HP Software

Unified Correlation Analyzer for Topology
Based Correlation V1.2

User Guide

Edition: 1.0

For the HP-UX (11.31) and Linux (RHEL 5.2) Operating Systems

June 2011

© Copyright 2011 Hewlett-Packard Company

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial
errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor's standard commercial license.
Copyright Notices

© Copyright 2011 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc.
in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® , Windows® and Windows NT® are U.S. registered trademarks of Microsoft
Corporation.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.
UNIX® i1s a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company
Ltd. in the UK and other countries.

Contents

PrETACE ... 9
Chapter 1 INtrodUCTIONuuiiiiiiiiiiiiiiiiiii e 12
Chapter 2 QUICK Start GUIAEccooieeiiiiiicce e e 14
2.1 SEAIM-UD oo 14
2.2 Basic System Configuration...........occeeiiiiiiiiiiiiiiic e 16
2.3 SRULHOWN ...ttt 16
Chapter 3 System DeSCriPiONccccooiiiiiiiici e 17
Bl StAE MESH e e e 17
3.2 MeSh ODJECES ..o 18
3.3 Mesh Object Relationships ..o 18
3.3.1 Composition or Parent-Child............cccccoiiiiiiiiiiiiie e 19
3.3.2 Aggregation or UnNcle-NephReW.........ccooiiiiiiiiiie e 19
3.3.3 ASSOCIALION OF PEEI-PEEToviiiiiiiii et 19
3.34 Specialization..........coooe i 20
I |V =7 = o T To 1= SR PPRRR 20
3.5 Model Builder and Model Database............cooiviiiiiiiiiieiiieie e 21
3.6 Example State MeSh ... 22
3.7 Data Collector and Event Manager...........ccccceeeeeeeeiiieiceceeeeeeeeeeeeeeee, 24
3.8 Affected ODJECES....ccooi i 25
3.9 INTErENCE ENQINEiiiiiiiiiee e 26
3.10 Notification Manager and Remote Handler.............cccccoiiiiiiiii e 29
Chapter 4 The UCA Home Page and System Managerccccccceeeeeennnn.. 30
4.1 Starting the Tomcat ‘Minimal Web Server’cccoiiiiieiiiiieeeiee e, 30
4.2 Starting the SyStem MaNAGETcoiuiiiiiiiiiie e 30
4.3 Adding, Modifying and Deleting USErS...........uuuiviiieiieeieieeieeeeeereeeeeeeeeseseneseennene. 32
A4 SEArtiNG UCA .ttt e e e e e e 34
A5 SEOPPING UCA L.t 35
4.6 Configuring the Metamodel............cooiiiiiiii e 35
4.7 Loading Data into the MOdel ... 36
T B I = To | g [0] 1 ox J TP PPTTT PR 36
e T |V = V1 (= = g o] TSRS 38
0 0 1o o S 40
Chapter 5 Defining the Metamodelccooooiiiii e, 45
5.1 Example Class MOGEloooiiiiiiiiiiii e 45
5.2 AULOMALIC CrEALIONoiiiiiiiiiiiiiie et s 46
5.3 ManUal CreatiONcoiii ittt e e e a e e a7
5.4 Metamodel Design Patterns.coooiiiiiiiiiiiiiiiieie e 53
54.1 EQUIPMENE TTEE ...eeeeiieeieee ettt e e e e s e e e e e e s st e e e e e e e s nnnnnes 53
5.4.2 NOFMALISE ...ttt 54
5.4.3 LINK HANAIET ... e 56
5.4.4 PhySical-LOgICal VEEcooiiiiieiiiie et 57

Chapter 6 Creating the Model Database Using the System Manager....... 58

6.1 Generating the Model Database Structurecccccceeeeviiciiieeeee e 58
6.2 Populating the Model Database..........ccevvvieeiiiiiiiiiiiec e 60
6.2.1 INitial POPUIALION.coiiiiiii i 60
6.2.2 Updating the Databasec..oooiiiiiiiiiiiie e 62
Chapter 7 The UCA ApplicationS.........cooovviiiiiiiieccceeeien e 64
7.1 The SCEeNArio MANAGETcoiiiuiiiieiiiiie ettt e sttt ib e e s aaneee s 64
7.1.1 Value Pack Tabs Barcooiiiiiiiiiiieie e 66
7.1.2 MENU BT ... s 66
7.1.3 L1010 I == L PSPPI 68
7.1.4 Scenario BUIAEr TIEEeiii ittt 69
7.1.5 Scenarios, Filters, Mappings and Rules Summary List...........ccccceviineennns 70
7.1.6 SEAIUS BaI ... 70
7.2 The MESH VIBWETceiiiiiiiiiiiiee ettt e e e 71
7.2.1 MENU BAI ... et 71
7.2.2 10T =T T SRR 72
7.2.3 MOAEI TIEE ...t e e e e e anaes 73
7.2.4 MESH OBJECT LISt ... 74
7.2.5 Notifications Viewer Dialogocviieiiiiieeiiiiiee e 75
7.2.6 SEATUS BAI ..o 76
Chapter 8 Creating Scenarios, Filters, Mappings and Rules 77
S 0 I o T o - 4 o PP 77
S {1 (= £ PR 78
8.2.1 Using user-Defined event fields in a filter...........ccooooooiiiiiieiiiiiiiiciiccceeece, 81
8.2.2 F N g = g Te Lo T 11 (= £ T PP PPPPPPNt 81
8.2.3 Using the Regular Expression Wizard with Filters............cccoococeiiiiennnn. 82
SR B |V = o] o 1T [S PRSP PRSPPI 84
8.3.1 Using the Regular Expression Wizard with Mappings........ccccoeeeviieiiiiiinnnn. 88
B4 RUIBS ... e 90
8.4.1 Key Value Pair CONAItIONSccooiiiiiiiiiiieeeiiee e 93
8.4.2 Rules and user-defined event fieldsccccveeiiiice e 94
8.5 RUIEIEMPIALES ..o 94
8.5.1 Templated RUIES.........oovviiiieeeieeeeeeeeeeeeeeeeeeeeee ettt aeeaaaeees 94
8.5.2 U ST £ PSR 96
8.5.3 USING 8 TUIESEL ...t 97
8.5.4 Generating the rules from the rule template ... 97
8.6 Deploying Scenarios, Filters, Mappings and Rulescccccceeiiiiiiieenenenn, 97
Chapter 9 Configuring Rules and ACtIONSuuuuiiiiiiiiiiiiiiiiiiiiiiiiianene 99
0.1 FOMMAL..cc i 99
9.1.1 SHUCKUIE ... 99
9.1.2 RUIE CONAItIONS......eieiiiiiee et s e e e e e s s s raeer e e e e e e ennnees 100
9.1.3 o 1o] PSS 102
9.2 Example RUIES @Nd ACHIONSccocoiiiiiiiiiiie et 104
9.2.1 Correlation Scenario - DTV Site Power Failureccccceiiiiiiiiiieennenn, 104
9.2.2 Correlation Scenario - DTV Service IMpact.........c.cooccvvvveeeeeeesiicciiiieeeeeeenn 123
9.2.3 Correlation Scenario - DTV MainteNanCec..ceovivveieiiiieeenniieee i 126
Chapter 10 Alarm INtErfaCescoooii i 127
10.1 Local SOCKEet INtEITACEeoviiiiiiiiiiiiie e e 127

10.2 WeD Service INTEITACE........uuiii i e e eeaaee 127

10.3 SuppOrted EVENE MESSAQESceieiiriiieiiiiiee ittt ettt ettt e e e e aeneee s 128
10.3.1 User-defined event fieldsccuuviiiiiii i 128
10.3.2 EVENEMESSAQE ... iiiieeiiiiii ittt ettt e e e e e e e e e eaaee 128
10.3.3 Event State Change MESSAQEScevveeeiiiiiiiiiiieee e e s it e e e e e e ssrraneeeaa e 131
Chapter 11 Data and calculator ObJecCtS................uuuuiiiiiiiiiiiiiiiiiiee 134
11.1 DATA OBJECTATTRIBUTES......coititiiiieitieniie sttt 134
11.0.1 RAW DATA ettt et be et s b et b e 134
11.1.2 DERIVED DATA ..ottt snee et neeeneeeneeas 134
11.1.3 LAST CHANGE REASONooiiiiiiiiiieiiiieiie et 135
11.1.4 BASE CLASS. .. .ottt b e 135
11.1.5 UNIQUE REFERENCE........cccciiitiitiiiieiie ittt 135
11.1.6 TIMER STATE ..ottt e e e e e e e e e e eeaanes 135
11.1.7 TIMER STATE CHANGED ...t 135
11.2 DATA OBJECT LIFECYCLE.. ...ttt 135
11.2.1 INITIALISE DATA OBJIECTooiitiiiiiiieitiesiee sttt 136
11.2.2 POPULATE RAW DAT A ettt e e e e e eeaaaen 138
11.2.3 POPULATE DERIVED DATA ..ottt e e a e eeaaae 138
11.2.4 DATA OBJIECT ACTIONSoiiiiiitieiie ittt 138
11.3 CALCULATOR OBJECT LIFECYCLEcoiiiiiiiiiieiee e 139
11.3.1 CALCULATOR CONFIGURATION ...coiiiiiiiieeeee, 140
11.3.2 CALCULATOR ACTIONSt e s e e e eeaane 141
11.4 EXAMPLE DATA OBJECT SCENARIOcccoiiiiiieiieriee e 142
11.4.1 EXAMPLE RULE CONDITIONS FOR ‘CREATE DATA OBJECT 142
11.4.2 EXAMPLE RULE CONDITIONS FOR ‘REFRESH DATA OBJECT 142
11.4.3 EXAMPLE RULE CONDITIONS FOR ‘PERFORM CALCULATION'....... 143
Chapter 12 StatiStICScccoiiiiiiiie e e 144
12.1 STATISTICS OBJIECT ..ciiiiiiii et e e e e e e a e e e e e e eeaenen 144
12.1.1 VIEW IN WORKING MEMORYiiiiiiiiiiiee i 144
12.1.2 INHERITED DATA OBJECT ATTRIBUTESccceiiiiiiiieiieieeee e 145
12.1.3 REFRESHING THE STATISTICS OBJECToeioiiiieiie e 146
12.1.4 RAW AND DERIVED DATA ...ttt e e a e e e 146
12.2 STATISTICS OBJECT AND RULES ..., 147
12.2.1 EXAMPLE: USING A STATISTICS OUTPUT FIELD IN A RULE 147
12.3 DATABASE FIELDS ...ttt 147
12.3.1 STATIC FIELDS.ot e e e e e eeaane 148
12.3.2 DYNAMIC FIELDS ..ottt e e e e e e eeaenes 148
12.4 EXPORT DATA AND CHARTINGccotiiiiiitiieiiieie et 149
Chapter 13 Time Dependent Event Correlation...............cccceeeveevvviiiveeeennnn, 150
13.1 Relative and absolute time comparisSon OPerators............cccovvveeeiiveeeeniieeeenn 150
13.2 COUNEAOWN TIMEIS .ceiiiiititeiee e ettt ettt e e e e et e e e e e e e snnbbreeeaaaeaean 151
13.3 System Operating MOAEScooiiiiiiiiiiiee e 153
13.3.1 Standalone MOAE..........ueiiiiiiiiiiiie e 153
13.3.2 ResSilient LOCAl MOAEeeviiiiiiiieiiiiiie et 153
13.3.3 RESIHENT MOUE ...eeiiiiiiiiie e 153
Chapter 14 Resynchronization with Event Sourcesccccceeeveeeennn. 156
14.1 Event ReSYNCHIroNIZAtiONccoiiiiiiiiiiie e e e e e e e e e e 156
14.2 Primary/Standalone Server Initial Resynchronizationc.cccccoeccvvieeneeenn. 157

14.3 Primary/Secondary Inter-System Resynchronizationccccccoeccvvviveneeenn. 162

14.4 Server Resynchronization Following Connection Re-establishment............. 165
14.5 Replay Event List CONSIIUCTIONcciiiiiiiieiiiiii et 166
Chapter 15 Value PacCKSuuiiiiiiciiec e 168
70 R 1 o o [BT 1o o EO OO PP O PP PP PPPP 168
15.2 DESCIIPON c.itiiiieitie ettt ettt e e nb e e e s 169
15.2.1 INEErNAI STUCIUIE ..ot 169
15.2.2 ACHONS .oeeitieeiiteeeiee ettt 169
15.2.3 CONFIQUIALION.eeiiiiiiiei ittt e e s 169
15.2.4 MOGEIS ..ottt ettt bbb 169
15.2.5 RUIES ..ot 169
15.2.6 SCMPIS oo 170
15.2.7 VP MANITEST..coiiiiiii it 170
15.3 Value pack LIfECYCIEuuviiiiiiiiie e 172
15.3.1 Value Pack Deployment ProCess.........ccccceevieiieeeece e, 172
15.3.2 Start Up ProCeAUIEcocoeei e 173
15.3.3 Inventory and Mesh Update EVENtS..........ccceeiiiiieiiiieeciieec e 174
15.4 Deploying @ Value PACKc.eiiiiiiiiiiiiiiii ettt 174
15.4.1 HOW O DEPIOY....cccoeeeeieee e 175
15.4.2 HOWto UN-deploycoooeiiiiiiiiieee e 175
15.4.3 Listing all active value packs ... 176
15.4.4 Deploying a value pack on Start UP..........ccceeveiiieieiiieee e 176
15.5 Supplied value Packs..........cccceeei i 176
15.5.1 SYStemM aCliONS.....cccoiiieee e 176
15.5.2 RESIHENCE ..ooiiiiiiiiii e 176
15.6 ASSUMPLIONS. ...eeiiiiutiieeeititee ettt ettt e ettt e et e e sttt e e s bbbt e e s bbe e e e snbbeeesnnneee s 176
15.6.1 NAIMESPACE ...iuuiii ittt ettt e ettt e e e s e e et e e e e e e e aabaaeeaeeaeeaenes 176
15.7 Current LIMiItatioNScuvveeiiiiiiee ettt 177
Chapter 16 Reference INfOrmationccccuuviiiiieiiiiiiiiiiiiiiiiiiiienes 178
16.1 Object Type AtHDULESccoeeieeeee e 178
0 0 R @ 1o = S OO P PP OTRTR PP 178
16.1.2 Child GrOUPciuveiiieiiiiee ettt s 180
16.1.3 ASSOCIAIE GIOUP .eeiiiieieeeitiiee e ittt e ettt e ettt e e sttt st e et e e e ssbb e e e s nnneee s 182
16.2.4 NOUFICALION ...eveeiiiiieiiieee e a e 184
L0 ST T 1T | SO O PP OTRTPPR 186
L16.1.6 SYSTEIM it a e 187
T2 Y] 1T 1 PR 191
16.2.1 External and Synthetic Alarm RepOItS............coveiiiiiiiiiiiiiiieaei e iiiiieeeee e 191
16.2.2 ACHON GFOUPS .coiiiiiiiititiiit e e ettt e e e ettt et e e e e et be e e e e e e e e snnbbreeeaaaeaean 192

Figures

Figure 1 - The UCA NOME PAGE ...oooiiiiiieiiiiie ettt e s 15
Figure 2 - The UCA SyStem MaNAGETuuuiiiieeeiiiiiiiieeee e e s e siitveeeeee e e sssnntaeeeeeeesssnsnnneeeeaesen 15
Figure 5 - The System Manager USErs Tabccccocuiiiiiiie i ee e 34
Figure 6 - The Status tab showing the system started............ccccveeeieei i 35
Figure 7 - The System Manager — Diagnostics tab............ccccoo 36
Figure 8 - The System Manager — Maintenance tab..............c.ccccc 38
Figure 9 - The System Manager — Toolstab...............cc 40
Figure 10 - The Fired RUIES VIBWETcoiiiiiiiiiii ettt 42
Figure 11 - The Working MemMOTY VIEWETcoouuiiiiiiiie ettt 43
Figure 12 - The Working Memory Object Details WindOWcccovciiiiiiiiini i, 44
Figure 13 — The Model Tab — Importing an XMI File ..o 47
Figure 14 — The Model Tab — meta-model management............cccovvveieiniiiee e 59
Figure 15 — The Data-load Tab — inventory managementcccoocveveeriieeennniene e 61
Figure 16 - The Applications Login Page ..., 64
Figure 17 - The Scenario Manager ..., 66
Figure 18 - The MeSh VIEWETcccoo i, 72
Figure 19 - The Search for Instances dialog ..., 73
Figure 20 - The Create Alarm dialog ..o, 74
Figure 21 - The Notifications Viewer Dialog ..., 76
Figure 22 - The Add New Scenario DIalog...........eueiiiiiiiiiiieiieie e 77
Figure 23 - The Add New Filter DIalogcooiuriiiiiiiiieiiiiee et 79
Figure 24 - The Add New Mapping Di@logccuueiiiiiiiiiiiiiie e 87
Figure 25 - The Add NeW RUIE Di@lOg........uueieiiiiiieiiiiiie ittt 91
Figure 26 - The Validation Errors DIglogcoouriiiiiiiieiiiiie it 98
Figure 27 - Operators and EXPresSSiONS. ... 101
Figure 28 - Remove Object In Normal State from WM...............ccc 194
Figure 29 - Remove Associate Group In Normal State From WMc. 195
Figure 30 - Remove Child Group In Normal State from WM...............cccc 196
Figure 31 - Create Notification Against Object ..., 197
Figure 32 - Create Notification Against Object Using Latest Event....................................... 198
Figure 33 — Update Notification Against ODBJECEccooviiiiiiiiiiii e, 199
Figure 34 — Update Notification Against Object Parent............cccccevviiieiiieiini e, 200
Figure 35 — Remove Notification Against ODJECE...........coociiiiiiiii e, 202
Figure 36 — Create Marker Notification Against ObJeCtccccceeiiiiiieiiiiie e, 203
Figure 37 — Remove Marker Notification Against ObJectccccevviieeiiiieiire e, 204
Figure 38 — Create Notification Against Associate Group Parentccccoevviieeevnieeennnnn. 205
Figure 39 — Remove Notification Against Associate Group Parent............cccceeeeeeeiiiniiinnnen. 206
Figure 40 — Create Notification Against Referenced Associate Group Parent 207
Figure 41 - Create Notification Against Associate Group Grandparentcccceeeeveuvvneeen. 209
Figure 42 - Remove Notification Against Associate Group Grandparent...........cccccoeeeuvveeeen. 211
Figure 43 - Create Notification Against Child Group Parentcccccoiiiiiiiiii e, 213
Figure 44 - Update Notification Against Child Group Parent..........ccccceviiiiiiiiii e, 214
Figure 45 - Remove Notification Against Child Group Parent..........cccccvviiiiiiiiee e, 216
Figure 46 - Create Notification Against Child Group Grandparent...........ccccceeveveeeeniieeeennne. 217
Figure 47 - Remove Notification Against Child Group Grandparentcccoeceeeeviiieeennnen. 219
Figure 48 — Force Removal Of Natification Against Object...........cccccveeiiviiciiiee e, 221
Figure 49 - Append Event To Notification Sympathetic Event LiSt............ccccovvveeeiiiiiivnnnnnn. 222
Figure 50 - Update Notification RaNKc..uuiiiiiiiiiie e 224
Figure 51 - Force Object To Degraded State Via Notification...........ccccccooviiiiiiiiinniiinnnn. 225
Figure 52 - Force Object To Failed State Via Notificationcceeeeieeiiiiiiiiiieiieee, 226
Figure 53 - Force Degraded Object To Failed State ..., 227

Figure 54 - Force Named Object To Change State........cccccceeeiiiiiiiieeie e 228

Figure 55 - Force Parent Object To Degraded State Via Associate Groupccoeeeuvvveeeen. 229
Figure 56 - Force Parent Object To Failed State Via Associate Groupccccceeeeeevevvvvnnnnnn. 230
Figure 57 - Force Parent Object To Degraded State Via Child Group..........c.ccocveevivieeennnen. 231
Figure 58 - Force Parent Object To Failed State Via Child Group........c.ccoceevviiieiiniieeennn, 232
Figure 59 — Force Degraded Object To Normal State...........coocveeiiiiiieiiiiieeeee e 233
Figure 60 - Force Failed Object To Normal Statecccceeiiiiieeiiiiieeeeeeeee e 234
Figure 61 - Forced Failed Object To Degraded Stateccocvveeiiiiieeiniiiee e 235
Figure 62 - Reset Object to NOrmMal Statecooiiiiiiiiiiiiee e 237
FIQUIE 63 - RUN SCIIPL....ueiiiiieeiiiiiiii e e e s e e e e s et e e e e e e s s st e e e e e e s s annnteeeeeeeeesessnnnenneees 238
1o [0 LI G T Al =l oo o o SR 239
1o [N TS T = - 1T I A F- U 1 SR 240
Figure 66 - Update Alarm Field In LateSt Alarmcccvvviriieeeiiiiieeeee e 242
Figure 67 - Update Alarm Field In Master Alarmcc.uevieeeeiiiiiiiiieece e e s 243
Figure 68 - Acknowledge Latest Object Alarm ... 244
Figure 69 - Terminate Latest ODJeCt AIAIMcooiiiiiiiiiiiee e 245
Figure 70 - Terminate Master AlGIMN.........cueiiiiiiiie e 246
FIgUIE 71 - ClEAr ALAIM ...ttt e b e e e e e 247
Figure 72 - Associate Marker Notification Alarms to Mastercccceevviiieeiniiee s, 248
Figure 73 - Dissociate Marker Notification Alarms From Master............cccoceeveieiiineiienenenn. 249
Figure 74 - Associate Object Alarms TO MaSEr..........cioiiiiiiiiiiiie e 250
Figure 75 - Di Dissociate Object Alarms From Master..........cccccoeeeiiiiiie, 251
Figure 76 — Associate AlarmsS.........ccooiiiii i 252
Figure 77 — Dissociate Alarms........ccooi i 253
Figure 78 — Dissociate CPL Alarms........ccoooiiiiiii 255
Figure 79 - Remove Accumulated Alarms............ccooiiiiii 257
Figure 80 -Raise EXpedited AlArm..........oociiiiiiiiiieiiee e 260
Figure 81 - Clear Expedited AIAIMooiiiiiiiie et 261
Figure 82 — Create CountdOWN TIMETuiiiiiiiiee ittt 262

file:///C:/doc/UCA/UCA-product/UCA1.2/release_doc/HP_UCA_Topo_V1_2_User_Guide_V1_0.docx%23_Toc297284658
file:///C:/doc/UCA/UCA-product/UCA1.2/release_doc/HP_UCA_Topo_V1_2_User_Guide_V1_0.docx%23_Toc297284659
file:///C:/doc/UCA/UCA-product/UCA1.2/release_doc/HP_UCA_Topo_V1_2_User_Guide_V1_0.docx%23_Toc297284660
file:///C:/doc/UCA/UCA-product/UCA1.2/release_doc/HP_UCA_Topo_V1_2_User_Guide_V1_0.docx%23_Toc297284664

Preface

This User Guide covers the following topics:

An introduction to the concepts used in correlation for problem detection,
service impact and root cause analysis

A ‘quick start’ guide to starting up, configuring and shutting down the
system.

A description of the UCA architecture and the fundamental concepts at the
heart of the system.

Use of the UCA System Manager GUI.

Defining the UCA metamodel.

Creating the UCA model database.

A detailed description of the UCA Scenario Manager and Mesh Viewer GUIs.
A description of how to use the Scenario Manager GUI to create and deploy
scenarios, filters, mappings and rules.

An in-depth description of how to configure UCA rules and actions.

A description of the UCA alarm interfaces.

Reference information on object types and their attributes.

This guide forms part of the set of UCA documentation, the other guides are listed as part
of the associated documents further in this guide.

Intended Audience
This document is aimed at the following personnel:
e Network Management Customers
e Solution Architects
e System Integrators
e Solution Developers

e Software Development Engineers

Supported Software

The supported software referred to in this document is as follows:

Product Version Operating Systems
Unified Correlation Analyzer HP-UX 11.31 for I[tanium
for Topology Based and RHEL 5 AP Update 2

Correlation V1.2

Typographical Conventions

Courier Font:

e Source code and examples of file contents.
e Commands that you enter on the screen.
e Pathnames

o Keyboard key names

Ttalic Text:
e Filenames, programs and parameters.

e The names of other documents referenced in this manual.

Bold Text:

e To introduce new terms and to emphasize important words.

italicised red text:

e Important or particularly noteworthy information

it’s a good idea to create a
é shortcut to this URL on the web
Hints and Tips e.g. browser’s toolbar

e Hints displayed as a boxed text wth a ‘thumbs up’ graphic

Acronyms and definitions

The following acronyms are used in this documentation:

Acronym Definition

ER Early release (Beta version of
the product)

MO Managed Object

MR Manufacturing Release

MSL Management Specification
Language

ocC Operation Context

0S Operating System
Telecommunications

TeMIP Management Information
Platform

UCA Unified Correlation Analyzer for

Topology Based Correlation

Associated Documents

e HP UCA for Topology Based Correlation Installation and
Configuration Guide

e HP UCA for Topology Based Correlation Development Guide
e HP UCA for Topology Based Correlation TeMIP Integration

For a full list of TeMIP user documentation, refer to Appendix A of the
TeMIP Product Family Introduction.

o HP TeMIP Client Installation and Configuration Guide
HP TeMIP Web Services Installation and Configuration Guide
HP TeMIP Software Customization Guide.

TeMIP-Service Manager OSSJ Trouble Ticket Liaison — Installation
& Configuration Guide

TeMIP-Service Manager OSSJ Trouble Ticket Liaison - TeMIP
Liaison Adapter System Integration Guide

HP Service Manager — Installation Guide

Support

Please visit our HP Software Web site at:
www.hp.com/go/hpsoftwaresupport for contact information, and details
about HP Software products, services, and support.

The Software support area of the Software Web site includes the
following:

* Downloadable documentation
* Troubleshooting information
+ Patches and updates

* Problem reporting

* Training information

* Support program information

11

http://www.hp.com/go/hpsoftwaresupport

Chapter 1 Introduction

Managed networks exist everywhere — obvious examples include telecommunications
networks, utilities providing water, gas and electricity and TV and radio broadcast
networks.

Recognising that such networks are built from equipment that can fail, manufacturers of
network components usually build in self-monitoring systems of various levels of
complexity, or at least provide a capability for an external system to monitor their
current status. Depending on the level of sophistication and redundancy built in to the
network component, low level failures and errors may be handled automatically with only
a cursory event report to the outside world that something has happened. On the other
hand, less resilient equipment may deliver a constant stream of event reports as its
status changes.

Regardless of the level of sophistication of the individual network components, a
managed network will usually employ centralised or regionalised management
capabilities to allow network operators to monitor the status and performance and to re-
configure the network in response to changing operational needs or failures.

This arrangement works well if the managed network can be monitored and maintained
by a reasonable number of experienced network operations personnel. Under these
circumstances, human operators are responsible for correlating the streams of state
change events and performance information received from individual network
components and, based on their experience of operating that network under a range of
operational and fault conditions, adjusting the operational parameters to provide the
required level of service to their customers.

A major problem arises however when the size and complexity of the network exceeds the
capability of the operators to correlate the streams of information received from it. In this
situation, network operators often turn to event correlation systems in an attempt to
automate some of the analysis workload and speed up fault resolution times.

Event correlation systems typically break down into two types:

e QOut-of-the-box solutions, providing a range of standardised network and
equipment models and problem analyses for commonly available technologies
e.g. IP Communications Networks.

e Rule-based, low-level correlation toolkits, based on Inference Engine
technology, suitable for constructing localised stream-based correlations.

Each of these types of system has their own advantages and disadvantages. The former
are characterised by rapid deployment but at significant cost, targeted at specific
technologies where the investment in developing the correlation solution is justified by
the number of similar installations that may benefit from the technology. The major
problem however is that the manufacturer determines the range of correlations available
and developing user-defined correlations is often technically beyond the ability of the
user.

Users are also reliant on the supplier providing a continual stream of equipment models
as new versions or types are introduced into the market place.

Users of low-level toolkit based solutions benefit from the ability to develop and deploy
stream-based correlations from point sources in the network e.g. for event de-duplication
or counting over time. Unfortunately, more complex correlations such as those requiring
knowledge of the implicit relationships between network components and how their

12

states change over a period of time, result in an explosion in complexity. Typically, the
size of the rule base quickly becomes unmanageable and often requires additional,
expensive software development to achieve the desired result.

UCA combines the best of both of these approaches, making use of data-driven network
models and simple yet powerful high-level rules to achieve complex correlations. A user
with problem domain knowledge can quickly and easily construct correlations for any
type of network using the visual tools provided. This is achieved without having to invest
in understanding proprietary technologies or recourse to complex rules and expensive
and time-consuming software development.

The design of UCA takes as its starting point the mental process followed by an
experienced network operator when trying to solve a particular problem. Typically, this
process involves assimilating state and performance change events provided by the
network management system into a conceptual model of the managed network and
analysing the resulting mental picture to work out what the problem with the network 1is.

Once this has been done, the underlying root cause of the problem can be investigated
and resolved and the impact on managed services (and associated Service Level
Agreements) determined through correlation. The operator will often have to take into
account the diversity of network equipment and variation in reported detail when
assimilating event data - effectively applying a ‘normalisation’ process to the information
received from the network management systems.

The following diagram summarises this process:

. Problem Resolution SLA Impact
H) S P 4 A
: e :
i Root .
Information .
Volume Cause Information

Value

Analysis
Correlation (
Problem

C Problem Detection N;
Analysis Report

Normalisation
Assimilation (

f

State & Performance Change Events
From Managed Network

In essence, the network operator is acting as an information normaliser, analyser and
correlator, condensing large volumes of low value information and generating small
amounts of high value information e.g. what the problem is, what the root cause is (and
how to fix it) and finally what the impact is on managed services.

UCA achieves the same result as the human operator - quickly, reliably, efficiently and
automatically, vastly improving fault resolution times and reducing service impact.

13

Chapter 2 Quick Start Guide

This chapter provides a high-level guide to starting up and using the system. A detailed
explanation for each of the features introduced in this section is provided in subsequent
chapters.

2.1 Start-up

1. On the server, start the UCA server as follows:

cd SUCA HOME/bin
uca_ start

2. Using a web browser (such as Internet Explorer 6 or 7 or Firefox 2) on a
client machine, navigate to the URL http://hostname:18080/uca where
hostname is the DNS name or IP address of the server machine.

it’s a good idea to create a shortcut
é) to this URL on the web browser’s
toolbar

The UCA home page will be displayed (see below).

From this page both the UCA Manager and UCA Applications are
accessible provided the user has logged in via the controls at the top of the
page. These tools provide the following functionality:

¢ UCA Manager - this invokes the System Manager GUI (see below).
A user must have manager role privilege to invoke this GUI.

e UCA Scenario Manager — Manage the filters, mappings and rules
that comprise a valid deployment scenario

e UCA Mesh Viewer — View the current state of the system

In addition, the three links at the bottom left of the page are:

e Manage Tomcat — this is used to access the standard Tomcat
Manager web page

¢ Run ArgoUML - this runs the ArgoUML design tool.

o User Guide — this shortcut is not yet supported.

14

72 HE | UCA- Windures | atenmel Explosss

ﬁc—' ¥ .
Rdve

v 8] wtmihczean, dicem ORIACSS w | x| Olx

A

Welcometo UCA | [

(OU 2re CUrently geec on 85 'testlds’
: : i UCA Manager
launcher

== - e) o R
o) Sl penarark srom here, c2pending on privilege. vou cr lauich eazh

o panets affoded by @

Changs ligh valune, w
vahss alfcin ahiw

applicetions end perfurm all Ue UCA mionagan2) 1

UCA Scenario
‘ Manager launcher

i, likgh value Usethe | LCAfSreqr |fo: Use the | Scemeric Marager to: UCA Mesh Viewer

GEn and sop I Saem @CIAC, MSN3QC and dop oy soenges,
ITdFaLE UEEl dULIU IS filtcra, mappirga rulcy and ryid

Ierplatas 1

launcher

perform dingnostcanrd mant=rance Use Uie Me:hviewsr | Lo, Tomcat Manager &

AT

view fired rilies and the workieg nemeey 2 ArgoUML

navgzta araund the rrocol coucturs an

dam shortcuts

Show MESh CAeT aeTas dnanically

show nwlifzolon dete i
ol besl eves s
v

Figure 1 - The UCA home page

3. Enter system as the username and system as the password.
4. Click on the UCA Manager button.
The UCA System Manager GUI will now be as shown below.

HP UCA System Manager (on
File View Help

) stetus 5&”*’51 2 ‘ & Da:a-loadj « Diagnostics | 403 Maintenance | I, Tools

FiredRulasUiSawer is deplovad and started

MashUiSarves I deployed and started
NotmcationUiSsiver i deployad and started
Motficationianager is deployed and statied
EveniManager s daployed and staited
DataCollecior is deployed and slanteg
Rules2arver is deployed and stalag

RMI Sepace Hoal procass stanted

VF's not activalad

R logging senvice startad

RAM topology sandce started

Tomcat

Manager Server web service
RMI Service Host

RMI Logging service

Fired Rules Ul web service
Mesh Ul wed service
Notification Ul web service
Notification Manager web service
RMI Topology service

Event Manager web service
Data Collector web service

Rules Server web sarvice

v
v
v
v
v
v
v
v
v
v
v
v
v

Value Packs

Shutdown

Status: OK. Username:“system"”

Figure 2 - The UCA System Manager

15

2.2 Basic System Configuration

1. From the Users tab, users may be added with relevant roles, modified or
deleted as appropriate.

2. From the Model tab, new metamodels may be:

- created manually

- loaded from a local directory

- saved to a local directory

- imported from an XMI file (previously created with ArgoUML)
- added to the metamodel Library,

- deployed into active use

Details are provided in later chapters

3. From the Data-load tab, model data may be loaded from CSYV files into the
model database. Details are provided in later chapters.

2.3 Shutdown

1. From the Status tab, select Shutdown

“y HP UCA System Manager (on
AFiIe View Help . :
© 5] 5 e | | Dot £ o, T

Tomcat

Manager Server web service
RMI Service Host

RMI Logging service

Fired Rules Ul web service
Mesh Ul web service
Notification Ul web service
Notification Manager web service
RMiI Topology service

Event Manager web service
Data Collector web service
Rules Server web sarvice
Value Packs

v
v
v
{‘
{.
,‘

SARAA

Status: OK. Username:“system" o

Figure 3 - The System Status

16

Chapter 3 System Description

This chapter provides a detailed description of the UCA architectural components and
describes the fundamental modelling concepts, with the aid of various examples, at the
heart of UCA for Topology Based Correlation product.

The UCA system architecture is shown in the following diagram:

Hendllor
Mesh I
Builder/Updater
L N
.‘ ‘III.I.I.I.III...I..II'.llll.lll.l' . J
y " E Indaswncw . '
Alarm | - Bagine
Sources e =N [e
T RT “1 Notification |g__ o1 Satitiesscn
= E E A\;‘} Manager
P23 1§
mf_--: Euennsm e —- -
ey (Rppep———_ S -’J
- | Event DR
Web seif
W R e
Y.y
SVQGmMumgcr]

Figure 4 - UCA Architecture

The sections below provide a general description of the function and operation of each
component of the system.

3.1 State Mesh

Fundamental to the operation of UCA is the state mesh. At its simplest level, it is a
structural model of the managed network it is attached to. It incorporates a set of objects,
each representing some (physical and / or logical) component of the managed network,
linked together by a set of navigable (associative, containment and / or inheritance)
relationships. On a more complex level, the state mesh is also a state model of the
managed network, maintaining in real-time the current state of each modelled object and
providing pre-defined or rule-driven paths for states to propagate between the component
objects.

From the point of view of the user, the availability of the state mesh considerably
simplifies the whole process of constructing rule-based event correlations. This is because
it handles the following tasks that are traditionally the responsibility of the defined rule-
base in simpler systems:
e Dynamic establishment and maintenance of relationships between modelled
network components.
e Dynamic establishment and propagation of state information between
modelled network components.

17

3.2 Mesh Objects

UCA provides a very flexible modelling capability and places no restrictions on the type of
objects that can be modelled in the state mesh. In addition, there is no need for a one to
one correspondence between the model types supported in UCA compared with those
available in the event source because incoming events can be re-mapped to one or more
destination objects of any specified type.

This degree of flexibility is achieved in part because UCA uses a single type of object — a
mesh object — to provide the underlying implementation of any type of modelled entity. A
mesh object is characterized by three attributes:
e Base Class — the fundamental or ‘super-class’ of entity that it represents e.g.
Transmitter
e Sub Class — the specialized or ‘sub-class’ of entity that it represents e.g.
Digital Transmitter, Analogue Transmitter
e Unique Reference — an identifier that uniquely identifies the object. Note
that depending on mapping configuration and availability of information in
the incoming event or an external source, this value may be a Fully
Distinguished Name (FDN) i.e. unique throughout the entire system e.g.
Site_66_Transmitter_3, or a Relative Distinguished Name (RDN) i.e. unique
throughout all instances of objects of this base class relative to a parent
object e.g. Transmitter_3, a child of Site_66.

This has considerable advantages for users because an event source, for example a
network management system, can model monitored elements at a relatively coarse level,
and events can be mapped to a more fine-grained model supported by UCA provided
sufficient information is available e.g. in the event itself or an external database, to allow
the mapping to occur. This potentially reduces the complexity (and cost) of
implementation of a new event source system. It also removes the need to ‘re-engineer’ an
existing source system when a model is added or extended. Finally, it allows more
complex analyses to be carried out by UCA than would otherwise be possible using the
event source model alone.

UCA can also model elements from which events are not directly received by an event
source e.g. a fibre connecting two ports, or a service implemented by a number of
components that may never directly receive alarm or performance events. This capability
allows UCA to build and maintain a complete correlation model. It is also possible for
UCA to infer and modify the state of such objects and assign a problem ‘root cause’ or
‘service impact’ directly to them.

Because there are no restrictions on the types of objects that can be modelled, UCA is
able to support objects that represent any kind of physical, logical, service or abstract
entity. Examples of non-physical entities include timeslots on a communications link, a
mobile network ‘drive trial’ carried out over a set of pre-defined network cells or a cross-
domain service implemented from a number of network components and sub-services.

3.3 Mesh Object Relationships

The ability to flexibly model network entities is an important feature of UCA, however
the value of such a modeling capability is limited without the corresponding ability to
model relationships between those entities. For this reason, UCA provides comprehensive
support for implementing relationships between mesh objects to complement those found
in monitored networks. The types of relationship supported by UCA are described in the
following sections.

18

3.3.1 Composition or Parent-Child

In composition relationships, one class of object is the parent of another and effectively
‘owns’ the child object. Another way to express this type of relationship is to consider the
lifetime of the child object — if it cannot exist without its parent or should be destroyed
when its parent is destroyed, then this is an example of such a relationship. An example
of this might be Communication Ports (children) implemented by an Interface Card
(parent) — the Ports cannot exist without the Card. A child object will always have a
parent object and may itself have zero or more children of its own, although circular
relationships are not allowed.

