
HP Application Life Cycle Management Best
Practices Series
for ALM Practitioners

Agile Testing Best Practices

Document Release Date: September 2011

Software Release Date: October 2010

2

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

 3

Documentation Updates

The title page of this document contains the following identifying information:
• Software Version number, which indicates the software version.

— The number before the period identifies the major release number.
— The first number after the period identifies the minor release number.
— The second number after the period represents the minor-minor release number.

• Document Release Date, which changes each time the document is updated.
• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition, visit the
following URL:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product
support service. Contact your HP sales representative for details.

http://h20230.www2.hp.com/selfsolve/manuals�
http://h20229.www2.hp.com/passport-registration.html�

4

Support

You can visit the HP Software support web site at:

www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and
support that HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a
fast and efficient way to access interactive technical support tools needed to manage your
business. As a valued support customer, you can benefit by using the support site to:
— Search for knowledge documents of interest
— Submit and track support cases and enhancement requests
— Download software patches
— Manage support contracts
— Look up HP support contacts
— Review information about available services
— Enter into discussions with other software customers
— Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in.
Many also require an active support contract. To find more information about support access
levels, go to the following URL:

http://h20230.www2.hp.com/new_access_levels.jsp

To register for an HP Passport ID, go to the following URL:

http://h20229.www2.hp.com/passport-registration.html

http://www.hp.com/go/hpsoftwaresupport�
http://h20230.www2.hp.com/new_access_levels.jsp�
http://h20229.www2.hp.com/passport-registration.html�

Introduction 5

Contents

About Agile Testing .. 7

Audience .. 8

Prerequisites ... 8

Structure ... 9

Feedback.. 9

1 Introduction to Agile Testing .. 10

Importance of Agile .. 10

The Real Agile ... 11

What Agile Is .. 11
Classic is Not Forever .. 11
Agile is Born ... 12
Waterfall and Agile Live in Peace ... 12

2 Preparing for Agile Testing ... 14

From Waterfall to Agile .. 14

Recipes for Successful Agile ... 15

Assess Your Processes ... 15
Tell a Story ... 16
Define a Testing Strategy .. 16
What to Test ... 17
Testing Metrics Should Speak Business .. 17
Play Well with Others .. 17
Alert Only when Needed .. 18
Timing is Everything ... 18
Not Only Functional Testing ... 18
Meet Often .. 19

6

3 Making Agile Testing Work .. 21

Role Shifting ... 21

Collaboration Equals Strong Team ... 24

Fast Cycles .. 25

Planning is Key ... 27

Communication – Agile’s Main Vehicle ... 27

Automation is the Name of the Game ... 28

Start Small .. 30

Central is Agile Too .. 31

Problems With Agile ... 32

4 Conclusions .. 34

7

Welcome To This Guide
Welcome to the HP Agile Testing Best Practices guide.

This guide provides concepts, guidelines, and practical examples for the best
implementation of agile testing principles in various organizations.

About Agile Testing

Have you ever come across a piece of software that just does not work and
wonder, ‘How did this code get released?’ Or maybe you have actually worked
on a project where you told the powers the software should not be released,
but to your bewilderment, they went and did it anyway.

There are, of course, a myriad of reasons and circumstances that can lead to
poor code being released. One major cause, however, can be the company
culture.

If developers are highly valued and testers are seen to be of less value, then it
is easy to see why the voice of the tester can go unheard and their view
ignored. If testers are not sufficiently technical or are unable to write a
coherent and convincing report, their message can get shot down in the
general debate, or considered of little value due to poor presentation. If the
release decision is taking place behind closed doors with no opportunity for
the test report to be presented and discussed, then the information regarding
the true state of the software might never be made available to those making
the decisions.

There may be a number of reasons why, even when the test report is fully
understood, the release is still sanctioned and bad code is released. However
these tend to be few - the main reason is that the test department is excluded
from the process.

Agile methodologies are the latest attempt by development teams to bridge
the gulf between increasing business expectations and unsatisfactory IT
delivery. While it is estimated that more than 70 percent of projects still
follow the waterfall (classic) model, agile is quickly becoming mainstream in
small and large organizations alike. With its promise to honor results over
processes, agile methodologies are the focus of the efforts to deliver better
software.

8

HP has adopted agile practices for its internal development processes and
believes that sharing its experiences can help customers in adjusting their
methodology and processes to deliver quality software.

These guidelines should help reduce initial creation time and achieve
maximum value while operating HP ALM.

Audience

This guide is intended for:

• Quality Assurance Managers

• Testing Automation Engineers

• Development Managers

Prerequisites

To use this book, you should be well acquainted with the major phases of
Software Development Life Cycle (SDLC). You should also be familiar with
the business processes in actual IT organizations.

