
Peregrine Systems, Inc.

P
ro

d
u

ct D
o

cu
m

en
tatio

n

Part No. DGS-42-EN30

Get-Services™ 4.2

Tailoring Kit Guide

Peregrine Systems, Inc.
3611 Valley Centre Drive San Diego, CA 92130
858.481.5000
Fax 858.481.1751
www.peregrine.com

Get-Services

© Copyright 2005 Peregrine Systems, Inc.

PLEASE READ THE FOLLOWING MESSAGE CAREFULLY BEFORE INSTALLING AND USING THIS PRODUCT. THIS PRODUCT IS COPYRIGHTED
PROPRIETARY MATERIAL OF PEREGRINE SYSTEMS, INC. (“PEREGRINE”). YOU ACKNOWLEDGE AND AGREE THAT YOUR USE OF THIS PRODUCT
IS SUBJECT TO THE SOFTWARE LICENSE AGREEMENT BETWEEN YOU AND PEREGRINE. BY INSTALLING OR USING THIS PRODUCT, YOU
INDICATE ACCEPTANCE OF AND AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF THE SOFTWARE LICENSE AGREEMENT BETWEEN
YOU AND PEREGRINE. ANY INSTALLATION, USE, REPRODUCTION OR MODIFICATION OF THIS PRODUCT IN VIOLATION OF THE TERMS OF THE
SOFTWARE LICENSE AGREEMENT BETWEEN YOU AND PEREGRINE IS EXPRESSLY PROHIBITED.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be used or disclosed only with written
permission from Peregrine Systems, Inc. This book, or any part thereof, may not be reproduced without the prior written permission of
Peregrine Systems, Inc. This document refers to numerous products by their trade names. In most, if not all, cases these designations are
claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems, AssetCenter, AssetCenter Web, BI Portal, Dashboard, Get-It, Peregrine Mobile, and ServiceCenter are registered
trademarks of Peregrine Systems, Inc. or its subsidiaries.

Microsoft, Windows, Windows 2000, SQL Server, and names of other Microsoft products referenced herein are trademarks or registered
trademarks of Microsoft Corporation. This product includes software developed by the Apache Software Foundation
(http://www.apache.org/). This product also contains software developed by: Sun Microsystems, Inc., Netscape Communications
Corporation, Javier Iglesias, and InstallShield Software Corporation. If additional license acknowledgements apply, see the appendix of the
Installation Guide.

The information in this document is subject to change without notice and does not represent a commitment on the part of Peregrine
Systems, Inc. Contact Peregrine Systems, Inc., Customer Support to verify the date of the latest version of this document. The names of
companies and individuals used in the sample database and in examples in the manuals are fictitious and are intended to illustrate the use
of the software. Any resemblance to actual companies or individuals, whether past or present, is purely coincidental. If you need technical
support for this product, or would like to request documentation for a product for which you are licensed, contact Peregrine Systems, Inc.
Customer Support by email at support@peregrine.com. If you have comments or suggestions about this documentation, contact Peregrine
Systems, Inc. Technical Publications by email at doc_comments@peregrine.com. This edition of the document applies to version 4.2 of the
licensed program.

http://www.apache.org/
mailto:support@peregrine.com
mailto:support@peregrine.com
mailto:doc_comments@peregrine.com
mailto:doc_comments@peregrine.com

PEREGRINE
Contents
Introducing the Get-Services Tailoring Kit. 11

About this guide . 12

Conventions used in this guide 13

Need more information? . 14

Customer Support . 14

Documentation Web site . 14

Education Services Web Site 15

Chapter 1 Installing on Windows . 17

Installing the Get-Services Tailoring Kit 17

Upgrading the Get-Services Tailoring Kit 22

Opening the Get-Services project 23

Setting up a tailoring environment 24

Setting up a development environment 24

Setting up a testing environment 25

Chapter 2 Using Studio . 27

The Peregrine Studio interface 27
 | 3 | 3

Get-Services
Project Explorer . 29

Drag and drop . 31

Best practices . 32

Do not change form definitions outside Peregrine Studio 32

Avoid enabling advanced options 33

Avoid using the clean the target folders build option 33

Clear application server cache 33

Use templates to apply global changes 33

Enable the HTTP listener and form information options 34

Set the color for your extension changes 36

View referenced components with the lookup button 37

Chapter 3 Peregrine Studio Projects and Packages 39

Peregrine Studio projects . 39

Project components . 40

Project component descriptions 41

Project files . 43

Building a project . 45

Build options . 45

Setting project build settings 46

Peregrine Studio project packages 48

Saving changes with package extensions 48

Activating and deactivating packages 49

Package dependencies. 50
4 |

Tailoring Kit Guide
Setting package dependencies 51

Warnings for conflicts . 52

Deploying tailoring changes . 53

Deploying to Windows platforms 54

Deploying to UNIX platforms 54

Chapter 4 Peregrine Studio Components 55

Adding components . 56

Types of form components . 67

Component template containers 67

Fieldsection containers . 68

Text edit fields . 70

Selectbox fields . 71

Hidden data fields . 73

Redirections . 74

Simple table . 75

Document table . 77

Table links . 78

Text columns . 79

Form columns . 80

Actions . 81

Chapter 5 Scripting . 83

Overview of scripts . 83

Script types . 84
 | 5

Get-Services
Where to store scripts . 84

How to use scripts . 85

Editing an existing script . 87

Adding a custom script. 89

Date values in scripts. 91

Testing scripts . 92

Rhino JavaScript debugger 92

URL queries . 94

Common message operations 97

Using ECMAScript in an object-oriented manner 100

ECMAScript implementation in Get-Services 100

Name resolution in ECMAScript. 100

Using the object prototype for object-oriented programming . . 101

How to use object orientation for tailoring 105

Sample scripts . 105

General script samples . 105

Selecting a field from a schema. 106

Calling other scripts and combining the results 107

Form script sample. . 109

Creating an XML document from a schema 109

Working with dates in scripts 112

References . 113

Sources for client-side JavaScript 113

JavaDocs for the main Archway package 114
6 |

Tailoring Kit Guide
Chapter 6 Tailoring Tasks . 115

Tailoring workflow . 116

List of tailoring tasks . 117

Forms and form components 117

DocExplorers. . 117

Scripting. . 118

Schemas . 118

Data validation. . 118

Default values . 118

Translation. . 118

Tailoring forms and components 119

Changing a form’s title . 120

Changing a form’s instructions 121

Changing a form’s onload script 122

Changing a form component’s label 123

Hiding a form component 124

Changing a form component to read-only 124

Changing the schema that a form component uses 125

Changing the document field that a form component uses . . . 126

Changing the priority, severity, or status field strings 130

Removing display values for priority, severity, or status 133

Displaying a form within a frameset. 135

Adding Get-Services to an existing frameset. 137
 | 7

Get-Services
Displaying a script variable in a form component 138

Creating a portal component 139

Adding personalization . 143

Supporting personalization 143

DocExplorer configuration required in Peregrine Studio 144

Adding a DocExplorer reference 145

Personalizing a DocExplorer reference 146

Adding personalization form components – lookup fields 147

Tailoring scripts . 151

Editing an existing script . 151

Adding a custom script. . 154

Creating custom schemas . 155

Adding a schema to your Peregrine Studio project 156

Adding logical and physical mappings to your schema 157

Sample schema . 164

Adding data validation. . 164

Making a field required. . 164

Adding data validation with a custom script function 165

Assigning default values . 174

Translating tailored modules . 182

Editing existing translation strings files 183

Adding new translation strings files. 185

Configure Get-Services to use new string files 186
8 |

Tailoring Kit Guide
Chapter 7 Troubleshooting and FAQs . 187

Get-Services environment . 188

Out of memory error . 188

Cannot start Java – install JRE 188

Peregrine Studio . 189

Cannot edit — components have grey background 189

Red exclamation point displays next to nodes 190

Scripting errors . 192

Unable to find script file . 192

Script produces an ECMAScript error 192

ECMAScript error: undefined value or property 193

Tailoring errors. . 193

Script output not appearing in form component 194

Too few parameters error. 194

Get-Services always goes to redirection form 195

Syntax error in FROM clause 195

Appendix A Copyright Notices . 197

Notices . 197

Index . 209
 | 9

Get-Services
10 |

PEREGRINE
Introducing the Get-Services
Tailoring Kit
The Get-Services Tailoring Kit includes:

Peregrine Studio

Source files for Get-Services

The Get-Services is intended for Web application developers who are familiar
with Extensible Markup Language (XML), ECMAScript, Structured Query
Language (SQL), and back-end database systems such as AssetCenter and
ServiceCenter.

Peregrine Studio is a graphical development tool that you can use to customize
Get-Services. Get-Services consists of a series of Web-based interfaces that allow
users to, for example, open tickets, assign tickets to IT employees, and view
historical information on incidents. The Peregrine Portal common interface
determines what portions of Get-Services the user sees.

The Web-based interfaces are the result of the following components:

A collection of XML form definitions that provide the browser interfaces for
Get-Services. The Get-Services XML form definitions are created with
Peregrine Studio and then dynamically converted into HTML at runtime.

A Web server to host the Get-Services JSP content.

A Java-enabled application server to run the Archway servlet and convert
XML form definitions into HTML. The Archway servlet routes and formats
data requests between Get-Services and the back-end database.

A collection of ECMAScripts that allow for dynamic parsing and formatting
of Get-Services data sent to and received from the client Web browser.
Introducing the Get-Services Tailoring Kit | 11

Get-Services
The Get-Services files produced during a build are the result of the following
Peregrine Studio components:

A project file that describes Get-Services. Each project file contains only the
code necessary to produce and deploy Get-Services.

A collection of XML form definitions that define the functionality of
Get-Services. The Get-Services XML form definitions are built in Peregrine
Studio and deployed to the application server at runtime.

A back-end database or application to store the data accessed by
Get-Services forms, track workflow tasks, and store personalization changes.

Document schema definitions used to format message objects between the
Archway servlet and the back-end database. All message objects are
formatted as XML documents.

ECMAScripts to generate and send message objects to the Archway servlet.
The messenger objects can be used to query the back-end database for
specific data and format the results for display in Get-Services forms.

About this guide
This guide is developers who tailor Get-Services from the source code provided
with the tailoring kit.

Use this guide in conjunction with the following:

The Get-Services installation, administration, and basic tailoring guides.

The back-end database documentation for your installation.

The application server documentation for your installation.
12 | Introducing the Get-Services Tailoring Kit

Tailoring Kit Guide
Conventions used in this guide
Screen shots in this guide are included as examples only. Get-Services forms are
shown using the Classic theme.

This guide uses the following documentation conventions.

Text Formatting Meaning

Bold Information that you must type exactly as shown appears in
bold. The names of buttons, menus, and menu options also
appear in bold.

Italics Variables and values that you must provide are in italics.
New terms are in italics.

Monospace Code or script examples, output, and system messages are
in a monospace font.
var msgTicket = new Message("Problem");
…
msgTicket.set("_event", "epmc");

An ellipsis (…) indicates omitted portions of a script.
Samples of code are not entire files, but they are
representative of the information discussed in a particular
section.
Filenames, such as login.asp, appear in a monospace font.
About this guide | 13

Get-Services
Need more information?
For further information and assistance with this release, you can download
documentation or schedule training.

Customer Support
For further information and assistance, contact Peregrine Systems’ Customer
Support at the Peregrine CenterPoint Web site.

To contact customer support:

1 In a browser, navigate to http://support.peregrine.com

2 Log in with your user name and password.

3 Follow the directions on the site to find your answer. The first place to search
is the KnowledgeBase, which contains informational articles about all
categories of Peregrine products.

4 If the KnowledgeBase does not contain an article that addresses your
concerns, you can search for information by product; search discussion
forums; and search for product downloads.

Documentation Web site
For a complete listing of current Get-Services documentation, see the
Documentation pages on the Peregrine Customer Support Web.

To view the document listing:

1 In a browser, navigate to http://support.peregrine.com.

2 Log in with your login user name and password.

3 Click either Documentation or Release Notes at the top of the page.

4 Click the Get-Services link.
14 | Introducing the Get-Services Tailoring Kit

http://support.peregrine.com
http://support.peregrine.com

Tailoring Kit Guide
5 Click a product version link to display a list of documents that are available
for that version of Get-Services.

6 Documents may be available in multiple languages. Click the Download
button to download the PDF file in the language you prefer.

You can view PDF files using Acrobat Reader, which is available on the Customer
Support Web site and through Adobe at http://www.adobe.com.

Important: Release Notes for this product are continually updated after each
release of the product. Ensure that you have the most current
version of the Release Notes.

Education Services Web Site
Peregrine Systems offers classroom training anywhere in the world, as well as
“at-your-desk” training using the Internet. For a complete listing of Peregrine’s
training courses, refer to the following web site:

http://www.peregrine.com/education

You can also call Peregrine Education Services at +1 858.794.5009.
Need more information? | 15

http://www.adobe.com
http://www.peregrine.com/education

Get-Services
16 | Introducing the Get-Services Tailoring Kit

CHAPTER
1 I
nstalling on Windows
The Get-Services Tailoring Kit installation allows you to install Peregrine Studio
and the source files for Get-Services.

Before you begin the installation, you should have already installed
Get-Services.

This chapter covers the following topics:

Installing the Get-Services Tailoring Kit on page 17

Upgrading the Get-Services Tailoring Kit on page 22

Opening the Get-Services project on page 23

Setting up a tailoring environment on page 24

Installing the Get-Services Tailoring Kit
The following sections describe how to install the Get-Services Tailoring Kit on a
Windows system.

Note: The Get-Services Tailoring Kit does not run on UNIX, although files built by
the Tailoring Kit can be deployed to a UNIX system.

Tip: Do not install the Get-Services Tailoring Kit on your production system.
Instead, install the tailoring kit on a development environment and then
deploy your changes to your production environment after you have had
a chance to test them.
Installing on Windows | 17

Get-Services
To install the Get-Services Tailoring Kit:

1 Insert the Get-Services installation CD into the CD-ROM drive.

If you are installing on a system that has autorun enabled, the CD browser
starts automatically. If autorun is disabled, you can manually start the CD
browser.

Use Windows Explorer to navigate to the CD-ROM directory.
Double-click autorun.exe.

Start the Get-Services installation from the Windows command prompt.
Type D:\>autorun.exe where D identifies the CD-ROM drive. Substitute
your CD-ROM drive identifier.

The Get-Services Tailoring Kit splash screen opens displaying a list of
installation options.
18 | Installing on Windows

Tailoring Kit Guide
2 Install the required platform components for the Get-Services Tailoring Kit.

Note: If you do not have Peregrine Studio, you must install it prior to installing
the Get-Services Tailoring Kit.

Component Action

Install Studio Click this button to install Peregrine Studio 2.2.0.1068
on your system.

Install Get-Services
Tailoring Kit

Click this button to install Get-Services Tailoring Kit 4.2
on your system.
Installing the Get-Services Tailoring Kit | 19

Get-Services
3 Click Next to read and accept the licensing agreement.

4 Select I accept the terms in the license agreement.

5 Click Next to select your destination folder.
20 | Installing on Windows

Tailoring Kit Guide
6 Click Next to accept the default installation location, or click Change to
select another installation location, and then click Next.

7 Click Install.

After the installer copies and deploys the files to your system, the
InstallShield Wizard Complete page opens.

8 Click Finish to close the InstallShield Wizard.
Installing the Get-Services Tailoring Kit | 21

Get-Services
Upgrading the Get-Services Tailoring Kit
During an upgrade installation, the customized changes are safe because studio
stores the changes in a specific package, and all the corresponding files are
stored in a folder that the upgrade does not touch.

After an upgrade, you can reload the customizations (patch package) into the
new project, using the menu File/Add package to project.

The upgrade of tailored projects is always a challenge because the very same
files that you patch with the tailoring kit are changed by the Peregrine product
development team. Therefore, the following can occur:

As a result, there is always some work involved after upgrading a product to
adapt the customization to the new product. To take care of the first scenario,
you need to check what changed between two releases on every element that
you patched, and merge in the changes you want to keep (bug fixes and new
features). To solve the second scenario, you must verify if your patches still apply
on an existing element. If not, the customization must be redone based on the
new product.

Solving the third scenario is more complex. For every patch in your project, you
need to assess if the changes are consistent with the way an element was
patched. If the merge (as made by fixing scenario 1) is made properly, there
should not be any problem.

Scenario Description

1 If an element changed in the product between the two releases, and you
patched it, the product change is not accounted for in the resulting build.
If the change was either a bug fix or a new feature, you would not benefit
from the change, even though the new version is installed. The patched
element masks the product changes.

2 If an element is removed between two releases of the product, and you
patched it, the result is a partial definition of the element that might not
work.

3 If a group of elements changes between two releases of the product, and
you patched only one element, the result might be an inconsistent group
of elements that do not work properly.
22 | Installing on Windows

Tailoring Kit Guide
Opening the Get-Services project
After the installation is complete, you can open the Get-Services project in
Peregrine Studio using the following procedure.

Important: If you did not receive a Peregrine Studio authorization file, contact
Peregrine Customer Support. You need this file to edit your
Get-Services files.

To open the Get-Services project in Peregrine Studio:

1 Click Start > Programs > Peregrine > Studio > Peregrine Studio.

2 Click Tools > Authorization file.

3 In any text editor, open the authorization file provided for Peregrine Studio.

4 Copy the contents of the authorization file into the Authorization file dialog
box in Peregrine Studio.

5 Click OK.

6 Click File > Open project.

7 Browse to the location of your Get-Services project files (.adw files). For
example:

C:\Program Files\Peregrine\Get-Services Tailoring Kit\get-services

8 Select your Get-Services project file:

9 Click Open.

Get-Services.adw
Get-Services-Change.adw
Get-Services-Change-Request.adw
Opening the Get-Services project | 23

Get-Services
Setting up a tailoring environment
You can set up one or more development environments separately from your
production environment. A development environment lets you modify and
build Get-Services on a separate computer system from your test or production
environments.

Setting up a development environment
You need the following minimum components for a Get-Services Tailoring Kit
development environment:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Studio), or the Java
Development Kit provided with your Web application installation.

Get-Services Tailoring Kit (includes the Get-Services source files).

J2SDK 1.3 or later if you want to create or edit your own wizards for
Peregrine Studio.

With this minimal development environment, you can modify Get-Services
using the built-in Peregrine Studio tools and wizards. You can then do one of the
following:

Build your Get-Services projects on the development computer and copy
the results to a production environment.

or

Enter the network path to the production environment in your Peregrine
Studio Build Settings.

Important: If you are using source control software to store your project files,
you will need to configure your Peregrine Studio to check out and
check in the source files. You can add your source control settings
from Tools > Options > Source control.
24 | Installing on Windows

Tailoring Kit Guide
Setting up a testing environment
You need the following components to test or debug your modifications:

Peregrine Studio.

Java Runtime Environment 1.3 or later (necessary to run Peregrine Studio).

Get-Services Tailoring Kit (includes the Get-Services source files).

If you want to create or edit your own wizards for Peregrine Studio, you will
need to install J2SDK 1.3 or later.

An installed instance of Get-Services.

A Web server.

A Java-enabled application server.

JavaScript-enabled Web browser (necessary to view changes to
Get-Services).

Note: See the latest compatibility matrix on the Peregrine support site for a list
of supported Web servers, application servers, and Web browsers.

With this testing environment, you can build and view your changes from a
single computer. To set up a testing environment, you must install both
Get-Services and the Get-Services Tailoring Kit. Refer to the Get-Services
Installation Guide for instructions and requirements for installing Get-Services.

Tip: You can save multiple versions of Get-Services in separate project files.
When you are ready to test a particular tailored version, you can load the
tailored project, build it, and deploy it to your test environment.
Setting up a tailoring environment | 25

Get-Services
26 | Installing on Windows

CHAPTER
2 U
sing Studio
This chapter provides an overview of the Peregrine Studio interface. For more
information about configuring or using Peregrine Studio, refer to the Peregrine
Studio online help.

This chapter covers the following topics:

The Peregrine Studio interface on page 27

Best practices on page 32

The Peregrine Studio interface
The Peregrine Studio interface includes:

Project Explorer

Properties window

Edit toolbar

General information display

Contextual help

Address

Package selector

Advanced information
Using Studio | 27

Get-Services
You can hide all elements of the interface except the Project Explorer and the
Properties Window by clearing them on the View menu.

Properties window

General information Contextual help Advanced information

Edit toolbar
Package selector
Address

Project
Explorer
28 | Using Studio

Tailoring Kit Guide
Project Explorer
The Project Explorer provides a hierarchal view of all the components that
comprise a Peregrine Studio project. The Project Explorer window displays each
component as a separate node within the tree.

Left-click a node
Click the node listing the component you want to change and the properties of
the component display in a window of the Properties pane.

Right-click a node
Right-click a node to display a list of context-sensitive options.

The options listed in the following table are available for all nodes.

Menu item Description

New Provides a context-sensitive menu of allowed components that
you can add from the current node. The list of components in
this menu is dynamically updated for each node of the Project
Explorer tree.

Open Displays the properties of the selected component in a window
of the Properties pane.

Open in New
Window

Displays the properties of the selected component in a new
window of the Properties pane.

Group of Templates

Group of Modules

Module
Activity
Form
DocExplorer
Actions
The Peregrine Studio interface | 29

Get-Services
Rename Renames the selected node to the new name typed by the user.
This option will only be available when a package extension has
been activated as the save location for changes.

Cut Removes the selected node, and all child nodes underneath,
and places a copy in the Windows clipboard.

Copy Copies the selected node, and all child nodes underneath, to
the Windows clipboard.

Paste Inserts the contents of the Windows clipboard. If the clipboard
contains a Studio component, it will be automatically placed
within the tree according to the type of component it is.

Delete Deletes the selected node and all child nodes. This option will
only be available when a package extension has been activated
as the save location for changes.

Help Displays the Studio help system.

Export node Saves a copy of the selected node, and all child nodes
underneath, as an XML file, which can be imported into a
Studio project.

Import node Opens a user-selected XML file describing Studio nodes and
inserts it into the tree. The imported node will be inserted
below the node you right-clicked.

Add Bookmark Adds a bookmark link to the node you currently have open in
Studio. If you browse to another location and then want to
return to this node, click the Bookmarks tab in the General
Information window and select the appropriate bookmark.

Menu item Description
30 | Using Studio

Tailoring Kit Guide
The following image shows how some of the common Peregrine Studio
components are displayed in a Peregrine Systems Web application interface.

The address bar
You can use the Address Bar to navigate directly to any Peregrine Studio project
component. The address bar will display as a text box below the Edit Toolbar.

To display the address bar:

1 Open Peregrine Studio.

2 Click View > Address.

The Address Bar displays below the menus.

Drag and drop
Peregrine Studio supports drag and drop movement of components within the
Project Explorer. Changing the order of nodes in the Project Explorer will change
how the items are presented in the Peregrine Studio build.

Form

Form component

Module

Activities
The Peregrine Studio interface | 31

Get-Services
To move a component within the Project Explorer:

1 Click and hold the left mouse button over the name of the node you want
to move.

2 Drag the node to the new location in the Project Explorer tree.

The node appears underneath the component (of the same level) where
you drop the node.

Note: You cannot move components out of the order enforced by the DSD. For
example, you cannot move a form out of an activity and place it at the
same level as a module. You can, however, change the order of the forms
listed under an activity.

Best practices
The following recommendations will make tailoring projects easier and reduce
the amount of troubleshooting you need to do.

Do not change form definitions outside Peregrine Studio
Although Get-Services form definitions are XML files, the XML grammar used to
build them is specific to Peregrine Studio. If you make changes to the
Get-Services form definitions outside of Peregrine Studio you risk corrupting
your project file and complicating your troubleshooting efforts. If you want to
view the XML form definitions, you can safely enable the source view from
within Peregrine Studio.

The source view does not support direct editing of the XML form definitions. All
XML source views are listed with a grey background which indicates that the
item is read-only.
32 | Using Studio

Tailoring Kit Guide
To view the XML source code within Peregrine Studio:

1 Select the node of the Web application or component you want to view
from the Project Explorer.

2 Click the Source view button (the blue capital A).

The XML source appears in the Properties window. The XML source code is
color coded as you define in the project settings.