A parent object may have zero or more children of any number of types e.g. a Network
Element might have the capacity for 10 Interface Cards and 2 PSUs and may be initially
configured with a single PSU and no Interface Cards. The practical implementation
within UCA is more flexible still, in that while a child object must have a parent (and can
have one and only one parent at any time), the type or instance of parent object can be
configured at state mesh build-time. This means that a child type can be configured with
a choice of different types of parent object, with the actual type and instance being
defined by the model data load. An example of this is a Network Element that may be
parented by a Network i.e. standalone, or by another Network Element i.e. a slave
element.

Significantly, child objects can also be ‘re-parented’ by dynamically updating the parent
type and / or object in the state mesh at runtime. Finally, child objects can be added and
removed dynamically at runtime, so in the example above, Interface Cards and a PSU
can be added to the Network Element as they are configured into the actual network.

3.3.2 Aggregation or Uncle-Nephew

In aggregation relationships, one class of object (an uncle object) has an interest in the
state of another sub-ordinate object and effectively ‘contains’ the nephew object. The
important differentiator compared to composition is that both the uncle and nephew
objects can exist independently of the other — the relationship implies a measure of
optionality and is weaker.

As with compositions, an object that is a nephew may itself be an uncle of some other
object and the relationships may be configured at build or runtime, although again
circular relationships are not allowed.

The range of possible combinations of this type is wider than that provided by
composition. A nephew object can have zero or more uncles and / or an uncle can have
zero or more nephews. In a typical application an object will have a parent and may have
one or more uncles — a good example of this situation is where a Bearer Link carries
Voice and Signalling Channel traffic simultaneously in its Timeslots. The Bearer Link
acts as the parent for the Timeslots — they cannot exist without it. At the same time, the
Voice and Signalling Channels carried in the Timeslots act as uncles — they are
interested in the state of the Timeslots but they are not the owners.

3.3.3 Association or Peer-Peer

In association relationships one object has an interest in the state of another object, but
neither object has sufficient interest to warrant a composition or aggregation
relationship. This type of relationship is the weakest that may exist between objects and
again implies optionality.

One peer may be associated with zero or more peers of the same or different types. An
example of a relationship of this type is that of a Cable joining two Communications
Ports. The object representing the Cable is interested in the state of the Ports at each of

19

its ends and an associative relationship would be used in this instance. Again, UCA
provides the capability to construct associative relationships at build or run-time with the
usual proviso that circular relationships are not allowed.

3.3.4 Specialization

This type of relationship is different from the previous three in that it is implemented as
an attribute of the mesh object itself, rather than between instances. Each mesh object
type possesses a Sub Class attribute that defines its specialization relative to other mesh
objects of the same base class. This allows UCA to support some of the characteristics of
object inheritance i.e. polymorphism and specialization.

For example, there may exist in a monitored network a number of Transmitters with
different Sub Classes e.g. 100W_Transmitter, 200W_Transmitter and 300W_Transmitter.
Instances of each type are clearly Transmitters (base class = Transmitter) and the group
of all affected Transmitter objects may be subject to rules that operate at the base class
level i.e. they are treated as polymorphs and their specialization is ignored. Alternatively,
more detailed rules may be defined to operate only on instances of a single specialization
by defining the required Sub Class condition as well.

3.4 Metamodel

While the state mesh is of considerable value in reducing solution complexity, this
advantage would be lost if the model had to be re-implemented by the user each time a
new or updated model was required. For this reason, UCA uses an automatic data-driven
approach to its construction and maintenance

Central to this idea is the metamodel that defines for the state mesh:
e all possible classes or types of model object that it could contain
e all possible relationships that could exist between classes of model object
e all possible pre-defined state propagations that could exist between
classes of model object

The best method to capture the metamodel structure during system configuration is for
the user to construct a UML class diagram (with some additional stereotypes defined to
handle state propagation). The file containing the metamodel is then simply an XML
representation of that class diagram and the required syntax is described fully in later
sections of this guide. Users are free to manually define their own metamodel directly in
XML. Alternatively, UCA provides the capability to automatically convert a UML class
diagram (exported in XMI format from a suitable UML modelling tool) directly into the
required XML format. This process is illustrated below.

UML Class
UML Class Diagram in
Diagram CASE tool
.\)
Manual ‘\\ XMI Conversion
Translation \ Tool
v
Metamodel
(XML) File

20

3.5 Model Builder and Model Database

The metamodel by itself defines only those model classes, relationships and automatic
state propagations that the system could support. To create a state mesh that the
system can operate on requires the user to provide a set of instance data, describing the
actual model objects and relationships that exist between those objects.

Normally, this instance data is stored in the UCA model database. Because the structure
of the model database will vary with each type of user model (e.g. different classes and
types and numbers of relationships), UCA automatically generates the table structures
from the metamodel. UCA can also be used to easily load the instance data into the model
database. More typically, a batch process would be used to regularly update the model
database with the latest instance data e.g. through a CSV file import from an external
network inventory database.

When UCA is started, its model builder uses the metamodel as a template of instructions
to create the state mesh. Subsequently, each time the model database is updated, the
model builder is automatically triggered (again using the metamodel as a managing
template) and the state mesh is brought inline with the new data load. The entire process
is illustrated below.

UML Class
UML Class Diagram in
Diagram CASE tool
‘\
\
Manual XMI Conversion
Translation \‘ Tool
A |
Metamodel
(XML) File
H Generation
i
[}
i
' Model Database Table &
Model i Modification Trigger
Construction | Definitions
Template i Automatic
! Table
! Configuration
\ 4 »
Model Initial & Update Import & External
Bu(i)ld:r Instance Data Model Data
. Database Source
Automatic
Construction &
Update
Topology
Mesh

21

3.6 Example State Mesh

At this point it is useful to consider an example to understand how the various parts are
constructed and what the resulting state mesh actually looks like. The following diagram
1llustrates the components of a simple communications network.

Network Network Network
Element Element Element
Card Card Card
Port Port Port Port Port Port

Link Link

The example network operates in the following manner: Network Elements responsible
for providing communications through the network have interface Cards with a number
of communications Ports. Joining together Ports with Links creates a communications
path through the network.

The first task i1s to construct the metamodel for this system. As described above, the
simplest way to do this i1s to draw the equivalent UML class diagram. Before this can be
completed however it is necessary to consider what kind of automatic state propagations
are required. To help decide this, the correlations that UCA is required to perform must
be considered. For the purposes of this example, they are:

¢ Report a Card failure when all of its Ports have reported a hardware error.
e Report a Link failure when the Ports at both ends have lost the
communications signal.

To detect the first condition, a Card will need to know the state of each of its child Ports.
Therefore, the simplest choice is to automatically propagate the state of a Port to its
parent Card. The second condition is similar in that a Link object will need to know the
state of all the Ports that it is attached to. Again, the obvious choice is to automatically
propagate the state of a Port to its associated Link.

The resulting UML class diagram with annotations (red arrows) to show the required
automatic state propagations is as follows:

22

Network

Element

Port > Link
2 0.1

The arrows in the diagram are for illustration purposes only. In practice, a UML CASE
tool requires the definition of stereotypes on affected relationships to add support for
automatic state propagation.

Following processing of the UML class model to create the metamodel and its
combination with user supplied instance data, the state mesh would possess the internal
structure shown below.

Me.sh Base Class = Mgsh Base Class = Base Class = Me.sh

Object |Network Element Object |Network Element Network Element Object

Child Members = 1 Child Members = 1 Members = 1 Child

Group Group Group

Mesh Mesh Mesh

Base Class = Base Class = Base Class =

Object seCErdss Object sec;,rdss SQCaradss Object

Child Members =2 Child Mermbers = 2 Members = 2 Child

Group Group Group

A 4 Merbers = 2 A 4 Merbers = 2 I\ IS
|
Mesh Mesh | —p | Associate | q— | Mesh Mesh | —p | Associate | q— | Mesh Mesh
Object Object Group Object Object Group Object Object
Base Class = Port | I Base Class = Port | | Base Class = Port
Associate Associate Associate Associate
Group Group Group Group
Members = 1 | | Members = 1 Members = 1 | | Members = 1
Mesh Mesh
Object Object
Base Class = Link Base Class = Link

The model builder has added a number of ‘helper’ objects (child and associate groups) to
the model to assist with the management of containment and associative relationships
defined in the metamodel. These group objects serve to keep a list of child or associate
mesh objects attached to a mesh object — the thick lines denote the mesh object to which
the group belongs and the thin lines denote the mesh objects that they hold on behalf of
that mesh object. Notice that each group object maintains a count of the mesh objects it is
responsible for.

The red arrows denote the relationships defined in the metamodel for which automatic
state propagation is defined. Notice that the model builder has configured the model such
that automatic state propagation only exists between mesh objects that originate state
change reports and the group(s) to which they belong, rather than to the mesh objects
that own those groups. One of the most important features of group objects is that they

23

are capable of maintaining a real-time state count of the mesh objects they contain i.e.
total failed and degraded members. If automatic state propagation is enabled e.g. for Port
mesh objects in the above diagram, then a group object’s state counts will be
automatically updated each time the state of one of the mesh objects it contains is
updated.

Based on the relationships defined in the metamodel diagram, Port objects (represented
by mesh objects with a base class = Port) are owned by Card objects (represented by mesh
objects with a base class = Card) and they have appropriate child group objects to manage
them. Also, Port objects are associated with Link objects (hence the associate group
objects — one at each end of the associative relationship because it is potentially bi-
directional). Because of this dual relationship, a state change of a Port mesh object will be
simultaneously reported to both its parent’s child group object and its associate’s
associate group object.

3.7 Data Collector and Event Manager

Mesh objects in the state mesh are state aware in that they can exist in one of three
possible states - normal, degraded and failed, and can propagate this information to other
objects if required. UCA is driven by events gathered from the monitored network and
therefore needs a mechanism that allows them to modify the states of mesh objects in the
state mesh. The process and information flow employed by UCA is shown below.

Event
Database
4
XML Alarm Data Collector Event Manager State Mesh
Report _
I - Filter &

Externa \ Mapping
Source Engine >

Received

Alarm .
Reports Riﬁ:ﬁd - Unique ID
Reports - Class

| e |

=

P Filter > Mapping

r

Mapping - Target State

A\ 4

Discarded
Alarm
Reports

The first component in this mechanism is the UCA Data Collector. This is responsible for
providing an external interface into which alarms from an external source are delivered.
To accommodate wide variations in the type and content of alarms from different sources,
UCA has a well-defined XML input format, derived from the CCITT ITU X.733 standard.
Alarm reports delivered to UCA must conform to this format. UCA responds to ‘alarm
raise’, ‘alarm clear’ and ‘alarm termination’ reports received from external sources.

Once the Data Collector receives alarm reports, a hierarchical set of filters (configured
through the Scenario Manager) is applied in turn to fields within them. The filters are

24

necessary to remove unused alarms — network management systems are sometimes not
selective in the reports they deliver and unwanted reports consume valuable system
resources for no benefit. Continuing with the example communications network model
described above, that system’s filters would be configured to retain only those alarm
reports that signify the onset and recovery of a hardware failure or loss of
communications signal on a Port.

Alarms are also subjected to a mapping (again, configured through the Scenario
Manager). The following actions are performed during a mapping:
e a unique object identifier is extracted from one or more fields of the alarm
e a target mesh object is located in the state mesh with a specified base class
and a name equal to the extracted unique identifier
e the alarm report is attached to the target mesh object (if it is a Raise report)
or removed from the target object (if it is a Clear or Terminate report). Alarm
reports attached to a mesh object are held in its current problems list.

Alarm reports that pass to the end of a filter chain are mapped according to the mapping
definition(s) at the end of the chain and stored in the UCA event database by the Event
Manager for future reference.

Each alarm report is assigned a target state (normal, degraded or failed) defined in the
mapping and each time an alarm report is attached to or removed from a mesh object in
the state mesh, the system will re-evaluate the mesh object’s overall state. This will be
set to the highest state of all attached alarm reports or normal if none remain.

3.8 Affected Objects

Alarm reports that pass the system’s filters and are then mapped to target mesh objects
in the state mesh can result in one or more state-related changes. These include:
e Target mesh objects may change their overall state.
e If automatic state propagation is activated and the overall state of a target
mesh object is changed, state counts maintained by any group objects
containing that mesh object will be updated.

Mesh and group objects in the state mesh altered in either of these ways are termed
affected objects and they have a special significance. UCA will insert target mesh objects
whose state has changed from normal (as a result an alarm report being mapped onto
them) into each of the working memories of the UCA inference engine (there may be one
or more working memories defined). Similarly, group objects whose degraded or failed
member counts have increased from zero (as a result of an alarm report being mapped
onto a contained target mesh object and automatic state propagation taking place) will
also be introduced into each of the working memories.

Alternatively, if a target mesh object or group object is already inserted in the working
memories (as a result of a previous state change) then UCA will update its state or
affected member counts respectively.

Finally, if a target mesh object is already inserted and all attached alarm reports are
removed, then its state will return to normal and it will be updated in the working
memories. Similarly, a group object whose affected member counts have all returned to
zero will also be updated in the working memories. Note that under these conditions,
neither of these object types is automatically removed at this stage from the working
memories. This method of operation has been chosen specifically to allow the user an
opportunity to build rules that depend on objects returning to the normal state.

Using the previous example of a simple communications network, the following diagram
illustrates the process of creating affected objects and insertion into working memories
when an alarm report is received.

25

Base Class = Mesh
Network Elemeng Object

Child Members = 1

Group
Affected |
; , Base Class =
Objects o, e (g"b?:ht Inference
S, .. e E— Engine

Members = 2
Failed = 1

Members = 2

Base Class = Port . Failed = 1

Mesh ssociate A .
Object k‘ Group Object Worklng
| Base Class = Port Memories
Associate Associate
Group Group
Members = 1 | | Members = 1
Mesh
Object

Base Class = Link

Following a Port failure in the actual network, an alarm report received by the system is
mapped onto an equivalent Port target mesh object in the state mesh. UCA uses the
target state from the mapping to set the state of the Port target mesh object to failed,
resulting in its automatic insertion into the inference engine’s working memories.
Automatic state propagation from the Port target mesh object to its containing child and
associate groups has also incremented their failed member counts above zero, causing
them also to be automatically inserted into the working memories. Note that mesh and
group objects that are inserted into the working memories remain part of the state mesh
and continue to be attached to their unaffected counterparts by their existing
relationships.

The UCA Mesh Viewer GUI allows a user to view and monitor the state mesh in real-
time. It provides a comprehensive, navigable view of all target mesh objects in the
currently loaded model and also maintains a dynamically updated list of mesh objects
that are in non-normal states.

3.9 Inference Engine

The purpose of the inference engine is to provide an efficient and highly optimised
decision-making tool that can be controlled by a set of user-defined rules to infer
information about the condition of the monitored network. It achieves this by evaluating
affected objects that have been inserted or updated in its working memories against the
specific set of rules defined for each such working memory. Once a rule has been satisfied,
the system will carry out one or more actions (chosen from a list of actions during rule
configuration).

It is important to clearly understand the relationship between objects in the state mesh
and affected objects in the working memories, as illustrated in the following diagram.

26

State Mesh
Affected Objects Objects in
in Non-Normal Normal State
State
Visibility
Boundary EEEEEEEEER EEEEEEEEEEEER EEEEEEEEER u EEEEEEEEEEEEEEER
10 2 [Ateced
Working Object
Inference Memory
Engine +
Rules

Objects that are part of the state mesh always remain so, regardless of their state.
Affected objects represent a sub-set of objects in the state mesh that are in a non-normal
condition and as a result have been temporarily inserted into the working memories,
where they have in turn become visible to the rules controlling the inference engine.
Objects that are part of the state mesh (and not affected objects) are normally invisible to
the inference engine (because they are not inserted into the working memories). There is
one exception to this rule however, which is that they are indirectly accessible to rules
and their resulting actions where they can be reached by navigating the relationships
between them and affected objects that are visible to the inference engine.

Rules are created with the Scenario Manager and comprise arbitrarily complex ‘when
(rule is true) then (do action)’ constructs. The system takes care of translating these
constructs into the low-level rules language that the inference engine understands and
automatically deploys them into the specified working memory. A major benefit of this
approach is that most users can create rules using familiar concepts and terminology e.g.
“is there a card where 100% of the ports have failed”, without the need to understand the
complicated language syntax and associated programming techniques normally
associated with inference engines.

Rules created in this way may have general conditions to test for the existence or
otherwise of affected objects in the working memory e.g. when (there is a not a Card) then
(...). Alternatively, they may have a number of specific conditions that are compared with
the attributes of affected objects e.g. when (there is a Port object with state Failed) then

(...).

Rules may also be targeted, for example aimed at the existence of a particular affected
mesh object in the working memory e.g. when (there is a Card whose name starts with
“ABC”) then (...). Alternatively, they may operate at the class level, in which case they
will be applied equally to all affected mesh objects of the defined type (and / or subtype)
that satisfy their conditions e.g. when (there is a Card of subtype SDH) then (...). Rules
may also be defined to operate on affected group objects e.g. when (there is a group owned
by a Card where 100% of its Port members have failed) then (...).

When all of the conditions attached to a rule are satisfied, they are placed on a list of
rules waiting to be ‘fired’ or executed. The inference engine will remove and execute the
next rule on the list, carrying out one or more actions associated with it. After each rule is
fired, the remaining rules on the agenda are re-evaluated to see if they are still valid (any
that have become invalid as a result of the previous rule execution are removed without
being processed). An important characteristic of inference engines is that once a rule has
fired for a particular set of conditions, it will not do so again until a change has happened

27

and those conditions are again satisfied. This prevents a rule from firing continuously
when a particular set of conditions remains true.

Rules may be assigned a priority that can be used to control the order in which satisfied
rules are removed from the list and executed. For example, UCA is used with a set of low
priority ‘maintenance’ rules whose actions are responsible for removing affected objects
(mesh and group objects) from the working memory when they return to their normal
state. By setting the priority of these rules at a low level, the user is provided with the
opportunity to define higher priority rules that detect normal state objects and carry out
some other action before they are removed from the working memory.

UCA provides a comprehensive range of pre-defined actions, including the ability to:

e C(reate, acknowledge, demote, terminate and clear alarms in the originating
network management system, depending on its ability to support such
operations.

o Modify the state of mesh objects in the state mesh.

e Create, modify and delete ‘notifications’ attached to mesh objects, designed to
report significant events to users via the Notification Dialog (see Mesh
Viewer GUI details).

e Associate contributory alarm reports responsible for the creation of affected
objects to notifications.

e Identify mesh objects in the state mesh that may be affected by a problem in
another part of the model and associate their sympathetic alarm reports to a
notification.

o Execute user-defined scripts on both the local and remote platforms and to
incorporate the results into further correlation scenarios.

In addition, it is possible for a user to define additional actions to carry out special tasks.
These require the creation of additional action functions written in Java using the UCA
API, and to add action function details to the UCA action properties files to enable them
to be accessed from the Scenario Manager.

Certain actions, including those that initiate notifications and allow user-defined scripts
to be executed, create corresponding dynamic objects in specific working memories. These
dynamic objects (notification and script (proxy) objects) are visible to rules defined in
those working memories and allow users to construct correlations that depend on their
existence or attributes.

The properties of notification objects are such that they may exist in a maximum of two
working memories at any time — typically they are created in a source working memory
(context) and may be made visible in a destination working memory (context). This
powerful concept allows for ‘communication’ of the results of a correlation in a source
context (with a certain set of rules) to drive another correlation (with a different set of
rules) in a destination context. Updates to a notification object are obviously made visible
to the rules in both the source and destination working memories.

A script (proxy) object is created by an action when the corresponding script is first
executed and (depending on configuration) may persist past the execution lifetime of the
script itself, recording the status and results of its execution for use in later stages of a
correlation. Scripts executed by actions are launched in separate threads to avoid
contention and blocking and only exist in the source working memory.

The UCA System Manager GUI also provides a Fired Rules dialog for users to monitor
the execution of rules and their associated actions (this information is also stored in the
UCA notification database and is available for subsequent analysis).

28

The UCA Mesh Viewer also provides a Notification dialog to allow users to examine the
set of notifications associated with an object (again, the information contained in each
Notification is stored in the notification database and is available for analysis).

3.10 Notification Manager and Remote Handler

It is the responsibility of the UCA Notification Manager to handle any interactions
between UCA and external systems, including:
e Manipulation of alarm reports in the external network management system
via the Remote Handler.
e Execution of scripts in separate threads on the local platform.
e Execution of scripts in separate threads on local and remote platforms via
the Remote Handler.
e Updating corresponding script dynamic objects with execution status, exit
codes and results from locally and remotely executed scripts.
e Managing external system interactions on behalf of user-defined actions e.g.
starting/stopping SLA monitoring for service impact correlations.

Operation of the Notification Manager and Remote Handler are illustrated in the
following diagram.

UCA Remote
Platform Platform

Network .
Management H
System .
Inference Engine . Network
Management
System

Remote
Script Handler
I "Web Services:
\ Notification| . Remote
} | Manager * == =P ander
Script 411 . Web
(Proxy)

Local Executiol Services
v .) 4

I Script : I Script

Working Memany

UCA provides a simple, flexible API to manage external interactions from within the
rules/action context.

The Remote Handler is normally executed as a separate process on system restart. It
provides the ability to interface to external systems and execute scripts on both local and
remote platforms, returning results and output information back to UCA. It utilises web
services to minimise communications problems associated with firewalls between the
UCA and remote system and again requires straightforward integration with remote
applications.

UCA may also directly execute scripts on the local platform without the need for a
Remote Handler.

29

Chapter 4 The UCA Home Page and
System Manager

4.1 Starting the Tomcat ‘Minimal Web Server’

UCA uses Tomcat for:

e serving static web pages

e serving dynamic web pages, using JSP

e handling web services requests from the client, executing the appropriate Java code
and sending the response, as appropriate. i.e. using Tomcat as a ‘servlet container’.

e handling role-based authentication to web pages and UCA applications

In order for UCA to start up, Tomcat must be running. In addition, when UCA is shut down,
Tomcat must be forced to release all of its resources. This could be done manually, but UCA
provides a ‘minimal web server’ called tomcatserver to automatically control this.

After UCA has been installed and configured, tomcatserver must to be started. This only needs
to be done once and under normal circumstances tomcatserver should never need to be stopped.
tomcatserver is started as follows:

For HP-UX or Linux
cd $UCA HOME/bin
./tomcatserver.sh

tomcatserver actually listens on a port (defined by the tomcatserver.port property in the
uca.properties file) for web services requests - accepting ‘start’ and ‘stop’ requests that have the
effect of starting and stopping Tomcat itself. When tomcatserver is first started, it
automatically starts Tomcat.

When UCA is shutdown from the System Manager GUI (see the following section), a ‘stop’
followed by a ‘start’ request is automatically sent to tomcatserver — this has the effect of
stopping and re-starting Tomcat.

As mentioned above, once tomcatserver is started, normally nothing more needs to be done by a
user other than to interact with the UCA GUIs. However, should Tomcat need to be stopped or
started manually, this can be done as follows:

For HP-UX or Linux
cd $SUCA HOME/bin
./tomcat.sh stop or ./tomcat.sh start

4.2 Starting the System Manager

Assuming the system 1is installed and properly configured (see the HP UCA Installation and
Configuration Guide for details), and tomcatserver has been started as described above,
entering the following URL in a web browser will result in the UCA Home Page being shown, as
follows:

http://hostname:18080/uca

where hostname is the DNS name or IP address of the server machine on which UCA is
installed. Note that it is possible to configure a port other than 18080 for use by UCA — see the
HP UCA Installation and Configuration Guide for details.

30

/= HP | UCA - Windows Internet Explorer

' Welcome to UCA

Determune the root couses - You are currently logged on as "system”
and service impact of ok
network problems

From here, depending on privilege, you can launch each of the UCA

Identfy all network applications and perform all the UCA management operations.

components affected by a
probiem

Gather symptomats: and
sympeathetic events relsted
to a problem

|
Change high volume, low - S

volue information to low) Use the Scenario Manager to:
vohume, gh value Use the UCA Manager to: ;

create, manage and deploy scenarios,
start and stop the system fiRers, mappings, rules and rule
MARage user accounts tempiates
manage the model tructure
manage the model data-load Use the Mesh Viewer to:

perform diagnostics and maintenance
operations navigate sround the model structure and

view fired rules and the working memory det

show maush event details dynamically

Once a user has logged in via the controls at the top of the page, the roles that user has been
subscribed will determine which of the UCA Manager and Applications may be started via the
appropriate buttons. When UCA is first installed, a username and password of ‘system’ and
‘system’ is pre-configured with ‘manager’ role. This role only has the manager role and henceforth
will only be able to start the UCA Manager.

Application

Us UCA Manager i Use the Scenario Manager to:

create, manage and deploy scena
rt and stop the system filters, mappings, rules and rule
manage User accounts templates

manage the model structure .
Use the Mesh Viewer to:

manage the model data-load

perform diagnostics and maintenance
operations

view fired rules and the working memory

navigate around the model structure and
data

show mesh event details dynamically
show notification details

inject test events

Clicking on the UCA Manager button will invoke a username / password dialog. When UCA is
first installed, a username and password of ‘system’ and ‘system’ is pre-configured with ‘manager’
role. Entering this username and password will cause the UCA Manager GUI to be displayed
with the ‘Status’ tab selected, as follows

31

“y HP UCA System Manager (on/

File View Help

@ Stotus| g2 sers| 2 Model | [T Date-load |, Diagnostics | 431 Maintenance [A o

Tomcat v
Manager Server web service
RMI Service Host

RMI Logging service

Fired Rules Ul web service
Mesh Ul web service
Notification Ul web service
Notification Manager web service
RMI Topology service '
Event Manager web service
Data Collector web service
Rules Server web service
Value Packs

EXXXENX

Exxxx

Startup Shutdown

The status tab shows details on the left hand side of all the major UCA software components and
their current status. The green tick indicates that the component is running and the red cross
indicates that the component is not started. In normal circumstances, Tomcat and the ‘Manager
Server Web Service’ should always be running. Note that during start-up, the web applications
will temporarily be shown with a yellow question mark symbol; this indicates that Tomcat has
deployed the service but it has yet to be initiated.

The tabs across the top of the window provide access to a number of different system
management features. Certain operations, such as defining and loading the model, can only be
performed when the system is not started, whilst others can only be done when the system is
running. For this reason, tabs are enabled or disabled depending on the running state of the
system. The table below summarises the state of the tabs depending on the state of the system.

Tab System not System started
started
Status enabled enabled
Users enabled enabled
Model enabled disabled
Data-load enabled disabled
Diagnostics enabled (see 1) enabled
Maintenance enabled (see 2.) enabled
Tools disabled enabled

1. viewing and enabling/disabling pre/post filter event logging is disabled

2. mesh update and archive update settings disabled

4.3 Adding, Modifying and Deleting Users

New users may be added or existing users modified or deleted from the ‘Users’ tab.

32

To add a new user:

Enter a username and password (the password must be at least 6 characters long)
Select the appropriate role(s)
Select New

The roles are as follows:

manager — a user must have manager role to invoke the System Manager GUI
administrator - a user must have administrator role to invoke the Scenario Manager
GUI

operator - a user must have operator role to invoke the Mesh Viewer GUI

read-only — with read-only role, a user cannot deploy scenarios, filters, mappings or
rules from the Scenario Manager GUI.

tester — a user with tester role may invoke the Scenario Manager and Mesh Viewer
GUIs. In addition, from the Mesh Viewer GUI, the user may inject a set of alarms
from an external file (using the ‘Inject alarms from file’ File pull-down menu) or inject
a single user-specified alarm by right-clicking an item in the Instances tree and
selecting the ‘create alarm’ popup menu item.

To update an existing user:

Select the username from the list in the left panel

Update the username, password or roles as appropriate. Note that, for security
reasons, the existing (or a new) password must be re-entered for the update to
successfully apply.

Select Update

Note that a user currently logged on to the System Manager cannot remove
manager role from his/her own details. To do this, you must exit the System
Manager GUI and restart it, logging on as a different user (with manager
role privilege), then select the original user and remove manager role.

To delete an existing user:

Select the username from the list in the left panel
Select Delete

Note that a user currently logged on to the System Manager cannot delete
his/her own entry. To do this, you must exit the System Manager GUI and
restart it, logging on as a different user (with manager role privilege), then
select the original user and delete it.

33

Password |eeesesee
Roles |V manager V| administrator
| I readonly || tester

Update || Delete |

Status: User "managerl” created

Figure 3 - The System Manager Users Tab

4.4 Starting UCA

From the Status tab of the Scenario Manager, click on the Startup button. Following a
confirmation prompt, each of the sub-systems will then be started and the icons next to each sub-
system will change to reflect their status. Progress is described in the text area on the right side
of the window and any error messages will be displayed here and / or in the status bar area at the
bottom of the window. UCA is fully started up when a green tick appears against each sub-
system, as shown below.

34

_y HP UCA System Manager (on¢
| File View Help
@ stotus) gy users | o+ | il atalons | < piagnostics | £ maintenance | A\, Tools

Tomcat

Manager Server web service
RMI Service Host

RMI Logging service

Fired Rules Ul web service
Mesh Ul web service
Notification Ul web sefvice
Notification Manager web service
RMI Topology service

Event Manager web service
Data Collector web service
Rules Server web service
Value Packs

v
{,
v
v
J,
l.
l'
(»
v
v
v
v
v

Status: OK. Username: system” £ t

Figure 4 - The Status tab showing the system started

4.5 Stopping UCA

Before the system is stopped, all Scenario Manager and Mesh Viewer GUIs in use by all
users should be closed.

From the Status tab of the Scenario Manager, click on the Shutdown button. Following a
confirmation prompt, each of the sub-systems will then be shut down and the icons next to each
sub-system will change to reflect their status. Progress is described in the text area on the right
hand side of the window and any error messages will be displayed here and / or in the status bar
area at the bottom of the window. UCA 1is fully shut down when a green tick appears against
‘Tomcat’ and ‘Manager Server web service’ and a red cross appears against all other sub-
components. Note that during the shut-down process, Tomcat is automatically re-started (see
Starting the Tomcat ‘Minimal Web Server’ section above) — this may take 15 to 20 seconds
depending on the capability of the server.

Shutting down the system will cause any corresponding session on a user’s web browser
to end. This means that if a user has any UCA web pages displayed and the system is
shut down, then those pages will become ‘stale’ and the page must be re-loaded after
UCA has been re-started.

% It is recommended that the web browser is

closed after UCA has been shut-down and re-
opened after UCA is re-started — this is
important prior to re-starting the
Scenario Manager GUI or Mesh Viewer
GUI after a system re-start.

4.6 Configuring the Metamodel

The Model tab of the Scenario Manager provides all the functions necessary for a user to
configure the metamodel structure used by UCA to fulfil all the needs of the set of required
scenarios. Chapter 5 provides details of how this metamodel is constructed and used within UCA.

35

4.7 Loading Data into the Model

The Data-load tab of the Scenario Manager provides functions that may be used to load data from
CSV text files into the UCA model database. Chapter 6 provides details of how this is performed.

4.8 Diagnostics

s are accessed from the Diagnostics tab of the System Manager GUI.

(ongmeiiuleeniy) SR

S users od . * '\ Diagnostics | §7 Maintenance

"Log File Selection Event Logging Fired Rules Logging

(@) exception log pre-filter event log po... anable pre-filter logging log fired rules:

) Tomcatlog | manager.2010-11-18.log || | L_!enable post-filter logging log per rule sstting

View last | 1005 line(s) log all rules

Status: User "manager1” created

Figure 5 - The System Manager — Diagnostics tab

This tab provides control over the following types of logging:

o Events received before the filters are applied.

o Events that pass the filters and mapped to objects in the mesh.

o Logging of rules fired as part of the correlations caused by events changing the state

of mesh objects. Logging of fired rules has a number of options:
o Selecting log fired rules allows certain rules fired to be logged that can be

subsequently viewed using the fired rules viewer, which rules are logged is
controlled by:

= log per rule setting logs the all actions of a rule where the option
Log Action to DB option has been enabled.

= log all rules ignores the setting on each rule’s action and logs every
action for every fired . This option should be used only to help
in the development of rules, i.e. to facilitate understanding of
which rules are fired and their sequencing.

Logging fired rules should be minimised on a production system, the number
of rules logged has a significant impact on the archiving process.

Note, certain rule actions are logged by the system regardless of these
settings as the information is required by subsequent event processing.

Within this tab, the following information can be displayed:

36

The contents of the centralised StateWise exception log.
The contents of the non-empty Tomcat logs.

The contents of the pre-filter event log.

The contents of the post-filter event log.

Since these log files can be large, the number of lines to display from these logs may be selected.

To view the exception log details:
e Select the ‘exception log’ radio button
e Select the desired number of lines to display in the ‘View last’ spinner (between 1 and
500)
e C(lick the View Log button.

To view a non-empty Tomcat log:
e Select the Tomecat log radio button
e Select the desired Tomcat log file from the drop-down list of filenames.
e Select the desired number of lines to display in the ‘View last’ spinner (between 1 and
500)
e (Click the View Log button.

The pre-filter event log maintains a list of all incoming events before they have passed through
the Filters, in the same format as described in section 10.3.2. This log file is a useful source of
events to replay into the system (for example using the StateWise Event Injector tool).

To view the pre-filter event log details:
e Select the pre-filter event log radio button (the system must have been started in
order to view the pre-filter event log)
e Select the desired number of lines to display in the ‘View last’ spinner (between 1 and
500)
e Click the View Log button.

The post-filter event log maintains a list of all incoming events after they have passed through
the Filters. The details in this log are in a similar format to section 10.3.2, but with the following
tags added:

<uniqueReference>

<baseClass>

<status>

<pathToMapping>

The uniqueReference tag contains the value of the uniqueReference after mapping has
been performed (see Section 8.3).
The baseClass tag contains the value of the baseClass after mapping has been performed
(see Section 8.3).
The status tag contains the value of the status after mapping has been performed (see
Section 8.3).
The pathToMapping tag contains a separated list of numbers, each enclosed in square
brackets. The numbers represent the internal unique Ids for each filter in the Scenario
Builder Tree (see section 7.1.1). The tag value represents the path that the event took
through the hierarchy of filters. It is useful to analyse the pathToMapping values to
optimise the position of the filters in the Scenario Builder Tree. An example log entry in
the post-filter event log is as follows:
<Event>
<uniqueReference>10001</uniqueReference>
<baseClass>Site</baseClass>
<status>failed</status>
<pathToMapping>[-1][3074555833] [-1] [3074520804] [3074519544]</pathToMapping>
<additionalText>Site Power Failure</additionalText>
<alarmType>EquipmentAlarm</alarmType>
<dataType>X.733</dataType>
<eventId>1003</eventId>
<eventRank>original</eventRank>
<moClass>Site</moClass>

<moInstance>10001</moInstance>
<originatingTime>2005-06-10 12:16:32</originatingTime>

37

<probableCause>PowerProblem</probableCause>

<severity>critical</severity>

<systemClass>HP nms</systemClass>

<systemInstance>V5</systemInstance>
</Event>

To view the post-filter event log details:
e Select the post-filter event log radio button (the system must have been started in
order to view the post-filter event log)
e Select the desired number of lines to display in the ‘View last’ spinner (between 1 and
500)
e C(Click the View Log button.

To enable or disable pre-filter event logging:
e Ensure the enable pre-filter logging checkbox is ticked / un-ticked (the system
must have been started in order to enable or disable the pre-filter event log).

To enable or disable post-filter event logging:
e Ensure the enable post-filter logging checkbox is ticked / un-ticked (the system
must have been started in order to enable or disable the post-filter event log

4.9 Maintenance

The UCA maintenance facilities are accessed from the Maintenance tab of the System Manager
GUL

File View Help

O smus] &= Users] l: Data-load | (. Diagnostics &' Maintenance | I Tools

mesh update settings other settings

update mesh 0 -~ hrs:mins after ... reset read/write access to Scenario Manager GUI l ‘

and then every 2415 : = hrs:mins (0:0 f...

| Apply |

| Update Mesh Now |

archive update settings

archive database 154 = hrs:mins after ...

and then every 2478 = hrs:mins
|

| Apply |

| Archive Now |

Status: OK. Username:"system”

Figure 6 - The System Manager — Maintenance tab

Within this tab, the following actions can be performed:

Configure the automatic Mesh update settings

Manually apply a Mesh update

Configure the automatic notification and event database archive settings
Manually apply a notification and event database archive

38

¢ Reset read/write access to the Scenario Manager

Any model data that is inserted, deleted or modified in the UCA model database may be
automatically propagated into the in-memory state mesh according to a configurable schedule
(see sections 3.5 and 6.2.2 for further details).

To configure the automatic model update settings:

e In the Mesh Update Settings area, use the ‘update mesh’ hours and minutes
spinners to set the number of hours and minutes after midnight that you wish
automatic Mesh updating to start.

e In the Mesh Update Settings area, use the ‘and thereafter every’ spinner to set the
interval, in hours and minutes, at which automatic Mesh updating is to be repeated.

e C(Click the Apply button in the mesh update settings area to apply the settings.

The default settings are to start at midnight and repeat once every 24 hours.

To manually force the in-memory state mesh to immediately update according to any recent
model database changes:
e In the Mesh Update Settings area, click the Update Mesh Now button

UCA maintains many different types of data in its event and notification database tables.
Without adequate management, these tables will grow bigger over time and will eventually reach
available capacity. UCA provides the facility to intelligently archive this data (i.e. redundant data
that is no longer needed by any outstanding correlation) and free up event and / or notification
database space. This process occurs in two stages:
o Event processing is temporarily suspended and the event and notification databases
are analysed to identify redundant data.
e Event processing is resumed and the previously identified redundant data is
archived as a low priority background task.

Archiving may be configured to run on a scheduled basis. A user may also manually force an
immediate archive of data.

The data that is archived comprises:
e Events received from external sources.
Notifications
Fired rule actions that have been configured to be logged in the notification database.
Contributory Event Lists
Affected Object Lists
Sympathetic Event Lists

The data is archived as separate, time-stamped CSV files in the ‘archives’ directory under the
UCA installation directory. The format of these files is such that they can be easily re-imported
into another UCA database instance using standard database tools.

To configure the automatic archive update settings:

e In the Archive Update Settings area, use the archive database spinner to set the
number of hours and minutes after midnight that you wish automatic archiving to
start.

e In the Archive Update Settings area, use the and thereafter every spinner to set
the interval, in hours and minutes, at which automatic archiving is to be repeated.

e C(lick the Apply button in the Archive Update Settings area to apply the settings.

The default settings are to start at 1.00 a.m. and repeat once every 24 hours.
To manually force the archiving of the event and notification databases to happen immediately:
e In the Archive Update Settings area, click the ‘Archive Now’ button

Only one user at a time is allowed full read-write access to the Scenario Manager GUI. This is to
stop simultaneous deployments of Scenarios, Filters, Mappings and Rules from interfering with

39

each other. The UCA manager database maintains details of who the current read-write user is.
Once a user is granted read-write access, no other users can use the GUI to deploy data until the
user with the ‘read-write’ lock has exited the GUI. Should a failure ever occur at a client machine
running the Scenario Manager GUI, it is conceivable that this ‘lock’ could be left in the ‘granted’
state in the manager database. Should this ever occur, the lock status may be cleared so that a
user may again be granted read-write access via the Scenario Manager GUL.

To reset read/write access to the Scenario Manager:
e In the Other Settings area, click the Reset button next to reset read/write access
to Scenario Manager GUI.

