller function. The default is Admin.

acanonymouspassword By default, no anonymous password is required.

acdatabase The name of the AssetCenter database to which Get.It! Base
will connect. The default is ACDemo351ENG.

acdateformat Establishes the date format for AssetCenter. The default is
yyyy-MM-dd.

acapidll Used with AssetCenter version 3.5 and above. This parameter

is not mandatory, since Get.It! Base is able to detect which
DLL to load and where to find it, based on the connection
name defined by the acdatabase parameter.

When this parameter is not specified, Get.It! Base uses the
information provided by AssetCenter in the connection
description (in andb. i ni ), to determine the DLL name. Use
this parameter only if the default name determination is not
successful.

Adapters 6-5



6-6

AC Parameter

Description

acapidllpath

Gives the path to the folder in which the AssetCenter API
DLL is located. If this parameter is left blank, Get.It! Base
will search the folders in which AssetCenter is installed for a
DLL with the expected name. If the requested DLL is not
found, Get.It! Base will load it from its bi n folder.

This parameter should be used only if the default path
determination does not work as expected. Note that in the
case where the locale parameter in ar chway. i ni contains “ja”
(meaning that you intend to use Japanese), Get.It! Base will
only load the API DLL from an AssetCenter Japanese folder,
and if it does not find it there, it will load it from bi n/ j a.

acdefaultloginclass

Establishes the type of default user login. This parameter can
have four different values:

e Ifitis empty or not specified in ar chway. i ni , the self-
registered users are added to AssetCenter with the default
login class defined in AssetCenter. The default for a
registered user in AssetCenter is naned user.

e Ifthe value is casual, (acdef aul t | ogi ncl ass=casual )
the self-registered user will be added as a casual user.

e Ifthe value is floating, (acdef aul t | ogi ncl ass=
fl oati ng) the self-registered user will be added as a
floating user.

e Ifthe value is named, (acdef aul t 1 ogi ncl ass=naned)
the self-registered user will be added as a named user.

Casual user, floating user, and named user are described in
the AssetCenter documentation.

AssetCenter Adapter



Troubleshooting the AssetCenter Database Connection

If you are having trouble making a connection between Get.It! Base and the
AssetCenter database, verify the following:

1. Check the Control Panel page in the Get.It! Base Admin module to
confirm the database connectivity status.

2. If “ac” is disconnected, verify that the “acdatabase” parameter in the
archway. i ni fileis the same as the database name displayed when you log
into AssetCenter. For example, in the system as shipped, the acdatabase
parameter is set to ACDemo351ENG. Refer to your AssetCenter
documentation for assistance with login procedures.

3. Verify that all AssetCenter settings match Get.It! Base settings. Log into
the AssetCenter database. Make sure that the login account referenced in
the Get.It! Base settings matches the login for AssetCenter. Also verify
that Get.It! Base is using the correct user name and password for the
connection. You can do this by selecting File>Manage Connections in
AssetCenter.

4. Check the Get.It! Base ODBC connections to AssetCenter. Depending on
the way you run JRun, it will look for either an ODBC User DSN or an
ODBC System DSN.

e Ifyou start JRun as a service (the usual method), it references the
System DSN for the ODBC connection to the AssetCenter database.

e Ifyou start JRun as an application, it references the User DSN to
determine the ODBC connection.

AssetCenter Feature Links

The following is a JScript function to set AssetCenter feature links.

// general case assetcenter feature |ink popul ation.
//to be used when a feature link is defined to a
//table in assetcenter. you nmust link with nmultiple
//tables to link with the required record.

/I expects many paraneters: anfFeature table, SQLNane,
/| anFeature, Target Tabl eName, field nane of ID field
//in target table.

function featureLink(

[ | anfeat ure SQ.Nane
sFeat ur eSQLNane,

Adapters 6-7



//table that Feature points to
sTabl eNane,

/11D field in sTabl eNane
sl d,

/lstring value of destination record
sDesti nati onVal ue,

/11D of destination record of |ink
| Destinationld
)
{
var nsgFeat ure;
var strFeatld;
var nsgFeat ureRel ati ve;

I/l ocate the anfFeature record

nsgFeat ure = archway. sendQuery(“ac”,

“SELECT | Featld FROM anfeature WHERE SQLNane = “°
+ sFeatureSQLNane + "7,

0,1);

[/ conveni ent storage for the Id
strFeatld = nsgFeature.get(“lFeatld”);

//locate the record in sTabl eNane identified via the
/| anFeature record
nmsgFeat ur eRel ati ve = archway. sendQuery(“ac”,
“SELECT | FeatVal |l d FROM + sTabl eNane +

“WHERE” + sld + “=" + nsgDestinati onRecord.get(“ld")+
“AND | Featld = “ + strFeatld,
0,1);

[/ modify the record in sTabl eNane with data from

/I megDesti nati onRecord
nsgFeat ureRel ative.set (“fval”, IDestinationld);
nsgFeat ur eRel ati ve. set (“Val String”, sDestinationVal ue);
ar chway. sendUpdat e(“ac”, mnsgFeatureRel ative);

return;

}

AssetCenter Adapter



You can call this to set feature link values. The following example adds a
“Manager” feature link to the amEmplDept table to link an employee to a
manager.

f eat ur eLi nk(

/1 SQLNanme of the anfFeature entry
“Manager”,

//feature table associated with feature added to “anEnpl Dept”
“anfFvEnpl Dept ",

/[Inanme of ID field in anEnpl Dept
“1 Enpl Dept 1 d”,

//string value of the manager record (e.g., Nane, FirstNane)
sManager Nane,

/11D of destinationrecord of link (the “nmanager” we're |inking with)
| Manager 1 d);

JDBC Adapter

The Java Database Connectivity (JDBC) adapter allows you to create a con-
nection between Get.It! Base and a database other than AssetCenter or
ServiceCenter.

You can set up as many JDBC adapters as you need. The only limitation is
that each adapter must point to a different database target string.

Adding and configuring a JDBC adapter requires several steps:

e C(Creating the connection between Get.It! Base and the database.
e Validating the connection.

¢ Adding the database settings to the Settings form.

e Creating a module in the portal so that information from the database will
be displayed in the desired format.

The following procedures outline these steps, using the example of establish-
ing a connection to a database that stores data about employees.

Adapters 6-9



Adding a JDBC Adapter

There are two steps to adding a JDBC Adapter to Get.It! Base:

e Verify the Data Source Name (DSN) for the database to which you want to
connect.

e Update the archway. i ni file with information about the database.

Verifying the System DSN

The first step in adding the JDBC adapter is to verify the DSN for your data-
base. You will need to add this information to the ar chway. i ni file.

If you have not yet created a system DSN for your database, use the following
procedure to do so.

1. Open the Control Panel (Start->Settings->Control Panel) and double-click
the ODBC Data Sources icon.

2. Select the System DSN tab, and then click Add.

€10DBC Data Source Administrator HE
User DSM Swstem DSH | File DSM I Driversl Tracingl Connection Poolingl About I

Sustem Data Sources:

Add...
| Diriver I

Sybaze SOL Anywhere 5.0 FRemove |

AszzetCenter Databazes  Peregrine AssetCenter Driver

MEIS SOL Server Corfigure... |

Test2 Microzoft Access Driver [*.mdb)

An DDBC System data source stores information about how to connect to
the indicated data provider. A System data source iz vizible to all uzers
on this machine, including MT services.

QK I Cancel | Lol | Help |

Fig. 6.1 ODBC Data Source Administrator

3. Select the driver for which you want to set up a data source. For this
example, we are using the Microsoft Access Driver, because the example
database was created using Microsoft Access.

6-10 JDBC Adapter



Adapters

Create New Data Source

Select a driver for which you want to zet up a data source.

Microzoft dB aze Driver [*.dbf]
Microzoft Excel Driver [*.xlz]
Microzoft FoxPro Driver [*.dbf]
Microsoft ODBLC for Oracle
Microzoft Paradox Driver [*.db ]
Microzoft Test Driver [*.tat; * cav]
Microsoft Visual FoxPro Driver

Peregrine AssetCenter Driver
Carimalantar MRS Nirisar

Wersion

|
400420200 |
400420200 |
400420200 |
400420200 |
2673420200 |
400420200 L
4.00.4202.00
£.00.8440.00

380127800 |
200 N7 A _'LI
»

< Back I Finizh I Cancel

Fig. 6.2 List of available drivers

Click Finish.

In the dialog box displayed, give the data source a name. You can name it

anything you want. For this example, we have used “Access_JDBC_test”.

ODBC Microsoft Access Setup E

[rata Source Mame:

Description:

IAccess_J DBC_test

Ok I

Cancel |

- Database

D atabase:

Select... |

Lreate... | Bepair...

Compact... |

Help

[
Advanced... |

— System Databaze

& Mong
" Database:

Systen Watabaze,. |

Optiongs>

Fig. 6.3 ODBC setup—data source name

6. Click OK. The new DSN is added to the list of data source names.

6-11



€10DBC Data Source Administrator HE
User DSM Swstem DSH | File DSM I Driversl Tracingl Connection Poolingl About I

Sustem Data Sources:

Add...
Mame | Diriver |
Microsoft Access Driver [*.mdb] FRemove |
ACDemo350ENG Svbase S0L Anywhere 5.0
AszzetCenter Databazes  Peregrine AssetCenter Driver LConfigure... |
MAIs SOL Server
Test2 Microzoft Access Driver [*.mdb)

An DDBC System data source stores information about how to connect to
the indicated data provider. A System data source iz vizible to all uzers
on this machine, including MT services.

QK I Cancel | Lol | Help
Fig. 6.4 New system DSN added

7. Click OK.

Updating the Archway.ini File
1. Open the archway. i ni file in the C:\ Program Fi | es\ geti t\bi n\ directory.

2. Update the adapters line with the JDBC Adapter, so the line would look
something like:

adapt er s=sc=SCAdapt er ; por t al DB=SCAdapt er ; xx=JDBCAdapt er

where xx is a two character designation of the database to which you are
linking.

3. Add the following lines to the ar chway. i ni file. Replace xx with the two
character designation of the database to which you are linking. Replace
<odbc nane> with the system DSN for your database.

xxdat abase=<odbc nane>

xxdat abaseur | =j dbc: odbc:

xxdat abasedri ver =sun. j dbc. odbc. JdbcCQdbcDri ver
xxcasesensi tive=fal se

xxanonynous=

xxanonynouspasswor d=

xxadm n=

xxadm npasswor d=

6-12 JDBC Adapter



For this example, the modified lines would look like this:

madat abase=Access_JDBC t est

madat abaseur | =j dbc: odbc:

madat abasedri ver =sun. j dbc. odbc. JdbcCdbcDri ver
macasesensitive=fal se

maanonynous=

maanonynouspasswor d=

maadm n=jsmth

maadm npasswor d=t est

4.

The fields can be updated after you have changed the Administration
module weblication to display them. The “xxadmin” and
“xxadminpassword” are used to actually connect to the database and,
therefore, must be a valid database user.

The “xxanonymous” and “xxanonymouspassword” as well as names used
in the login screen are used for Get.It! Base user sessions.

The “xxdatabaseurl,” “xxdatabasedriver,” and “xxcasesensitive,” and
anonymous login fields are optional. All others are required.

Save the file.

Validating the JDBC Adapter Connection

Adapters

Once you have completed the steps for adding an adapter, you can verify that
the connection has been made.

1.

Go to the database you want to query and find a table against which you
can run a query. Make note of the table name.

Type the following query in the address field of your Web browser, and
then press Enter:

<host name>\ servl et \ ar chway?<adapt er nane>. query& t abl e=<t abl e nanme>

where <name of adapter> is the two-letter designation you gave your
database in the ar chway. i ni file.

For our example, we used a table called “Employees” in the sample
database, so our query would look like this:

| ocal host\servl et\ archway?na. quer y& t abl e=Enpl oyees

3.

In the dialog box displayed, select to open the file from its current location,
and then click OK.

Select a text editor to display the data, and then click OK.
Figure 6.5 shows an example of data displayed using Notepad.

6-13



Anonymous narme [Aadmin Anonymous user name used when an unknown user attenpts to communicate | =]

HE aichway - Notepad =

File Edit Search Help

<?¥ml version="1.8"7><{recordset _count="-1" _countFound="5" _more=""8" _start=""0"> =
<Employees>
<EMPLOYEEID>1</EMPLOYEEID> ]

<FIRSTHAME>Mancy</F IRSTHAHE>
<LASTHAME>Davolio</LASTNAME>
{TITLE>President</TITLE>
<EXTENSION></EXTENSION>
<WORKPHONE>{212) 555-9857</WORKPHONE>

</Employees>

<Employees>
<EMPLOYEEID>2</EMPLOYEEID>
<FIRSTHAME>Andrew</F IRSTHAME>
<LASTHAME>Fuller</LASTHAHME>
LTITLE>Treasurer</TITLE>
<EXTEHSION></EXTENSION>

ing tasks such as user

Jiser attempts to communicate

<WORKPHONE>{(212) 555-9482</WORKPHONE> ient connection
</Employees>
<Enployees> [

<EMPLOYEEID>3</EMPLOYEEID>
<FIRSTHAME>Janet<{/FIRSTNAME>
<LASTHAME>Leverling</LASTHAHE>
<TITLE>Executive Secretary</TITLE> Hser atternpts to communicate
<EXTEHSION></EXTENSION>
<WORKPHONE>{212) 555-3412</WORKPHONE> [—
</Employees>
<Employees?
<EMPLOYEEID>4</EMPLOYEEID>
<FIRSTHAME>Margaret</FIRSTHAHE>
<LASTHAME>Peacock</LASTHAHE>
<TITLE>Accounting Manager</TITLE>
<EXTENSION></EXTENSION>
<WORKPHONE>{212) 555-8122</WORKPHONE> :J driver

ing tasks such as user

Legal domains peregrine.com: apsyde o) Enter a semicolon separated list of mail domains that Get.It! may currespund_'_l

4

Fig. 6.5 Verification that the JDBC adapter is processing data

Adding the New Database Settings

The Settings form in the Get.It! Base Admin module contains the settings for
the ServiceCenter and AssetCenter database connections.