Avoid enabling advanced options
The advanced options found in Tools > Options > Advanced change the way
your project is protected and built. In general, Peregrine recommends that you
avoid enabling all advanced options except the HTTP Listener. Enabling any
other options may overwrite needed source files in your Get-Services project
and complicate your troubleshooting efforts. Furthermore, Peregrine cannot
support any changes you make to the source packages delivered with
Get-Services.

Avoid using the clean the target folders build option
The Clean the target folders build option deletes all files in your build folder. If
you build directly into your application server’s deployment folder, using this
option will delete the files necessary to run Get-Services and require you to
reinstall Get-Services. You should only consider using this option if you install
the Get-Services Tailoring Kit on a different machine than your Get-Services
installation.

Clear application server cache
To ensure that you always see the latest changes in your test environment,
Peregrine recommends that you clear your application server’s cache. This is
especially important if you use Tomcat 4.1.x as your application server.

Use templates to apply global changes
Your Get-Services project contains a Group of Templates node where you can
store and change preconfigured form components. Each form that uses a
template inherits the properties of the template. If you want to make global
changes to Get-Services, search for the relevant templates in the Group of
Best practices | 33

Get-Services
Templates node. If you want to create a re-usable collection of form
components you can create a new template to store your changes. Any
template you create appears as an option in the New context-sensitive menu.

To add a template to a form:

1 Click on the node that you want to add a template component.

2 Click Create and then select the template name from the list beneath the
horizontal rule. You can also Right-click on the node and select New.

The Create and New menus display only the templates that are valid for the
location you selected.

Important: Do not drag and drop or copy and paste a template into a form. In
order for Peregrine Studio to recognize the template you must add
the template form components from the New menu.

Enable the HTTP listener and form information options
Using the HTTP Listener, you can click on the Form Information address listed for
a given form and the appropriate form properties will be displayed in Peregrine
Studio. This debugging feature allows you to navigate through Get-Services
with a browser and quickly bring up any particular form that needs
modification.

Important: The HTTP Listener cannot bring up the administration, home page
forms, nor any Get-Services forms that are built using DocExplorer.
The source code for these three modules is no longer provided with
the Get-Services tailoring kit. You can tailor such forms directly
using Personalization.

To enable the HTTP Listener:

1 Open Peregrine Studio.

2 Click Tools > Options > Advanced.

3 Select the Use listener check box from the HTTP Listener section.
34 | Using Studio

Tailoring Kit Guide
4 Select the port number you want the HTTP listener to use (the default port
is 81), and then click OK.

5 Save your Peregrine Studio project.

6 Close and then re-open Peregrine Studio to initialize the HTTP listener.

7 Open the project file containing the form you want to change in Peregrine
Studio.

Note: Be sure to select or create a package extension in which to save any
changes.

To enable the Form Information functionality:

1 Log in to Get-Services as an administrator, or access the Admin module
directly from the Administrator login page (admin.jsp).

2 Click Admin > Settings to display the Settings form.

3 On the Logging tab, set the Show form info setting to true.

4 Click Save at the bottom of the form to activate your new settings.

5 On the Control Panel form of the Admin module, click Reset Peregrine
Portal to commit your changes.

Click this link to open
the form in Studio.
Best practices | 35

Get-Services
6 Navigate to the form you want to tailor.

7 Click the Peregrine Studio address displayed in the Form Information
banner of the Web application form.

Peregrine Studio will appear as the active window and display the current
form’s properties page.

Set the color for your extension changes
By default, all changes or additions you make to your Peregrine Studio project
are highlighted with blue text. You can change the color Peregrine Studio uses
to indicate extension changes with the following procedures.

To change the color Peregrine Studio uses to indicate extension changes:

1 Click Tools > Options > Appearance.

The appearance window opens.

2 From the Extension color drop-down box, select the color you want to use
to indicate changes to base packages originating from package extensions.

3 Click OK.

Within the Project Explorer view, Peregrine Studio highlights each node of the
tree that contains a component that has been changed or added. This allows
you to navigate through the Project Explorer tree view and locate where you
have made changes and additions.

To view the changes made in a project:

1 Select a node displayed with blue text to view the component properties.

2 Review the properties listed in the window displayed to the right of the
Project Explorer (the Properties window). Changes that were made to this
component will be displayed with blue text. If no blue text is displayed in the
36 | Using Studio

Tailoring Kit Guide
Properties window, then the change or addition is in one of the child nodes
below the current node.

3 If necessary, expand any child nodes highlighted with blue text and review
the Properties window for changes.

View referenced components with the lookup button
Whenever an item links to or references another component, Peregrine Studio
displays a lookups button next to the field.

You can click this button to display the form, image, schema, or script that is
called by the reference.

Use Go to Previous View (the orange arrow pointing to the left) to return to the

component making the reference.
Best practices | 37

Get-Services
38 | Using Studio

CHAPTER
3 P

P

eregrine Studio Projects and
ackages
Peregrine Studio projects contain all of the packages that make up an
application. A new package must be created when you are making changes to
your project. You can then activate or deactivate packages depending on the
features you want to be included in your current project.

This chapter includes the following topics:

Peregrine Studio projects on page 39

Building a project on page 45

Peregrine Studio project packages on page 48

Warnings for conflicts on page 52

Deploying tailoring changes on page 53

Peregrine Studio projects
Peregrine Studio saves all the source files for Get-Services as a project file. A
Studio project file consists of the following components.

Studio component Description

Get-Services
components

The XML form definitions that specify the functionality of the
Get-Services interface. The application server will dynamically
render the Get-Services XML form definitions as HTML when a
specific form is requested.

ECMAScripts1 ECMAScripts create and format message objects to the
Archway servlet. Get-Services components will use ECMA
message objects to display and process data.
Peregrine Studio Projects and Packages | 39

Get-Services
1 ECMAScript is the core language standard shared between JavaScript and
JScript.

For a listing of where Peregrine Studio saves and builds these files, see Project
files on page 43.

Project components
Peregrine Studio organizes project components into a hierarchy of parent and
child elements. The position of a project component determines the individual
properties it can have. Properties include, for example, what other project
components can be placed within the component and the type of editor used
to edit the component. All Peregrine Studio projects conform to the hierarchy
listed below:

Document schema
definitions

The XML files that define how the Archway servlet should
format the ECMA message objects sent to and received from
back-end databases. Get-Services components will use the
ECMA message objects to display and process data.

Presentation files Any supporting files such as images, client-side JavaScript,
hand-coded HTML or JSP files, or translation strings that will
be included with Get-Services.

Stylesheets The Cascading Style Sheet (CSS) files that define the colors and
fonts that will be used in your Get-Services pages.

Studio component Description

Template

Group of modules

Module

Activity

Form

** Form components
40 | Peregrine Studio Projects and Packages

Tailoring Kit Guide
Project component descriptions
This table lists and describes some of the common Peregrine Studio
components. For a complete list of the components that make up a Peregrine
Studio project, see Peregrine Studio Components.

Component Description

Project The project component:
Is the container for all the elements that are part of your
current project file.
Is always the top node of the Project Explorer tree.
Is represented by an open package icon in the
Peregrine Studio Project Explorer tree.

Templates (support files) The templates component:
Is the container for all the common elements reused
throughout the project.
Appears with a yellow cube icon in the Peregrine
Studio Project Explorer tree.

Group of modules The group of modules component:
Is the container for all the XML form definition files and
modules that make up Get-Services.
Appears with a double red cubes icon in the Peregrine
Studio Project Explorer tree.
Does not have any one dedicated graphical
representation in the built project.

Module The module component:
Is a container for the activities and forms that make up
Get-Services.
Appears with a double red box icon in the Peregrine
Studio Project Explorer tree.
Appears as a text link on the navigation sidebar and
may also appear on the Get-Services Home Menu.

Note: The module component is usually where access
restrictions are defined. Setting access restrictions
limits a module to particular user roles.

Activity The activity component:
Defines a particular task or action such as searching for
records, displaying records, or entering records.
Is a container for a particular set of forms.
Appears with a cube and two window panes icon in the
Peregrine Studio Project Explorer tree.
Appears as a text link on the navigation sidebar
(Activity Menu).
Peregrine Studio projects | 41

Get-Services
Portal Components are available only in the portal module.

Form The form component:
Is where Get-Services user interfaces and displays are
defined.
Appears with a cube and a single window pane icon in
the Peregrine Studio Project Explorer tree.

Note: Typically, the system displays each form
component as a page in the main frame.

Form components Form components such as fields, actions, tables, and
lookups:

Define the actual user interfaces and displays used in a
Get-Services form.
Appear with a variety of icons in the Peregrine Studio
Project Explorer Tree.
Typically have a graphical element in a Get-Services
form.

Group of scripts The group of scripts component:
Is a container for all the server-side ECMAScripts used
by Get-Services.
Appears with a document with a yellow border icon in
the Peregrine Studio Project Explorer tree.

Group of schemas The group of schemas component:
Is a container for all the document schema definitions
that Get-Services uses.
Appears with a data store and document icon in the
Peregrine Studio Project Explorer tree.

Group of files The group of files component:
Is a container for supplemental files that your Web
applications can use. You can store images, client-side
JavaScript, localized string files, or initialization files
here.
Appears with a folder icon in the Peregrine Studio
Project Explorer tree.

Group of Strings The group of strings component:
Is a container for all the text strings that Get-Services
uses.
Appears with a globe icon in the Peregrine Studio
Project Explorer tree.

Component Description
42 | Peregrine Studio Projects and Packages

Tailoring Kit Guide
Project files
This table describes the files that make up a Studio project and the information
they contain. Items listed in italics are variables. To determine the actual file
name, replace the italic text with the component name.

Warning: Do not edit these files outside of Studio. Manual changes you make
outside of Studio will be lost during the build process.

Component Save and build location Contains

project Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring
Kit\get-services\
project.adw

<package> names

Path to package.xml

package Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring
Kit\get-services\
\package\package.xml

<package> name
<modules> name
<module> names

Path to module.xml
Schema Names

Path to schema.xml
Script Names

Path to script.xml
String Resources

modules Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring
Kit\get-services\
\package\package.xml

<modules> name

module Saved as a single file:
C:\Program Files\Peregrine\
Get-It Tailoring
Kit\get-services\
\package\modules\module.xml
Built as a collection of forms:
C:\OAA\build\WEB-INF\apps\
package\forms\module\activity\
form.xml

<module> name
XML code for <activity>,
<form>, and <form>
components
Peregrine Studio projects | 43

Get-Services
schema Saved as
C:\Program Files\Peregrine\
Get-It Tailoring
Kit\get-services\
\package\modules\Schemas\
schema.xml
Built as:
C:\OAA\build\WEB-INF\apps\
package\schema\schema.xml

XML code for <schema>

script Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring Kit\get-services\
\package\modules\
Scripts\script.xml
Built as:
C:\OAA\build\WEB-INF\apps\
package\jscript\
script type\script.js

XML code for <script>

presentation
files

Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring
Kit\get-services\
\package\modules\presentation\
presentation file.jsp
Built as:
C:\OAA\build\presentation
file.jsp

Directory where
presentation files can be
stored to be included in
a Studio build.

strings Saved as:
C:\Program Files\Peregrine\
Get-It Tailoring
Kit\get-services\
\package\package.xml
Built as:
C:\OAA\build\WEB-INF\apps\
package\package_en.str

Text strings for English,
German, Spanish, Italian,
and French.

Component Save and build location Contains
44 | Peregrine Studio Projects and Packages

Tailoring Kit Guide
Building a project
During the build process, Studio compiles all project files and copies them to
deployment folder you specified in your Peregrine Studio Build Settings.

Build options
Peregrine Studio offers the following build options from the Build menu.

Warning: The Clean the target folders option cleans the folders listed in your
build settings. If you build your project directly to your application
server, then using this option deletes your installation of Get-Services.
It is recommended that you avoid using this option if you have
installed Get-Services on your development machine.

Build option Description

Clean the target folders Deletes the contents of the presentation and deployment
folders.

Build element Builds the currently selected element in the project explorer.
This element will not be rebuilt the next time a differential
build is performed.

Differential build Builds only those elements that have changed since the last
build.

Rebuild all Builds all elements of the project.

Stop Build Stops a currently running build process.
Building a project | 45

Get-Services
Setting project build settings
You can define the build settings option to define the file locations and file
formats used during the build process. Each Peregrine Studio project can have
its own project settings.

To set project build settings:

1 From the Build menu, select Project settings.

2 Click the Build Variables tab.
46 | Peregrine Studio Projects and Packages

Tailoring Kit Guide
3 Enter or browse to the proper directory for the following settings.

4 Click OK to save your settings.

Setting Definition

Root Build Directory This is the drive and folder you want to be root for
building Peregrine Studio projects. Whatever path
you enter here becomes the variable
%var:ROOTBUILDDIR%.

Presentation folder This is the folder where your application is
deployed. It can be:

 the folder where your application server will
look for the file to serve (recommended only
for interim builds). For example:
C:\tomcat\webapps\oaa

or the image folder that will be used to create
the war file (recommended for final builds). For
example:
C:\Program Files\Peregrine\Portal\image

Whatever path you enter here becomes the
variable %var:PRESENTATIONDIR%.

Deployment folder The folder where scripts, schemas, and XML form
definitions are located. You do not need to change
the value of this setting.
Note: Do not change this option.

Temporary folder The folder where Peregrine Studio will generate
temporary files used in the build process. You do
not need to change the value of this setting.

Exclude files A semicolon-separated list of files or directories
that you want Peregrine Studio to exclude from
removing or rebuilding during a build. You do not
need to change the value of this setting.

Character encoding Not used. JSP encoding is determined by the
character encoding setting on the Settings page
of the Admin module. You do not need to change
the value of this setting.

Ejb User Not used. Get-Services does not use the rome
adapter. You do not need to change the value of
this setting.
Building a project | 47

Get-Services
Peregrine Studio project packages
Packages contain all the XML form definitions, ECMAScripts, and schemas
necessary to run Get-Services. Your Get-Services project is defined by one or
more packages, which are either system or extension packages.

You can see the system packages and the extensions that make up your project
from the Package Activation toolbar. This view displays the active packages that
can be edited and built in your project. When a package is activated, the
changes or additions will be included in the build. When a package is
deactivated, the changes or additions will not be included in the build. The
modular design of packages allows you to decide which changes and additions
will be included or excluded from the build process.

Tip: Group similar Web application functions in the same package extension.
This will allow you to activate or deactivate groups of functions using the
Package Activation toolbar. For example, if you are testing different
interfaces with the same functionality, you may want to save each
interface in a different package extension. After you determine which
interface is better, you can implement the new interface by activating that
package extension and rebuilding the project.

Packages are not displayed in the Project Explorer Project tree. The list of
available packages (packages that have been activated) is included in the
Package Explorer drop-down list located below the toolbar in Peregrine Studio.

Saving changes with package extensions
All additions and changes to a project must be saved under a package extension
name. By default, all of the system packages that ship with Get-Services are
write-protected and cannot be used as the save location for your tailoring
efforts. To tailor your installation you need to create one or more new package
extensions where your changes and additions will be saved.

Package type Definition

System The system packages provided by Peregrine Systems define the
out-of-box functionality of Get-Services.

Extension Any packages you create are called extensions. Package
extensions store all of your additions or modifications to the
existing system packages.
48 | Peregrine Studio Projects and Packages

Tailoring Kit Guide
To create a new package extension:

1 Open Peregrine Studio.

2 Click File > New package to start the Create New Package wizard.

3 Enter the name and package dependencies for the new package.

4 Click OK to complete the wizard.

5 Save your Peregrine Studio project file.

6 Close and then restart Peregrine Studio.

Any changes or additions you make to Get-Services are saved in your new
package.

Activating and deactivating packages
You can control the packages and package extensions that are part of
Get-Services by activating or deactivating them from the Package Activation
menu. To include a package in Get-Services installation, activate the package,
and then build the Studio project. To remove a custom package from your
installation, deactivate the package and delete it from the following path:

C:\Program Files\Peregrine\Get-It Tailoring
Kit\get-services\package name.

Tip: In some cases it is simpler to re-install Get-Services than to delete
unwanted custom packages.

Term Definition

Name Enter a name for the new package extension. The package
extension name cannot contain spaces or special
characters.

Dependencies Select the existing system package or packages that your
package extension will be dependent on. Select the
system packages that you want to make changes to as the
package dependencies. Your new package extension
must be dependent on at least one existing package. See
Package dependencies on page 50 for more information
on package dependencies.
Peregrine Studio project packages | 49

Get-Services
To activate a package:

1 To display the package activation toolbar, click View > Package Selector.

2 Click the Package activation button.

3 Select the check box next to the package name or names you want to
activate.

4 Click OK.

All active packages will be included in the next build.

To deactivate a package:

1 Click the Package activation button.

2 Clear the check box next to the package name or names you want to
deactivate.

3 Click OK.

All deactivated packages will be excluded from the next build.

Important: Deactivating a package does not delete it from the Get-Services
interface if you have already built it. To delete tailoring changes you
have already built you can either re-install or delete the XML form
definitions for your package extension.

Package dependencies
Each package has a list of dependencies that define what other packages it can
make changes or additions to.

When you create a package extension, you must select the other packages that
your extension can change. You will only be able to make changes or additions
to the packages that are listed in your extension’s package dependencies. If you
50 | Peregrine Studio Projects and Packages

Tailoring Kit Guide
try to make changes outside your extension’s dependencies, you will produce a
dependency conflict.

You can use the package dependency list to determine what other packages a
particular extension affects. This information is particularly useful if you are
trying to resolve conflicts in your projects.

Package dependencies are first defined by the New Package wizard when you
create a package. You can manually change the package dependencies using
the procedures described below.

Setting package dependencies
To set package dependencies:

1 Go to Tools > Package Dependencies.

2 From the left pane, select the package name for which you want to set
dependencies.

The list of defined dependencies appears in the right pane.

3 Select the check boxes next to the package names you want to add as
package dependencies. Clear the check boxes next to the package names
you want to remove as package dependencies.

Note: Dependent packages activate or deactivate as a group. For example,
suppose you create a user extension called New_Interface that is
dependent on the Extension package. If you deactivate the Extension
package, you will also deactivate the New_Interface package. If you
activate the New_Interface package, you will also activate the Extension
package.

4 Click OK to set the dependencies.
Peregrine Studio project packages | 51

Get-Services
Warnings for conflicts
Peregrine Studio validates your project and ensures that there are no conflicting
instructions or missing components. If Peregrine Studio encounters a conflict, it
displays an exclamation point icon next to each node that contains a
conflicting component within the Project Explorer view.

Peregrine Studio will display a conflict warning if any of the following conditions
occur.

Two or more active project components describe the same thing. For
example, if you have two active package extensions that rename the same
button, you will create a resource conflict.

You make changes or additions to a package that is not defined as a
dependent package. For example, if you create a package called test that is
solely dependent on the package changes, then the test package cannot
make changes or additions to other packages, such as incidentmgt.
Attempting to make such changes will create a dependency conflict.

Resource conflicts
Resource conflicts occur when two or more activated package extensions
describe the same project components. For example, if the Extension package
extension adds a submit action to a form, then you will see a resource conflict if
another package extension (for example, called demo) also adds a submit action
to that form. The submit action on that form can only be described by one
package extension at a time.

Resolving resource conflicts
To resolve a resource conflict, you can either deactivate the package extension
with the conflicting project component or you can delete the project
component creating the conflict from one of the package extensions.
Continuing the example from above, you could either deactivate the demo
package extension or you could delete the submit action from the demo
package extension.

Dependency conflicts
Dependency conflicts occur when you change a project component in a
packages that is not listed as a dependency for your current package extension.
52 | Peregrine Studio Projects and Packages

Tailoring Kit Guide
For example, if the demo package extension is solely dependent on the
incidentmgt package, then the demo package extension cannot make changes
to the sharedtemplates package without creating a dependency conflict.

Resolving dependency conflicts
To resolve a dependency conflict you can either add a dependency to the
package extension, or you can move the changes to another package extension
with the proper dependencies. Continuing the example above, you could either
make the demo package extension dependent on the sharedtemplates package
or you could move the changes from the demo package extension to another
package extension such as extension, which is already dependent on the
sharedtemplates package.

Viewing conflict information
The Advanced Information pane tells you whether you have a resource or a
dependency conflict.

To view conflict information:

1 Select a node with an exclamation point icon displayed next to the name

from the Project Explorer view.

2 Click View > Advanced information.

A new information window will be displayed at the bottom of the Peregrine
Studio interface. This window displays information on the conflict.

For additional information about a particular project component and its
possible settings, refer to the Studio Introduction and the Studio online help.

Deploying tailoring changes
After you build your Peregrine Studio project file, you will need to deploy your
new files to the application server running Get-Services. The following sections
describe how to deploy your tailoring changes to your test and production
environments.
Deploying tailoring changes | 53

Get-Services
Deploying to Windows platforms
You can deploy your tailoring changes directly over your Windows network.

To deploy tailoring changes on Windows platforms:

1 Stop the application server on the target machine.

2 Copy the files from the Peregrine Studio deployment directory to the
application server’s deployment directory on the target server.

3 Restart the application server on the target machine.

Deploying to UNIX platforms
You can deploy your tailoring changes to UNIX platforms using whatever
cross-platform methods you have available such as FTP, shared drives, or e-mail.
54 | Peregrine Studio Projects and Packages

CHAPTER
4 P
eregrine Studio Components
This chapter contains a list and description of all of the components you can add
to a Project in Studio. The information follows the menu structure of these
components and subcomponents as you see them in Studio.

The menus that you see when you open the Get-Services package in Peregrine
Studio may vary slightly from the menu options documented here. Menu
options change depending on the components you created. For example, you
must have the folder called shared templates in your package to enable
DocExplorer Reference as a menu option.

This chapter covers the following topics:

Adding components on page 56

Types of form components on page 67
Peregrine Studio Components | 55

Get-Services
Adding components
To add components to your Project, right-click on the node to which you want
to add a component. A menu of options opens.
56 | Peregrine Studio Components

Tailoring Kit Guide
Project > New >

Group of Modules > New >
When you create a Group of Modules component, it includes a folder called
Explorers that contains default content for DocExplorer personalization screens.
It also includes a Group of Roles, which is a list of roles that control access rights.
From the Group of Modules, you can create the following.

Component Description

Directory Object Not supported.

Component Description

Module Get-Services contains modules. The role that a user takes in
performing tasks often determines the modules. For example, you
can design one module for employees who open requests for service.
Another module can be for managers approving requests. Modules
typically have specific access role restrictions so that only those users
who need to perform the module’s task have permission to do so.

Peregrine
Portal
Activity

Each module contains one or more activities that define the steps
users can take to complete the module’s task. For example, a Request
module can have activities for browsing catalogs, reviewing a
shopping cart, and filling out a request form. Each activity typically
displays in Get-Services on a sidebar menu at the left of a form.
Activities typically have specific access role restrictions so that only
those users who need to perform the activity’s task have permission
to do so.

Form Defines a Get-Services screen displayed as a page in a browser. The
typical form includes a title, instructions, form fields, and one or more
actions. Each form contains an onload script that executes on the
server side before the page goes to the browser. The script obtains
form data to display within the form. In turn, each form action leads to
the display of the next form in Get-Services Data entered in a form is
submitted to the onload script of the next form to be displayed.
Adding components | 57

Get-Services
Field >

Check Box Allows you to toggle a value on or off.

Selectbox Allows you to select a value from a list displayed in a
Combo Box field.

Date Allows you to view or enter a date. You can enable or
disable (the default is enabled) an optional calendar
form component (Date Picker) for users to enter dates.
To define a start year for the drop-down list or for the
calendar form component, add a + or - sign in front of
a number. This number specifies the number of years
before or after the current year you want the start and
end years to be.

 Time Allows you to view or set a time value.

Timespan Allows you to view or edit a timespan value.

Date/Time Allows you to view or set a date and time value. There
is an optional calendar form component (Date Picker)
that you can enable or disable in Studio (the default is
enabled). See Date component.

Password Allows you to enter a password.

Radio Button Allows you to select one of several choices using radio
buttons.

Spinner Allows you to enter a numerical value. The control
allows you to type the number in directly. It also allows
you to select a number by clicking on the spinner
buttons that increase and decrease the value.

Component Description
58 | Peregrine Studio Components

Tailoring Kit Guide
Field>
(continued)

Text Edit Allows you to display or edit a value in a plain text field.

Text Area Allows you to enter text into a multiline edit field.

Link Displays a hyperlink that the user can click to navigate
to another Web location or site.

Link Button Displays an image button created out of background
images and text.

