

Introduction ... 2

Prerequisites .. 2

The upgrade process .. 2
Required systems .. 2
Process steps of an upgrade .. 2
Planning stake holder involvement .. 3

Upgrade steps – detail ... 5
Upgrade server and client binaries... 5
Pre-upgrade cleanup .. 5
IR regen preparation .. 6
Documentation of upgrade decisions and timing .. 9
Basic conflict resolution ... 9
Initial issue resolution .. 9
Detail conflict resolution .. 10
Test of basic functionality and issue resolution ... 12
Create Custom upgrade .. 12
Apply custom upgrade .. 14
Test custom upgrade ... 14
Apply changes to development system to create new custom upgrade .. 15
Apply custom upgrade to production .. 15
Useful Tips and Tricks ... 15

Prior to upgrade ... 15
During initial upgrade ... 15
During conflict resolution ... 16
During creation of the custom upgrade.. 16
During application of the custom upgrade ... 16

Appendix A – Sample upgrade planning sheet ... 17

For more information .. 23

Upgrading Service Manager

How to quickly and efficiently upgrade from an older version of

Service Manager

2

Introduction

I had the opportunity to work with a large financial institution to upgrade their Service Manager from

SM70 to SM920. This paper describes what we learned while going through the upgrade process

and the best practices and procedures for an upgrade based on this experience.

Prerequisites

This document does not replace the upgrade guide. Please follow all steps in the upgrade manual

when performing an upgrade.

The upgrade process

Required systems

Each Service Manager upgrade requires three distinct Service Manager instances to be successful.

The development instance is used to apply the initial upgrade, perform conflict resolution, fix issues

found during and after conflict resolution and then to create the custom upgrade. Creating the custom

upgrade is a repetitive process, with fixes done on the development instance and then recreating the

custom upgrade until no issues occur when applying that version of the upgrade. Due to this

requirement, the development instance has to have sufficient disk space to hold the initial upgrade

files as well as all the custom upgrade files, backups and unloads that are required for the upgrade.

The test instance is used to apply the custom upgrade to a fresh copy of the production data. This

upgraded instance is made available to stake holders and select end users to test the upgraded

system. Any upgrade issue reported against this system will be fixed on the development system and

a new custom upgrade will be created and applied. Enhancements and issues not related to the

upgrade should not be fixed at this time, but reported for fixing immediately after the upgrade process

is finished.

The production instance should not change during the entire course of the upgrade, from the first time

a copy is taken for the development system to the final time the custom upgrade is applied.

Process steps of an upgrade

Each successful upgrade starts with a strict tailoring / customization freeze of the production system.

Any changes other than changing data records in the production system will increase the risk when

applying the custom upgrade.

To assess the time and effort needed for the upgrade and conflict resolution, we strongly recommend

running an upgrade assessment through global services. The upgrade assessment will return with

information on how many conflicts were found, how many errors, and they will do the basic conflict

resolution consisting of Document Engine and Display Application. Basic conflict resolution needs to

be done before the detail conflict resolution to determine that basic functionality is available. If issues

occur in testing of basic functionality after the basic conflict resolution, these issues have to be fixed

before continuing with the other conflict resolution.

Once the upgrade assessment was received, time and effort for the upgrade project need to be

planned. Part of that planning will be:

 Will the upgrade be done by in-house personnel only or with the help of HP PSO or HP certified

partners?

 Will the customer try to get closer to out-of-box functionality for easier upgrades in the future or is

the goal to minimize training effort and stay with the old look-and-feel?

3

 When will the binary update of the production system take place and when should the final

upgrade of the production system happen? All other planning needs to happen with this goal in

mind, but the goal must be set realistically based on upgrade complexity and resources available.

In the example of the financial institution from the south east where I had the privilege of assisting with

the upgrade, a total of 900 conflicts (roughly 400 of which were due to a mass update of

FormatControl and easily resolved) were resolved by a team of 5 engineers within 3 ½ days. This

number is not a typical resolution rate and could only be done in this short time because the team was

very focused and committed and knew what tailoring was done for what reason.

One of the questions we faced was: Should conflict resolution be done by Object Type or by

Module? We started out by Module, but quickly switched to resolving conflict by object type, such as

FormatControl, finding that this method is much more efficient. We used the upgrade merge utility to

determine what has changed between the old and new records and learned that once you get used to

the XML representation of one tailoring table, it is easier to stay with this table until all conflicts are

resolved rather than switch between tailoring tables. As a best practice, we recommend resolving

conflict by Object Type based on this experience.

After the detail conflict resolution was finished, the custom upgrade is created and the post-upgrade

testing phase begins on the test system: Is the end-user functionality as desired? Are there any error

messages when performing any function? Did the look-and-feel change so much that end-user training

is required? The result of the post-upgrade testing will be changes that need to be done to the

development system and another custom upgrade will need to be created and applied to the test

system. This cycle repeats until all functionality is available as desired. A note of caution: Some error

messages may be caused by tailored functions not being compatible with out-of-box functions any

more. To fix this, it may be necessary to change a record that is not part of the upgrade set. To ensure

that these records will be pushed to the test system together with the upgrade files, create an unload

script record with all changed records that are not part of the upgrade set defined, and create the

unload immediately after creating the custom upgrade, then apply the custom upgrade to the test

system first, then apply the unload created from the development system. This way, you will not miss a

changed record when applying the upgrade to production later.