You will need to update the adni n. xni file to add the JDBC adapter settings to
this form.
Updating the Admin.xml File

1. Open the adnin. xn file from the C: \ Pr ogr am
Fi |l es\ getit\apps\common\webl i cation\ directory.

2. Find the activity called “Settings.”

Scroll down until you see where the AssetCenter and ServiceCenter
adapters are set up.

6-14 JDBC Adapter



Adapters

Enter the following lines after the AssetCenter and ServiceCenter adapter
information. Be sure to update the “JDBC” and “xx” with the information
for the system to which you are linking. Where “xx” is used, replace
uppercase “XX” with uppercase letters and lowercase “xx” with lowercase
letters:

<section | abel ="JDBC (xx) Adapter Settings">
<entry>
<i nput field="XXAdm n" type="text" | abel ="Adm ni strator nane"
size="20" />
<instructions>Adm ni stration user used by Get.Ilt! when perfornng
tasks such as user authentication and regi stration</instructions>
</entry>
<entry>
<i nput field="XXAdm npassword" type="password"
| abel =" Admi ni strator password" size="20" bl ank="_bl ank" />
<instructions>Adm ni stration password</instructions>
</entry>
<entry>
<i nput fiel d="XXAnonynous" type="text" | abel =" Anonynmous nane"
size="20" />
<i nstructions>Anonynous user nane used when an unknown user
attenpts to comuni cate through archway</instructions>
</entry>
<entry>
<i nput fiel d="XXAnonynouspassword" type="password"
| abel =" Anonymous password" size="20" bl ank="_bl ank" />
<i nstructions>Anonynous user password</instructions>
</entry>
<entry>
<i nput fiel d="XXDat abase" type="text" | abel ="Dat aSource"
ze="20" />
<instructions>Data source nane for ODBC driver</instructions>
</entry>
<entry>
<i nput field="XXDatabaseUr|l" type="text" |abel ="JDBC Url"
ze="20" />
<instructions>U| for JDBC driver (optional)</instructions>
</entry>
<entry>
<i nput field="XXDatabaseDriver" type="text" |abel ="JDBC Driver"
size="20" />
<instructions>Alternate JDBC driver (optional)</instructions>
</entry>
<entry>
<i nput field="XXCaseSensitive" type="checkbox" | abel ="Case
Sensitivity" value="true" val ueoff="fal se" />
<instructions>Select this to toggle case sensitivity in the JDBC
driver</instructions>
</entry>
</ section>

S

S

6-15



4. Save the file in your . . .\ user directory. If you save it in the conmon Get.It!
Base directory it will be overwritten the next time you load a new version

of Get.It! Base.

5. Run wbui | d getit. See Chapter 4 for detailed instructions on running the

wbui | d command.

6. Verify that the fields have been added to the Settings page.

Anonymous name: |Admm

Anonymous passward: I
Database IACDemoESDENG

Adrnin name:

Ifah:un

——
flaeon

Anonymous password: l—
Host: W
Port: Im—
Log: [cPragram Filesigetity

Adrmin password:

Anonymous name:

Administrator name: Ikmm
Administrator password: Iﬁm

Anonymous uger

password

Data Source: m
JDBC URL fiobcodbe |
JDBC Driver:

Isunjdhc odbe. JdbeOdt

Case Sensitivity Citrue & false

Legal domains:

4

Anonymaus user hamme used when an unknowh user attenpts to communicate | <]
with AssetCenter

Ananymaous user password

Name of AssetCenter database

ServiceCenter Adapter Settings

Adrministration user used by Get.It! when perfarming tasks such as user
authentication and registration

Administration password

Anonymous user hame used when an unknown user attempts to communicate
with ServiceCenter

Anghymous user password
Host name of SericeCenter server
Port number of SericeCenter server

Path to 3C logying used by the SeniceCenter client connection

JDBC Adapter Settinygs

Adrinistration user used by Get.Itl when perfarming tasks such as user
authentication and registration

Angnymous user harne used when an unknown user atternpts to communicate
through archway

Data source name for ODBC driver
URL for JDEC driver {optional)
Alternate JDBC driver (optional)

Select this to toggle case sensitivity in the JOBC driver

Email Settings
Iperegr1ne.cam:apsyde AI Entet a semicolon separated list of mail domains that Get.lt! may correspond ||+

| »

Fig. 6.6 JDBC adapter settings added to the settings page

Creating an Interface to the Database

6-16

In order to display formatted data from your database or to add new informa-
tion from Get.It! Base to the database, you will need to add a new module to
the Get.It! Base portal. This process includes the following three steps:

e Modify an XML file to establish how you would like the data to be

formatted.

e Modify schemas to map to the fields in your database tables.

e Modify the JavaScript to point to your database.

JDBC Adapter



All of these procedures can be done by copying existing files and changing
them to pull data from your database and format it. The files you will need are
located in the . . . geti t\ apps\ common directory. Copy the files you want to use
into the equivalent folders in the . . . geti t\ apps\ user directory so that they
will not be lost when you upgrade to a later version of Get.It! Base. See “Add-
ing a New Module” on page 5-25 for instructions for adding a module to the
portal.

Preventing Lost Connections

Replace this
query with one
that you have
used with your
database and you
know will succeed
every time.

Adapters

If you experience lost connections while using the JDBC adapter, you can use
a polling script which will periodically check for database connectivity and
reconnect when a connection is lost. The script is then run through scri pt -
pol I er.ini on a periodic basis.

The following script (pi ngDB. j s) is an example. You will need to customize this
script for your own database name and queries as noted.

/1 PingDB - attenpts a well known query periodically, on error
/'l reconnects the JDBCAdapter to the database using the "_connect"
/1 event which will attenpt a disconnect and then reconnect.

/1 Two functions are defined:
/1 start() - executes exactly once

/1 run() - executes on the polling interval

11
e R T T T
Ar chway Packages. com peregri ne. ar chway;

Message Ar chway. Message;
e R T T T
/1 Start function can build parameters for run nethod
e T
function start( nsg )

{

var msgRet = new Message();
nsgRet . set (" nessage", "ok");
return nsgRet;

—

/1 run function .. subsequent invocations

function run( nsg )

{
\var msgDB = new Message("test _query"):

var msgRes = null;

6-17



var nmsgRet = new Message();

nsgDB. set ("query", "select * fromtab");
nmsgDB. set (" _count”, "1");
Replace “xx” with
the two-letter nmsgRes = archway. send( "xx", "query", msgDB );
designation of the if (msgRes. get("nessage”))
target database { . .,
identified in the msgDB = new Message("_connect");
archway.ini file. nsgRes = archway. sendEvent ( "xx", msgDB );
}

nmsgRet . set (" message", "ok");

return nsgRet;

Calling a Stored Procedure

Stored procedures can be called with input and output parameters. When the
procedure is executed, the adapter first attempts to get any result sets that
may have been returned, then attempts to retrieve the set of parameters with
which the function was called. The resulting parameter list includes both
input and output parameters and their values.

All parameters are treated as (and assumed to be declared as) Varchar or
String type, with other data types to be supported in a future release.

Input and output parameters are specified with the “type” attribute; valid set-
tings are “IN/OUT/INOUT”.

There are three ways to call a stored procedure:
e From the Web browser through CGI syntax in a URL.

¢ From a JScript file or post stream with an XML document containing _call
and _sql tags.

¢ Using the Get.It! Base Document Manager.

The following is an example using a stored procedure called “insertEvent()” in
an MSSQL7.0 database with two parameters; the first is of type “input” and
the second, “output”. When called, the procedure verifies the input data and
inserts a row returning the new row ID number.

6-18 JDBC Adapter



Using a URL

Using a JScript

http://1 ocal host: 8080/ prgn/ servl et/ archway?j a. event
& sqgl ={call insertEvent (' Userl',?)}&nane=User &al ue=User 1&t ype=I N
&name=| d&t ype=0UT

function processlnsert( nsg )

{
var msgEvent = new Message("event");
var strCall = "{CALL insertEvent('Userl ,?)}";

nmsgEvent . set ("_sql ", strCall);
nsgArg = new Message(" _argunents");

el Tag = nmsgArg. add("nane", "User Nane");
el Tag. set Attribute("type", "IN');
el Tag. set Attri bute("val ue", "Userl");

el Tag = nmsgArg. add("nanme", "1d");
el Tag. set Attri bute("type", "OUT");

nsgEvent . add( msgAr g) ;
nsg = archway. sendEvent ("ja", nsgEvent);

return nsg;

}

Using a Document Insert Or Update

Adapters

This example uses the following schema definitions:

<?xm version="1.0"7?>

<schema>

<docunents nane="base">
<docunent name="ProcEvent">
<attribute nane="User Nane" type="string"/>
<attribute nane="1d" type="id"/>
</ docunent >
</ docunent s>

6-19



<docunents nane="ja">
<docunent nanme="ProcEvent" tabl e="None" insert="insertEvent"
updat e="updat eEvent " >
<attribute nane="User Nane" fiel d="NAME" insertEvent="IN"
updat eEvent ="I N'/ >
<attri bute nanme="1d" field="I1D" i nsert Event =" QUT"
updat eEvent ="I N'/ >
</ docunent >
</ docunent s>

</ schena>

using the following JScript function:

function processlnsert( nsg )

{

var msgRequest = new Message( "ProcEvent" );

nsgRequest . add( "User Nane", "Userl" );
nmsgRequest = archway. sendDocl nsert( "ja", msgRequest );

return(nsgRequest) ;

All methods above will produce the following output:

<?xm version="1.0" ?>
< doc>
<_argunent s>
<l d>915326</ | d>
<User Name>User 1</ User Nane>
</ _argument s>
</ _doc>

6-20 JDBC Adapter



LDAP Adapter

Lightweight Directory Access Protocol (LDAP) directories provide a central-
ized source for information about the people within an organization. E-mail

addresses, telephone numbers, fax numbers, user IDs, and passwords can be
defined in the LDAP directory and referenced by various applications, elimi-
nating the need to maintain user data in more than one location.

The use of an LDAP directory allows users without AssetCenter Employee
Records to log on to Get.It! Base by providing minimal login information, such
as login ID and password.

The information in this section assumes prior knowledge of the general setup
and configuration of LDAP, and ability to write the associated JScript.

Connecting LDAP to Get.It! Base

There are three procedures that need to be completed in order to connect to
Get.It! Base using LDAP:

e Update the archway.ini file to include the LDAP parameter.
e Create a JavaScript to query Get.It! Base.
® Reset the server.

This section provides information on updating the ar chway. i ni file. Refer to
your LDAP documentation for instructions on setting up an LDAP adapter.
Sample scripts are not provided with Get.It! Base because of the variety of
possible configurations. However, Chapter 4 of this guide includes instructions
for modifying JScripts.

Updating the archway.ini File

To configure the LDAP adapter, update the ar chway. i ni file with the follow-
ing information:

1. Add the adapter name to the adapters line:
ac=ACAdapt er ; por t al DB=ACAdapt er ; | dap=LDAPAdapt er
2. Define the LDAP connection parameters:

| dapur | =xxx
| dapl ogi n=xxx
| dappasswor d=xxx

Replace the “xxx” with your system and user-specific information.

Adapters 6-21



E-mail Adapter

6-22

The E-mail adapter can be set up using Java or from an Archway ECMA
script. The various calls that are available are the same either way. The E-
mail adapter is based on the Sun Javax.mail classes for mail, especially:

e javax.mail.Session
e javax.mail.Message
e javax.mail.Transport
e javax.mail.search

and several other related classes. Detailed documentation on these is avail-
able from Sun's java.sun.com site.