Image Displays an image.

Composite Allows the creation of a field that consists of two or
more fields placed next to each other.

Money Allows you to view or edit a monetary value.

Unit of
Measure

Allows you to view or edit a value that is a unit of
measure.

Enumerated
Select

Allows you to select a value from a list displayed in a
Combo Box field.

Lookup Allows you to enter a value by performing a lookup
operation. The lookup is done in a separate pop-up
window.

Attachments Allows you to view and add attachments to a
document.

Language Allows you to select a preferred language from a list of
supported languages.

Translated
Value Field

Displays text returned by a translation script function.

Hidden Data
Field

Stores data obtained by the form’s onload script
without displaying it to the user. The data is included
when the form is submitted and the user navigates to
another form.

Component >

Treelink Displays a treelink component.

Directory Displays a directory component based on data
received from a document query to an adapter.

List Builder Allows you to configure a list by selectively adding
items to a listbox from a list of choices.

Workflow Displays a workflow diagram.

OAA
Workflow

Displays a workflow diagram.

Stack Displays a stack component

SVG Displays an SVG component.

Web
Application
Menu

Displays a menu of all registered modules or packages
in the current Web application.

Component Description
Adding components | 59

Get-Services
HTML >

Blank Line Adds a blank vertical line to the form.

Free-form
HTML

Allows you to insert arbitrary HTML into a form as well
as insert client-side JavaScript into a Web page.
Note: Peregrine Systems recommends that you

move large amounts of client-side JavaScript to
a presentation file that the page can then
import.

Import >

Static Import Imports the text content of a file for inclusion in a Web
page. You can import files that define static HTML, JSP
code or client-side JavaScript functions.

External
HTML
Plug-in

Includes dynamic content into the form. At run time,
the URL that the plug-in references is accessed by the
server, returning contents which then insert into the
form.

Field Container >

Field Section Aligns fields into a column. Displays all field labels in an
aligned column to the left of the fields. You can divide
fields into groups by inserting Headers and
Instructions as needed. To display more than one
column of fields, create a Form Columns container and
place a Field Section container in each column.

Multicolumn
Field Table

Organizes input fields into a multi-column table.
Peregrine Systems recommends that you use Form
Columns and Field Sections instead.

Entry Table
with Field
Instructions

Organizes input fields into a multicolumn table with
fields on the left and instructions for each field on the
right.

Component
Template

Allows you to define a group of form elements that can
be reused in more than one form. Changes to the
template are propagated to all places where the
template is used.

Tabs Adds tabs to a form, each pointing to different content
defined by a separate form.

Dynamic
Menu

Displays a multicolumn menu based on data received
from a document query to an adapter.

Form
Columns

Divides the form into columns, allowing content to be
grouped and organized.

Component Description
60 | Peregrine Studio Components

Tailoring Kit Guide
Table >

Simple Table Displays a list of documents resulting from a query.

Document
Table

Displays a list of documents resulting from a query.

Tree Displays a list of documents resulting from a query as a
tree.

Portal Component >

Component
Editor

Generates fields elements used to configure a specific
portal component. Not intended for general
Get-Services use.

Portal
Header

Generates the portal page header. Not intended for
general Get-Services use.

Corkboard
Header

Generates header information needed by any page
that includes a corkboard. Not intended for general
Get-Services use.

Corkboard
Configurator

Generates a list of choices containing all known portal
components. The list can be used to configure the
components to display in a specific corkboard
container.

Corkboard Displays the portal components chosen and
configured by each user.

Custom
Configurativ
e

Allows users to define their own custom component
configurators.

Document Explorer >

Search Displays a personalized list of fields used to perform
document searches.

List Displays a personalized table with the list of
documents found as a result of a search.

Detail Displays a personalized view of a document detail.

Component Description
Adding components | 61

Get-Services
Action >

Action Displays a button for an action. The button can be a
link to another page or a submit action.

Default
Action

Defines a form’s submit action when no actual buttons
are displayed.

Back Navigates to the previous page of the Web application.

Home Navigates to the home page of the Web application.

Print Prints the current Get-Services form.

Close Use to close pop-up windows.

Redirection Redirects a page to a link depending on the result of
the onload script matched against the condition.

Transition Contains an onload script and redirect arguments.
After the script runs, execution redirects according to
the condition that the script returns. The options
available from the Transition menu are the same as the
Form menu, except there is no Action option.

Group of
Strings

List of multilingual strings.

Multilingual
String

The name of the StringResource is the ID of the string.

Group of
Scripts

Server-side ECMAScripts.

Script Server-side ECMAScript (JavaScript) file containing functions that the
Web application forms uses.

Header Initial comments and imports required in this script
file.

Function Script function defining application logic executed on
the server. Make sure that all functions that have
public access accept a Message object as the single
input parameter and return a Message object as a
response. For example:
function xyz(msg)
{var msgResponse=new Message(); ...
return msgResponse;}

A script requires this public access interface if you use
it as an onload script for a form or if you call it directly
using an Archway HTTP message.

Group of
Scripts

Server-side ECMAScripts.

Component Description
62 | Peregrine Studio Components

Tailoring Kit Guide
Group of
Triggers

A collection of triggers. Get-Services does not use this container.

Trigger Individual trigger for a document. Get-Services does not use this
component.

Message
action

Message action that the trigger executes.

Workflow
action

Workflow action that the trigger executes.

Script action Script action that the trigger executes.

Bizdoc Java
action

Java action that the trigger executes inside Bizdoc.

Group of
Triggers

Collection of triggers. Get-Services does not use this component.

Trigger Individual trigger for a document.

Group of
Triggers

Collection of triggers.

Group of
Schemas

Database schemas describing documents accessible by Get-Services
Schemas define the field table mapping between Get-Services and
the back-end database.

Raw
Schema

Description of a document’s mapping on a real database.

Schema Not supported.

Group of
Images

Folder containing the image files used in your Web application.

Image The image loads into the ImageData property as binary data. The
system uses the file name property only the first time to load the
image.

Group of
Images

Folder containing image files.

Image The image loads into the ImageData property as
binary data. The system uses the file name property
only the first time to load the image.

Group of
Images

Folder containing image files.

Group of
Presentation
Files

Folder containing files copied directly to the presentation folder for
use within the Get-Services Web server.

Text Any generic file in the Presentation folder that the Web server needs;
for example, client-side JavaScript, static JSP files.

Binary Binary file outputted in the presentation folder. Accessed by the Web
server and used by the browser.

Component Description
Adding components | 63

Get-Services
Group Folder containing files copied directly to the presentation folder for
use within the Get-Services Web server.

Text
Presentation
File

Any generic file in the Presentation folder that the Web
server needs; for example, client-side JavaScript, static
JSP files.

Binary
Presentation
File

Binary file outputted in the presentation folder.
Accessed by the Web server and used by the browser.

Group of
Presentation
Files

Folder containing files copied directly to the
presentation folder for use within the Get-Services
Web server.

Group of
default
DocExplorer
screens

Folder containing default content for DocExplorer Personalization
screens.

Reference
of a file

File object.

Directory
Object

Not supported.

Group of
Portal
Components

Components that appear in the portal components menu and that
the user can add to the home page.

Portal
Component

(contents) The content of the portal component that is displayed.

(configure) Allows configuration of a portal component.

Group of files A temporary container of miscellaneous files that a Web application
uses. For example, string files and scriptpoller.ini files are stored
here.

String file Temporary representation of a string file.

Ini file Temporary representation of a scriptpoller.ini file.

Group of
Strings

List of multilingual strings.

Multilingual
String

The name of the StringResource is the ID of the string.

Group of
Roles

Not supported.

Component Description
64 | Peregrine Studio Components

Tailoring Kit Guide
Group of Style Sheets > New >

Group of Roles

Group of Files > New >

Group of Strings > New >

Entities (collection of business objects) > New >

Interfaces > New >

Component Description

Style Sheet Not supported.

Component Description

Group of Roles Not supported.

Component Description

String file Temporary representation of a string file.

Ini file Temporary representation of a
scriptpoller.ini file.

Component Description

Multilingual string The name of the StringResource is the ID of the
string.

Component Description

Entity Get-Services does not use this component.

Component Description

Interface Not supported.
Adding components | 65

Get-Services
System enumerations > New >

Templates > New

Component Description

System enumeration Describes a system enumeration, used to define
data attributes where the value stored is not the
value displayed to the user. This allows
multilingual databases.

Value Define one value for a system enumeration.

Component Description

Schema Not supported.

Field Container
Component Template

Directory Object Not supported.

Group of Methods

Method—Java Method

Includes a list of methods. You can create new
methods under this element.

The name is not significant. You can add a comment to
the method

Method—Java Method The name is not significant. You can add a comment to
the method.

Message action Get-Services does not use this component.

Workflow action Get-Services does not use this component.

Bizdoc Java action Get-Services does not use this component.

Script action Get-Services does not use this component.

Trigger Get-Services does not use this component.

Group of Images Allows you to create a group of images.

Attribute Get-Services does not use this component.

Reference Get-Services does not use this component.

Contain Contains an object as an embedded member.

Computed Computed property.

Structure Get-Services does not use this component.

Collection Get-Services does not use this component.

Methods Get-Services does not use this component.

Entity Get-Services does not use this component.
66 | Peregrine Studio Components

Tailoring Kit Guide
Types of form components
The following sections describe some of the more commonly used form
components.

Component template containers
A component template is a special type of container that stores groups of
preconfigured form components. A component template allows you to reuse
the form components stored in the template throughout your project. After you
create a component template, the component template name appears in the
templates list of the Create and New menus. A component template references
all the child form components and attributes settings defined in the template.

If you add a component template to Get-Services and do not modify it,
Peregrine Studio saves the form components as links to the component
template. If you make changes to the form components in the template,
Peregrine Studio saves only the changes you made and links to the form
components that you did not change.

Tip: Use component templates to re-use common elements of your forms. For
example, if several of your forms contain customized search functionality,
then you can create a component template that automatically calls the
correct search schema, queries your back-end system, and displays the
proper search fields.

To create a component template:

1 Right-click the Templates nodes and click New > Field Container >
Component Template.

Peregrine Studio adds a new component template node to the Project
Explorer Tree.

2 Enter the name for the component template.

3 Right-click the new component template node and use the New option to
add form components.
Types of form components | 67

Get-Services
4 Configure the form components you add to the template component.
Peregrine Studio uses these settings as the default settings of the template
component.

5 Save and build your Peregrine Studio project.

The new template component appears as an option in the New menu.

Important: Do not copy and paste or drag and drop items between template
components. Instead, add form components using the
context-sensitive or Create menus. Studio does not use the linking
features of template components on items that you copy from
existing template components.

To add a component template to a form:

1 Right-click the form where you want the component template to be.

2 From the New menu, select the template you want to add.

Form components you can add to a component template:

All except Action and Redirection.

Tip: You can use a component template as the container for any form
components that require a container. This is typically done for form
components such as hiddenfields where you are not concerned about the
display of the fields.

Attributes
You can set the following attributes for a component template.

Fieldsection containers
The fieldsection component is a container that aligns fields into a column. The
fieldsection component displays each field on its own line in the column and

Title
Summary
Order

User Role Restrictions
Dynamic Runtime Restrictions
68 | Peregrine Studio Components

Tailoring Kit Guide
aligns the field labels along the left of each field. Each fieldsection can have a
border that surrounds the columns and visually indicates that the fields in the
container are related. You can also add a header or instructions to your
fieldsection as well as add labels and instructions to the individual fields in the
fieldsection.

Tip: You can use the fieldsection form component to group and align related
input fields. For example, if you have several fields to input search
information, you can align the fields in a single fieldsection and add a
header and instructions that will apply to all fields.

To create a fieldsection:

1 Right click the form where you want the fieldsection to be.

2 Click New > Field Container > Field section.

Form components
You can add the following form components to a fieldsection.

If you select the Header or Instructions form components, Studio will display the
text editor screen for you to enter HTML code for your header and instructions.
Peregrine Studio will not check the validity of your HTML code.

Attributes
You can set the following attributes for a fieldsection.

If you plan on having multiple fieldsections in a form, you can use the border
Presentation property to display a line around a fieldsection to help visually
distinguish the fieldsection from other elements in your Web application
interface. You may also want to add a Form Columns layout container to display

Field
Component
HTML

Header
Import
Instructions

Title
Summary
Order
User Role Restrictions

Dynamic Runtime Restrictions
Border
Readonly
Types of form components | 69

Get-Services
your fieldsections in two or more facing columns rather than a single column
down the form.

Text edit fields
A text edit field provides a bordered field in which to display or enter a value as
plain text. Text edit fields can only be added to forms within a container such as
a component template or fieldsection.

The most common use for text edit fields is to provide a space for users to enter
keyboard input. A text edit field saves the text entered into a particular schema
field when a user submits the form.

Tip: To use a text edit field for text input, add an action to the form that submits
the field information to another form. Set the Document Field attribute of
the text edit field to the corresponding attribute name used in the
document schema.

You can also use text edit fields to display information by default. To display
information in a text edit field, create an onload server script that performs a
document query, and then map the text edit field to one of fields of the schema.

Tip: To use a text edit field to display of information by default, add a schema
to the parent form that defines the information to be displayed. Set the
Document Field attribute of the text edit field to the corresponding
attribute name used in the schema. Set the readonly attribute under
Presentation to Yes if you do not want users to change the information
displayed.

To create a text edit field:

1 Right-click the container where you want the field to be. This displays the
context-sensitive menu.

2 Click New > Field > Text Edit.

Form components
You can add the following form components to a text edit field.

None
70 | Peregrine Studio Components

Tailoring Kit Guide
Attributes
You can set the following attributes for a text edit field.

Selectbox fields
A selectbox provides a drop-down list box from which users can select
predefined values. You can add items to the selectbox in one of two ways.

Tip: Use the schema query method to avoid duplicating information that is
already stored in your back-end database. If you explicitly enter the
options in the selectbox, then you have to update, rebuild, and re-deploy
your project every time you change the list of selectbox options. If you
store the selectbox options on your database, however, then you only
need to change the database values, and your schema query will
automatically pick up any changes you make.

When you are working with selectboxes, keep in mind that:

You can only add selectbox fields within a container such as a component
template or fieldsection.

Users cannot add entries to selectbox fields. To implement such
functionality, you would need to write a client-side JavaScript to insert any
information added into your back-end databases.

Instructions
Label
Title
Document Field

Display Value
Max Characters
Data

Option Value

Explicitly define the options. The selectbox always displays the options you
enter and always displays them in the order you
define them in the Order attribute.

Query your back-end database and
generate an XML document that
provides the display options.

The selectbox displays the options as defined by
the schema used to generate the XML
document. Typically, the selectbox uses the
same schema as the form of which it is a part. If
you want to use a schema to display the options
in a selectbox, then you must set the Document
field attribute to an attribute name in a schema.
Types of form components | 71

Get-Services
If you have a large number of selections for users to choose from you may
want to use a lookupfield in place of a selectbox. The advantage of using
lookupfields are:

they can be personalized

they are not loaded into memory until the lookupfield is selected, which
reduces the amount of time necessary to render the form.

Get-Services uses selectbox fields to constrain user input to a list of
predefined items. The selectbox field saves the selected item to a particular
field when a user submits the form. The field used to save the information
must match a field defined in a document schema.

To create a selectbox field:

1 Right click the container where you want the field to be.

2 Click New > Field > Selectbox.

Form components
You can add the following form components to a selectbox field.

Component Description

Option The Option form component allows you to explicitly define the
entries displayed in the selectbox.
72 | Peregrine Studio Components

Tailoring Kit Guide
Attribute categories
You can set the following attribute categories for a selectbox field.

Databound attributes
The Databound attributes are where you will define what schema and schema
attributes provide the information for the selectbox. The following list describes
what information to enter in the Databound attributes.

Hidden data fields
A hidden data field stores form information without displaying it to the user.
Get-Services passes the information stored in a hidden data to other forms
when the form is submitted.

Tip: You can use hidden data fields to prevent users from having to input the
same information on multiple forms. For example, if a user enters contact
information in one form, then you can use hidden data fields to store this
contact information in later forms.

Attribute Description

Document Enter the schema name you want to use to query and display the
information requested in the selectbox.

Values Enter the attribute name from your schema that defines what
information you want to use to sort and identify the information
in the selectbox. This value can be identical to the displaylist
attribute, but it is recommended that you use the Id attribute
name defined in the schema. The Id attribute is the preferred
choice because it is a unique value and requires less memory to
sort since it is only a number.

Captions Enter the attribute name from your schema that defines what
database information you want displayed in the selectbox.

Instructions
Label
Title
Document Field
Display Value
Size

Multiple Selection
Permit Blank
Data
Presentation
Events
User Role Restrictions

Dynamic Runtime
Restrictions
Process
Presentation
Databound
Types of form components | 73

Get-Services
To create a hidden data field:

1 Right click the container where you want the field to be.

2 Click New > Field > Hidden Data field.

Form components
You can add the following form components to a hidden data field.

Attributes
You can set the following attributes for a hidden data field:

Redirections
A redirection takes users to another form when the onload server script
generates a certain condition. A conditional redirection requires the parent
form to run a server script when it is loaded. To use a conditional redirection, you
must create a server script that checks for a particular condition and then
outputs a condition message when this condition occurs.

You can only add a redirection to a form. You cannot add a redirection to a form
component.

Tip: You can use a redirection to take users to a form when they enter
particular information or a particular result, such as when an error occurs
or when no results are generated.

To create a redirection:

1 Right-click the form where you want the redirection to be.

The context-sensitive menu is displayed.

2 Click New > Redirection.

None

Document Field
Display Value
Visible Flag

Unique Key Field
User Role Restrictions
Dynamic Runtime Restrictions
74 | Peregrine Studio Components

Tailoring Kit Guide
Form components
You can add the following form components to a redirection.

Attribute categories
You can set the following attribute categories for a redirection.

Redirection attributes
For most redirections, the two most important attributes to set are the condition
and the target form.

Simple table
A simple table is a container to display information generated from a schema
document query. The simple table form component only has two basic
functions by itself. The simple table form:

Calls the schema that will generate the table data.

Describes how the data will be displayed in the columns of the table.

A simple table requires columns components to display data.

None

Attribute Description

Condition Enter the message generated by your server script that activates
the redirection to another form. If there is no condition, the
redirection will activate every time the page is loaded. See
Common message operations in this guide for more information
on setting a condition.

Target form Enter the full Peregrine Studio path to the form where the user
should be redirected.

Visible flag
Condition
Frameset
HTTP Submit Method

Parameters
Target (form, field, or URL)
User Role Restrictions
Dynamic Runtime Restrictions
Types of form components | 75

Get-Services
To create a simple table:

1 Right-click the form where you want the table to be.

2 Click New > Table > Simple Table.

Form components
You can add the following form components to a simple table.

Attributes
You can set the following attributes for a simple table.

The Document attribute defines the schema the simple table uses. You can
enter a schema name or select one from the drop-down list box.

Simple tables include a built interface to view large tables in smaller pages. You
can use the size attribute to set the number of rows to display on one page.
When users want to view more of the table results, they can click on the next x
rows button to view the next page of table rows. All simple tables include the
link icons to browse forward and backward in the table.

Link
Text Column
Entry Column

Spinner Column
Radio Button Column
Checkbox Column

Image Column
Link Column
Lookup Column

Visible Flag
Caption (en)
Accessibility Title (en)
Accessibility Summary (en)
Size
Preview
Order

Readonly
Required, Column Sorting
Border
Process
Document
Data

Dynamic Headers and
Columns
Instructions (en)
Events
User Role Restrictions
Dynamic Runtime
Restrictions
76 | Peregrine Studio Components

Tailoring Kit Guide
Document table
A document table is a container you can use to display any other form
component from within a table. The document table form component only has
two basic functions by itself. The document table form:

Calls the schema that generates the table data.

Describes how the data displays in the columns of the table.

A document table requires columns components in order to display data. Unlike
the simple table, the document table only uses one type of column: the
formcolumn. However the formcolumn form component allows you to add any
other form component to your document table.

To create a document table:

1 Right-click the form where you want the document table to be.

2 Click New > Table > Document Table.

Form components
You can add the following form components to a document table.

Attributes
You can set the following attributes for a simple table.

The Document attribute defines the schema the document table uses. You can
enter a schema name or select one from the drop-down list box.

Document tables include a built interface to view large tables in smaller pages.
You can use the size attribute to set the number of rows to display on one page.
When users want to view more of the table results, they can click on the next x

Column

Visible Flag
Accessibility Title (en)
Accessibility Summary (en)
Size

Preview
Order
Border
Document

User Role Restrictions
Dynamic Runtime
Restrictions
Types of form components | 77

Get-Services
rows button to view the next page of table rows. All document tables include
the link icons to browse forward and backward in the table.

Table links
A table link allows you to click on a table row and be redirected to another form.
The table link also saves some field information about the row the user selects
and submits this information to the target form. Table links typically have two
functions:

To display more information about an item selected in the table.

or

To copy certain information about the item selected in the table into a new
form such as, for example, the price of an item in a purchase request form.

To create a table link:

1 Right-click the table where you want the table link to be.

2 Click New > Link > Table Link.

Form components
You can add the following form components to a table link.

None
78 | Peregrine Studio Components

Tailoring Kit Guide
Attributes
You can set the following attributes for a simple table.

Table link attributes
For most table links, the two most important attributes to set are the Document
field and the target form.

Text columns
A text column displays the results of a document query in a table column as
plain text. Each text column displays one field of information from a back-end
database. The field must match an attribute name listed in the document
schema of the parent table.

When working with text columns, keep in mind that they:

Are always read-only and cannot be used to update information in the
back-end database.

Can only be added as child nodes of a simple table.

To create a text column:

1 Right click the table where you want the text column to be.

2 Click New > Text Column.

Attribute Description

Document field Enter the field that describes what information should be passed
when a table link is submitted. The Document Field attribute
should match the attribute name of an item in your schema. The
attribute is typically set to the Id schema attribute.

Target form Enter the full Peregrine Studio path to the form where the user
should be redirected when they click on a table row.

Visible Flag
Label (en)
Title (en)
Balloon (en)
Style Class

Data
Image
HTTP Submit Method,
Parameters
Target (frame, form, field,

script, or URL)

Events
User Role Restrictions
Dynamic Runtime
Restrictions
Types of form components | 79

Get-Services
Form components
You can add the following form components to a text column.

Attributes
You can set the following attributes for a text column.

Text column attributes
For most text columns, the two most important attributes to set are the
Document field and the Label (en).

Form columns
A form column is a container for any other form component you want to add to
a table. Unlike a text column, a form column can display any number of fields of
information from your back-end database. Each field, however, must still match
an attribute name listed in the document schema of the parent table.

When working with form columns, keep in mind that they:

Can contain form components that insert or update information in your
back-end database.

Can only be added as child nodes of a document table.

None

Visible Flag
Order
Label (en)
Title (en)

Support Links
Data Type
Document Field
Translation Function

Style Class
Events
User Role Restrictions
Dynamic Runtime
Restrictions

Attribute Description

Document Field Enter the field that describes what information should be
displayed in the text column. The Document Field attribute
should match the attribute name of an item in your schema.

Label (en) Enter the label you want displayed in the first row of the table as
the column heading. If you are using dynamic headers and
columns, you will want to leave this attribute blank.
80 | Peregrine Studio Components

Tailoring Kit Guide
To create a form column:

1 Right click the document table where you want the text column to be.

2 Click New > Column.

Form components
You can add the following form components to a form column.

Attributes
You can set the following attributes for a form column.

Form column attributes
For most form columns, the two most important attributes to set are the Label
(en) and the User Role Restrictions.

Actions
An action is a button that submits form information or follows a particular link.
The following is a list of the possible actions you can include in your forms.

Any

Attribute Description

Label (en) Enter the label you want displayed in the first row of the table as
the column heading. If you are using dynamic headers and
columns, leave this attribute blank.

User Role
Restrictions

Enter the user role or roles that you want to have access this form
column. Only users with this access level will have access to the
form components in the column. If you do not want to set a user
role restriction, leave this attribute blank.

Visible Flag
Label (en)
Order

User Role Restrictions
Dynamic Runtime
Restrictions

Action Description

Action Use to submit form information or follow a link.

Back Use to navigate back to the previous form.

Close Use to close pop-up windows.
Types of form components | 81

Get-Services
To create an action:

1 Right-click the form where you want the action to be.

2 Click New > Action and then click the action type you want to add.

Form components
You can add the following form components to an action.