Once the upgrade is completely finished, most customers will have to perform an IR regen on their

production system, since it is recommended to run the upgrade with IR disabled. While the IR regen is

running, the system is not available to end users. To minimize the time the IR regen takes, we

recommend to

 Run vrir on a copy of production and determine which phrases to add to the stopwords file. This

minimizes the size of the IR files and decreases the amount of time the IR regen will run.

 Run multiple IR regens in parallel (test how many parallel runs will give the best results) by running

them through sm –util rather than the dbdict utility.

 Ensure to allow for sufficient “down-time” to finish the IR regens after the upgrade.

The final process step is to apply the custom upgrade and the unload with the additional required

records to the production system. The allocated downtime for the production upgrade needs to be

based on the detailed timing information gathered during the test runs and needs to include the pre-

upgrade work that still needs to be done, the upgrade itself, conflict resolution and the IR regen of all

IR files that are needed.

Planning stake holder involvement

One of the questions frequently asked is when and how to involve the stake holders, such as end

users, CAB, Incident, Problem, and Change Managers, the Configuration Management team etc.

Depending on the customer’s processes, the stake holders may have feedback on process changes,

form changes, or whether the Service Manager upgrade should stay closer to out-of-box or keep the

same look-and-feel. There are 5 distinct phases during the upgrade:

1. Upgrade planning

4

Here the stake holders can have a vote determining whether the upgrade should stay closer to out-

of-box or closer to the look-and-feel of the older version. They will have feedback on the upgrade

timing of the final production upgrade, too, so that the Service Manager system is not unavailable

during a time that the stake holders have to perform vital functions using Service Manager.

2. Upgrade Assessment

The upgrade assessment is done completely by the Service Manager team with the help of HP or

Partner resources.

3. Upgrading the Development system

The development system upgrade is nearly completely done by the Service Manager team as

discussed in these sub-topics:

o Applying the initial upgrade

This is done completely by the Service Manager team, possibly with the help of HP or

Partner resources.

o Basic conflict resolution

This is done completely by the Service Manager team, possibly with the help of HP or

Partner resources.

o Functionality test after basic conflict resolution

This is done completely by the Service Manager team, possibly with the help of HP or

Partner resources.

o Detail conflict resolution

This is done by the Service Manager team, possibly with the help of HP or Partner

resources. Stake holders may be asked for feedback on specific functionality to help

determine whether to use out-of-box or customer functionality. Stake holder

involvement here typically is minimal though.

o Create and apply the custom upgrade on Test

This is done completely by the Service Manager team, possibly with the help of HP or

Partner resources. This step is going to be done multiple times to test the custom

upgrade application and to note down timing, issues, unloads required. Each run will

be with a new custom upgrade created from the Development system.

4. Testing functionality and look-and-feel on the Test system

This is done nearly completely by stake holders and their representatives with assistance from the

Service Manager team. It is vitally important that the stake holders test all areas thoroughly and

report any issue, question or request to the Service Manager team with as much detail as possible.

The test phase is the longest phase of the Service Manager upgrade.

5. Applying the upgrade to the Production system

This task is done by the Service Manager team, possibly with assistance by HP or Partner

resources. The stake holders should have representatives on hand during the upgrade weekend to

verify that all functionality works as tested.

Stake holders should be available to the Service Manager upgrade team for questions regarding the

process and required functionality, but their main involvement is in testing the system once the custom

upgrade is built. Stake holders need to actively sign off on all areas of the system prior to proceeding

into the production upgrade.

5

Upgrade steps – detail

Upgrade server

and client binaries

Pre-upgrade

cleanup
Prepare IR files

Apply initial

upgrade on

Development

system

Basic conflict

resolution

Create copy of

Production for

Development

Test on

Development

system

Initial test and

fixing of issues

Detail Conflict

Resolution

Create Custom

Upgrade and

unload of any

other needed

records

Create copy of

Production for Test

Test custom

upgrade plus

unload on test

system, document

issues and timing

On Development

system, fix any

issues found

Found issues

to fix

Yes

No

Apply custom

upgrade and any

unloads needed to

production

Upgrade server and client binaries

As a best practice, change should be divided into manageable pieces. In the case of the upgrade,

there are two distinct pieces: the update of the server and client binaries and the upgrade of the

applications. As a best practice, update your binaries to the newer level well before the application

upgrade. Doing so will ensure that troubleshooting issues is more efficient, since we can be sure that

an issue that surfaces after the binary update must be related to the binaries, and an issue surfacing

after the application upgrade must be related to the applications.

Pre-upgrade cleanup

A lot of pre-upgrade cleanup can and should be done on a regular basis on the production system.

Files such as mail, msglog, syslog, errorlog should be archived and purged on a regular basis.

Eventin and eventout should be checked and cleaned up regularly, as should the schedule table. The

module tables, such as incidents, probsummary, cm3r, cm3t, ocmq, ocml, ocmq and their associated

activities, attachments, clocks etc. need to be archived regularly according to the companies archival

procedure.

6

All these files to clean up are mentioned in the upgrade guide. But what about the backup copies

created when changes were done? Often – as it is best practice to back up before you change –

these backup copies stay in the system for a very long time.

Search the dbdict utility for table names starting with SMSQL…. and remove these after making sure

that no data is missing. SMSQL… tables are created when a full table copy was necessary for a

dbdict change and are usually removed automatically afterwards. If the full table copy failed for any

reason, these temporary tables may stay in the system and need to be removed manually after

making sure that no data is associated to them. Check the RDBMS to verify that the tables associated

with the dbdict record are empty, if they exist.