The following script illustrates how the E-mail adapter can be used to connect
to a mail server and how a given mailbox at that server can be processed:

/1 FESI definitions to point tothe Archway nmail adapter Java cl asses
Archway = Packages.com peregrine. archway;
Mai | Adapt er = Archway. adapt ers. Mai | Adapt er;

/1 Alocate a new Ml Adapter object
var ma0 = new Mai |l Adapter();

/1 Optional: Turn on Javax.nai|l debug nbde by calling
/1 "setDebug( true )"
/1 If thisis done, copious javax.mil debug messages will be witten
/1 to JRUN standard output |og
ma0. set Debug( true );

/1 Connect to a specified nailbox at a specified | MAP4-capabl e
/1 mail server, passing the hostnane of the server, a userid,
/1 and a password
ma0. set Connecti on( "exchange. nycorp.conf, "joesmth",
"opensesane" );

/1 1f we could not connect for sone reason, print Mil Adapter | ast
/1 error in the log and return fal se
if ( ma0.connect() !'=0)

{

var err = ma0.getlLastError();

/1 This returns an Archway error nessage containing | ast javax. nail
/1 error info

env.error( "CGot error: " + err.getErrorMessage() +

"trying to connect to mail box" );

return fal se;

}

E-mail Adapter



/1l Get a logical Archway | ock on the nailbox we are going to process
var strMailLock = "Mil Adapter:" + "joesnmith"
env. get Lock( strMail Lock );

/1 Build the SQL query to query the mail box
var mail Query = "SELECT * FROM | NBOX ";
if ( docType != null )

{
mai | Query += " WHERE subject = '" + docType + "' ";
}
if ( lastRecvDate != null && | astRecvDate != "" )
{
mai | Query += " AND receivedDate > " + | astRecvDate ;
}

/1 1ssue the query. Ask for 4 messages starting with zeroeth nmessage.
/1 Specifying -1 for the count retrieves all nessages
var m = na0.doQuery( mail Query, 0, 4 );

/1 Make sure it worked

if ( m==null )

{
env.error( nma0.getlLastError() );
env. rel easeLock( strMilLock );
return fal se;

}

env. debugl og( "Response fromnai | adapter was: " + mgetContent () );
var i = 0;

var docsProcessed = 0;

var |list = mgetList("nmessage");

for (i=0; i < list.getLength(); i++)

{

/1 CGet the mail nessage represented by this list entry
var mm = ma0. get Mai | MessageByNunber ( list.get( i,
"messageNunber” ) );
if ( nm== null )

{
env.log( "Failed to retrieve mail nessage by number - " +
ma0. get Last Error (). get Error Message() );
env. rel easeLock( strMilLock );
return fal se;
}
env. debugl og( "Mail nessage " + i + " is: " + nmm get Content
( false ) );
/Il Get a few elenents out of the Mail nessage
var nsglD = mmget( "nessagel D' );
var nsgNo = nmget ( "nmessageNunber" );

Adapters 6-23



var text = mmaget( "text" );
var subject = mmget( "subject" );
var dt Received = new Date( mmget( "receivedDate" ) );

/1 Delete the Mail message
ma0. del et eMai | MessageByNunber ( nmsgNo ) ;

}
/1 Commit inbox folder changes. This does a Java nmil expunge
/] operation

ma0. comi t | nboxFol der Changes() ;

/'l Rel ease | ock on nail box
env. rel easeLock( strMil Lock );

/1 Close the mail box
ma0. di sconnect () ;

6-24 E-mail Adapter



Verifying Adapter Connections

The status of a connection from Get.It! Base to a database can be verified from
the Control Panel in the Admin module. In the example in Figure 6.7, “sc” is

shown as disconnected because the ServiceCenter console was not started
before logging into Get.It! Base.

Control Panel

ERROR: Unable to reconnect to SC. Please verify that the SC server is up and restart Archway.

Here is a list of the adapters currently registered in this server. You may click on any adapter to find out further details about the
connections. If necessary, you may also reset the server and all its connections.

= Admin

Archway version timestamp: Get. lt! MAIN DEY BRANCH, Build 2000091291221

Connection Status:

Target Adapter

Status
portalDB corm. peregrine. archway. adapters. ACAdapter connected
ma com.peregrine. archway. adapters JOBCAdapter connected
sC corm. peregrine. archway. adapters. SCAdapter disconnected

Fig. 6.7 Verifying adapter connections.

For more information on connectivity troubleshooting with each adapter, refer

to the appropriate section on each Get.It! Base adapter provided in this chap-
ter.

Adapters 6-25



Log Files

There are a number of log files produced by JRun, ServiceCenter, AssetCenter,
and the archway connector that provide information that can help you trou-
bleshoot your Get.It! Base installation, including connectivity problems.

The following table lists the paths to the log files and gives a description of the
types of messages written to each file.

Path to Log File Description

\JRun\jsm-default\logs\stdout.log Standard output from JRun, including “writeIn” and
Log.log statements from Jscript.

\JRun\jsm-default\logs\event.log A log of events: initialization of objects, need to re-
initialize objects after modifications, and so forth.

\JRun\jsm-default\logs\stderr.log Standard Error output from JRun. Includes Java
exceptions and similar errors.

\JRun\jsm-default\services\jse\logs\error.log Logs information similar to stderr.log above.

\JRun\jsm-default\services\jse\logs\event.log | Logs information similar to event.log above.

archway.log The location of this log file is specified in the
archway. i ni file. The information included in the
log file is also determined by the INI file, but includes
things like env. | og, env. debugl og, and query

information.
\Program Files\ServiceCenter\sc.log Information regarding the ServiceCenter connection.
\Program Files\AssetCenter\ac.log Information regarding the AssetCenter connection.

6-26 Log Files



Chapter 7
Localization Support

Make sure the Get.It! Base allows each user to dynamically select the language in which they
Locales and would like the Get.It! Base windows displayed. This is supported through lan-
Currencies fields in guage-specific string files which you can update if you are adding your own

the Administration strings.

Module Settings are
set correctly before Note: The AssetCenter weblication templates provided with Get.It! Base

¥|<)u begin localizing support English only.
iles.

General Localization Steps

Before you can localize the strings you create, complete the following two
steps:

1. Use the Administration Module to update the Settings so the “Locales”
field includes the languages you want to have available. Use the two-
character language code defined in the ISO standard. You can find a chart
of the ISO codes in the Get.It! Base Installation and Administration
Guide.

2. Update or create your modifications to Get.It! Base just as you always
would. If needed, refer to Chapter 5, "Tailoring Get.It! Base," for the steps
to complete.

The following is a general overview of the steps you will do to translate your
modifications.

3. Runwbuild getit.
4. Runstrbuild getit. This will update your weblication string files.

5. After you run st rbui |l d, look in these files and update all empty quotes
with the correctly translated strings. Search for quote quote (“ “) to find all
the empty strings.

6. Loginto Get.It! Base. When Get.It! Base attempts to write a screen, it first
looks for a string in a country-specific file. If a string is not found in a
country-specific file, Get.It! Base then looks in the language-specific file.

See “</form>" on page 5-15 for a step-by-step example of this process.

Get.It! Base Tailoring Guide 7-1



Archives

You can further define language within regions by creating STR files defining
only those strings which are different and adding the country name the file
names. For example, the English extract file for Great Britain could be
getit_en_GB.str.

A copy of all STR files is stored in an archive file. This archive file is called
...getit\apps\getit.zip.Youcan transmit this file to a third party transla-
tion service if you do not want to update the STR files yourself.

Externalizing ECMAScript Messages

7-2

The ECMA scripts defined in each Get.It! Base package also contain some
messages. For example, the following is a script that sends a message to the
user:

User. addMessage( “You have no open problemtickets” );

Messages like these are externalized by storing them in a file named <pack-
age>_en. str found in each package folder.

The externalization process is as follows:

1. During development, all messages should be placed in a STR file. For
example:

st at usNoTi ckets, “You have no open problemtickets”

2. Instead of including the message in the ECMA script, use the API
interface shown below:

User. addMessage( |IDS. get( “service”, “statusNoTickets” ) );

The | DS. get () API requires two parameters. The first is package name where
a message is defined. The second is the string ID defined for the entry. The
user’s preferred language is determined by the ScriptRunner.

ID names must be unique within a package. In addition, each ID should be
prefixed by the name of the script file where it is associated.

Externalizing ECMAScript Messages



3. When ready to localize, open the appropriate string file. Save the file in
the same user directory where you saved the script file you updated as
user _| anguagecode. st r where | anguagecode is the two character code for
the language (user_fr. str for French).

At run time, Archway picks up messages from the appropriate STR file as
determined by the user session language preferences. Thus, one user could
view English messages while another user views them in French at the same
time.

Externalizing ECMAScript
Messages with Variables

Localization Support

The IDS interface includes methods for replacing variables into a message.
For example, consider the following message

"Asset " + strdd + "will be replaced by asset " + strNew
Such a message should be externalized as follows:
ID, "Asset % will be replaced by asset %"

This allows translators to place the %1 and %2 replacement tags anywhere
that makes sense according to grammatical rules of the target locale.

The IDS interface supports the %1 tags with calls such as:

I DS. get( user, strID, strl);

or

I DS. get( user, strlID, strl, str2);

or

| DS. get( user, strID, strl, str2, str3);
Where strl, str2, and str3 replace %1, %2, %3

IDS defines functions for up to three replacement strings. For greater num-
bers of replacements, use the get() function that takes a string array.

I DS. get( user, strID, astr);



Externalizing Messages in XSL Templates

7-4

While it is rare, the Get.It! Base XSL templates define some messages of their
own. For example, the label for a “back” button is hard coded in the XSL tem-
plates, providing a uniform label anywhere a <back> weblication element is
found.

There are two ways XSL templates externalize strings. The first is by using
the $$IDS() sequence, as shown in the following example:

<xsl:tenpl at e nanme="genBackButton” >
<input type="button” val ue="$$l DS( common, xsl| Back) " >
</ xsl:tenpl at e>

The XSL above refers to a string defined in the common module’s message
STR file:

xsl Back, “Go Back”

The $$1 DS() sequence is useful when embedding IDS strings in generated
HTML. However, some XSL code may actually generate JSP scriptlet code. In
such cases, use the normal IDS APIs already described above for Java code
externalization. For example:

<jsp:scriptlet>
if ( user.getNanme().length() > 0)
out.println( I1DS.get(user, "portal", "xslWlcone") +
user. get Nane() );

</jsp:scriptlet>

The code above retrieves anIDS string defined in the portal module.

Externalizing Messages in XSL Templates



Japanese Locale

Localization Support

You must run the wbui | d command when running the Japanese version or
locale of Get.It! Base. To run the Japanese version you must type the correct
locale in the Locales field. You can find this field by clicking on the Admin
module and then scrolling to the Locales field. In this field type “ja.” Click the
Save button, located at the bottom of the screen.

Because Japanese characters are not presently supported under the ISO-
8859-1 character set, you must run the wbuild command. All character sets
that fall outside of the ISO-8859-1 character set require the woui | d command
to be executed.






Appendix A
Weblication Reference

This chapter is a reference for the weblication Extensible Markup Language
Document Type Definition (XML DTD). XML DTD is the high level XML lan-
guage used to define all Get.It! Base weblications.

Weblication Structure

All XML structure is comprised of tags with supporting attribute and element
information. All basic weblications have the following structure:

<appl i cation>
<nmodul es>
<nmodul e>
<conponent s>
<conponent >
</ conponent >
</ conponent s>
<activities>
<activity>
<forne>
<f or n»
</fornm>
</fornms>
</activity>
</activities>
</ nodul e>
</ modul es>
</ appl i cation>

Weblications are defined by an initial application entry or tag. The application
tag is comprised of one or more modules (e.g., assets, work orders). Modules
contain elements called components. Each module contains one or more activ-
ities. Each activity can have one or more forms.

Get.It! Base Tailoring Guide A-1



Weblication Tags

<application>

A-2

The <appl i cati on> element is the starting point for defining a weblication. It
accepts the following attributes and nested elements:

Attribute

Description

name

A unique name for the weblication. The name should be a
single word starting with a letter.

onl oad

The name of the script that will be invoked when the
weblication’s main menu is displayed. For example, the

| ogi n. xm application file contains the onload

| ogi n. | ogi n. The script name is made up of the script file
name followed by the script function name.

par am

When a script is defined with the onload attribute then it can
define parameters that are included within the request
message sent to the script. The string value should be
constructed as key=val ue pairs with multiple parameters
separated by ampersands (&). Because an ampersand is a
special character in XML, you should use &&( _anp) . The plus
sign (+) is converted into a space character. Special characters
can be encoded as a three character string beginning with the
percent sign followed by a two-digit hexadecimal
representation of the lower 8-bits of the character. For
example:

<appl i cation onl oad="1 ogi n. | ogi n”

par amF” pl=yada$$(_anp) p2=what +ever” >.

hone

Designates the module which is to be considered the “Home”
module and is reached by clicking on the first module tab. The
label for the home tab will be the short name given to the
module in the descri pti on attribute.

<title>

Title used in the application's main menu.

<i nstructions>

Instructions that will be displayed in the application’s main
menu.

<nmodul es>

List of modules that make up the application.

frane

Specify whether you want the Get.It! Base banner to frame
your windows.

frame=“true” causes the banners to display.

frame=“false” causes the banner to not display.

Weblication Tags



<module>

Weblication Reference

The <nodul e> element defines an application component designed to offer
users a specific application function. For instance, a request module could
define interfaces that permit users to create purchase requests. This element
can contain the following attributes and nested elements:

Attribute Description

nane A unique name for the module. The name should be a single
word starting with a letter.

access Defines the name assigned to a user-access definition that is

required in order to access the module. User access is defined

by UserRights in AssetCenter and is set for each user profile.

Enter a valid capability word or UserRight, or for more

general access enter one of the following:

anonymous=  The module can be accessed by any user,

regardless of the user’s profile capabilities. The
modul e can even be accessed by users who are
not logged into the Weblication.

al = The module can be accessed by all users who
are logged into Get.It! Base.

access-redirect

The URL displayed when a user is denied access based on the
“access” attribute (above). If no default URL is specified then
e_l ogi n_mai n_refuse. | spisused.

appmenu

Controls whether the module is included in the header
shortcut menu. When set to false the module is not listed in
the Weblication’s header shortcut menu. The default is true.

apphead

Controls whether the module is included on the main menu.
When set to false the module is not listed in the weblication's
main menu form. The default is ¢rue.