Attributes
You can set the following attributes for an action.

Action attributes
For most actions, the three most important attributes to set are the Image
Folder, Target form and the Label (en).

Default Action Use to define a form’s submit action when no buttons are
displayed in a form.

Home Use to navigate to the portal home page.

Print Use to print the current form.

Action Description

None

Attribute Description

Image Enter the file name of the image to be used for the button.

Target form Enter the full Peregrine Studio path to the form where the
user should be redirected when they click on the button.

Label (en) Enter the label you want displayed in the button.

Submit Form
Target (frame, form, field,
script, or URL)
Label (en)
Title (en)
Balloon (en)

Image
Parameter
HTTP Submit Method
Events
User Role Restrictions

Dynamic Runtime
Restrictions
Visible Flag
Presentation
82 | Peregrine Studio Components

CHAPTER
5 S
cripting
This chapter provides an overview of how to use scripts. You must be familiar
with JavaScript and ECMAScript and have access to the JavaDocs provided with
your Get-Services Tailoring Kit installation CD.

This chapter covers the following topics:

Overview of scripts on page 83

Testing scripts on page 92

Common message operations on page 97

Using ECMAScript in an object-oriented manner on page 100

Sample scripts on page 105

References on page 113

Overview of scripts
Get-Services uses scripts to query back-end databases and to format the results
into XML documents based on schemas. Generally, you only need to create new
scripts if you create new forms. Most customizations do not require changes to
the script, but rather to the schema that the script uses to display data. Before
creating or making changes to a script, you must create or activate a writable
package extension in which to save your changes.

Tip: You can use the existing scripts as templates for your custom scripts. Try
and find a script that has similar functionality to what you want, and then
copy and paste the script into your Peregrine Studio project.
Scripting | 83

Get-Services
Script types
Get-Services uses two types of scripting to transfer and format data between
your back-end databases and Web application forms.

Where to store scripts
The following table describes how you can include both types of scripting into
your projects.

Peregrine Studio stores all server-side ECMAScripts as part of your project file. At
build time, Peregrine Studio copies the scripts into your application server’s
deployment folder and creates all necessary Get-Services forms. At run time, the

Scripting type Description

Server-side Server-side scripts run from a Web server. Server-side scripts
have access to both user-submitted form data and any data
that a back-end system generates. You can return the output
of server-side scripts to both a back-end system and the
remote browser. All Get-Services server-side scripts use
ECMAScript. An example of server-side scripting is querying
a back-end system for the list of open tickets that a user
submits.

Client-side Client-side scripting runs from a JavaScript-capable browser.
Client-side scripts have access to user data before submitting
to a Web server and any back-end data that uploads with the
current Web page. Only the client browser uses the output of
client-side scripts. All Get-Services client-side scripts are in
JavaScript. An example of using client-side scripting is
formatting a user’s contact information using locale
preferences.

Script type Language Where created and stored

Server-side ECMAScript You can author server-side scripts in Peregrine
Studio. Each script then becomes an object
available for use throughout the project.
It is possible to create scripts outside of Peregrine
Studio that can then be used in schema extensions,
or as a Get-Services script interface.
You can also create scripts as script extensions to
modify the behavior of existing scripts (see the
Get-Services Admininstration Guide).

Client-side JavaScript You can author client-side scripts outside of
Peregrine Studio and add them to your project.
You can also include client-side scripts as part of
the HTML code stored with a form.
84 | Scripting

Tailoring Kit Guide
deployment application server executes the forms along with any server-side
scripts that the forms call and sends the output to the client browser. The client
browser executes any client-side JavaScript present in the rendered HTML page.

How to use scripts
The Archway servlet supports several different methods to invoke and utilize
scripts within Get-Services. The following sections describe the different ways to
use ECMAScript and JavaScript within Get-Services.

Forms—server side
All Get-Services forms support invoking onload server-side scripts. Typically, the
onload script creates an XML message to gather and format information from a
back-end database. The script message can contain queries or updates to the
database or to XML documents built from a schema. The scripts typically use a
schema, one or more input parameters, and a back-end database query to
create an XML document.

Many server onload scripts use one of the following API calls.

This API Sends the following

sendDocQuery SQL or XML document query to the back-end database. Archway
queries the record using the table and field information that the
schema supplies. The database then returns the results of the
query as an XML document formatted as defined in the schema.

sendDocInsert XML document to the back-end database that describes a new
record. Archway creates the new record in the database using the
table and field information that the schema supplies.

sendDocUpdate XML document to the back-end database that describes an
update to an existing database record. Archway updates the
record using the table and field information that the schema
supplies.

sendDocDelete XML document to the back-end database that describes a record
in the database to be deleted. Archway deletes the record using
the table and field information that the schema supplies.
Overview of scripts | 85

Get-Services
Get-Services typically uses the following ECMAScript syntax to refer to schemas.
For additional methods of formatting these messages, refer to the JavaDocs API
documentation provided with your Get-Services installation.

For example, the following script sample defines a variable called msgReturn
that sends a document query to ServiceCenter using the empdetail schema and
any input parameters stored in the msg message object. The variable msgReturn
then returns the result of the document query.

Client side
The browser handles all client-side scripting when a user views a Web
application.

Note: Peregrine Systems does not provide customer support for custom
client-side scripts.

archway.sendDocQuery("adapter name", "schema name", input msg);
archway.sendDocInsert("adapter name", message object);
archway.sendDocUpdate("adapter name", message object);
archway.sendDocDelete("adapter name", message object);

Parameter Value

adapter name Enter the name for the back-end database adapter. This adapter
uses the ODBC connection that you defined in the archway.ini
file. For most applications, the adapter is a two-letter name.

schema name Enter the name defined in the
<document name="schema name"> element of the schema file.

input msg Enter the variable name of a message that OAA uses to store input
parameters for the ECMAScript function. The default input
message is the msg object defined in all onload functions. The
input message is the XML message containing the HTML page
parameters.

message object Enter a variable name of a message object containing a schema
name and any input parameters.

var msgReturn = archway.sendDocQuery("sc", "empdetail", msg);
return msgReturn;
86 | Scripting

Tailoring Kit Guide
Editing an existing script
You can edit the ECMAScript in your project directly from the Peregrine Studio
interface.

Important: You may lose changes that you make to existing scripts when you
next upgrade. Use script extensions whenever possible to avoid this
problem.

To edit an existing script:

1 Select the form in the Project Explorer.
Overview of scripts | 87

Get-Services
2 Click the Script tab in the Properties window.
88 | Scripting

Tailoring Kit Guide
3 In the Server Onload Script field, click the magnifying glass button to view

the script in the Peregrine Studio text editor.

4 Make any changes to the script in the text editor.

5 Save your project.

6 Build your project file.

7 Restart your application server or set the File Change Monitor option from
the Administration page.

The script update loads into Get-Services.

Adding a custom script
You can add custom scripts to your Peregrine Studio project for use by forms,
schemas, and form components.
Overview of scripts | 89

Get-Services
To add a custom script:

1 Determine what kind of script you want to create.

You can create the following script types.

2 Right-click the appropriate Group of Scripts node, point to New, and then
click Script.

Peregrine Studio creates a new script node below the Group of Scripts.

3 Type the name of your script and press ENTER.

4 Right-click the new Script node, point to New, and then click Header.

Peregrine Studio creates a new Header node below the Script node.

5 Using the text editor window, type the header information for your new
script.

6 Right-click the new Script node, point to New, and then click Function.

Peregrine Studio creates a new Function node below the Script node.

7 Using the text editor window, type the function information for your new
script.

Script type Description

Form onload script Run these scripts to gather data for non-DocExplorer forms.
Peregrine Studio stores form onload scripts below the first
Group of Scripts node. These typically are Scripts or
ServerScripts.

Preexplorer Run these scripts to manipulate the XML document that
renders in the Get-Services interface. Peregrine Studio
stores preexplorer scripts below the Preexplorer Group of
Scripts node.

Preload Run these scripts to gather data for DocExplorer forms.
Peregrine Studio stores preload scripts below the Preload
Group of Scripts node.

Schema Run these scripts before or after an adapter connects with
the back-end database. Peregrine Studio stores schema
scripts below the Schema Group of Scripts node.
90 | Scripting

Tailoring Kit Guide
8 Save your project.

9 Build your project file.

10 Restart your application server or set the File Change Monitor option from
the Administration page.

The new script loads into Get-Services.

Date values in scripts
In server-side scripts, all dates in the XML messages must use the internal format
YYYY-MM-DD. The format for timestamps is YYYY-MM-DDTHH:mm:SS.SSSZ, where

The following is an example of the format showing GMT:

2004-02-19T16:58:23+00:00

The following is an example of the format using the name of the time zone:

2004-03-29T07:00:00America/Los_Angeles

Note: The names of time zones are in the Java.util.TimeZone class.

Timestamps are usually in the GMT time zone. However, dates on server
machines do not need to be in this format. The user interface automatically
converts dates to and from the local date format automatically whenever the
system uses date widgets or date columns.

When you set the date manually in an XML message, you may need to
manipulate its format. Use the DataFormatter.getArchwayDate and
DataFormatter.getArchwayDateTime functions.

Symbol Value

T Is the letter T.

HH Specifies the hours in 24 hour format.

mm Specifies the minutes.

SS.SSS Specifies the number of seconds and milliseconds.

and Z Indicates the time zone.
Overview of scripts | 91

Get-Services
See Working with dates in scripts on page 112 for examples of date
manipulation.

Testing scripts
Get-Services offers two means of testing your ECMAScript:

Rhino JavaScript Debugger

URL Queries

Rhino JavaScript debugger
You can now configure Get-Services to send script output to the Rhino
JavaScript Debugger Mozilla provides. The Rhino JavaScript Debugger provides
a graphical user interface for debugging interpreted ECMAScript. When you
enable the Rhino JavaScript Debugger, you can log on to the Get-Services server
and see debugging information about your installation as you browse through
the Get-Services interface.

Important: To use the Rhino JavaScript debugger and configure your
application server to run as a service, you must set up your service
to interact with the desktop.

To enable the Rhino JavaScript debugger:

1 Log on to the Get-Services administration page.

2 Click Settings > Logging tab.

3 For the Debug script option, select Yes.

4 Click Save to store your changes.

5 Log on to the Get-Servicesserver.
92 | Scripting

Tailoring Kit Guide
6 Browse to the Get-Services deployment directory. By default, the directory
path is:

<application server>\<context>\WEB-INF

7 Using a text editor, open the file local.xml.

8 Add the following line anywhere between the <settings> elements:

<showDebugger>true</showDebugger>

9 Save the file.

10 Copy the rhinodebugger.jar file from the Get-Services Tailoring Kit
Installation CD to the following path on your test server:

<application server>\<context>\WEB-INF\lib

11 Restart your application server.

Parameter Value

<application server> Enter the installation path to your application server.
For example,
C:\Program Files\Peregrine\Common\Tomcat4

<context> Enter the path where you deployed the Get-Services
files. For example, webapps\oaa.

Parameter Value

 <application server> Enter the installation path to your application
server. For example,
C:\Program Files\Peregrine\Common\Tomcat4

 <context> Enter the path where you deployed Get-Services
the files. For example, webapps\oaa.
Testing scripts | 93

Get-Services
The Rhino JavaScript Debugger opens the next time you start your
application server on this system.

For more information about the Rhino JavaScript Debugger, go to the Mozilla
Web site: http://www.mozilla.org/rhino/debugger.html.

URL queries
You can test the output that your server-side onload scripts and schemas
generates by using URL queries to the Archway servlet.

Archway invokes the server script or schema as an administrative user and
returns the output as an XML document. Your browser must have an XML
renderer to display the output of the XML message.

Using URL queries can be useful for debugging your tailoring changes and for
using the Archway servlet without having to log on to Get-Services.

Note: Your browser may prompt you to save the XML output of the URL query
to an external file.
94 | Scripting

http://www.mozilla.org/rhino/debugger.html

Tailoring Kit Guide
URL script queries
Archway URL script queries use the following format:

http://server name/oaa/servlet/archway?script name.function name

URL schema queries
Archway URL schema queries use the following format:

http://server name/oaa/servlet/archway?adapter name.Querydoc
&_document=schema name

Parameter Value

server name Enter the name of the Java-enabled Web server. If you
are testing the script from the computer running the
Web server, you can use the variable localhost as the
server name.

oaa/servlet This mapping assumes that you are using the default
URL mapping that Get-Services automatically defines
for the Archway servlet. If you defined another URL
mapping, replace the servlet mapping with the
appropriate mapping name.

 script name Enter the name of the script you want to run.

 function name Enter the name of the function that the script uses.

Parameter Value

oaa/servlet This mapping assumes that you are using the default URL
mapping that Get-Services automatically defines for the
Archway servlet. If you defined another URL mapping,
replace the servlet mapping with the appropriate mapping
name.

adapter name Enter the name for the back-end database adapter the
schema uses. The adapter uses the ODBC connection that
you defined in the Admin module Settings page.

schema name Enter the name defined in the
<document name="schema name"> element of the
schema file.
Testing scripts | 95

Get-Services
Make sure that your script output resembles the following example.

URL SQL queries
Archway URL SQL queries use the following format:

http://server name/oaa/servlet/archway?adapter name.query&_table=
table name&field name=value&_[optional]=value

Parameter Value

oaa/servlet This mapping assumes that you are using the default URL mapping
that Get-Services automatically defines for the Archway servlet. If
you defined another URL mapping, replace the servlet mapping
with the appropriate mapping name.

adapter name Enter the name for the back-end database adapter the schema
uses. This adapter uses the ODBC connection that you defined in
the Admin module Settings page.

table name Enter the SQL name of the table you want to query from the
back-end database.

field name Enter the SQL name of the field you want to query from the
back-end database.
96 | Scripting

Tailoring Kit Guide
Common message operations
The following section describes some common methods that server-side scripts
use to create XML messages. Refer to the JavaDocs, especially
com.peregrine.oaa.core.Message, for more information and examples about
XML message operations.

Create a new generic message. You can use archway.sendDocQuery() to
create a generic XML message. You can then add elements to the XML
message with other methods.

 var msgQuery = new Message();

This creates an empty XML message called msgQuery.

Create a new message with a specific XML element tag. You can then use
archway.sendDocUpdate() and archway.sendDocInsert() to send the
XML message to the back-end database.

 var msgRequest = new Message("Request");

This creates an XML message called msgRequest with the element
<Request>.

Add a value to a particular XML element. You can use this method to add a
new element and value to the XML message.

 msgQuery.add("LastName", "Jones");

This adds the value Jones to the element <LastName>. The output is in
standard XML format: <LastName>Jones</LastName>.

value Enter the value you want the field or optional parameter to have.

_[optional] Enter any optional parameters to limit your query. Examples
include:
_return Returns the values only of the fields you list.
_count Specifies how many records you want returned with the

query.

Parameter Value
Common message operations | 97

Get-Services
Set the value of an XML element. You can use this method to overwrite the
value of an existing element in the XML message.

 msgQuery.set("LastName", "Jones");

This sets the value of the element <LastName> to Jones. The output is in
standard XML format: <LastName>Jones</LastName>.

Get the value of an element in the XML message. This method returns an
empty string "" if there is no value for the element.

 var strName = msg.get("LastName");

This sets the variable strName to the value of the element <LastName> in the
XML message. For example, if the XML message contains the element
<LastName>Jones</LastName> then strName uses the value Jones.

Get all of the elements and values (the subdocument) listed under a
particular element in the XML message. This method returns an empty
string "" if there is no subdocument for the element.

 var msgRequest = msg.getMessage("Request");

This sets the variable msgRequest to the subdocument listed under the
element <Request> in the XML message. For example, suppose the XML
message contains the following elements:

Then, the msgRequest uses the subdocument:
<ID>1234</ID><LastName>Jones</LastName><Status>Approval
</Status>.

Set a script condition when the script returns a particular XML message
result. You can use conditions to control when to activate Peregrine Studio
form components such as redirections and access fields.

<Request>
<ID>1234</ID>
<LastName>Jones</LastName>
<Status>Approval</Status>

</Request>
98 | Scripting

Tailoring Kit Guide
For example, the following script checks the value of the Name element:

This function searches the XML message for the value of the <Name> element.
If the value is empty, then the script sets the error condition.

Return the number of instances that a particular element appears in an XML
message. You can use this method to set a condition for further actions. For
example, the following script uses the getList method to set a condition.

This sets the variable list to the number of <Location> elements in the XML
message. If the number of instances is zero, then the script sets the
noresults condition, otherwise the script performs some other action.

Log the contents of a particular XML message. This method saves the output
of the script to the file archway.log. This is another way of debugging your
ECMAScript in addition to the Rhino JavaScript debugger on page 92.

Using a logging domain, you can group log messages from a particular
component or script.

Without using a logging domain.

if (msg.get("Name") == "")
{
msgResponse.setCondition("error");

return msgResponse;
}

var list = msgResponse.getList("Location");
if (list.getLength() == 0)
msg.setCondition("noresults")
var i = 0;
for (i = 0;i < list.getLength(); i++)
{
// add function to process records in the list ...
}

env.debuglog("Get-Services",
"sendDocQuery returned the

message ", msgResponse);

env.debuglog("sendDocQuery returned the message ",
msgResponse);
Common message operations | 99

Get-Services
Important: You must enable the Debug Logging option from the Get-Services
administrative interface (Administration > Settings > Logging tab).

Tip: Remove or comment out this method before deploying to your
production environment because script logging is CPU-intensive and
degrades server performance.

Using ECMAScript in an object-oriented manner
ECMAScript implementation in Get-Services

All Scripts defined in Peregrine Studio load as one ECMA script object. The
functions defined in the Script are the object’s methods, and the variables
declared outside a function are the object’s attributes. This implementation as
an object is what enables you to use the dot syntax to call scripts and functions.

Name resolution in ECMAScript
Every ECMAScript object has a special property: its prototype. A prototype is an
ECMA script object in the property name resolution for the object.

Every script is run within a scope that holds a set of objects and variables
declared in the same scope.

When you access a property or call a function in a given environment, ECMA
script tries to resolve the name in the current scope first (usually the function’s
context). If it does not find it, it tries in the current object's prototype. If it does
not find the property in the prototype, or in the prototype’s prototype, the
ECMAScript engine searches in the parent scope.
100 | Scripting

Tailoring Kit Guide
Using the object prototype for object-oriented programming
The fact that ECMAScript looks for a variable name or a function name in the
prototype if it does not find it in the object, gives some ability to define a
standard behavior as an object’s method, and make this object the prototype
for another object that can overwrite the behavior by providing a method with
the same name.

The following is an example that you can try with the ECMAScript command line
utility.

To use an object prototype:

1 In the WEB-INF/lib folder, type java -jar js.jar to start the command
line.

function vehicle()
{
 function _start ()
 {
 print("starting " + this.getVehicleName())
 }
 this.start = _start;
 this.getVehicleName = new Function("return 'vehicle'; ");
}

function airplane()
{
 this.getVehicleName = new Function("return 'airplane'; ");
}
airplane.prototype = new vehicle();

function car(make)
{
 this.getVehicleName = new Function("return 'car ' + this.make;");
 this.make = make;
}
car.prototype = new vehicle();
Using ECMAScript in an object-oriented manner | 101

Get-Services
2 Create three objects, one for each class.

3 Try the start method for each of these objects.

Although the airplane class and the car class do not implement the start
method, start is in their prototype. You can also see that since these two
classes overwrite the getVehicleName function, the start method calls the
method defined in the object. These are standard behaviors in
object-oriented languages.

Overwriting a method to extend the parent class method is more complicated
in ECMA script.

var myVehicle = new vehicle();
var myPlane = new airplane();
var myHonda = new car("Honda");

js> myVehicle.start()
starting vehicle
js> myPlane.start()
starting airplane
js> myHonda.start()
starting car Honda
102 | Scripting

Tailoring Kit Guide
To overwrite a method to extend the parent class method:

1 Create a sports car class that derives from the car class, and extend the start
method to add a warm-up phase before the car actually starts.

2 Create an object for this class.

3 Call the start method.

You can see that the new start method is called, that the start method
declared in vehicle is called as well. But the new getVehicleName was not
called, as the second line that prints shows as starting sports car Maserati.
This is because using this.parentcar.start() changes the scope in which
the start function is called from the sportscar1 object to the parentcar
object (car class), and as a result the getVehicleName is resolved in the scope

function sportscar1(make)
{
 // other way to declare that the prototype for the
 // sportscar object is a car object. Contrary to
 // the other way, where only one vehicle object is the
 // prototype of all the car objects, here there will be
 // one car object per sportscar1 object.
 this.parentCar = new car(make);
 this.__proto__ = this.parentCar;
 // Extend the start function
 function _start()
 {
 print("warming up");
 this.parentCar.start();
 }
 this.start = _start;
 // Change also the vehicle name to reflect that this is
 //a sports car
 this.getVehicleName = new Function("return 'sports car ' +
this.make;");
}

var myMaserati = new sportscar1("Maserati");

js> myMaserati.start();
warming up
starting car Maserati
Using ECMAScript in an object-oriented manner | 103

Get-Services
of the car object. To change this behavior, the parent function must be called
in a specific way, as shown in the following sportscar2 class.

To change the start method:

1 Create an object for this class.

2 Call the start method.

This delivers the expected result. The code is using the apply method of the
Function object, passes the object used as this first, and the arguments that
were passed to the current function (_start).

Note: The code uses this.parentCar instead of this.__proto__, which
seems valid, but can cause an infinite recursive call if another class
deriving from sportscar2 extends the start method and calls it parent,
because this.__proto__ is evaluated against the derived object, and the
start function in sportscar2 continues to call itself. It is therefore
preferable to store the parent object in a variable that the subclasses do
not overwrite. Here, with a nomenclature that uses the parent prefix and
the parent class name, the uniqueness is ensured. Try this with a racecar

function sportscar2(make)
{
 this.parentCar = new car(make);
 this.__proto__ = this.parentCar;
 // Extend the start function
 function _start()
 {
 print("warming up");
 this.parentCar.start.apply(this, arguments);
 }
 this.start = _start;
 // Change also the vehicle name to reflect that this is
 //a sports car
 this.getVehicleName = new Function("return 'sports car ' +
this.make;");
}

var myFerrari = new sportscar2("Ferrari");

js> myFerrari.start();
warming up
starting sports car Ferrari
104 | Scripting

Tailoring Kit Guide
class that derives from sportscar2 and overwrite the start function by
calling the parent.

How to use object orientation for tailoring
In Get-Services, objects instantiate automatically from the script files when they
load in memory. To implement the prototype hierarchy, you must set the
__proto__ attribute in a script file’s header.

For example:

The previous valueOf method returns a pointer to the requestinterfacebase
object. The line is equivalent to this.__proto__ = requestinterfacebase;.

If you need to call a parent method, you can specify it using the dot format. For
example:

As long as each object has a unique name, for example the script name, there is
no need to store the parent object in a member variable. In that respect, using
object orientation in Get-Services is simpler than in the general case.

Sample scripts
The following sections provide sample server-side ECMAScripts and
descriptions that you can use as templates in Get-Services. If you need help with
a client-side scripting, see the list of suggested reference materials on page 113.

General script samples
You can use ECMAScript to serve a number of different functions such as
creating an XML document from a schema, running a SQL query, or formatting
the data received from a database query. The following samples show some of
the ways to use ECMAScript to gather data.

import requestinterfacebase;
this.__proto__ = requestinterfacebase.valueOf();

// Submit the request (Call the parent method)
var msgNewRequest = requestinterfacebase.saveRequest.apply
(this, arguments);
Sample scripts | 105

Get-Services
Selecting a field from a schema

Input
A message object, msg. This script does not typically have input from any
previous form. If you change this script to be part of a results form, then the
input message can contain form fields or values from a prior list form.

Output
The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The following XML output is an
example of the kind of data using a similar script returns.