9

Structure

This guide is organized as follows:

• Introduction to Agile Testing

• Preparing for Agile Testing

• Making Agile Testing Work

• Conclusions

Feedback

If you have questions, comments, or valuable best practice information you
want to share, send a message to the following email address:

alm_cust_feedback@hp.com

mailto:alm_cust_feedback@hp.com�

 10

1 Introduction to Agile Testing

Importance of Agile

The need for software products of high quality has pressured those in the
software profession to identify and quantify quality factors such as usability,
testability, maintainability, and reliability, as well as identify engineering
practices that support the production of quality products having these
favorable attributes. The software development process, like most
engineering artifacts, must be engineered. That is, it must be designed,
implemented, evaluated, and maintained. As in other engineering disciplines,
a software development process must evolve in a consistent and predictable
manner, and the best technical and managerial practices must be integrated
in a systematic way.

Businesses that are under pressure to deliver higher quality applications in
response to competitive demands are turning to agile development practices.
In fact, agile and other iterative methods are becoming the de facto standard
for application development. Ideally, agile is about delivering the highest
business value possible more quickly by focusing on people and continuous
improvement. The agile methodology is usually perceived as mainly
applicable to development teams, but actually requires the entire
organization to adjust.

Agile development presents organizations with two important challenges:
bringing quality and stability to applications much earlier in the
development process in order to align with the business, and becoming
flexible enough to keep pace with the iterative nature of the agile
methodology.

HP offers an approach and solutions that help teams embrace the agile
methodology and make a significant contribution to its successful outcome.

11

The Real Agile

What Agile Is

The term agile is definitely suffering from buzzword syndrome. “Agile”
sounds so good – it is nimble, flexible, and strong. Who wouldn’t want to be
“agile?” No one says, “Thanks, I’d rather be inflexible and slow to respond.”
Additionally, because it’s a standard word in English, everyone thinks they
know what “agile” means. The problem with buzzwords is that people invoke
them without understanding what the terms really mean.

A Google search for “agile development” returns millions of responses and it
is no wonder that many people interpret it differently. The main portion of
Agile Manifesto is well known:

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

However, its true meaning is sometimes lost in the sea of multiple “spin-offs”
of Agile, including Extreme Programming, SCRUM, DSDM, Adaptive
Software Development, Crystal, Feature-Driven Development, and Pragmatic
Programming, among others. Even though they differ in subtle ways, these
methodologies hold the same foundational values described above. “Agile” is a
relentless focus on providing a continuous stream of business value, even in
the face of constant change.

So what is agile and why do old methods not always work as efficiently?

Classic is Not Forever

In our fast moving world, classic approaches do not always work. Waterfall
development is characterized by well-defined phases, each having a thorough
review and authorization process that should be completed before proceeding.
On the surface, this process is not inherently bad. In fact, it’s quite logical:

12

First, figure out everything you need. Then design it. Then code it. Then test
it. Repeat.

Problems arise when the project requires adjustments and modifications that
were not anticipated in the early stages. Reality ruins the plan. For projects
that can be specified out with precision ahead of time, waterfall may be the
proper choice. Unfortunately, experience has shown that a calm, unchanging
set of requirements is a rarity.

Whose fault it that? The answer varies depending on whom you ask. Upper
management often blames the product team for not being thorough enough.
Product blames sloppy coding by development. Testing blames management
for not enforcing tighter deadlines and cutoffs. “You signed off on the spec two
months ago; we can’t add this feature now!”

It is no surprise that these projects become the source of such frustration - in
the end, teams often deliver software that lacks the most important features!
At the same time, there are piles of great looking documents – MRD, SRS,
Architecture diagrams, APIs and Test Plans – that don’t provide any real
value to customers.

Agile is Born

Because of these failures, development teams began shifting to frequent
releases. At first, these iterative methods went with small cycles, but
remained with a fixed schedule ahead of time (i.e. fixed budget, strict plan,
and predetermined feature sets). So instead of the one major release, several
minor releases would be scheduled.

This concept was taken step further - iterative releases with no fixed plan.
Essentially, each release would add a bit of value, allowing for better
decisions as to what features should be included next. Development would
work in small cycles, planning and designing only far enough ahead to keep
the flow working. With this increased flexibility, the burden of excessive
formal documentation is greatly alleviated. Now testing is incorporated into
each step of the process, not just at the end of each release.

Waterfall and Agile Live in Peace

While Agile is gaining in popularity, there is still a place for the classic
approach– after all, the success of any development methodology is measured

13

by the quality of software outcomes. But even if your organization uses
traditional waterfall methodologies, you can still benefit from agile concepts
to improve quality.

If your company is developing quality software; if the development is
sustainable and the business is being adequately served by that software,
there is really no need to press the issue. Agile is no panacea for problems
related to development, process, and management. However, if you are ready
to make some of the necessary changes, it can be extremely beneficial in the
long run.

Recently there has been a proliferation of hybrid approaches where some
teams working on a new project or switching to a new technology adopt agile
methodology in full, while some take pieces that suit their business goals and
culture, and other teams, especially in big corporations, still adhere to the
classic methodology simply because it works.