<title>

The title used to identify the module.

<descri ption

i mge="X"
short="Y"
l ong="2">

This element defines attributes that further describe the
module.

® The image attribute defines an image that can be used as
a module logo or link. This is a URL (relative or absolute)
pointing to a specific image of browser-supported file type.

¢ The short attribute should be defined by one or two words
that can be used in a link that takes a user to the module.

¢ The long attribute should contain a longer description.




Attribute Description

<target URL> Link a different module into this module.You can link any
URL. See “Adding a URL as a Module” on page 5-23 for
details.

<conponent s> The list of forms and subforms that can be used in activities.

These must be defined as components. See “Reusable Form
Components (Subforms)” on page A-33 for details.

<activities> List of activities that comprise the module.

Note: If you did not want this module included in the header menu, you
would have included
<appnenu="f al se” > before the <ti t| e> attribute.

<activity>

The <acti vi t y> element defines a step within a module’s functionality. For
instance, the home activity in the Portal module defines actions the user can
take on his home page.

This element can contain the following attributes and nested elements:

Attribute Description

nane A unique name for the activity. The name should be a single
word starting with a letter.

access The name of a user capability word that is required to access
the activity. The default value is anonymous, meaning that
the activity may be accessed by any user, regardless of that
user’s profile capabilities. An anonymous activity can be
accessed by users that are not even logged into the
weblication.

<title> Title used to identify the activity.

A-4 Weblication Tags



Weblication Reference

Attribute Description

<descri ption This element defines attributes that further describe the
i mge="X" activity.
short : Y e The image attribute defines an image that can be used as
| ong="2"> an activity logo or link.

¢ The short attribute should be defined by one or two words
that can be used in a link that takes a user to the activity.

¢ The long attribute should contain a longer description
that is used as balloon help for links to the activity.

<target URL> Link a module as an activity. You can link any URL. See
“Adding a URL as an Activity” on page 5-24 for details.

<f orms> List of forms that comprise the activity.

See Figure A.1 for a sample of how the <acti vi t y> weblication tag can be
used.

<activity nane="home” >
<descri ption short="My Honme Page” |ong="Personal |inks, reports, and
i nformation”/>

YWelcome Hartke Select Content | Help | Log out

Application Menu

-'gﬁﬁ Budget Management ﬁ Contract Management

ﬁf/: Person Management @ Work Order Management

Fig. A.1 Using the <activity> tag

A-5



<form>

A-6

The specific contents for a screen are defined in the <f or n»> element. For
instance, the browser activity in a request module could have a number of
forms used to show product categories, product lists, product details, and so

forth.

This element can contain the following attributes and nested elements:

Attribute Description

nane A unique name for the form. The name should be a single
word starting with a letter.

onl oad Name of script to invoke before displaying the form. The
message returned by the script is used to populate fields in
the form.

par am When a script is defined with the onload attribute then it

can define parameters that are included within the request
message sent to the script. The string value should be
constructed as key=val ue pairs with multiple parameters
separated by ampersands (&). Because an ampersand is a
special character in XML, you should use &&(_anp) . The
plus sign (+) is converted into a space character. Special
characters can be encoded as a three character string
beginning with the percent sign followed by a two-digit
hexadecimal representation of the lower 8-bits of the
character. For example:

<appl i cation onl oad="1 ogi n. | ogi n”

par am=” pl=yada$$(_anp) p2=what +ever” >.

onbr owser | oad

Name of the script to invoke on the client before displaying
the form.

homepage

If set to true, the form is created to become the weblication’s
homepage. Only one form should be given this attribute.

<redirect>

This element defines a condition that is evaluated before
displaying the form. If the condition is ¢rue, an alternative
form is displayed instead. See “<redirect>" on page A-8 for
more information.

<title> TEXT </
title>

Title used to identify the form.

<instructions>
TEXT </
instructions>

Text giving the user instructions for the form.

Weblication Tags




Weblication Reference

Attribute

Description

<formfiel ds>

One or more elements that make up the form, such as entry
fields, labels, tables, menus, etc. See “form fields” on page A-
10 for more information.

<actions>

Definition of actions that a user may take when viewing the
form. These are typically displayed as buttons or links that
submit the contents of the form or send the user to another
form.

type="franeset”

” N

Specifies number of frames. Also accepts rows="" and

col s="" attributes.

si debar Si debar refers to the leftmost frame. Setting this attribute
to f al se eliminates this frame.
<f orm nanme="xyz" si debar="fal se”>

frane Fr ane refers to the uppermost frame. Setting this attribute

to f al se eliminates this frame.
<form nane="xyz" frane="fal se”>

Note: When a form is loaded to send to a client, it is supplied with an input
document. The input document is a representation of an XML
document containing the data to be displayed in the form. In most
cases, the form’s input document is obtained by executing the form’s
onl oad script. The script returns a message object which represents the

document.

Another important point to understand is that a form is frequently invoked
with a number of parameters. Normally these parameters are made up of the
values entered in input fields within the previous form. These parameters are
passed on to the form’s onl oad script.

See Figure A.2 for a sample of how the <f or m» tag can be used.




Get®|t!

F. P

User: mmecool
catalog

4 catalog

Module: request

= Request

W request
- Reguest Status

b BZEAdmIn

Search Results

THINAPAD 570 PISESMHT 6 4GB B4MB

<form name="catalog™ onload="procure.getCatalog"s

<redirect target-fdm="catalognone" condition="catalognone"/>

<title» 55 (Title} <Xtitlex

<instruct ions>
Here are the items Yound in this category. You may click on any one to
see a detailed description, or vou may simply enter a count to add items
to FOouUr request.

</instructions:

<table record="Product" rows="10">
<link target-form="product" field="Id"/>
<column label="Count" type="select" field="nCount" key="Id"

record="Combo" valuelist="value" displaylist="DisplayValue" />

Hh 4 4 O 0 0 O

E ITTTT_TT

<column label="Brand" field="Brand"/>

<column label="Model" field="Mode1"/>

<column label="Brice" field="Frice"/>
</tablex

<actions target-activity="review":
<subnit name="hTable"> Add to shopplng cart </submits
<hack/>
<factions>
</form>

Fig. A.2 Using the <form> tag

<redirect>

This element defines a condition that is evaluated before displaying the form.
If the condition is true, an alternative form is displayed instead.

For instance, a weblication could have the following:

<f orm name="hel | 0" onl oad="weat her. get Tenperat ure">
<redirect target-forne"coats" condition="cold"/>
<redirect target-forne"shorts" condition="hot"/>
</fornp

The code above would redirect the user to the coat s page when
weat her . get Tenper at ur e returns a condition of col d.

It redirects to short s when the condition is hot . It is the script’s responsibility
to establish a condition value that makes the redirection work. This is accom-
plished via the Message. set Condi ti on() method.

Weblication Tags



The <r edi r ect > element can take the following attributes:

Attribute Description
TARCGET Defines the target location for the form.
condi tion The condition value that makes the statement execute. If the

condition value matches the value set in the form’s script
return message, the redirection will take place. If no condition
is provided, the redirection is always executed.

In the previous example, we used the following string, which includes the <redirect> tag:

<f or m nane="cat al og" onl oad="pr ocur e. get Cat al og" >
<redirect target-form="catal ognone" condition="catal ognone"/
<title> $$(Title) </title>

When no catalog can be found (the condition of “catalognone”) the following string of tags is used:

<l-- This formis shown when the search found nothing -->
<f or m nane="cat al ognone" >
<title>Search Results</title>
<instructions>
No catal og entries were found to match search criteria.
</instructions>
<actions>
<back/ >
<hone> Hone </ hone>
</ actions>
</forme

Fig. A.3 Using the <redirect> tag

component

A component is an element that can be used (and reused) within an activity’s
form. The component is defined separately and then referenced in the form by
name. It may contain a number of fields or elements that are used to display
and input data.

Weblication Reference A-9



Attribute

Description

<nane>

The unique name for the component used as reference within
an activity’s form using the tag <conponent
name="<nanme>"/ >,

{formfields}

One or more elements that comprise a form, such as entry
fields, labels, tables, menus, and other (these elements are
described in {form fields}.

form fields

A form may contain a number of fields or elements that are used to display
and input data. Each is described in detail separately below. The following is
the list of possible elements:

Attribute

Description

<fields>

Groups one or more “field” elements, which include <i nput >
and <f i el d> elements. Sample fields include text boxes,
combos, check boxes, static text fields, and input fields. When
fields are grouped they are treated as a group by the
weblication, meaning the field labels are aligned and the input
fields are aligned in the window automatically.

<menu>

A menu of links.

<t abl e>

A table whose rows are obtained dynamically at run time from
the form's input message.

<li st box>

A table whose rows are pre-defined within the weblication.

<htm >

Allows the insertion of arbitrary HTML code.

<entry tabl e>

A table that allows entries in one column and contains
descriptions in another.

<plug in>

Allows you to plug in content from any web page that is
accessible through a URL.

A-10

Weblication Tags



GEtﬁiltl Search Results

FI' ‘ Here are the iterns found m this category. You may click on any one fo see a detailed

User: mmecool
Form: catalog
Actiity: catalog

IEh

HOCIR Ao — B THINIKPAD 330E Pl B b
v Home [ ] IEM THINKPAD 570 PI333MHZ 4 0GB 64MB
" :::‘;'L“ ] En THIMKPAD 570 PIl/
L g [_ - <form name="catalog" onload="procure.getCatalog">
Search g g <redirect target-form="catalognone" condition="catalognone"/>
Wiew Cart [ e <title> 55(Title) </title>
Saved Cart - <instructions> . ‘ . .
Creale a new raguest Here are the items found in this category. You may click on any one to
- Request Status I_ = see a detailed description, or you may simply enter a count to add items
[ = to your request.
</instructions>
|_= <table record="Product” rows="10">
<link target-form="product" field="Id"/>
<column label="Count" type="select" field="nCount" key="Id"
+ B2BAdmin record="Combo" wvaluelist="Value" displaylist="Displayvalus" />
<column label="Brand" field="Brand"/ >
<column label="Model" field="Model"/>
<column label="Price" field="FPrice"/>
</tablex>

<act ions target-activity="review":>
<submit name="bTable™ Add to shopping cart </submits>
<back/>
</factions>

</form>

Fig. A.4 Using the table element of the form fields

<fieldtable>

A <fi el dt abl e> element allows the creation of a formatted table of entry
fields. This element is used in the following manner:

<fi el dt abl e>
<headi ng> Section heading ... </heading>
<r ow>
<i nput> or <field>
<i nput> or <field>
</ row>

</fieldtabl e>

Weblication Reference A-11



Refer to page A-27 for a description of the attributes that can be used with the
<i nput > element.

The following attributes can be specified within the <i nput > or <fi el d> ele-
ments in a row:

Attribute Description

col span=N Normally an input field fills out two columns in a table: a
column for its label, and a column for the field. However, you
can use col span to specify that the field should take up both
columns. For example:

<i nput type="textarea" field="descriptiont colspan="2" ...>

The field above is given no label and is defined to span two
columns. Therefore, the text area takes up both the label and
entry columns in a table. Typical values for col span are 2 or
4.

r owspan=N Allows a field to span more than one row in height. This is also
typically used with t ext ar ea fieldsin afi el dt abl e.

The page shown in Figure A.5 is an example of the kind of page you can create
using the <fi el dt abl e> element.

Get X It! Submit New Request

he %

Datn - - | T2 ranpse [Bnother campuae [+]
Who iis this for amd where should it be delivered?
Pttt [+ ] Location:

User. mmccool

First

Lasi: Foccant O Adilress: [
Home phone: [ ity [
A Lookup: S State: | IETEEEEERERERE
Dpcode: [
Corst Center: S Comments b= |
Project: 5 A
Badget: “a el sintus o BE N

Count Brand Model Derscription

Fig. A.5 The <fieldtable> tag in use.

A-12 Weblication Tags



<action>

The <act i on> element contains actions that a user may take when viewing the
form. These are typically displayed as buttons or links that submit the con-
tents of the form or send the user to another form.

The element may contain several attributes and nested elements. Consider
the following example which is referenced by the descriptions of these
attributes and elements below:

<actions target-activity="review >

<submit> Add to shopping cart" </subnit>

<submit nane="Renove"> Renobve from cart </subnit>
<link target-form"hel p"> Help </Iink>

<back/ >
</ actions>

Attribute

Description

TARGET

Defines the destination where the user is taken when the
current form is submitted. Currently, each form may only have
one submit destination. In the sample above, the TARGET for
the actions is the review activity of the current module.

<subm t >

Defines a submit button for a form. In the example code above,
the first submit entry displays a button with the caption Add
to shopping cart. Clicking the button sends you to the form’s
action target (the review activity). Any data entered in the
form is sent along to the target form and will be available to
the target form’s onl oad script.

Forms typically have one submit button. However, forms with
more than one submit button can differentiate between them
using the optional nane attribute.

For example, notice the second submit button. It also sends
the user to the form’s target destination (the review activity).
However, the script of the target form can distinguish that is
was invoked with the Remove from cart button because the
button’s name is sent along with the form. The script can
check for this as follows:

if ( msg.get( "Renove" ) I="")

/1 formcalled with the "Renpve" button ...