Search all the tailoring tables such as dbdict, datadict, menu, scripts, triggers, ScriptLibrary, format,

formatctrl, link, displayscreen, displayoption, Object, States, and Process for backup copies created

for changes that have already been accepted and remove these backup copies.

IR regen preparation

On a copy of the production system run VRIR:

From a command prompt go to the Service Manager server RUN directory and enter the following:

sm -util

vrir

ir.<table name that contains IR key, such as probsummary, for a name of ir.probsummary>

continue these steps until you have checked all IR files.

C:\scs\sm920\Server\RUN>sm -util

HP Service Manager Database Exerciser

(Version: 9.20.021 Build: 021) [04/27/2011 11:45:59]

 add: add cls: close cnt: count

 del: delete dis: display fnd: find

 get: get nxt: next opn: open

 pat: patch prv: previous qbe: qbe

 reg: ir regen rst: reset

 rmv: remove upd: update vrir: verify IR

x: EXIT

Enter your choice: vrir

Validate an IR file

(Version: 9.20.021 Build: 021) [04/27/2011 11:46:05]

Enter fully qualified name for the IR file: ir.probsummary

IR validation succeeded. See log for details

 add: add cls: close cnt: count

 del: delete dis: display fnd: find

 get: get nxt: next opn: open

 pat: patch prv: previous qbe: qbe

 reg: ir regen rst: reset

 rmv: remove upd: update vrir: verify IR

x: EXIT

7

Enter your choice: x

C:\scs\sm920\Server\RUN>

If you have IR keys on tables that you do not use for IR searches (such as on the help table), remove

the IR key from that table instead of having to run the IR regen later.

Analyze the vrir results for words that are frequently indexed but do not contribute to a successful

search. In case of a financial institution, these may be numbers 1 (01) through 31 for dates, 2000

through 2011 for years, the words “bank”, “branch”, “account” etc. For an IT provider, these words

might be the dates as well, in addition to “computer”, “software” etc.

The following is an excerpt from vrir against an out-of-box system:
15388(15588) 04/27/2011 11:46:10 RTE I Term window is used in 3

Documents. Hash offset: 27147. File offset: 5247445

 15388(15588) 04/27/2011 11:46:10 RTE I Term laptop is used in 9

Documents. Hash offset: 27247. File offset: 5247000

 15388(15588) 04/27/2011 11:46:10 RTE I Term prefer is used in 1

Documents. Hash offset: 27266. File offset: 5247363

 15388(15588) 04/27/2011 11:46:10 RTE I Term incid is used in 15

Documents. Hash offset: 27304. File offset: 5247333

 15388(15588) 04/27/2011 11:46:10 RTE I Term 43 is used in 4 Documents.

Hash offset: 27433. File offset: 5246848

The terms laptop, prefer, incid and 43 can definitely be added to the stopwords list, since they do not

add any real value to the searches. Instead of the word laptop, the type of laptop (e.g. HP EliteBook

8530w) should be searched on, as an example.

Once the stopwords file is up to date on the test system, run the IR regens that are needed for

searches in parallel by performing the following commands:

C:\scs\sm920\Server\RUN>sm -util

HP Service Manager Database Exerciser

(Version: 9.20.021 Build: 021) [04/27/2011 11:45:59]

 add: add cls: close cnt: count

 del: delete dis: display fnd: find

 get: get nxt: next opn: open

 pat: patch prv: previous qbe: qbe

 reg: ir regen rst: reset

 rmv: remove upd: update vrir: verify IR

x: EXIT

Enter your choice: opn

Enter filename: probsummary

add: add cls: close cnt: count

 del: delete dis: display fnd: find

 get: get nxt: next opn: open

 pat: patch prv: previous qbe: qbe

 reg: ir regen rst: reset

8

 rmv: remove upd: update vrir: verify IR

x: EXIT

Enter your choice: reg

add: add cls: close cnt: count

 del: delete dis: display fnd: find

 get: get nxt: next opn: open

 pat: patch prv: previous qbe: qbe

 reg: ir regen rst: reset

 rmv: remove upd: update vrir: verify IR

x: EXIT

Enter your choice: cls

Run multiple IR regens parallel by starting the command from several command prompts at the same

time to save time.

A knowledge article describes the option on how to run IR regen on a separate system, in case

running it in parallel as outlined above still takes too long:

Article: http://support.openview.hp.com/selfsolve/document/KM781779

This article describes the procedure for running IR regens with these steps:

 configure IR asynchronously

 stop irqueue process

 take a backup

 install the backup on a test machine

 run the IR regen on a test system

 copy scirexpert records to production

 start irqueue process again on production.

In Detail, follow these steps to regen IR on test system and promote those changes to production:

Prerequisite: The production system must be configured to run IR updates asynchronously via the

ir_asynchronous parameter in sm.ini file.

1. 1. Stop irqueue process on production

2. 2. Take a backup of production (if taking backup should require downtime, be sure to start SM

without irqueue (comment it out in the sm.cfg file) and install that backup on a test environment

3. 3. Perform IR regen on the test environment, while production is running without the IR Queue

process. IR queries can still be run against the existing IR index. However, all updates will be

queued in the irqueue file and not be updated in the IR index at this time.