Although the sendDocQuery function specifies only the <Name> element,
Archway automatically includes the <ID> element in the XML document
produced. This is expected behavior of the Archway servlet.

function getCityList (msg)
{
//Query sample database for the records using the citylist
//schema
var msgQuery=newMessage();
msgQuery.set(“_return”, “Name”);
var msgReturn=archway.sendDocQuery (“xx”,”citylist”, msgQuery);

return msgReturn;
}

<recordset _count="-1" _countFound="3" _more="0" _start="0">
<citylist>

<Id>1</Id>
<Name>Burbank</Name>

</citylist>
<citylist>

<Id>2</Id>
<Name>London</Name>

</citylist>
<citylist>

<Id>3</Id>
<Name>Santa Clara</Name>

</citylist>
</recordset>
106 | Scripting

Tailoring Kit Guide
Description
This script gathers a list of city names for an employee search form. The
sendDocQuery function creates an XML document built from the citylist
schema and searches for the value of the <Name> element. You can use
parameters like “Name” in your script messages to limit or add to the list of
values that your schema query returns.

Calling other scripts and combining the results

Input
A message object, msg. This script does not typically have input from any
previous form. If you change this script to be part of a results form, then the
input message can contain form fields or values from a prior list form.

Output
The script produces an XML document built from two other scripts, getDepList
and getCityList. Each script adds to the XML document stored in the
msgResponse variable by running a sendDocQuery function with a schema. The

function getSearchInfo(msg)
{
//Create empty variable msgResponse
var msgResponse = new Message();

//Call getDepList function and add results to msgResponse.
msgResponse.add(this.getDepList(msg));
// Call getCityList function and add results to msgResponse
msgResponse.add(this.getCityList(msg));

return msgResponse;
}

Sample scripts | 107

Get-Services
following XML output is an example of the kind of data that using a similar script
returns.

Description
This script generates the city and department names that a user can select from
in an employee search form. The .add function appends the output of the
getDepList and getCityList functions to the msgResponse variable. The two

<_doc>
<recordset _count="-1" _countFound="19" _more="0" _start="0">

<departmentlist>
<Id>1</Id>
<DepartmentName/>

</departmentlist>
<departmentlist>

<Id>2</Id>
<DepartmentName>Administration</DepartmentName>

</departmentlist>
<departmentlist>

<Id>3</Id>
<DepartmentName>Administrative Services</DepartmentName>

</departmentlist>
<departmentlist>

<Id>4</Id>
<DepartmentName>Burbank Agency</DepartmentName>

</departmentlist>
...

</recordset>
<recordset _count="-1" _countFound="3" _more="0" _start="0">

<citylist>
<Id>1</Id>
<Name>Burbank</Name>

</citylist>
<citylist>

<Id>2</Id>
<Name>London</Name>

</citylist>
<citylist>

<Id>3</Id>
<Name>Santa Clara</Name>

</citylist>
</recordset>
<_form>e_employeelookup_search_search.jsp</_form>
</_doc>
108 | Scripting

Tailoring Kit Guide
script references use the relative naming convention (this) to indicate that the
functions called are part of the same script as getSearchInfo.

Form script sample
Most ECMAScripts run during a form’s onload processing. Typically, form scripts
query and format data for display in a Web application form, but you can also
use them to update existing database records or insert new ones. The following
examples show how to use server onload scripts to search a database for
employee information.

Creating an XML document from a schema

Input
A message object, msg. This script has an input message from a previous search
form. In this case, the input message includes a subdocument, Department, in
addition to any other input data passed to the script. This subdocument
searches the DepartmentName field data that the database stores in a separate
table. In addition to adding a subdocument, the script sorts the input message

function getEmpList(msg)
{
//Add Department subdocument to the input message
var strReturn = msg.get("_return");
if (strReturn.length > 0)

msg.set("_return", strReturn + ";Department");

//In msg, set sort to LastName and then FirstName
msg.add("_sort", "LastName,FirstName");

//Query sample database for the records using the
//employeedetail schema and the criteria found in the msg object
var msgReturn = archway.sendDocQuery("xx", "employeedetail",
msg);
//Test if the number of items returned is zero, if true set
//ListEmpty condition
if (msgReturn.get("_countFound") == "0")

msgReturn.setCondition("ListEmpty");

//Return the contents of the msgReturn variable
return msgReturn;
}

Sample scripts | 109

Get-Services
by the LastName and FirstName elements. The following XML demonstrates the
input message of a search on the CityName of Burbank (CityID=1).

<_doc>
<_form>e_employeelookup_employee_emplist.jsp</_form>
<_start>0</_start>
<_return>;employeedetail;CityName;OfficePhone;DepartmentName;
FirstName;LastName;Id;</_return>
<_count>10</_count>
<_ctxobj/>
<_ctxidfld/>
<_ctxidval/>
<CityID>1</CityID>
<search>1</search>
<_blankFields>;FirstName;false;LastName;false;DepartmentID;false
</_blankFields>
<__x>__y</__x>
<_callingform>e_employeelookup_search_search.jsp</_callingform>
<FirstName insertblank="false"/>
<LastName insertblank="false"/>
<DepartmentID insertblank="false"/>
</_doc>
110 | Scripting

Tailoring Kit Guide
Output
The script produces an XML document built from the schema and adapter
specified in the sendDocQuery function. The following XML output is an
example of the kind of data that using a similar script returns.

Description
This script displays the results list that the search form generates. The script uses
two functions to change the data in the msg input message object. The first
function checks the input message to determine the number of elements that
the search results return. If there any search results to return, the script adds the
Department subdocument to the msg message object. The second function sorts
the input message by LastName and then FirstName. Using the adapter name
and document schema name, this script then runs a SendDocQuery function to
gather any search results that match those listed in the input message. The
script then checks the <_countfound> tag that the query generates and
determines if the return list is empty. If the list is empty, the script sets the
msgReturn variable to the ListEmpty condition. This condition redirects users to
the listempty form.

<recordset _count="10" _countFound="2" _more="0" _start="0">
<employeedetail>

<Id>10</Id>
<FirstName/>
<LastName>Burbank Agency</LastName>
<OfficePhone>(408) 422-5501</OfficePhone>
<CityName>Burbank</CityName>
<DepartmentID>16</DepartmentID>
<Department>

<DepartmentName>Sales</DepartmentName>
</Department>

</employeedetail>
<employeedetail>

<Id>11</Id>
<FirstName/>
<LastName>Burbank Unit</LastName>
<OfficePhone>(650) 572-9000</OfficePhone>
<CityName>Burbank</CityName>
<DepartmentID>19</DepartmentID>
<Department>

<DepartmentName>Technical Support</DepartmentName>
</Department>

</employeedetail>
<_form>e_employeelookup_employee_emplist.jsp</_form>
</recordset>
Sample scripts | 111

Get-Services
Working with dates in scripts
The following code samples demonstrate tasks related to date manipulation.

To get the string that corresponds to the current date:

To get a date value from the internal OAA format:

To get a date and time value from the internal OAA format:

Note that these numeric values are very convenient for comparing dates,
performing arithmetic calculations on dates (such as calculating a duration and
adding an amount of time to a date), and other tasks. From these numeric
values, you can get an ECMAScript Date object.

In addition, you can get a Java date object.

// Gets current date
var date = new Date();
// Gets the current date and time string
var strDateTime =
DataFormatter.getArchwayDateTime(date.getTime());
// Get the current date string
var strDate = DataFormatter.getArchwayDate(date.getTime() -
date.getTimezoneOffset()*60000);

var strDAssignment = msg.get("dAssignment");
var lMsAssignment =
DataFormatter.getDateTimeInMilliseconds(strDAssignment);

var strDtInvent = msg.get("dtInvent");
var lMsInvent =
DataFormatter.getDateTimeInMilliseconds(strDtInvent);

var dateAssignment = new Date(lMsAssignment);
var dateInvent = new Date(lMsInvent);

var jdateAssignment = new
Packages.java.util.Date(lMsAssignment);
var jdateInvent = new Packages.java.util.Date(lMsInvent);
112 | Scripting

Tailoring Kit Guide
To display a date value in a user-friendly format:

To get the internal OAA format for a date and time:

To get the internal OAA format for a date only:

References
This section contains reference material to help you with scripting.

Sources for client-side JavaScript
Devguru (JavaScript, VB script, HTML, etc.): http://www.devguru.com/

HTML Writer’s Guild: http://www.hwg.org/

JavaScript, The Definitive Guide, David Flanagan, 3rd Edition, O’Reilly
Publishing.

JavaScript articles at IRT.org: http://www.tech.irt.org/articles/script.htm

JavaScript Made Easy: http://www.easyjavascript.com/

JavaScript Source: http://javascriptsource.com/

JavaScript Source master list: http://javascript.internet.com/master-list/

var strUserDtAssignment = user.getUserFormat(strDAssignment,
"date", null);
var strUserDtInvent = user.getUserFormat(strDtInvent,
"datetime", null);

var strOAADtInvent1 =
DataFormatter.getArchwayDateTime(lMsInvent);
var strOAADtInvent2 =
DataFormatter.getArchwayDateTime(dateInvent.getTime());
var strOAADtInvent3 =
DataFormatter.getArchwayDateTime(jdateInvent.getTime());

var strOAADAssignment1 =
DataFormatter.getArchwayDate(lMsAssignment);
var strOAADAssignment2 =
DataFormatter.getArchwayDate(dateAssignment.getTime());
var strOAADAssignment3 =
DataFormatter.getArchwayDate(jdateAssignment.getTime());
References | 113

http://www.devguru.com
http://www.devguru.com
http://www.tech.irt.org/articles/script.htm
http://www.easyjavascript.com
http://javascriptsource.com/
http://javascript.internet.com/master-list/

Get-Services
Netscape’s Developer Site: http://developer.netscape.com

Netscape’s online JavaScript documentation:
http://developer.netscape.com/docs/manuals/index.html?content=
javascript.html

Web Monkey: http://www.webmonkey.com/

ZDNet JavaScript introduction:
http://www.zdnet.com/devhead/filters/0,,2133214,00.html

JavaDocs for the main Archway package
For in-depth information about the Archway servlet and all the functions it
supports, refer to the JavaDocs that are available on the Get-Services Tailoring
Kit installation CD. The JavaDocs are in the \documentation\javadocs folder
of your Get-Services Tailoring Kit installation CD. To view the docs, launch the
index.html file from this folder.
114 | Scripting

http://javascript.internet.com/master-list/
http://javascript.internet.com/master-list/
http://www.webmonkey.com/
http://www.zdnet.com/devhead/filters/0,,2133214,00.html

CHAPTER
6 T
ailoring Tasks
The following chapter lists all the tailoring tasks you can perform with the
Get-Services tailoring kit.

This chapter covers the following topics:

Tailoring workflow on page 116

List of tailoring tasks on page 117

Tailoring forms and components on page 119

Adding personalization on page 143

Tailoring scripts on page 151

Creating custom schemas on page 155

Adding data validation on page 164

Assigning default values on page 174

Translating tailored modules on page 182
Tailoring Tasks | 115

Get-Services
Tailoring workflow
You can use this flowchart to determine how to tailor Get-Services.

Start

Is there
an Admin
setting?

Login to admin.jsp,
change the setting,

and reset the
server.

Enable User Self-Registration
Enable Change Password
Enable Automatic Login
Enable Integrated Windows Authenication
Enable/Disable Personalization
Assign Global Capability Words
Set a maximum row count on tables

Is a portal
component
available?

Enable and
personalize the

portal component

Change theme
Add/Remove content from portal page
Perform and save document searches
Change time zone

Is
personalization

available?

Create a schema
extension and then

use
Personalization to

tailor the form

Use
Personalization to

tailor the form

Is there a
personalization

setting?

Are you
adding a field

or script?

Use Peregrine
Studio to tailor the

form

Add or hide a field on the Available Fields column
Display or hide a field on a particular Personalization form
Change a field's attribute type (string, boolean, number, etc.)
Call a script in addition to the form onload script

Add a field on a form
Remove a field from a form
Make a field read-only or required
Change a field's label
Change a form's title or instructions
Set permissions to update, create, delete documents on a form.

Add custom forms to your project
Add form components to a form without Personalization
Change the schema used by a form component
Change the onload script launched by a form
Create a new schema

Are you
tailoring a
theme?

Create a custom
theme and change

the images and
XSL files as

needed

Change the images used in a theme
Change the size or number of frames
Change the layout of frames
Change how form components are rendered (XSL)
Change the style sheet

Yes

No

Yes

No

Yes

No

Yes Yes

No

YesNo

No

Finish

Sample Tailoring Tasks
116 | Tailoring Tasks

Tailoring Kit Guide
List of tailoring tasks
The following sections list the tailoring tasks you can perform with the
Get-Services Tailoring Kit and Peregrine Studio.

Forms and form components
You can tailor forms and form components in the following ways:

Changing a form’s title on page 120

Changing a form’s instructions on page 121

Changing a form’s onload script on page 122

Changing a form component’s label on page 123

Hiding a form component on page 124

Changing a form component to read-only on page 124

Changing the schema that a form component uses on page 125

Changing the document field that a form component uses on page 126

Changing the priority, severity, or status field strings on page 130

Removing display values for priority, severity, or status on page 133

Displaying a form within a frameset on page 135

Adding Get-Services to an existing frameset on page 137

Displaying a script variable in a form component on page 138

Creating a portal component on page 139

DocExplorers
You can use Peregrine Studio to add and customize DocExplorers in the
following ways:

Adding personalization on page 143

Adding a DocExplorer reference on page 145

Personalizing a DocExplorer reference on page 146

Adding personalization form components – lookup fields on page 147
List of tailoring tasks | 117

Get-Services
Scripting
You can use the following scripting methods for tailoring:

Editing an existing script on page 151

Adding a custom script on page 154

Schemas
You can tailor schemas in the following ways:

Adding logical and physical mappings to your schema on page 157

Adding a schema to your Peregrine Studio project on page 156

Data validation
You can use Peregrine Studio to add data validation in the following ways:

Adding data validation on page 164

Making a field required on page 164

Adding data validation with a custom script function on page 165

Default values
You can use Peregrine Studio to assign default values to items in the following
ways:

Assigning default values on page 174

Translation
You can translate your tailored forms in the follow ways.

Editing existing translation strings files on page 183

Adding new translation strings files on page 185
118 | Tailoring Tasks

Tailoring Kit Guide
Tailoring forms and components
Each page displayed in Get-Services consists of a form and several form
components. Each form also has the following supporting elements:

An onload script that gathers the data that the form displays or processes
information from the previous form.

A schema, which maps to fields in the database and determines what
information to display.

For a complete list of each component available in Studio, see Peregrine Studio
Components.

You can change a form’s title, instructions, onload script, and component labels.
You can also hide a form component and make a form read-only.

To tailor Get-Services forms

Step 1 Open the project file you want to tailor in Peregrine Studio.

Step 2 Select or create a package extension in which to save your changes.

Step 3 Open your browser and log in to Get-Services.

Step 4 Navigate to the form you want to tailor by doing one of the following:

Step 5 Modify the Get-Services form in Peregrine Studio.

Step 6 Save the project file.

Step 7 Rebuild the project file.

Click the Studio address in the Form Information banner. Peregrine
Studio will appear as the active window and display the current
form’s properties page.

In Peregrine Studio, locate the form in the Project Explorer.
Tailoring forms and components | 119

Get-Services
Tip: If you have only made changes to one or more forms in an activity or
module, use the Differential Build option to build just the components
that have changed. This option will reduce the time needed to build your

Peregrine Studio project.

Step 8 Restart your application server to clear the cache.

Step 9 Refresh the browser to reload the form you modified.

Step 10 Review your changes and test the added functionality.

Tip: If you want to test new access right settings for your components, log on
to Get-Services with several different users with different access rights.

Changing a form’s title
Each form displays a title at the top of the navigation menu. If you want to
change or remove the title displayed for a particular form, set the following form
properties.

To change a form title

1 Open the form’s properties in Peregrine Studio.

2 In the Title (en) field, enter the new form title.
120 | Tailoring Tasks

Tailoring Kit Guide
3 Click the check mark button at the right of the field to accept the new

title.

4 Save and build your project file.

Changing a form’s instructions
Most forms display a set of instructions at the top of the frame. You can change
the instructions to match any changes you make to the form’s interface.

To change form instructions:

1 Select the form in the Project Explorer.

2 Select the Instructions tab in the Properties window.

3 In the Instructions (en) field, enter the new form instructions.
Tailoring forms and components | 121

Get-Services
4 Click the check mark button at the right of the field to accept the new form

instructions.

5 Save and build your project file.

Changing a form’s onload script
A form’s onload script gathers all the data that the form displays, or processes
information from the previous form. Many onload scripts also invoke schemas
to present back-end database information in a format that is easier to map to
particular form fields or form components.

To change the onload script that a form invokes:

1 Select the form in Studio.

2 Click the Script tab in the Properties window.

3 In the Server Onload Script field, enter or select the script you want to invoke
when this form is loaded. You can use the drop-down list to select any of the
scripts saved in your project file.
122 | Tailoring Tasks

Tailoring Kit Guide
4 Save and build your project file.

5 Restart your application server.

Changing a form component’s label
Many form components contain a label that is displayed next to or above the
form component. Some of the most commonly configured form components
are the field form components (check box, select box, edit field, and so forth).

To change a component label (field label):

1 Select the form in the Project Explorer.

2 On the General tab, select the Label (en) field, enter the new form
component label, and press ENTER.

3 Save your project.

4 Build your project file.
Tailoring forms and components | 123

Get-Services
Hiding a form component
All form components have a Visible flag property that hides or displays the
component in the Web application interface. If you want to remove a form
component from the interface but still have it available in Peregrine Studio, you
can toggle the form component’s Visible flag to No. This prevents the form
component from being part of the next Peregrine Studio build. Non-visible (and
thus non-built) form components are displayed with a red X over the form
component icon in the Project Explorer tree.

To hide a form component in the interface:

1 Select the form in the Project Explorer.

2 On the Advanced tab, clear the Visible flag option.

3 Save your project.

4 Build your project file.

Warning: If you clear the check box beside the Visible flag option, that
component is not included in the generated HTML.

Changing a form component to read-only
Certain form components such as edit fields and text areas are available for
users to enter and change information. If you want to restrict these form
124 | Tailoring Tasks

Tailoring Kit Guide
components so that they only display data, you can set the read-only attribute
for the form component. The data displayed by a read-only form component
will no longer have a bounding box or area to indicate that it can be edited or
changed.

You can change a form component back to its original state by removing the
read-only attribute.

To make a form component read-only:

1 Select the form in the Project Explorer.

2 On the General tab, select the Read-only check box.

3 Save your project.

4 Build your project file.

Changing the schema that a form component uses
Certain form components such as selectfields and simple tables use a schema to
determine what information to display. You can change the information these
Tailoring forms and components | 125

Get-Services
form components display by changing the schema defining the document
fields. In some cases you may also need to change other form component
attributes that depend on the fields defined in the schema.

To change the schema that a form component uses:

1 Select the form in the Project Explorer.

2 Click the Advanced tab.

3 In the Databound section, select the Document field, and enter or select the
name of the schema that you want to use as the source document for this
form component.

4 Save and build your project file.

Changing the document field that a form component uses
Certain form components such as selectfields and table columns use a particular
document field of a schema to determine what information to display. You can
change the information these form components display by changing the
document fields these components use.
126 | Tailoring Tasks

Tailoring Kit Guide
Note: The list of document fields available to a form component is determined
by the schema used. Peregrine Studio does not validate the document
field you select.

To change the document field that a form component uses:

1 Select the form component in Peregrine Studio to display the component’s
properties.

2 In the Document Field field, enter the name of the field in the XML message
where this form component’s information is stored.

Note: The field you select must be defined as an attribute in the schema defined
in the form component’s properties.

3 Save your project.

4 Build your project file.
Tailoring forms and components | 127

Get-Services
Format of document field name
The Document Field attribute of forms is always mapped to an element in the
Message object returned by the form’s onload script.

The Archway servlet formats Message objects as XML files using the tag
definitions and back-end database table and field information that the schemas
provide.

The Document Field attribute of a form component must map to an
<attribute> element in a schema.

You can specify the Document Field attribute that a form component uses
in one of several ways:

If the Document Field attribute has a unique <attribute> name in the
schema, you can list just the <attribute> name.

If the Document Field attribute is repeated in the schema, you must specify
the nested <document> name or names and the <attribute> name. The
<document> name and the <attribute> name must be separated by a slash
character (/).

If the Document Field attribute is part of a nested <document> element, you
have the choice of either listing the <attribute> name by itself or
specifying some or all of the path using the syntax of
<documents>/<document>/<attribute>. This syntax allows Web
application developers to specify as much or as little of the document path
as is needed to create a field attribute mapping.
128 | Tailoring Tasks

Tailoring Kit Guide
Example
Suppose you are creating a form where users can review and submit asset
requests. You can format a typical asset request as the following XML message:

In this case, the <FirstName> and <LastName> tags are repeated in two different
sections of the XML message. To display these tags in a form, you will need to
specify more of the document path when you enter the path of the Document
Field attribute. The entries below illustrate the minimum document path
needed for the Document Field attribute in a form component.

You can also specify the Document Field attribute path using all the elements of
the XML message. The following entries illustrate the full document path that
can be used for the Document Field attribute in a form component.

The number of elements that you must specify in the document path is
determined by how you set up your schemas.

<request>
 <Number>012345</Number>
 <Purpose>Asset Management</Purpose>
 <EndUser>
 <FirstName>Michaela</FirstName>
 <LastName>Tossi</LastName>
 </EndUser>
 <Requester>
 <FirstName>Richard</FirstName>
 <LastName>Hartke</LastName>
 </Requester>
</request>

Number
Purpose
EndUser/FirstName
EndUser/LastName
Requester/FirstName
Requester/LastName

request/Number
request/Purpose
request/EndUser/FirstName
request/EndUser/LastName
request/Requester/FirstName
request/Requester/LastName
Tailoring forms and components | 129

Get-Services
Changing the priority, severity, or status field strings
Get-Services displays the Priority, Severity, and Status values defined in the
project string resources. You can change the value Get-Services displays for
each option by changing the value of the string resource.

To change the strings displayed by priority, severity, or status fields:

1 Open the Get-Services project file in Peregrine Studio.

2 Expand the group of modules node for the portion of Get-Services you want
to change.

3 Expand the StringResources node.

Module Description

incidentmgt The group of modules for incident management. This
includes the Service Desk tab in the Get-Services
interface.

changemgt The group of modules for change management. This
includes the Change Management tab in the
Get-Services interface.
130 | Tailoring Tasks

Tailoring Kit Guide
4 Use the following tables to locate the strings resources that you want to
change.

Call severity string resources.

Call status string resources.

Incident priority string resources.

Incident severity fields.

Value String Resource Default String Value

1 callSeverityCritical Critical

2 callSeverityMajor Major

3 callSeverityMedium Medium

4 callSeverityLow Low

5 callSeverityVeryLow Very Low

Value String Resource Default String Value

1 serviceCallStatusOpen Open

2 serviceCallStatusIdle Open - Idle

3 serviceCallStatusCallback Open - Callback

4 serviceCallStatusLinked Open - Linked

5 serviceCallStatusClosed Closed

Value String Resource Default String Value

1 serviceProblemPriority1 Priority 1

2 serviceProblemPriority2 Priority 2

3 serviceProblemPriority3 Priority 3

4 serviceProblemPriority4 Priority 4

Value String Resource Default String Value

1 serviceProblemSeverityCritical Critical

2 serviceProblemSeverityUrgent Urgent

3 serviceProblemSeverityNormal Normal

4 serviceProblemSeverityLow Low

5 serviceProblemSeverityVeryLow Very Low
Tailoring forms and components | 131

Get-Services
Incident status string resources.

5 Select the node matching the string resource name that you want to
change. For example, callSeverityCritical.

6 Type a new value in the Value (en) field. For example, System down.

7 Save your Get-Services project file.

8 Click Build > Differential Build.

Peregrine Studio generates the new field values.

9 Deploy the new build files to your deployment server.

Value String Resource Default String Value

1 serviceProblemStatusOpen Open

2 serviceProblemStatusWIP Work in progress

3 serviceProblemStatusResolved Resolved

4 serviceProblemStatusClosed Closed

Enter a new value for
the string resource in
the Value (en) field.

Select the node matching
the string resource name
132 | Tailoring Tasks

Tailoring Kit Guide
Removing display values for priority, severity, or status
You can remove options from the Priority, Severity, and Status fields by directly
editing the custom JSP files that generate these combo boxes.

To remove the Get-Services combo box display values:

1 Locate the custom JSP file used by the combo box component you want to
change.

The JSP file called is one of the following files.