<li nk>

Link actions are displayed by the weblication just like any
submit button. However, a link button offers a way to sent the
user to any arbitrary TARGET destination. However, when a
link is used, the form’s data is not submitted to the target.

<back>

Creates a button that takes the user to the previous form.

<hone>

Creates a button that takes the user to the home menu.

Weblication Reference

A-13



<form name="catalog" onlocad="procure.getCatalog">
<redirect target-form="catalognone" condition="catalognone"/>
<title> 55(Title) </title>
<instructions:>
Here are the items found in this category. You may click on any one to
see a detailed description, or you may =simply enter a count to add itenms
to your request.

% I Search Result] </instructions:>
et@ t_ ! <table record="Product" rows="10">
® W

<link target-form="product” field="Id"/>
Here are the items four <column labsl="Count" type="select" field="nCount" key="TId"

User mmeeool record="Combo" waluelist="value" displaylist="DisplayVvalue" />
m_I <column label="Brand" field="Brand"/>
= If <column label="Model" field="Model"/>
[— ™ i <column label="Price" field="Price"/>
i </tablex
b Homa — Il <actions target-activity="review">
b Admin [— e <submit name="bhTable"s Add to shopping cart </submit>
b b back/>
= It Jactions >
[ "y i <Jforh>
=
- By THINKPAD BO0E PIA00 AGP 4 DEE 24%
— 1Ef HirlkPAD B00 PIVE00 5, 1GE BAME
= "} THINKPAD EODE PI3ES AGP B 4GE 24X
— IEM THINKPAD BOOE PIKADD 10GE 256k

Add 1o shopping cart

Fig. A.6 Using the <action> tag

TARGET

Various weblication elements support a set of TARGET attributes that are
translated into links to a browser destination. One of the powerful concepts in
a weblication is its ability to make navigation between pages easy without
requiring the developer to hard code actual destination page names.

The goal behind the target’s design is to encapsulate the contents of each mod-
ule and activity, reducing interdependencies. Therefore, the targets listed in
the following table allow a developer to say something like “take me from the
current activity to some other activity in this module.” This is done without
specifically listing the target form name, thus reducing dependencies which
would make a weblication harder to maintain as modules and activities are
added or rearranged.

A-14 Weblication Tags



The following are possible TARGET attributes:

Attribute Description

target-form Leads to a named form. This target is used for navigation
within the current activity. That is, the target form must be in
the current activity.

t ar get - Leads to the first form of the named activity. This target is
activity used for navigation within activities of the current module.
That is, the target activity must be in the current module.

tar get - rodul e Links to the first form of the first activity in the named
module.

target-url Links to any URL. Anything that could be used in an HTTP
hr ef tag can appear here.

target-script Executes a client-side script when the button is pushed.

target-field Sometimes the target is not known until run time. This

attribute causes the weblication to look for an input document
field that contains a target URL. For example:

<link target-field="Vendor URL"> More information </Iink>

The target above is evaluated at run time by retrieving the
VendorURL from the form’s input document.

par am This attribute can accompany any of the target attributes
mentioned above. It defines additional parameters that should
be sent to the target form. For example:

<link target-forne"catal og" paran"Certificati on=Desktop">
Desktop Conputers </link>

The link above passes a parameter named Certification with a
value of Desktop to the target catalog form.

Weblication Reference A-15




TEXT

$$(X)

A-16

Various Weblication elements support the display of arbitrary text. For exam-
ple, form instructions are specified by the <i nstruct i ons> element with some
embedded text:

<instructions>Press button with npbuse</instructions>

However, wherever an element is documented to support TEXT, you can enter
more than just plain words. The text can contain embedded HTML mark-up
elements, and it may also contain references to values in the form’s input doc-
ument. For instance:

<instructions>Press button with nouse. <br/>
I f nothing happens <b>repeat until it works!!</b>
</instructions>

The instructions above have embedded HTML tags <br/ >, <b>, and </ b>.
Embedded HTML must be XML compliant. This means that each starting
HTML tag should have an ending tag (e.g., <b> ... </b>) or use the XML
shorthand for the tag (e.g., <br/> rather than <br>). Attributes inside HTML
elements also must be quoted (e.g., <a href ="x. ht i > rather than <a

hr ef =x. ht np).

In addition, you can embed field values in text. For example:

<instructions>Hel |l o $$(User Nane),
How are you doi ng?
</instructions>

The $$( X) syntax is used to extract a field from the form’s input document.

The $$( X) element is used to extract information from a field in the form’s
input document. It embeds field values in text. For example:

<instructions>Hel | o $3$(User Nane),
How are you doi ng?
</instructions>

This example will display the value in the User Nane field within the form
instructions.

Within the HTML contents, you can use $$( X) expressions to include values of
fields in the form's input document.

Weblication Tags



<menu>

The <nenu> element creates a menu of links in a form. For example, the
request module uses a menu to show catalog categories. The <nenu> element
can accept a series of <l i nks>. This is supported if a r ecor d attribute is not
specified for the menu. When a r ecor d attribute is specified it behaves similar
to the <t abl e> element. This means that it accepts a r ows=10 attribute so that
when there are more than ten items you can insert both Next and Previous
buttons on the bottom of the page.

<menu record="{MessageEl enent}” rows="{nax-rows-di spl ayed}”
i mge="{field-wth-inmage-path}”
| abel =" {fiel d-wi th-di splay-string}”>

<link target-forne"{target-form” field="{field-wth-I1D key}”
content ="{optional -context-value}”/>
</ menu>

OR

<menu record="Category” rows="10" inage="I|nmageNane” | abel =" Nane" >
<link target-forn="subcategory” field="1d"/>
</ menu>

If this is implemented as a table then it will appear as in the following.

<tabl e record="Cat egory” rows="10">

<link target--form"subcategory” field="1d"/>
<colum fiel d="1mageNane” type="inmage”/>

<col um fiel d="Nane”/>

</t abl e>
Attribute Description
<li nk> Defines an item in the menu. Each <nenu> tag should have
one or more embedded <I i nk> tags. Link attributes are
described in the following table.

Weblication Reference A-17



Link Attributes

<table>

A-18

Attributes

Description

<l i nk TARGET>

Defines the destination target of the link.

<l'ink inmage=x>

An image URL to use for the menu link.

<link
w ndow="true" >

If this attribute is set, the target of the link is displayed in a
separate browser window.

<l i nk> TEXT
</link>

The text used in the link.

Note: <l ink> elements may also appear inside a <fi el ds> collection.

The <t abl e> element provides a concise way to create tables in the form. This
tag is specialized in generating tables that are populated with XML docu-
ments obtained from database queries. The following attributes and embed-
ded elements are supported:

Attribute

Description

record

This attribute identifies the specific record the table is
designed to display. This record type is found in the form’s
input XML document. For instance, consider the following
document:
<recordlist>
<Pr oduct >
<Brand> X </ Brand>
<Price> 1 </Price>
<Product | d> 1356 </ Product|d>
<nCount > 1 </ nCount >
</ Product >

</recordlist>

To display a table with a list of products, the record attribute
is set to Pr oduct . (This sample XML is used in the examples
below.)

Weblication Tags




Attribute

Description

I ows

The maximum number of rows to display in the table. If the
query result set for the table is larger than this number of
rows, the table automatically displays “Next” and “Previous.”
If this attribute is not specified, the table is made as large as
needed to display all rows in the record set.

<l i nk TARGET
field=X>

<link target-for

Table element used to make the rows in a table into links to
another form. For example, a catalog table has rows that when
clicked display each product's detail. This element takes two
attributes. The TARGET attribute determines where the link is
to take the user. The fi el d attribute is used as a parameter
passed to the target page. It is intended to uniquely identify
the row. For example:

m="detail s" field="Productld" target="detail”/>

The link above is an example from a catalog table. It creates
row links that take the user to the det ai | s form. In addition,
the Pr oduct | d field of the row’s record is sent along as a
parameter to the target form. This way, the target form can be
initialized to display the correct details. The det ai | field is
for inserting a URL.

<col um>

Each table should have one or more columns. Columns can be
used to display a variety of things, including static text,
pictures, and entry fields.

<subm t >

Allows the transmission of data when the relevant button is
activated. When set to true, the form’s contents are submitted
to the target of the link. User global settings are updated.
Other changes may be saved.

<subm t
target - X>

This supplies a target-X in a <submi t > element. For instance,
<actions target-form"soneDefaul t”

<submi t >Save</ submi t >

<submit target-activity="review >

Revi ew Bef ore Savi ng</subnit>

</ actions>

Weblication Reference

A-19




Column Types

A-20

Type Description

Static Text The default content of a column is static text. The | abel
attribute specifies the column’s heading. The f i el d attribute
defines the record field to display in the column. For example,
<col um | abel =X fi el d=X>

Entry Field These columns display a text entry field where the user can

type in some text. The | abel and fi el d attributes serve the
same purpose as those of static text columns. The key
attribute should contain the name of a record field that
uniquely identifies each row in the column.

<col um type="entry"
| abel =X fiel d=X key=X si ze=X>

The optional si ze attribute defines how wide to make the
entry fields (in number of characters). For example:

<col um | abel =" Count "

field="nCount"

t

ype="entry" key="Productld" size="3"/>

This is a column in a product catalog table that lets users
enter a count with the number of products to order. The
column displays the nCount field from the table’s record. The
column uses each row’s Pr oduct | d to uniquely identify the
entry fields. This is necessary so that scripts that interpret the
input entered in a table can match up table entries with an
application or item context.

Weblication Tags




Type Description
Sel ect Box <col um type="sel ect" |abel =X fiel d=X
(popul at ed key=X record=X val uel i st=X di splaylist=X >

dynam cal | y)

You can display a select box or combo-box in a column with a
list of valid entry choices from which the user can choose. The
choices are obtained dynamically from the form’s input
document. The attributes listed here work the same way as
described for entry field columns. There are two additional
attributes: val uel i st and di spl ayl i st. These are used to
specify the name of the record field containing the choices for
the select box. For example:

<col um | abel ="Proj ect"
type="sel ect" field="ProductProject" record="Project"
val uelist="1d" displaylist="Title"/>

This column displays select boxes with a list of Pr oj ect
choices. For this to work, the form’s input document should
include Pr oj ect entries such as:

<recordlist>
<Proj ect >
<ld> 123 </Id>
<Titl e> New Devel opment 99 </Title>
</ Proj ect >

</recordlist>

The selected choice is associated with the Product Pr oj ect
field of the table’s Product record. The choices displayed are
determined by the Ti t | e field on the Pr oj ect records, and

the actual values submitted for each choice are those of the | d
field in the Pr oj ect records.

Sel ect Box
(popul at ed
statically

<col um type="sel ect" |abel =X fiel d=X key=X>

Columns can display select boxes with statically defined
choices. The label, field, and key attributes are the same as
those defined above. Here is an example:

<col um | abel =" Approval " type="sel ect" fiel d="Approve">
<option value="1"> Yes </choice>
<option value="0"> No </choice>

</ col um>

This column displays Appr oval choices of Yes and No.

Lookup

Opens a searchabl e, pop-up w ndow.

Weblication Reference

A-21




A-22

Type

Description

| mage

<colum | abel =X fi el d=X>

This column displays an image. The image’s URL is obtained
from the specified field in the table’s input record.

Radi o Button

<col um | abel =" Current enpl oyee" type="radi 0”
field="Fieldl"/>

The fi el d attribute specifies the record field in the form’s
input document that should be used to populate the field’s
value. See “<columns>” on page A-23 for more information.

<l i nk TARGET
field=X>

Table element used to make the rows in a table into links to
another form. For example, a catalog table has rows that when
clicked display each product's detail. This element takes two
attributes. The TARGET attribute determines where the link is
to take the user. The fi el d attribute is used as a parameter
passed to the target page. It is intended to uniquely identify
the row.

Label

The column label.

| mage

This is a static image file name, which can be provided as an
alternative to “field”

Bal | oon

Used only when target-X is defined. This specifies balloon help
for the image link

Weblication Tags




<col ums>

It is possible to split a weblication form into columns, as shown in the follow-
ing:

<col utms>
<col um>
Webl i cation elenents for this colum
</ col um>
<col um>
Weblication elenents for this colum
</ col um>
<col ums>

The Get.It! Base Portal is an example of the use of the <col ums> element.

‘ Get§lt! Welcome Hartke Select Content | Help | Log out
|

Application Menu

‘5 Budget Management ‘-ﬁ Contract Management

ﬁi} Person Management % Work Order Management

Fig. A.7 The <columns> tag in use.

<listbox>

The <l i st box> element is used to display a table in a form. However, unlike
the <t abl e> element, listbox tables contain rows that are statically defined in
the weblication.

Weblication Reference A-23



The following attributes and nested elements are supported:

Attribute Description

<headi ng> Defines the listbox headings. This element should be followed
by one or more nested <f i el d> elements that describe each
heading.

<r ow> Defines a row in a listbox. This should be followed by one or

more nested <f i el d> elements that are part of the row.

<fieldimge=X | A single element that may be placed in a heading or row cell.
fiel d=X> Text The optional i mage attribute may point to an image URL to
</field> display for the field. The f i el d attribute may point to a field
from the form’s input document. Otherwise, the field displays
its text contents.