4. 4. When the IR regen on test is complete, stop the production system and replace the contents of

the scirexpert table of production with the contents of this table on the test system

5. 5. Start the production system – including the irqueue background process. Since the irqueue file

contains a large amount of records now, the irqueue process will work heavily until these records

are processed.

http://support.openview.hp.com/selfsolve/document/KM781779

9

Note: The scirexpert file keeps ir index for all dbdict that have an IR key. These IR indexes can be

identified by "filename" field in scirexpert dbdict. When you IR regen only one dbdict on the test

system, and the irqueue process is not running, the scirexpert records for the other dbdicts in test and

production will not be modified and be identical. So you only need to delete scirexpert records of this

filename and replace them with the ones of the test system.

Note: As running IR regen is a time demanding task, it would be a perfect opportunity to tune the IR

index. This is described in Diagnostics and Tuning whitepaper. Especially the stop word files can be

enhance IR expert performance a lot. However, as this file applies to all IR indexes, this would require

ir regen of all dbdicts with an IR key.

Documentation of upgrade decisions and timing

I have added the documentation as an extra essential step of the upgrade process, because – while it

is not a requirement to run the upgrade – it is a requirement for a successful and on-time upgrade

project. The upgrade process is being run several times on different systems. Each time, every

decision and the timing of each sub-step needs to be documented. In a conflict, for example,

document whether you used the out-of-box or custom record, or if you merged functionality from both,

write down in great detail which function you added to which record and at what place. When

resolving issues, write down exactly what the issue was, what was done to fix it in which record, and

ensure that the record is either part of the signature set and will be in the upgrade files, or add the

record to the unload script utility used to unload all other impacted records to load into the test and

production systems.

The timing needs to be documented, to be able to plan the upgrade of the production system

precisely, to ensure that everyone needed will be available on time and to ensure that the upgrade

does not have to be rolled back because the outage window was exceeded.

The following parameter should be added to the sm.ini during the upgrade process (apply and create

upgrade, both):

sessiontimeout:240

This parameter defines the number of minutes that the server waits for a client heartbeat signal before

the server assumes that the client session has timed out and closes the connection. A value of 240 sets

the timeout to 4 hours (240 minutes), a period that should be enough for an upgrade phase to

complete in a typical scenario. If your upgrade takes longer than 4 hours, adjust this parameter

accordingly. Failure to setting this parameter may result in a failed upgrade due to session timeouts.

Basic conflict resolution

As a best practice, conflict resolution is divided into two parts:

 Basic conflict resolution, which includes Display Application, Document Engine and RAD

 Detail conflict resolution, which includes all other tables.

The basic conflict resolution handles the base tailoring engines that determine the workflow within the

modules. Issues created here will impact larger areas of the product and need to be addressed first. In

the example of the customer I was working with, 161 basic conflicts needed to be addressed (5 RAD

applications, 110 displayoptions, 5 displayscreens, 8 Objects, 0 States, and 33 Processes). One

common question we are asked is: How long does conflict resolution take per record? We timed the

basic conflict resolution on this system and found that on average, resolving the conflicts for each

record took a little over 10 minutes.

Initial issue resolution

After basic conflict resolution, any issue found using base functionality in any of the modules needs to

be addressed and fixed. This may include modifying items that were not in the signatured and

10

upgraded items and may include items that are not in the tables that were addressed during basic

conflict resolution. For example, if a customer decides to not use the escalate functionality but continue

to use the options > relate > open functionality instead, some variables and Processes need to be

adjusted to re-allow the old functionality while taking advantage of other new features. Running traces

using RTM:3 and debugdbquery:999 is most helpful to find the underlying root cause of any issues

encountered in this step.

Examples of work done during initial issue resolution:

New search screen:

The customer had the following issue on the FilterAdvFind search screens when trying to select a

different module / table to search on:

Message tablename - <table name> Could not be found:

The reason for this message was that copies of the records in the SearchConfig table were created as

<tablename>ORIG. These tables were not found as records in the Object table, causing this error

message in the search screen table selection. The error was fixed by removing the backup copies

from the SearchConfig table, which was not a signature table during this upgrade.

Opening a change from an incident caused an error message:

When trying to open a change from incident management the message “category not found” was

issued.

The out-of-box system tries to open changes from Incident Management using the Default category that

the customer had disabled in their implementation, using other category names instead.

To fix the issue in this situation, we changed the pre-RAD expression on process

screlate.cm3r.category from

category in $L.file=nullsub(category in $L.file, "Default")

to

category in $L.file=nullsub(category in $L.file, "RFC")

During the initial issue resolution, form and formatcontrol issues are not yet looked at, just basic

functionality, error messages, buttons not working. All other issues are looked at and addressed when

conflict resolution was finished.

Detail conflict resolution

In this step, all other conflicts are addressed: formats, formatcontrol, links, menus etc. While using the

upgrade merge utility saved a lot of time determining what has changed between the out-of-box and

customer version, we found that conflicts on the link records took longest to reconcile, due to the

complexity with the main link page and the link line page. While link records took about 20 minutes

to reconcile, all other records took between 5 and 10 minutes on average. Please note that the

upgrade merge utility can only be used to view, not to actually merge the records in the currently

available upgrade utility versions.

Detail conflict resolution will take several days to weeks, depending on how many conflicts exist and

how many resources are available to address these conflicts. Even though it is exhausting work,

staying focused during this upgrade step is vital and will pay off in a smooth and fast upgrade

project.