4.10 Tools

UCA provides a number of useful facilities and tools, accessed from the Tools tab of the System
Manager GUI, to assist during the rules development stage.

File View Help

(K7 Status‘ = Users] Ex N | & Data-ioadl‘ \oiagnosu'cs[4 maintenance|| &, Tools|

rules engine nms

remove current rules from use { Remove... Request resynchronisation with NMS Resynch...

clear working memory [Clear M... |

databases

clear event database | Clear

refresh key/value pairs } Refrésh i

viewers
view all fired rules

view working memory

Status: OK. Username:"system" |

Figure 7 - The System Manager — Tools tab

Within this tab, the following actions can be performed:

Remove all currently active rules from the inference engine.

Clear the contents of all working memories monitored by the inference engine.

Clear the event database.

Clear the notification database.

Refresh the dynamic property values (key / value pairs). This causes the UCA rules

engine to re-scan the key / value properties held in the ‘mg_properties’ database

table.

e View details of all the fired rule actions that have been logged in the UCA notification
database.

¢ Graphically view the working memory contents.

During the testing stage of rule development, it may be necessary to remove all the currently
active rules from the inference engine in case they are behaving in an unexpected manner. In this
sense, this facility acts as a ‘panic’ button to immediately stop and remove all rules.

40

There is also a facility to clear all objects from all working memories within the inference engine.
This essentially ‘resets’ the memories and is useful during the development and test stage, e.g.
before starting a particular test run of sample alarms. During the reset process, mesh and group
objects are returned to their normal states and all attached alarm reports are removed. All
primary & marker notifications and script (proxies) are removed and destroyed.

To remove all currently active rules from the inference engine:
e In the Rules Engine area, click the Remove Rules button.

After use, it is recommended that the system be shut down and re-started.

To clear the contents of all the working memories:
e In the Rules Engine area, click the Clear Memory button.

UCA also provides the facility to clear the contents of the event and notification databases. Again,
this is useful during the development and test stage, e.g. before starting a particular test run to
de-clutter the system of any existing events or notifications.

To clear the event database:
e In the Databases area, click the Clear button next to ‘clear event database’.

To clear the notification database:
e In the Databases area, click the Clear button next to ‘clear notification database’.

UCA supports the use of ‘dynamic properties’. A dynamic property is a key / value pair set up in
the UCA ‘mg_properties’ database table. These key / value pairs are accessible to rules. When the
value of a dynamic property is changed in the database, any rules using that dynamic property
will not be aware of the change in value. To make the rules aware of any changes to the dynamic
properties:

e In the Databases area, click the Refresh button next to ‘refresh key/value pairs’.

The UCA System Manager provides two graphical tools that are very useful during rule
development and testing. These are:

e The ‘Fired Rules’ viewer.
e The ‘Working Memory Viewer’

The Fired Rules Viewer

This viewer is used to view all the details of the rules that have fired (where database logging has
been selected in the associated actions), together with details of any contributory events
associated with the fired rules and the actions that have been carried out. All columns are re-
sizable and movable and their headers may be clicked on to toggle the sort order.

To view the fired rules details:
e In the Viewers area, click the View ... button next to view all fired rules.

41

" HP UCAFired Rules Viewer

Fired Rules

Uni... Rule Name Action Name Action Time Orig Cont Target Cont Base Class Unique Ref System
I RIGLER_RKEDILIENL... UIJLEUFEEIDLatus | 1U NUV L. nune 1lousy TUIESSEIVE... SYSLE
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system
TRIGGER_RESILIENC... trigSendHeartbe... Thu Nov 1... {ALL} A NORMAL primary
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system
TRIGGER_RESILIENC... trigGetPeerStatus Thu Nov 1... none 18080 rulesserve... system

=
(=4

9
8
7
6
5
4
3
2
1

Contributory Events
Unique ID Base Class Unique Ref Timestamp Add Text Severity Event Type Prob Cause

Limit results to | 100/ items

Figure 8 - The Fired Rules Viewer

The top table of the Fired Rules Viewer lists details of each fired rule. The details provided are:

e The Unique Id of the fired rule.

e The textual name of the rule. Rules fired from trigger conditions start with
“TRIGGER_” and rules fired from teardown conditions start with “TEARDOWN_".
The mnemonic or short-hand name of the fired action.

The time the action was fired.

The originating and target contexts associated with the action.
The trigger or teardown object’s base class.

The trigger or teardown object’s unique reference.

When a row in the fired rules table is selected, details of the associated contributory events are
shown on the bottom table. Note also that a single rule firing may result in more than one row in
the fired rules table i.e. there is a row in the table for each logged action rather than each fired
rule.

To refresh the view of fired rules details:
e C(Click the Refresh button.

To number of fired rules may be very large. To limit this in the viewer, the maximum number of
most recent fired rules details may be set. To set the maximum number to view:
e Select the required number (minimum 1, maximum 200, default 100) from the ‘Limit
results to’ spinner. This will take effect after the ‘Refresh’ button is clicked.

The Working Memory Viewer

This viewer is used to view all the details of the objects within the inference engine’s working
memories. The table columns are re-sizable and movable and their headers may be clicked on to
toggle the sort order.

To view the working memory details:
e In the Viewers area, click the ‘View ..." button next to ‘view working memory’.

To ‘Contexts and Object Tree’ shows, for each named context i.e. working memory, the different
object types that may be inserted. These object types are displayed as nodes under a parent
branch, where the parent branch represents the context name. The object types are:
¢ notifications
mesh objects
child groups
associate groups
script objects
time objects
system objects

42

o gystem key / value pairs

Contexts and Objects Tree Objects Summary Table

¢
Operating Mode @fperating Role Operating State Event Process...
resilient i in service processing

@ statistics Db_]EC'(S
4% system key/value p
i

=-® notifications

4% orphaned mi ~
mesh objects
child groups
associate group

ﬁ’ script objects

1= data objects

) _- RESILIENCE

- notifications

--4& orphaned mi

mesh objects
child ~ child groups

-

Refresh

Figure 9 - The Working Memory Viewer

When an object type node is selected in the tree, the ‘Objects Summary Tree’ will display
summary information for all objects of that type for the associated working memory. The
summary details vary depending on the object type selected.

To view details of any items listed in the ‘Objects Summary Tree’,
e double-click the associated row in the ‘Objects Summary Tree’, or

e right-click the associated row in the ‘Objects Summary Tree’ and select view details
.. from the pop-up menu.

When an object type of ‘notifications’ has been selected in the ‘Contexts and Object Tree’, right-
clicking an object in the associated ‘Objects Summary Tree’ will show an additional pop-up menu
item — ‘show marker notifications’. The effect of this is to replace the contents of the ‘Objects
Summary Tree’ with a summary of all the marker notifications associated with the notification
that had been selected. When the marker notifications are displayed, right-clicking one will
display a pop-up menu, similar to normal notifications, but with ‘back to parent notification’
instead of ‘show marker notifications’. Selecting ‘back to parent notification’ will return to the
display of normal notifications, as previously displayed.

To refresh the view of fired working memory details:
e Click the Refresh button.

43

WM Object Details (X

Base class = Service 6

Sub class = UMIS_ Service

Unique ref = Service .UMIS Service

Instance name = Service .UMIS Service

State = degraded

<<Butomatically propagate state change to parent = false>>
<<Butomatically propagate state change to relative(s) = false>>
Number of relatives = 0

Service state = in service

Importance = locked D&
Latitude = O

Longitude = 0

Current total event count = 1

Current total event count trend = increased
External event count = 0

External event count changed = unchanged

Degraded synthetic event count = 1

Degraded synthetic event count changed = increased
Failed synthetic event count = 0

Failed synthetic event count changed = unchanged
Parent base class =

Parent sub class =

Parent unique ref =

Parent instance name =

Parent state = unknown

Grandparent base class =

Grandparent sub class =

Grandparent unigue ref =

Grandparent instance name =

Grandparent state = unknown

<<Updated in WMs = false>>

Timer state = undefined

<<Last event unique id = FORCE_DEGRADED>>

<<Last event unique ref = Service .UMIS Service>>
Last event creation time (seconds) = 1250175022
Last event originating time (seconds) = 1250175022
Last event moInstance = null

Last event external eventId = EMULATED

Last event additional text = SYNTHETIC

Last event probable cause =

Last event severity = null

Last event previous severity = none

. = = o

Figure 10 - The Working Memory Object Details window

44

Chapter 5 Defining the Metamodel

This chapter describes in detail the various aspects of building and deploying the UCA
metamodel. In essence, a UCA metamodel is a UML class diagram in the form of an XML file.
Although the XML could be created manually, UCA provides a feature that allows a UML class
diagram that represents the metamodel to be imported and automatically converted into the UCA
XML format.

To illustrate the complete process of building and deploying a metamodel, an example correlation
model of a simple digital TV broadcast network is used.

5.1 Example Class Model

The following diagram illustrates the UML class model of a simple digital TV broadcast network
that will be converted into an equivalent UCA metamodel.

<<duplicates=>
Model

¢

DTVNetwork

>
- >

Service

£<<propagate> <<propagafe=>

<<duplicates=>

Site

Multiplex

i L] £

<<propagafe>>

<<propagate%
£<propagatés> <<duplicates=> <<duplicates=>

<propagate=>

- -

<<propagafe>>

BroadcastEquipment BasebandLink CompositeLink

<<propagage=>

kK<propagate=> <<owners>

<Lowners>

SignalLinkEquipment

<<propagafe>>

<<propagafe>>

TelcoLink

<<owners>

The <<propagate>> text in the diagram denote those relationships on which automatic state
propagation is required (the <<propagate>> text is placed at the ‘from’ end of the relationship).

The Model class is a top-level container class that must exist in any model converted into a UCA
metamodel. It exists to identify the model loaded into UCA and acts as a top-level container for
all other classes in the model. In the example, it contains the DTVNetwork class that itself acts a
container (directly or indirectly) for all classes in the DTV network model. The Model class may
act as a parent to any number of child classes but is unique in that it does not itself have a parent
class.

The model shown allows for an arbitrary hierarchy of broadcasting Sites, each of which can
contain SignalLinkEquipment classes (representing fixed communications link equipment) and

45

BroadcastEquipment classes (representing on-air broadcast communications link equipment).
BroadcastEquipment objects can be joined together by TelcoLink and BasebandLink objects,
either separately or at a higher level by CompositeLinks between the Sites themselves. The
Multiplex class represents a multiplexed digital TV transmission channel carried over a fixed, on-
air or composite Link. Finally, the Service class represents a digital TV service, comprised of one
or more components from the Multiplex that it is carried over. This compact set of objects is all
this is required to create a model network of broadcasting sites and is sufficient to perform simple
correlations on a DTV network. A fragment from an example model network composed from
objects of these classes is shown below:

Service 3

Relay Site Relay Site Relay Site

Multiplex

Composite . Composite Composite ; Composite
e 1 A ey i

5.2 Automatic Creation

UCA provides a feature that converts a metamodel in the form of a UML class diagram into the
UCA metamodel XML syntax. The class diagram can be created in a UML case tool that supports
the export of class diagrams in XMI 1.2, UML version 1.4. Because of UML tool idiosyncrasies
and inconsistent compliance to standards, UCA currently supports a single UML tool (ArgoUML)
for this purpose. This tool can be invoked from the link at the bottom of the UCA home page.
When creating the class diagram in the UML case tool, UML ‘Stereotypes’ and ‘Tagged Values’
are used as follows:

e ‘duplicates’ is defined as a Stereotype on a class
‘propagate’ is defined as a Stereotype on a relationship endpoint
‘owner ’ is defined as a Stereotype on an association relationship endpoint
‘hops’ is defined as a Tagged Value on an association relationship endpoint
‘metamodelName’ and ‘metamodelVersion’ are defined using Tagged Values on the
‘Model’ class.

The class diagram must have ‘Model’ defined as the top-level class.

To automatically convert the UML class diagram to the corresponding UCA XML syntax, the
following steps are needed:
e Create the UML class diagram, making use of UML stereotypes and tagged values as
described above (sections below described the meaning of ‘duplicates’, ‘propagate’,
‘owner’ and ‘hops’).
e Export the UML class diagram as an XMI file. With ArgoUML, this can be done from
the ‘File -> Export as XMI menu.
e From the Model tab of the UCA System Manager GUI, select Import
e Locate and select the XMI file exported from ArgoUML.

46

>

Currently Deployed Metamodel

Details
Deployment Date Thu Nov 18 11:36:58 CET 2010 |
DeployedBy system
Creation Date Thu Nov 18 11:36:41 CET 2010 L |

Create, Edit and Deploy Metamodel

Status: OK. Username:"system”

Figure 11 - The Model Tab — Importing an XMI File

If the import is successful, information will be shown in the status bar area. If the import fails for
any reason, an error message in red text will be displayed in the status bar area.

5.3 Manual Creation

The UCA metamodel may be created manually, either using a separate text file editor or from
within the Model tab of the System Manager GUI.
If the System Manager GUI is used, clicking on the ‘New’ button will display a template XML
definition, including standard header and DTD definition. The user may then manually edit the
XML within the section marked as:
<metamodel metamodelName="xxxx" metamodelVersion="x.x">

insert all <element>...</element> definitions here
</metamodel>

If a separate text editor is used, then the XML metamodel file may be read in to the text area of
the System Manager’s Model tab by selected ‘Open ...” and locating and selecting the appropriate
file. In addition, any model file created or read in to the text area of the Model tab may be saved
to a local file by selecting ‘Save ...".

The metamodel XML file for the example digital TV broadcast network model is listed below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!DOCTYPE metamodel [
<!ELEMENT metamodel (element+)>
<!ATTLIST metamodel metamodelName CDATA #REQUIRED metamodelVersion CDATA
#REQUIRED>
<!ELEMENT element (parent | relative | associate | child)*>
<!ATTLIST element type NMTOKEN #REQUIRED duplicates (TRUE|FALSE)
#REQUIRED>
<!ELEMENT parent (class, propagate)>
<!ELEMENT child (class, propagate)>

47

<!ELEMENT associate (class, propagate, hops)>
<!ATTLIST associate owner (TRUE|FALSE) #REQUIRED>
<!ELEMENT relative (class, propagate)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT propagate (#PCDATA)>
<!ELEMENT hops (#PCDATA)>
1>

<metamodel metamodelName="DTV Metamodel" metamodelVersion="1.0">

<element type="DTVNetwork" duplicates="FALSE">
<parent>
<class>Model</class>
<propagate>FALSE</propagate>
</parent>
<child>
<class>BasebandLink</class>
<propagate>FALSE</propagate>
</child>
<child>
<class>Site</class>
<propagate>FALSE</propagate>
</child>
<child>
<class>CompositeLink</class>
<propagate>FALSE</propagate>
</child>
<child>
<class>Service</class>
<propagate>FALSE</propagate>
</child>
<child>
<class>Multiplex</class>
<propagate>FALSE</propagate>
</child>
<child>
<class>TelcoLink</class>
<propagate>FALSE</propagate>
</child>
</element>

<element type="BasebandLink" duplicates="TRUE">
<parent>
<class>DTVNetwork</class>
<propagate>FALSE</propagate>
</parent>
<parent>
<class>CompositeLink</class>
<propagate>TRUE</propagate>
</parent>
<relative>
<class>Multiplex</class>
<propagate>TRUE</propagate>
</relative>
<associate owner="TRUE">
<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>
<hops>0</hops>
</associate>
</element>

<element type="Site" duplicates="FALSE">

<parent>
<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>

<parent>
<class>Site</class>
<propagate>TRUE</propagate>

48

</element>

</parent>

<child>
<class>Site</class>
<propagate>FALSE</propagate>

</child>

<child>
<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>

</child>

<child>
<class>SignallLinkEquipment</class>
<propagate>FALSE</propagate>

</child>

<associate owner="FALSE">
<class>CompositelLink</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>

<element type="CompositelLink" duplicates="TRUE">

</element>

<parent>
<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>

<child>
<class>BasebandLink</class>
<propagate>FALSE</propagate>

</child>

<child>
<class>TelcoLink</class>
<propagate>FALSE</propagate>

</child>

<relative>
<class>Multiplex</class>
<propagate>TRUE</propagate>

</relative>

<associate owner="TRUE">
<class>Site</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>

<element type="TelcoLink" duplicates="FALSE">

</element>

<parent>
<class>CompositeLink</class>
<propagate>TRUE</propagate>

</parent>

<parent>
<class>DTVNetwork</class>
<propagate>FALSE</propagate>

</parent>

<associate owner="TRUE">
<class>SignallLinkEquipment</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>

<element type="Multiplex" duplicates="TRUE">

<parent>
<class>DTVNetwork</class>
<propagate>FALSE</propagate>
</parent>
<child>
<class>BasebandLink</class>
<propagate>FALSE</propagate>
</child>

49

</element>

<child>
<class>CompositelLink</class>
<propagate>FALSE</propagate>
</child>
<relative>
<class>Service</class>
<propagate>TRUE</propagate>
</relative>

<element type="Service" duplicates="FALSE">

</element>

<parent>
<class>DTVNetwork</class>
<propagate>FALSE</propagate>
</parent>
<child>
<class>Multiplex</class>
<propagate>FALSE</propagate>
</child>

<element type="BroadcastEquipment" duplicates="FALSE">

</element>

<parent>
<class>Site</class>
<propagate>TRUE</propagate>

</parent>

<parent>
<class>BroadcastEquipment</class>
<propagate>TRUE</propagate>

</parent>

<child>
<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>

</child>

<associate owner="FALSE">
<class>BasebandLink</class>
<propagate>TRUE</propagate>
<hops>1</hops>

</associate>

<element type="SignallinkEquipment" duplicates="FALSE">

</element>

</metamodel>

Before describing the structure and syntax of a metamodel file in some detail, it should be noted
that whilst it is possible to include examples of class specializations into a UML class diagram,
such information would not be included in the equivalent metamodel file. This is because the
build (run-time data load) provides the specialization i.e. the definition of the Sub Class attribute

for each sub-type.

The first section of the file contains XML header and DTD information together with the opening
<metamodel> tag. This contains mandatory metamodelName and metamodelVersion

<parent>
<class>Site</class>
<propagate>TRUE</propagate>

</parent>

<associate owner="FALSE">
<class>TelcoLink</class>
<propagate>TRUE</propagate>
<hops>1</hops>

</associate>

attributes for the metamodel itself:

<metamodel metamodelName="DTV Metamodel"

50

metamodelVersion="1.0">

Each distinct class described in the metamodel class diagram requires an entry in the XML file
bounded by the <element> </element> tag pair. For example, the DTVNetwork class has the

following entry:
<element type="DTVNetwork" duplicates="FALSE">

</element>

The <element> tag has two attributes: the type or base class name and whether or not
duplicates are allowed. Both are mandatory and the latter field is normally FALSE, however it
1s set to TRUE when the same object can be loaded with different unique references e.g. if it has a
number of alias names.
Within the <element> </element> tag pair, additional tag pairs may be defined, specifying the
possible types of relationships that objects of this type can enter into. In addition, a relationship
must be defined in each class that participates in that relationship i.e. at both ends, and this
must be done in context. For example, with a parent/child relationship, the parent class defines a
<child> relationship and the child class defines an equivalent <parent> relationship. The
additional tag pairs are:
<parent> </parent>. This tag pair is required at least once in every aggregated or child class
(because every class has a parent) and defines the parent class type in a composite relationship. It
contains two additional tag pairs:
<class>{PARENT BASE CLASS}</class>, the base class of the parent
<propagate>{TRUE | FALSE}</propagate>, whether automatic state
propagation is required to the parent object

e.g.
<element type="Site" duplicates="FALSE">
<parent>
<class>DTVNetwork</class>
<propagate>FALSE</propagate>
</parent>
</element>

Note that the top-most class in a state mesh - usually some type of network - has
a parent class of Model, for which UCA automatically generates the required
support and no entry is required in the XML file.

<relative> </relative>. This tag pair is used in a contained or nephew class and defines the
containing or uncle class type in a containment relationship (hence the name <relative>). It
contains two additional tag pairs:
<class>{RELATIVE BASE CLASS}</class>, the base class of the relative
<propagate>{TRUE | FALSE}</propagate>, whether automatic state
propagation is required to the relative

e.g.
<element type="Multiplex" duplicates="TRUE">

<relative>
<class>Service</class>
<propagate>TRUE</propagate>
</relative>
</element>

Note in this example that the duplicates attribute is set to TRUE. This allows a
Multiplex object to be data loaded several times if it supports more than one
Service uncle object (only one uncle object can be specified at a time in a single
data load block). Also note that the propagate attribute is set to TRUE. This
means that any state change on a Multiplex object will be propagated
automatically to all Service uncle objects.

<child> </child>. This tag pair is used in a composite (or parent) class OR in an aggregate (or
uncle) class. In a composite relationship, it defines the child class type. In an aggregate
relationship, it defines the contained or nephew class type. It contains two additional tag pairs:

51

<class>{CHILD BASE CLASS|NEPHEW BASE CLASS}</class>, the base
class of the child or nephew class.

<propagate>{TRUE | FALSE}</propagate>, whether automatic state
propagation is required to the child or nephew

e.g. Nephew

<element type="Service" duplicates="FALSE">

<child>
<class>Multiplex</class>
<propagate>FALSE</propagate>
</child>

</element>

Note that in this example the duplicates attribute is set to FALSE. This is
because a Service object is only loaded once even though it may have many
Multiplex nephew objects

e.g. Child

<element type="Site" duplicates="FALSE">

<child>
<class>Site</class>
<propagate>FALSE</propagate>

</child>

<child>
<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>

</child>

<child>
<class>SignallLinkEquipment</class>
<propagate>FALSE</propagate>

</child>

</element>

Note that a Site parent object may singly or simultaneously have a number of
different types of child object, including other Site objects (this allows a hierarchy
of Sites as defined in the metamodel UML class diagram).

<associate> </associate>. This tag pair is used in ‘associate’ or peer classes and defines the peer
class type in an association relationship. The <associate> tag has an owner attribute that defines
the class type at one end only of an association relationship as the nominal owner, i.e. set to
TRUE. Obviously, the class type at the other end of the same relationship must have this
attribute set to FALSE. The purpose of this tag is to force the bi-directional relationship in the
state mesh to be constructed from the ‘owning’ end only. The <associate> </associate> tag pair
contains three additional tag pairs:

<class>{PEER BASE CLASS}</class>, the base class of the remote peer class.
<propagate>{TRUE | FALSE}</propagate>, whether automatic state
propagation is required to the remote peer

<hops>{0 | n}</hops>, the extent of automatic state propagation, usually 0 or 1
objects (0 means don’t propagate to associate, even if propagate attribute is set to

TRUE. 1 means propagate to associate and no further if propagate attribute is
set to TRUE).

e.g. Relationship owner, BasebandLink objects does not propagate state changes
to associate BroadcastEquipment objects

<element type="BasebandLink" duplicates="TRUE">

<associate owner="TRUE">
<class>BroadcastEquipment</class>
<propagate>FALSE</propagate>
<hops>0</hops>

</associate>

</element>

52

e.g. Relationship non-owner, BroadcastEquipment objects propagate state changes

to associate BasebandLink objects.
<element type="BroadcastEquipment" duplicates="FALSE">

<associate owner="FALSE">
<class>BasebandLink</class>
<propagate>TRUE</propagate>
<hops>1</hops>
</associate>
</element>

5.4 Metamodel Design Patterns

Developing UCA solutions in a number of application areas has resulted in the use of some
common design patterns for metamodel components. The following sections describe some of the
more useful examples using annotated UML class diagrams and where appropriate, associated
correlation models.

5.4.1 Equipment Tree

The Equipment Tree pattern describes a common arrangement for building hierarchical network
equipment models in UCA and includes annotations for model-driven state propagation between
equipment layers. The following UML class diagrams illustrate the general form of the pattern
and an example Equipment Tree metamodel fragment for a telecommunications Network
Element containing a hierarchical arrangement of sub-components:

General Form Example Equipment Tree
Equipment | 1..* Network
Element
| | T t
| Rack
Function Container

L 2
o b

The general form of the pattern allows the user to construct an arbitrarily complex layered
equipment model including model-driven state propagation between the layers. The example
Equipment Tree illustrates how the general form may be used to construct a specialisation for a
particular application domain and this would normally be used as part of a UCA metamodel.

A correlation model, based on the example Equipment Tree, is illustrated in the following
diagram to show how the pattern specialisation would be used in practice.

53

---------------------- > O Rule-Driven State

Propagation
Rack Group
Rack

Automatic Model-Driven
State Propagation

© Rule-Driven State
il Propagation @~ TSNoooo-o----------eg

1| Shelf Group i i E
| i Automatic Model-Driven : . i
1 State Propagation
i i E Shelf i
- ; @ Rule-Driven State ... ;
e aataiaiuiistataiaiuiiat Propagation | aeielatalaieieleletetieieie el

Automatic Model-Driven

T State Propagation
i Card E E Card i
| III : @ Rule-Driven State | 7 !

S I . Propagation _____ (e
i E Automatic i i
! Model-Driven !

State Propagation

The import facility provided with UCA may be used to convert the Equipment Tree UML class
model (in XML format) into a UCA metamodel, capable of supporting the correlation model
including automatic model-driven state propagation.

The user is then left to construct and deploy the simple rules and actions necessary to handle the
propagation of state changes between layers of the model and carry out consequent actions. For
example, a design choice might be to build into rule ® an assumption that a Card has failed when
75% of the Ports on that Card have themselves failed. As well as reporting the failure into the
enclosing Shelf, the designer could instigate an action to attempt an automatic reset of the Card
itself.

The important point to consider is that the combination of automatic model-driven state
propagations and the flexibility of user-defined rule-driven state propagations allows the
correlation designer to achieve a very flexible handling and reporting structure. In addition, the
single metamodel definition and accompanying rule/action set will apply equally to all Network
Elements for which data is loaded into UCA, regardless of the actual number of Ports, Cards,
Racks and Shelves in each instance.

5.4.2 Normaliser

Networks are constructed from a diverse range of components within and across the ranges of
equipment supplied by different manufacturers. For simple correlation scenarios or test
implementations, it may be advantageous to provide individual correlation models for each
variation, however as the extent of the implementation increases it becomes important to adopt
techniques that promote simplification and re-use and minimise the maintenance effort.

One technique that can be usefully employed at the lowest level of the correlation ‘pyramid’ is to
normalise this diversity into a common logical representation that then drives the correlation
layers above in a uniform manner. Diversity at this level usually manifests itself in the following
ways:

54

e Alarm reports received from network equipment vary widely in their reporting
standard, complexity and severity (even in different revisions of the same equipment
supplied by a manufacturer).

e The complexity of the logical implementation model for the same type of equipment
varies widely across product ranges and manufacturers. The result is that the same
problems are often reported in completely different ways.

UCA supports the normalisation of this diversity into a common logical form using the
Normaliser pattern described in the following UML class diagrams.

General Form Example Normalisation
Container Card
Lx| 4 1*Tf
Normalised | —®| Associate Port —> Link
Object 2 1
Specialised Specialised Subclass Subclass
Object Type 1 Object Type 2 Type A Type B

N rLh

Alarm Report ’
Type B

Mapping Targets Alarm Report == [5\ bPort
Mapping Targets

The Normaliser pattern is derived from the widely used class form of the Adapter pattern. It
achieves the normalisation process through two mechanisms:

e Diverse alarm reports are mapped onto instances of the specialised object types in the
correlation model, using the comprehensive target object mapping capabilities
provided by UCA. The mapping is configured such that regardless of the type of
alarm report, it causes the same state change to be applied to the target object.

e Specialised object types (reflecting the diversity of the network implementation) are
provided with a common base class that serves as the normalised ‘logical’ driver for
correlation at higher levels. The state change caused by mapping alarm reports onto
a specialised object affects the encapsulated base class instance equally.

The Rules that drive higher-level correlations are then written to operate on instances of objects
with the common base class — they effectively ignore the diversity and look only for objects of the
base class type in working memory (rather than their subclass type which reflects their diversity).

Of particular interest in the example normalisation model shown above is the extra level of
diversity in the Type B specialised object type. The Type A subclass has alarm reports attached
directly by UCA as described above. In contrast, the Type B subclass has alarm reports attached
to its set of SubPorts (because it does not itself directly generate alarm reports and mapping
those from the SubPorts to the owning Type B instance would not achieve the correct effect).

In order to achieve the required normalisation from Type B objects, the designer is required to
provide a simple rule to detect when the required proportion of Type B SubPorts have themselves
changed state and a corresponding action to force the owning Type B subclass instance to the
failed state. Once this has been implemented however, the correlation scenario will operate
equally with either Type A or Type B objects.

55

5.4.3 Link Handler

Most communication networks are constructed at the equipment level from a mesh of control or
switching elements and some type of transport medium to communicate information or switch
resources between them e.g. radio link, fibre optic cable. In general, this level of complexity is
insufficient to provide the level of resilience to failure required by modern service level
agreements or to support the diverse range of services offered.

In practice therefore, these types of network employ a logical network model above the physical
level, supporting a number of layers of increasing abstraction (and usually complexity). A
common characteristic of each layer however is that it is dependent on a lower layer for service
and correlation scenarios usually involve determining the effect of a problem at a lower layer on
those above.

The practical problem in constructing these scenarios is surprisingly not the issue of modelling
the inter-layer dependencies or associated state propagations but that of obtaining a suitable
generic ‘driver’ from the physical layer to provide an initial trigger. This is because the physical
links e.g. cables, radio links, fibres etc. on which logical links are carried do not themselves
generate Alarm Reports. In general, the only vaguely useful Alarm Reports are those reported
against the equipment at each end of the physical links and by themselves they are unsuitable for
reliably triggering a scenario. This is because the receipt of an Alarm Report from one end of a
link is not always a reliable indicator of link failure.

The purpose of the Link Handler pattern is twofold. It provides the connection between physical
equipment and associated link problems and supports the generation of a reliable generic ‘driver’
into the logical layer above. The general form of the pattern and a metamodel fragment that
employs it (from the DTV network example included with UCA) are illustrated in the following
UML class diagrams.

General Form Example Link Handler
Service
Logical Link Multiplex
Physical 4—— | Link Termination Baseband | —— Broadcast
Link 1 2 Point Link 1 2 Equipment
Composite Composite
Receiver Transmitter

The pattern operates in two stages. First, Alarm Reports delivered against the Link Termination
Point objects result in state changes that are propagated to a Physical Link object using
automatic model-driven state propagation. One or more rules provided by the correlation designer
detect when the ends of the Physical Link have attained the required combination of states e.g.
failed + failed or failed + degraded (as required by the correlation scenario) and the consequent
action forces the state of the Physical Link to failed. Next, automatic model-driven state
propagation reports the state change of the Physical Link upwards to the carried Logical Link,
thus achieving the requirement to provide a generic ‘driver’ into that layer.

The example Link Handler illustrates how this pattern may be incorporated into the UCA
metamodel. The structure shown actually reports a Baseband Link (i.e. the Physical Link) failure
up to the Multiplex transported over it, which in turn reports a problem to the Services carried on

56

the Multiplex. It also utilises the Normaliser pattern to handle equipment diversity, using the
Broadcast Equipment base class to represent the Composite Receiver and Transmitter objects at
either end of the Baseband Link and thus simplifying the implementation.

5.4.4 Physical-Logical Vee

The Physical-Logical Vee pattern is in fact a combination of the Equipment Tree (Physical) and
Link Handler (Logical) patterns described above and forms the basis of many correlation
scenarios that operate on communications networks. The pattern allows a designer to implement
scenarios that simultaneously handle two important aspects of correlation analysis — problem
detection on the (physical) equipment level and impact analysis on the (logical) service impact
level. The following UML class diagram illustrates the general form of the pattern and shows the
practical application of it in the DTV network metamodel.

General Form Example Physical Logical Vee
Service DTV
Logical Physical Network
?f 1*??
Logical Link Equipment Multiplex Site
Container
?f 1*Tf ?f 1*Tf
Physical <4—— | Link Termination Baseband | €— Broadcast
Link 1 2 Point Link 1 2 Equipment

Considering the general form, alarm reports attached to Link Termination Points have two
simultaneous effects. State changes are propagated directly upwards to the Equipment Container
in the physical arm of the ‘Vee’, allowing the designer to construct problem detection correlation
scenarios. The same state changes are propagated towards the Physical Link and consequential
state changes are propagated upwards to the Logical Link in the logical arm of the ‘Vee’, allowing
the designer to build simultaneous service impact correlation scenarios. Of particular interest in
this pattern is the simultaneous use of relative, parent and peer relationships to achieve the
desired results.

The metamodel fragment shown is taken directly from the included DTV network example and
illustrates a practical application of this pattern.

57

Chapter 6 Creating the Model Database
Using the System Manager

One of the purposes of the UCA metamodel is to act as a template for structuring the UCA model
database. The classes and relationships defined within the metamodel drive the whole process of
setting up the structure of the tables within the UCA model database. Assuming the metamodel
1s defined, UCA automates the entire process of generating these tables and defining their
structure. Once the model database tables have been created, the remaining task is to populate
these tables with actual model data.

This chapter describes the process of creating and populating the model database tables.

6.1 Generating the Model Database Structure

Before a metamodel can be ‘deployed’ (i.e. used to automatically create the model database
tables), it must first be added to the metamodel library within UCA. This library acts as a storage
repository for deployable metamodels. Any number of them may be stored in the library but only
one metamodel can be deployed into active use at any time.

e To store the metamodel currently displayed in the text area of the Model tab of the
System Manager, select ‘Add ..., supply a description and additional information that
distinguishes this metamodel, then select ‘OK’.

e To view the current set of deployable metamodels stored in the metamodel library,
select ‘Manage ...” from the Model tab. This will list the details of all metamodels
within the library.

e To view the contents of a particular metamodel stored in the metamodel library,
select ‘Manage ..."” from the Model tab, select the metamodel of interest and click on
‘Open’. The metamodel will then be listed in the text area of the System Manager’s
Model tab.

e To deploy a metamodel in to active use, select ‘Manage ..." from the Model tab, select
the required metamodel to deploy and click on ‘Deploy’. Note that this is a
destructive operation - all data held in the model database will be destroyed.
After accepting the warning confirmation, a dialog will prompt for the model
database maximum field size — enter a value at least as big as the largest data item
(usually the Unique Reference) expected to fill a model database field during
population and click on ‘OK’. The model database tables will then be automatically
created from the metamodel.

58

File View Help

) Stots| gig users, 2 Model BT vaterond | Diagnostics | £ Maintenence | A, -
Currently Deployed Metamodel
Description ‘oTv
Deployment Date Thu Nov 18 11:43:07 CET 2010

Deployed By system
Creation Date Thu Nov 18 11:42:59 CET 2010

Create, Edit and Deploy Motamodel

Figure 12 - The Model Tab - meta-model management

The fragment below illustrates the type of definition generated within the model database from
the metamodel for a CompositeLink class.

Note that the ‘create table’ statement will vary according to the types of relationship defined for
the class in the metamodel. The Relative and Associate sections marked in the example above will
only exist if the class participates in composition and association relationships respectively. On
the other hand, the Parent and Class Section will always exist (a class always has a parent even
if it the special top level Model class).

Even though a class can have any number of composition and association relationships, only one
set of data is allowed for these sections per row in the appropriate model database table. To allow
data loading of these multiple relationships for a given target object, the user simply provides
multiple data sets with the same Parent and Class attribute values and different Relative and/or
Associate attributes. Further, to prevent the model builder reporting errors for duplicate entries
for the same instance of a class, the user is required to set the duplicates attribute in the
metamodel for the class to TRUE. The model builder then constructs a single target object
instance but correctly sets up the multiple Relative and/or Associate relationships as required.

59

CREATE TABLE UCA.MD_COMPOSITELINK (

"Parent Ref" varchar2(250) default '', Parent

"Parent Subclass" varchar2(250) default '', Section

"Parent Class" varchar2(250) default '',

"Relative Ref" wvarchar2(250) default '', Relative

"Relative Subclass" varchar2(250) default '',

"Relative Class" varchar2(250) default '',

"A Associate Ref" varchar2(250) default '',

"A Associate Subclass" varchar2(250) default '',

"A Associate Class" varchar2(250) default '', > Associate

"Z Associate Ref" varchar2(250) default '', Section

"Z Associate Subclass" varchar2(250) default '',

"Z Associate Class" varchar2(250) default '', -<

"Class Name" varchar2(250) default '' NOT NULL,

"Subclass Name" varchar2(250) default '' NOT NULL,

"Instance Name" varchar2(250) default '' NOT NULL,

"Unique Ref" varchar2(250) default '' NOT NULL, Class

"Service State" varchar2 (20) >‘ Section
default 'IN_SERVICE' NOT NULL,

"Importance" varchar2 (5) default '0O' NOT NULL,

"Latitude" wvarchar2(20) default '0' NOT NULL,

"Longitude" wvarchar2(20) default '0O' NOT NULL .

) TABLESPACE UCA;

Section

6.2 Populating the Model Database

Once the UCA model database tables have been created, they must be populated with real data
representing the actual Sites, CompositeLinks etc. There are two aspects to this:
e The initial data population, starting from empty tables
e The ‘day-to-day’ updating of the tables due, for example, to periodic inventory
changes in an operational network.

The following sections describe the two processes involved.

6.2.1 Initial Population

There are many possible techniques for populating the model database tables with data. For
example, if Comma Separated Value (CSV) data files are to be imported then Oracle’s
SQL*Loader or the PostgreSQL COPY command might be used. Alternatively, table data may be
directly imported using facilities provided with the DBMS.

Alternatively, UCA provides a facility for CSV file import intended for use when a relatively
small (tens of thousands) number of objects are to be imported. To use this facility, select the
Data-load tab in the UCA Manager (note that loading UCA with an initial set of model data can
only be done when UCA is not started).

e The available classes of model data, as defined in the metamodel, will be listed on the
left side. The right side lists the CSV files available for import. Files available for
import are those in the import’ subdirectory of the UCA installation directory on the
server. Files may be uploaded to this directory from a client using the Upload ...
button on the Data-load tab or manually copied in from another location. These files
may also be deleted from the server by selecting the file and then clicking the Delete
button.

e To associate a class with a CSV file, select the class on the left of the window and the
associated CSV file on the right. Then click on Associate. Details for this class / file
association will then be listed in the text area at the bottom of the window. Repeat
this process for all classes and CSV files to be associated.

60

e Finally, to import all the CSV files for each class, click on the Import button. You
will be given the choice of over-writing existing table data or appending the new data
to the existing data.

eView}flelp — - . o -
Stotus | g2 Users | 7, /||] oeterlond < Diognostics | £3) Maintenance | 3, Tools|

Avallable files

Class and import file association

Import 7

ISt&us: OK

Figure 13 - The Data-load Tab - inventory management

Below is an example where multiple rows of data are provided for a single instance of an object to
configure multiple Relative relationships to different ‘uncle’ objects, as described at the end of the
preceding section. Each Multiplex object is listed several times to allow a number of Relative
relationships to be defined to different uncle Service objects. This is illustrated in the following
fragment of the example network:

Multiplex.csvrow N~
Multiplex.csv row N+1 =~
Multiplex.csv row N+2 -~~~

Multiplex.csv row N+3 -7~

61

6.2.2 Updating the Database

Once the model database has been populated with target object and relationship instance data,
the UCA system may be started as described previously.