<i nput > You can enter any valid input element. See “<input>” on page
A-26 for types of input elements.

Here is a sample listbox that results in a small table with phone numbers to
call to contact support or sales.

<l i st box>
<headi ng>
<field> Nane </field>
<fiel d> Phone </field>
<headi ng>
<r ow>
<r ow>
<field> Custoner Support </field>
<field> 123-4567 </field>
</ row>
<field> Sales </field>
<field> 765-4321 </fiel d>
</ row>
</listbox>

A-24 Weblication Tags



The <fi el d> element creates a static text or image field on a form. These ele-
ments must be placed within the <fi el ds> parent element. The following
attributes are supported:

Attribute Description

| abel Specifies the label for the field.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the value text field.

type Specifies the type of data expected for this field. The default is

text type data. If the type is set to i mage, the field’s value is
assumed to be a URL to an image.

<li nk TARGET
field=X>

Table element used to make the rows in a table into links to
another form. For example, a catalog table has rows that when
clicked display each product’s detail. This element takes two
attributes. The TARGET attribute determines where the link is
to take the user. The fi el d attribute is used as a parameter
passed to the target page. It is intended to uniquely identify
the row.

<subm t >

Allows the transmission of data upon pressing the relevant
button. When set to true the form’s contents are submitted to
the target of the link. User globals are updated. Other changes
may be saved.

<subm t
t ar get - X>

This supplies a target-X in a <submi t > element. For instance,
<actions target-form”"sonmeDefaul t”
<submi t >Save</ subni t >

<submt target-activity="revi ew >Revi ew Before
Savi ng</ subm t >

</ actions>

<fiel d>TEXT
</field>

The value displayed in the field, displayed if no fi el d
attribute is already defined.

Using the <subm t > element will depend upon your data transmission destina-
tion. When set to ¢rue, the form’s contents are submitted to the target of the
link. The <subni t > tag sends data to the default destination. The <submi t

t ar get - x> tag sends data to a defined destination.

Weblication Reference

A-25



<i nput >

A-26

The <i nput > element is used to create a variety of entry fields. Each type of
field is described in its own section. Here we define a list of attributes shared

by all input fields:

Attribute

Description

| abel

Specifies the label for the input field.

field

Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type

Specifies the type of field. Examples include submi t,

spi nner, passwor d, and conposi t e. Additional examples
can be found in the

... \apps\service\weblications\servicel ookup. xn
file.

cl ass

Denotes the value of i nput, such as Action Button.

val ue

Normally the value is taken from the f i el d attribute to
extract a field value from the form’s input document. However,
if a value is specified explicitly, it will be used when displaying
the form.

scope

Normally data entered in fields is sent along to the server and
then forgotten. However, fields can be given a longer term
scope, making their values available beyond a single submit.
Right now, only one scope is supported: scope="user” . When
set, the values entered in a field are stored in the current user
session scope. When the form is displayed again, or when
other forms display <i nput > elements for a field with user
scope, the last value entered is always remembered.

required

If true, the field is flagged as being required. The form will not
be submitted unless the user provides data for the field.

Weblication Tags




<i nput > (Text Field)

The <i nput > element is used to create a variety of entry fields. Below are the
attributes used to define a single line entry field.

Attributes Description
| abel Specifies the label for the input field.
field Used to determine the value of the field. This attribute

specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="text" To create text entry fields, type should be set to “text”. This is
the default value.

val ue Normally the value is taken from the f i el d attribute to
extract a field value from the form's input document. However,
if a value is specified explicitly, it will be used when displaying

the form.
si ze Defines the width of the text entry field in characters.
readonl y= Removes ability to edit. If this attribute is set, the text area
"true” will not be editable. This works only with the Internet

Explorer browser.

<i nput > (Text Area)

The <i nput > element is used to create a variety of entry fields. Below are the
attributes used to define a multiline entry text area.

Attribute Description
| abel Specifies the label for the input field.
field Used to determine the value of the field. This attribute

specifies the record field in the form’s input document that
should be used to populate the field’s value.

type= To create multiline text entry fields, type should be set to
"t extarea" “textarea”.
val ue Normally the value is taken from the f i el d attribute to

extract a field value from the form's input document. However,
if a value is specified explicitly, it will be used when displaying
the form.

Weblication Reference A-27



Attribute Description

r ows Number of rows in the textarea.

cols Width of the textarea in number of characters.

readonl y= Removes ability to edit. If this attribute is set, the text area
“true” will not be editable. This works only with the Internet

Explorer browser.

<i nput > (Combo/Selection Box)

A-28

The <i nput > element is used to create a variety of entry fields. Below are the
attributes used to define a select box.

Attribute Description
| abel Specifies the label for the select box.
field Used to determine the value of the field. This attribute

specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="sel ect" To create text entry fields, type should be set to “text”. This is
the default value.

record Specifies the record in the form's input document that
contains the list of display and value lists.

val uel i st Specifies the field in the select box record that contains the
values for each of the select choices.

di spl ayli st Specifies the field in the select box record that contains the
labels for each of the select choices.

For example, consider:

<i nput | abel ="Budget" type="sel ect" fiel d="RequestBudget"
record="Budget" val uelist="Budgetld" displaylist="Name"/>

This generates a combo box with a label of Budget. The choices in the combo
box are populated by looking at records of type Budget. The current selection
is obtained from the RequestField field in the form’s input document.

You can also define selection boxes with static choices (instead of populating
the choices from a database record). Here is a sample:

<i nput type="sel ect" |abel ="Approval" fiel d="Approve">
<option val ue="1"> Yes </option>
<option value="0"> No </option>

</input >

Weblication Tags



<i nput > (check box)

Weblication Reference

The <i nput > element is used to create a variety of entry fields. Below are the
attributes used to define a check box:

</ checkbox>

Attribute Description

| abel Specifies the label for the check box.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type= To create check box text entry fields, type should be set to

"checkbox" “checkbox”.

val ue Specifies the value that the check box field should have when
the check box is selected.

val ueof f When this attribute is specified two radio buttons are
generated. The first displays the value (“val ue=<t ext >”)
when the check box is selected. The second displays the value
when the check box is not selected. This form is also used for
selecting one of two items. When valueoff is used the check box
description is ignored.

<checkbox> The check box description.

Text

For example:

<i nput type="checkbox" | abel ="Renenber ne" fiel d="renmenber"
val ue="true"> Enabl e automatic |ogin </input>

This generates a check box associated with the form’s remember field. If
remember is set to true upon building the form, the check box will appear
selected. If the user selects the check box, the remember field is posted as true

with the form.

A-29




<i nput > (Radio)

<i nput > (Hidden)

A-30

The <i nput > element is used to create a variety of entry fields. Below are the
attributes used to define a radio button:

Attribute Description

| abel Specifies the label for the radio button.

field Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="radi 0" To create radio buttons, type should be set to “radio”.

val ue Specifies the value that the radio button should have when

the radio is selected.

<radi o> Text
</radi o>

The radio button description.

For example:

<i nput type="radi 0" | abel =" Remenber nme" field="renenber"
val ue="true"> Enabl e automatic |ogin </input>

This generates a radio button associated with the form’s r emenber field. If
renmenber is set to true upon building the form, the radio button will appear
selected. If the user selects the radio button the r enenber field is posted as

true with the form.

Sometimes it is useful to create a hidden field in a form whose only purpose is
to add some data that should be posted when the form’s contents are sent back
to the server. Below are the attributes used to define such a hidden field.

Attribute Description

field Used to determine the value of the field. This attribute
specifies the record field in the form's input document that
should be used to populate the field's value.

t ype="hi dden" To create text entry fields, type should be set to t ext . This is
the default value.

val ue Normally the value is taken from the f i el d attribute to

extract a field value from the form's input document. However,
if a value is specified explicitly, it will be used when displaying
the form.

Weblication Tags



<i nput > (Date)

The <i nput > element can be used to create a Date entry field. The field con-
tains drop-down lists for day, month, and year. A calendar button can be
pressed to display a calendar that can be used to select a specific day. Below
are attributes to define a single line entry field.

Attribute

Description

| abel

This optional attribute specifies the label for the <i nput >
field.

field

Used to determine the value of the field. This attribute
specifies the record field in the form’s input document that
should be used to populate the field’s value.

type="date"

To create date entry fields.

val ue

This is an optional attribute. Normally the value is obtained
from the f i el d attribute to extract a field value from the
form’s input document.

startyear

Number representing the last year in the drop-down list. This
value can be a positive or negative number, whereby the given
number is added to or subtracted from the current year. If this
is omitted the default value will be 20 years prior to the
current year.

endyear

Number representing the last year in the drop-down list. This
value can be a positive or negative number, whereby the given
number is added to or subtracted from the current year. If this
is omitted the default value will be 20 years prior to the
current year.

<i nput > (Money)

The <i nput > element can be used to create a Money entry field. The field con-
tains drop-down lists displaying currency names as defined in the Currency
property of the archway. i ni file..

Attribute

Description

| abel

This optional attribute specifies the label for the input field.

field

Used to determine the value of the field. This attribute
specifies the record field in the form's input document that
should be used to populate the field's value.

Weblication Reference

A-31




Attribute Description

type="noney" To create money entry fields. Specifies the type of data
expected for this field. The default is “text” type data. If the
type is set to “image,” the field’s value is assumed to be a URL
to an image. If the type is “date” or “money,” the value of the
field is formatted to user’s preferred locale.

val ue Normally the value is taken from the field attribute to extract
a field value from the form's input document. However, if a
value is specified explicitly, it will be used when displaying the
form.

<l'i nk>

The <l i nk> element creates a hyperlink field in a form. For example, the
request module uses a menu to show catalog categories. The following
attributes and tags are supported in a menu:

Attribute Description

<l i nk TARGET> Defines the destination target of the link. See “TARGET”
on page A-14 for details about the TARGET attribute.

<link i mage=x> An image URL to use for the menu link.

<l i nk If this attribute is set, the target of the link is displayed in

wi ndow="t rue" > a separate browser window.

<li nk> TEXT The text used in the link.

</link>

A-32 Weblication Tags



Reusable Form Components (Subforms)

It is common for a weblication to have several forms that need to display a
common set of components. To address this need, weblications support the def-
inition of reusable component blocks, or subforms, that can be included wher-
ever necessary. Reusable components are defined at the beginning of a module
definition as shown in this example:

<nmodul e name="1o0gi n">

<conponent s>

<l-- Basic "login" screen -->
<conponent nane="| ogi n">
<fiel ds>

<i nput type="text" |abel ="User Nane" fiel d="I|oginuser"
recor d="Enpl oyee" val uel i st ="Nane" di spl ayli st="Nange"
requi red="true"/ >

<i nput type="password" | abel ="Password"

field="1ogi npass"/>

<br eak/ >

<i nput type="checkbox" | abel ="Renenber ne"
field="renenber" val ue="true"> Enable automatic |ogin
</i nput >

</fields>

</ conponent >

</ conponent s>

This example defines a reusable subform named | ogi n. This block can then be
inserted in any form as shown below:

<l-- This formlets the user logon -->

<form nanme="start" onload="login.init">

<title> Welcone </title>

<instructions>

Pl ease enter your user nane and password to enter the
Cet,lt! site

</instructions>

<conponent nane="I|ogi n"/>

<actions target-url ="appnenu.jsp">

<l ogi n> Login </l ogi n>

<link target-activity="register"> Register </link>
</ actions>

</forme

The contents of a <conponent > definition can be anything that is a valid form
component, including tables, listboxes, and fields, etc. Forms can use any
number of embedded component blocks, and they may include other form com-
ponents as well.

Weblication Reference A-33



Note: Components referenced in a form must be declared in the form’s
module. This makes most blocks reusable across all forms in a module.
To define components that can be reused across modules, you should
define the components in their own files and use <i npor t > statements
to add them at the top of a <nodul e> definition.

A component definition can include an onl oad attribute. This optional
attribute names a script that should be invoked to provide data used by the
component code. If this is provided, the document returned by the onload
script is used for fields and $$( X) expressions in the component instead of
using the form’s input document.

A-34 Reusable Form Components (Subforms)



Additional Tags

<html|>

The <ht nl > tag allows the insertion of any arbitrary HTML code. This should
be used with care and only when the use of existing Weblication components is
not sufficient. Within the HTML contents, you can use $$(X) expressions to
include values of fields in the form’s input document.

The following attributes are supported:

Attribute Description

onl oad Names a script that should be invoked to provide data used by
the HTML code. If this is provided, the document returned by
the onload script is used in $$( X) expressions instead of using
the form’s input document.

par am When a script is defined with the onload attribute, it can

define parameters that are included within the request
message sent to the script. The string value should be
constructed as key=val ue pairs with multiple parameters
separated by ampersands (&). Because an ampersand is a
special character in XML, you should use &&( _anp) . The plus
sign (+) is converted into a space character. Special characters
can be encoded as a three character string beginning with the
percent sign followed by a two-digit hexadecimal
representation of the lower 8-bits of the character. For
example:

<appl i cati on onl oad="1ogin. | ogi n”

par an¥” pl=yada$$( _anp) p2=what +ever " >.