The following table shows how many records had to be looked at during detail conflict resolution,

sorted by Object Type and Module:

Row Labels
Count of
Module

11

datamap 1

Request 1

erddef 2

Helpdesk 2

eventmap 7

Config 7

eventregister 3

Config 1

Helpdesk 2

extaccess 9

Change 2

Config 3

Helpdesk 3

Problem 1

format 135

Base 30

Change 13

Config 9

Helpdesk 51

Problem 12

Request 20

formatctrl 473

Base 188

Change 51

Config 54

Helpdesk 83

Problem 10

Request 83

SchedMaint 4

help 4

Change 1

Helpdesk 3

info 2

Base 2

joindefs 3

Config 2

Helpdesk 1

link 38

Base 10

Change 5

Config 3

Helpdesk 8

Problem 2

Request 10

menu 7

Base 4

Helpdesk 2

12

Request 1

notification 18

Change 1

Helpdesk 10

Problem 2

Request 5

ocmoptions 3

Request 3

scmessage 12

Base 8

Helpdesk 1

Problem 2

Request 1

ScriptLibrary 2

Base 1

Helpdesk 1

scripts 1

Change 1

svcCatInterface 6

Helpdesk 6

triggers 1

Config 1

tzfile 7

Base 7

validity 4

Change 3

Request 1

Grand Total 779

Test of basic functionality and issue resolution

After finishing the detail conflict resolution, all functionality has to be tested by the development team

to ensure that no errors occur. Usability and functionality testing are done against the custom upgrade

later. This test is to ensure that basic operations: Search, add, update, close / delete work without

errors.

For example, if the customer added the functionality of change activities in Service Manager 7.0 and

the functionality was added to the out-of-box system afterwards, the customer may have made

modifications to their custom forms that were not part of the out-of-box system. To accept the out-of-

box activity functionality though, these forms may have to be adjusted to use the out-of-box inputs and

variable names and these changes have then to be ported to the production system with the upgrade.

It is very important to note, though, that additional tailoring and implementation of tailoring

enhancements are not ever to be part of the upgrade process. Adding this additional work lets the

upgrade project run out of scope and out of time quickly.

Create Custom upgrade

After the basic testing and issue resolution by the development team, the first custom upgrade needs

to be created.

Two common issues when creating the custom upgrade:

13

1. Make sure that client side load / unload is turned off. Go to Window > Preferences and uncheck

the client side load /unload checkbox. Click OK to confirm.

2. A note in the upgrade guide needs to be read and followed to ensure that the upgrade creation

creates all files needed:

Important: You must create a data directory within the upgrade area when doing a custom

upgrade

Another recommended setting to do prior to creating the custom upgrade is increase the

sessiontimeout parameter in the sm.ini from its default of 30 minutes to a higher number such as 240,

as mentioned before, to avoid running into session timeouts, causing the upgrade creation to fail.

Once the custom upgrade creation was run, ensure that you have the following unload files in your

custom upgrade directory:

\CustomUpgrade (The content of this folder should be the same for every upgrade):

Detail.log

extaccess.unl

preupg.bin

sqlupgrade.unl

transfer.bin

transfer.log

upgdbdct.dta

upgrade.inf

upgrade.log

upgrade.mak

upgrade.str

upgrade.ver

\CustomUpgrade\data (The content of this folder will differ from upgrade to upgrade. The list here is

from a Service Manager 7.00 to Service Manager 9.20 upgrade):