Assuming that the UCA system is operational, the model database may be updated at any time,
with the effect that the state mesh will be dynamically updated and any ongoing correlations
automatically resolved as far as possible to maintain system consistency. The dynamic update
mechanism is illustrated below:

For efficiency the UCA system is designed to gather a set of model database updates over a
configurable period and apply them in a single operation. Therefore, the state mesh will only be
updated at those times defined by system configuration e.g. once an hour at 30 minutes past the
hour. This means that changes applied to the model database are unlikely to be applied to the
state mesh immediately unless this coincides with the next state mesh update time or the user
selects the ‘Update Mesh Now’ option in the UCA System Manager Maintenance tab. The
frequency of update will have been configured by the system administrator (using the UCA
System Manager Maintenance tab - see the HP UCA Installation and Configuration Guide for
details). The time and frequency should be chosen to provide a balance between operational needs
and system efficiency, bearing in mind that an update requires the system to temporarily
suspend (and buffer) the processing of alarm reports.

Population &
External Update Service
—> Model
Inventory Datab
Service atabase
Insert,
Update & l Current | oot Current

Delete Update Update Tabl Configurable
Triggers X Table —¥) Changeover
Timer

/ Table #1 7/
Update Update I
Table #1 Table #2
Insert A Insert E |
Insert Z Delete F |
Delete C Delete X I
Update D I
Set Previous /_ 0 o o e ¥
Update Table
|
Model
X — Updater

Update State
Mesh & Resolve

|
¥ | Correlation
Mapped I
Alarm ——p| Buffer | p1 8 5 ;t::: I
Reports

Control Buffer
Processing

When a change is applied to any model database table during the ‘gathering’ period, details of the
change will be recorded in a special ‘Update’ table. At the next update time, any changes recorded
in the ‘Update’ table are applied to the state mesh. To ensure that updates are not lost during this
operation, the system maintains a pair of ‘Update’ tables that are used alternately — while one set
of updates is being applied, any new updates will be recorded in the alternate ‘Update’ table. If for
consistency reasons it is important that a set of updates should not be split between two
successive updates, care should be taken to ensure that a model database update is not carried
out close to an update time.

62

It is then the responsibility of the user to implement and configure a regularly repeated task e.g.
a ‘cron’ or batch job, to extract a set of updates from the external inventory service and apply
these to the appropriate model database tables. As described above, the state mesh will then be
automatically updated at the next update time.

63

Chapter 7 The UCA Applications

UCA provides three main Graphical User Interface (GUI) applications:
e the System Manager
e the Scenario Manager
e the Mesh Viewer

The System Manager is used for system administration, model loading, diagnostics and
maintenance and is covered in Chapter 4 and the HP UCA Installation and Configuration Guide.

The Scenario Manager is used for defining and deploying scenarios, filters, mappings and rules.

The Mesh viewer is used for viewing the structure and contents of the model as well as the real-
time state of mesh events and notifications. These two GUIs are described in detail in the
following chapters.

The Scenario Manager and Mesh Viewer are accessible via the appropriate launch buttons on the
UCA Home page, providing that the user has the required authorisation (see section 4.3 for
details of how roles affect allowed applications).
/=~ HP | UCA - Windows Internet Explorer Q@igl

Welcome to UCA

Determine the root causes . You are currently logged on as “test123*
and service impact of >
natwork problams

From here, depending on privilege, you can launch each of the UCA

s ereteserinl applications and perform all the UCA management operations.

components affected by a
problem

Gather symptomatic and
sympathetic evants related
to 2 problam

Change high volume, low

value informaton Lo low
volume, high value Use the = UCAManager to: Use the | Scenatio Mansger to:

start and stop the system create, manage and deploy scenarios,
MANDGE USEr 300 fiters, mappings, rues and rule
manage the model structure Sempiatns
manage the model data-load
perform diagnostics and mawtenance Use the Meah Viewer to:
operations
wiew fired rides and the working memory
navigate around the model structure and
data
show mesh event details dynamically
show notification details

inject test ovents

Figure 14 - The Applications Login Page

7.1 The Scenario Manager

This section describes the features available in the Scenario Manager in terms of the basic menu
items, toolbar items, pop-up menu options and so on. A detailed description of how to actually
configure the scenarios, filters, mappings and rules is provided in the subsequent chapters.

64

The Scenario Manager is used for:

e creating, modifying and deleting scenarios, filters, mappings and rules
validating the ‘correctness’ of scenarios before deploying them
deploying a set of scenarios, filters, mappings and rules into active use
listing details of previous deployments
maintaining and using a ‘library’ of deployments

The following screenshot shows the Scenario Manager with the main component areas labelled.

65

Scenarios, Filters,

Scenario M & Rl
Menu Bar) Builder Tree aps & Rules
Summayy List
5P UCh scensgé Narggeran) S
| File Server Vie® Tools Help
oW YeoayN 3
Mulm system.resiience |
e Al D Scenarlo DTV Ste Power Failure Thu Sep 13 13:17:42 CEST 20...
/A) scuncion. & Rule JDTV R Normal ChildGroup Fri Sep 21 16:56:18 CEST 2007
'3;’“’) ule | DTV Remove Normal AssociateGroup Fri Sep 21 16:56:34 CEST 2007 |
= 1 0ppIng? ule | DTV Remove Normal MeshObject Eri Sep 21 16:56:03 CEST 2007

ul. y

Tue Mar 04 12:24:22 CET 2008
Thu Sep 13 15:08:32 CEST 20,..|
Wed Sep 12 15:03:31 CEST 2...
...rueJmunsosmssnoosl
Wed Sep 12 15:04:28 CEST 2...

< Sidos
g

Eii HH

toesecee

| Detect Multiplex Failure Wed Sep 12 15:04:48 CEST 2... |

~ Detect Service Fadure Wed Sep 12 15:05:09 CEST 2... |

t!l'o‘r © Sidonis NMS Alarm Fri Sep 21 16:53:05 CEST 2007 |
& Filter Jsmmssumm Fri Sep 21 16:53:18 CEST 2007

<& Filter " Sidonis NMS Site Cleared Alarm Fri Sep 21 16:53:29 CEST 2007 |
& Filter Sidonis NMS BroadcastEquipment R... Fri Sep 21 16:53:43 CEST 2007
& Filter | Sidonis NMS BroadcastEquipment Cl... Fri Sep 21 16:53:53 CEST 2007
[Mapping Site Problem Thu May 31 14:54:49 CEST 2..,
[Mopping Site Recovered Thu May 31 14:55:38 CEST 2...
| Mapping BroadcastEquipment Problem Thu May 31 14:57:01 CEST 2...

. Mapping BroadcastEquipment Recovered Thu May 31 14:58:01 CEST 2...
ﬁk" mmmmmmmmm.. TmMaer!lSECE‘I’m

Defau WedSe9121$o949CESl’2..
Wed Sep 12 15:10:19 CEST 2...
Thu Sep 13 13:16:30 CEST 20...
: Thu Sep 13 15:12:34 CEST 20...
| DTV2 Report Additional Notificotion Tue Mar 04 12:26:42 CET 2008
1 DTV2 Remove Normal ChédGroup Thy Sep 13 15:23:24 CEST 20...
| DTV2 Remove Normal AssociateGroup Thu Sep 13 15:24:15 CEST 20...
1 DTV2 Remove Normal MeshObject Fri Sep 14 16:23:45 CEST 2007
| Detect BasebandUnk Fallure Tue Mar 04 12:14:09 CET 2008

Status Bar
Figure 15 - The Scenario Manager

7.1.1 Value Pack Tabs Bar

Value Packs (cf. Chapter 15 Value Packs) have a unique identity, called the ‘name space’, that is
comprised of the name of the Value Pack prefixed with its group name (a qualifier that avoids
Value Pack names, developed independently, from clashing). Each Value Pack Tab in the
Scenario Manager shows the Value Pack ‘name space’ and when selected presents the set of
Scenarios, Filters, Mappings and Rules belonging to a deployed Value Pack, with one exception:
the ‘default’ tab. This tab represents the ‘name space’ of the system itself and a set of Scenarios,
Filters, Maps and Rules that can be deployed on the system without the encapsulation of a Value
Pack.

7.1.2 Menu Bar

The following menu items are available:

File — New— Scenario Opens the ‘Add New Scenario’ dialog box.
File — New— Filter Opens the ‘Add New Filter’ dialog box.
File — New— Mapping Opens the ‘Add New Mapping’ dialog box.
File —» New— Rule Opens the ‘Add New Rule’ dialog box.

66

File — Open from local file Opens a local file of scenarios, filters, mappings and
rules.

File — Save to local file Saves the current set of scenarios, filters, mappings
and rules to a local file.

File — Save multiple scenarios Saves a selection of scenarios from the scenario
builder tree.

File — Print— Table Summary Prints the current contents of the Scenarios, Filters,
Mappings and Rules Summary List..

File — Print— Tree Summary Prints the current contents of the Scenario Builder
Tree.

File — Print— All Details as XMLPrints all details of all configured scenarios, filters,
mappings and rules in XML format.

File — Exit Exits the application.

Server — Load Data Loads the currently deployed scenarios, filters,
mappings and rules from the server into view,
replacing all currently displayed data.

Server — Validate Data Validates the scenarios, filters, mappings and rules
in the Scenario Builder Tree. Data cannot be
deployed until it has been validated.

Server — Deploy Data Deploys the validated scenarios, filters, mappings
and rules in the Scenario Builder Tree to the server.
The user is prompted to enter a description and
additional information related to the deployment.

Server — Show Deployments Shows the ‘Deployments’ dialog listing details of
username, date, description and additional
information for every deployment. A deployment may
be selected in the ‘Deployments’ dialog and Opened,
so that the Scenario Builder Tree and Summary List
contents are replaced with of the selected
deployment.

Server — Show Library Shows the ‘Scenario Library’ dialog listing details of
username, date, description and additional
information for each scenario exported to the library.
An exported scenario may be selected in the ‘Scenario
Library’ dialog and Merged, so that the scenario
contents are merged into the scenarios branch of the
Scenario Builder Tree.

View — Look and Feel — ... Changes the look and feel of the GUI according to
those supported on the client platform eg.
CDE/Motif, Windows, Metal.

View — Toggle tree node Ids Toggles the display of the internal unique Ids for
each scenario, filter, mapping and rule in the
Scenario Builder Tree.

Tools — Purge Summary Table Deletes all scenarios, filters, mappings and rules in
the Summary List that are not in the Scenario
Builder Tree.

67

Tools — allow rules to loop? Enables or disables the looping of rules using the

JBoss Rules internal looping activation /
deactivation.

Help — Scenario Manager Help Displays Scenario Manager help information in a

web page.
Help — HP web site Displays the HP web page.
Help — About Displays a dialog showing the UCA and Scenario

Manager version numbers.

7.1.3 Tool Bar

Clicking on an icon in the tool bar performs the action as follows:

Icon

Action

Opens a local file of scenarios, filters, mappings and rules.

Saves the current set of scenarios, filters, mappings and rules to a local file.

Loads the currently deployed scenarios, filters, mappings and rules from the
server into view, replacing all currently displayed data.

Validates the scenarios, filters, mappings and rules in the Scenario Builder
Tree. Data cannot be deployed until it has been validated.

Deploys the validated scenarios, filters, mappings and rules in the Scenario
Builder Tree to the server. The user is prompted to enter a description and
additional information related to the deployment.

Shows the ‘Deployments’ dialog listing details of username, date, description
and additional information for every deployment. A deployment may be
selected in the ‘Deployments’ dialog and Opened, so that the Scenario Builder
Tree and Summary List contents are replaced with of the selected deployment.

Shows the ‘Scenario Library’ dialog listing details of username, date,
description and additional information for each scenario exported to the
library. An exported scenario may be selected in the ‘Scenario Library’ dialog
and Merged, so that the scenario contents are merged into the scenarios
branch of the Scenario Builder Tree.

Opens the ‘Add New Scenario’ dialog box.

a.
& Opens the ‘Add New Filter’ dialog box.

Opens the ‘Add New Mapping’ dialog box.
- Opens the ‘Add New Rule’ dialog box.
<
T Opens the ‘Create New Rule Set’ dialog box (see description of ‘Rule
"'-'_ Templates’).

The toolbar may be dragged and repositioned on the top, left or right side of the GUI or may be
detached completely.

68

7.1.4 Scenario Builder Tree

Scenarios, filters, mappings and rules listed in the ‘Summary List’ may be dragged and dropped
into position in the Scenario Builder Tree. The tree represents all scenarios, filters, mappings and
rules that will be deployed into live use. When dropping an item into the tree, the following
constraints apply:
only scenarios can be dropped onto the tree root node, i.e. the ‘scenarios’ node

a filter may be dropped under the ‘filters and mappings’ node

a filter may be dropped under another filter

a mapping may be dropped under a filter provided the filter has no other filter

‘children’ nodes underneath it.

a rule may be dropped under the ‘rules’ node

When the tree is configured with a set of scenarios, filters, mappings and rules, it may be
validated and subsequently deployed (providing it is valid).

Pop-up Menu Options

The following pop-up menu items are available by right-clicking a node in the Scenario Builder

Tree:

All nodes:

fully expand / collapse —

All nodes except the root node:

move down —

move up —

The ‘scenarios’ root node:

validate Value Pack Scenarios
and Compile Rules —

deploy Value Pack

Scenarios —
un-highlight all —
import from library -

Scenario nodes:

export to library —

expands or collapses all descendent nodes below
the selected node, provided there are descendents
to expand or collapse.

moves the selected node down one (provided it is
possible to do so), but maintaining the same level
of nesting.
moves the selected node up one (provided it is
possible to do so), but maintaining the same level
of nesting.

Validates the scenarios, filters, mappings and
rules in the Scenario Builder Tree for the selected
Value Pack Tab. Data cannot be deployed until it
has been validated.

Deploys the validated scenarios, filters, mappings
and rules in the Scenario Builder Tree for the
selected Value Pack Tab. The user is prompted to
enter a description and additional information
related to the deployment.

removes the red highlighting from any nodes
highlighted in the tree (see the ‘highlight’ pop-up
menu item available for the Summary List rows).
Opens the ‘Scenario Library’ dialog listing details
of username, date, description and additional
information for each scenario exported to the
library. An exported scenario may be selected in
the ‘Scenario Library’ dialog and Merged, so that
the scenario contents are merged into the
scenarios branch of the tree.

exports the currently selected scenario and all its
associated filters, mappings and rules to the
scenario library. The user is prompted via a dialog

69

for a description and additional information to be
associated with the exported scenario.

Scenarios, filters, mappings and rules nodes:
Delete from tree — removes the selected item from the tree, but not
from the Summary List.

7.1.5 Scenarios, Filters, Mappings and Rules Summary List

When a new scenario, filter, mapping or rule is first created, it appears as an item in the
‘Scenarios, Filters, Mappings and Rules Summary List’. Thereafter, it may be viewed, modified,
duplicated, highlighted in the Scenario Builder tree, or deleted. Any row in the Summary List
may be dragged and dropped into the Scenario Builder tree, according to the constraints
described above. The Summary List shows details of the item’s type (scenario, filter, mapping or
rule), description and modification date. The columns are re-sizable and movable and their
headers may be clicked on to toggle the sort order.

Pop-up Menu Options

The following pop-up menu items are available by right-clicking a row in the Summary List:

view / modify — opens the appropriate dialog box for viewing or
modifying the selected scenario, filter, mapping or
rule.

create copy — makes a copy of the selected scenario, filter,

mapping or rule. The new copy will have the same
Description but preceded with ‘copy of .

highlight — highlights in red the selected scenario, filter,
mapping or rule in the Summary List. Also all
occurrences of the selected scenario, filter,
mapping or rule are highlighted in red in the
Scenario Builder tree. This is useful if the tree is
very large and it is difficult to spot all nodes
related to an item selected in the summary list.

un-highlight — un-highlights a previously highlighted scenario,
filter, mapping or rule in the Summary List. Also
all occurrences of the selected scenario, filter,
mapping or rule are un-highlighted in the
Scenario Builder tree.

delete — deletes the selected scenario, filter, mapping or
rule from the Summary List. If the item has been
copied to the Scenario Builder tree, all such
occurrences will also be deleted. Note that once
an item has been deleted in this way, it will
have been be permanently removed. A
safeguard would be to create a backup copy
on the local disk of all scenarios, filters,
mappings and rules by clicking on the
toolbar button.

Double-clicking with the left mouse button
on a row in the Summary List has the

é) same effect as selecting the ‘view / modify’

pop-up menu item.

7.1.6 Status Bar

The Status Bar displays informational and warning messages — these are shown in the left hand
area. Warning messages are highlighted with a red background. The progress of various
operations is shown in the progress bar area on the right hand side of the Status Bar.

70

7.2 The Mesh Viewer

The Mesh Viewer is used for:
e Viewing in real-time the state of the mesh objects.
e Viewing in real-time the notification details associated with the displayed mesh
objects.
e Viewing the full hierarchy of mesh objects in the state mesh, in terms of a model tree
of classes, subclasses, instances and instance details.
¢ Navigating around the model tree.

The screenshot below shows the Mesh Viewer with the main components areas labelled.

7.2.1 Menu Bar

The following menu items are available:
File — Inject alarms from file Allows a user with ‘tester’ role privilege to select an
XML file of alarms to inject into UCA.
File — Exit Exits the application.
View — Look and Feel — ... Changes the look and feel of the GUI according to
those supported on the client platform eg.
CDE/Motif, Windows, Metal.

View — Pause Pauses the update of the Mesh Object List. See the
‘pause’ icon description under the Toolbar section
below.

View — Filter Filters the objects displayed in the Mesh Object List.

See the ‘filter’ icon description under the Toolbar
section below.

Help — Mesh Viewer Help Displays Mesh Viewer help information in a web
page.

Help — HP web site Displays the HP web page.

Help — About Displays a dialog showing the UCA and Mesh Viewer

version numbers.

71

Model Tree — classes,
subclasses, instances

& instance details Mesh Obiect List

Tool Bar

Instances

- Inkern

Status: OK. *dan’ <

Subelass Unique Ref Date Craated
Sidonis_TV_Ch... Sidonis_TV_Channel]~... Tue Dec 02 09:15:36/
Sidonis_TV_Ch... Sxdonis_TV_Channel2-... Tue Dec 02 09:
Sidonis_TV_Ch... Sidonis_TV_Channet3-... Tue Dec 02 09;
Sidonis_TV_Ch... Sidonis_TV_ChanneN-... Tue Dec 02
Baseband-MUX Sidonis_TV-Ske_1000,.. Tue Decggf09:
Redundant-AlS Ste_10006-Site_10025 Tue ‘
yoadcastEquipment DuaReceiver-... Ste_1002S-8X-AISRX
yoadcastEquipment Recesver-XYZ.,, Ste_10025-8)-AlS-RX-2 Tue Dec 0.
foadcatEquipment Receiver-XYZ... Ste_1002S-BCAISRX-1 Tue Dec 02 09: -
Sidonis_TV_Channeli-... Tue Dec 02 09:15:36

Tue Dec 02 09;15:36 .,

Tue Dac 02 09:15:36
- Tue Dec 02 09:15:36 ..
pubiplex Baseband-MUX Sidonis_TV-Ske_1000... Tue Dec 0209:15:36
psebandlnk Redundant-ALS Ste_10001-Site_10006 Tue Dec 0209:15:36 ..
oadcastEquipment DuaRecerver-... Ste_10006-8X-AISRX Tue Dec 02 09:15:36
FoadcastEquipment Recolver-XYZ,., Ste_10006-BX-AIS-RX-2 Tue Dec 02 09:15:36
yoadcastEquipment Recesver-XYZ.., Ste_10006-8X-AlS-RX-1 Tue Dec 02 09:15:36

e Intermediate 10006 Tue Dec 02 09:15:36 ..
Fee Fnal 10025 Tue Dec 02 09:15:36
© [EIEE - Intermediate 10001 Tue Dec 02 09:15:36

Status Bar

7.2.2 Tool Bar

Figure 16 - The Mesh Viewer

Clicking on an icon in the tool bar performs the action as follows:

Icon

Action

@

Displays the Notifications Viewer Dialog (see below), showing notification
details associated with the object currently selected in the associated Mesh
Object List.

Toggles the pausing / un-pausing of the Mesh Object List. When paused,
updates to the Mesh Object List are received but not displayed. When un-
paused, the Mesh Object List will work as normal i.e. the correct state of the
failed or degraded Mesh Objects will be displayed dynamically. When the
display is paused, the menu bar will change colour and the pause icon will
change.

Enables display filtering of failed or degraded Mesh Objects in the Mesh
Object List. When selected, the tool bar will display text boxes to allow entry
of the filtering conditions. Filtering may be performed on all columns or any
individual column. The filtering criteria can include regular expressions, in
which case the regular expression wizard can be used. When filtering is de-
selected, the display will revert to normal un-filtered behaviour.

The toolbar may be dragged and repositioned on the top, left or right side of the GUI or may be
detached completely.

72

7.2.3 Model Tree

The Model Tree is split into four re-sizable sections — classes, subclasses, instances and instance
details. Each section displays a tree structure.

The classes tree is essentially the parent-child relationship information between the classes as
described by the metamodel. When a class node is selected, the subclasses tree shows all the
subclass types (as derived from the actual model data) related to that class.

When a subclass node is selected, the instances tree shows all the mesh object instances (as
derived from the actual model data) related to that subclass. If there are a large number of
instances, they are presented one ‘page’ at a time. The pages may be navigated one page forward,
one page backward and back to the first page by selecting ¥, ¥ and ™" respectively from just
below the instances tree.

When an instance node is selected, the instance details tree shows all the mesh object instance
details (as derived from the actual model data) related to that instance. The instance’s details
include not just information about specific attributes, such as importance, latitude, longitude etc.,
but model relationship data. For example, there will be a tree branch showing the Parent details
in terms of parent class, parent subclass and parent instance. There may also be a branch
showing similar ‘relative’ or ‘associate’ details, depending on whether the instance has relatives or
associates defined in the metamodel and data has been provided for them in the model database.
If a parent, relative or associate instance node is selected in this tree and the button is clicked,
the Model Tree will change to display the class, subclass, instance and instance details associated

with that node. Subsequently, if the ™ button is clicked, the Model Tree will revert to the object
that was previously navigated from (i.e. the one that was navigated from using the button).

Pop-up Menu Options

The following pop-up menu item is available by right-clicking a node in the subclasses tree:
find instances ... — opens the Search dialog, as shown below. This

dialog is used to specify an instance name (or
names) to search for. An exact instance name or a
wild-carded expression may be entered as the
search criteria. When the OK button is clicked,
the instances tree will show those instances
related to the currently selected subclass,

gccording to the search value entered.

Search

Enter instance name to search for:

] [Cancel

Figure 17 - The Search for Instances dialog

After displaying ‘searched for instances’,
to reset the list of displayed instances to
é) the full set, CTRL-click the subclass node

to deselect it, then re-select it with a left
mouse-click.

The following pop-up menu items are available by right-clicking a node in the instances tree:
show all notifications ... — Displays the Notifications Viewer Dialog (see
below), showing notification details associated

73

with the object whose class, subclass and instance
is currently selected in the associated trees.

Create alarm — Displays the Create Alarm Dialog (see below),
allowing a user with ‘tester’ role privilege to enter
all alarm fields for an alarm to be injected into
UCA.

8 Create Alam

event rank onginal
system class
system instance

event id

data type X.733
originating time Now 18, 2010 2:12:12 FM 5
MO dass BroadcastEquipment
MO instance S&e_10001-BX-AIS-RX-2
| severity critical v
alarm type sormmunicationsilam -
probable cause adapterError
specfic problems
adational text
‘ addtional text tagl
addtional text tag2
asddtional text tag3
adational text tags
addtional text tagh
addtional text tagh
upcate stata

Figure 18 - The Create Alarm dialog

7.2.4 Mesh Object List

When a mesh object changes state to failed or degraded, the Mesh Object List will update in real-
time to display details of that object, including its status (failed or degraded), class name,
subclass name and the instance’s unique reference, as well as the timestamp that the GUI
received the update. If an object represented in the Mesh Object List is associated with one or
more notification, the leftmost column will show either the @ icon or the @ icon, depending on
whether the associated notification(s) are normal or locked. When a mesh object changes state
from failed or degraded back to normal, the corresponding row will be removed from the Mesh
Object List.

When an item in the list is selected, its corresponding class, subclass, instance and instance
details are highlighted in the Model Tree.

The columns in the Mesh Object List are re-sizable and movable and their headers may be clicked
on to toggle the sort order.

Pop-up Menu Options

The following pop-up menu item is available by right-clicking a row in the Mesh Object List:
highlight object in model — highlights the class, subclass, instance and
instance details in the Model Tree associated with
the object in the selected row
show all notifications ... — Displays the Notifications Viewer Dialog (see
below), showing notification details associated

74

with the object whose class, subclass and instance
is currently selected in the associated trees.

Double-clicking with the left mouse button on

a row in the Mesh Object List has the same

% effect as selecting the ‘show all notifications ...’
pop-up menu item.

7.2.5 Notifications Viewer Dialog

The notifications viewer dialog provides useful dynamic information about notification(s) and
data related to those notifications. It is used for:

e Viewing current notifications in real-time. A notification is an indication of the
problem detected and is the result of an action being fired from a rule.

e Viewing details of contributory events associated with a notification. A contributory
event is an event that contributed to the problem i.e. it is an event that is wholly or
partially indicative of the problem.

e Viewing details of the affected objects associated with a notification. An affected
object represents a mesh object within the model that has been affected as a by-
product of the problem e.g. downstream sites affected by a main site failure.

e Viewing details of sympathetic events associated with an affected object. A
sympathetic event represents an event that has occurred as a by-product of the
problem e.g. an event from a downstream site that was generated as a result of a
main site failure.

To view the notification(s) associated with a failed or degraded mesh object, double click a row in
the Mesh Object List (or right click the row and select ‘show all notifications ...".

To view the notification(s) associated with an object in the Model tree, select the desired class,
subclass and instance nodes, then right-click the instance node and select ‘show all notifications’
from the pop-up menu.

The screenshot below shows the Notifications Viewer Dialog with the main components areas
labelled.

From the Notifications Viewer Dialog, the following operations may be performed:
select a notification in the Notifications Table — this will display all
contributory events and
affected objects associated
with the notification.
select an affected object in the Affected Objects Table — this will display all

sympathetic events
associated with the
affected object.

The columns in the Notifications Viewer Dialog tables are re-sizable and movable and their
headers may be clicked on to toggle the sort order.

Note that all information presented in the Notifications Viewer Dialog is potentially available to
be passed on to an external system, for example in the form of a ‘master’ problem alarm together
with the event details that might be used to de-clutter an alarm display in a network
management system.

75

Notifications

Table
Mobadie abooes tor 10001
N A A M el B e S SRR -~ o Contributory
4 O Addioond Nosfceton Actve " Tus Sep 3% 32:4%:02 037 2000 e o Events Table
Costriidory Dverts Affected
Urige D S e Ungue Ret Tewstery ASd Tam Zeverty Evork Tipe Prob Came .
e e 1o0ar 20072920 114513 e Fower Pabsn =txd togrertidem Pamebrotiary Ob]eCtS
Sympathetic

Events Table

Prosxartoxret Ra_ | DO HCAITFN-2 v

Sytipatheta Events
U D BweChas Ursgs et Tivest g 439 Test Sewsky Event Twps Pb Cause
) BroadopEquoeent Ste 10MESCASRECT DOT0S-2S 209550 N 200 foom v Dot - oticy Comwunicionsiiam LossOfsgnal

Figure 19 - The Notifications Viewer Dialog
The Notifications Viewer Dialog updates dynamically with any changes to the notification details.

Note that only a single Notifications Viewer Dialog can be displayed at any one time. If
the dialog is invoked for a different object, then any currently displayed Notifications
Viewer Dialog will be replaced with the new one.

7.2.6 Status Bar

The Status Bar displays informational and warning messages — these are shown in the left hand
area. Warning messages are highlighted with a red background. The progress of various
operations is shown in the progress bar area on the right hand side of the Status Bar.

76

Chapter 8 Creating Scenarios, Filters,
Mappings and Rules

8.1 Scenarios

Scenarios provide a container for a set of filters, mappings and rules. A scenario typically
represents a set of filters, mappings and rules that are a logical, self-contained grouping e.g. a
scenario might relate to handling power failures, for dealing with SDH correlations or simply for
housekeeping purposes. One of the key attributes of a scenario is its ‘context name’. A ‘context
name’ essentially relates to a ‘working memory’ within the inference engine component of UCA.
Being able to have separate working memories is very useful to demarcate groups of rules that
must be kept independent of each other. Any number of scenarios may be created and each one
may have a different context name if desired; alternatively, they may all have the same context
name, or there may be some sharing the same context and others with different ones. The idea of
a context name (i.e. essentially a working memory) therefore allows potentially conflicting logical
correlations to execute in isolation, if required, or to co-exist in the same context. Furthermore,
‘Notifications’ provide a user-defined and controllable communications path between contexts,
allowing hierarchies of correlations to be constructed.

To create a new scenario:
e Click on the @ button in the UCA Scenario Manager toolbar or select File — New
— Scenario from the menu-bar.
e In the ‘Add New Scenario’ dialog, enter a description, some additional information
and a context name.
e Click on the OK button.

~ — = »
“+ Add New Scenar__ -;_y.

Description DTV Site Power Failure
Additional information

Facility to detect a DTV Site Power failure ad annotate
downstream Sites

Context Name DTV

| ok || cancel

Figure 20 - The Add New Scenario Dialog

The new scenario will be listed in the Scenarios, Filters, Mappings and Rules
Summary List in the UCA Scenario Manager.

To view an existing scenario:
e Double-click the scenario in the Scenarios, Filters, Mappings and Rules Summary
List in the UCA Scenario Manager, or right-click the scenario and select the view
/ modify pop-up menu item.

To modify an existing scenario:

e Double-click the scenario in Scenarios, Filters, Mappings and Rules Summary List
in the UCA Scenario Manager, or right-click the scenario and select the view /
modify pop-up menu item.

e Make the necessary changes and click OK.

77

To include a scenario in a deployment:

If the scenario is to be included in the set of scenarios, filters, mappings and rules
for an active deployment, it must be dragged from the Scenarios, Filters,
Mappings and Rules Summary List and dropped onto the root node (i.e. the
‘scenarios’ node) of the Scenario Builder Tree. Once this has been done, the new
scenario will be shown in the tree with two automatically created sub-nodes —
‘filters and mappings’ and ‘rules’, as shown in the following example

| Scenario Builder
| =¥} scenarios
=-@) DTV Site Power Failure
=85 filters and mappings
L8 ples

When the above is done for a Scenario whose context is unique, i.e. no other
Scenarios have previously been added within the same context, a dialog will be
presented allowing the user to auto-generate house-keeping rules within the
Scenario. If selected the house-keeping rules will be listed in the Summary List
and added to the ‘rules’ sub node of the Scenario. These rules perform the job of
removing any working memory objects that have returned to the normal state and
have no external failed or degraded objects.

Scenario Builder

=B
Eia DT Sike Power Failure
-5 Filkers and mappings

ﬁl DTY_Housekeeping_Remowve_Mormal_Mesh_Object
ﬁl DTY_Housekeeping_Remove_Mormal_Associate_Group
-9 DTY_Housekeeping_Remove_MNormal_Child_Group

g,,i DTY_Housekeeping_Remove_Spent_Marker _Motifications

To remove a scenario from a deployment:

If the scenario is to be removed from the set of scenarios, filters, mappings and
rules for an active deployment, right-click the scenario in the Scenario Builder
Tree and select delete from tree in the pop-up menu. If any house-keeping rules
are contained within this scenario the option to transfer them to another scenario
within the same context will be provided. Note that when this is done, all
children nodes underneath the removed node will also disappear from the
tree.

8.2 Filters

UCA supports a powerful and highly configurable alarm filtering capability. Alarms may be
allowed to pass into the system based on filter conditions applied to any combination of any event
fields (see section 10.3.2 for the available event fields). The filter conditions include the operators:
‘equals’, ‘not equals’, ‘contains’, ‘does not contain’, ‘starts with’, ‘ends with’ and ‘matches’.

The ‘matches’ filter condition operator allows use of a regular expression. In addition to entering
an expression directly, a graphical ‘regular expression wizard’ is provided that allows a user to

78

create regular expression statements without needing any knowledge of regular expression

syntax.

Filter conditions are grouped according to conditional logic, including:

All conditions being satisfied

Any conditions being satisfied

Any conditions not being satisfied
None of the conditions being satisfied

Any of these logic groups may be contained in any other logic group. In this way it is possible to
effectively create arbitrarily complex logic expressions.

To create a new filter:

Click on the .(,"_ button in the UCA Scenario Manager toolbar or select File —
New — Filter from the menu-bar.

In the ‘Add New Filter’ dialog, enter a description.

In the ‘Add New Filter’ dialog, right-click the tree root node (‘Pass alarms when
...)) and select the required logic group from the ‘condition »’ sub-menu.
Right-click the logic group that will have been added to the tree and select either
‘insert new filter condition’ or ‘condition »‘ from the pop-up menu.

If ‘insert new filter condition’ was selected, select the required field and operator
values from the drop down lists and enter (or select from a drop-down list) the
value, as shown in the example screenshot below.

Description| Sidonis NMS Alarm
Right-click tree nodes for options

= § | of the Following conditions are satisfied ...

@&\ Add New Filter Statement

{ additionalText

v | {starts with v | Ealarm Ackeke v | [[]case matters

L OK J[Cancel]

[OK I[Cancel]

Figure 21 - The Add New Filter Dialog

If ‘condition »‘ was selected, select the required logic group sub-menu item.
Continue to build new filter statements and logic groups in this manner as
necessary.

To modify or delete a filter statement or logic group, right-click on the associated
tree node item and select ‘modify’ or ‘delete’ as appropriate.

The example screenshot below shows a reasonably complex filter that will allow
events into the system provided the severity is ‘critical’ and the alarmType is

‘communicationsAlarm’ and the additionalText either starts with ‘alarm
starts with ‘even

*FF or it

t *%k

79

& Add New Filter

jDescription! Test Filter H

Right-click kree nodes for options

{7 Pass alarms when ...

=4 all of the Following conditions are satisfied ...
-4+ severity equals "critical” (case insensitive)

o alarmType equals "communicationsAlarm” {case insensitive)

=) & b sy of the Following conditions are satisfied ...
44 additionalText starts with "alarm ***" (case insensitive)
‘.44 additionalText starts with "event ***" (case insensitive)

[OK][Cancel]

¢ Finally, to complete the filter definition, click on the OK button.

The new filter will now be listed in the Scenarios, Filters, Mappings and Rules
Summary List in the UCA Scenario Manager.

To view an existing filter:
e Double-click the filter in the Scenarios, Filters, Mappings and Rules Summary
List in the UCA Scenario Manager, or right-click the filter and select the view /
modify pop-up menu item.

To modify an existing filter:
e Double-click the filter in the Scenarios, Filters, Mappings and Rules Summary
List in the UCA Scenario Manager, or right-click the filter and select the view /
modify pop-up menu item.
e Make the necessary changes and click OK.

To include a filter in a deployment:

e If the filter is to be included in the set of scenarios, filters, mappings and rules for
an active deployment, it must be dragged from the Scenarios, Filters, Mappings
and Rules Summary List and dropped onto either the ‘filters and mappings’ node,
or underneath an existing filter in the Scenario Builder Tree. Once this has been
done, the new filter will be shown in the tree. The example below shows two
filters, one below the other.

Scenario Builder

=-{=) scenarios
(=--@) DTV Site Power Failure
-85 Filters and mappings
(=4 Sidonis NMS Alarm
5 t...4%> Sidonis NMS Site Raise Alarm
L rules

To remove a filter from a deployment:
e If the filter is to be removed from the set of scenarios, filters, mappings and rules
for an active deployment, right-click the filter in the Scenario Builder Tree and
select ‘delete from tree’ in the pop-up menu. Note that when this is done, all

80

children nodes underneath the removed node will also disappear from the
tree.

8.2.1 Using user-Defined event fields in a filter

It is possible to include user-defined event fields in filter conditions. User-defined fields are found
on the drop-down, listed after the default event fields.

An example filter is shown below:

[£ Add New Filter (Lia%)

}Descripﬁon:test filter \‘
Right-click tree nodes for options
() Pass alarms when ...

S § | of the following conditions are satisfied ...

#£% Add New Filter Statement 5

r 1T v T T
|user.resourceText v | |equals v |3 value| v | [] case matters

[ok][cancel |

[ox J[cancel]

-

8.2.2 Arranging Filters

When dragging a filter to the Scenario Builder Tree, it may be placed underneath the ‘filter and
mappings’ node or underneath an existing filter. A filter at the same ‘level’ as another filter is its
‘sibling’; a filter below another filter is its ‘child’. For example, in the screenshot below, filter2 is a
child of filter 1; filter4 is a sibling of filter2; filter3 is a sibling of filter1.
When an event is being tested against the filters in the Scenario Builder Tree, the following order
of processing takes place:
e The event is tested against the first filter of the first scenario.
e If the event passes the filter then the next child filter will be tested against. If there
is no child filter, then a mapping must have been reached (see below).
e If an event fails to pass a filter, then the next sibling filter is examined. If there is no
sibling filter, then the whole process is repeated for the next scenario, if there is one.
e If a mapping is reached then the event is allowed into the system ready to be mapped
and the whole filtering process repeated for the next scenario, if there is one.
e The entire process ends when a mapping is reached or there are no more sibling
filters to test against.

Scenario Builder

=1 scenarios
[=-2) DTV Site Power Failure
E& filkers and mappings
: Ej(o - filker1
€ filker2
€+ filkerd
Loy filter3
L pules

For example, as shown in the screenshot below, an incoming event would first be tested against
the ‘Sidonis NMS Alarm’ filter. If the event passed the filter, it would be tested against the
‘Sidonis NMS Site Raise Alarm’ filter. If the event passed this filter it would be mapped using the
‘Site Problem’ mapping, otherwise it would be tested against the ‘Sidonis NMS Site Cleared

81

Alarm’. The whole process would then be repeated for the ‘DTV Service Impact’ scenario followed
by the ‘DTV Maintenance’ scenario.

Scenario Builder
=F-¥o) scenarios
=-@) DTV Site Power Failure
1:‘!& filters and mappings
© 3-4% Sidonis NMS Alarm
=}~ 4% Sidonis NMS Site Raise Alarm
. i.{C] site Problem
=+ 4% Sidonis NMS Site Cleared Alarm
: .-{] Site Recovered
=-4% rules
: Detect Site Problem
Annotate Downstream Sites
Degrade Downstream Sites
Attach Sympathetic Alarms To Failed Site Notification
Remove Marker Notifications On Normal BroadcastEquipment.
=3 DTV Service Impact
1:'.!2: filters and mappings
© ©-4% Sidonis NMS Alarm
E'“(’.‘:x Sidonis NMS BroadcastEquipment Raise Alarm
{_| BroadcastEquipment Problem
f:T-(gz Sidonis NMS BroadcastEquipment Cleared Alarm
{__, BroadcastEquipment Recovered

=-4% rules
Detect Dual Receiver Failure
Detect BasebandLink Failure
Detect Multiplex Failure
Detect Service Failure

=) DTV Maintenance

: L-‘;)f: filters and mappings

8.2.3 Using the Regular Expression Wizard with Filters

When adding a new filter statement during the filter definition process described above, some
fields allow the ‘matches’ operator to be selected from the drop-down list. If ‘matches’ is selected,
a regular expression value may be entered in the value field. Alternatively, the ‘Wizard >>>
button may be selected, in which case the Regular Expression Wizard will be started. This
wizard allows a user to automatically generate a regular expression without the need to know any
regular expression syntax.