Weblication Reference

A-35




Additional Functionality

Searchable Popup Window

Searchable Popup Windows (Lookup Window) are used for searching entries
in a form. Implementing the Lookup field allows you to reuse it throughout
the weblication. To use this function you must add a | ookup input field to any
form. The following example illustrates an Employee Lookup:

<i nput | abel =" User”
field="Userld”
di spl ayfi el d="User Ful | Nane”
type="1 ookup”
readonl y="true”
bal | oon=" Change User”
t ar get - rodul e=" commonl ookup”
target-activity="enpl oyee”/>

The | abel is the label or name of the field. Fi el d is the hidden field that is to
be returned to the server. The di spl ayfi el d field is an optional display field
name. The t ype field is the lookup type. The r eadonl y field controls the edit/
read function. The bal | oon field is for lookup help when the cursor is placed
over an icon. The t ar get - nodul e field is for generic searching. The t ar get -
activity field is for searching activity.

Defining New Popup Windows

A-36

The first step to defining a new searchable popup window is to add an activity
to comonl ookup. xni ., unless the lookup is module-specific whereby the activ-
ity can be added elsewhere. Searching activities take two forms. The first is to
display search results. The second is to process the results. The following is an
example of an Employee search:

<activity name="enpl oyee” menu="fal se”>
<f orns>

<!-- Basic search and result screen-->
<form nane="start” onl oad="| ookup. get Enpl oyees”
frame="fal se” sidebar="fal se”>
<tabl e record="Enpl oyee” rows="10">
<link target-form="process” field="1d"/>
<col um | abel =" Last” fiel d="Nane"/>
<colum | abel ="First” field="FirstNanme"/>
</tabl e>
</fornme

Additional Functionality



Once the | ookup. get Enpl oyees function is in the code the get X and sel ect X
scripts must be implemented. For generic activities this occurs in conmon/

j script/Iookup.js. The following is an example of this script for the
Employee search:

function get Enpl oyees( nsg )
{
return archway. sendDocQuery( “ac”, “Enployee”, nsg );

}

The sel ect X() script processes and returns both the selection field ID and the
selection display field.

function sel ect Enpl oyee( nsgQ)

{

var msgResponse = new Message();
var strld = nsg.get( “1d” );

/'l Return selected ID as the searchable field
var strField = user.get (“_lookupfield");
nsgResponse. set ( strField, strid);

/1 Return enployee’s Full Name as the display field
var strDisplayField = user.get (“_I|ookupdisplay”);
var msgEnp = archway. sendDocQuery( “ac”,
“SELECT FirstNane, Last Nane, Ful | Name FROM Profile WHERE | d=" =
strld, 0, -1);
nsgResponse. add( strDi splayFi el d, nmsgEnp. get( “Full Nanme” ));

This script returns the selected Employee ID as the Lookup Field and then
returns the Employee Full Name field as the LookupDisplay field. These val-
ues update all fields in the calling browser window. The lookup field is a hid-
den field returned to the server when a form is submitted. The Lookup
Display field is a text or entry field to display a user-friendly version of the
selection.

Weblication Reference A-37






Appendix B
Document Schema DTD

This chapter is a specification reference for defining document schemas. See
Chapter 3, "Introduction to Document Schemas," for additional information,
including background and a complete example of a schema.

This chapter addresses:
¢ The Document Schema file template
e Schema attribute tags

e ServiceCenter-specific attributes

Document Schema Files

Define each document in its own schema file. The name of the schema file
must match the document’s name.

The structure of a schema file must fit the following template:

<?xm version="1.0"7?>

[/filenane. xm
<schema>

/1l Generic Schenma Definitions
<docunent s nane="base">
<docunent name="XXX">

</ docunent >
</ docunent s>

[/ derivations; you may have several of these sections (for //
servi cecenter, assetcenter, user derivations, and so on)
<docunents nane="DERI VED_TARGET" >

<docunent name=" XXX">

</ docunent >
</ docunent s>
</ schena>

Get.It! Base Tailoring Guide B-1



Schema Attributes

<document>

Nested <document> Tags

B-2

The following describes all applicable document schema attributes.

This tag defines a document. The document may contain nested <at t ri but e>,
<col | ecti on>, and <docunent > tags.

A schema file should only define a single top-level document and its deriva-

tions.

The <docunent > tag can contain the following attributes:

Attribute Description

name Uniquely identifies the document being defined. The name of
(required) the schema file must match the document’s name.

table Defines the primary database table associated with this

document. While not all document fields have to come from
this table, the Primary Key (ID) for the document must reside
in this table. This attribute is normally only defined by
derived document schemas. That is, the derivations for
ServiceCenter, AssetCenter, and so forth, must define where
to get the document.

Top-level documents may include one or more nested documents. These chil-
dren (or nested) documents may be defined in two ways.

The first way is to define nested documents in-place. For instance:

<docunent name="ToplLevel ">
<docunent nane="Child">
<attribute nane="x">

</ docunent >
</ docunent >

Schema Attributes




<attribute>

More typically, nested documents will reference a document defined in its own
schema file. For instance:

<docunent nane="Product">
<docunent nane="Vendor"/>
</ docunent >

Here the Product document contains a nested Vendor description. But
because the nested Vendor document is defined to be empty, we assume that
its definition should be looked up in the proper schema file (in other words,
vendor . xm ).

You can find nested documents by doing a search of the following type:

SELECT <Fi el ds> FROM <Nest edDocTabl e>
WHERE <j oi nfi el d>=<j oi nval ue>

The j oi nfi el d and j oi nval ue settings come from the schema’s <collection>
entry. For example:

<col | ecti on nane="Assets">
<document nane="Asset" joinfield="1Userld" joinvalue="1d"/>
</coll ection>

The entry above defines a nested collection of assets that could appear within
a parent "User" document. The joinfield and joinvalue specify that we want to
find entries in the asset table whose "1UserId" field matches the parent table’s
ID field. (The parent’s joinvalue is specified as a logical document field name).

If no "joinfield" or "joinvalue" are defined, the default is to use the parent
table’s ID field name as the join field.

The <at t ri but e> tag defines a field within a document. This tag can only
appear within a <docunent > tag. All documents must define at least one man-
datory attribute:

<attribute nane="1d">

This attribute defines the unique key for locating document instances.

Document Schema DTD B-3



The <at tri but e> tag can have the following XML attributes:

Attribute

Description

name
(required)

Uniquely identifies an attribute within a document.

type
(optional)

Identifies the type of the field being defined. Possible values
are:

id, string, number, date, url

field

The name of the physical field to use in when building queries
or updating the document table. This can be a simple name in
the document’s primary table, or it can be linked field name
(AssetCenter only).

<docunent nanme="Request" t abl e="anRequest " >

<attribute nane="Total Cost" fiel d="mlotal Cost"/>
<attribute nane="Budget" field="Budget.Name"/>

</ docunent >
TotalCost is associated with the mTotalCost field in

amRequest. Budget is associated with the linked field
Budget.Name.

link, linktable,
linkfield, linktype,
linkkey

These attributes work together to define how a field from a
linked table should be accessed. Consider the following
attribute in the Request document definition for AssetCenter:

<attribute nane="Budget" fiel d="Budget.Nane" |ink="1|Budgl d"
| i nkt abl e="anBudget" |i nkfi el d="Nane"/>

Now consider arequest to insert a Request document such as:

<Request >
<Budget > 1999 | S Budget </Budget>

</ Request >

When the DocumentManager updates of inserts a Request
document, the schema tells it to:

¢ search the linktable (amBudget) for an entry where the
linkfield (Name) matches "1999 IS Budget".

¢ use the link entry ID (IBudgld) to update the Request doc-
ument table.

B-4

Schema Attributes




<collection>

A collection can
only have one thing
inside of it: a nested
document.

The <col | ecti on> tag allows the nesting of collections inside a top level docu-
ment. For example:

<docunent name="Request">

<col | ecti on nane="Request Li nes">
<docunent nanme="RequestLine"/>
</ col | ecti on>
</ docunent >

This example shows a Request document with a nested collection of Request-
Line documents.

Nested documents are found by doing a search of the following type:
SELECT <Fi el ds> FROM <Nest edDocTabl e> WHERE <j oi nfi el d>=<j oi nval ue>

The "joinfield" and "joinvalue" settings come from the schema’s <collection>
entry. For instance:

For instance, consider a list of assets owned by a user:
<col l ecti on name="Assets" joinfield="I|Userld" joinvalue="Id">

The entry above defines a nested collection of assets that could appear within
a parent "User" document. The joinfield and joinvalue specify that we want to
find entries in the asset table whose "lUserId" field matches the parent table’s
Id field. (The parent’s joinvalue is specified as a logical document field name).

If no "joinfield" or "joinvalue are defined, the default is to use the parent
table’s Id field name as the join field.

ServiceCenter-Specific Attributes

Several attributes have been defined specifically for supporting ServiceCenter
derived schemas. These are necessary for the following reasons:

¢ Documents should not be inserted directly into the ServiceCenter
database. Instead, they should be created and updated by related
EventServices calls.

e The basic elements of the schema DTD assumes a relational organization
of data. ServiceCenter’s non-relational database introduces some
requirements.

Document Schema DTD B-5



B-6

Consider the following example or a derived Problem schema where Service-
Center specific attributes are shown in bold:

<docunent name="Probl ent tabl e="probsumary" insert="pno"

updat e="pmu" >

<attribute nane="I1d" field="nunber"/>

<attribute
<attribute
<attribute
<attribute

<attribute

nane=" QpenTi ne" field="open.tinme"/>
name="St at us" field="status"/>
name="Assi gnedTo" fi el d="assi gnee. name"/>
name="Priority" field="priority.code"/>

nane="Descri ption" field="brief.description"

i nsert="%ax.field. name" wupdate="_null"/>
<attribute nane="Updat es" fiel d="update. action"/>
<attribute nane="Resolution" field="resolution"/>

</ docunent >

The following attributes are used by SCDocManager, a derived DocManager
class that is used by the SCAdapter:

Attribute

Description

insert

This attribute ties a document to a specific input event. The
attribute can be used in two ways.

Within a <docunent > tag, the insert attribute names the
event to use for inserting document instances.

Within an <att ri but e> tag, the insert attribute names an
event parameter name to use for a document field. If no insert
attribute is defined, the default field setting is used instead.

update

This attribute ties a document to a specific update event. It
can be used within <docurent > and <at t r i but e> tags in the
same way as insert.

Note: A field, update, or insert setting with a value of _nul | tells the
DocumentManager that the particular document element is not
supported by the system.

Schema Attributes



Appendix C
JavaScript

This chapter contains JavaScript functions for a variety of processes.

Script Polling Manager

There are several classes in Archway that can be used as utilities to facilitate
workflow between two or more systems. The following is an overview of the
polling package.

Script Polling is a function that establishes a repetitive routine. A scheduler
initiates a routine at a specified time as opposed to every n seconds. For exam-
ple, a scheduler can run a routine at midnight, every Sunday night, at the end
of the month or quarter or every hour (meaning the top of the hour, not 60
minutes from the last run).

You can define Script Pollers in each package. At run time, Archway processes
all scriptpollers.ini filesin the registered packages.

Initialization File Format

The format of the ScriptPollers initialization file is XML, located within the
... \getit\apps\comon\ directory. The following is a sample file, specifying
two scripts to run. Note the vpol | ShowTi ne script.

<?xm version="1.0" encodi ng="1| SO 8859- 1" ?>

Nare: Scri ptPol | ers.ini
Specifies a collection of scripts to run at periodic intervals
(seconds) and a paraneter to pass to the script.

<pol | ers>
<pol | er>
<nane>vpol | PmoSco2Q</ nanme>
<i nterval >4</interval >
<par n></ par n»

Get.It! Base Tailoring Guide C-1



</ pol | er >
<pol | er>
<nane>vpol | ShowTi me</ name>
<interval >1</interval >
<par n»</ par ne
</ pol | er >
</ pol | er s>

Writing A Polling Routine

To create a polling routine, write an FESI script and save it in the
...getit\apps\user\jscript directory. Add the script name and polling
interval to the scri pt pol | ers.ini filein the...\getit\apps\conmon\ direc-
tory. You can perform a quick test by adding the following line of code to the
Ar chwayDebug class:

Scri pt Pol | i ngManager.test( m.archway );

Put the same functionality that is in the t est () function into a more main-
stream class (as discussed above).

Read History Array

C-2

This function requests the Uni ver sal Br owser Read privilege to enable it to
read the array elements of the H st ory object.

function openHi storyW ndow() {

[/ open a new w ndow
var w=wi ndow. open(“*“, " hi st oryW ndow’,
“wi dt h=500, hei ght =300, menubar, resi zabl e”);
var d=w. docunent;

//request a privilege
net scape. security. Privil egeManager. enabl ePri vi | ege(*“
Uni ver sal Browser Read”) ;

[/ output the browsing history as links in the new
for (var i=0;i<history.length;i++) {
d. wite('<A TARGET="new HREF-"' + history[i] + *">");
d.wite(history[i]);
d.witeln('</A>);
}

d.cl ose();

//return the new wi ndow
return.w

Script Polling Manager



//the privilege is automatically disable with function returns

}

Extract URL Argument

JavaScript

The following sample parses comma-separated nanme=val ue argument pairs
from the URL query string. It stores the nane=val ue pairs in properties of an
object and returns that object.