upgradeactivityactions.dta

upgradeactivitytype.dta

upgradeAlertDef.dta

upgradeapplication.dta

upgradeapplicationfields.dta

upgradeApprovalDef.dta

upgradeauditspecs.dta

upgradecapability.dta

upgradecascadeupd.dta

upgradecategory.dta

upgradecirelationshiptype.dta

upgradecivisualizationadmin.dta

upgradecivisualizationcat.dta

upgradecivisualizationdecorator

.dta

upgradecivisualizationdevice.dt

a

upgradecivisualizationlabel.dta

upgradecivisualizationline.dta

upgradecivisualizationrelationshi

p.dta

upgradecm3groups.dta

upgradecm3messages.dta

upgradecm3profile.dta

upgradecm3category.dta

upgradecm3catphase.dta

upgradecmcontrol.dta

upgradecode.dta

upgradecompany.dta

upgradecontractcategory.dta

upgradecounters.dta

upgradectenv.dta

upgradecurrency.dta

upgradedatamap.dta

upgradeddescript.dta

upgradeddmRule.dta

upgradedevtype.dta

upgradedisplayevent.dta

upgradedisplayoption.dta

upgradedisplayscreen.dta

upgradeenclapplication.dta

upgradeenclapplrev.dta

upgradeenvironment.dta

upgradeerddef.dta

upgradeeventmap.dta

upgradeventregister.dta

upgradeextaccess.dta

upgradeextactions.dta

upgradeformat.dta

upgradeformatctrl.dta

upgadegloballists.dta

upgradehelp.dta

upgradeinbox.dta

upgradeinfo.dta

upgradejoindefs.dta

upgradekmattachments.dta

upgradekmdoctype.dta

upgradekmgroup.dta

upgradekmhitlisttemplate.dta

upgradekmknowledgebase.dta

upgradekmmapping.dta

upgradkmprofile.dta

upgradekmstatus.dta

upgradekmstopword.dta

14

upgradeknownerrorcat.dta

upgradeknownerrorphase.dta

upgradelanguage.dta

upgradelink.dta

upgrademacrodef.dta

upgrademenu.dta

upgrademsgclass.dta

upgrademsgtype.dta

upgradenotification.dta

upgradenumber.dta

upgradeObject.dta

upgradeocmoptions.dta

upgradepatcortadmin.dta

upgradepmenv.dta

upgradeproblemtype.dta

upgradeProcess.dta

upgradeproducttype.dta

upgradequerygroups.dta

upgradequerystored.dta

upgradercenv.dta

upgradereport.dta

upgraderootcausecat.dta

upgraderootcausephase.dta

upgraderootcausetaskcat.dta

upgradescmessage.dta

upgradescrelconfig.dta

upgradeScriptLibrary.dta

upgradeScriptPackage.dta

upgradescripts.dta

upgradeSearchConfig.dta

upgradeslacontrol.dta

upgradeslamodulecontrol.dta

upgradeslaprofile.dta

upgradesoatypes.dta

upgradeStates.dta

upgradesubcategory.dta

upgradesubtotals.dta

upgradesvcCatInterface.dta

upgradesvcCatSTatusFieldMap.

dta

upgradesvcCatStatusMap.dta

upgradeSYSATTACHMENTS.dta

upgradeSystemEvents.dta

upgradeTodoMap.dta

upgradetriggers.dta

upgradetzfile.dta

upgradeuimcachedimages.dta

upgradeuimcompdefcategories.

dta

upgradeuimcompdefcatscdefs.dt

a

upgradeuimcompdefinitions.dta

upgradeuimevents.dta

upgradeuimorigins.dta

upgradeuimpagecategories.dta

upgradeuimpagecatspages.dta

upgradeuimpages.dta

upgradeuimuserpagecontent.dta

upgradeuimuserpreferences.dta

upgradeupgradereconciliation.d

ta

upgradevalidity.dta

upgradewizard.dta

Apply custom upgrade

Follow the instructions on how to apply the custom upgrade. It differs from applying the out-of-box

upgrade in the following steps:

1. Use all files from the custom upgrade folder, including transfer.bin and preupg.bin

2. When prompted with “Are you going to use this system to create an upgrade?” choose “No” for

the answer

3. Use the path to the custom upgrade files (including the \) when prompted for the path

4. When asked which version of the object to choose, rather than choosing the recommended “Install

the Service Manager version of the object alongside your own (recommended) chose the option to

“Replace your version of the object with HP’s version of the object”

For each test run, note how long it takes to apply the custom upgrade, so you will know how long the

production system will be unavailable during the production upgrade. You can check the log file for

an estimate if you are not available to write down the exact times.

Test custom upgrade

During this step, the stake holders will log in to the test system that the custom upgrade was applied to

and test all functionality in detail. They will report any issues (and possible enhancements) to the

Service Manager upgrade team. During the test phase, every aspect of the system needs to be tested

by the stake holders, including integrations using Web Services, Connect-It, and SCAutomate.

15

Additionally, ensure that the stake holders test their reporting solutions to see if all operational reports

still return valid results.

Apply changes to development system to create new custom upgrade

This step will largely run parallel to the test custom upgrade step. While the stake holders report

issues, the Service Manager development / upgrade team will fix these issues on the development

system. In regular intervals, a new custom upgrade will be created from the development system and

applied to the test system for the stake holders to retest and verify. Once no more issues are found,

that final custom upgrade will be used to apply against production. Important: Test the upgrade for

timing and note down the exact timing each step takes when applying the last custom upgrade to the

test system, since this information is vital for a successful application to production.

Apply custom upgrade to production

The big weekend has arrived to apply the upgrade to the production system. Based on the timing

recorded during the application of the custom upgrade to the test system, the upgrade team is

available and stake holders are on call for a final test. Since applying a custom upgrade was tested

several times, it is very important to stick with the script – do not try to skip or add steps that were not

tested prior. The script to stick to was created during the prior custom upgrades.

The cleanup of old data should have been done prior to the upgrade weekend, by creating scheduled

purges of data and removing backup copies early on in the process, so that even new copies of

production needed for new test systems did not have to do the cleanup repeated every time.

Applying the custom upgrade to the production system then does not differ from applying it to the test

system. If anything else on the production system changed, such as the OS was upgraded, a new

machine is used, etc. ensure that a proper load test was run prior to going into production. You need

to make sure that the JVM options for the Service Manager servlets are optimal for the amount of users

you expect to have active at the same time. Refer to the Service Manager sizing guide for guidelines.

Useful Tips and Tricks

Prior to upgrade

 Ensure to remove all backup copies of records from the production system

 If not done so already, regularly purge supporting files that are not required for reporting

 If you plan to change the OS or hardware, run a load test for the average and maximum load you

expect to have on the system, adjust performance parameters according to the findings

 Do the update of the binaries a few weeks prior to the application upgrade to be able to

troubleshoot any issues piece by piece.

During initial upgrade

 Turn off client side load / unload on the Windows client used to run the upgrade

 Turn off IR (ir_disable:1) on the development system

 Keep the sm.log, upgrade log files and the client messages from the messages window for later

troubleshooting

 We found that index problems on the underlying database cause error messages on screen and in

the sm.log that need to be fixed immediately, otherwise these issues can compound and get worse.