When the Regular Expression Wizard starts, the first page allows the user to define some sample
text to apply the regular expression to and the second page is for defining the match conditions
and viewing their effect on the sample text.

For example, suppose the additonalText field of an alarm contained the text
WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1

*** ATARM 855 O1/APT "BATH/00X/0"U 070202 1230

DIGITAL PATH QUALITY SUPERVISION

SF

DIP DIPPART SFL QSV

BEURS 1 1 181

END

and you wish to filter alarms using a regular expression looking for the particular pattern of text:
wxxx ATARM” followed by
one Or more spaces followed by
one or more digit characters followed by
one Oor more spaces followed by
the text “01” followed by

82

any text, excluding a line terminator followed by
the text “DIGITAL PATH QUALITY SUPERVISION”

then you would use the Wizard as follows:

Enter the above text into the area on the right size of the window. The text may be
typed into the text area. It may also be pasted from the current copy/paste buffer or
read in from a local file, using the buttons on the left.

Regular Expression Wizard &

WO BATH/00X/00/XYZ123 AT-& TIME 070202 1230 PAGE 1
*** ALARM B55 O1/APT "BATH/DOX/D"U D7D202 1230
DIGITAL PATH QUALITY SUPERVISION

ST

DIP DIPPART SFL QSV

BEURS 1 1 1B1

END

Type sample text, or:

The next stage is to define the match conditions. Clicking the Next button will
display the screen that allows the conditions to be specified and their effect to be
displayed, as shown below.

To define the match conditions, right-click the ‘Text contains ..." root node in the tree
on the left side and select the desired ‘condition »‘ submenu item, i.e. either ‘all
items in the following order ...” or ‘any of the following items ...". In this case, select
‘all items in the following order ...".

The tree node ‘all items in the following order ...” will be inserted under the root node.
Right-click this node and select insert new expression.

In the ‘Add New Expression’ dialog, select the appropriate drop-down menu items.
Repeat this procedure using the right-click menu items to add, modify or delete nodes
until all the expressions have been specified. Remember that match conditions may
be nested under each other (similar to the logic expressions for Filters), if desired. As
each expression is entered in the tree, the sample text on the right will be highlighted
in blue to reflect the current matching. The screenshot below shows the whole tree of
expressions for the example pattern of text.

Regular Expression Wizard

Right-click tree nodes for options
&
= & al items In Folowing order .
& asinge ocourrence of text “*** ALARM®
4% one or more of a whitespace character
4 one or more of a dight character
&5 one or more of a whitespace character
& asinge ocourrence of text “01" END
4% one or moea of any character
& 2 snge occurence of a Ine-feed character
&5 3 single ocourrence of text "DIGITAL PATH QUALITY SUPERVISION"

DIP DIPPART SFL 28V
BEURS 1 1 1381

83

e Finally, click the Finish button and the actual regular expression will be
automatically generated and inserted into the filter statement value field. For the
example, the regular expression would be:

*** ALARM\s+\d+\s+01.+\nDIGITAL PATH QUALITY SUPERVISION

For more details on the advanced use of regular expressions, see
the Java documentation for the Pattern class at
é) http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

Advanced Options

There are two advanced options that may be set for the entire set of expressions in the tree. To
select an advanced option, right-click the ‘text contains ...’ tree root node and select the desired
‘advanced options P»‘ submenu item.

The effect of each advanced options menu item is:

enable multiline mode — By default, the expressions “the beginning of
the text” and “the end of the text”
ignore line terminators and only match at the
beginning and the end, respectively, of the entire
text sequence. If ‘enable multiline mode’ is set
then “the beginning of the text” matches
at the beginning of text and after any line
terminator (except at the end of the text). When in
multiline mode “the end of the text”
matches just before a line terminator (and the end
of the input text).

case insensitive (Unicode) — Enables Unicode-aware case-insensitive
matching.

8.3 Mappings

Once an alarm has passed though the filter(s), it must be mapped. The purpose of mapping is
threefold:

¢ Objects in the system are identified by their unique reference field. During data-load,
all objects get stored within the UCA model database with their unique reference
filled in. One of the functions of mapping is to relate the object the incoming event
refers to with a corresponding Mesh Object. In the simplest case, there might be a
one-to-one mapping of an event field with the corresponding object’s unique
reference. However, the situation may be far more complicated, involving extracting
parts of many of the event fields and combining them to form a corresponding
identifier to match to a unique reference. So the primary purpose of mapping is to
extract a value from the event that represents the unique reference of an object. UCA
supports very flexible mapping of unique references from events. A unique reference
may be mapped from an event directly from one of the event’s fields, or it may be
mapped from multiple parts of one or more fields, combining those parts in any order
and with any prefix or suffix.

e It is not enough to just map the event’s unique reference. The event also needs to be
mapped to an appropriate class. The classes that an event can be mapped to are
essentially those defined in the metamodel.

¢ Finally, the event must also be mapped to a status — normal, degraded or failed.
Typically, a filter that passes a non-clear severity event will be followed by a mapping
that maps to a status of failed or degraded; similarly, a filter that passes a clear
severity event will be followed by a mapping that maps to a status of normal.

84

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html#MULTILINE
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

The result of mapping is to affect a corresponding Mesh Object, as described in sections 3.7 and

3.8.

UCA supports incoming events formatted as XML messages with a number of tags, each of which
represents an event field — the following shows an example event (further details of the event
format are provided in Chapter 10):

<Event>

<eventRank>original</eventRank>

<systemClass>HP nms</systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>

<dataType>X.733</dataType>
<originatingTime>2005-06-10 12:16:32</originatingTime>
<moClass>Site</moClass>
<moInstance>10001</moInstance>
<severity>critical</severity>
<alarmType>EquipmentAlarm</alarmType>
<probableCause>PowerProblem</probableCause>
<additionalText>Site Power Failure</additionalText>

</Event>

An important field is the eventld, which uniquely defines the particular event. Typically, a non-
clear severity event will be received with a particular eventld and the event will be mapped to
failed or degraded status and to a particular base class and with its unique reference mapped
from one or more fields. Subsequently, a clear severity event will be received with the same
eventld as the original non-clear severity event and this will be mapped to normal status and the
same base class and unique reference as the associated non-clear severity event. However, there
are two special cases to be aware of:

1.

If the eventld, mapped base class and mapped unique reference of a clear event
do not match with a previously stored non-clear event, an alternative method is
used to determine which Mesh Objects are effected:

- In this case the Mesh Object(s) with the same Alarm Type, Probable Cause,
Specific Problems and Additional Text will be cleared (i.e. their status set to
‘normal’).

If it 1s not possible for an external system to supply the clear event with enough
information to allow the unique reference to be mapped, then the external
system must send an ‘event state change’ message instead (see 10.3.3). This
message contains a subset of the standard event fields, but it adds the
‘updateState’ field to indicate that this message essentially updates a previous
one. An example of such as message is as follows:

<Event>
<eventRank>original</eventRank>
<systemClass>HP nms </systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2005-06-10 12:16:34</originatingTime>
<updateState>terminated</updateState>

</Event>

But the question remains, for such a message how would you specify the
mapping to a Base Class and unique reference? The answer is that in the ‘Add
New Mapping’ dialog (see below), the ‘Lookup Unique Reference by matching
Event Id’ tick-box is selected. This forces the system to lookup a raise event in
the UCA event database with the same eventld and it uses that event’s Base
Class and unique reference.

To create a new mapping:

85

Click on the L button in the UCA Scenario Manager toolbar or select File — New
— Mapping from the menu-bar.

In the ‘Add New Mapping’ dialog, enter a description.

Select the appropriate class to map to from the ‘Map to class’ drop-down list.
Select the appropriate status to map to from the ‘Map to status’ drop-down list.

If the message being mapped is an ‘event state change’ message (see description
above), select the ‘Lookup Unique Reference by matching Event Id’ tick-box,
otherwise the unique reference mapping details must be supplied.

Finally, to complete the mapping definition, click on the OK button.

Mapping the Unique Reference

e In the ‘Add New Mapping’ dialog, right-click the tree root node (‘Map
UniqueReference using items in following order ...) and select ‘add new
mapping statement’. The ‘Add New Mapping Statement’ dialog will be opened.

@) Add New Mapping Statement @
map from |EEEENEI R v | [] drectly

[-Use expression

[] advanced user
| |
4 |

[OK][Cancel]

e In the drop-down list, select the desired event field to map from.

o If the selected field’s contents are to be mapped in their entirety into the
unique reference, select the ‘directly’ tick-box and click the OK button.

o Otherwise, click the Wizard >> button in order to create expressions that
define the match and extraction criteria. Advanced users may select the
‘advanced’ tick-box and enter these criteria into the ‘Match Expression’ and
‘Token Expression’ boxes directly without using the wizard. See below for
details of how to use the regular expression Wizard for mappings. Click the OK
button.

o The new mapping statement will now be displayed under the root of the tree in
the ‘Add New Mapping’ dialog, as in the following screenshot:

Description Site Problem

|| Lookup Unique Reference by matching Event Id

Right-click tree nodes for options
= UniqueReference using items in following order ...
-1 field "molInstance" directly

Map to class: :Site

Map to status: 'faile(;l

[

86

Figure 22 - The Add New Mapping Dialog

e If text needs to be extracted from a number of event fields in order to define the
unique reference, then continue the process of adding new mapping
statements. The value of the extracted unique reference will be the
concatenation of the mapping statements. If fixed text delimiters need to be
placed between any mapping statements, then right-click then tree root node
and select ‘add fixed text’ and supply the desired text. For example, in the
following mapping, if the event’s molnstance field was “10001” and the
systemClass was “BP nms”, then the mapped unique reference would be
“10001***HP7nms" .

| Description |Site Problem

|| Lookup Unique Reference by matching Event Id

Right-click tree nodes for options

{2 Map UniqueReference using items in following order ...
-1 field "molnstance" directly
88 Bliixed text "**="

Map to class: ‘_Site

Map to status: failed

[OK H Cancel J

e Mapping statements in the tree may be moved up or down, modified or deleted
by right-clicking the node and selecting the appropriate pop-up menu item.

The new mapping will now be listed in the Scenarios, Filters, Mappings and Rules
Summary List in the UCA Scenario Manager.

To view an existing mapping:
e Double-click the mapping in the Scenarios, Filters, Mappings and Rules Summary
List in the UCA Scenario Manager, or right-click the mapping and select the view
/ modify pop-up menu item.

To modify an existing mapping:
e Double-click the mapping in the Scenarios, Filters, Mappings and Rules Summary
List in the UCA Scenario Manager, or right-click the mapping and select the view
/ modify pop-up menu item.
e Make the necessary changes and click OK.

To include a mapping in a deployment:
e If the mapping is to be included in the set of scenarios, filters, mappings and rules
for an active deployment, it must be dragged from the Scenarios, Filters,
Mappings and Rules Summary List and dropped underneath an existing filter in
the Scenario Builder Tree. Once this has been done, the new mapping will be
shown in the tree. Note that multiple mappings may be dropped underneath the
same filter.

To remove a mapping from a deployment:
e If the mapping is to be removed from the set of scenarios, filters, mappings and
rules for an active deployment, right-click the mapping in the Scenario Builder
Tree and select delete from tree in the pop-up menu.

87

8.3.1 Using the Regular Expression Wizard with Mappings

When adding a new mapping statement during the mapping definition process described above,
the ‘Wizard >>>" button may be selected, in which case the Regular Expression Wizard will be
started. This wizard allows a user to:
e automatically generate a regular expression, without the need to know any
regular expression syntax, that is used to match text against
e automatically construct a ‘token expression’ that determines how multiple
matched items are joined together to form a complete piece of text

When the Regular Expression Wizard starts, the first page allows the user to define some sample
text to apply the regular expression to. The second page is for defining the match conditions,
viewing their effect on the sample text and defining which pieces of matched text should be
extracted to form the unique reference. The third page is used to re-order the extracted items, if
required, and set any desired fixed text prefixes or suffixes between the items.

As an example, suppose the additonalText field of an alarm contained the text
WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1

**% ATARM 855 O1/APT "BATH/00X/0"U 070202 1230

DIGITAL PATH QUALITY SUPERVISION

SF

DIP DIPPART SFL QSV

BEURS 1 1 181

END

and you wish to map the unique reference so that is formed by trying to match the text

highlighted in blue below:
WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1
*** ATLARM 855 O1/APT "BATH/00X/0"U 070202 1230
DIGITAL PATH QUALITY SUPERVISION
SF
DIP DIPPART SFL

BEURS 1 1 181

END

and the actual text you wish to extract for the unique reference is as highlighted in red below:
WO BATH/00X/00/XYZ123 AT-6 TIME 070202 1230 PAGE 1

*** ATARM 855 O1/APT "BATH/00X/0"U 070202 1230

DIGITAL PATH QUALITY SUPERVISION

SF

DIP DIPPART SFL

BEURS 1 1 181

END

Furthermore, the text you wish to extract is not simply to be “BEURS181”, but it should be “181~
followed “BEURS”, and with “BEURS” prefixed with “---".1i.e. the mapped unique reference from
the example would end up being “181--BEURS181”.

Then you would use the Wizard as follows:
e Enter the sample alarm text into the area on the right size of the window. The text
may be typed into the text area. It may also be pasted from the current copy/paste
buffer or read in from a local file, using the buttons on the left.

e Click the ‘Next’ button to display the page that allows the match and extraction
conditions to be specified.

e To define the match conditions, right-click the “Text contains ..." root node in the tree
on the left side and select the desired ‘condition »‘ submenu item, i.e. either ‘all
items in the following order ..." or ‘any of the following items ...". In this case, select
‘all items in the following order ...’.

e The tree node ‘all items in the following order ...” will be inserted under the root node.
Right-click this node and select ‘insert new expression’.

e In the ‘Add New Expression’ dialog, select the appropriate drop-down menu items.

¢ Repeat this procedure using the right-click menu items to add, modify, move up/down
or delete nodes until all the expressions have been specified. Remember that match

88

conditions may be nested under each other (similar to the logic expressions for
Filters), if desired. As each expression is entered in the tree, the sample text on the
right will be highlighted in blue to reflect the current matching.

Next, you must identify which expressions relate to the text items you wish to
extract. For example the tree node item ‘one or more of a non-whitespace character’
relates to the text “BEURS” and the final tree node ‘one or more of a digit character’
relates to the digits “181~. To identify the parts to be extracted, right-click the
associated tree node and select ‘extract’ from the pop-up menu item. When this is
done, the associated sample text will be highlighted in red, as shown in the
screenshot below:

Regular Expression Wizard
Right-click tree nodes for options
) Teat conkains ..,
I= @ alitems in following order ...
€% asingle occurrence of text "QSV"
L CBone or more of a whitespace charactes
& oo o more of a non-whitespace characte
€ on= o more of a whitespace character
€% ooe or more of a digit character END
4% one or more of a whitespace character
& one or more of a digit characte
§5 one o more of 3 whitespace character
€ one or moye of a digt characte

W0 BATH/00X/00/XT2123 AT-6 TINE 070202 1230 PAGE 1
**% ALARM 855 O1/APT “BATH/00X/0"U 070202 1230
DIGITAL PATH QUALITY SUPERVISION

s¥

o1 DIPPART SFL BER

1 181

[cancel || <Back || Next> |

Click the Next button to display the page that allows you to re-order the extracted
items, if required, and set any fixed text prefixes or suffixes.

In the top half of the page, right-click 181~ and select the ‘move up’ pop-up menu
item. The bottom half of the window shows exactly what the final result of the whole
matching and extraction would be.

In the top half of the page, right-click “BEURS” and select the ‘set prefix’ pop-up menu
item and enter “---“ in the dialog. Again, the bottom half of the window shows
exactly what the final result will be, in this case “*181---BEURS” .

¥ Regular Expression Wizard

Text fields will be extracted in the foliowing order .. (Right-click text fields fof options)
~181"

“BEURS" prefixed with -~ I

~w

The final extracted result will be ..

181---BEURS

[Ca'\cel][diadr]

Finally, click the Finish button and the actual match regular expression and ‘token’
regular expression will be automatically generated and inserted into the mapping
‘Match Expression’ and ‘Token Expression’ fields. For the example, these would be:

QSVAs+ (\S+) \s+\d+\s+\d+\s+ (\d+)

and

89

$2---51

For advanced users who wish to specify the ‘Match Expression’ and ‘Token Expression’ fields
without using the wizard, the ‘Match Expression’ is simply the regular expression, with match
groups enclosed in round brackets. The ‘Token Expression’ defines the match groups in order of
extraction as $1, $2, $3 etc. and orders these groups as appropriate, with any required fixed text
prefixes or suffixes.

For more details on the advanced use of regular
expressions, see the Java documentation for the Pattern

é class at
http://java.sun.com/javase/6/docs/api/javalutil/regex/Pattern
.html

Advanced Options

There are two advanced options that may be set for the entire set of expressions in the tree. To
select an advanced option, right-click the ‘text contains ...” tree root node and select the desired
‘advanced options P ‘ submenu item. The advanced options are the same as those when using the
regular expression wizard for filters — see for 8.2.3 details.

8.4 Rules

Rules are central to the whole operation of UCA. Once events have passed through the filters and
the mappings have been performed, the UCA rules engine operates on the basis of consequent
state changes to mesh objects.
There are four aspects to consider when defining a rule using the UCA Scenario Manager:
e The trigger conditions — these consist of rule statements that specify the conditions
under which the trigger actions will be performed.
e The trigger actions — these are the actions (e.g. raise a root cause alarm) that are
performed when the rule triggers i.e. the trigger conditions are satisfied.
e The teardown conditions — these consist or rule statements that specify the
conditions under which the teardown actions will be performed.
e The teardown actions — these are the actions (e.g. clear a root cause alarm) that are
performed when the rule tears down i.e. the teardown conditions are satisfied.

This section provides a basic overview of how to create rules and actions, whereas Chapter 9
provides extensive details, supplemented with examples and many screenshots of how to
configure them.

To create a new rule:

e Click on the "d, button in the UCA Scenario Manager toolbar or select File —
New — Rule from the menu-bar.

e In the ‘Add New Rule’ dialog, enter a description and a priority. Priority may be
from 0 to 100, with O being lowest priority and 100 highest, and represents the
order in which satisfied rules are processed by the rules engine.

e In the Trigger Conditions tab, right-click the tree root node and select the ‘insert
object existence condition’ pop-up menu item. (‘key value pair conditions’ are
described in chapter Key Value Pair Conditions)

e In the ‘Add New Rule Object Condition’ dialog, select the object type (e.g. ‘a
Notification’, ‘an Associate Group’ etc.) and condition (‘exists’ or ‘does not exist’)
from the drop down menus and click on OK. The ‘Store object in’ text field allows a
custom name for the variable containing this object to be specified. The object can
be referred to using this name when defining the actions.

90

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

&4 View / Modify Rule

Description|Detect Site Problem Priority: o

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardawn Actions|

Right-click tree nodes For options
*erform krigger actions when all the F conditions apply ...

&% Add New Rule Object Condition |z|

an Object L4 | |exists A |

Store object in: |0I:|jD |

[Ok H Cancel]

[Ok H Cancel]

The new ‘object existence condition’ will be automatically added under the tree
root node.

Right-click the ‘object existence condition’ that was added to the tree and select
‘insert attribute conditions’ from the pop-up menu.

In the ‘Add New Rule Attribute Condition’ dialog, select the appropriate items
from the drop-down lists (or enter the values, depending on the attribute and
condition selected), as appropriate for the rule trigger condition.

Click on the OK button to add the new rule attribute condition.

Continue adding new rule attribute conditions as above.

Rule attribute conditions may be modified, deleted, moved up or moved down by
right-clicking the associated tree node and selecting the appropriate pop-up menu
item.

Continue adding new ‘object existence conditions’ together with their associated
‘rule attribute conditions’, as above. An example set of rule trigger conditions is
shown in the screenshot below.

‘Object existence conditions’ in the tree may be deleted, moved up or moved down
by right-clicking the associated tree node and selecting the appropriate pop-up
menu item. Note that deleting an’ object existence condition’ from the tree
will also delete all its child nodes, i.e. all its associated ‘rule atiribute
conditions’.

@ View / Modify Rule]

Description|Detect Site Problem| Priority]

Trigger Conditions | Trigger &ctions || Teardown Conditions || Teardaown .ﬂ.cticuns|

Right-click tree nodes for options

D Perform trigger actions when all the Following conditions apply ...
EI ﬂ an Cbject {stored in obj0) exists where;

EI ﬂ a Motification does not exist where:

- i base dass iz "Site"
- @ unique reference is stored in " Site"
- @ state is "failed"

- @ base class is "Site"

- W originating base class is "Site”

- @ unique reference is "uRef"

- @ originating unigue reference is "uRef"

I K, H Cancel]

Figure 23 - The Add New Rule Dialog

Select the Trigger Actions tab to define the action(s) to be associated with the
trigger conditions.

91

Select the required action in the left side of the screen and click the gbutton. In
the resulting ‘Add Trigger Action’ dialog, enter the appropriate values and click
the OK button. The action will be removed from the left hand list and will appear
on the right hand list.

Repeat this for all actions to be added.

To modify an action in the right hand list, double-click it or right-click and select
‘modify’ from the pop-up menu item.

Action will be performed in the order that they are shown in the right hand list —
top to bottom.

To re-position an action in the right hand list, right-click the action and select
move up or move down from the pop-up menu item.

To remove an action in the right hand list’ select it and click on the ‘G button. The
action will then re-appear in the left hand list.

#\ Add New Rule

Description Detect Site Problem| Priority 10 &
Trigger Conditions = Triggsr Atons | Teardown Conditions - Teardown Actions

u:datc notification against child group parent Al 8 rase sarm

create nobfication against child group grandparent *

Force object to degraded state via notficabion ”

Force object to faied state via notfication S

Force object 2ate change

Force removal of notification aganst object

run script

end sanpt

terminate alarm

chear darm

demote chid alarms

acknowledge latest darm

Rterminate latest alarm

natify objects affected by Ink Falure V.
< >

in l CK _ Jl VCancelj

Repeat the entire above procedure to specify the teardown conditions and
teardown actions in a similar way, but using the ‘Teardown Conditions’ and
‘Teardown Actions’ tabs.

Finally, to complete the rule definition, click on the OK button.

The new rule will now be listed in the Scenarios, Filters, Mappings and Rules
Summary List in the UCA Scenario Manager.

To view an existing rule:

Double-click the rule in the Scenarios, Filters, Mappings and Rules Summary List
in the UCA Scenario Manager, or right-click the rule and select the view / modify
pop-up menu item.

To modify an existing rule:

Double-click the rule in the Scenarios, Filters, Mappings and Rules Summary List
in the UCA Scenario Manager, or right-click the rule and select the view / modify
pop-up menu item.

Make the necessary changes and click OK.

To include a rule in a deployment:

If the rule is to be included in the set of scenarios, filters, mappings and rules for
an active deployment, it must be dragged from the Scenarios, Filters, Mappings
and Rules Summary List and dropped onto the ‘rules’ node in the Scenario Builder
Tree. Once this has been done, the rule will be shown in the tree. The example
below shows five rules in a particular scenario.

92

Scenario Builder

=427 scenarios
i=-8) DTV Site Power Failure
E;,;"’; filters and mappings
: =-4% Sidonis NMS Alarm
- 4% Sidonis NMS Site Raise Alarm
. i Site Problem
=¥ Sidonis NMS Site Cleared Alarm
: -f] Site Recoverad
2% rules
o Detect Site Problem
----- Annotate Downstream Sites
----- Degrade Downstream Sites
----- Artach Sympathetic Alarms To Failed Site Notification
b Remove Marker Notifications On Normal BroadcastEquipment

To remove a rule from a deployment:
e If the rule is to be removed from the set of scenarios, filters, mappings and rules
for an active deployment, right-click the rule in the Scenario Builder Tree and
select ‘delete from tree’ in the pop-up menu.

8.4.1 Key Value Pair Conditions

Conditions can also be made based on the value of system properties associated with any
of the deployed value packs. To make a condition based on a system property right click
the ‘root’ node in the conditions panel and select ‘insert key value pair condition’. Note
that the system properties must already have been loaded into the system in
order for this option to available.

&5 Add New Rule

Descriptiunltest rule

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions |

Right-click tree nodes for options

PR | I S - | I

==—===<itions apply ...
alue pair condition S

insert abjeck existence condikion

[0] 4] [Cancel

The only type of condition for a system property is the existence condition so the new key
value pair condition’ will be automatically added under the tree root node.

To edit the condition right click the newly created node and select ‘insert attribute
conditions’ from the pop-up menu. Each available system property is listed in the drop-
down menu on the left and is prefixed with an ‘&’ and the value pack namespace. The

93

conditions and values appropriate for that property will be listed in the drop-down
menus to the centre and right. Select these as required.

2% Add Mew Rule

Description| test rule Priariky

Trigger Conditions | Trigger Actions | Teardown Canditions | Teardown Actions |

Right-click tree nodes For options
E‘ Perform trigger actions when all the Following conditions apply ...

5 Key Yalue Pair exists where:

.ﬁ Add New Rule Attribute Condition

v| [N | [rue

‘awaluepacknamespace. systemproperty

[use template attribute?

L ok J[Cancel]

L oK][Cancel]

8.4.2 Rules and user-defined event fields

User-defined event fields are also accessible for use in rules. Each user-defined event field is
accessible via the ‘last event’ raised on a Mesh Object.
An example rule utilising a user-defined event field is shown below:

<% Add New Rule

Descriptiontest rule

“Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions|
Right-click tree nodes for options

(=) Perform trigger actions when all the following conditions apply ...

= &9 an Object exists whera:
FWast event resourceText is “a value”

&3 Modify Rule Attribute Conditions

fast event esourcetea _________RANE

‘C [S value
[[] use template attribute?

8.5 Rule templates

8.5.1 Templated Rules

Rules can be created as described in the above section, but they can also be created using
‘templates’. A ‘templated rule’ acts like a pattern for generating actual rules later on. In a
template rule, the rule conditions and actions are defined as usual but the actual values used in
the conditions and action fields are not supplied when the template i1s defined, but instead
‘variable names’ are used in their place and the actual values for the variables are supplied later.
Collections of ‘templated rules’ are very useful for addressing general purpose situations, for

94

example commonly seen state propagation rules. A collection of templated rules can be used again
and again; each time the actual rules are generated from the templates, different values for the
‘variables’ may be used.

The key points to be aware of when templating a rule are:
e Any rule can be ‘templated’
¢ You can template a rule’s trigger / teardown attribute conditions
¢ You can template a rule’s trigger / teardown actions

To template a rule’s trigger / teardown attribute condition, select the ‘use template attribute?
checkbox when adding or modifying a rule’s attribute condition. When this is done, instead of
supplying a value in the attribute condition, you will be prompted to enter a template attribute
name and description. The template attribute name acts like a ‘variable’ for which you will later
supply a value. The description is useful to help clarify the meaning of the template attribute
name.

To template a rule’s trigger / teardown action, right click a desired action field and in the
resulting ‘Action Template Item’ dialog, select the ‘use template attribute? checkbox and enter a
value for the template attribute name and description, as above.

You can use the same value for the template attribute name for many conditions and actions in
many template rules.

95

e Any rule can be template

e You can template:

trigger / teardown
rule attribute
conditions

ctions

& Adt New Rulo Atz ot Condition

base dass

= v
[¥] use tompiate sttrbute?
templste altribute nama: A
teegiaze strbute dosroton:
=

right-click a rule action
field to get the template

dialog

use template attribute?

&% action Template ltem

attribute name:

contextMame

attribuke descripkion:

The name of the current
context.

[ok

][Cancel]

e.g. “baseClass” might
be a sensible template
attribute name here

Attribute names act like ‘variables’
for which you later supply a value
For example, wherever you've used
“baseClass”, the actual value for this
(eg. NetworkElement”) will later be
substituted as the value in the
expression wherever “baseClass”
occurs.

Any rule that uses template attribute names, either in its rule attribute conditions or action
fields, is a ‘templated rule’. It will appear in the GUI with an icon like this:

b3

& Rule arule with

Type Des;ription

templated fields

8.5.2 Rulesets

A Ruleset is simply a container for rules that have been templated.

To create a ruleset, select the e icon in the Scenario Manager toolbar. Once you have clicked
this icon you can drag any templated rule into the resulting RuleSet dialog.

When a RuleSet has been created, it will show up in the Summary List table on the right side of
the Scenario Manager like this:

3) Scenario DTV2 Notifications

®% Rule Set Detect Problem

Thu Sep 13 14:12:34 BS.

Tue Feb 03 15:16:55 GM.

A Ruleset acts as the vehicle for generating the actual rules from the template set of rules.

96

8.5.3 Using a ruleset

To use a RuleSet, drag it to the Rules folder of a Scenario in the Scenario Builder tree on the left
of the Scenario Manager.

When the RuleSet is dropped on to the tree, a “Create Rule Template” dialog box will appear

All templated rule attribute conditions and action fields from the template rules in the dragged
RuleSet will show up in the list, as in the following example:

Oescription Exarmple Rue Tempiate |

Attribute Detals Attribute Description
Nome Type Valse The base class

uRef text

curréentContext taxt

rargetContext text

TogToDb true or False

sympBacaClass baxt

Vae SanalmEasoment v [(se]

[ok [came |

This dialog is used to supply the actual values to be substituted in place of the template names in
the templated rules within the Ruleset.

You must supply a value for each name in this dialog e.g. for “baseClass” the actual value you
might enter could be “NetworkElement”.

8.5.4 Generating the rules from the rule template

When all values have been supplied in the Rule Template Dialog box and “OK” clicked, a set of
new rules will be automatically generated. These new rules will appear in the Scenario Manager
GUI under the new Rule Template (which itself appears under the “Rules” folder in the tree), like
this:
=% rules
=B Example Rule Template using Detect Problem
&) generated from Detect Object Problem

- @ generated from Annotate Downstream Objects

. Q generated from Degrade Downstream Objects

r Q generated from Attach Sympathetic Alarms To Failed Object Notification

: Q generated from Remaove Marker Notifications On Normal Equipment

—_

You can right-click on the Rule Template in the tree and view or modify the set of values to re-
generate new rules based on the new values.
You can also right-click on any of the auto-generated rules and view (read-only) its details.

8.6 Deploying Scenarios, Filters, Mappings and
Rules

Once the Scenario Builder Tree has been set up with all the scenarios, filters, mappings and
rules, it may be deployed into active use. However, the deployment must first be validated.
To validate a deployment:

o click the % button on the Scenario Manager toolbar.

e The validation will check that the Scenario Builder Tree is valid (e.g. that

mappings exist under filters etc.) and that the rules engine considers the rules to
be valid.

97

e If the deployment validates correctly, the status bar will show “Status: the
validation was successful”. Otherwise the ‘Validation Errors’ dialog will open,
showing the translated rules code with details of the errors, including the line and
column numbers where the error(s) occurred.

P vatidation Errors g@'gl
A

The folloving validation error (3) occured:

unknoun:35:3 Unexpscted token '"uReg”*
unknovn:39:3 mismatched token: [8113,84&6:850~'state',<5>,39:3]: expecting type ')’
unknown:40:2 Unaxpacted token ')'

The rulss cods containing ths erroris) 1is:

//""RC"'RI"'R""t"ﬂ't""*""t('"'('R'R"R'*"R'ﬁ"ﬂ""ﬂ""ﬂ"'l""
/7
// Package: DTV_Site Powsr_ Failurs 3194772302

//
i/

/j.'.I.'I.I".l'.'.l'.'.lll'l.'I""Il"'l"l'I'Iﬂ'I.'l'l"ﬂ'l".ll.""."l'.

packag=s DTV Sice Power Failure 3194772302 v
< >

i =

Figure 24 - The Validation Errors Dialog

e The translated rules code In the ‘Validation Errors’ dialog is annotated with
comments that match the text in the Trigger / Teardown Conditions trees of the
Add or View / Modify Rule dialogs. This allows precise location of which part of
which rule has not validated.

The set of scenarios, filters, mappings and rules can only be deployed after they have been
successfully validated. After validation, to deploy the scenarios, filters, mappings and rules
present in the Scenario Builder Tree:
o click the “J button on the Scenario Manager toolbar.
e In the ‘Deployment Details’ dialog, enter a description and additional information
that describes this deployment and click OK

A warning may be raised when using value packs (see section Chapter 15)
that include rules. This will only happen if the new deployment does not
include rules for every value pack that incorporates rules.

To show details of previous deployments, or to open a previous deployment into the Scenario

Manager, click the “Lbutton on the tool-bar or select ‘Show Deployments’ from the Server menu.
To show details of scenarios added to the ‘Scenario Library’, or to merge a scenario form the

‘Scenario Library’ into the existing set of scenarios, click the &l button on the toolbar or select
‘Show Library’ from the Server menu.

Details of using the ‘Show Deployments’, ‘Scenario Library’, exporting a scenario to the library
and 1importing a scenario from the library are provided in section 7.1.

98

Chapter 9 Configuring Rules and
Actions

Rule conditions and corresponding actions are defined together to form a block. These rule
condition-action blocks (commonly referred to as Rules with a capital R) are further divided into
two sections; a trigger section that reacts to the departure of one or more objects from the normal
state i.e. ‘on the way in’, and a teardown or recovery section that reacts to the return of one or
more objects to the normal state i.e. ‘on the way out’. In practice either the trigger or teardown
section may be left undefined if they are not required.

9.1 Format

Rule condition-action blocks (Rules) as a whole are assigned a priority in the range 0 to 100.
Satisfied Rules with higher priority i.e. more positive, are executed ahead of others on the
inference engine agenda with lower priority. This allows the user to force one Rule to execute
ahead of another. A useful technique to adopt when designing correlations that rely on this
feature is to construct a state diagram for the object(s) involved. Priorities may then be used to
force a particular path in the state diagram ahead of another if there is an equal choice.

9.1.1 Structure

Each section of a Rule (trigger or teardown) consists conceptually of a set of object existence
conditions sub-divided into clauses (each potentially referring to a different Object, Associate or
Child Group, Notification or Script and containing one or more attribute conditions), as well as
system property conditions that are evaluated by the inference engine and one or more
consequential actions to carry out when all of those object existence conditions are satisfied. The
general format of each section of a Rule is:

(Clause 1) When a System Property exists or an Associate Group | Child

Group | Object | Notification | Script exists |does not exist with:

Attributel Comparison Operator Expression (is true)
Attribute2 Assignment Operator VariableX

(Clause 2) And (optionally)
When a System Property exists or an Associate Group | Child
Group | Object | Notification | Script exists | does not exist with:

Attributel Comparison Operator Expression | VariableX (is true)
Attribute2 Assignment Operator VariableY

(Clause N) And (optionally) ...
Then

Actionl (Argument List)
Action2 (Argument List)

When existence conditions are evaluated, the inference engine begins evaluating the first clause
and proceeds until it encounters an attribute condition that is not yet satisfied or all of the
clauses are satisfied. If an attribute condition is invalid and is subsequently satisfied, evaluation
continues from that point onwards (previously satisfied attribute conditions are not re-evaluated
unless the object is removed and re-inserted into a working memory). When all of the clauses are
satisfied, the associated action(s) are executed. If an object is removed from a working memory

99

before all of the object existence conditions are satisfied, then knowledge of all previously satisfied
attribute conditions is discarded.

A general principle for object existence conditions that is a direct consequence of the use of
generalised objects in the state mesh is that for a given object type, it is usually necessary to:
e Identify the specific class of generalised object (or that of its parent and/or the objects
1t contains)
e KEvaluate one or more conditions relating to the identified object.

It is also important to realise that unless specifically made so, object existence conditions are non-
specific and operate at the class level so that they will operate for any and all matching instances
that are encountered in working memory.

Where non-existence in working memory of an Associate or Child Group, Object, Notification or
Script with particular attributes is tested in a clause, it is important to note that a reference to
that (non-existent) item cannot be used in an action (because by definition it does not exist and
therefore it has a null object reference). Further, it is also not possible to store the value of an
attribute in a non-existent item in a local variable (again because the system is testing that it
does not exist and therefore would not have an attribute value to store in the variable). However,
attribute evaluation conditions for a non-existent item may be evaluated against local variables
(provided they were initialised in a previous clause for an object that exists).

9.1.2 Rule Conditions
9.1.2.1 Object Types

UCA supports the evaluation of the following object types in object existence condition clauses:
e Objects (both static mesh object components of the state mesh & dynamically created
alarm collectors)
Child Group
Associate Group
Notification
Script

The Object type is a generic name to describe static long-lived mesh object components of the
state mesh and dynamically created short-lived alarm collectors (designed to hold a set of
transient events from one or more stream sources). In practice, Objects are implemented using
the same type of Java object but in addition to lifetime considerations, the former also differ in
that they have relationships to surrounding objects defined, whereas alarm collectors exist in
isolation from other components of the state mesh.

9.1.2.2 System Properties

System properties that have been imported as part of a value pack deployment may be used in
condition clauses. The properties can be used very much like static variables that will not change
throughout the running of the system.

9.1.2.3 Attributes

Each supported system property and object type has a number of attributes that may be
evaluated by attribute comparison operators in a clause. Each attribute has a type and some
object types support a common subset of attributes. Section 12.1 lists the supported attributes,
their types and a brief description of their purpose for each object type.

100

9.1.2.4 Operators and Expressions

Each attribute type (String, Integer, Boolean, Enum, Object, Child Group, Associate Group) may
be evaluated using an operator against an expression. The following table lists the supported
operators for each attribute type and the required expression type.

Operator String | Integer Boolean Enum | Child Associate | Expression

Group Group Type

Is (equal to) String

Is not (equal String

to)

Contains String

Does not String

contain

Starts with String

Ends with String

Is (equal to) Integer

Is not (equal Integer

to)

Is greater Integer

than

Is greater Integer

than or equal

to

Is less than Integer

Is less than or Integer

equal to

Is greater Integer

than value in

(variable)

Is greater Integer

than or equal

to value in

(variable)

Is less than or Integer

equal to value

in (variable)

Is less than Integer

value in

(variable)

Is (equal to) Boolean

Is not (equal Boolean

to)

Is (equal to) Enumerat
ion

Is not (equal Enumerat

to) ion

(Group) Mesh

contains Object

(Group) does Mesh

not contain Object

Is stored in Assigning

[assignment Object

operator] Type

Figure 25 - Operators and Expressions

The ‘Is stored in’ operator is the only assignment operator (all others are conditional) and may be
utilised to store the current value of an attribute or expression into a local variable (whose type is
automatically determined from that of the assigning object’s type) except in the case of system

101

properties which are in effect already stored as variables. The scope of a local variable is the
remainder of the Rule section (trigger or teardown) in which it is declared, beginning with the
next rule clause (if one exists) or the following action(s).

9.1.3 Actions

Once the object existence conditions of a Rule are satisfied, one or more consequential actions
may be executed. The system supplies a comprehensive set of pre-defined actions to choose from
and additional user-defined actions may be created as required.