/1 get arguments
function getArgs() {
var args=new Qbj ect ();

/1 get query string
var query=l ocation. search. substring(1);

//break at comm
var pairs=query.split(“,”);

for(var i=0; i<pairs.length; i++) {

/11 ook for “nanme=val ue”
var pos=pairs[i].indexOf(‘=");

[1if not found, skip
if (pos==-1) continue;

Il extract nanme
var argnane=pairs{i}.substring(0. pos);

|l extract val ue
var val ue=pairs[i].substring(pos+l);

//store as property
ar gs[ ar gnane] =unescape(val ue)

You can also use the get Args(); function to parse optional animation parame-
ters from the URL.

[/ get argunents
var args=get Args();

[1if argunents are defined
if (args.x) x=parselnt(args.x);

//...overide default val ues
if (args.y) y=parselnt(args.y);

C-3



if (args.w) we=parselnt(args.w);

if (args.h) h=parselnt(args.h);

if (args.dx) dx=parselnt (args.dx);

if (args.dy) dy=parselnt(args.dy);

if (args.interval) interval =Parselnt(args.interval);

Searchable Popup Window

c4

Searchable Popup Windows (Lookup Window) are used for searching entries
in a form. Implementing the Lookup field allows you to reuse it throughout
the weblication.To use this function you must add a | ookup input field to any
form. The following example illustrates an Employee Lookup.

<i nput | abel ="User” field="Userld” displayfield="UserFul | Nane”
type="1 ookup” readonly="true” ball oon="Change User”
t ar get - nodul e=" conmonl ookup” target-activity="enpl oyee”/>

The | abel is the label or name of the field. Fi el d is the hidden field that is to
be returned to the server. The di spl ayfi el d field is an optional display field
name. The t ype field is the lookup t ype. The r eadonl y field controls the edit/
read function. The bal | oon field is for lookup help when the cursor is placed
over an icon. The t ar get - nodul e field is forgeneric searching. The t ar get -
activity field is for searching activity.

Once the | ookup. get Enpl oyees function is in the code, the get X and sel ect X
scripts must be implemented. For generic activities this occurs in

common\ j scri pt\ 1 ookup. j s. The following is an example of this script for the
Employee search.

function get Enpl oyees( nsg )
{

return archway. sendDocQuery( “ac”, “Enployee”, nmsg);

}

The sel ect X() script processes and returns both the selection field ID and the
selection display field.

function sel ect Enpl oyee( nsgQ)

{

var msgResponse = new Message();
var strld = nsg.get( “Id” );

/'l Return selected ID as the searchable field
var strField = user.get (“_lookupfield”);
nsgResponse. set ( strField, strid);

/'l Return enployee’'s Full Nanme as thedisplay field
var strDisplayField = user.get (“_lookupdisplay”);

Script Polling Manager



var msgEnp = archway. sendDocQuery( “ac”,

“SELECT Fir st Nane, Last Nane, Ful | Name FROM Profile WHERE | d=" =
strlid, 0, -1);

nsgResponse. add( strDi spl ayFi el d, nsgEnp. get( “Full Nane” ));

This script returns the selected Employee ID as the Lookup Field and then
returns the Employee Full Name field as the LookupDi spl ay field. These val-
ues update all fields in the calling browser window. The | ookup field is a hid-
den field returned to the server when a form is submitted. The Lookup
Display field is a text or entry field to display a user-friendly version of the
selection.

Passing External JavaScript

JavaScript

If you want to pass a JavaScript function to the ar chway. i ni file that is not in
the ...\ getit\apps\ directory then you must define the following path.

derivedscri pt pat h=<path. . .>

Inserting this line will cause Archway to seek alternative paths for user-
defined scripts. This also becomes the path that Archway uses to locate
“derived” scripts that override standard out-of-box scripts. If you define this in
the archway. i ni file then the new path replaces the

... \getit\apps\user\jscript\ path. Original or out-of-the-box scripts reside
in the same place.






Index

Symbols
$$(X) A-16
<action> A-13
<back> A-13
<home> A-13
<link> A-13
<submit> A-13
TARGET A-13
<activity> A-4
<application> A-2
<attribute>
insert B-6
update B-6
<back> A-13
<columns> A-23
<component> A-33
<document>
insert B-6
update B-6
<entrytable> A-11
<fidd> A-25
colspan A-12
rowspan A-12
<fieldtable> A-11
<form>
adding afield 5-11
<home> A-13
<html> A-35
<input> A-26
checkbox A-29
colspan A-12
combo box A-28
hidden field A-30
radio button A-30
rowspan A-12
selection box A-28
text area A-27
text field A-27
<link image=X> A-18
<link TARGET> A-18
<link window="true"> A-18

Get.It! Base Tailoring Guide

<link> A-13
atributes A-17
hypertext link A-32

<listbox> A-10, A-23

<menu> A-10, A-17

<module> A-3
accessto A-3
atributes A-3

<popupwindow> A-36

<submit> A-13

<table> A-18
<column> A-18
<link TARGET> A-18
record A-18
rows A-18

<target URL> A-4

_null B-6

A
action property 2-12
activity
changing the name 5-7
adapters
AssetCenter 6-5
e-mail 6-22
JOBC 6-9
LDAP 6-21
ServiceCenter 6-2

using log files to troubleshoot 6-26

verifying connections 6-25
admin.xml

updating for the JDBC adapter 6-14

apphead A-3
appmenu A-3

Index-1



archway architecture 5-2
building blocks 2-2
clients 2-3
diagram 2-2
document manager 2-10
executing queries against asystem 2-10
how it works 2-2
internal architecture 2-5
query string 2-6
requests 2-6
weblications 2-11
XML 2-3
archway.ini
parameters 6-2, 6-5
updating for JIDBC adapter 6-12
AssetCenter
templates 4-1
user rights 4-1
AssetCenter adapter 6-5
archway.ini parameters 6-5
setting feature links 6-7
troubleshooting the DB connection 6-7

C
cascading style sheets 2-14
changes
required steps 5-3
whereto store 5-4
child documents, See nested documents
clients 2-3
colspan A-12
column
field todisplay A-20
headings A-20
productid A-20
select box A-21
condition A-9
CSS, See cascading style sheets

D
debugging
script C-2
displaylist A-21, A-28
document manager 2-10, 5-17

E

ECMA script 2-8

e-mail adapter 6-22

entry table A-11

event handling in ServiceCenter 6-2

F
feature links in AssetCenter, setting 6-7
field table A-11

Index-2

form
changing contents 5-11
create amenu of links A-17
finding to edit 5-7
image A-25
input document A-7
reusable components A-33
static text A-25

form fields
<entry table> A-10
<fields> A-10
<html> A-10
<listbox> A-10
<menu> A-10
<plugin> A-10
<table> A-10

form statistics
using to find files 5-7

G

getCatalog 2-14
getOrderParameters 5-21
getProduct 5-14

H

hidden field A-30
HTML A-16, A-35
hypertext A-35
hypertext link A-32

|
input document A-7

J

JDBC adapter
adding 6-10
adding anew module 6-16
adding to the Settings page 6-14
calling astored procedure 6-18
overview 6-9
updating the admin.xml file 6-14
updating the archway.ini file 6-12
validating the connection 6-13
verifying the system DSN 6-10

joinfield B-3

joinvalue B-3

L
LDAP adapter

connecting 6-21

updating the archway.ini file 6-21
log files 6-26

Get.It! Base Tailoring Guide



M
module
adding 5-23
changing the name 5-7

enabling AssetCenter templates 4-1

removing from Get.It! 5-25

N

nested documents B-2
finding B-3
in-place B-2
reference B-3

null B-6

o
onload property 2-14
onload script 5-14

P

param A-15

popup window A-36
presentation folders 5-6
productid A-20

Production Environment 5-43

Q
query string 2-6

R

regenerating web pages 5-3
reusable form components A-33
rowspan A-12

S
schema 5-17
<attribute> B-3
<collection> B-5
<document> B-2
AssetCenter templates 4-2
attributes B-2
document file B-1
nested documents B-2
ServiceCenter B-5
structure B-1
script
changing 5-20
debugging C-2
user-derived 5-20
script pollers C-1
scripting 2-8
scripts
hard-coded queries 3-5
SQL queries 3-5
searchable popup window A-36
sendDoclnsert 3-5

Get.It! Base Tailoring Guide

sendDocQuery 3-5
sendDocUpdate 3-5
ServiceCenter
derived schemas B-5
ServiceCenter adapter 6-2
_event parameter 6-3
archway.ini parameters 6-2
event handling 6-2

troubleshooting the DB connection 6-4

software

linking into Get.It! 5-23
stored procedures, calling 6-18
subforms A-33
submit A-13

T
table 2-15
tags A-1
tailoring
basics 5-4
testing the user directory 5-9
TARGET
param A-15
target-activity A-15
target-field A-15
target-form A-15
target-module A-15
target-url A-15
templates
AssetCenter 4-1
enabling modules 4-1
schemas 4-2
TEXT A-16

troubleshooting using log files 6-26

U

user derived script 5-20
user.xml 5-4
user-access A-3

\Y
valuelist A-21, A-28

w
wbuild 3-5, 5-3
parameters 5-5
web pages
regenerating 5-3
weblication 2-11
additional functionality A-36
cascading style sheets
definition 2-14
ingredients 2-13
structure A-1
XSL layout templates 2-13

Index-3



windows
popup A-36

X
XML 2-3
XSL layout templates 2-13

Index-4 Get.It! Base Tailoring Guide






llm. N
a
-

S ' Y S T E M s°

The Infrastructure Management Company™



	Contents
	Introduction
	About this Manual
	Organization of the Manual

	Conventions Used in this Manual

	Get.It! Base Architecture Overview
	High Level Architecture
	Archway Internal Architecture
	Archway Requests
	Scripting
	The Document Manager
	Weblications


	Introduction to Document Schemas
	Definition of a Document Schema
	Using Schemas in a Weblication

	AssetCenter Templates
	Working with the Templates
	The Asset Template
	The Budget Template
	The Contract Template
	The Employee Template
	The Inventory Move, Add, Change Template
	The Work Order Template


	Tailoring Get.It! Base
	Archway Architecture
	Weblication Toolset

	Before You Make Changes
	File Structures
	Application Definition File
	Archway.ini Use of Packages
	Presentation Folders
	Common Components

	Displaying Form Information
	Debugging Changes
	Where to Make the Modifications
	Necessary Information
	Running the wbuild Command

	Changing Form Contents
	Adding Form Fields
	Data for the New Field (Scripts)

	Split Frames (forms)
	Localizing Your Changes

	Adding Fields to a Schema
	Undefined Schema Fields

	Changing Script Behavior
	Changing JScript

	Integrating a New File with Get.It! Base
	Integrating a URL
	Adding a URL as a Module
	Adding a URL as an Activity

	Adding a New Module

	Adding a Feature from AssetCenter
	Portal
	Customizing (GUI)
	Customize
	Copy
	Move
	Hide/Show
	Remove
	Select Content
	Get.It! Base Weblication Components
	Personal Utilities
	Create New (Web page)

	Change Layout
	Netscape Navigator
	Portal API
	Portal Components
	<portal-category>
	<portal-component>
	<plugin>

	Portal Plug-Ins

	Skins and Stylesheets
	Creating New Stylesheets
	Directory Structure
	XML Usage
	XSL (example)
	JSP (example)
	JAVA Source Code (example)
	External JavaScripts


	Production Environment

	Adapters
	ServiceCenter Adapter
	Archway.ini Parameters
	ServiceCenter Event Handling
	Using the _event parameter

	Troubleshooting the ServiceCenter Database Connection

	AssetCenter Adapter
	INI Parameters
	Troubleshooting the AssetCenter Database Connection
	AssetCenter Feature Links

	JDBC Adapter
	Adding a JDBC Adapter
	Verifying the System DSN
	Updating the Archway.ini File
	Validating the JDBC Adapter Connection

	Adding the New Database Settings
	Updating the Admin.xml File

	Creating an Interface to the Database
	Preventing Lost Connections
	Calling a Stored Procedure
	Using a URL
	Using a JScript
	Using a Document Insert Or Update


	LDAP Adapter
	Connecting LDAP to Get.It! Base
	Updating the archway.ini File

	E-mail Adapter
	Verifying Adapter Connections
	Log Files

	Localization Support
	General Localization Steps
	Archives
	Externalizing ECMAScript Messages
	Externalizing ECMAScript Messages with Variables
	Externalizing Messages in XSL Templates
	Japanese Locale

	Weblication Reference
	Weblication Structure
	Weblication Tags
	<application>
	<module>
	<activity>
	<form>
	<redirect>
	component
	form fields
	<fieldtable>
	<action>
	TARGET
	TEXT
	$$(X)
	<menu>
	Link Attributes

	<table>
	Column Types

	<columns>
	<listbox>
	<field>
	<input>
	<input> (Text Field)
	<input> (Text Area)
	<input> (Combo/Selection Box)
	<input> (check box)
	<input> (Radio)
	<input> (Hidden)
	<input> (Date)
	<input> (Money)

	<link>

	Reusable Form Components (Subforms)
	Additional Tags
	<html>

	Additional Functionality
	Searchable Popup Window
	Defining New Popup Windows



	Document Schema DTD
	Document Schema Files
	Schema Attributes
	<document>
	Nested <document> Tags
	<attribute>
	<collection>
	ServiceCenter-Specific Attributes


	JavaScript
	Script Polling Manager
	Initialization File Format
	Writing A Polling Routine

	Read History Array
	Extract URL Argument
	Searchable Popup Window

	Passing External JavaScript

	Index