In larger organizations, we often see different teams working on different
components of a larger initiative while using different methodologies to
produce the software. This makes reporting on initiative status difficult as
each team’s goals and KPIs vary across the different processes. Being able to
manage different flavors of agile and waterfall within the same project adds
complexity to an already complex operation. HP ALM helps overcome the
complexity by using standardized, template-based projects – agile and
waterfall are both offered.

As with many things in the technology industry, there probably won’t be a
clear winner in the methodology battle and hybrid approaches will eventually
prevail once the buzz begins to subside.

 14

2 Preparing for Agile Testing

From Waterfall to Agile

The waterfall approach in software development is a sequential process in
which development is seen as flowing steadily downwards (like a waterfall)
through the phases of requirements analysis, design, implementation,
testing, integration, and maintenance.

It treats testing as yet another phase in product life. Here are some of its
qualities:

• First you code, then you test.

• Development and testing teams are separate, each working in its own
silo.

• Each part of the process is heavy and requires tons of documents:

— Requirements

— Design documents

— Test plans

— Traceability matrices

— Change review boards

• Testing becomes a “bottleneck” in the very end, thus making it virtually
impossible to maintain a schedule.

• Automation tools get into the action after coding – this requires expensive
efforts by testing teams to record/playback.

The waterfall approach suffers from a lack of involvement, broken
communication between developers and testers, and minimal impact on
product decision makers.

The introduction of agile methodology promises to alleviate some of the
important problems of the waterfall methodology:

• Coding and testing become inseparable.

15

• Feedback and collaboration are the key ingredients of the cure.

• Exploratory testing reveals unintended consequences and uncovers
implicit expectations.

• In most of the cases, the tester is expected to show critical thinking, not
only adherence to requirement documents.

• As jobs definitions are blurred, diverse ideas begin flowing.

• All types of people start working as a single team.

Recipes for Successful Agile

HP believes in a holistic view of application lifecycle management. When
agile is added into the mix, it enables integrating QA and user feedback into
development processes. Development and QA become part of the same team –
as opposed to the uneasy truce that exists between those two roles today. It
also allows greater adaptation to customer needs and market changes,
ensuring that the products meet the high standards customers expect.

Let’s see what recipes HP has for making a testing process an agile. These
recommendations should help build successful agile teams that deliver better
software.

Assess Your Processes

Many people think the goal of testing should be to simply find all the bugs.
In fact, this task is not entirely realistic – it is actually impossible. Despite
their title of “quality assurance,” testers can never truly assure quality, nor
can they be expected to find every bug. The real goal of testing should be to
improve the software. This is a widely held view of testing in the agile world.

Despite this, upper management still tends to believe that testing can
uncover all the bugs or prove whether or not the software will function as
intended. They wrongly equate testing with validation. To understand the
true role of testing, one needs to understand that it is a scientific method – a
continuous search for information. Instead of thinking of tests in terms of
‘pass’ or ‘fail,’ try to think of whether or not they provide valuable
information. In an agile environment, testers should be called upon to
provide this valuable information through the development cycle, as opposed
to issuing a ‘pass’ or ‘fail’ grade at the end.

16

For agile to succeed, testing must become a central pillar of the development
process. It can seem chaotic at first, but when executed properly, agile is not
chaotic at all. It is a methodology that has programmers build unit tests
before writing code, thus instilling quality as the main success factor of the
software product. It has a different kind of order from the classic methodology
– one that focuses on code rather than paper, and on value as opposed to
blame.

Tell a Story

Forget the words use case and instead say storytelling. In theory, it is the
same thing, but in reality it is much different. To illustrate this difference,
try searching for each of these terms on Google Images: “Use case” brings
images of dry and intimidating flowcharts and diagrams, while “story” brings
friendly and colorful pictures.

Testers will have a similar subconscious reaction: Ask a tester to build a use
case and they will think in dry and uninspired terms. But ask them for a
story, and you will see the diverse ideas start to flow. This way, you
encourage them to be more creative and not settle for simple screen
reviewing. You empower the testers without actually using the cliché word
“empowering.” This change in terminology helps them go the extra mile to
feel the pain of the user working with the piece of software.

Testers should be involved throughout the design phase. They should help
with the specifications development and requirements gathering.

In an agile environment – where testing is being done continuously – it is
especially important that you keep things fresh.

Define a Testing Strategy

Make sure to define your testing strategy early on. Start from understanding
that a software requirement specification (SRS) is quite similar to a test plan.
Therefore there is no reason to maintain both types of documents in the fast
agile world. Testers know how to find errors. They also know that errors don’t
just appear at the end, they appear throughout the process. Finding errors in
logic or in usability is a must for Product Managers during the spec phases,
yet their skill sets are often geared towards other areas. Looking at the
unified SRS/Test Plan with a tester’s eye, therefore, adds tremendous value
in the early stages.

17

Testing is not a phase in agile teams, testing is a way of life. Agile teams test
continuously. It’s the only way to ensure that the features implemented
during a given iteration or sprint are actually getting done. One benefit of
involving QA early is that the testers ensure application requirements will be
testable. Many times with the agile approach, the testers are able to begin
building test use cases during the initial design phase.