(Mesh) Objects and Child & Associate Groups can exist outside working memory (regardless of
their current state, they are still part of the state mesh). (Alarm collector) Objects, Notifications
and Scripts only exist inside working memory — they are transient objects that exist for the
purpose of collecting alarm streams, reporting a correlation notification or managing a script
execution respectively.

Notifications are of interest in that they carry two sets of references to Objects. The ‘originating’
reference (base class and unique reference) is normally used to identify the Object whose
‘problem’ is the reason for its existence e.g. a non-NORMAL state. The ‘owning’ reference (base
class and unique reference) is used to identify the object that it is currently associated with. This
allows Notification objects to work in two ways:
e As a primary indicator of a problem — both originating and owning references refer
directly to a ‘problem’ Object.
e As a secondary marker on another Object affected by the ‘problem’ Object — the
originating reference refers to the ‘problem’ Object, while the ‘owning’ reference
refers to the ‘affected’ Object.

Given these features, Notifications can be used for the purpose of constructing correlations where
it is necessary to link Objects indirectly affected by a problem to the source Object. This is
1llustrated in the following diagram:

Alarm
Alarm Report
Report !
Problem : Affected :
Object . Object :
Originating
Originating Owning Reference Owning
Reference Reference Reference
Primary Indicator Secondary Marker

The arrangement shown in the diagram above illustrates how UCA may be used to gather
sympathetic alarms from Objects affected by a failure elsewhere in the state mesh. Assuming
that an action has created the primary Notification object against the ‘problem’ Object, then
another action (usually produced specifically for that purpose) can identify potentially affected
Objects and attach secondary marker Notification objects to them, in turn referring back to the
‘problem’ Object. Once this link is constructed, then any sympathetic alarm reports attached to
the ‘affected’ Object may be tied to the original problem.

One of the purposes of building notifications is to report useful information back to the user via
notification reports on the Notification Viewer GUI. Notification objects by themselves do not
achieve this purpose. To make a notification report visible on the GUI, a notification record needs
to be created in the UCA notification database. The separation of these two functions is necessary
to allow flexibility in the use of Notifications — often the problem they represent does not need to

102

be visible to users via the GUI, particularly where they are used as an intermediate step in a
correlation that may involve several levels of the model.

When a notification report is displayed on the Notification Viewer GUI, it will often be
accompanied by a list one or more alarm reports. Typically, an action that sets out to create a
notification report will carry out the following operations:

e Build an event list of existing contributory alarm report records in the notification
database associated with the problem Object (recall that all alarm reports that pass
the input filters are stored in the event database).

e Build a Notification record in the notification database and attach the contributory
event list. This will result in an automatic display of a notification report and
accompanying contributory alarm reports from the event list on the GUI.

e Build an equivalent primary indicator Notification object in working memory from
the notification record to support further processing.

If the correlation requires the attachment of affected Objects and their sympathetic alarm reports
to a notification report that is already displayed on the Notification Viewer GUI, then a slightly
different approach is adopted in relation to the notification database. The following operations
will be necessary for each affected Object:

e Build (or append to) an event list of existing sympathetic alarm report records in the
notification database using the affected Objects as the source of the alarm reports.
The sympathetic event list is attached to the notification record on the problem
Object.

e Build (or append to) a list of affected Object records in the notification database using
the affected Objects themselves. Again, the affected Object list is attached to the
notification record on the problem Object.

e Build an equivalent secondary marker Notification object in working memory from
the affected Object (for the ‘owning’ Object reference) and the problem Object (for the
‘originating’ Object reference).

An additional action may add late arriving alarm reports to the sympathetic event list as
required, allowing the notification report to gather further alarm reports over an extended period.
The types of action available depend on the rule-action block section in which they are initiated.
Section 12.2 describes in detail the currently supported set of actions available to each rule-action
block section (Trigger and Teardown).

Actions often require configuration parameters to be supplied from the objects associated with
rule clauses. Objects that participate in rule clauses can be manually assigned names when the
rule clauses are configured, default values are assigned depending on their type and position in
the set of clauses. When default names are used the following naming convention is adopted:
Objects; name = objNN

Associate Groups; name = assocNN

Child Groups; name = childNN

Notifications; name = notifNN

Scripts; name = scriptNN

Where NN is an integer, beginning at 0 and incrementing independently for each type, so if a rule
contained two Object clauses and a Notification clause, then these objects would be automatically
assigned the names; obj0, obj1 and notifO.

When configuring an action that requires one of these object variables a list is provided of all the
objects configured in the rule clauses of the given type.

During action configuration, the user may also be given the option to provide message text
(literals enclosed in “ “ or rule condition variable names) or other additional values. Generally, the
user is also given the option to record action execution in the notification database (which results
in the data being presented on the Fired Rules GUI). The only exception to this is the situation
where an action creates a Notification object and it must be recorded in the notification database
— in this instance, the user is not given the option. For efficiency, it is recommended that once
initial testing has been completed that the absolute minimum number of action execution logs are
created, consistent with user audit trail maintenance requirements.

103

9.2 Example Rules and Actions

The DTV example included with the UCA installation contains a set of Rules designed to
implement the following correlation scenarios:

e DTV Site Power Failure — Creates a DTV Site Power Failure primary
Notification, identifies the downstream DTV Sites and Receivers affected by an
upstream DTV Site Power failure, attaches marker Notifications to the
downstream DTV Sites and Receivers and gathers any sympathetic alarms
under the primary Notification.

e DTV Service Impact - Identifies the DTV Services affected by localised Receiver
problems.

e DTV Maintenance — Handles the retraction of normal Objects & Groups from the
DTV context.

e DTV2 Notifications - Creates an additional Notification (in response to the
creation of DTV Site Power Failure Notifications) that ‘straddles’ two working
memory contexts, DTV & DTV2. It also handles retraction of normal Objects &
Groups from the DTV2 context. The primary purpose is to illustrate the
technique for linking correlations in separate contexts.

The following sections describe in some detail the Rules that implement the first of
these scenarios and illustrate some of the important features of the remainder.

9.2.1 Correlation Scenario - DTV Site Power Failure

The starting point for definition of a correlation scenario is often the identification of a problem in
the monitored network that would benefit from automated correlation analysis. Typically that
network problem is characterised by a set of contributory events that are symptomatic of the
problem. In addition, there may be an additional set of sympathetic events that occur at other
locations in the network as an indirect result of the problem. It is also necessary to establish the
target requirements for the correlation itself i.e. what is the desired outcome of the correlation.

In the DTV Site Power Failure scenario, the target correlation requirements are:

o Detect a DTV Site that has undergone a power failure and report a Notification.

¢ Gather any sympathetic events from downstream DTV Sites & Receivers under
the Notification.

Definition of the Rules to perform such a correlation scenario usually begins with injection of an
example set of contributory and sympathetic events into UCA using the UCA Event Injector tool.
This in turn is driven by one or more files containing XML representations of the contributory
and sympathetic events. These event files may be hand crafted or created using some automated
translation process from existing event histories. A much more convenient alternative is to enable
pre-filter logging in UCA and to either instruct the event source system(s) to replay the required
events from their own histories or to simply wait for the problem to re-occur. The resulting log
files may then be used directly with the UCA Event Injector tool. A major advantage of using the
Event Injector in this way is that the captured problem events can be replayed repeatedly during
initial testing.
It should also be noted that use of an example event set in this way is just the first step in
developing a robust correlation. Any production quality correlation will need to be tested with
several other examples of problem events (particularly where they occur in a different order) and
ultimately be connected to a live system over a suitable period to ensure that actual problem
occurrences are reliably correlated.
The DTV example includes a set of events that are characteristic of a DTV Site power failure and
when injected, cause UCA to report the following problems in the UCA Mesh Viewer:

e Site 10001 has undergone a power failure.

e As a result of the power failure of Site 10001 (and consequential loss of
transmission capability), component Receivers at downstream Sites 10006 &
10025 have detected a loss of signal from their respective upstream transmitters.

104

The location of these events on the example DTV network model is shown below.

Site

BroadcastEq
Site10006-RX-1

Child Group
Site
A
Site |] Child Group
10006 BroadcastEq.
Child Group
Site
A
Site [| Child Group
10025 BroadcastEq.

BroadcastEq
Site10006-RX-2

Alarm

BroadcastEq
Site10025-RX-1

Broadcasttq | | Child Group /
Site10006 -RX BroadcastEq. *—_
Broadcasttq | | Child Group <« |
Site10025-RX BroadcastEq. \

BroadcastEq
Site10025-RX-2

Assuming that a minimal scenario (without Rules) to handle DTV Site power failures has been
deployed in UCA (the preceding chapter describes in detail how to achieve this and the reader is
encouraged to examine the scenarios, filters and maps in the supplied example for the actual
configurations required), then the presence of these events causes the equivalent mesh objects to
change state, resulting in the following display on the UCA Mesh Viewer.

105

5 HP LUCA Mesh Viewsr T E‘ g'
Fla View Heb
(il.?un
= U Moded

Subdss Unique Ref Date Crested
Eroadcastiqupment RecerverXY2Carp-40RX Ste_1O025-DCALS-RX-2 Mon Sep 24 1014835 85T 2007

= DTWietmork Srosdcantquoeert Recaver-XYZCHp-4880(Ste_tO02SBOANRX-) Mon Sep 24 10:€3:35 85T 2007
‘lc-:lbnm Recaver-XY2Corp-A8RX Ste_10006-EX-AIS-RX-Z Mon Sep 24 104835 857 2007
- ke Receiver-X12Cerp-4ERX

e _L 0006-EC-A-RX-1 Mon Sep 24 10:48:3% 857 2007

o L 0 Sep M 104835 85
= Brcadearfquoment
Teoadcast qupmert
Sralndapment
= Corpostelnk
Telcal ik
Batebardirk
Telcolrk
Makpies
Servie

Suly-classes
=) e
Firdd
freermnsns
M
Soute
Instances
= l.: Intermedans
LT
4)
instance Detads
= L0 10001
Irntance Naose: Sta_ 10001
Sevece el IN SERVICE
Importance 2
Lotkude: O
Longbude: O
= Parent
= Sto

= Man

At this point with such a minimal scenario (no Rules have been defined) UCA will not attempt to
carry out any type of correlation.

The first requirement for the correlation scenario is the detection of a failed DTV Site object and
the creation of a primary Notification reporting the failure.

To satisfy this requirement, a Rule needs to be defined to locate failed Site objects with the
correct attribute values. A simple way to evaluate the necessary object existence conditions is to
examine the failed Site object in the UCA Working Memory Viewer — see below (recall that the
Site 10001 object will be automatically be inserted into the DTV working memory context when
the incoming event causes it to adopt the failed state).

106

@ HPUCA Working Memory Yiewer

Contexts and Object Types

110001

Ske_10006-BX-AIS-RX-1

ER>) (;nt-uts

== DIV Ske_10006-8X-AISRX2
% natifcations Ske_10025-B0-AIS-RX-1
L Site_10025-BC-AIS-RX-2
& chid groups
& scsociste grovps
I «ript objects
& time objects

The detailed attribute values for the failed Site 10001 Object in the DTV context are shown
below.

& WM Object Details

Base class = Site

Sub class = Intermediate

Unigque ref = 10001

Instance nams = Site_ 10001

State = failed

<<Automatically propagate stats changs to parent childgroup = trus>>
<<Automatically propagate state changs to relative childgroup(s) = false>>
Ssrvice state = in service

Importancs = no action

Latitude = 0

Longitude = O

Current event count = 1

Current event count trend = increased
Additional text in latest event = 10001

Parent base class = Site

Parent sub class = Main

Parsnt unigque ref = 10000

Parent instance name = Site 10000

Parsnt state = normal

Grandparent base class = DTVNetwork
Grandparsnt sub class = Terrestrial-DTVNetwork
Grandparent unique ref = Jidonis-DTV
Grandpar=nt instance name = Sidonis-DTV
Grandparent state = normal

<<Updated in WMs = false>>

[]

107

The user should consider that except in special circumstances, rules are normally intended to
operate at multiple locations throughout the network, rather than at specific positions. The choice
of attribute conditions to test for in object existence condition clauses (i.e. the constraints) should
then be made specific enough to identify the correct type of Object, Associate or Child Group,
Notification or Script in the required state, without un-necessarily limiting the scope of the
search (for example by NOT testing for a particular unique reference which limits the Rule to
operate at a single location). To this end, a single object existence condition clause (to locate an
Object) with the following (naive) set of attribute conditions should be sufficient to locate failed
Site Objects:
e Base class (i.e. type) is Site.

e State is failed.

In practice, an additional object existence condition clause will be needed to exclude those
situations where a primary Notification has already been created on the failed Site object. This
additional restriction will prevent a new Notification being created each time any attribute of the
failed Site Object is updated (causing a naive Rule to be re-evaluated).

To begin definition of a suitable Rule (using the UCA Scenario Manager), the option to create a
new Rule is selected (as described in the previous chapter) and an empty Rule is created. In this
case, a Rule has been created with a name of ‘Detect Site Problem’ and a priority of 10 (a useful
starting point — it can be adjusted later if required). This is illustrated below:

&4 Add New Rule
Description| Detect Site Problem

103

Priority

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions |
Right-click tree nodes for options
() Perform trigger actions when all the following conditions apply ...

As described previously, a Rule in fact provides for both trigger and teardown object existence
conditions and corresponding actions.

The first step in defining a new Rule is normally to define the trigger conditions. In practice this
is achieved by selecting the Trigger Conditions tab and entering one or more object existence
condition clauses - recall that each such clause constrains the Rule to test for the existence or
otherwise of an Object, Associate or Child Group, Notification or script in a working memory). In
this example, the first clause will be required to locate failed Site Objects, so the object existence
condition must be set to check for the existence of an Object. This is achieved as follows:

108

First, the option is chosen to insert an empty object instance condition clause into the trigger

conditions of the empty Rule:

&% Add New Rule

Description| Dekect Site Problem Priority

Trigger Conditions l Trigger Actions | Teardown Conditions | Teardawn Actions |

Right-click tree nodes for options

insert objeck existence condition

Then, the ‘Object exists’ condition is added:

&% View / Modify Rule

Description|Detect Site Problem Priarity

Trigger Conditions l Trigger Actions | Teardown Conditions | Teardown Actions |

Right-click kree nodes for options

*erform trigger actions when all the Following conditions apply ...

&3 Add New Rule Object Condition |g|

an Objeck v |exists w |
BN Associabe Group
5 Child Group |
i Daka Chiject (skakiskics)

ancel
a1 Mokification

I3 Syskem

I Scripk
| oK J[Cancel

Once an empty object existence condition clause for an Object is created, then the individual

attribute conditions can be applied as follows:

109

First, the option is chosen to insert new attribute conditions into the empty object existence
condition clause:

& View / Modify Rule X
Description Detect Site Problem Priority &

Trigger Conditions l Trigger Actions | Teardown Conditions | Teardawn Actions |
Right-click tree nodes For options

IL_:' Perfarm trigger actions when all the Following conditions apply ..

an Ohject (shored N ;
|nsert attrll:uute conditions

delete

raodify

Next, the required attribute type to evaluate in the condition is selected. In this example it is
‘base class’:

&% View / Modify Rule ;
Description| Detect Sike Problem Pricrity

Trigger Conditions | Trigger Actions || Teardawn Conditions | Teardawn Actions |
Right-click tree nodes For options

IL_:' Perform trigger ackions when all the Followmg conditions apply .
------ an Object {stored in objl) e o

@ Add New Rule Attribute Condition

base class

i w | |.C\IarmC0llect0r w |

[] use template attribute?

nique reference
Late
Enalysis refresh required

kervice state]
urrent problem list entry count hd

][Cancel l

110

Then, the evaluation operator to apply to the attribute is selected. In this example the ‘s’
operator is used (i.e. to test for String equality, since base class attributes are Strings):

2% View / Modify Rule

Trigger Actions | Teardown Conditions | Teardawn Actions |

Right-click tree nodes For options
) Petform trigger ackions when all the Following conditions apply ...
‘ed in o =1d=H

.‘ﬁ Add Mew Rule Attribute Condition

|base class

v | |EE | |AlarmCollactor

s ot [] use template attribute?

antains
Hoes not contain

[starts with !

nids with

L Ok J [Cancel s storedin

Finally, the required base class name is selected from the available choices. In this example, the
‘Site’ name is used.

2 View / Modify Rule

Trigger Conditions | Trigger Actions || Teardown Conditions || Teardown P.ctinns|

Right-click, tree nodes For options
) Petform trigger actions when all the Following conditions apply ...

|base class

Motification
Script

DT hetork
BlasehancLink
ite

L Ok J[Cancel] Compositelink
TelcoLink W

111

The end result is an object existence condition clause that the inference engine will use to search

for all Objects whose base class is Site.

& View / Modify Rule

Description| Detect Sike Probler| |

Trigger Conditions | Trigger Actions | Teardown Canditions | Teardawn Actions |

Right-click tree nodes for options

=) Perform trigger actions when all the Following conditions apply ...

El@ an Obiject {stored in obj0) exists where:
i @ base dassis "Site”

[oK J [Cancel

Because it will be necessary to exclude Site Objects that already have Notifications on them, the
next attribute condition records the unique reference of the located Site Object in a local variable

called ‘uRef for use in the next clause.

o3 Add New Rule

Descriptioni Detect Site Problem

Trigger Conditions LTrigger Actions | Teardown Conditions | Teardown Actions |

Right-click tree nodes for options

E‘;? Perform trigger actions when all the following conditions apply ...
= An object (stored in obj0) ex
‘- @ base class is "Site"

@& Add New Rule Attribute Condition

unique reference v | lisstoredin v | |uref

[OK J[Cancel]

[OK][Cancel J

112

The final attribute condition for this object existence condition clause forces the inference engine
to only consider those Sites that are in the ‘failed’ state.

o3 Add New Rule

Descriptioni Detect Site Problem

Trigger Conditions LTrigger Actions | Teardown Conditions | Teardown Actions |

Right-click tree nodes for options
Ef.? Perform trigger actions when all the following conditions apply ...

= G

normal
normal

[ox][Cancel] rded

[oK [Cancel]

The next object existence condition clause in the trigger conditions is responsible for ensuring
that the inference engine only locates failed Sites that do not already have a primary Notification
on them. This is achieved by adding a clause that checks for the non-existence of an attached
primary Notification as follows:

<% Add Mew Rule

Descripkion Detect Sike Problem

Trigger Conditions l Trigger Actions | Teardown Conditions | Teardawn Actions |

Right-click tree nodes For options
[0 =rform trigger ac shien all the Following conditions apply ...
=2 Ohbiject (stared in objd) exists where:
ao i base class is "Site”

- @ unique reference is "uRef

‘o @ state is not "Failed"

|a Motification

Store object in:

[(]4]L‘_m] I

113

The attribute conditions for this clause are chosen such that they would identify an existing
primary Notification on the failed Site Object identified in the first clause (and remember that the
clause for this Notification is checking that it DOES NOT exist, so the rule WILL NOT fire if a
matching Notification is found). The unique reference of the previously located failed Site object
(stored in the local variable ‘uRef in the first clause) is used in this clause to ensure that a
primary Notification on the same failed Site Object does not exist.

The completed trigger conditions are shown below:

&3 Add New Rule

Description| Detect Site Problem | Priority 10 3\

J Trigger CondRions | Trigger Actions = Teardown Condtions = Teardown Actions |
Right-click tree nodes for options
() Parform trigger actions when all the Following condtions apply ...
= @ an Object (stored in obj0) exists where:
- @ base dassis "Ske"
- @ unique reference is stored in "uRef"
® state is "faled"
R
® base dassis "Site”
- @ unique reference is "uRef"
~ @ orginating unigue reference is "uRef”

[oK][Cancel J

Note that the originating unique reference of the Notification is also evaluated against the same
Site Object unique reference to ensure that only those failed Sites with existing primary
Notifications are excluded (recall that primary notifications have identical ‘originating’ and
‘owning’ unique references whereas marker Notifications have different unique references). This
is done to allow another instance of the same correlation that originates further up the broadcast
chain (and which may had previously created a marker Notification on the now failed Site) to co-
exist with a new correlation on the failed Site.

So far, the Rule trigger conditions will only detect a failed Site without an existing primary
Notification. The correlation requirement is such that a primary Notification is to be created
when this set of trigger conditions is satisfied and this is achieved by executing a corresponding
action. The action may be defined by selecting the Trigger Actions tab and selecting the trigger
action to ‘create notification against object’. This is shown below:

114

% Add New Rule

Descripkion Detect Sike Problem | Pricrity:

| Trigger Cu:unu:litiu:uns| Trigger Actions | Teardown Conditions | Teardown Actions |
=+ notification handling FN ?
----- create notification against objeck
-Creake nokification against object (
-remove notification against objec
--update nokification against object
—create marker notification against,
--Update notificakion against object
--create notification against associ;
--creake notification against refere
-creake naotification against associ;

NP T T U R]

3 | >

&N Add Trigger Action

right-click fields for template details

Current Conbext |DT'u' |

Target Conkesxt DYz |

Object | obi0 v |

Time Span {seconds)

Message |Site Problem Detected |

Motification Type |primar~;.-' w |

5w

Matification R.ank { 1=Highest)

Log Action To Dakabase?

[0] 4 H Cancel]

The Add Trigger Action dialogue allows the action to be configured in a number of ways:

e Current Context i.e. the working memory in which the Rule will search for
objects that match its trigger object existence conditions and also in which it will
insert the corresponding Notification object.

e Target context i.e. an additional working memory in which the Notification will
also be inserted. This may be the same as the Current Context in which case it
has no effect.

e Object refers to the Site Object identified in the trigger conditions. As there is
only one such Object identified in this example, its name will be ‘obj0’ according
to the previously described naming conventions.

e Time Span (Seconds) allows the user to specify a maximum age (relative to the
time at which the Rule triggers) of contributory events attached to the identified
Object that should be added to the contributory events list of the Notification. In
this example, a value of 0 signifies that all non-Normal events attached to the
identified Object should be attached.

o Message is the text message that will appear in the equivalent notification entry
in the UCA Notification Viewer.

Note that the ‘Log Action to Database? checkbox is greyed out. This means that the Rule trigger
and associated Notification creation will always be recorded in the UCA notification database.

Once configured, this action will appear in the list of trigger actions, as shown below:

115

@5 Add New Rule

Description Detect Site Problem | Priority] 10 ﬂ
E —— — — B ———

| Trigger Conduzt@} Trigger Actions | Teardown Conditions | Teardown Actions |

emove notification against object A > create notification against object
pdate notification against object =3

pdate notification against object parent : {

reate notification against associate group pz

reate notification against referenced associz
reate notification against associate group gr
reate notification against child group parent
pdate notification against child group parent
reate notification against child group grandp
orce object to degraded state via notificatior
orce object to failed state via notification
orce object state change N
< E b

][Cancel]

As described previously, an equivalent set of teardown conditions and associated teardown
actions are usually defined to allow the correlation to correctly handle network recovery. Based
on the original correlation requirements, the scenario is expected to close a primary Notification if
the affected Site Object no longer exists in the failed state (i.e. it could be degraded or normal).
Based on this description, the corresponding teardown conditions are shown below:

&5 Add New Rule

Descripkion Detect Sike Problem Prioriky =

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions |

Right-click tree nodes for options

=) Perform trigger actions when all the Following conditions apply ...
Elﬂ a Motification (stored in nokifd) exists where:

. ® base class is "Site"

- @ originating base dass is "Site"

- @ unigue reference is stored in "uRef"

¢ e @ notification comman unique references is "trug”
Elﬂ an Object (stored in objl) exists where:

- @ base class is "Site"

- @ unigue reference is "uRef"

- @ skateis not "Failed"

The object existence condition clauses are subtly different from the trigger case. In particular, the
first clause is designed to locate an existing primary Notification and to remember the unique
reference of the Site to which it is attached.

The second object existence clause searches for a Site Object that is no longer in the failed state
i.e. has become degraded or normal as a result of network recovery, and uses the same Site Object
unique reference as that of the Notification located by the first clause. In this situation, the
priority of the Detect Site Problem Rule becomes important because the DTV Maintenance Rules
responsible for removing normal Objects and Groups from the DTV context execute by default at

116

priority 0. If this Rule also had a priority of 0, then an unpredictable race-condition could exist in
which the time order of placing satisfied Rules onto the inference engine agenda would become
important, leading to unpredictable correlation recovery behaviour. By setting the priority of this
Rule to 10, it is guaranteed to execute before the appropriate Maintenance Rule with consequent

predictable behaviour.

The corresponding action to remove the Notification when the Site Object is no longer failed is

shown below:

2 Add New Rule X
DescriptinnlDetect Site Problem jiari

| Trigger Conditions | Trigger Actions | Teardown Conditions | Teardawn Actions |

=2 notification handling Y
rernove nokification against objec
-reate notification against object
-rreate natification against objeck
-1ipdate notification against abject
--update notification againsk object
~remowe marker notification
-~remowe notification against assoc
-~remowe nokification against refere
—remove nokification against assoc s

< | b

.‘h Add Teardown Action

right-click fields far template details

Current Conkext |DT'u' |

Target Corkext |DTVZ |

Object |abio v |

Matification |matif v|

Log Action To Databases

[04 l [Cancel

The Add Teardown Action dialogue allows the action to be configured in a number of ways:
e Current Context i.e. the working memory in which the Rule will search for
objects that match its teardown object existence conditions and also from which
it will remove the corresponding Notification object.

e Target context i.e. an additional working memory from which the Notification
will also be removed. This may be the same as the Current Context in which

case 1t has no effect.

e Object refers to the Site Object identified in the teardown conditions. As there is
only one such Object identified in this example, its name will be ‘obj0’ according
to the previously described naming conventions.

e Notification refers to the Site Notification identified in the teardown conditions.
As there is only one such Notification identified in this example, its name will be
‘notif0’ according to the previously described naming conventions.

Note that the ‘Log Action to Database? checkbox is active. This means that the Rule teardown
and associated Notification closure may be recorded in the UCA notification database if required.
Given that the corresponding trigger action was recorded in the UCA notification database, it is
normally prudent for the purposes of maintaining a consistent audit trail to record the clearance

as well.

Once configured, this action will appear in the list of teardown actions, as shown below:

117

@5 Add New Rule

Descriptioni—f)etect Site Problem | Pinl’itYI__lané“ij

| Trigger Conditions || Trigger Actions | Teardown Conditionsi Teardown Actions \
remove object in normal state from working mr A } remove notification against object
remove child group in normal state from world.
create notification against object €
update notification against object
update notification against object parent
remove marker notification -—
remove notification against associate group p
remove notification against referenced associ
remove notification against associate group g
remove notification against child aroup parenl
update notification against child group parent
remove notification against child group grand, ¥
< | i b

][Cancel]

The effect of the Detect Site Problem Rule on the DTV Network example model is to attach a
primary Notification to a failed Site, as illustrated in the following diagram:
Notification

Site ’\

™ [rul: Dotet e prae |

Child Group
Site
A
BroadcastEq
& | Site10006-RX-1
Site | | Child Group | Broadcasttq | | Child Group
10006 BroadcastEq. | Site10006-RX BroadcastEq.
: [~ BroadcastEq
1 Site10006-RX-2
i
Child Group
Site
A
BroadcastEq
Site10025-RX-1
Site | | Child Group | Broadcasttq | | Child Group
10025 BroadcastEq. | Site10025-RX BroadcastEq.
[~ BroadcastEq
Site10025-RX-2

Alarm

To satisfy the remaining requirements for this correlation scenario, a number of additional Rules
have been provided in the supplied example. These additional Rules are effectively chained
together and their execution is triggered by the creation of the primary Notification.

The first of these additional Rules (Annotate Downstream Sites) attaches marker Notifications to
downstream Site and Receiver Objects (Composite & Component) in anticipation of the arrival of

118

sympathetic events, so that they may later be gathered under the primary Notification. The effect
of this Rule on the DTV Network example model is shown below:

Notification

Site

7 1
7 1
7
Child Group V4
Site / I/
A / 1
4 /
¥ /
]
1
Site |] Child Group |
10006 BroadcastEq. |
: !
i /
| /
: I/
Child Group /i
Site I
A /
4
Site | ______|] Child Group
10025 BroadcastEq. |

Site10006-RX

" BroadcastE
q.
\ ~ [~ BroadcastEq

\ \ u Site10006-RX-2

\
\ VA S -
\ AN \\ ~
AU ~
\ \ S
\ N \ REN
\ \ \ \ a
- \ N\ BroadcastEq
N \ — Site10006-RX-1
BroadcastEq Child Group

\ 4

\

BroadcastEq
Site10025-RX

Child Group

e

BroadcastEq
Site10025-RX-1

BroadcastEq.

:\ BroadcastEq

y Site10025-RX-2

The action used to create and attach the marker Notifications onto the model is an example of a
user-supplied action that has been created specifically to locate potentially affected downstream
Objects. A bi-product of this discovery is that the Affected Objects list for the primary Notification
is populated and this information appears in the UCA Notification Viewer when the primary

Notification details are examined.

By way of a convenience to users, the next Rule (Degrade Downstream Sites) forces downstream
Sites to the degraded state, so that they appear as degraded objects in the UCA Mesh Viewer. The
effect of this Rule on the DTV Network example model is shown in the following diagram:

119

Notification

Site

Child Group
Site

| [t veace Donstean sies =) e
-
V4 A
\ - - BroadcastEq

& | Sitel0006-RX-1

S| osite || Child Group | Broadcasttq | | Child Group
o 10006 BroadcastEq. | Site10006-RX BroadcastEq.
sﬁ};?rentlc [~ BroadcastEq
Site10006-RX-2

'
'

1

1]
1

\

: Alarm

1

1

Child Group
Site

’
’ -~
\ - BroadcastEq

Site10025-RX-1
- < | Site Child Group |, BroadcastEq Child Group |

: 10025 BroadcastEq. |- Site10025-RX BroadcastEq.
Sm;r:rentlc I~ BroadcastEq
- Site10025-RX-2
e

Of particular interest is the fact that the Rule is designed to operate at a single affected Site. The
inference engine however will automatically identify all Sites where it is valid and the result for
this example is that it will be triggered twice — once at Site 10006 and again at Site 10025.

The final Rule in this correlation scenario (Attach Sympathetic Alarms to Failed Site
Notification) identifies any locations in the DTV Network example model having marker
Notifications where sympathetic alarms have appeared. The associated action attaches these
sympathetic events to the primary Notification. Again this is a Rule that is written to operate at a
single location and in this example the inference engine automatically identifies the four
Receivers on which sympathetic events are attached. Again this is summarised by the following
DTV Network example model:

120

Notification
Site ﬂ‘A
10001 1 |I \

“| \

-
-

1 1 S
Child Group \ ~
Site

-
-~
I
I
]
1
|

\
\
RN T

- \ \\\ - BroadcastEq
= = Site10006RX-1
_______ Child Group | BroadcastEq —_____] Chnild Group
- BroadcastEq |\ Site10006RX BroadcastEq
n v v~ N\ BroadcastEq
\ SN l
H ~ ~
\ ~ N~ =
Child Group \ SO
Site ~ -
\ -
\

\ f
- \\ BroadcastEq

Site10025RX-1
Child Group A\ BroadcastEq Child Group

"""" BroadcastEq [~ Site10025RX """ BroadcastEq
BroadcastEq
Site10025RX-2

. |

The results of this correlation scenario are visible on various UCA user interfaces.

Of particular interest to a scenario developer is the UCA Fired Rules Viewer. As long as logging
to the UCA notification database has been enabled for the actions executed, the time-ordered
sequence of individual Rule actions is available, as shown below for this example.

Fired Mudes
Unque D « Rue Name Action Name Action Tme Ong Cork Target Cont Base Class - Unigue Rof System
17 TR % Rrglreateleti0 Mon e 1151259 857 2007 PV PIv2 yte 10001 { ~
TRIGGER._Arvvtate Dowratresn Stes 30... trighotObSter ., Mon Sep 24 11;51:59 85T 2007 DTV orve See 10001
19 TRIGGER _Dagr sde_Downtresn_Stes 299, tigForceMODe, ., Mon Sep M4 1151598512007 01V o Re 19025
20 TRIGGER_Degrade Downctrasm_Stes_299... tigfcecebhdOe. .. Mon Sap 24 11:51 558571 2007 DIV oty Ste 10006 v
iy e — -
?_oﬂfr‘xﬁnfylvfﬂh
Bate Clais Uricue Rel Tiestamp Add Tent Severty Everk Type Peed Comsia
Ske 10003 007-05-24 11/51:55.0 -Ske Poner Falre orcs Equipmentdsem PowerProblem
100 3 kems Refresh Exk |
. — - ¥ —w—

While this feature provides an in-depth view of the actions execution sequence, it incurs a
processing overhead that may in certain circumstances prove onerous. The recommended use of
this feature is to enable action logging as required only during the correlation development phase.
Once deployed into a production environment, action logging should be scaled back to a level
where it provides sufficient information to satisfy auditing requirements.

The current state of Objects affected by received events or modified by Rule actions is shown in
the UCA Mesh Viewer. This information is likely to be of interest to both a Rule developer and a
network operator as it gives a near real-time view of the state of the monitored network,

121

augmented by forced state changes provided by correlation scenarios. A Mesh Viewer example

output is shown below:

Classey ks Class Gdas Unique Rel Date Crexted)
= L) Ml Servics Sdoris TV, Channely Sidorts_TV_Channal]-5te_100..., Mon 5ep 24 11:26:41 05T 2007
=i DYyNetwurk Cervice Sdores_TV_Chaorel2 Sdores_TV_Chanos2 Ste_100... Mon 560 24 1113641 BST 2007
Umetordid Service Sidorts TV _Charrels Sdocks_TV_Channel3:Ste_100.,. Mon Sep 24 11:26:41 85T 2007
> {24 3 Sicloris_TV_Charoeld Schores_TV_Channwibd-Ske 100, Min Sa0 24 11;564) 65T 2007
B MURigle: Basaband MK Sdorks_Tv-5te_10006-5ke 10, Mon Sep 24 11:36:51 BST 2007
=-Fonkntiommere Redundak-ALS Sa_100056-Ske 10025 Mo Sep 24 1113541 BST 2007
trosdemlauipment Duk: XCorps8 Re_1000S-8CARX Mory S6 24 31:28:51 557 2007
SnnEs et Rettver-XYIC orp-408 Ste_10025-BCAISRX-2 Mon Sep 24 1 1:36:41 BST 07
= Compostatink Reovabver XY Corp-48800 Ste 10025 ECAISAX-] Mon Sep 24 11:36:41 85T 2007
Tecotnkt Sdorit IV _Charewll Scdores TV _Channwli - Se 100, Mo Sap 4 11:95:41 §5T 2007
Bamebardlrk Sore TV _Chaneal2 Scdorks_TV_ChannmiD-See_100.,, Mon fop 24 11:36:31 957 2007
Tedcobink Sdores_TV_Chareel? Sdores_TV_Channeld-S2o_100.,. Mon Sep 24 113641 BST 2007
Mk Sckrm_TV_Chanesid Scharks TV, Chiarneht-See_100.., Mor Sep 24 1136:41 85T 2007
Tercee Basebond Mlx Scdoces _TV-Ste_I00D1-Se_10,. Mon Se0 24 11:36<41 051 2007
S chase0s Redundant-AlS Ste_10001-5ke 10006 Mon Sep 24 11:36:41 85T 2007
= u- he Ouseceiver AYIConp48 e 10006-BCAN X Ao S0 24 31:36:41 BST 2007
o Racaner-XYZCorp-40RK e _10006-8C-ATS-RX-T Mo S0 34 1134541 05T 2007
'(—‘;:'-‘f“ Recaver-XY2Cwp-408x S _ 10006806 ASS-ROC L Mon Sep 24 11:36:81 85T 2007
2 =panan Intermedate Mot Sep 24 11136541 85T Xe7
5 ol Mon 500 24 1176047 85T 2007
Seurce v P oE— . |
Intances
= G Iermedote
Cannd
M4 D
¥itance Dotats 1l
= L L0002
Instance Naws! S2e_ 10001
Sorvie Rate: N _SRVICL
Ivpantance: 2
Latkyde: &
Loogtuds: O
= Vet
S8 1
= Mam
10000
oA

™
=
S

In this example, the states of Site 10001 and the individual Receivers at Sites 10006 & 10025
have been affected by the received events (recall their mappings were configured to cause the
target object to adopt the failed state). In response to the ‘Degrade Downstream Site’ Rule
described above, the states of Site 10006 & Site 10025 have been modified to degraded. This
reflects the fact that both of these downstream Sites are effectively ‘off-line’ because Site 10001
has failed, but they have suffered no actual failure themselves.

The blue arrow icon next to Site 10001 in the above display reports that one or more notifications
are present against this object. Using the UCA Notification Viewer, these notifications can be
examined, as shown below:

122

B 1P UCA Notifications Viewer
Notifications for 10001
Unique ID Message Satus FredPudeID | Creation Tme

Ste Problem Detected Acive 17 Pon Sep 24 11:51:59 85T 2007

2 DIVZ Addtional Notficabion Active 21 Mon Sep 24 11:51:59 857 2007 Ske 10001

Contributory Events

Unigus ID Base Class Unigqua Raf Timastano Add Taxt Severky Event Type Prob Cause
11 Ste 10001 2007-09-24 11:5.,. SkePower Fahre critical Equpmentilam PowerProbless
Affected objects

8ase Class Unique Ref

OadcatEqupment Skeo_10006-80-AIS-RX
EroagcanEqupment Ske_10006-5CAISR-1
Broadcastfqupment Ste_10006-8C-AIS-RX-2
Broadc astEquipment Ske_10025-8X-AlISRX
BroadcanEquipment Ste_10025-BC-AIS-RX-1
BroadCarEQupment Ske_10025-0CAISRX2
Ske 10006

Site 10025

Sympathetic Events : - 3
Urvque 10 Base Class Unique Ref Tmestamp Add Text Severky Evers Type Prob Couse

The notification created by the Rules in the correlation scenario described above has been selected
in this screenshot and as a result, the contributory events and affected objects are also displayed.

9.2.2 Correlation Scenario - DTV Service Impact

The DTV Network example provided with UCA includes a DTV Service Impact correlation
scenario that operates concurrently with (but independently from) the DTV Site Failure
correlation scenario.

The DTV Service Impact correlation scenario is required to detect when the Broadcast Equipment
at either end of a Baseband Link between two Sites has failed, thereby affecting the state of DTV
services broadcast from the subtending Site. In order to provide a more realistic example, the
DTV Network model allows for redundancy in transmitting and receiving equipment at each end
of the Baseband Link by modelling its endpoints as a redundant entity e.g. a Composite Receiver
is built from one or more child Receivers. The result is that failure of a Broadcast Equipment
endpoint only occurs when all of the child components have failed.

In the included example, the DTV Service Impact correlation scenario is triggered by the same
individual Receiver failure events that are regarded as sympathetic events by the DTV Site
Failure correlation scenario, however for the former they are regarded as contributory events.
This illustrates the fact that carefully designed concurrent scenarios can utilise the same events
for different purposes without conflict. Further, the DTV Service Impact correlation scenario
implementation is implemented in a location independent manner so that it can operate equally
well for transmitter and receiver failures.

The DTV Network example model before any correlation Rules have triggered is shown in the
following diagram, including the events attached to the Receiver objects.