If during the initial upgrade an index problem is found, ensure to fix this issue on the production

system as well, otherwise the issue will hinder any upgrade from this point on. These error

messages are similar to these:

RTE E Error: SQL code=1 message=ORA-00001: unique constraint (FALCON.UPGRESULTSM1_P)

violated

16

RTE E Error: SQL code=1 message=ORA-00001: unique constraint

(FALCON.NOTIFICATIONM1_P) violated

If you try to update these indexes (alter) on the RDBMS and it fails, it is an indication that the index

on the RDBMS is corrupt and they need to be dropped and re-created. The help of a DBA may be

necessary in that case.

During conflict resolution

 Make use of the upgrade merge utility to determine what is different between the old and new

renamed records. Do not use the merge utility to remove the conflict, but rather use the correct

tailoring tool (format control, forms designer, etc.) to resolve the conflict

 Document in detail each decision you made during conflict resolution. If you merged old and new

functionality, describe in detail how it was merged, if you choose the old or the new record,

document which one you chose and why

 In resolving Process conflicts, it may be necessary to insert a RAD application at a location other

than at the end to ensure the application flow is still correct. To do so, enter the following command

in the RAD debugger while viewing the Process record in database manager:

x rad in $L.file= insert(rad in $L.file,Y,1,{[]})

where Y is the position (start counting at 1) where the new RAD application needs to be inserted.

 In resolving link conflicts, if you need to insert a new line, select the line beneath the line to insert

and choose the insert line option.

 For formatcontrol conflicts, choose the insert line option with the cursor set in the line beneath the

one to insert.

 Do not do additional tailoring while doing conflict resolution, but do make sure to add all records

required for issue resolution to a single unload script record that is run immediately after the create

custom upgrade. Doing even small amounts of additional tailoring will take additional time in both

doing the tailoring, adding the unload, and of course testing the additional change, putting the

upgrade process at risk.

During creation of the custom upgrade

 Ensure to have client side load / unload turned off on the windows client used to create the custom

upgrade

 Set the sessiontimeout parameter in the sm.ini to 240 or higher and restart the Service Manager

server prior to starting the creation of the custom upgrade.

 Create the data directory in your custom upgrade directory to ensure that all files are created

 Ensure that all files were created based on the list in this document. Once all files were created the

Windows client will show the message that the upgrade was successfully created.

During application of the custom upgrade

 Note down all timing and all additional steps necessary to have a clear idea on how long each

step takes

 Document all conflict resolution steps in detail to be able to just follow pre-written instructions and

do not have to spend time researching how to resolve a conflict.

17

Appendix A – Sample upgrade planning sheet

Proper documentation and timing are crucial to upgrade success. Below is a sample upgrade plan

from a customer upgrade:

Pre- Upgrade Task Duration Comments/Notes

Email Notifications for Productions
Weekend

Change Request Submitted and Approved

Release Request Submitted and Approved

Team Signoff for Production

Install SC Auto on Production TEC Server

CSR for Desktop Client Installation

Install ServiceManager 9.21 to production

Copy SM 7.02 production to SM 9.21 server

Install the web-tier and point to SM 9.21
production

Install TEC component of New SM production
server and Test

 This is just testing connectivity
betweem TEC and
ServiceManager

Point Dev/Test Connect.IT to New SM 9.21
box and testing some senarios.

 This is to test connectivity
between ServiceManager and
Connect.IT. Will also outbound
email notifications and data
loads.

Final Custom Upgrade Task Duration Comments/Notes

Email to Sys Admins No changes the system except
add users inactive users,
Group membership additions

Log in to the AIX Unix and create the
customupgrade folder

 Note: A folder called
"customupgrade" might already
exist from the previous custom
upgrade build. This should be
renamed out of the way and
another created. Also create a
data folder within the custom
upgrade folder

Using chmod command, grant read, write
access to the customupgrade folder

10min chmod -R 4777 customupgrade

Ensure custom upgrade folder is empty. Rename the current custom
upgrade folder

comment out all lines in the sm.cfg and
sm.ini

Disable ir regen

Stop and Re-start SM 9.21 Dev system
with latest changes

Logon to SM 9.21 Dev

Make sure that the Client side unload is
unchecked

Logon to SM 9.21 Dev

Remove upgradetoc dbdict

18

Run smupgrade in the Service Manager
client command box

30min

1. Service pack

2. Create an upgrade

3. De-select all languages

4. Type SM7 for the current version

5. Type fully qualified path for the
CustomUpgrade Directory :
/servicemanager/customupgrade/

6. Which Patch should be used for the
build : SM 92

7. Take which action : Complete
Upgrade Build

8. No - Internal logging

9. Start Upgrade Build

review messages to make sure there is
nothing expect duplicate keys for
notifications files. Keep copy from sm.log if
necessary.