What to Test

The multi-dimensional matrix of what needs to be tested should be defined
early. The importance of this has grown exponentially during the past few
years, as the matrix has become increasingly complex. Defining the coverage
requirements is an essential part of the specifications process, and thus can
be dealt with at an early stage. The size of the coverage matrix has a
significant impact on staffing needs and QA costs. Because of this fact,
defining it clearly and early helps management allocate resources and
determine what can be done in-house and what should be offshored or
outsourced for greater coverage.

Testing Metrics Should Speak Business

Testing managers often focus on information that is of little use to anyone -
keep this in mind when collecting data. They are used to compiling detailed
reports that show the number of test cases written (i.e., how many have been
run, failure rate, severity levels, etc.) and this is certainly valid data to the
testing manager, but who else in your organization will care? Would the
business development team, for instance, have any practical use for this?

One type of data that would be of value is direct business impact statistics:
sales missed due to bugs, customer renewal rate, and relative cost of defect
by type of discovery. This type of information is like gold to decision-makers.
If you can collect this data, then do so immediately. Just use data properly –
sometimes metrics collection becomes a task of itself, while the message does
not go up to the management.

Play Well with Others

A true collaboration must occur between development and QA. Without
collaboration, agile becomes a set of forced procedures and will not help
create quality software. All members of the team must be exposed to the

18

same data in real time so they can have their fingers on the pulse of the
sprint. This means a common version of the truth must be made visible to all
members. This includes sponsors outside the SDLC process in the form of
reporting that relates to the business needs as well as to other development
teams who may or may not be using agile or at least a different flavor of
agile.

Alert Only when Needed

If every defect discovered by the tester gets the highest priority, developers
will inevitably come to overlook some of the ones that are really important.

On the other hand, if you continually say “Ignore this bug, it’s a known issue”
or “Ignore that test, it’s not yet relevant,” then your testing team will get
accustomed to ignoring bugs, and they will miss the ones that you do not
want ignored.

Be careful in assigning the severity and priority of the bug so that the
developers will able to comprehend the significance of the problem.

Timing is Everything

The short release cycles of agile development can often place QA teams
under tight time constraints. One way to overcome this is to be in constant
contact with the developers during the iteration. The earlier a bug gets
discovered or feature shortcomings show up, the easier the fix. The QA team’s
involvement allows testing as the engineers develop. There is no need to wait
until the end of an iteration to produce a list of defects. As defects are
discovered, that information is fed back to the development team, which
addresses them as part of the development process. The cost of solving
defects early in development is much lower than solving them later. The risk
that a defect might generate issues with other, related pieces of code is also
reduced. Overall, the team will have a higher level of confidence in the
quality of its development output, because it knows defects are being
continually identified and addressed.

Not Only Functional Testing

As testing becomes integrated with development – and as testing activities
become more and more compressed – there is a tendency to forget about other

19

aspects of quality assurance, namely application performance validation and
security assessment.

At what point will your application’s performance begin to degrade? How
many concurrent users can it support? How do the various components of
your application behave with 50, 100, or 1000 active users? Where are the
bottlenecks between your code base, database, and load balancers? Without
answers to these questions, your testing and development efforts could
become meaningless. If your software can’t hold up under stress, it does not
matter how agile your methods are. To be prepared, start from performance
risk analysis early in the iteration so that you can map all of the potentially
weak areas in advance – even before any actual code is written.

Similarly, the only software that matters is secure software. Attacks on
software by hackers, criminals, and insiders can result in business
interruption, brand damage, tremendous financial loss, and harm to innocent
people. The targets of these attacks are hidden vulnerabilities within
software applications. These vulnerabilities accumulate within software,
waiting to be exploited. To make matters worse, new vulnerabilities are
continually introduced into organizations from their own internal software
development groups, as well as through procurements from vendors,
outsourcing firms and open source projects.

Addressing potential security threats in a fast manner during short
interaction cycles of agile development increases the chance of early discovery
and fix. If developers are notified about the security threat of a feature they
just checked-in for the build, they will be far more capable to address this
problem in a timely fashion and may even be able to commit the fix for the
next build. For example, you might add a malicious user story in the
planning stage so that it gets addressed during iteration validation phase.

Meet Often

Although Scrum is not the only method to conduct agile testing, daily Scrum
meetings have proven to be extremely beneficial for teams in the long run, as
they help departments to remain focused, energized, and coordinated.

Scrum removes management pressure from teams. Teams are allowed to
select their own work, and then self-organize through close communication
and mutual agreement within the team on how best to accomplish the work.
In a successful Scrum, this autonomy can significantly improve the quality of
life for developers and enhance employee retention for managers.

20

Too often, however, daily Scrum meetings become weekly meetings, which in
turn become monthly meetings. To avoid this, set a time that works for
everyone and do your best to stick to the schedule.