2 Create a back-up copy of any file you plan to edit.

3 Open the custom JSP file in any text editor.

By default, the custom JSP files are located in the application server
deployment directory. For example:

4 Search for methods that include the string cw.user.getIDSADW.

Each display value is listed twice in the JSP file. The first listing gets the string
resource to display in the combo box. The second listing adds a value

File Name Description

call_severitycombo.jsp Displays the severity field in call tickets

call_statuscombo.jsp Displays the status field in call tickets

problem_prioritycombo.jsp Displays the priority field in incident tickets

problem_severitycombo.jsp Displays the severity field in incident tickets

problem_statuscombo.jsp Displays the status field in incident tickets
Tailoring forms and components | 133

Get-Services
recognized by ServiceCenter. The first listing uses if and else if
conditions. The second listing uses vecValues and vecDisplays methods.

For example, the call severity combo box has five entries.

String strSeverity = msgModel.get("Severity");
if(strSeverity.equals("1"))

{
strSeverity = cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityCritical");

}
else if(strSeverity.equals("2"))
{

strSeverity = cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityMajor");

}
else if(strSeverity.equals("3"))
{

strSeverity = cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityMedium");

}
else if(strSeverity.equals("4"))
{

strSeverity = cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityLow");

}
else if(strSeverity.equals("5"))
{

strSeverity = cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityVeryLow");

}
...
vecValues.add("1");

vecDisplay.add(cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityCritical"));

vecValues.add("2");
vecDisplay.add(cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityMajor"));

vecValues.add("3");
vecDisplay.add(cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityMedium"));

vecValues.add("4");
vecDisplay.add(cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityLow"));

vecValues.add("5");
vecDisplay.add(cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityVeryLow"));

...
134 | Tailoring Tasks

Tailoring Kit Guide
5 Remove the condition reference for the option you want to remove. For
example, to remove the severity 5 entry, remove the following code:

6 Remove the vecValues and vecDisplays methods for the option you want to
remove. For example, to remove the severity 5 entry, remove the following
code:

7 Save the custom JSP file.

8 Restart your application server.

The new combo box values display in your Get-Services forms.

Displaying a form within a frameset
You can display forms within multiple frames by creating a special frameset
form. All frames within a frameset form will be displayed within the frame
normally reserved for forms.

To display forms within a frameset:

1 Right-click the activity where you want the frameset form to be, point to
New, and then click Form.

2 Click the Others tab.

3 Select Frameset from the Formtype drop-down list box.

4 Enter row and column sizes in the Frameset pane.

else if(strSeverity.equals("5"))
{

strSeverity = cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityVeryLow");

}

vecValues.add("5");
vecDisplay.add(cw.user.getIDSADW(msgModel,
"incidentmgt,callSeverityVeryLow"));
Tailoring forms and components | 135

Get-Services
Note: You can use percentage to describe frameset size properties.

5 Create a new form for each frame in the frameset form.

6 Create a redirection under the frameset form for each target form in the
frameset.

7 Save your project.

8 Build your project file.

To display the form title within a frameset:

1 Open the frameset form’s component properties in Studio.

2 Create a new server onload script within your project.
136 | Tailoring Tasks

Tailoring Kit Guide
3 Add the following lines to the script:

 top.setTitle(“My Title Text”);

Where My Title Text is the title you want to display at the top of the
frameset.

4 Open the component properties page for the target form within the
frameset.

5 Click the Script tab.

6 Select the server script you created in Step 2.

7 Save your project.

8 Build your project file.

Adding Get-Services to an existing frameset
You can add Get-Services to an existing frameset to incorporate into your
corporate intranet. To do this, you will need to edit a JavaScript file within your
project file and add a reference to Get-Services to the parent frameset.

To add Get-Services to an existing frameset:

1 Open the following file in a text editor:

<tomcat installation>\webapps\oaa\js\setDomain.js

or locate the file in the equivalent directory in your application server.

2 Add the following line to the bottom of the script:

setDomain(server name);

where server name is the name of the server where the parent frameset is
located.

3 Save the file.
Tailoring forms and components | 137

Get-Services
4 Add the following line to each JSP file that will include Get-Services in a
frameset. These files must be saved on the server listed in step 2.

<script language="JavaScript" SRC="js/setDomain.js">
</script>

5 Save the updated JSP files.

Displaying a script variable in a form component
You can use script variables to reuse information gathered from other forms in
form components such as form titles and instructions.

All script variables begin with a double dollar sign notation and then display the
variable name in parentheses; for example, $$(FirstName). All variable names
map to an XML element name in the script output of a form. Thus the script
variables $$(FirstName) and $$(LastName) map to the elements <FirstName>
and <LastName> in the XML output of a script.

The contents of each variable are displayed in the form title.
138 | Tailoring Tasks

Tailoring Kit Guide
Note: You must select the Display form information option from
Administration > Settings in order to see the Script Input and Script
Output options.

Variable names can also include schema attribute names or nested elements
names using a slash notation. For example, the buyer script uses the
$$(Price/currency) variable to pass information from the currency attribute of
the <Price> element. Using the sample data, the $$(Price/currency) variable
would pass 1119.00 for the <Price> and USD for the currency attribute.

Creating a portal component
Portal components are special forms that display on the Peregrine Portal home
page within special portal frames. To create your own portal components you
need:

Get-Services packages and source code (included with the Get-Services
tailoring kit)

Peregrine Studio

To create a portal component:

1 Open the Get-Services project in Peregrine Studio.

2 Right-click the Group of Modules node to which you want to add a portal
component and then select New > Group of Portal Components.

You do not have to add another Group of Portal Components if one already
exists in your project.

3 Right-click the Group of Portal Components node from the navigation tree
and select New > Portal Component.
Tailoring forms and components | 139

Get-Services
4 Enter the following properties for the portal component:

5 Right-click on the new portal component and select New > Contents.

A standard form page is added.

6 Enter any form components, onload scripts, parameters, or access
restrictions you want the portal component to have.

Tip: You can use existing Get-Services portal components as a template.

Keep in mind the following considerations:

Portal components have less space then normal forms to display
information. You should design your form component to fit in either a
narrow or wide portal component frame.

Portal components cannot include the redirection form component. If you
want to direct users to another form or HTML page, you will need to use the
Business View Authoring tool.

You can import a static JSP or HTML page into a portal component.

Note: The procedures listed in Step 7 through Step 11 are optional. You do not
have to provide a configuration form for your portal components.

7 Right-click on the new portal component and select New > Configure.

A standard form page is added.

Property Description

Label (en) Enter the name you want the portal component to have in
the Add/Remove content page.

Column type Select either wide or narrow. This setting determines the
size of the portal frame where Get-Services displays the
portal component.

Height of IFRAME Enter a height value if you plan to display this portal
component from WebSphere Portal Server.
140 | Tailoring Tasks

Tailoring Kit Guide
8 On the configure form, enter the relative URL to form you want to use to
configure your portal component in the Alternative HREF field.

Use the following format for the URL:

e_moduleName_activtyName_formName.do?property=value

For example:

e_helpdesk_status_myPortalComp.do

9 Create a new form matching the Peregrine Studio address you entered in
Step 8.

This form will be the target configuration form of the Alternates HREF
setting.

Parameter Description

For moduleName Enter the module where your configuration form
resides.

For activityName Enter the activity name where your configuration
form resides.

For formName, Enter the name of your configuration form.

For property Enter any URL query you want to submit with the
URL. This is an optional part of the URL and can be
ignored if your configuration form does not require
it. Typically, only DocExplorer forms require a
property entry.
Tailoring forms and components | 141

Get-Services
10 Define the following settings for your configuration form.

Setting Description

Server OnLoad Script This script must either be set to or call the
portal.editComponent script.
Note: You can only have one server onload script per

portal component that runs from either the
contents or the configure form.

If you call the portal.editComponent function from a
custom script you must adhere to the following script
conventions.
Your custom script must include code similar to the
following.
//Contents of your custom script

...

//Combine the messages from your
function and portal.editComponent
Msg.add(yourMsg);

Your custom script must preserve the value of the _Id
variable that the portal.editComponent function
passes to it.

Save action You must add a save action to your configuration
form that has a target-form of portal.edit.save.

No sidebar navigation All of the out-of-box Get-Services portal component
configuration forms do not display in the navigation
sidebar. If you want to follow this convention, then
clear the Force display of sidebar menu option on the
Others tab.

Optional fields for
configuration

All of the following fields are available from the
portal.editComponent script. You can use them as
document fields in your form components.

_column Determines whether the component displays in a
wide or narrow frame.

_title The title you want to display for the portal
component.

_originalTitle The default name of the portal component that users
can restore to. This field is typically used as a hidden
field and should not be visible to users.

DtLastModify The date the portal component was last modified to
keep track of changes or revisions. This usually is a
hidden field that is not visible to users.
142 | Tailoring Tasks

Tailoring Kit Guide
11 Add any additional form components you want to use to configure your
portal component.

12 Save your project file.

13 Build your project and deploy your updated Get-Services files to your
application server’s presentation folder.

Important: You must add an adapter name entry to the Alias for field in the
PortalDB tab in order for Get-Services to display portal
components. This setting is available from the Administration page
(admin.jsp).

Adding personalization
DocExplorers allow end users a means to create and customize searches of
Get-Services data. From the end-user perspective, personalization is a collection
of standard forms that allow users to change part of the interface to suit their
needs. The administrator determines which forms and features of
personalization each user has by setting global personalization rights and by
granting individual users capability words to do additional personalization.

From an application developer’s perspective, a DocExplorer is a template
activity that allows for the rapid development of Get-Services changes without
the need to rebuild a Peregrine Studio project for every change made. A
DocExplorer enables you to add or remove fields, change the layout of a form,
and change interface elements such as headers and buttons in real time using
the browser interface.

Supporting personalization
Personalization of Get-Services is provided in two ways:

End-users can use personalization for all forms that have been built using
Document Explorers (DocExplorers). Personalization allows authorized
Adding personalization | 143

Get-Services
users to change the appearance and functionality of Get-Services directly
from the Web interface.

Developers can use Peregrine Studio to add personalization capabilities to
their own Get-Services forms by creating new DocExplorers. This
functionality can be enabled only by using Peregrine Studio.

To add Personalization capabilities to Get-Services, you must have these
components:

Aor ServiceCenter back-end database. Personalization requires you to store
each user’s login rights and personalization changes in a back-end
database.

Adapter aliases defined for the following tabs on the Get-Services
Administration settings page:

Portal

PortalDB

A user account with personalization rights enabled. A user’s login profile
determines the level of personalization rights Get-Services grants to the
user. A user’s personalization rights determine not only what personalized
components can be seen and changed, but also determines whether other
users will see their personalization changes.

A configured DocExplorer activity to provide personalization in the
Get-Services Peregrine Studio project. You must configure each
DocExplorer activity with an adapter name and a schema name. A
DocExplorer can only use one schema at a time.

DocExplorer configuration required in Peregrine Studio
In order for users to use a DocExplorer from the Web interface, you must define
at least two settings in Peregrine Studio:

The schema the DocExplorer uses. The schema determines what database
tables and fields are available to query.

The adapter the DocExplorer uses to connect to the back-end database.

You can use any of the existing schemas provided with Get-Services or create
your own schema entries. For more information on schemas, see the Document
Schema Definitions chapter.
144 | Tailoring Tasks

Tailoring Kit Guide
Adding a DocExplorer reference
A DocExplorer Reference is the preferred method for adding a DocExplorer to a
Peregrine Studio project. A DocExplorer Reference is a special template that
redirects users to a full DocExplorer activity with two parameters: the schema
and adapter to be used. You can use a DocExplorer Reference to call any generic
DocExplorer functionality.

To add a DocExplorer Reference:

1 Right-click on a Module component in your project. Select New >
DocExplorerReference.

2 Enter a name for your new DocExplorer Reference activity. The default name
is DocExplorerReference.

3 Expand the DocExplorerReference activity.

4 Click on the setup form.

5 On the form properties page, click the General tab and enter the following
required information:

Title (en).

6 Select the redirect action.

7 On the properties page, click the Link Params tab.
Adding personalization | 145

Get-Services
8 Enter the parameters you want to use in the Param field. By default, this field
has the following value:

_docExplorerContext=<DOCUMENT_NAME>&_DocExplorerBackend=
<TARGET_NAME>&_docExplorerSubType=<SUBTYPE_INSTANCE>

Replace <DOCUMENT_NAME> with the schema name you want the DocExplorer
to use. This is a required parameter.

Replace <TARGET_NAME> with the adapter alias you want the DocExplorer to
use. For example, enter sc for the ServiceCenter adapter for Get-Services.
This is a required parameter.

Replace <SUBTYPE_INSTANCE> with the personalization form subtype you
want to invoke or leave blank to use no subtype. This is an optional
parameter.

Warning: Do not change the target form of the redirect action. This action must
go to docExplorer.default.start.

9 Save your project.

10 Click the Differential build of project button to rebuild your project.

Personalizing a DocExplorer reference
After you add a DocExplorer Reference, you can make changes to this activity
directly from the Get-Services Web interface.

To personalize DocExplorer pages:

1 Log on to Get-Services.

2 Click the activity name for your Document Explorer from the navigation
sidebar. By default, the Document Explorer name is DocExplorer.

Important: The first time you access a Document Explorer, the interface
displays a blank search form.

3 Click the wrench icon from the upper right of the interface.
146 | Tailoring Tasks

Tailoring Kit Guide
4 Make your changes to the search form, and then click Save.

Your personalized search form displays.

5 Click Search to display the results list form.

6 Click the wrench icon from the upper right of the interface.

7 Make your changes to the list form, and then click Save.

8 Click on any of the results displayed in your personalized list form to go to
the detail form.

9 Click the wrench icon from the upper right of the interface.

10 Make your changes to the detail form, and then click Save.

11 If you have user rights to create documents, click the activity name for your
Document Explorer from the navigation sidebar to return to the search
form.

12 Click Create to display the create form.

13 Click the wrench icon from the upper right of the interface. Make your
changes to the create form, and then click Save.

Adding personalization form components – lookup fields
To personalize your custom forms, add lookup fields to them. Lookup fields use
some of the Personalization features found in a DocExplorer template activity.

Note: Lookup fields are already part of the DocExplorer template activity, so you
need not add them there. Add lookup fields to the custom forms that you
have manually built in Peregrine Studio.

You can add two types of lookup fields to your custom forms:

Lookup type Reference

Field See Field lookup on page 148.

Subdocument See Subdocument lookup on page 149.
Adding personalization | 147

Get-Services
Field lookup
You can use the field lookup form component to select the value of one (and
only one) particular field of a schema. The Lookup field queries the back-end
database for all the values of a pre-defined field, and displays those values in a
list. For example, when opening an incident ticket, create a lookup field for a
Name field to list all the employee names in the back-end database.

To add a field lookup to a form:

1 Right click the form to which you want to add a lookup field.

2 Go to New > Field > Lookup.

3 Enter the following settings for the Data attributes.

4 Enter settings for the following DocExplorer Adapter attributes.

Attribute Description

Display Field The label you want displayed for the lookup field in the
Get-Services form. If you do not enter a value for this
parameter, the label defaults to the Document Field
parameter described below.

Document Field The name of the field you want to use as the unique key for
your query. In a field lookup, the value of this field must match
the field name portion of the Document Path in Step 4. This
value is posted to the onload script when a particular lookup
entry is selected.

Unique Key Field Required if the lookup is added in a document table. Uniquely
identifies the field lookup for each row of the table.

Attribute Description

Adapter The name of the back-end database adapter you want to use
to lookup the information.

Document Path The name of the schema and field that you want to lookup. The
naming convention used with this parameter is
schema name.field name with a period (.) between them. For
example, the entry employee.name will lookup the name field
from the employee schema.
148 | Tailoring Tasks

Tailoring Kit Guide
5 Enter the following setting for the Link Parameters attribute.

6 Click the Differential build of project button to rebuild your project.

7 Log in to Get-Services, browse to the updated form, and click the

magnifying glass lookup icon to display a pop-up lookup form.

The lookup field displays a list of values that match the Document Path you
entered in Step 4.

8 If you want to change the field used for the lookup, click the Personalize this
page link and select the new field you want to use.

Subdocument lookup
You can use a subdocument lookup form component to select all the field
values that are part of a subdocument record. (A subdocument typically has its
own schema.) A subdocument lookup returns the value of each field defined in
the external schema. Any other form components that use the information in
the subdocument fields are automatically updated. For example, you could use
a subdocument lookup to update several fields such as address, state, zip, and
country by selecting a single location.

Tip: Use subdocument lookups to quickly change multiple fields on a form.

To add a subdocument lookup to a form:

1 Right click the form to which you want to add the lookup.

2 Go to New > Field > Lookup.

Attribute Description

Target form Enter docExplorer.fieldlookup.start as the form name.
This value enables personalization if the end-user has
sufficient personalization rights.
Adding personalization | 149

Get-Services
3 Enter the following settings for the Data attribute.

4 Enter settings for the following for the DocExplorer Adapter attributes.

5 Enter the following setting for the Link Parameters attribute.

6 Click the Differential build of project button to rebuild your project.

7 Log in to your Web application, browse to the updated form and click the

magnifying glass lookup icon to display a pop-up lookup form.

The lookup field will display a list of values that match the Document Path
you entered in Step 3 on page 150.

8 If you want to change the subdocument used for the lookup, click the
Personalize this page link and select the new subdocument you want to
use.

Attribute Description

Display Field The label you want displayed for the lookup field in the
Get-Services form. Required. If you do not enter a valid value
for this parameter, an error occurs.

Document Field The name of the field you want to use as the unique key to
query the subdocument. The value of this field is used to look
up all other document fields in the subdocument. This value is
posted to the onload script when a particular lookup entry is
selected.

Unique Key Field Required if the lookup is added to a document table.
Uniquely identifies the subdocument lookup for each row of
the table.

Attribute Description

Adapter The name of the back-end database adapter you want to use
to lookup the information.

Document Path The name of the schema and subdocument that you want to
lookup. The naming convention for the path is:
schema name.subdocument name with a period (.) between
them. For example, the entry employee.location looks up
the location subdocument from the employee schema.

Attribute Description

Target form Enter docExplorer.documentlookup.init as the form
name.
150 | Tailoring Tasks

Tailoring Kit Guide
Tailoring scripts
Although you do not have to use Peregrine Studio to edit or add scripts in your
project, the text editor, cross reference checking mechanism, and project
navigator make Peregrine Studio a full-featured development platform. The
following sections describe how to change scripts from within Peregrine Studio.

Editing an existing script
You can edit the ECMAScript in your project directly from the Peregrine Studio
interface.

Tip: You may lose changes that you make directly to existing scripts when you
next upgrade. If you want to change an existing script consider using a
schema extension to call your custom script in addition to the existing
script.

To edit an existing script:

1 Select the form in the Project Explorer.
Tailoring scripts | 151

Get-Services
2 Click the Script tab in the Properties window.
152 | Tailoring Tasks

Tailoring Kit Guide
3 In the Server Onload Script field, click the magnifying glass button to view

the script in the Peregrine Studio text editor.

4 Make any changes to the script in the text editor.

5 Save your project.

6 Build your project file.

7 Restart your application server or set the File Change Monitor option from
the Administration page.

Tip: Turn off the File Change Monitor setting on your production system to
increase performance.

The script update is loaded into Get-Services.
Tailoring scripts | 153

Get-Services
Adding a custom script
You can add custom scripts to your Peregrine Studio project for use by forms,
schemas, and form components.

To add a custom script:

1 Determine what kind of script you want to create.

You can create the following script types.

2 Right-click the appropriate Group of Scripts node, point to New, and then
click Script.

Peregrine Studio creates a new script node underneath the Group of Scripts.

3 Type in the name of your script and press ENTER.

4 Right-click the new Script node, point to New, and then click Header.

Peregrine Studio creates a new Header node underneath the Script node.

5 Using the text editor window, type in the header information for your new
script.

Script type Description

Form onload These are scripts run to gather data for non-DocExplorer
forms. Peregrine Studio stores form on-load scripts
underneath the first Group of Scripts node (Typically called
Scripts or ServerScripts).

Preexplorer These are scripts run to manipulate the XML document that
the gets rendered in the Get-Services interface. Peregrine
Studio stores preexplorer scripts underneath the
Preexplorer Group of Scripts node.

Preload These are scripts run to gather data for DocExplorer forms.
Peregrine Studio stores preload scripts underneath the
Preload Group of Scripts node.

Schema These are scripts run before or after an adapter connects
with the back-end database. Peregrine Studio stores
schema scripts underneath the Schema Group of Scripts
node.
154 | Tailoring Tasks

Tailoring Kit Guide
6 Right-click the new Script node, point to New, and then click Function.

Peregrine Studio creates a new Function node underneath the Script node.

7 Using the text editor window, type in the function information for your new
script.

8 Save your project.

9 Build your project file.

10 Restart your application server or set the File Change Monitor option from
the Administration page.

The new script is loaded into Get-Services.

Creating custom schemas
You can create custom schemas to instruct the Archway Document Manager
how to query, update, or insert information to your back-end databases. A
custom schema gives you complete control over the logical and physical
mappings used by your forms.

Tip: For most tailoring tasks, you can accomplish the same results using a
schema extension. For more information on schema extensions, see the
Get-Services Administration Guide.

If you want to create custom schemas you will need to use Peregrine Studio to
add the custom schema to your project and then to configure other project
components to use the custom schema. Deploying a custom schema will also
require building and copying project files to your Get-Services server. The
following procedures outline how to create a custom schema.

Step 1 Create or activate a package extension to save your changes in
Peregrine Studio. See the Peregrine Studio Projects and Packages
chapter.

Step 2 Add a new schema file to your Peregrine Studio project. See Adding a
schema to your Peregrine Studio project on page 156.
Creating custom schemas | 155

Get-Services
Step 3 Add logical and physical mappings to your schema file. See Adding
logical and physical mappings to your schema on page 157.

Step 4 Configure other project components to use your custom schema. See
Tailoring forms and components on page 119.

Step 5 Rebuild your Get-Services project. See the Peregrine Studio Projects and
Packages chapter.

Step 6 Deploy your new Get-Services project files. See the Peregrine Studio
Projects and Packages chapter.

Adding a schema to your Peregrine Studio project
You can only add a custom schema to a group of schemas node. This node will
also be a child element of a group of modules node, and typically has the name
Schemas.

To add a schema to your Peregrine Studio project:

1 Right-click the group of schemas node to which you want to add a schema.

This node will be underneath the group of modules node for Get-Services. If
your project contains more than one group of modules, choose the one that
has a group of schemas node.

2 Point to New, and then click Raw Schema.

A new node appears with the name Schema.

3 Rename your schema using the following conventions.
156 | Tailoring Tasks

Tailoring Kit Guide
Schema Naming Conventions
Each custom schema you create should have a unique name to prevent data
errors from naming conflicts. Your custom schema name must meet the
following criteria:

The schema name is in all lower case.

The schema name is unique from any other schema name in the Peregrine
Studio project.

The schema name is unique from any attribute name mapping within the
schema.

Adding logical and physical mappings to your schema
After you have added a new schema to your Peregrine Studio project, you are
ready to add logical and physical mappings. Studio displays the content of your
custom schema in a text editor window. You can use the text editor window to
review and edit the XML source code of your schema. You can also use any text
editor to edit your schema.

Note: If you use an external text editor to edit your custom schema, Peregrine
Studio will not pick up the changes until the next time you open the
project file.

All schemas must have both a logical and a physical mapping section. The
logical mapping section is where you define what names and labels
Get-Services uses for fields in the user interface. The physical mapping section is
where you define what back-end database tables and fields are used by each
logical mapping. The following sections describe how to create the logical and
physical mapping sections.

Creating the logical mappings
Step 1 Add the XML namespace element and the two <schema> elements. See

Adding required schema elements on page 158.

Step 2 Add two <documents> elements for the logical mappings. See Adding
logical mapping <documents> elements on page 158.

Step 3 Add two <document> elements to define the schema name. See Adding
logical mapping <document> elements on page 158.
Creating custom schemas | 157

Get-Services
Step 4 Add one <attribute> element for each logical mapping you want to
create. See Adding logical mapping <attribute> elements on page 159.

Adding required schema elements
1 Add an <?xml> element to the top of the file:

<?xml version="1.0"?>

This element declares that the file uses the XML namespace.

2 Add two <schema> elements underneath the namespace declaration:

<schema>
</schema>

These elements notify the Archway Document Manager that this file is a
schema. All schema definitions must be enclosed between these two
elements.