123

Service
Sidonis_TV_Channell

Service
Sidonis_TV_Channel2

Service
Sidonis_TV_Channel3

Service
Sidonis_TV_Channel4

Child Group Child Group Child Group Child Group
Multiplex Multiplex Multiplex Multiplex
Site Multiplex
10001 Sidonis_TV_Site_10006_Site_10021
ChiId_Group Child Group
Site BasebandLink
A Y
Site Child Group .
-------- BasebandLink
10006 Broadcastfq Site_10006_Site_10025
ChiId_Group
Site Assoc Group
BroadcastEq
BroadcastEq /
Site10006TX
BroadcastEq
Site10025RX-1
Site | _____| Child Group Broadcasttq | _____| Child Group
10025 BroadcastEq | Site10025RX BroadcastEq

BroadcastEq
Site10025RX-2

Alarm

The first Rule to trigger in this correlation scenario detects failure of the composite Broadcast
Equipment at one end of the Baseband Link. Because 100% of the child Receivers has failed at
Site 10025, the action forces the Composite Receiver to fail by associating a synthetic failure
event. This is illustrated in the following DTV Network model diagram.

124

Service
Sidonis_TV_Channell

Service

Sidonis_TV_Channel2

Service
Sidonis_TV_Channel3

Service
Sidonis_TV_Channel4

Child Group

Child Group

Child Group

Child Group
Multiplex

Multiplex

Multiplex

Multiplex

T\

/

Site Multiplex
10001 Sidonis_TV_Site_10006_Site_10021
ChiId_Group Child Group
Site BasebandLink
A Y
Site Child Group .
-------- BasebandLink
10006 Broadcastfq Site_10006_Site_10025
ChiId_Group
Site Assoc Group
BroadcastEq
BroadcastEq i
Site10006TX 7
Site | _____| Child Group BroadcastEq
10025 BroadcastEq Site10025RX

Child Group
BroadcastEq

Synthetic
Alarm

- =

BroadcastEq
Site10025RX-1

BroadcastEq
Site10025RX-2

Alarm

Consideration of this scenario in fact shows to be an example of the Physical-Logical Vee design
pattern described earlier. Physical equipment failures, in this case Receivers and in turn their
containing Composite Receiver; cause the associate Baseband Link to fail. This i1s in turn
propagated up through the logical branch of the DTV Network Model to the DTV Services. This is

1llustrated in the following diagram.

125

Service Service Service Service
Sidonis_TV_Channell Sidonis_TV_Channel2 Sidonis_TV_Channel3 Sidonis_TV_Channel4

Synthetic Synthetic Synthetic Synthetic | .
Alarm Alarm Alarm Alarm _
Child Group Child Group Child Group Child Group
Multiplex Multiplex Multiplex Multiplex

Failed Count = 1 Failed Count = 1 Failed Count = 1 Failed Count = 1

Site Multiplex
10001 Sidonis_TV_Site_10006_Site_10025 Synthetic
Alarm
A

|
Child Group -
Site BasebandLink
A
Failed Count = 1
Site | | Child Group " Synthetic
10006 BroadcastEq, e
. A — ?
Site
Assoc Group
A BroadcastEq /

BroadcastEq /' | Failed Count = 1

Site10006-TX

BroadcastEq
. Site10025-RX-1
Site Child Group BroadcastEq Child Group

10025 BroadcastEq. Site10025-RX BroadcastEq.
BroadcastEq
Alarm -

Alarm

9.2.3 Correlation Scenario - DTV Maintenance

This scenario differs from the previous examples for a number of reasons:
e The purpose of each Rule is to retract components of the state mesh in the
normal state from the working memory associated with the DTV context.

e Each Rule possesses only teardown conditions and actions and operates at
priority 0, allowing higher priority Rules to evaluate normal state mesh
components before they are retracted.

o For syntactic reasons (a scenario must have at least one filter and map), this
scenario includes a ‘default’ filter and map. In practice, the conditions chosen for
each are unlikely to occur in practice and are simply chosen to provide a
‘placeholder’ filter and map chain. No alarm reports are intended to pass the
default filter and map chain.

126

Chapter 10 Alarm Interfaces

UCA offers a number of options to gather alarm reports, illustrated in the following diagram.

Alarm Report TCP/IP Data
Source System > Collector
Firewall
Web_
Alarm Report | TCP/IP Remote Services Data
Source System Collector [|T = P Collector
Firewall

Alarm Report Web Services Data

e . =<

If the alarm report source system is able to obtain TCP/IP connectivity to the platform on which
the UCA Data Collector executes, then alarm reports may be delivered directly via a socket
interface.

If the alarm report source system is remotely located from the UCA platform or a firewall exists
between the two systems, then the Remote Collector in combination with the Data Collector may
be used. The Remote Collector connects to the Data Collector using an XMLRPC Web Services
connection. The remote source then connects to the Remote Collector via a TCP/IP socket as
normal.

Alternatively, a direct XMLRPC Web Services connection may be opened by the source system to
the Data Collector.

10.1 Local Socket Interface

The Data Collector supports a TCP/IP socket interface and listens for incoming connections from
alarm report sources on a pre-defined port (by default 6666, but this may be configured in the
uca.properties file).

The Data Collector functions as a socket server and the remote system must be configured to
connect as a socket client. The remote system is responsible for establishing and maintaining the
connection with the Data Collector.

10.2 Web Service Interface

The Data Collector also supports a web service interface. One advantage of establishing a Web
Services connection is that it may more easily traverse a firewall. It also provides for the
possibility of gathering alarm report information across an intranet or even the Internet.

To maintain compatibility with an existing socket interface implementation, UCA provides a
Remote Collector that implements a TCP/IP socket to Web Service proxy adapter. If the Remote
Collector is executed on a platform accessible to the source system, it automatically establishes a

127

Web Services connection to the Data Collector. The source system then connects to the TCP/IP
socket interface provided by the Remote Collector as described in the previous section. Details of
configuring and launching the Remote Collector are provided in the API Related documentation.

10.3 Supported Event Messages

Many network management systems raise alarm reports with a given severity (eg. critical, major,
minor, ...). When the alarm condition ceases, the network management system then raises an
identical alarm report but with severity ‘cleared’ to indicate that the problem condition has
finished. However, some systems do not produce clear alarm reports in this way — they raise a
‘state change’ type of alarm report that simply contains the id of the original alarm report to be
cleared. UCA accommodates both types of alarm clearance mechanism by supporting two forms
of input message, relating to:

e Alarm creation reports (for all alarm severities including ‘cleared’).

e Alarm state change reports (where the new state is ‘terminated’).

For both cases, the input data received by UCA is in the form of an XML message stream. The
stream consists of a series of messages enclosed in XML <Event> </Event> tags. The
transmitted XML data stream must not contain any XML header information and since it is
streamed, it is not dynamically associated with any schema or DTD document. The tags within an
alarm report are based on the alarm fields defined in the I'TU-T X.733 specification. User-defined
tags, also called user-defined alarm fields, are also supported and are described in the subsequent
section.

10.3.1 User-defined event fields

User-defined event fields are defined in the file filterfield.properties and must have a
“user.” prefix.

For example, the user-defined field, resourceText, is defined as follows:

user.resourceText : String,conditionkey.string,valuekey.default, true

The property value in this case defines the type, condition key, value key and editable flag for the
user-defined type ‘resourceText’.

An example event message would contain the configured event field, thus:
<Event>

<resourceText>Further operational information.</resourceText>
</Event>

10.3.2 Event Message

Each event message consists of a stream of XML data formatted as follows. The order of the tags

within the <Event>...</Event> tags is unimportant:

<Event>
<eventRank></eventRank>
<systemClass></systemClass>
<systemInstance></systemInstance>
<eventId></eventId>
<dataType></dataType>
<originatingTime></originatingTime>
<moClass></moClass>
<moInstance></moInstance>
<severity></severity>
<alarmType></alarmType>
<probableCause></probableCause>
<specificProblems></specificProblems>
<additionalText></additionalText>
<additionalTextTagl></additionalTextTagl>
<additionalTextTag2></additionalTextTag2>
<additionalTextTag3></additionalTextTag3>

128

<additionalTextTag4></additionalTextTag4>

<additionalTextTag5></additionalTextTag5>

<additionalTextTag6></additionalTextTag6>
</Event>

NOTE: All tags are case-sensitive.

The tags have the following meaning:

Tag Name
eventRank

| Description of Tag Value

If this is a new alarm report from an external
source system, then set to “original”. If the
alarm report has resulted from an Action that
UCA executed e.g. raising a root cause alarm,
then the value is “master”. In all normal
circumstances, an external alarm system should
use “original’.

Mandatory

yes

systemClass

The generic type of the alarm source system, e.g.
“HP_nms” etc.

yes

systemInstance

A string that uniquely identifies the identity of
the alarm source system, e.g. “V5”.

yes

eventld

A string that uniquely identifies the alarm
report ID eg “2311”

yes

dataType

This should be set to “X.733”

yes

originatingTime

For alarm reports that are not of ‘cleared’
severity, this is the time the alarm report was
raised as reported by the source system. For
‘cleared’ severity alarm reports, the time that the
alarm report was cleared on the source system.
The format is “YYYY-MM-DD hh:mm:ss” where
DD = day in month (1-31)

MM = month in year (1-12)

YYYY = year eg. 2006

hh = hour in day (0- 23)

mm = minute in hour (0-59)

ss = second in minute (0-59).

yes

moClass

The value of the managed object class associated
with the alarm report e.g. “Site, or
“BroadCastEquipment”

yes

molnstance

The value of the managed object instance
associated with the alarm report e.g. “10006” or
“Site_10006-BX-AIS-RX-2”

yes

severity

One of the ITU-T X.733 severity enumerations,
namely: critical, major, minor, warning,
indeterminate or cleared

yes

alarmType

One of the ITU-T X.733 alarmType
enumerations, namely: communicationsAlarm,
equipmentAlarm, processingAlarm,
qualityOfServiceAlarm or environmentalAlarm

yes

probableCause

One of the ITU-T X.733 probableCause
enumerations, namely: adapterError,
applicationSubsystemFailure,
bandwidthReduced, callEstablishmentError,
communicationsProtocolError,
communicationsSubsystemFailure,
configurationOrCustomizationError, congestion,
corruptData, cpuCyclesLimitExceeded,

yes

129

Tag Name Description of Tag Value Mandatory
dataSetOrModemError, degradedSignal, dTE-
DCEInterfaceError, enclosureDoorOpen,
equipmentMalfunction, excessiveVibration,
fileError, fireDetected, floodDetected,
framingError,
heatingOrVentilationOrCoolingSystemProblem,
humidityUnacceptable, inputOutputDevice Error,
inputDeviceError, IANError, leakDetected,
localNodeTransmissionError, lossOfFrame,
lossOfSignal, materialSupplyExhausted,
multiplexerProblem, outOfMemory,
outputDeviceError, performanceDegraded,
powerProblem, pressureUnacceptable,
processorProblem, pumpFailure,
queueSizeExceeded, receiveFailure,
receiverFailure, remoteNodeTransmissionError,
resourceAtOrNearingCapacity,
responseTimeExcessive,
retransmissionRateExcessive, softwareError,
softwareProgramAbnormallyTerminated,
softwareProgramError, storageCapacityProblem,
temperatureUnacceptable, thresholdCrossed,
timingProblem, toxicLeakDetected,
transmitFailure, transmitterFailure,
underlyingResourceUnavailable or

versionMismatch

specificProblems A text string that further qualifies the alarm no
problem.

additionalText A text string that provides additional useful yes

information related to the alarm. All white space
and linefeed characters will be maintained. This
field normally contains the ‘main body’ or raw
text of the original alarm report raised by the
alarm source system.

additionalTextTagl | If used, these may be used to add any extra no
-6 information to qualify the alarm report.

Note:
e If any field contains an XML meta-character such as > or <then the
character or the whole field should be surrounded by <![CDATA/[and]]>
e No field should contain a value with single quotes i.e. a ‘ character.

The following is an example section of a data stream over the UCA input interface:
<Event>

</Event>

<Event>
<eventRank>original</eventRank>
<systemClass>HP nms</systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2005-06-10 12:16:32</originatingTime>
<moClass>Site</moClass>
<moInstance>10001</moInstance>
<severity>critical</severity>
<alarmType>EquipmentAlarm</alarmType>

130

<probableCause>PowerProblem</probableCause>
<additionalText>Site Power Failure</additionalText>

</Event><Event>

</Event>

10.3.3 Event State Change Messages

The system supports two different kinds of event state change message: terminate and
attributeValueChanged (AVC).
For a state change event, each XML message in the stream of data is formatted as follows. The
order of the tags within the <Event>...</Event> tags is unimportant:

<Event>

<eventRank></eventRank>
<systemClass></systemClass>
<systemInstance></systemInstance>
<eventId></eventId>
<dataType></dataType>
<originatingTime></originatingTime>
<updateState></updateState>

</Event>

NOTE: All tags are case-sensitive.
The tags have the following meaning:

Tag Name Description of Tag Value

eventRank

If this is a new alarm report from an external
source system, then set to “original”. If the
alarm report has resulted from an Action that
UCA executed e.g. raising a root cause alarm,
then the value is “master”. In all normal
circumstances, an external alarm system should
use “original”.

yes

Mandatory

systemClass

The generic type of the alarm source system, e.g.
“HP_nms” etc.

yes

systemInstance

A string that uniquely identifies the identity of
the alarm source system, e.g. “v1.0.1-02”.

yes

eventld

A string that uniquely identifies the alarm
report ID eg “2311”

yes

dataType

This should be set to “X.733”

yes

originatingTime

For alarm reports that are not of ‘cleared’
severity, this is the time the alarm report was
raised as reported by the source system. For
‘cleared’ severity alarm reports, the time that the
alarm report was cleared on the source system.
The format is “YYYY-MM-DD hh:mm:ss” where
DD = day in month (1-31)

MM = month in year (1-12)

YYYY = year eg. 2006

hh = hour in day (0- 23)

mm = minute in hour (0-59)

ss = second in minute (0-59).

yes

updateState

Either ‘terminated’ or ‘attributeValueChanged’

yes

The following is an example section of a data stream over the UCA input interface for a terminate

event:
<Event>

131

</Event>
<Event>
<eventRank>original</eventRank>
<systemClass> HP nms </systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2004-01-27 14:50:54</originatingTime>
<updateState>terminated</updateState>
</Event>
<Event>

</Event>

The following is an example section of a data stream over the UCA input interface for an

attributeValueChanged (AVC) event:
<Event>

</Event>
<Event>
<eventRank>original</eventRank>
<systemClass> HP nms </systemClass>
<systemInstance>V5</systemInstance>
<eventId>1003</eventId>
<dataType>X.733</dataType>
<originatingTime>2004-01-27 14:50:54</originatingTime>
<updateState>attributeValueChanged</updateState>
<severity>major</severity>
</Event>
<Event>

</Event>

10.3.3.1 Terminate messages

The eventld field is used to locate the existing event in the database and the

terminate event is reported to the associated Mesh Object or Notification.

10.3.3.2 AVC (Attribute Value Changed) messages

The eventld field is used to locate an existing event in the database and an update

event is reported to the associated Mesh Object or Notification.

The following fields are available for wupdate: severity, probableCause,
specificProblems, additionalText, additionalText1, additionalText2,
additionalText3, additionalText4, additionalText5, additionalText6 and any custom

fields.
The original field values for these fields are also retained in the database.

10.3.3.3 Auto-bypass filters and mappings

It is possible to configure the system such that the event state change messages
bypass the filters and mapping. This means that no filter or map is required to

enable state change messages.

This is useful when there are few event change state messages entering the system.
For high-volume scenarios, the bypass should be disabled so that unnecessary

events can be filtered. The default state is disabled.

132

To enable the filter and mapping bypass, please set the following property in
uca.properties:
automatic.update.handling : true

133

Chapter 11 Data and calculator objects

A data object is typically used to interrogate an external database and hold the returned raw data
in a list of pre-configured key/value pairs for further processing within the system. The key/value
pair will also have a type. For example, for a smart metering application we may want to store
meter readings using the key ‘meterReading’, the value read from the database and with type
‘long’ i.e. a 64-bit signed integer.

One data object is instantiated per affected object. The data object is created by a custom rule
trigger action.

The data object utilizes a calculator object (one per context) to perform processing on the raw
data.

Through configuration it is possible to expose derived fields to the rules engine so that rules can
interrogate the derived values and perform further actions.

A basic schematic is shown below:

Data Object / \\

Mesh Object Calculator

Timer

11.1 DATA OBJECTATTRIBUTES

A data object can be viewed in the working memory by double clicking on the data object instance,
as identified by its base class and unique reference. The data object attributes will be listed in the
dialog box and brief descriptions of each are listed below.

11.1.1 RAW DATA

This attribute consists of a list of key/value pairs which represent the raw data as populated from
the external database via a RemoteHandler call and call-back mechanism. The data keys are
defined in the Data Object configuration file.

11.1.2 DERIVED DATA

This attribute consists of a list of key/value pairs which represent the derived data as populated
by calculations performed on the raw data. The derived data keys are defined in the Data Object

134

configuration file.

11.1.3 LAST CHANGE REASON

This is an enumeration of one of the following values: initialising, data-available, derived-
dataavailable.

‘Initialising’ means that the data object has been instantiated but does not yet have any raw data.

‘Data-available’ means that the object has been filled with raw data.

‘Derived-data-available’ means that calculations have been performed on the raw data.

11.1.4 BASE CLASS

This field represents the base class of the data object.

11.1.5 UNIQUE REFERENCE

This field represents the unique reference of the data object.

11.1.6 TIMER STATE

The associated timer state: an enumeration of undefined, initialised, running, suspended,
expired,
completed.

A refresh rule will detect the ‘expired’ state i.e. the refresh countdown has reached zero.

11.1.7 TIMER STATE CHANGED

A flag indicating that the timer has changed state.

11.2 DATA OBJECT LIFECYCLE

A schematic of the data object lifecycle is shown below:

135

Rule trigger Configuration

External Rawdata
database Remote
Handler A
\ calculate
call ',
. Derived
Refresh tlmer\\-~
data

A data object has very distinct parts to its lifecycle: initialisation followed by a cycle of data
retrieval and derived data calculation/storage.

11.2.1 INITIALISE DATA OBJECT

11.2.1.1 Rule trigger action

The action ‘create data object’ must be inserted as a trigger action on a rule.

When the rule is actually constructed in the GUI, the type of the data object is specified. When
the rule is fired, the data type will be created for the associated Mesh Object.

If a data type already exists for the Mesh Object, the action will be ignored.

11.2.1.2 Data Object Configuration

The following file snippet shows an example data object configuration (for a fictional smart meter
data object):

<metaDataObject type="smartMeter">

<dataMappings>

<dataMapping from="meterValue" to="currentMeterValue"/>
</dataMappings>

<dataTuples>

<tuple name="meterValue" type="long" />

<tuple name="previousMeterValue" type="long" />

136

<tuple name="timestamp" type="long"/>

<tuple name="previousTimestamp" type="long"/>
</dataTuples>

<outputTuples>

<tuple name="usageChangePercent" type="double" />
</outputTuples>

<dataSource name="smartMetering" user="meterUser"
pass="meterPassword" connections="10" dbms="postgresql">
<driverClass>

org.postgresql.Driver

</driverClass>

<connectionUrl>
jdbe:postgresql://localhost/smartMetering
</connectionUrl>

</dataSource>

</metaDataObject>

11.2.1.2.1. dataMappings element

It is possible for a database field name to a stored under a different key name using the mappings
as defined in this XML section.

11.2.1.2.2. dataTuples element

The raw data keys as taken from the database are defined in this section of XML. Supported
types are:boolean, int, long, float, double, string.

11.2.1.2.3. outputTuples element

The derived data keys as populated by calculations are defined in this section of XML. Supported

types are: boolean, int, long, float, double, string.

11.2.1.2.4.dataSource element

The data source for the external database is defined in this section of XML.

Note - The configuration file can be found in properties/data-config.xml

11.2.1.3 Create Associated Timer

The final part of the data object initialisation is the creation of an associated timer to perform the
countdown for a refresh of the raw data. This is achieved using a rule to detect when the timer
state is expired. A trigger action is included in the rule to create a countdown timer to repeat
infinitely i.e. until the data object is removed.

The action details are as follows:

137

4% Modify Action |G

Owner vdata(_)]

Repeat Cycles (0 = Infinite) |0

Cycle Duration (seconds) 60

Synchronisation Boundary minute w
(V] Automatically start?

(/] Log Action To Database?

[OK J[Cancel

11.2.2 POPULATE RAW DATA

A rule must be created which contains the ‘refresh data object’ trigger action. This action will
detect an expired countdown timer and make a call to the remote handler to interrogate the
external database.

Please refer to the Remote Handler Specification for more information on this call.
The call-back mechanism from the RemoteHandler will result in the sending of a
DataRefreshEvent to the event manager, which will refresh the raw data stored in the

key/value pairs.

11.2.3 POPULATE DERIVED DATA

The derived data is populated by an action called from a rule. The action in question is the
‘perform calculation’ action which specifies the data object for which the calculation is to take
place, and also the desired calculation name.

Multiple calculation actions can exist per rule and calculation actions can be split across many
rules with different priorities. The only proviso is that the final calculation action must be
preceded by a ‘finish calculations’ action. This action informs the data object that it can validate
the derived data and be updated in the working memory.

11.2.4 DATA OBJECT ACTIONS

The following actions are available from the rule action dropdown list, under the category
‘measurement handling’:

create data object: This action is used to create a data object of the specified type, for a given
Mesh Object.

refresh data object: This action is used to refresh a data object of the specified type, for a given
Mesh Object.

138

remove data object :This action is used to remove a data object of the specified type, for a given

Mesh Object.

11.2.4.1 Example data object action

The screenshot below shows the create data object trigger action:

&% Add New Rule

52 |

Description test create data object

| priority) 012

| Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions |

@1-E5) state propagation
G- B script handling

G- B3 alarm handling

E}E} timer management
-2 analysis

&£ resiience

E—?fﬂ measurement handling
-..refresh data object
perform calculation

~

..report all calculations finished

-

T

&4 Add Trigger Action

))

[; :
Current Context EcurrentContext]
Target Context |targetContext {
. | 5
Object 0bj0 |
Data Type g—smartMetaer J
Log Action To Database?
F OK] [Cancel]

11.3 CALCULATOR OBJECT LIFECYCLE

A schematic of the calculator object lifecycle is shown below:

Data object

Configuration

Perform calculation

139

The calculator uses an expression evaluator (called ‘Janino’) to compile the configured expressions
into byte-code for evaluation at runtime. The expressions must conform to the correct syntax to
prevent compilation errors, which would be reported to the exception log at run-time.

A calculator object will perform calculations with the raw data supplied from data objects. The
derived data is then stored in the data object.

11.3.1 CALCULATOR CONFIGURATION

When the system first starts-up the calculator expressions are compiled and then held in memory
for use by the calculator object in each working memory.

The following file snippet shows an example calculator expression for calculating the percentage

change between two values:

<expression>

StateWise 2 User Guide Commercial In Confidence Page 138 of 300
Version 2.6

<name>Calculate Usage Change</name>
<expressionValue>
(meterValue/previousMeterValue)*100
</expressionValue>

<inputs>

<input>

<name>meterValue</name>
<type>long</type>

</input>

<input>
<name>previousMeterValue</name>
<type>long</type>

</input>

</inputs>

<output>
<name>usageChangePercent</name>
<type>double</type>

</output>

</expression>

Multiple expressions can be configured in this manner in the same configuration file

11.3.1.1 name element

This XML element is the unique name of the calculation, which is used in the rule dialog for
action ‘perform calculation’.

11.3.1.2 expressionValue element

This XML element is the actual (mathematical) expression to evaluate.

140

11.3.1.3 inputs element

This XML element describes the input value key-names to the expression.

11.3.1.4 output element

This XML element describes the output value key-name from the expression.

The configuration file can be found in properties/calculator-functions.xml

11.3.2 CALCULATOR ACTIONS

The following actions are available from the rule action dropdown list under the category
‘measurement handling’:

perform calculation: This action is used to perform a specified calculation on the data object for a
given Mesh Object.

report all calculationsfinished:This action is used to report that all the calculations have finished
on thedata object for a given Mesh Object. Each calculation requires a trigger action to actually
perform the calculation, followed by a ‘finish calculations’ action to inform the data object that all
the calculations have been completed. At this point, the data object will change its state to
indicate that the derived data is available for further processing.

11.3.2.1 Example calculation action

The action ‘perform calculation’ is shown below for the data type ‘smartMeter’ and calculation
name ‘Calculate Usage Change’:

,
£ Add New Rule =]

Description test create data object | priority 02

| Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions|

LTJ{":}‘ state propagation P 3 .

& § script handiing L=-J &% Add Trigger Action

&- 5 alarm handiing i (- —
@Q timer management 8 Current Context ;ggrr_ept(;gqte_x; | ‘

&89 analysis
B) resilience ;
=27 measurement handling Object \obij0 ‘

Target Context EiargetConhext

m

~(reate data object ——
-refresh data object | Data Type ‘smartMeter|

Calculation Name Calculate Usage Changeﬁ

[7] Log Action To Database? ‘_

:
Bl

T | ok || cancel |

141

11.4 EXAMPLE DATA OBJECT SCENARIO

The series of screenshots shown below show an example scenario in which a data object is created
(rule conditions 1), refreshed (rule conditions 2) and for which a calculation is performed (rule

conditions 3).

11.4.1 EXAMPLE RULE CONDITIONS FOR ‘CREATE DATA
OBJECT’

4, Add New Rule 5

Descr ipﬁonf test create data object . —

| priority 0}2]

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions |
Right-dlick tree nodes for options
B Rperform trigger actions when all the following conditions apply ..
- #8 an Object exists where:
. - ® base dass is "AlarmCollector”
- ‘- ® unique reference is ref”
Ele a Data Object (smartMeter) does not exist where:
. @ associated object base dlass is "AlarmCollector”
... @ associated object unique reference is stored in ref”

ok [cancel]

11.4.2 EXAMPLE RULE CONDITIONS FOR ‘REFRESH DATA
OBJECT’

4, Add New Rule S

LlZ)oascription%best refresh data object]

| priority 0}2]

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions |
Right-click tree nodes for options
D Perform trigger actions when all the following conditions apply ...
EJ e an Object exists where:
5 - @ base dass is "AlarmCollector”
- @ unlque reference is "ref”
& e
- @ associated object base dassis AlarmColIector'
® assodated object unique reference is stored in “ref”
‘.. @ countdown timer state is “expired”

Lok J[cancel

142

11.4.3 EXAMPLE RULE CONDITIONS FOR ‘PERFORM
CALCULATION’

#% Add New Rule I»! E - l
Descriptioni test perform calculation ‘ Priority;Ti-{Jl

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions|
Right-click tree nodes for options
el cr form trigaer actions when all the following conditions apply ...
- #8 an Object exists where:
. . ® base dass is "AlarmCollector”
: - ® unique reference is "ref"
EQ a Data Object (smartMeter) exists where:
. @ associated object base dass is "AlarmCollector”
® assodated object unique reference is stored in ref”
‘o @ last change reason is “"derivde-data-available™

Lok][cancel

143

Chapter 12 Statistics

Once enabled the statistics implementation within the system consists of two parts.

Firstly, a statistics data object (as configured in /properties/data-config.xml) is

instantiated and inserted into each working memory. The statistics data object derives from the
data object mechanism and thereby consists of both raw and derived data lists, which are updated
by the system at regular intervals.

Secondly, statistics are written to the database at a configurable time period that is set by the
platform.update.interval property in statewise.properties. The default is 30
seconds.

The statistics data object will automatically compute certain key averages for measuring system
throughput. These averages are available for interrogation by the rules engine, thus rules could
potentially be fired against the various output attributes of the data object. E.g.
averageFilterSec, averageActionSec and totalTimeMillis.

The statistics are reset back to zero values when the event database is cleared or when the
system 1is restarted.

The statistics capture can be turned on and off using the following property in file
statewise.properties:

statistics.recording : true

The system must be restarted after enabling or disabling the statistics recording flag. The rules
must also be re-compiled. This is necessary since the compilation process will insert (or remove)
extra statistics-oriented calls in the rules file (please see the section entitled 'How it works' for
more information).

12.1 STATISTICS OBJECT

The statistics object is a specialized type of data object. Since it uses the same mechanism as
other data objects, it consists of a set of raw data and a set of derived data. The raw data is
refreshed at a given interval. The derived data is automatically populated from the raw data.

The statistics data object exists as a global object and is therefore inserted into all the working
memory contexts. A timer is also created to refresh the data object at the desired interval. When
the timer expires, the system is interrogated to glean the set of statistics for the current interval.
This information is then held in the statistics data object as raw data and is also written to the
database.

12.1.1 VIEW IN WORKING MEMORY

The statistics data object can be viewed by opening the working memory viewer and drilling down
into the global objects and data objects tree structure. Click on the statistics object in the list on
the right hand side.

144

£ HP UCA System Manager (on i)
File view Help
‘ ﬁ Status %H Users _-_-_ |F Data-load |l '\ Diagnostics g‘c{" Maintenance

\\ Tools

£ HP UCA Working Memary Viewer

rules em

remove o Contextz and Object Types

. l'-:'h_iects & contexts
| global ohjects
- time objects

clear w

ystem ohjects|

statistics objects
= system key/value paiy

SDH_VF11

datahase notifications

=]

Operating. .. Operating .. Event Pro...

primary

Operating. ..

processing

£% WM Object Details

Last update type = peer status
Server identifier = A4

System operating mode = resilient

System operating role = primary

System operating state = in service

clear e

= mesh objects
L]

clear n

refresh

viewsers

view alll

~ ¢hild groups
~ assoclate groups
script objects

data ohjects

BESILIENCE

notifications

i~ mesh abjects

~ orphaned marke:

System
Resync

event buffering state = processing
cycle running = false

Local to peer link state = failed
Peer system operating role = unknown
Peer system operating state = unknown

Peer reaync cycle running = false
Carrent NMS heartbeat source = HPMAAAL].asiapacific.hpgcor

mmd mammmd T e e

L1} 2

view wor|

~ child groups

* associate groups

— script objects

Refresh Exit

The object details will show the current raw data set, derived data set and other associated data,
such as last change reason and timer state.

12.1.2 INHERITED DATA OBJECT ATTRIBUTES

As the statistics data object derives from the data object, it inherits the data object attributes, as
listed below:

12.1.2.1 LAST CHANGE REASON

This is an enumeration of one of the following values: initialising, data-available, derived-
dataavailable.

‘Initialising’ means that the data object has been instantiated but does not yet have any raw data.

‘Data-available’ means that the object has been filled with raw data. In the context of the
statistics
object, this means a refresh has taken place and the system has been interrogated for information

‘Derived-data-available’ means that calculations have been performed on the raw data.

12.1.2.2 BASE CLASS

The base class of the statistics object, default: Statistics_BaseClass

145

12.1.2.3 UNIQUE REFERENCE

The unique reference of the statistics object, default: Statistics_Ref

12.1.2.4 TIMER STATE

The associated timer state: an enumeration of undefined, initialised, running, suspended,
expired,

completed. The refresh rule detects the ‘expired’ state i.e. the refresh countdown has reached zero.

12.1.2.5 TIMER STATE CHANGED

A flag indicating that the timer has changed state.

12.1.3 REFRESHING THE STATISTICS OBJECT

A single rule is required in the rule-base to detect when the associated timer has expired in order
to refresh the statistics object. The rule must call the trigger statistics action ‘refresh statistics
data object’.

An example rule is shown below with the necessary conditions:

44 View / Modify Rule (oo

Description statistics refresh| | Prioritv:' 07

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions|
Right-click tree nodes for options
L‘_} Perform trigger actions when all the following conditions apply ...
= @ a Data Object {statistics) exists where:
.. @ countdown timer state is “expired”

| ok || cancel

=

Once the triggier action has fired, a DataRefreshEvent is sent into the systan, which results in
the update of the statistics object in all working memory contexts and the storage of all
information to the database.

12.1.4 RAW AND DERIVED DATA

146

A set of values are stored in the statistics data object concerning the various system counts, such
as pre-filter events, post-filter events, trigger/tear rule counts and trigger/tear action counts.

Also, cumulative time counters are enabled by using aspect-oriented code as point cuts into calls
to various methods. For example, in event filtering, by applying a point-cut to the applyFilters()
method both before and after, we can keep a track of the total cumulative time taken for filtering
events. From the cumulative time counter and the actual count i.e. post-filter count, we are able
to derive a simple measure of average time taken per filter.

For rule counting, we insert an extra method call into the rules file (to confirm this, please see the
*.drl in the rules subdirectory) and then derive an average time taken per filter.

12.2 STATISTICS OBJECT AND RULES

The output fields of the statistics data object are accessible to the rules in a similar manner to
other data objects. This means that it is eminently possible to add further rules to perform
actions when the output fields breach or fall below certain thresholds.

12.2.1 EXAMPLE: USING A STATISTICS OUTPUT FIELD IN A RULE

An example rule is shown below that will detect when the average filter count in seconds
breaches a certain value:

r =
44 Add New Rule ==
Descripﬁon‘test statisticsl | Priority] 0O =

Trigger Conditions | Trigger Actions | Teardown Conditions | Teardown Actions|
Right-click tree nodes for options
fi=

(o8 Perform trigger actions when all the following conditions apply ...
BEY: 0-tc Obiect Giststis) exsts where:
. @ averageFilterSecis "5"

L OK J[Cancel]

12.3 DATABASE FIELDS

The database fields are split logically into static and dynamic fields. The static fields are
populated once and once only at start-up and contain information such as total number of objects,
etc. The dynamic fields are populated according to the interval and contain information on the
run-time 1i.e. rules and action counts.

147

12.3.1 STATIC FIELDS

total_objects

the total object count after start-up

total_associate _groups

The total associate group count after start-up

total_child_groups

The total child group count after start-up

total_relatives_count

The total relatives count after start-up

stageltime_seconds

The total time (s) taken to complete stage one of
start-up i.e. object loading

stage2time_seconds

The total time (s) taken to complete stage two of
start-up i.e. linking objects

filetodb_write_seconds

The total time (s) taken to write the objects to
disk for parsing

timestamp

The timestamp at which the statistics were taken

end_build_mesh_time

The timestamp at which the mesh has been
completely built.

12.3.2 DYNAMIC FIELDS

timestamp

The timestamp at which the statistics were taken

total_dynamic_objects

the total number of dynamic objects (note -
dynamic objects are not currently removed, only
created)

prefilter_event_count

the number of events received by the filters

postfilter_event_count

the number of events passed by the filters

sample_period_seconds

the sample period (s) of the statistics snapshot

trig_rule_count

the number of trigger rules

tear_rule_count

the number of teardown rules

trig_action_count

the number of trigger actions

tear_action_count

the number of teardown actions

latest_cpu_average

the latest CPU average i.e. number of waiting
processes in the CPU (note - not operational
under Windows)

latest_diskl free percent

the percentage of disk1 that is free

latest_disk2_free percent

the percentage of disk2 that is free (if configured)

latest_db_used_percent

the percentage of database storage used

os_physical_memory_used_percent

the amount of operating system physical memory
used

0s_swap_memory_used_percent

the amount of operating system swap memory
used

system_jvm_heap_used_percent

the percentage of system JVM (i.e. rmihost) heap
memory used

system_jvm_nonheap_used percent

the percentage of system JVM (i.e. rmihost) non-

148

heap memory used

tomcat_jvm_heap_used_percent

the percentage of tomcat JVM heap memory used

tomcat_jvm_nonheap_used_percent

the percentage of tomcat JVM non-heap memory
used

cumulative_filter_millis

the cumulative time taken (ms) for filtering
events

cumulative_action_millis

the cumulative time taken (ms) for performing
actions

average_filter_sec

the average time (s) for an individual filter

average_action_sec

the average time (s) for an individual action

12.4 EXPORT DATA AND CHARTING

It is possible to export the database as a CSV file for further analysis in Microsoft Excel. In this
manner would be possible to chart information series such as:

* Heap usage over time
* CPU usage over time

+ Average filter (s) over time

+ Average action (s) over time

149

Chapter 13 Time Dependent Event

Correlation

UCA offers the following capabilities and features to enable the construction of time
dependent correlations:
e Time bounded event processing actions, offering comprehensive support for time
dependent correlations on event streams.

e Relative and absolute time comparison operators for evaluating the time
attributes model, alarm and correlation objects

e Independently controllable, countdown Timer objects (one per model or
correlation object)

In addition, UCA includes sophisticated time compression algorithms for providing rapid
resynchronization with event sources while maintaining the accuracy of both existing and
historical time-dependent correlations.

For correct operation of a resilient UCA configuration, it is important that the system time
clocks of both servers are closely aligned. For this reason, it is essential to make use of an
operating system time synchronization protocol e.g. NTP.

The following sections describe each of the time dependent correlation features. The
following sections describe each of the time dependent correlation features.

13.1 Relative and absolute time comparison

operators

UCA provides a comprehensive set of comparison operators to evaluate absolute date
and/or time (Date attributes) of model, alarm and correlation objects against the current
UCA ‘clock’ time (itself a Date) or relative to another date and/or time. Each use of a time
comparison operator is re-evaluated once a second until the object is retracted or the
condition is satisfied.

UCA ‘clock’ time is not the system hardware clock. In fact it is implemented as an event
driven software clock with a granularity of one second and is advanced by internal ‘tick’
messages generated by the system hardware clock. This implies that under circumstances,
the ‘clock’ time may lag behind actual time as measured by the system clock, in particular
where event buffering occurs. This does not affect the accuracy of the time dependent
correlations because they are driven by the UCA ‘clock’ and eventually each ‘tick’ message
will be processed allowing apparent and actual time to be re-aligned. At any time, the
‘clock’ time (referred to as ‘apparent’ time) and the actual time may be examined using the
Time object in the Working Memory Viewer.

It should also be noted that during resynchronization processes involving event replay in
‘compressed time’, the current UCA ‘clock’ time will be adjusted to an earlier time and then
continuously advanced by the system to establish historically accurate time dependent
correlations for the resynchronizing event source. During this process, all other time
dependent correlations for other event sources will be ‘frozen’ (to preserve their accuracy as
the UCA ‘clock’ is adjusted).

The following table lists the time comparison operators and illustrates their use with the
“Creation Time” attribute of a Notification although they may be used with any attribute of
the Date type. Where <Variable> is specified, this implies that a previous ‘stored in’
assignment operation has been carried out to initialise the variable with another Date
value or an integer offset value in seconds.

150

1s before [Creation Time] is before <Absolute Time>

is after [Creation Time] is after <Absolute Time>

plus offset is older than current time | [Creation Time] plus offset <x seconds> is older
than current time

plus offset is younger than current [Creation Time] plus offset <x seconds> is younger

time than current time

minus offset i1s older than current [Creation Time] minus offset <x seconds> is older

time than current time

minus offset is younger than current | [Creation Time] minus offset <x seconds> is younger

time than current time

is older than value in [Creation Time] is older than value in <Variable>

is younger than value in [Creation Time] is younger than value in
<Variable>

plus offset (in variable) is older than | [Creation Time] plus offset in <Variable> is older

current time than current time

plus offset (in variable) is younger [Creation Time] plus offset in <Variable> is younger

than current time than current time

minus offset (in variable) is older [Creation Time] minus offset in <Variable> is older

than current time than current time

minus offset (in variable) is younger | [Creation Time] minus offset in <Variable> is

than current time younger than current time

13.2 Countdown Timers

UCA supports the concept of a countdown Timer object that may be dynamically created
and attached to objects using rule actions. Each global (System), model (Mesh Object &
Child/AssociateGroups) and correlation (Notification, Script, Data & Calculation) object
may have a single Timer object attached to them. Note however that the System object
timer 1s reserved for use with the Resilience package and is therefore not normally
available for user-defined correlations.