21

3 Making Agile Testing Work
The reality of the current software development scene causes many team
leaders to ask about how to transform into a more effective agile entity. If
there was a Wizard of Agile, the following conversation between a team
leader and the Wizard might occur:

Team Leader: “How can I make my team agile?”

Wizard of Agile: “You can’t change people; you can only help them change
themselves.”

Team Leader: “How can I help them?”

Wizard of Agile: “You must first become agile yourself.”

Team Leader: “How do I become agile?”

Wizard of Agile: “It’s simple… but not easy.”

To take the mystery out of the task of launching agile methodology, let’s
consider the main aspects of the journey to becoming agile.

Role Shifting

The introduction of agile methodologies shifts traditional organization roles.
The triumvirate of business analyst, developer, and QA person transforms
into the new agile roles of domain expert, programmer, and tester, with each
role having some overlapping responsibilities. Here are some of the roles:

— Scrum master

This person is responsible for deadlines and sticky notes.

— Product owner

Sometimes called domain expert, this person defines in general what
needs to be done but without too much details.

— Programmers

This person implements stories with high business value using good
techniques and practices.

22

— Testers

This person provides information on the state of the project.

— Development managers/team leaders

These people participate in planning discussions and bear overall
responsibility over the group of programmers in terms of delivery.

Depending on the number of people and complexity of the project, there are
additional roles of:

— Project Manager

This person does whatever it takes to ensure that valuable projects
are delivered now and in the future.

— (Agile) Customer

This person ensures the team works on stories that deliver the
highest business value possible.

— User Experience Designer (UX)

This person helps the Customer discover usability needs, helps the
team meet them, and verifies they have been met.

— Architect

This person guarantees the team implements good techniques and
practices.

Remember that the above definitions are really roles and responsibilities, not
people. One person could fulfill multiple roles within the agile organization
structure.

Since one of the main appeals of agile methodology is a promise to work as
one team and not as the silos of the classic approach, this structure has some
clear advantages:

— Team, not individuals

The team should work as a unit, not as a set of individuals. The team
leader should find ways to renew the team members’ commitment
and their purpose to each other. Remember: Not everybody can be
motivated to the same level. One very motivated person can do a lot
of work, but the opposite is true as well. Annual review of each team
member should be focused on an individual member’s personal
achievement, not his/her team’s achievement.

— The whole team is committed to quality

23

Quality is maintained continually with the agile development
approach. Both the testers and programmers have more confidence in
the code: they know there is a reduced chance that undiscovered
defects will create problems downstream.

— The whole team is responsible for testing

The testers also do a risk assessment: prioritizing defects to ensure
that those which have the most potential impact on the software
receive the most attention and development resources.

— Testers get support and constant training

Because the testers are more integrated with development, their skill
sets are also different than they were before the company moved to
the agile approach. There is a need for testers with a technical profile
because they have to dig deeper into the code. They are not only
working on a GUI or user interface level.

— Developers do testing activities

Unit testing is the de facto standard in agile teams. The best
scenario, adopted by quite a few teams, is to have unit tests be
written during the coding, or even before that.

In addition, HP Application Lifecycle Intelligence (ALI) equips HP
ALM with the ability to monitor source code changes, flag untested
changes, report if a defect is linked to a code change, and warn if a
code change is not related to a business requirement. It enhances HP
ALM by aggregating data from a variety of sources, allowing decision
makers gain access to meaningful information and visibility into the
potential risks of change in application projects. All this happens in
the familiar development environment of choice without changing the
way developers work, while giving them insight into the
requirements and quality assurance world that usually gets forgotten
in the waterfall development approach.

— Testers and developers pair to tackle certain problems

Each member of the team brings his/her own perspective on the
problem, thus bringing resolution closer. Since all members work for
the same team, there is no problem of broken communication and
vested interests.

24

Collaboration Equals Strong Team

In many ways the tester and developer roles are in conflict. A developer is
committed to building something successful. A tester tries to minimize the
risk of failure and tries to improve the software by detecting defects.
Developers focus on technology, which takes a lot of time and energy when
producing software. A good tester, on the other hand, is motivated to provide
the user with the best software to solve a problem.

Agile strives to break misperceptions and create a team unified by the goal of
delivering quality software on time. It is about delivering the highest
business value possible more quickly by focusing on people and continuous
improvement. While collaboration remains a key theme, something more
elemental needs to be addressed at the very beginning - the importance of
mutual understanding. This is the basis of building a strong team, where
individuals communicate in a mutually agreed language to deliver quality
software. Without this cooperation, the testing function would have a difficult
task defining the test criteria and making sure the necessary quality levels
are achieved. The only possible solution is for testing and development to
work together. Testers can be powerful allies to development and along the
way they can be transformed from adversaries into partners. This is possible
because most testers want to be helpful; they just need a little consideration
and support. To achieve this, however, an environment needs to be created to
bring out the best of a tester's abilities. The tester and development manager
must set the stage for cooperation early in the development cycle and
communicate throughout the cycle. Many times it results in physical
colocation of development and testing sides of the project, encouraging face to
face interactions.