Adding logical mapping <documents> elements
1 Add two <documents> elements between the <schema> element containers:

<documents>
</documents>

These elements are the container for the logical mappings.

2 Add the name attribute to the <documents> element:

<documents name="base">

The attribute value name="base" is required. This attribute value notifies the
Archway Document Manager that this section is for logical mappings.

Adding logical mapping <document> elements
1 Add two <document> elements between the <documents> element

containers:
158 | Tailoring Tasks

Tailoring Kit Guide
<document>
</document>

These elements are the container for the schema document.

2 Add the name attribute to the <document> element:

<document name="schema_name">

For schema_name, enter the same name you selected when adding the
schema to the Peregrine Studio project. This attribute value must match the
file name of the schema (without the .xml extension) or an error will occur.
The Archway Document Manager uses this attribute value to create an XML
document of the same name.

Adding logical mapping <attribute> elements
1 Add one <attribute> element between the <document> elements for each

logical mapping you want to create:

<attribute/>

Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add a name attribute to each <attribute> element:

<attribute name="sample"/>

The Archway Document Manager uses this attribute value to create an XML
element in any document message built from this schema. For example, the
Creating custom schemas | 159

Get-Services
Archway Document Manager would convert this attribute into the XML
element <sample>.

3 Add a type attribute to each <attribute> element:

<attribute name="sample" type="string"/>

Get-Services uses this attribute value to determine how to render the field
in the user interface. For more information about the type attribute, see the
Document Schema Definitions chapter.

4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see the Document Schema Definitions chapter.

Creating the physical mappings
Step 1 Add two <documents> elements for each adapter you want to support.

See Adding physical mapping <documents> elements on page 161.

Step 2 Add two <document> elements to define the back-end database table
name. See Adding physical mapping <document> elements on
page 162.

Step 3 Add one <attribute> element for each logical mapping you created.
See Adding physical mapping <attribute> elements on page 162.
160 | Tailoring Tasks

Tailoring Kit Guide
Adding physical mapping <documents> elements
1 Add another set of <document> elements between the <schema> element

containers:

These elements are the container for the physical mappings.

2 Add the name attribute to the <documents> element:

<documents name="adapter_name">

For adapter_name, enter the abbreviation of the adapter you want to use to
connect to your back-end database such as sc.

3 Add the version attribute to the <documents> element if you plan to add
different physical mappings for each version of your back-end database:

<documents name="sc" version="4">

Important: You can skip to the next section if you are not going to provide
different physical mappings for multiple versions of your back-end
database.

4 If you want to provide physical mappings for each version of your back-end
database, repeat steps 1 through 3 for each version you want to support.

You must provide a different value for the version attribute for each set of
<documents> elements.

<?xml version="1.0"?>
<schema>

<documents name="base">
<document name="schema_name">

<attribute name="Id" type="id"/>
<attribute name="sample" type="string"/>

</document>
</documents>

<documents>
</documents>

</schema>
Creating custom schemas | 161

Get-Services
Adding physical mapping <document> elements
1 Add another two <document> elements between the physical mapping

<documents> element containers:

These elements are the container for the back-end database table to be
queried.

2 Add the name attribute to the <document> element:

<document name="table_name">

For table_name, enter the SQL name of the table you want to map to. The
Archway Document Manager uses this attribute value to query the
back-end database table.

3 Add any optional attributes to the <document> element that you want to use
to connect to the back-end database or to run process scripts.

For more information about the attributes available for the <document>
element, see the Document Schema Definitions chapter.

Adding physical mapping <attribute> elements
1 Add one <attribute> element between the physical mapping <document>

elements for each logical mapping you created:

<attribute/>

<?xml version="1.0"?>
<schema>

<documents name="base">
<document name="schema_name">

<attribute name="Id" type="id"/>
<attribute name="sample" type="string"/>

</document>
</documents>

<documents name="sc">
<document>
<document/>

</documents>

</schema>
162 | Tailoring Tasks

Tailoring Kit Guide
Note: You can use the standard XML self-closing tag syntax <element /> with
the <attribute> element. You can also close every <attribute> element
with a </attribute> element if you want.

2 Add the identical name attribute to each <attribute> element as you
defined in the logical mappings:

<attribute name="sample"/>

Each logical mapping <attribute> element must have a matching physical
mapping <attribute> element. The Archway Document Manager uses this
value to determine which logical name maps to a particular back-end
database field.

3 Add a field attribute to each <attribute> element:

<attribute name="sample" field="field_name"/>

For field_name, enter the SQL name of the field you want to map to. The
Archway Document Manager uses this attribute value to query the
back-end database field.

4 Add any optional attributes to the <attribute> elements.

For more information about the attributes available for the <attribute>
element, see Schema Definitions in the Get-Services Administration Guide.
Creating custom schemas | 163

Get-Services
Sample schema
The following is a sample schema that you can use for as a template for your
own custom schemas.

Adding data validation
You can have Get-Services validate field values in one of two ways:

Make an input field required. Users will not be able to submit a form until
they have entered all required fields.

Add a custom validation script or function. If you want to check the validity
of the data users submit, you must create a validation script or function.

Making a field required
Personalization forms allows you to mark fields as required, forcing users to fill
in a value for that field in order to proceed to the following page. You can use
required fields to assure that users complete all the fields that ServiceCenter
requires when creating an incident or problem ticket. For example, you can

<?xml version="1.0"?>
<schema>

<!--==
Logical Mappings: XML elements and data types defined
===-->

<documents name="base">
<document name="sample">

<attribute name="Id" type="number"/>
<attribute name="contact" type="string" label="Contact"/>

</document>
</documents>

<!--==
Physical Mappings: Logical names mapped to SQL names
===-->

<documents name="acsc">
<document name="sample" table="amRequestincidentsamContact"/>

<attribute name="Id" field="lReqIdincident.idlContactId" />
<attribute name="contact" field= "lEmplDeptIdcontact.nameName"/>

<document/>
</documents>

</schema>
164 | Tailoring Tasks

Tailoring Kit Guide
make every Call ticket (in the Service Management module) require a user to
attach an asset to it.

To make a field required:

1 Login to Get-Services with a user account that has
getit.personalization.admin rights.

The user must have advanced personalization rights to save changes as
default.

2 Navigate to the form you want to personalize, and then click the
personalization wrench icon.

The Personalize Document Detail window opens.

3 From the Current Configuration window, double-click the field or
subdocument that you want to require.

The field or subdocument properties window opens.

4 Select one of the following options:

5 Click Set as Default to save your changes as the default view for all users.

All users who can see this form now see the required field or lookup.

Adding data validation with a custom script function
If you need to validate the actual data submitted on a Get-Services form, you can
create a custom script function to check for certain conditions.

To add field validation with a custom script function:

Step 1 Identify the schema that the form uses. See Identifying the schema a
form uses on page 166.

Option Action

Subdocument Select the Required option under the Explorer Options
section.

Field Toggle the Required option to Yes.
Adding data validation | 165

Get-Services
Step 2 Locate the schema file. See Locating the schema file on page 168

Step 3 Identify the loadscript, if any, that the schema runs. See Identifying the
schema loadscript on page 168.

Step 4 Create a schema extension that calls a custom onload script file. See
Creating a schema extension to call a custom loadscript on page 169.

Step 5 Create a custom onload script file. See Creating a custom onload script
file on page 171.

Identifying the schema a form uses
You can identify the schema used by a particular form directly from the
Get-Services interface. Typically each form uses only one schema, but in some
cases a form will use a subdocument that references another schema. The
following procedures will help you determine what schema a particular form
uses.

To identify the schema used by a particular form:

1 Enable Display form information from the Administration > Settings page.

The Form information button displays in the banner bar of the Get-Services
interface.

2 Browse to the form that you want to tailor.

3 Click the Form information button.

The form information window opens.
166 | Tailoring Tasks

Tailoring Kit Guide
4 Search for one of the following entries on the Script Input tab:

If the schema name you find contains an underscore character, for example,
problem_search, then this schema extends another existing schema, and
the loadscript value you need resides in another schema file.

To determine the parent schema name, open the extending schema, and
search for the attribute extends. The value of this attribute is the name of
the parent schema. For example, the problem_search schema has the value
extends="problem" and therefore extends the problem schema.

Entry Description

_docExplorerContext The last value listed after a slash in this element is the
schema name. For example:
<_docExplorerContext>incident/
ticketcontact</_docExplorerContext>
uses the ticketcontact.xml schema file.
Note: In this example, ticketcontact.xml is a

subdocument of the primary schema
document incident.xml. Only DocExplorers will
use this document/subdocument format.

_ctxschema The value listed in this element is the schema name.
For example:
<_ctxschema>ticketcontact</_ctxschema>
uses the ticketcontact.xml schema file.

_docExplorerSubType The value listed in this element is the schema name.
For example:
<_docExplorerSubType>TicketCreate</_docEx
plorerSubType>
uses the TicketCreate.xml schema file.

document The value listed in this element is the schema name.
For example:
<document>savedRequest</document>
uses the savedRequest.xml schema file.
Adding data validation | 167

Get-Services
Locating the schema file
After you have determined the name of the schema that your forms uses, you
can find it using your operating system’s file search function. The following
guidelines are provided to help narrow down your search:

All schemas files have a .XML extension

All schemas files are stored in the WEB-INF\apps folder of your application
server’s deployment directory. For example:
C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa

Identifying the schema loadscript
The schema loadscript is always listed in the logical mapping of the schema
<document> element.

To identify the schema loadscript:

1 Open the schema XML source file of the schema that you previously
identified in any text editor.

2 Locate the logical mapping section contained within the <documents
name="base"> element.

3 Locate the logical mapping <document> element.

4 Locate the loadscript attribute.

The name of the loadscript is listed in quotation marks for this attribute. For
example:

<documents name="base">
<document name="problem" label="Ticket"

ACLcreate="getit.service" ACLdelete="oaa.forbidden"
ACLupdate="getit.service"
loadscript="preload.problem.imPreload"
preexplorer="preexplorer.problem.imPreexplorer">
...

</document>
</documents>
168 | Tailoring Tasks

Tailoring Kit Guide
Creating a schema extension to call a custom loadscript
Creating a schema extension allows you to change the loadscript without
changing the original source code for Get-Services.

To create a schema extension to call a custom load script:

1 Copy the schema XML source file for the schema that you previously
identified. For example, problem.xml.

2 Create a new folder as follows:

Create an extensions folder in the same directory where you found the
source schema. For example:

C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
apps\incidentmgt\Schemas\extensions

3 Paste a copy of the source schema file in each of the folder you created.

4 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

5 Delete all the derived definitions listed in the bottom half of the original
schema.

The derived definitions section starts after the first </documents> element
and usually has a comment section describing what back-end databases
and versions the derivations apply to.

Important: You must keep the <?xml> and <schema> elements.

6 Locate the logical mapping <document> element.

This element will be directly beneath the <documents name="base">
element.
Adding data validation | 169

Get-Services
7 Record the value of the existing onload script attribute. For example:

If you were changing the problem schema, you would record the loadscript
name preload.problem.imPreload.

You will need to know this loadscript name when you create your custom
loadscript in the next section.

8 Edit the existing <document> element and change the value of loadscript
attribute to the name of your custom loadscript. For example:

Steps for creating the custom onload script file are in the next section.

9 Save your changes to the schema extension file.

If all you are doing is changing the onload script called by your schema, then
you do not need to create a schema extension for the physical mappings.
See the Get-Services Administration Guide for more information about
schema extensions.

<?xml version="1.0"?>
<schema>
<documents name="base">

<document name="problem" label="Ticket"
ACLcreate="getit.service" ACLdelete="oaa.forbidden"
ACLupdate="getit.service"
loadscript="preload.problem.imPreload"
preexplorer="preexplorer.problem.imPreexplorer">

</document>
</documents>
<schema>

<?xml version="1.0"?>
<schema>
<documents name="base">

<document name="problem" label="Ticket"
ACLcreate="getit.service" ACLdelete="oaa.forbidden"
ACLupdate="getit.service"
loadscript="preload.custom.imPreload"
preexplorer="preexplorer.problem.imPreexplorer">

</document>
</documents>
<schema>
170 | Tailoring Tasks

Tailoring Kit Guide
Creating a custom onload script file
You can create your own custom onload script to check incoming and outgoing
data for certain conditions. You must create a custom script in order to not
overwrite any of the scripts delivered with Get-Services.

To create a custom onload script:

1 Open the Get-Services project file in Peregrine Studio.

2 Expand the group of modules node for the portion of Get-Services you want
to change.

3 Expand the Scripts node.

Module Description

incidentmgt The group of modules for incident management. This
includes the Service Desk tab in the Get-Services
interface.

changemgt The group of modules for change management. This
includes the Change Management tab in the
Get-Services interface.
Adding data validation | 171

Get-Services
4 Right-click the preload node, and then click New > Script.

5 Give your script a unique name. For example, custom.

6 Right-click your new script node, and then click New > Header.

You can accept the default Header name Header.

7 Use the Peregrine Studio text editor to add a ECMAScript header that
imports the original schema onload script. For example:

The script preload.problem is the name of the original onload script file
called by the problem schema.

8 Right-click your new script node, and then click New > Function.

9 Rename your function to the desired custom onload function name. For
example, imPreload.

Right-click on the preload
node and then click
New > Script.

import preload.problem;
172 | Tailoring Tasks

Tailoring Kit Guide
10 Use the Peregrine Studio text editor to add a ECMAScript function to call
your data validation functions and then call the original schema onload
function for this form. For example:

11 Right-click your new script node, and then click New > Function.

12 Rename your function to the desired custom onload function name. For
example, verifyFields.

13 Use the Peregrine Studio text editor to add a ECMAScript function to check
the data entered and submitted by this form. For example:

14 Save and build your Get-Services project.

function imPreload(msg)
{

this.verifyFields(msg);
if (msg.testCondition("error", false))
{

return msg;
}

msg = preload.problem.imPreload(msg);

return msg;
}

function verifyFields(msg)
{

var action = msg.get("_docExplorerAction");
var formName = msg.get("_formname");

if(action == "create" && formName == "new")
{

var priority = msg.get("Priority");
if (priority == 1)
{

msg.setCondition("error");
user.addMessage("Please call the IT Deptarment at 555-1212
for Priority 1 Tickets");

}
return msg;

}
}

Adding data validation | 173

Get-Services
Your new data validation script displays the next time that you go to your
the form. For example:

Assigning default values
You can easily assign default values to fields using a custom preprocess script. A
preprocess script runs before the Archway Document Manager queries the
back-end database. Since the Get-Services incident and problem schemas
already have existing preprocess scripts, you must create a schema extension to
call a custom script.

To assign default values to fields with a custom script function:

Step 1 Identify the schema that the form uses. See Identifying the schema a
form uses on page 175.

Step 2 Locate the schema file. See Locating the schema file on page 177

Step 3 Identify the preprocess script, if any, that the schema runs. See
Identifying the schema preprocess script on page 177.

Step 4 Create a schema extension that calls a custom preprocess script file. See
Creating a schema extension to call a custom preprocess script on
page 177.

Error message
displayed

Priority 1
selected
174 | Tailoring Tasks

Tailoring Kit Guide
Step 5 Create a custom preprocess script file. See Creating a custom onload
script file on page 171.

Identifying the schema a form uses
You can identify the schema used by a particular form directly from the
Get-Services interface. Typically each form uses only one schema, but in some
cases a form will use a subdocument that references another schema. The
following procedures will help you determine what schema a particular form
uses.

To identify the schema used by a particular form:

1 Enable Display form information from the Administration > Settings page.

The Form information button displays in the banner bar of the Get-Services
interface.

2 Browse to the form that you want to tailor.

3 Click the Form information button.

The form information window opens.
Assigning default values | 175

Get-Services
4 Search for the following text on the Script Input tab.

If the schema name you find contains an underscore character, for example,
problem_search, then this schema extends another existing schema, and
the loadscript value you need resides in another schema file.

To determine the parent schema name, open the extending schema, and
search for the attribute extends. The value of this attribute is the name of
the parent schema. For example, the problem_search schema has the value
extends="problem" and therefore extends the problem schema.

Text Description

_docExplorerContext The last value listed after a slash in this element is the
schema name. For example:
<_docExplorerContext>incident/
ticketcontact</_docExplorerContext>
uses the ticketcontact.xml schema file.
Note: In this example, ticketcontact.xml is a

subdocument of the primary schema
document incident.xml. Only DocExplorers
will use this document/subdocument format.

_ctxschema The value listed in this element is the schema name.
For example:
<_ctxschema>ticketcontact</_ctxschema>
uses the ticketcontact.xml schema file.

_docExplorerSubType The value listed in this element is the schema name.
For example:
<_docExplorerSubType>TicketCreate
</_docExplorerSubType>
uses the TicketCreate.xml schema file.

document The value listed in this element is the schema name.
For example:
<document>savedRequest</document>
uses the savedRequest.xml schema file.
176 | Tailoring Tasks

Tailoring Kit Guide
Locating the schema file
After you have determined the name of the schema that your forms uses, you
can find it using your operating system’s file search function. The following
guidelines are provided to help narrow down your search:

All schemas files have a .XML extension

All schemas files are stored in the WEB-INF\apps folder of your application
server’s deployment directory. For example:
C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa

Identifying the schema preprocess script
The schema preprocess script is always listed in the physical mapping of the
schema <document> element.

To identify the schema loadscript:

1 Open the schema XML source file of the schema that you previously
identified in any text editor.

2 Locate the physical mapping section contained within the <documents
name="adapter_name"> element.

3 Locate the physical mapping <document> element.

4 Locate the preprocess attribute.

The name of the preprocess script is listed in quotation marks for this
attribute. For example:

Creating a schema extension to call a custom preprocess script
Creating a schema extension allows you to change the preprocess script
without changing the original source code for Get-Services.

<documents name="sc" ...>
<document name="incident" table="incidents" insert="esmin"
update="esmin" postprocess="schema.incident.scPostprocess"
preprocess="schema.incident.scPreprocess">

...
</document>

</documents>
Assigning default values | 177

Get-Services
To create a schema extension to call a custom preprocess script:

1 Copy the schema XML source file for the schema that you previously
identified. For example, incident.xml.

2 Add a new folder by creating an extensions folder in the same directory
where you found the source schema. For example:

 C:\Program Files\Peregrine\Common\Tomcat4\webapps\oaa\WEB-INF\
 apps\incidentmgt\Schemas\extensions

3 Paste a copy of the source schema file in each of the folder you created.

4 Open the schema extension file in the extension folder.

This file is for your schema extension logical mappings.

5 Delete all the logical definitions listed in the top half of the original schema.

The logical definitions section starts after the first <documents> element.

Important: You must keep the <?xml> and <schema> elements.

6 Locate the physical mapping <document> element.

This is directly below the <documents name="adapter_name"> element.
178 | Tailoring Tasks

Tailoring Kit Guide
7 Record the value of the existing preprocess script attribute. For example:

If you were changing the problem schema, you would record the loadscript
name schema.incident.scPreprocess.

You must know this preprocess script name when you create your custom
preprocess script in the next section.

8 Edit the existing <document> element and change the value of preprocess
attribute to the name of your custom preprocess script. For example:

Steps for creating the custom onload script file are in the next section.

9 Save your changes to the schema extension file.

If all you are doing is changing the onload script called by your schema, then
you do not need to create a schema extension for the physical mappings.
See the Get-Services Administration Guide for more information about
schema extensions.

<?xml version="1.0"?>
<schema>
<documents name="sc" ...>

<document name="incident" table="incidents" insert="esmin"
update="esmin"
postprocess="schema.incident.scPostprocess"
preprocess="schema.incident.scPreprocess">

...
</document>

</documents>
<schema>

<?xml version="1.0"?>
<schema>
<documents name="sc" ...>

<document name="incident" table="incidents" insert="esmin"
update="esmin"
postprocess="schema.incident.scPostprocess"
preprocess="schema.custom.scPreprocess">

...
</document>

</documents>
<schema>
Assigning default values | 179

Get-Services
Creating a custom preprocess script file
You can create your own custom preprocess script to assign default values to
fields in the XML document. You must create a custom script in order to not
overwrite any of the scripts delivered with Get-Services.

To create a custom preprocess script:

1 Open the Get-Services project file in Peregrine Studio.

2 Expand the group of modules node for the portion of Get-Services you want
to change.

3 Expand the Scripts node.

Module Description

incidentmgt The group of modules for incident management. This
includes the Service Desk tab in the Get-Services
interface.

changemgt The group of modules for change management. This
includes the Change Management tab in the
Get-Services interface.
180 | Tailoring Tasks

Tailoring Kit Guide
4 Right-click the schema node, and then click New > Script.

5 Give your script a unique name. For example, custom.

6 Right-click your new script node, and then click New > Header.

You can accept the default Header name Header.

7 Use the Peregrine Studio text editor to add a ECMAScript header that
imports the original schema onload script. For example:

The script schema.scPreprocess is the name of the original preprocess
script file called by the incident schema.

8 Right-click your new script node, and then click New > Function.

9 Rename your function to the desired custom onload function name. For
example, scPreprocess.

Right-click on the schema
node and then click
New > Script.

import schema.scPreprocess;
Assigning default values | 181

Get-Services
10 Use the Peregrine Studio text editor to add a ECMAScript function to define
any default values and then call the original schema onload function for this
form. For example:

11 Right-click your new script node, and then click New > Function.

12 Rename your function to the desired custom onload function name. For
example, assignDefaultValues.

13 Use the Peregrine Studio text editor to add a ECMAScript function to add
default values submitted to the back-end database. For example:

14 Save and build your Get-Services project.

Translating tailored modules
Out-of-box, all Get-It web applications are provided in English. You can order
translated versions of Get-Services by purchasing a language pack. Get-Services
4.1 language packs are available in the following languages:

function scPreprocess(msg)
{

assignDefaultValues(msg);

msg = schema.incident.scPreProcess(msg);
}

function assignDefaultValues(msg);
{

var strTemp = msg.get("Category");
if (strTemp == "")

{
msg.set("Category", “business applications“);

}
}

French
Italian
German
182 | Tailoring Tasks

Tailoring Kit Guide
Note: Refer to the Peregrine support web site to determine the current
availability of Get-Services language packs.

If you tailor your installation of Get-Services, you will need to translate any
strings that you added. The following sections describe how you can translate
your tailored modules.

If you have a language pack version of Get-Services, you will need to edit the
existing string files for these applications and add any new strings that resulted
from your tailoring efforts. For more information on the process, refer to Editing
existing translation strings files on page 183.

If you do not have a language pack version of Get-Services and you want to
create a new translation, refer to the instructions in Adding new translation
strings files on page 185.

To configure Get-Services to use your new translation, refer to Configure
Get-Services to use new string files on page 186.

Editing existing translation strings files
You can make edits, additions, and deletions to string files outside of Peregrine
Studio using any text editor or standard translation software.

To edit an existing translation string file:

1 Open the English string file for your Peregrine Studio project in a text editor
or translation program.

You can find all the translation string files in the application server’s
deployment directories:

<application server install>\webapps\oaa\WEB-INF\strings
<application server install>\webapps\oaa\WEB-INF\apps\
<application group of modules name>

Note: The English string file has the ISO-639 two letter abbreviation EN in the file
name.

All strings files have the STR file extension.
Translating tailored modules | 183

Get-Services
2 Search for any new text that you added to your tailored Peregrine Studio
project.

The string file uses the following format:

String_label, "translated string"

Where String_label is the Peregrine Studio name given to the string, and

Where translated string is the actual value of the string to be translated.

For example if you added a new button, you might look for:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Search"

3 Copy the entire line containing the English string.

4 Open the string file for the target language in which you want to add a
translation.

Note: The string file will use the ISO-639 two letter abbreviation for the
language in the file name.

5 Paste the copied English string into the target string file. You can paste the
string at the end of the string file.

6 Change the "translated string" portion of the new string to the target
language of your translation. For example, to change the string listed above
to French, you might enter the following:

EMPLOOKUP_EMPLOYEELOOKUP_SEARCH_LABEL, "Recherche"

7 Save the new string file.

The new translation strings are available as soon as you stop and restart the
application server.
184 | Tailoring Tasks

Tailoring Kit Guide
Adding new translation strings files
You can add new string files to provide additional language support to
Get-Services. The translation process can be accomplished using any text editor
or standard translation software.

Important: Peregrine does not support any user translated versions of
Get-Services.