10min check upgrade, detail and
exception logs in
CustomUpgrade folder

Verify the number of files in the
customupgrade/data folder

10 min Should be 123 files

Copy custom upgrade folder to the new
production SM 9.21 server box

10min

Apply Custom
Upgrade in
Production

Est.
Duration

 Actual
Duration

Start
Time

End
Time

Comments/Notes

Apply custom
upgrade

Shutdown
Production
system - all
servers

12:01AM 12:30
AM

Shutdown
Reporting
Services

12:01AM 12:30
AM

Backup Production
SM 7.02 System
and copy to SM
9.21 on

120 min 12:30
AM

2:30AM

Reset log and
status data

Start up Production
SM 9.21 System in
single user mode

 2:30 AM

Cleanup : Ensure
that the following
record are deleted:

1. SMSQL*
and upgraderesult
tables. Delete also
through the dbdict

Restart SM because of the
possible DB loop due to the
delete of SMSQL* tables

19

back-end

2. datadict Using database manager -
remove all *.xxx* and *yyy*

3. dbdict

4. format xxx: 233; yyy: 10 (renamed
xxx.guess.release.edit to
nnn.guess.release.edit); do not
delete
nnncommonprob.xxxnosel.user

5. formatctrl xxx: 72; yyy : 6 (exclude
nnncommonprob.xxxnosel.user)

6. links xxx: 62; yyy:4

7. menu xxx: 11; yyy:0

8. Process xxx : 20; yyy:0

9. Objects

10. State

 11. Scripts
Library

xxx:14; yyy:0

12. scripts xxx: 8

13. triggers xxx :3

14. validity

15.
notification

xxx:3

16. Delete
clocks with date
less than
01/01/2010

close.date>'01/01/10'

Verify the list of
SQL system table
mappings

 See page 20 of the Upgrade
Guide. Could not find
rootcausephase and
knownerrorphase tables

Update the SQL
system mapping for
the sytemperform
table

See page 21 of the Upgrade
Guide

Verify that all data
policy records have
an SQL Base name
Value

See page 22 of the Upgrade
Guide

Increase the length
of fields for
Problem
management

See page 24 of the Upgrade
Guide

Copy the Service
Manager
application
Upgrade Utility

See page 27 of the Upgrade
Guide

20

Prepare sm.ini and
sm.cfg files

 Update the configuration file
(sm.cfg as in page 36) and
Initialization files as in page 37

Purge existing
upgrade files

 Type *aapm.upgrade.purge on
the SM client command box

Load the
application upgrade
files

See page 38 of the Upgrade
Guide

Turn off
background
processes

Manually modify
the SQL Mapping
on the
systemperfom table

 Add n1 alias to the
NULLTABLE as per Dev
system

uncheck client side
unload

Modify sm.ini and
sm.cfg
configurations

Allow sessiontimeout and
ir_disable:1

Run the Application
Upgrade: Type
smupgrade

50min
Follow steps from page 44 of
the Upgrade guide

1. Click
SERVICE PACK

2. De-select all
the languges

3. Produce
full-qualified path to
the custom upgrade
directory

4. Choose to
Replace version of
the object with HP
SM version of the
object

Make sure that the
notification file is
unique on the ID
field

 This will happen in the middle of
the upgrade run: Sort
notifcation record based on the
ID field. Visibly identify
duplicates and make unique by
perfoming a mass update of the
duplicates using this query: id in
file=id in $file + name in $file.
Also OLDSM7RM Request
Open Next Phase

View Upgrade Logs

Post Upgrade

shut down system

21

sm.ini- reverse pre-
upgrade changes

sm.cfg- reverse
pre-upgrade
changes

shut down system

Reload WSDL in
HPSM

Point Business
Object to new
Reporting DB

Start Production
System

Non Standard ports for testing

Change Incident
Environment -
Check and uncheck
Delay assignment
of numbers

Deleted extra
display option for
cc.first (gui=7)

Deleted extra
display option for
cc.edit.incident
(gui=906)

Run ir regen for the
following files:
 - rootcause
 - probsummary
 - incidents
 - ocmq
 - ocml
 - ocmo
 - cm3r
 - cm3t
 - knownerror

Notify user test
team

once initial testing is successful

Customer testing

Integration
Connection and
Testing:

Tivilo TEC

Connect.IT

go-no go decision based on issues found

Go-live complete

total estimated
outage duration

22

Actions to be Taken - Backout Est.
Duration

 Actual
Duration

Description

Re-Start Production system - all
servers and interfaces

Restore SM 7. database 30 This might not be
necessary since no
change has been made
to the database since
the last backup.

Reset log and status data 5

Start Production System with normal
scripts

For more information

Please visit the HP Software support Web site at:

www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that

HP Software offers.

HP Software online software support provides customer self-solve capabilities. It provides a fast and

efficient way to access interactive technical support tools needed to manage your business. As a

valued customer, you can benefit by being able to:

 Search for knowledge documents of interest

 Submit and track progress on support cases

 Submit enhancement requests online

 Download software patches

 Manage a support contract

 Look up HP support contacts

 Review information about available services

 Enter discussions with other software customers

 Research and register for software training

Note: Most of the support areas require that you register as an HP Passport user and sign in. Many

also require an active support contract.

To find more information about support access levels, go to the following URL:

www.hp.com/go/hpsoftwaresupport/new_access_levels

To register for an HP Passport ID, go to the following URL:

www.hp.com/go/hpsoftwaresupport/passport-registration

Technology for better business outcomes

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial
errors or omissions contained herein.

Linux is a U.S. registered trademark of Linus Torvalds. Microsoft and Windows are
U.S. registered trademarks of Microsoft Corporation. UNIX is a registered
trademark of The Open Group. JavaScript is a registered trademark of Sun
Microsystems, Inc. in the United States and other countries. Oracle is a registered
trademark of Oracle Corporation and/or its affiliates

http://www.hp.com/go/hpsoftwaresupport
outbind://126/www.hp.com/go/hpsoftwaresupport/new_access_levels
outbind://126/www.hp.com/go/hpsoftwaresupport/passport-registration