Much better communication between developer and QA greatly simplifies the
process as it means less bureaucracy and more coding – hence producing
faster delivery. Testers are represented at every stage of SDLC and have
early influence over quality related decisions. As test design and execution
are done earlier in the cycle, it is still possible to impact and change a piece of
troubled code.

To summarize the above, there are clear benefits to the agile approach:

— One team.

QA has never been closer to development and becomes part of the
cycle.

— Quality is now a concern of the entire team and not only the tester’s.

25

— The skillset level of a QA person rises due to constant interaction
with developers.

— Everything happens very quickly.

The quicker the testing, the better the influence.

— Quality level improves due to early testing and defect detection.

Approaches like unit testing (to validate that the right thing is developed
correctly) and acceptance tests (to validate that the right thing is developed)
are not new. In the past, however, these approaches have often been handled
in an isolated way. With agile, a comprehensive, pragmatic solution is
preferred, which focuses on the requirement itself, while also having the
stakeholders in mind. The solution can be found in HP ALM, which helps to
overcome various barriers:

— Barriers between project phases and project activities.

Because coding and testing move together more closely.

— Barriers between artifact types.

Because code and executable specifications are written on the same
unified infrastructure.

— Barriers between project roles.

Because tests are written collaboratively, with mechanisms to use
terms close to the problem domain.

Fast Cycles

Traditional waterfall methodology of systems development is essentially a
sequential solution development approach. A common problem with the
waterfall model is that the elapsed time for delivering the product can be
excessive.

By contrast, agile development accelerates product delivery. A small but
functioning initial system is built and quickly delivered, and then enhanced
in a series of iterations. One advantage is that the clients receive at least
some functionality quickly. Another is that the product can be shaped by
iterative feedback; for example, users do not have to define every feature
correctly and in full detail at the beginning of the development cycle, but can
react to each iteration’s results. With the agile approach, the product evolves

26

continually over time; it is not static and may never be “completed” in the
traditional sense.

HP’s internal agile teams’ experiences, as well as those of its many customers
teach that there are some common periods in the cyclic nature:

— Iterations, usually called “sprints” in SCRUM lingua, last between 2
and 6 weeks, with 4 week cycles being the most popular. The outcome
of the sprint is the testable version of the code.

— Milestones, when the working version of the product is built and
delivered to the business customer, occur every 3-4 sprints. At this
point, the planning for the next milestone is performed. Customers
get a chance to see an incomplete but working version of the final
product, and supply feedback which is incorporated into the plan.

— Daily meetings to discuss current state of the team. These meetings,
usually conducted near the drawing board and filled with sticky
notes, bring team members together and allow sharing of problems
and ideas in an open manner. Team members choose the next tasks
to perform as they want, keeping skill sets in mind.

— Simple statuses are in place to track the progress. They usually
include:

– To-Do: an initial status after the task has been taken from the
queue.

– In Progress: when the feature is actually being developed.

– Done: when the feature passes an acceptance test.

– Blocking: what is blocking me from accomplishing the task? The
blockage may have a technical or nontechnical cause.

These, of course, are just examples of statuses – different companies
may enhance the list with additional values that best suit their
business nature.

These short periods encourage quick response from the tester and good
collaboration with the developer. Without them, it may become too late to
affect the product decisions that evolve over time.

Agile teams use smaller increments and just-in-time collaborative planning
to ensure critical changes can be released sooner. If something is important,
it can be moved into an earlier release or iteration. It may displace another
feature that isn’t as important, but it won’t disrupt an entire release. The
result: faster delivery.

27

Planning is Key

Software development is all about implementing requirements. The
requirement is the central unit and the driver of a software release.

Traditional requirements-based testing expects that the product definition
will be finalized and even frozen prior to detailed test planning. With agile
development, the product definition and specifications continue to evolve
indefinitely; that is, there is no such thing as a frozen specification. A
comprehensive requirements definition and system design will probably
never be documented.

With all this said, the planning phase is probably the most important part of
the process. During milestone discussions, the whole content of the project,
sometimes called the backlog, is taken as the basis for the next milestone
effort. The backlog is then broken into smaller pieces called user stories which
are essentially the requirements, but without too many details and described
in a human way.

From user stories, team leaders derive tasks – activities that should ideally
take no more than 3-4 days to accomplish. If a task is expected to take more
time, then there is a need to divide the user story into multiple smaller user
stories so they can be combined into the task at the end.

The task becomes an ultimate unit of work, and developers take them from
the general pool as they please, based on skillset.

There have been attempts by the fresh agile teams to oversimplify or skip the
planning process altogether as being too formal. Do not let it happen;
planning should never be skipped or become irrelevant. On the contrary –
investing the required amount of time, bringing all relevant parties to the
table, and cutting the big pie of backlog items into user stories of appropriate
size will ensure a healthy flow of events during the milestone period. As you
work in agile teams, use your agile skills to calibrate planning process –
make it longer or shorter as per business needs.