To edit an existing translation string file:

1 Open the English string file for your Peregrine Studio project in a text editor
or translation program.

You can find all the translation string files in your application server’s
installation directory:

<application server install>\webapps\oaa\WEB-INF\strings
<application server install>\webapps\oaa\WEB-INF\apps\
<application group of modules name>

Note: The English string file has the ISO-639 two letter abbreviation EN in the file
name.

All strings files have the STR file extension.

2 Copy the entire the English string file.

3 Create a new string file for the target language in which you want to add a
translation.

Note: The string file must use the ISO-639 two letter abbreviation for the
language in the file name.

4 Paste the copied English string file into the new file.
Translating tailored modules | 185

Get-Services
5 Change the "translated string" portion of each string to the target
language of your translation.

6 Save the new string file.

The new translation strings will be available as soon as you stop and restart
the application server.

Configure Get-Services to use new string files
1 Log in as an administrator (the administrator login page is at admin.jsp).

2 Click Settings.

3 Click the Common tab.

4 Enter the two letter ISO-639 language code for the languages you want to
support in the Locales field. The first code entered is the default language
used. The other languages you define are available in a drop-down list.

5 In the Content type encoding field, enter the character encoding used for
the display language. The following table lists some of the common
character encoding formats.

6 Click Save at the bottom of the Settings form to save your changes.

7 On the Console form, click Reset Peregrine Portal to implement your
changes.

Users can select the display language for their session used when they login
to the Peregrine OAA Platform.

Character Encoding Character Set

ISO-8859-1 U.S. and Western European character sets. This is
the default character set used by Studio.

Shift_JIS Japanese character set

ISO-8859-2 Polish and Czech character set
186 | Tailoring Tasks

CHAPTER
A T
roubleshooting and FAQs
This appendix contains troubleshooting information for Peregrine Studio and
tailoring tasks.

This chapter covers the following topics:

Get-Services environment on page 188

Peregrine Studio on page 189

Scripting errors on page 192

Tailoring errors on page 193
Troubleshooting and FAQs | 187

Get-Services
Get-Services environment
This section describes warnings or errors that can be generated while running a
Get-Services in your system environment.

Out of memory error
Problem
Your application server has run out of memory resources.

Solution
Get-Services run best on a system with a minimum of 512 MB of RAM. If you
cannot add more physical memory to your machine, you can increase the virtual
memory space used on your Windows system. Adding virtual memory will
require more hard disk space and may degrade system performance as cached
information is saved to and retrieved from the hard disk. Refer to your Windows
help for information on setting or changing virtual memory.

Cannot start Java – install JRE
Problem
Peregrine Studio produces an error message when you attempt to create a
package or build a project.

Cannot start Java (‘jvm.dll’ not found). The JRE (Java Runtime
Environment) must be installed ...

Solution
Install a dedicated copy of the Java 2 SDK for Peregrine Studio to use. You can
install the Java 2 SDK from the Get-Services Tailoring Kit installation CD.
188 | Troubleshooting and FAQs

Tailoring Kit Guide
Peregrine Studio
This section describes common problems with write protections, conflicts, and
build errors generated with Peregrine Studio.

Cannot edit — components have grey background
Problem
Peregrine Studio displays some or all of your project components with a grey
background, and you cannot make or save changes to the project components.

Solution
Peregrine Studio uses the grey background to indicate that an item is
write-protected. The most common reasons that Peregrine Studio components
are write protected are:

A write-protected package is selected in the package selector.

The project (.adw) file is set to read-only.
Peregrine Studio | 189

Get-Services
Packages delivered by Peregrine are write-protected. You must save all of your
changes and additions to a user-created package extensions. If the package
selection box displays one of the Peregrine Studio default packages, then your
project will be write protected until you create and activate a new package
extension in which to save your changes.

Red exclamation point displays next to nodes
Problem
Peregrine Studio displays a conflict icon next to one or more of your project
components, and you cannot build the project. The conflict could be the result
of multiple packages attempting to change or modify the same component, or
the conflict could be the result of improperly defined package dependencies.

Solution
To resolve the conflict you should first view more information about the nodes
displaying the conflict icon.

To view information about a conflict:

1 Select a node with an exclamation point icon displayed next to the name

from the Project Explorer view.

2 Click View > Advanced Information. Peregrine Studio displays a new
information window at the bottom of the interface. This window displays
information on the conflict.
190 | Troubleshooting and FAQs

Tailoring Kit Guide
The information on selection indicates whether you have a resource or a
dependency conflict.

Resource conflicts
Resource conflicts occur when two or more project components describe the
same thing. To resolve a resource conflict, delete or reconfigure one of the
project components that is creating the conflict. If the conflicting components
are part of separate package extensions, you can choose to deactivate one of
the package extensions to resolve the conflict.

Dependency conflicts
Dependency conflicts occur when a package extension attempts to modify a
package that is not listed as a dependent package. To resolve the conflict you
can choose one of two solutions:

Add the package you want to modify as a package dependency of the
conflicting package extension.

Move the changes in the conflicting package extension to another package
extension that already has the proper package dependencies.

Information about the conflict

Conflict icon
Peregrine Studio | 191

Get-Services
Scripting errors
Information about scripting errors is displayed as text at the top of the main
frame and in the archway.log file.

Unable to find script file
Problem
The following error message displays when you select a form:

Unable to find script file for <name>

This message also appears in the archway.log file.

Solution
This error message is usually the result of an invalid script file name or adapter
name.

Verify in Peregrine Studio that the form is calling a valid script file name. In
particular make sure that the script name does not use mixed case. Script file
names should be in all lower case. If you copied a script from another form or
Web application you may have renamed the script incorrectly.

Verify that the script calls a valid adapter. If the <name> value is the name of a
new adapter defined in the script file, then define the new adapter in the Admin
Settings module, stop and restart your application server, and then restart the
Archway server (using the Admin Control Panel) to correct the problem.

If you have verified that the script file exists and uses the proper adapter, then
stop and restart your application server. This will refresh the adapter settings.

Script produces an ECMAScript error
Problem
An ECMAScript Error is displayed with the script name, source code, and line
number of the error when a form is displayed.
192 | Troubleshooting and FAQs

Tailoring Kit Guide
Solution
Open Peregrine Studio, review the error-producing script for typos, and verify
that it uses the correct function and schema names. For example, you might
have a function where msg is incorrectly listed as nsg. Correct any errors and
rebuild the project.

Note: ECMAScript is case sensitive and will return an error message if the case
does not match the object called.

Tip: If you have enabled the HTTP listener in Peregrine Studio, you can click on
the underlined script name listed at the top of the error message to go
directly to the script and line number of the error. Peregrine Studio must
be open for the hyperlink to work.

ECMAScript error: undefined value or property
Problem
The following error displays when you select a form:

ECMAScript Error: Error Message: Runtime error Function called on
undefined value or property

This error also displays in the archway.log file.

Solution
Verify that the form calls the proper script name in the server onload script
attribute. Also check that the script name contains no typos and that it is listed
with the proper case. If the script name listed in the form is correct, there is a
possibility that there is a script name conflict. Each script in your project needs
a unique name. Try renaming your script to a new name, updating the server
onload script attribute, and rebuilding your project. If renaming the script fixes
the problem then you had a script name conflict.

Tailoring errors
The following sections describe some of the common errors associated with
tailoring Get-Services. Refer to the sections below for solutions to common
tailoring problems.
Tailoring errors | 193

Get-Services
Script output not appearing in form component
Problem
Data is not displayed in your Get-Services form component. This problem could
be the result of a faulty script that is not generating an XML document or the
result of form components that are not properly mapped to the fields of the
generated XML document.

Solution
Verify whether your script is generating an XML document by enabling the
Show form information option and then looking at the contents of the Script
Output tab. If the script is working properly, you should see your Get-Services
data encoded as in the XML document displayed on the Script Output page. If
you do not see an XML document, then your script has an error.

If you can see data displayed in the Script Output tab, then the problem is how
you have mapped the form components to the XML fields. View the form
component properties from Peregrine Studio, and verify that the Document
Field attribute of the form component maps to an XML tag displayed in the
Script Output tab.

Too few parameters error
Problem
The following error message displays when you select a form:

ERROR:...: ***SQL Exception caught***

The script output displays the following error:

-3010: [...][...] Too few parameters. Expected 1.

These messages also appear in the archway.log file.

Solution
There is an incorrect field mapping or typo in the schema used in this form.
Review the schemas used by this form and verify that there are no typos. Also
verify that all the attributes defined in the schema map to valid fields in the
back-end database. The value in the field attribute must match the field name
of the back-end database. This is particularly important for the ID attribute,
which must map to a unique numerical value that identifies each record.
194 | Troubleshooting and FAQs

Tailoring Kit Guide
Get-Services always goes to redirection form
Problem
You have defined a redirection to another form in Get-Services and the source
form always takes users to the redirection form regardless of the search
conditions and results.

Solution
Validate that the Condition attribute of the redirection is not blank. The
Condition value should match the value defined by the setCondition function of
your form’s ECMAScript. If the Condition attribute is left blank, the default action
is to redirect to the target form regardless of the returned results.

Syntax error in FROM clause
Problem
The following error message is displayed when you select a form:

ERROR:...: ***SQL Exception caught***

The script output displays the following error:

-3506 [...][...] Syntax error in FROM clause.

This error also displays in the archway.log file.

Solution
The schema name you defined for the form is wrong. The schema name can be
listed incorrectly in two places:

The form’s onload script may refer to the wrong schema name.

The <document name=value> does not match the schema file name.
Tailoring errors | 195

Get-Services
196 | Troubleshooting and FAQs

APPENDIX
B C
opyright Notices
Peregrine Systems acknowledges the copyrights belonging to the following
third parties. (This appendix constitutes a continuation of the copyright page.)

Notices
finj.jar

The finj.jar is covered under the GNU Lesser General Public License
version 2.1. The license is included below under section GNU LGPL.

The finj source is included in finj.jar file in the
\Program Files\Peregrine\Studio\bin\classes directory.

GNU LGPL
 GNU LESSER GENERAL PUBLIC LICENSE

 Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor
of the GNU Library Public License, version 2, hence the version number 2.1.]

 Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenses are intended to
Copyright Notices | 197

Get-Services
guarantee your freedom to share and change free software--to make sure the
software is free for all its users.

This license, the Lesser General Public License, applies to somespecially
designated software packages--typically libraries--of the Free Software
Foundation and other authors who decide to use it. You can use it too, but we
suggest you first think carefully about whether this license or the ordinary
General Public License is the better strategy to use in any particular case, based
on the explanations below.

When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you
wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are
informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to
deny you these rights or to ask you to surrender these rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the library
or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee,
you must give the recipients all the rights that we gave you. You must make
sure that they, too, receive or can get the source code. If you link other code
with the library, you must provide complete object files to the recipients, so that
they can relink them with the library after making changes to the library and
recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and
(2) we offer you this license, which gives you legal permission to copy, distribute
and/or modify the library.

To protect each distributor, we want to make it very clear that there is no
warranty for the free library. Also, if the library is modified by someone else and
passed on, the recipients should know that what they have is not the original
version, so that the original author's reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free
program. We wish to make sure that a company cannot effectively restrict the
users of a free program by obtaining a restrictive license from a patent holder.
Therefore, we insist that any patent license obtained for a version of the library
must be consistent with the full freedom of use specified in this license.
198 | Copyright Notices

Tailoring Kit Guide
 Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License,
applies to certain designated libraries, and is quite different from the ordinary
General Public License. We use this license for certain libraries in order to permit
linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work, a
derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other
code with the library.

We call this license the "Lesser" General Public License because it does Less to
protect the user's freedom than the ordinary General Public License. It also
provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard.
To achieve this, non-free programs must be allowed to use the library. A more
frequent case is that a free library does the same job as widely used non-free
libraries. In this case, there is little to gain by limiting the free library to
freesoftware only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs
enables a greater number of people to use a large body of free software. For
example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, as well as its variant,
the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users'
freedom, it does ensure that the user of a program that is linked with the Library
has the freedom and the wherewithal to run that program using a modified
version of the Library.

The precise terms and conditions for copying, distribution and modification
follow. Pay close attention to the difference between a "work based on the
library" and a "work that uses the library". The former contains code derived
 | 199

Get-Services
from the library, whereas the latter must be combined with the library in order
to run.

 GNU LESSER GENERAL PUBLIC LICENSE

 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program
which contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Lesser General Public
License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as
to be conveniently linked with application programs (which use some of those
functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been
distributed under these terms. A "work based on the Library" means either the
Library or any derivative work under copyright law: that is to say, a work
containing the Library or a portion of it, either verbatim or with modifications
and/or translated straightforwardly into another language. (Hereinafter,
translation is included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running a program using the
Library is not restricted, and output from such a program is covered only if its
contents constitute a work based on the Library (independent of the use of the
Library in a tool for writing it). Whether that is true depends on what the Library
does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and distribute a copy of this License along with
the Library.
200 | Copyright Notices

Tailoring Kit Guide
You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that
is entirely well-defined independent of the application. Therefore, Subsection
2d requires that any application-supplied function or table used by this function
must be optional: if the application does not supply it, the square root function
must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Library, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Library, the distribution of the whole must be on
the terms of this License, whose permissions for other licensees extend to
theentire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or
 | 201

Get-Services
distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must alter
all the notices that refer to this License, so that they refer to the ordinary GNU
General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then
you can specify that version instead if you wish.) Do not make any other change
in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and
derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into
a program that is not a library.

 4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and
2 above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from
the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object
code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called
a "work that uses the Library". Such a work, in isolation, is not a derivative work
of the Library, and therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of the
Library), rather than a "work that uses the library". The executable is therefore
covered by this License.

Section 6 states terms for distribution of such executables. When a "work that
uses the Library" uses material from a header filethat is part of the Library, the
object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work
202 | Copyright Notices

Tailoring Kit Guide
can be linked without the Library, or if the work is itself a library. The threshold
for this to be true is not precisely defined by law. If such an object file uses only
numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6, whether or not they are linked directly with the
Library itself.

6. As an exception to the Sections above, you may also combine or link a "work
that uses the Library" with the Library to produce a work containing portions of
the Library, and distribute that work under terms of your choice, provided that
the terms permit modification of the work for the customer's own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is
used in it and that the Library and its use are covered by this License. You must
supply a copy of this License. If the work during execution displays copyright
notices, you must include the copyright notice for the Library among them, as
well as a reference directing the user to the copy of this License. Also, you must
do one of these things:

a) Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the work
(which must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable "work
that uses the Library", as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents
of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (1) uses at run time a copy of the library already
present on the user's computer system, rather than copying library functions
into the executable, and (2) will operate properly with a modified version of the
library, if the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
 | 203

Get-Services
c) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified materials
from the same place.

e) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must
include any data and utility programs needed for reproducing the executable
from it. However, as a special exception, the materials to be distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompany
is the executable.

It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system.
Such a contradiction means you cannot use both them and the Library together
in an executable that you distribute.

7. You may place library facilities that are a work based on the Library
side-by-side in a single library together with other library facilities not covered
by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other library
facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a
work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.
204 | Copyright Notices

Tailoring Kit Guide
9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Library
or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Library or
works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Librarysubject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third
parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence
you may not distribute the Library at all. For example, if a patent license would
not permit royalty-free redistribution of the Library by all those who receive
copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the
Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution
system which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.
 | 205

Get-Services
12. If the distribution and/or use of the Library is restricted incertain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of
the Lesser General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Library
does not specify a license version number, you may choose any version ever
published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs
whose distribution conditions are incompatible with these, write to the author
to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

 NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
206 | Copyright Notices

Tailoring Kit Guide
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use
to the public, we recommend making it free software that everyone can
redistribute and change. You can do so by permitting redistribution under
these terms (or, alternatively, under the terms of the ordinary General Public
License).

To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright" line and
a pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
 | 207

Get-Services
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if necessary. Here
is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library `Frob' (a
library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice

That's all there is to it!
208 | Copyright Notices

PEREGRINE
Index
A
actions. See form components
activity component 41
adding

subdocument lookups 149
Archway

scripts 85
authorization file

Peregrine Studio 23

B
bookmarks, adding in Studio 30
build options 46–47

build directory 47
character encoding 47
EJB user 47
exclude files 47
presentation folder 47
temporary directory 47

C
cascading style sheets 40
component template 67, 68
components

group of files component 42
group of modules component 41
group of schemas component 42
group of scripts component 42
group of strings component 42
hierarchy of 40
in Peregrine Studio 55

module component 41
relationships among 41–42

conflicts
defined 52
resolving 52–53, 191

creating
package extensions 49
schemas 156

customer support 14

D
data validation

methods of 164
tailoring tasks 118
using a custom script 165–174

dates, manipulating in scripts 91
default values

assigning using custom script 174–182
tailoring tasks 118

dependencies
setting for packages 51

dependency conflicts. See Conflicts
deployment directory 47
development environment

requirements for 24
DocExplorer Reference

adding 145
DocExplorers

tailoring tasks 117
Document field

format of names 128
 | 209 | 209

Get-Services
E
ECMAScript 84
errors

sysntax error in FROM clause 195
too few parameters 194
Unable to find script file 192
undefined value or property 193

F
field labels, changing 123
field lookup 148
fields

making required 164
fields. See form components
fieldsection component 68
form component 42
form components

action 42, 81
changing schemas 125
common 67
component template 67
date picker 58
described 42
document table 77, 78
field form components 123
fields 42
fieldsection 68, 70
form columns 80
hidden data field 73, 74
hiding 124
labels 123
lookups 42
making read-only 124
names in 128–129
redirection 74
selectbox 71
simple table 75, 76
table link 78
tables 42
tailoring 119–120
tailoring tasks 117
text columns 79
text edit 70, 71

forms
changing instructions 121

changing onload scripts 122
changing titles 120
server-side 85–86
tailoring tasks 117

framesets
displaying forms in 135

G
group of scripts component 42

H
HTTP Listener 34
HTTP listener

enabling in Peregrine Studio 34

I
installation

tailoring kit 17
instructions, changing in forms 121
interface components. See Form components 42
ISO character encoding. See character encoding

J
JavaDocs 114
JavaScript 84

L
lookup fields

adding 148
subdocument lookups 149

lookups. See form components

M
messages, scripts 97

N
nodes 31, 190

group of schemas node 156

O
onload scripts

changing in forms 122
defined 122
210 | Index

Tailoring Kit Guide
P
package extensions 48–51
packages

activating 50
deactivating 50
defined 48
dependencies 50, 51

Peregrine Studio
authorization file 23

Peregrine Systems customer support 14
Personalization

lookup fields 147
requirements 144
with DocExplorers 143

Portal components
creating 139

presentation files 40
priority values

changing 130
removing 133

Project Explorer 31
projects

See also Web applications
components of 39
conflicts within 53
files within 43

R
resource conflicts. See conflicts
Rhino JavaScript Debugger 92–94

S
schema template example 164
schemas

adding logical and physical mappings 157
changing in form components 125
creating 156
creating your own 155
document fields 126
sample 164
tailoring tasks 118
testing from a URL 95–96
using with DocExplorers 144

scripts
adding to Peregrine Studio project 89, 154

client-side 84
creating XML message objects 97
displaying variables in form components 138
ECMAScript 84
editing 87, 151
format of variables 138
JavaScript 84
list of references 113
object oriented usage 100
onload scripts 85–86
prototype property 100
roles of 85
samples 105–111
server scripts 84
server-side 84
tailoring tasks 118
testing from a URL 94
uses for 83

ServiceCenter 144
severity values

changing 130
removing 133

source files
opening in Peregrine Studio 23

status values
changing 130
removing 133

string files
translating 183, 185

subdocument lookup field 149

T
tables. See form components
tailoring

common form components 67
form components 119–120

tailoring kit
installation 17

tailoring tasks 117
technical support 14
templates component 41
testing environment

requirements for 25
titles, changing in forms 120
translating
 | 211

Get-Services
tailored modules 182
troubleshooting

cannot start Java 188
conflicts 190
JRE must be installed 188
Read-only components 189
redirections 195
script error 192
script error Unable to find script file 192
script error undefined value or property 193
sysntax error in FROM clause 195
too few parameters 194
virtual memory error 188

U
UNIX

deploying tailoring changes to 54
URL

querying scripts and schemas from 94

V
variables

referring to XML attributes 139
visible flag

hiding form components 124

W
Web applications

viewing changes 36

X
XML

creating message objects from scripts 97
example of Document field names 129
example of script variable name 138
viewing source code 33
212 | Index

1/20/05

	Contents
	Introducing the Get-Services Tailoring Kit
	About this guide
	Conventions used in this guide

	Need more information?
	Customer Support
	Documentation Web site
	Education Services Web Site

	Installing on Windows
	Installing the Get-Services Tailoring Kit
	Upgrading the Get-Services Tailoring Kit
	Opening the Get-Services project
	Setting up a tailoring environment
	Setting up a development environment
	Setting up a testing environment

	Using Studio
	The Peregrine Studio interface
	Project Explorer
	Drag and drop

	Best practices
	Do not change form definitions outside Peregrine Studio
	Avoid enabling advanced options
	Avoid using the clean the target folders build option
	Clear application server cache
	Use templates to apply global changes
	Enable the HTTP listener and form information options
	Set the color for your extension changes
	View referenced components with the lookup button

	Peregrine Studio Projects and Packages
	Peregrine Studio projects
	Project components
	Project component descriptions
	Project files

	Building a project
	Build options
	Setting project build settings

	Peregrine Studio project packages
	Saving changes with package extensions
	Activating and deactivating packages
	Package dependencies
	Setting package dependencies

	Warnings for conflicts
	Deploying tailoring changes
	Deploying to Windows platforms
	Deploying to UNIX platforms

	Peregrine Studio Components
	Adding components
	Types of form components
	Component template containers
	Fieldsection containers
	Text edit fields
	Selectbox fields
	Hidden data fields
	Redirections
	Simple table
	Document table
	Table links
	Text columns
	Form columns
	Actions

	Scripting
	Overview of scripts
	Script types
	Where to store scripts
	How to use scripts
	Editing an existing script
	Adding a custom script
	Date values in scripts

	Testing scripts
	Rhino JavaScript debugger
	URL queries

	Common message operations
	Using ECMAScript in an object-oriented manner
	ECMAScript implementation in Get-Services
	Name resolution in ECMAScript
	Using the object prototype for object-oriented programming
	How to use object orientation for tailoring

	Sample scripts
	General script samples
	Selecting a field from a schema
	Calling other scripts and combining the results
	Form script sample
	Creating an XML document from a schema
	Working with dates in scripts

	References
	Sources for client-side JavaScript
	JavaDocs for the main Archway package

	Tailoring Tasks
	Tailoring workflow
	List of tailoring tasks
	Forms and form components
	DocExplorers
	Scripting
	Schemas
	Data validation
	Default values
	Translation

	Tailoring forms and components
	Changing a form’s title
	Changing a form’s instructions
	Changing a form’s onload script
	Changing a form component’s label
	Hiding a form component
	Changing a form component to read-only
	Changing the schema that a form component uses
	Changing the document field that a form component uses
	Changing the priority, severity, or status field strings
	Removing display values for priority, severity, or status
	Displaying a form within a frameset
	Adding Get-Services to an existing frameset
	Displaying a script variable in a form component
	Creating a portal component

	Adding personalization
	Supporting personalization
	DocExplorer configuration required in Peregrine Studio
	Adding a DocExplorer reference
	Personalizing a DocExplorer reference
	Adding personalization form components - lookup fields

	Tailoring scripts
	Editing an existing script
	Adding a custom script

	Creating custom schemas
	Adding a schema to your Peregrine Studio project
	Adding logical and physical mappings to your schema
	Sample schema

	Adding data validation
	Making a field required
	Adding data validation with a custom script function

	Assigning default values
	Translating tailored modules
	Editing existing translation strings files
	Adding new translation strings files
	Configure Get-Services to use new string files

	Troubleshooting and FAQs
	Get-Services environment
	Out of memory error
	Cannot start Java - install JRE

	Peregrine Studio
	Cannot edit - components have grey background
	Red exclamation point displays next to nodes

	Scripting errors
	Unable to find script file
	Script produces an ECMAScript error
	ECMAScript error: undefined value or property

	Tailoring errors
	Script output not appearing in form component
	Too few parameters error
	Get-Services always goes to redirection form
	Syntax error in FROM clause

	Copyright Notices
	Notices
	finj.jar
	GNU LGPL

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