Communication – Agile’s Main Vehicle

As the whole team, including the programmers, testers, customers, is
responsible for the outcome, only strong commitment from each and every
team member makes it possible. To facilitate this outcome, everyone on the

28

team should be accessible and actively communicating throughout the
project.

QA engineers in waterfall tend to rely on documents. Agile testers don’t get a
big requirements document as a basis for test cases and don’t get three
months to write test cases before they see a working piece of code. They jump
into the communication stream, which may be verbal, written, or virtual –
and assimilate the information they need. They learn to ask the right
questions at the right time and provide the right level of feedback at the right
moment.

Unfortunately, testers are typically:

— Bad at understanding what customers want to know.

— Bad at editing out information that is not necessary or relevant (more
is not better).

— Bad at translating technical problems into their likely business
impacts.

— Bad at presenting data in a way that is easy to digest.

To improve the widespread attitude towards testers and effectively
communicate their value, there is a need to invest a serious effort in crafting
information for numerous stakeholders in the team and the company. Use
modern tools like wiki to produce test documentation and provide test
statuses and outcomes. These two can reside on the same wiki page and serve
as both test design and test results tracking. Make information visible!

If you want to achieve a high level of quality within your systems then you
need to embed quality professionals within the development teams to
iteratively review and advise on the ongoing work (thereby reducing
communication time and decreasing opportunity for information loss via
documentation). Note that you may still have an independent test team
which externally validates the project team's work, but the majority of
quality professionals would be embedded within the team.

Automation is the Name of the Game

Since development cycles have been shortened and testers do not have the
luxury of having months to design and execute test cases, the agile approach
demands quick turnaround of testing activities.

29

Shorter cycles increase agility. Fortunately, with agile projects the software
is ready to test almost from the beginning. Typically, agile teams employ
several levels of testing to uncover different types of information:

• Automated unit tests

These tests check the behavior of individual functions/methods and object
interactions. They answer the question: “Does the code do what the
programmer intended?” The unit tests run often, and provide feedback in
minutes.

• Automated acceptance tests

When you need to check the behavior of the system end-to-end, use
acceptance tests. These tests are the most important ones as they
provide answers to questions like, “Does the system do what the
Customer wants?” They typically run on checked-in code on an ongoing
basis, providing feedback in an hour or so.

• Automated regression tests

Because of the cyclic nature of agile projects, there is a need to verify the
state of the product to see if what used to work is still working. Manual
regression tests take longer to execute and, because a human must be
available, may not begin immediately. Feedback time can increase to
days or weeks.

It is no wonder agile projects favor automated tests. Actually, without
automation it is nearly impossible to keep up with the constant change that
emanates from each cycle. Hence there are some simple ideas that would
allow an agile tester to stay ahead of the curve:

— Plan for the current iteration.

Design tests for the features or stories to be done in the near term.
Many times proactive planning means rework.

— Use catalogs of reusable tests.

Do not redesign the same tests over and over. Instead, keep reusable
checklists.

— Keep an up-to-date, prioritized risks list.

What kind of information are the testers looking for? The risks list
should cover it.

Combined with source code, build automation, automatic deployment to test
environment, and continuous integration, testing automation is one of the

30

main facilitators of fast and quality delivery of software products in an agile
world.

However, manual testing, particularly manual exploratory testing, is still
important, even on agile projects. Traditional test wisdom says it is
impossible to start testing a feature until it is accessible from an external
interface like a GUI. But there is no need to wait. Test automation can
facilitate manual exploration which provides additional feedback and covers
gaps in automation and is necessary to augment the automated tests.

There are, of course, more types of testing that need to be applied to the
software – for instance, cross environment testing, testing in customer-
specific environments, internationalization and localization testing, and
many more. Just like the functional testing, they can and should be
automated as much as possible and addressed during the agile period.

Start Small

One of the important steps in spreading agile methodology within the
company is conducting a pilot project. Its purpose is to:

• Verify the concepts formulated in books or by agile trainers.

• Demonstrate the initial value of establishing an agile team.

• Market the idea of an agile development inside the organization.

Usually the process starts with one team or project, and depending on the
results, it is rolled out to the entire organization.

To conduct the pilot, an organization should determine the initial focus of the
newly formed agile team and define the exact contents of a specific
development project. When preparing for a pilot stage, it is necessary to
address as many aspects of agile as possible, but on the smaller scale:

— Planning the pilot

— Conducting generic introductory sessions on agile principles

— Possibly bringing in an agile coach

— Identifying project content and its business representatives

— Collocating team members in one physical place

— Defining members of the pilot

31

— Making a timeline of the pilot project and recognizing delivery points

— Documenting the progress of each step

As the experiences of HP customers shows, the pilot team gets transformed
while working on an existing product module or its enhancement. Companies
create small teams with predefined small-to-medium project life spans and
put them into one location. The team is given the liberty to define its
structure and working methods but takes full responsibility for the outcome.
Even though a pilot is conducted on a smaller scale, it is imperative to enlist
executive management support. Regularly providing the management
sponsor with reports on the progress and problems will help ensure that
support is forthcoming.

At the end of the process, it is a good idea to conduct an analysis session,
sometimes called “retrospective,” for both the members of the pilot team and
their customers. Extensive feedback allows you to prevent unnecessary
mistakes in the future, and facilitates streamlining expansion of the agile
methodology. If possible, the executive sponsor should participate in this
analysis session. In any case, there should be a document describing the
process and its findings which can be used later as a master plan for rollout.

Central is Agile Too

While most agile teams resemble the structure described above, there are
usually some specialized cross project teams with unique skills in
infrastructure, test lab admin, load testing, security assessment, etc. This
comes as no surprise considering the unique skills required from the
members of such teams. It takes a lot of time to master the art of
performance engineering or security analysis. However, the specific nature of
these teams should not prevent them from participating in agile processes. In
large organizations, it is not unusual for centralized teams to have some
advantages in supporting enterprise initiatives because they can provide a
different prospective and more holistic view on all non-functional problems.

These are some core principles that should be followed in involving a
specialist:

— This person works exclusively with one point of contact in each team.

— In some cases, one specialist is dedicated to the specific team. In
other cases, one engineer serves multiple teams. It really depends on
the size and complexity of the project.

32

— Each engagement should start with the formal kick-off meeting,
where each party has visibility into its goals and timeline.

— Each engagement is concluded with a sign off document using a
predefined template.

— The involvement requires commitment from the development team
manager to assure that non-functional aspects are considered and
taken care of.

The iterative nature of agile projects perfectly fits non-functional testing
objectives – getting involved and applying influence at earlier stages of the
project allows addressing inherent problems and leads to a successful fix rate.

Problems With Agile

Another aspect of the agile adoption has to do with multiple variants of the
process. No company is the same and this is reflected in the way application
development and testing is performed. HP, through its wide customer base,
has the privilege of watching different forms of agile implementations and
agile testing techniques.

Agile is much more about company culture, human relationships and
business procedures than about specific tools, slogans and tricks. It is much
faster than waterfall, but it can still have many of the same problems as
some traditional project lifecycles: bad requirements, communications issues,
lack of documentation.

While agile has huge potential and a great adoption rate, it has some
problems and limitations. Management should take the following into
consideration prior to global roll out of the methodology:

— The agile approach seems to work best with smaller groups.

— It is a lot easier to manage when people are physically located
together. However, there still examples of successful agile teams
located at multiple sites.

— Another benefit of physical colocation is that offshore development is
problematic and puts enormous pressure on day to day operation.

— Sometimes it is really difficult to test something prior to the end of
the whole project even if each iteration testing was marked as “done”.

33

Many times this status is given without full satisfaction on the QA
side.

— Many times GUI testing is problematic in agile as everything may
break out in the next iteration.

— The planning phase still takes considerable time – at least at each
milestone.

— Wrong planning at the beginning of the milestone gives way to
problems, i.e., if backlog items were cut improperly, the user story is
too big or too small – this can affect the entire development cycle.

It should be clear from the very beginning that agile is no panacea for
problems related to development, process, and management. However, if you
follow the HP advice and constantly examine the situation, it can be
extremely beneficial to the quality of the software output.

34

4 Conclusions
The agile approach has been around for quite some time now. It has proved
invaluable in many of the complex projects being carried out by small and big
companies alike. The most innovative companies of today and tomorrow will
continue to push the agile methodology envelope. For them, being able to
effectively define, plan, and execute projects in a dynamic and high-speed
environment will be the difference between merely surviving and flourishing.
Agility is about making the right decisions during project execution as well as
planning.

From a testing perspective, the biggest challenge of being on an agile project
team is that the software is always changing. With new code being pushed
into the test environment daily or even hourly, the system you are testing
becomes a moving target. Dealing with that kind of change can require
different approaches to testing, with different skills, tactics and tools. There
are certain aspects of testing software that do not change just because the
project team is using an agile approach to implement software, particularly
the mechanics of test execution, but some testers may need to make
significant changes to their testing approach if they are going to add value on
an agile software project. Agile testers have to make decisions about what
work to do next, how to do it, how to make it meaningful to the client, and
how to exercise the application in different ways to improve the
understanding about how things work and where risk might be.

We are all interested in improving the quality of the applications we produce
on behalf of our respective departments, lines of business, and enterprises.
What is required to make this goal achievable is a lifecycle approach to
quality, proper planning and design of the environment, consistent use of
best practices, state-of-the-art tools such as HP ALM, and intimate
knowledge of company business.

We hope that the best practices listed in this document will help in adoption
of agile methodology and utilization of HP ALM in your organization.

	Agile Testing Best Practices

	Contents
	Welcome To This Guide
	Introduction to Agile Testing
	Preparing for Agile Testing
	Making Agile Testing Work
	Conclusions