Each Timer object operates with a granularity of one second and is driven by the UCA
‘clock’ with the implications described in the previous section.

Each model or correlation object is provided with two attributes that allow an associated
Timer to be used in conjunction with it:
e An enumerated current timer state (undefined means that the Timer has not
been created)

e A boolean timer update flag reporting if the last update applied to the object was
a timer state change.

A typical use is to construct a rule that waits for the Timer associated with an object to
adopt a particular state, although this must always be guarded with an additional test on
the timer update flag to prevent unwanted rule firings. The timer update flag is necessary
because any update to an object in a Working Memory context effectively refreshes all of
the values of that object. Correct use of the update flag allows a user to distinguish between
a timer state change and any other attribute change on that object.

Timers are created, maintained and destroyed by rule actions and their existence and
current state can be examined via the list maintained by the global time object visible in
the Working Memory Viewer. Timers consume system resources and should be used only
when necessary.

Timers have the following properties:

151

e They are driven by the UCA ‘clock’ with a granularity of one second and as a result
their first cycle may last between N-1 and N seconds (where N is the timer period).
Subsequent cycles will last N seconds.

e They are capable of operating in ‘one-shot’, counted (i.e. they time-out N times) or
infinitely repeating modes.

e They may be created and then started automatically or manually

e They may be suspended, resumed, stopped and re-initialised

e They can exist in each of the following states:

(@]

(@]

Undefined — a Timer has not been defined for the owning object

Initialised — a Timer has been defined but has not yet been started or has
been re-initialised

Running- a defined Timer has been started
Suspended — a previously running Timer has been temporarily suspended

Expired — a running Timer has reached the end of its current cycle and
timed-out or has been stopped

Completed — a one-shot or counted Timer has exhausted the number of
operating cycles or has been stopped

e Their start times may be aligned to the following time boundaries:

(@]

Unaligned — in fact aligned to the one second boundaries defined by the
UCA ‘clock’

Minute — aligned to minute boundaries, implying that the first cycle will be
truncated to incur a time-out at the next minute boundary

Hour - aligned to hour boundaries, implying that the first cycle will be
truncated to incur a time-out at the next hour boundary

Day - aligned to day boundaries, implying that the first cycle will be
truncated to incur a time-out at the next day boundary

A comprehensive description of the facilities offered by Timers is contained in the section
describing Time related actions later in this guide.

152

13.3 System Operating Modes

13.3.1 Standalone Mode

The following diagram illustrates UCA operating in a standalone configuration. Note that UCA
may be operated in standalone configuration with or without the resilience heartbeat generated
by the UCA Generic Collector. The current operating mode is set using the system.mode property
in the uca.properties file. Detailed descriptions of the Remote Handler and Generic Collector are
provided in the UCA Remote Handler Interface and Generic Collector Interface specifications

respectively. <

\
\
A,

Network Management
System Platform \
\
UCA |
é} (ﬁl e?c Heartbeat response +
ollector hormal & expedited outputs
Il
Heartbeat :
v ,
UCA System Platform Remote Platform
/
Remote Remote
Handler Handler
(Explicit (Explicit
Launch) Launch)
UCA Web Services T/

13.3.2 Resilient Local Mode

In resilience local mode the resilience rules are used to control the launching of the generic
collector and remote handler. The topology is similar to when running in standalone mode as
shown above. When the system is started the resilience rules will start the generic collector and
remote handler running on the local machine. The heartbeat response is used to determine
whether the system is running correctly from end-to-end and if necessary the generic collector
and remote handler can be restarted at any point if an error is detected.

13.3.3 Resilient Mode

The following diagram illustrates UCA operating in a resilient configuration. In this example,
NMS platform A is the primary and UCA platforms A & B form a resilient primary/secondary ‘hot
standby pair’. Remote Handlers used in a resilient configuration are normally run via Resilience
Package rule actions.

The Remote Handler running on the primary UCA machine is normally operated with outputs
enabled (allowing communication with the primary NMS), while that on the secondary is
normally operated with outputs disabled (although expedited alarms reporting for example local
platform problems may still be sent to the primary NMS). Remote Handlers running on both

153

primary and secondary UCA machines will normally be connected to the UCA Generic Collector
on the primary NMS platform, allowing each system to report an individual heartbeat response.

Primary Secondary
Network Managemett. Network Management
A System Platform |, Heartbeat response B System Platform
< \ + expedited outputs
-k
UCA Y .l UCA
Generic ! NN Generic
Collector | | AR Collector
1 N N
] Y
I AN
v Heartbeat) \
/
UCA A System Platforny .\ “UCA B System Platform
, N Heartbeat \
7’ \
_- response +
normal & Remote
Remote .
Handl expedited Handler
andler outputs (etserrael o
(started via started via
Rule Action) que
Action)
UCA Web Services UCA Web Services
Primary

Secondary

If a UCA failover occurs, the above configuration is modified to enable outputs from the Remote
Handler on the new primary UCA platform, as shown below.

154

Network Management
A System Platform

UCA
Generic
Collector

<4- -

~

=~
=<
~
~
~
~

Heartbeat

Heartbeat
response +
normal &
expedited
outputs

Secondary

Network Management
B System Platform

UCA
Generic
Collector

“UCA B System Platform
\

Remote
Handler
(started via
Rule Action)

v

UCA Web Services

Primary

If an NMS failover occurs, each UCA instance expects the new NMS primary system to start a
new instance of the UCA Generic Collector. Rules in the Resilience package automatically detect
the new heartbeat source and will issue instructions to the Remote Handler instance to close the
existing connection to the old Generic Collector and attach to the new Generic Collector.

155

Chapter 14 Resynchronization with

Event Sources

14.1 Event Resynchronization

In certain operating configurations, it is important for a UCA server to undergo a process of
resynchronization with one or more event sources e.g. an NMS. Resynchronization usually
involves retrieving copies of all outstanding events from a source and then replaying them
to re-establish the current event state. Depending on the type of correlation required,
resynchronization may involve additional processing to resolve differences between the
source and the prior event history stored in the UCA server Event database.

Typical scenarios where resynchronization may be required are:

e A UCA Primary or Standalone server is started for the first time. In this situation,
the server will have no prior event history and may need to resynchronize with
multiple external event sources. Depending on the type of correlation required, it
may be necessary to replay the resynchronization events in ‘compressed time’ to re-
establish and maintain the correct temporal correlations. ‘Compressed time’ event
replay is a technique whereby for a given event source, the UCA ‘clock’ is set back
to just before the first resynchronization event and then events in the
resynchronization stream are replayed as fast as possible (the UCA ‘clock’being
automatically advanced during this process). In this way, temporal correlations are
correctly handled without the delay involved in replaying events at their original
delivery times and the mechanism ensures that events from other sources and
associated correlations remain unaffected. Alternatively, ‘compressed time’ event
replay may be dispensed with in situations where strict accuracy of temporal
correlations is not required or a minor variation from expected behavior can be
tolerated on startup e.g. stream-based correlations.

e A UCA Secondary server (re)connects to a UCA Primary server in a hot standby
resilient configuration. In this situation, sophisticated inter-server
resynchronization with ‘compressed time’ event replay and ‘ID matching’ is
necessary to establish and maintain a common view of current correlations on both
servers. In essence, all of the existing event and correlation knowledge on the
Primary server is copied to the Secondary server and the resynchronization process
ensures (as far as possible) that both Primary and Secondary servers present the
same correlation views on completion. ‘ID matching’ is a technique employed to
ensure that the same correlation artifacts e.g. Notifications, have the same unique
identifiers on both servers. This is done in an attempt to make UCA failover
seamless with regard to the event sources. Once synchronized, both servers are
then driven independently by dual outputs from a single Generic Collector.

e When a UCA server (Primary, Secondary or Standalone) re-connects to an event
source, either following failure and re-establishment of a particular
communications link or restart of the event source system. Again, this process may
optionally involve ‘compressed time’ event replay to re-establish and maintain the
correct temporal correlations.

Resynchronization processing is handled automatically by built-in functionality in the UCA
servers although it is the integrators responsibility to ensure that a Generic Collector
specialization interfaces to and manages individual event sources and requests UCA to
deliver the required behaviour.

Where a hot-standby resilient configuration is required, an optional package of rules (the
Resilience Package) is required to control the special inter-server resynchronization
features. This package must be deployed and configured on both Primary and Secondary
UCA servers.

156

During resynchronization involving ‘compressed time’event replay, a UCA Primary or
Standalone server will adopt a policy of actively preventing certain Remote Handler
outputs (e.g. alarm raise requests, script executions) being generated by correlations
triggered by the replay of historical events which already existed in the UCA server Events
database. In contrast, previously unseen events delivered during resynchronization that
trigger new correlations will be allowed to generate such Remote Handler outputs. This
policy has been implemented in an attempt to prevent unwanted or ‘duplicate’ outputs
being generated during the process. In contrast, resynchronization of a Secondary UCA
server under any circumstances will not generate any outputs because they are globally
disabled at the Remote Handler level (provided the integrator has implemented the output
enable/disable call-outs)..

The following sections describe the resynchronization process for both Primary/Standalone
and Secondary servers.

14.2 Primary/Standalone Server Initial
Resynchronization

The following diagram illustrates two alternative configurations of the active components of
a Primary/Standalone UCA system:

Platform

NMS Specific Collector
UCA Generic Collector

UCA Platform

tableNMS Specific

Generic Collector

y \

Server UCA Server
\ Vi
tableUCA Remote UCA Remote Handler
NMS Remote Handler Specific Remote Handler

For the purposes of the following description, the exact operating configuration is not
important.

157

A UCA Primary (for Primary read Standalone if only one system is used) system initial
resynchronization involving ‘compressed time’ event replay is summarized in the following
sequence diagram:

I I
I |

=

r
Event Sogtce Evert Sourpe 2 l SoedfcColecor GeansCollacoy UCA Server rotetnd
|
| T | I
| | | | '03,1","((’))“(‘!‘,"1!.!:C"» |
| | I recuestRosyrc b
s OREsyneCychnSinn -
| | S — — | CYCLE START I I
-,IB(I
l l ‘ Secondary Resynch Sained delay ! N _ I
l l soocFinepecSine ' START(Clarss, Instance) | » I
] | >} "1 ‘ |
| Rl Rsmpyne | I L |
= ook -)
'l Replay metaages Raply massaces | Raghoy cronsages ,J‘ |
rs B | .
|
I I | I }
rl Firshad ;ll'u" 1) soncFlsyreFivish ..1 f INI':I*lfJ-'.n Instance} ,J | |
- 3 i .
I I I I ! | X
I I sy Sart | STARTIClass Instarce l ‘ l Primary-Secondary
» — 3. — | YOOl
1 I Rogquest Royyne . »‘1| ‘ : mdocked
- p— 1 | | -
Rasachions “‘: vk oX*‘ Replay mossages Ruplay mensages Foapary s sgues i o
| ‘M!"\’!‘:‘c;v . o E— >4 | l 4
Sowte 2 |
]) S jl Fabaheet rwplaying s eyt Firieh FINISHiClass, Instance))1| i : /’
U |
|
| | serdResyrcCycieFinmh | CYCLE FIMISH I {)/ l
I I P = gl s
| —7 | | | R |
Cals 7’
| ¥ STAR | 1 I I
| /
1 - I ! | |
| N compiatodResym complatdRinyrciRaie Class insznca) g
|
I

The following sequence of tasks is carried out on initial resynchronization of a Primary
system with one or more event sources:

e By default (configurable in uca.properties), the Event and Notification databases
are preserved on a system restart.

o A request is issued by the Primary’s Server via its Remote Handler and Generic
Collector specialization (i.e. Specific Collector in the above diagram) to begin
resynchronization with all available event sources (provided that a UCA
Primary-Secondary inter-server resynchronization is not already underway).
This request takes the form of a Java RMI function call [requestResync()] issued
from its Remote Handler REQUEST_RESYNC callout to its Generic Collector
ManagementIF. In the default Generic Collector implementation provided with
UCA, this call simply prints the request on the system console. It is the
responsibility of the integrator to provide a specific implementation (e.g. a
Specific Collector) that interfaces with the event source(s) and responds to this
call as required.

e For a Primary system (not Standalone), its Specific Collector must also execute a
Secondary Resynchronization delay on receipt of requestResync(), before
attempting to proceed with the source resynchronization process. Its purpose is
to provide a window in which the Primary system waits to determine if a
Secondary system has concurrently issued a higher priority inter-system
resynchronization request. This request (in the form of a Java RMI function call
[secondaryResyncStarted()] is sent from the Secondary’s Remote Handler
SECONDARY_RESYNC_STARTED callout to the Primary’s Generic Collector
ManagementlIF). If such a request is received, it must be processed ahead of the
outstanding source resynchronization request as described in the following

158

section. Assuming that such a request has not been received during the delay
period, the Primary’s Specific Collector is free to proceed with a source
resynchronization (the Secondary system is then actively prevented from issuing
an inter-system resynchronization request wuntil the complete source
resynchronization cycle is completed).

The Primary’s Specific Collector sends a CYCLE_START event to the Primary’s
Server with the following attributes:

o systemClass = “GenericCollector”
o systemInstance = “V1.0”

o eventRank = “resync”

o moClass = “System”

o molnstance = “CYCLE_START”

The CYCLE_START event is automatically consumed by the Primary’s Server
(no filters or maps are required) and causes it to begin a source
resynchronization cycle from one or more individual sources.

The P rimary’s Specific Collector will carry out in turn the following
resynchronization sequence involving one or more event sources:

o The Primary’s Specific Collector requests a pre-defined event source to
begin delivering a resynchronization stream of events.

o When the event stream is ready for delivery, the Primary’s Specific
Collector must send a START event to the Primary’s Server with the
following attributes:

= gystemClass = event source type name e.g. “NMS”

= gystemInstance = event source instance name e.g. “Source_1"
= eventRank = “resync”

= moClass = “System”

* molnstance = “START”

o The START event is automatically consumed by the Primary’s Server (no
filters or maps are required) and causes it to begin buffering any
subsequent resynchronization events received from the defined event
source in a special area of the Events database. ‘Live’ events received
from all other event sources will be buffered in a memory-resident events
buffer until the complete resynchronization operation is completed,
whereupon normal processing is resumed. For this reason, the memory
configuration of the Primary’s Server TomCat JVM (set in the
CATALINA_OPTS environment variable) must have been previously set
to allow sufficient heap memory resources to accommodate the largest
anticipated set of buffered ‘live’ events from all sources. Memory usage
during resynchronization testing may be monitored by examining the
Primary’s System object from the Working Memory Viewer and adjusted
as required.

o The Primary’s Specific Collector will then deliver the set of outstanding
(resynchronization) events from the defined event source to the server,
which in turn stores them in the Events database. Note that it is no
longer necessary for the Specific Collector to know which server to send
the events to; this is automatically handled by the underlying Generic
Collector implementation using its knowledge of the currently attached
server(s). As described above, ‘live’ events from other event sources will
be buffered in memory.

159

o

o

When the outstanding (resynchronization) event stream from the defined
event source is exhausted, the Primary’s Specific Collector must send a
FINISH event to the Primary’s Server with the following attributes:

= gsystemClass = event source type name

= gystemInstance = event source instance name
» eventRank = “resync”

= moClass = “System”

* molnstance = “FINISH”

The FINISH event is automatically consumed by the Primary’s Server
(no filters or maps are required) and causes it to construct a time ordered
‘replay’ list of events for the defined event source, including time advance
events. The ‘replay’ events list contains the following types of events:

= Time advance events

= Alarm raise & clear events, corresponding to historical raise and
clear events (from the defined event source) that existed in the
Events database prior to the resynchronization process

= Alarm raise events, corresponding to new raise events received in
the resynchronization stream (from the defined event source).

» Alarm wupdate events, derived from differences between
previously active historical events and matching but updated
raise events received in the resynchronization stream (both types
from the defined event source)

= Alarm clearance events, derived from the necessity to
automatically close previously active historical raise events that
were not present in the resynchronization stream (both types
from the defined event source)

The Primary’s Server locks the Timers associated with all existing
correlations (to prevent the ‘compressed time’ replay process from
inadvertently triggering temporal correlations associated with other
event sources). It then sets the UCA ‘clock’ to the second boundary before
the first replay event and initiates the ‘compressed time’ event replay
process, during which the contents of the ‘replay’ events list are delivered
as fast as possible for processing.

i

Each time a time advance event is encountered, the UCA ‘apparent time
is advanced by the specified number of 1 second steps and the
fireAllRules() on the Rules Engine method is called after each 1 second
step. In this way, time dependent correlations for the event source only
are correctly handled during the accelerated replay.

When the ‘replay’ events list is exhausted (and ‘apparent time’ has
advanced to the time at which the ‘compressed time’ event replay process
began), the Primary’s Server unlocks all previously locked Timers, ceases
to buffer live events and begins to process the contents of the live events
buffer. As this buffer itself includes time advance events, the ‘apparent
time’ at the end of the outstanding event replay process is gradually
advanced to match the ‘actual time’ until the system catches up with
reality!

Finally, the Primary’s Server reports defined source resynchronization
completion via its Remote Handler to its Specific Collector. This report
takes the form of a Java RMI function call [completedResync()] issued
from its Remote Handler callout to its Generic Collector ManagementIF.
In the default Generic Collector implementation provided with UCA, this

160

call simply prints the request on the system console. It is the
responsibility of the integrator to provide a specific implementation e.g.
in a Specific Collector, that recognizes that resynchronization with the
defined source is complete and allows it to continue with the next
available source.

The Primary’s Specific Collector repeats the above sequence for the
remaining event sources.

e The Primary’s Specific Collector sends a CYCLE_FINISH event to the Primary’s
Server with the following attributes:

o

o

o

@)

@)

systemClass = “GenericCollector”
systemInstance = “V1.0”
eventRank = “resync”

moClass = “System”

molnstance = “CYCLE_FINISH”

e The CYCLE_FINISH event is automatically consumed by the Primary’s Server
(no filters or maps are required) and causes it to complete a source
resynchronization cycle from one or more individual sources. From this point on,
a Secondary system may request an inter-system resynchronization.

e Finally, the UCA Primary system is now resynchronized with its event source(s)
and is processing events received in real-time. This is the normal steady state.

As stated previously, depending on the correlation requirements, the ‘time compressed’
event replay process may be ignored. This is simply achieved by not sending the START
and FINISH events described in the sequence above and is the responsibility of the
integrator to configure when building the Specific Collector. It is also then the
responsibility of the integrator to ensure that events are gathered from one or more
sources, time ordered and replayed as a composite sequence if required.

161

14.3 Primary/Secondary Inter-System
Resynchronization

The following diagram illustrates two alternative configurations of the active components of a
Primary and Secondary hot standby UCA systems:

UCA Platform

UCA Platform

Specific Collector

Generic Collector

y \

UCA Server
\

TimeRemote Handler

UCA Server
\

Specific Remote Handler

Remote Handler

Specific Remote Handler

NMS Platform

NMS Platform

ﬁ

Specific Collector

Generic Collector

ucC

\ Platform

UCA Platform

UCA Server

v

Remote Handler

\
UCA Server
A

Specific Remote Handler

Remote Handler

Specific Remote Handler

162

For the purposes of the following description, the exact operating configuration is not important.

Primary/Secondary inter-system resynchronization involving ‘compressed time’ event replay and
‘ID matching’ is summarized in the following sequence diagram:

\JCA Primary Server Generic Collector CA Secondary Server

UNKNOWN, OFFLINE, DISCARDING

PRIMARY, OFFLINE, DISCARDING

PRIMARY, IN_SERVICE, PROCESSING

HEARTBEAT HEARTBEAT
e S s S i o i o o o oo b o o oo =
Resynchronize with Event Source{s) STARTUP
1
'\
UNKNOWN, OFFLINE, DISCARDING
| HEARTBEAT HEARTBEAT I
SECONDARY, RESYNING, DISCARDING
RequestBlock |
1

SECONDARY, RESYNING, PENDING

BLOCK BLOCK |

>

PRIMARY, BLOCKED, BUFFERING

SECONDARY, BLOCKED, BUFFERING

Archive Event & Notification DBs

PRIMARY, BLOCKEDARCHIVED, BUFFERING

I Report Status = BLOCKEDARCHIVED

Get Current Events, Notifications & |1Ds

L v _]

Resume Processing

R, IS, S

PRIMARY, IN_SERVICE, PROCESSING

|
Build ‘Replay List" from retrieved Events

|
‘Compressed Time' Event Replay [All Event Sources}

SECONDARY, IN_SERVICE, PROCESSING

l
|
|
>
|
-
|
|
& 21
|
=
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The following sequence of tasks (controlled by the Resilience Package of rules) is carried out when
a Secondary UCA system attempts to resynchronize with a Primary UCA system:

Assuming that the Primary’s Generic Collector has been configured to deliver
HEARTBEAT messages to both Primary and Secondary Servers and that the
Primary system has already restarted and resynchronized with its event
source(s), then the Primary’s Server will be in the IN_SERVICE:PROCESSING
state, processing live events.

On startup of the Secondary’s Server (in the UNKNOWN role), it waits in the
OFFLINE:DISCARDING state to receive a HEARTBEAT message from the
Primary’s Generic Collector. The HEARTBEAT message informs the Secondary’s
Server that the Primary’s Server is in the Primary role. The Secondary’s Server
then adopts the Secondary role and enters the RESYNCING:DISCARDING
state, discarding any live events sent to it by the Primary’s Generic/Specific
Collector.

163

The Secondary’s Server issues a request to the Primary’s Generic Collector to
issue a BLOCK message. This request takes the form of a Java RMI function call
[requestBlock()] issued from the Secondary’s Remote Handler
REQUEST BLOCK callout to the Primary’s Generic Collector
ManagementIF.The purpose of the BLOCK message is to halt live event
processing in both the Primary and Secondary servers at exactly the same point
in their respective event streams. The Primary’s Generic Collector can guarantee
to issue the BLOCK message to both servers at this point because it is
responsible for duplication and delivery of each event. The BLOCK message has
the following attributes:

= gystemClass = “GenericCollector”
= gsystemInstance = “V1.0”
= eventRank = “resync”
= moClass = “System”
* molnstance = “BLOCK”
As a result of receiving the BLOCK message, the Primary’s Server will:

o Enter the BLOCKED:BUFFERING state and begin buffering live events
from all event sources in memory.

o Archive the Event & Notification databases to remove any information
that is no longer needed by active events or correlations.

o On completion of the archive process, enter the
BLOCKEDARCHIVED:BUFFERING state and report its new state to
the Secondary’s Server.

o Wait until informed by the Secondary’s Server that it can resume
processing of live events. While waiting, live events are buffered in
memory and for this reason, the memory configuration of the Primary’s
Server TomCat JVM (set in the CATALINA_OPTS environment
variable) must have been previously set to allow sufficient heap memory
resources to accommodate the largest anticipated set of buffered events.
Memory usage during inter-system resynchronization testing may be
monitored by examining the Primary’s System object from the Working
Memory Viewer and adjusted as required.

o Resume processing of buffered ‘live’ events (starting with those buffered
in memory) when instructed by the Secondary’s Server.

As a result of receiving the BLOCK message, the Secondary’s Server will:

o Enter the BLOCKED:BUFFERING state and wait for the Primary’s
Server to inform it that it has completed the archive process. Any ‘live’
events will be buffered in memory and for this reason, the memory
configuration of the Secondary’s Server TomCat JVM (set in the
CATALINA_OPTS environment variable) must have been previously set
to allow sufficient heap memory resources to accommodate the largest
anticipated set of buffered events. Memory usage during inter-system
resynchronization testing may be monitored by examining the
Secondary’s System object from the Working Memory Viewer and
adjusted as required.

o When instructed by the Primary’s Server that archiving is complete, it
will retrieve details of all current Events, Notifications and the current
values of all ID counters used on the Primary’s Server. The latter are
used to re-initialize the ID counters in the Secondary’s Server. It will
also retrieve the Primary Server’s ‘clock’ time and set the Secondary
Server’s ‘clock’ time to the same value. In order to prevent subsequent

164

drift between the Primary’s and Secondary’s Servers, it is essential to
configure a time synchronization protocol between them e.g. NTP.

o Build the ‘replay’ events list for all event sources and on completion,
instruct the Primary’s Server to re-commence live event processing.

o The Secondary’s Server will then commence ‘compressed time’ event
replay processing using the ‘replay’ events list created above. Note that
wherever possible, details of the equivalent existing Notifications
retrieved from the Primary’s Server will be used to re-construct the
equivalent Notifications on the Secondary’s Server, thus preserving the
correspondence of Notification IDs between the Servers.

o On completion of the ‘compressed time’ event replay processing, the
Secondary’s Server will adopt the IN_SERVICE:PROCESSING state and
begin processing ‘live’ events (starting with those buffered in memory).

14.4 Server Resynchronization Following
Connection Re-establishment

Server resynchronization following connection re-establishment and involving ‘compressed
time’ event replay is summarized in the following sequence diagram:

UCA Server Generic Collector Event Source #1
I I I
I | |
l I—\ Connection Restored I
- | |
l RESET {Event Source #1} |) l

Begin Resynci}

I I il
I < |
Begin{} |

L |)
l CYCLE_START | |
[\ START{Event Source #1} I l
I'< !\ nextEvent{} |
Event{Event Source #1} | |
| 2 Eventl) :

nextEvent

[\ Event{Event Source #1} I |
e [~ End(} |
l FINISH{Event Source #1} | |
I\ CYCLE_FINISH I |
I | |

The following sequence of tasks is carried out when a server attempts to resynchronize with an
event source following connection loss and re-establishment:
e Kither the event source notifies the Generic Collector specialization that
connectivity to the event source has been re-established or the Generic Collector
itself re-establishes connectivity to the event source.

e The Generic Collector specialization sends a RESET message to the server to
automatically generate clear events for all outstanding raise events in the Event

165

database previously received from the defined event source. The RESET
message has the following attributes:

= gystemClass = event source type name

= gystemInstance = event source instance name
= eventRank = “resync”

= moClass = “System”

* molnstance = “RESET”

e When the event stream is ready for delivery, processing proceeds as described
for the Primary/Standalone initial resynchronization scenario with the delivery
of a START message.

e Again and depending on the correlation requirements, the ‘time compressed’
event replay process may be ignored. This i1s simply achieved by not sending the
START and FINISH events described in the sequence above and is the
responsibility of the integrator to configure when building the Generic Collector
specialization.

In a UCA resilient configuration utilizing two servers operating in hot-standby, it will be
necessary for each server to undergo the resynchronization process described above following
connection re-establishment. This implies that the Generic Collector spec ialization is responsible
for instructing both servers to undergo resynchronization and for delivering the
START/Events/FINISH messages simultaneously to each server.

14.5 Replay Event List Construction

The following flow-chart summarises the algorithm used to construct the ‘Replay’ event list.

166

Get Historical Raise Events (open & closed) from EV_EVENT table

|

Insert equivalent Raise Events into EV_REPLAYEVENT table using
original attribute values, replay time = Creation TimeUCA

[
Get Historical Clear Events from EV_EVENT

[
Insert equivalent Clear Events into EV_REPLAYEVENT table using
current attribute values, replay time = Closure TimeUCA

[

Get Resync Raise Events from EV_RESYNCEVENT

Resync Raise Event already exists
in EV. REPLAYEVENT?

Build & insert new Raise
Event in EV_REPLAYEVENT,
replay time = Originating

Attributes identical?

Build & insert new Update
Event in EV_REPLAYEVENT,
replay time = Final Time +

1msNMS Platfq rm
/

<— Loop

Build & insert Clear Events into EV_REPLAYEVENT table for outstanding Historical Raise

Events that are NOT in Resync stream, replay time = Final Time + 2ms

Build & insert Time Advance Events from 1 second before first event to Final Time
(1 second before time when ‘Time Compressed’ event replay began) NMS

167

Chapter 15 Value Packs

15.1 Introduction

A value pack is a collection of information, such as rules, actions etc. that can be packaged up to
usefully support a generic capability. For example a value pack might generically address
problem identification and impact analysis for a telecoms SDH network, or a general purpose
power failure scenario within a digital TV broadcast network.

To be more specific, a value pack bundles the following information:

e Actions User defined actions can be included in a value pack. Once a
value pack is loaded, user actions will be available to all
running rules.

Meta-model Each value pack can have its own meta-model. A value pack
meta-model is merged into any currently deployed meta-models
and can have classes with an ‘External’ stereotype to link with
other value packs or deployed models.

Filters and Rules Each value pack can have its own ‘scenarios’ XML files that will
get merged and deployed into the system.

Scripts A value pack must supply any scripts that it runs locally.

Configuration A value pack can supply its own system properties that will be
available to all rules.

When UCA is started all previously activated value packs will be initialised in memory.
All system functions are in a single system value pack.

168

15.2 Description

15.2.1 Internal structure

A value pack is a directory with a known structure that has been put into the ‘valuepacks’
directory of the deployed UCA application.
The top level structure for a value pack is:
e actions a directory that contains the action classes
e configuration a directory that contains the value pack properties and any other
developer properties files

e models contains the meta model files.

e rules the scenarios XML files.

e scripts scripts that are run by the value pack rules

e vp-manifest.xml contains the value pack group, name, version and description

15.2.2 Actions

The actions directory can contain:
e The action code as one or more jar files [name].jar.
e The [name]_declarations.properties properties file.
e The [name]_classloader.properties properties file.

15.2.3 Configuration

The configuration directory will contain the system.properties file. This file contains a list of key
value pairs that will be loaded in to the system when the value pack is deployed. These values can
be used when defining rule conditions and actions. Three types of values are supported, Strings,
Integers and Booleans.

Note that Boolean values must be prefixed with ‘Boolean.’
between string values.

2

in order to differentiate

The following examples show how properties of different types can be defined:

I AM A BOOLEAN PROPERTY : Boolean.false
I AM AN INTEGER PROPERTY : 12345

I AM A STRING PROPERTY : helloworld
15.2.4 Models

The models directory will contain the meta-model files, these can be UCA XML or XMT files. All
models in this directory will be loaded.
e Multiple files in the ‘valuepacks/VPName/models/ directory will be loaded
e Meta-model files can be in either Argo XMI or UCA XML format (the former will be
converted to the latter)
e An external node in the meta-model must be prefixed by a namespace e.g.
com.name.product.vp.IPLink
e All top level nodes must have 'Model' as the parent

15.2.5 Rules

The rules directory will contain the scenarios XML files as exported by the Scenario Manager. All
XML files in the directory will be loaded.

VP rules can consist of new scenarios (which will be deployed as such) and also individual rules
(which will be added to the list).

169

15.2.6 Scripts

This contains scripts used in the ‘runScripts’ action.
Note that the 'valuepack' directory is used as the scripts base directory.

It is usual to include the value pack path and scripts directory for use in VP rules as a system

property. e.g example-1.0/scripts/ascript. This prevents any hard-coding of script paths in rules.

15.2.7 VP Manifest

The vp-manifest.xml file contains information about the value pack such as name, group and
version. A manifest file must be included into the value pack directory structure. An example is

given below:

<?xml version="1.0" encoding="UTF-8"?>

<valuepack vp-format-version="1.0">
<group>com.HP</group>
<name>test</name>
<version>1.0</version>
<description>A test demonstration value pack.</description>
<priority>10</priority>
<dependencies>

<dependency>another.vp.group.anothervp</dependency>

</dependencies>

</valuepack>

The following table explains the purpose of the different tags used in the manifest file:

Tag
<valuepack vp-
format-
version="1.0">

Purpose
Parent of all tags that describe the value
pack.

Optional/Mandatory
Mandatory

<group>

Multiple Value Packs can be loaded onto
the system, each with its own model,
rules and actions, etc... To ensure the
names for elements in one value pack do
not clash with the names from another
1.e. two models containing the class
“Network Element”, each VP is ‘name
spaced’. All the elements of a VP are
prefixed with this name space. The
group appended with the name of the
value pack forms the VP “name space”,
e.g. in example above the name space is
“com.sidonis.test”. The VP developer
must choose a group name that, in
combination with the VP name, uniquely
identifies this value pack.

Mandatory

<name>

Logical name of this value pack.

Mandatory

<version>

Version of this value pack.

Mandatory

<description>

A description of the purpose of the value
pack. This information is presented to
help the user understand deployed value
packs.

Mandatory

<priority>

Controls the ordered that value packs
that do not define dependencies are
loaded. O is the highest priority and is
reserved for the system value pack, all
other value packs must define a higher
value for their priority.

Mandatory

170

Tag \
<dependencies>

Purpose

Contains for a list of all Value packs on
which this VP is dependant. The
system will check and only deploy a
value pack if these dependencies are
already deployed. If a class in a value
pack’s model is defined as external this
will create a dependency on the value
pack that realizes that class. Another
example of a value pack dependency is
a Value Pack that contains rules that
use the actions provided by another VP.
If any dependency is not satisfied then
deployment will fail.

If the DEPLOY file is used, see 15.4.4,
then the system will automatically
deploy, if not already deployed and
available, any value packs defined in
the dependencies.

Optional/Mandatory

Optional

<dependency>

The full ‘name space’ of another Value
pack that must be deployed on the
system before this value pack can be
deployed.

Optional

171

15.3 Value pack Lifecycle

The VP lifecycle is shown below:

VP unzipped to
valuepacks/

Auto-deploy | cold-deploy | hot-deploy

DEPLOY

DataloadiMesh update———my

ACTIVE le—Initial dataload

Autc-undeploy | cold-undeploy | hot-undeploy

INACTIVE

The VP moves from a ‘deploy’ state to an ‘active’ state through the process of auto-deploy, cold-
deploy or hot-deploy. Once the database tables have been updated, the active VP will always be
activated by the system on start-up. In the case of hot-deployment, the VP will be automatically
activated dynamically.

An active VP may then be deactivated through a process of auto-deploy, cold-deploy or hot-
undeploy. The database tables will be removed but the VP files remain on the file system.

15.3.1 Value Pack Deployment process

Value pack ‘deployment’ can be divided into three distinct phases: deployment, initialisation and
activation.

In the deployment phase the database entries are written. For multiple deployments, the VPs are
deployed in priority order (O=highest priority, 20=lowest priority)

In the initialisation phase the rules are compiled and merged with the current rulebase.

In the activation phase all value pack components are loaded into memory. The mesh will not be
updated with the inventory for a VP until the inventory is loaded and a mesh update event is
fired.

172

tart-up
(hot degploy

multiple

Hot-deploy single Cold-deploy single

Metamodel
Rules DEPLOY p—e———\WRITE.

System Properties

Actions Compile/merge
Metamode! INITIALISE > Sy
TOMCAT VM
ActivationEvent
Stop event
processing TOPOLOGY SERVER VM

Actions

Metamodel | 4omnatE
Rules

System Properties

v
Resume avent
processing

15.3.2 Start up procedure

When the system starts-up, the currently active VPs are loaded before the deployment of any new

VPs.
The diagram below outlines the start-up process:

173

Start-up:
Active VPs

n
v
Actions
Metamadel INITIALISE
TOMCAT VM
ActivationEvent
Stop event
Processing TOPOLOGY SERVER VM
Acticns
Metamodel | acqiaTE » [Mesh
Rules
System Properties

A

Resume event
processing

The mesh is updated with the inventory currently in the database for each VP. Please note that
only the currently activated VPs will be data loaded.

VPs that are cold-deployed can have inventory added before a system start-up to allow them to be
data-loaded in this manner.

VPs that are hot-deployed will not be data-loaded and will require an inventory load and mesh
update event.

15.3.3 Inventory and Mesh Update Events

The inventory manager can be used to add inventory for the classes contained in the VP. This is
useful for newly hot-deployed VPs which will not have been data loaded.

See the section on data-loading via the System Manager (and / or the inventory_manager Python
script documentation for further information on how to data-load inventory.

After the database has been populated, a mesh update (scheduled or otherwise) will load the
newly loaded inventory in the mesh.

15.4 Deploying a value pack

Value packs are not deployed by default and must be deployed and un-deployed with the scripts
provided on a running instance of the application.

Deploying and un-deploying a value pack must be done on each machine separately within a
resilient pair. For both deploy and undeploy the UCA instance must be running and started.

174

15.4.1 How to Deploy

Deploying a value pack involves two steps:
a. Copying the value pack zip file to the server and unzipping it into the vp/ directory.

b. Using the bin/vp-deployer.sh script.

Usage: vp-deploy.sh command [path] user password

command list | hot-deploy | cold-deploy | hot-undeploy | cold-

undeploy (note - only use hot-* when the system is
running)
path relative path of the value pack in the 'valuepacks'

subdirectory [only for deploy/undeploy]
username the UCA username e.g. system
password the UCA password e.g. system
options preserve-inventory (use on hot-deploy/hot-undeploy only)

force (use on hot- or cold-deploy/undeploy)
no-resync (use on hot-deploy/undeploy)

Note — the path will usually be the name and version of the valuepack i.e. example-1.0

Hot deploy
The hot-deploy command will deploy a value pack into a running system. Any deployment errors
will be output to the console. If the value pack 1s already installed, the user will be informed.
e The only VP that should be at priority 0 is the System value pack
e If the manifest is incorrect for any of the VPs to be deployed, the entire process will
be aborted
e The VP deployment script will only work on 'localhost' i.e. you must use it on the
UCA server only

Cold deploy
The cold-deploy command will deploy a value pack on a system on which only the manager server
1s running.

15.4.2 How to Un-deploy

To un-deploy a value pack again use the bin/vp-deployer.sh script. This will remove all the
components of the value pack from the instance.

hot-undeploy
The hot-deploy command will un-deploy a value pack from a running system. Any un-deployment
errors will be output to the console. If the value pack is not installed, the user will be informed.

cold-undeploy
The cold-undeploy command will un-deploy a value pack from a system on which only the
manager server is running.

Note — I the case you undeploy and then re-deploy the same valuepack and you want to preserve
the instances corresponding to the valuepack model; you have to use the ‘preserve-inventory’
option. By using this option the instance inventory will be kept unchanged.

175

15.4.3 Listing all active value packs

The ‘list’ command (on both a running and non-running system) will output a list of all active
value packs.

15.4.4 Deploying a value pack on start up

A value pack can be ‘auto’ deployed when UCA is started up by including the empty file
‘DEPLOY’ in the value pack directory. A value pack will only be deployed the first time this file is
detected since the file will be renamed to avoid repeated auto-deployment.

If the ‘DEPLOY file is detected for a for a value pack that is already deployed then the value pack
will be deactivated and then reactivated.

15.5 Supplied value packs

15.5.1 System actions

The system actions are deployed as a VP with the highest priority. This consists of a single jar file
containing the system actions and all configuration files.

15.5.2 Resilience

For resilient configurations licensed to use the ‘Resilience VP’, the Resilience VP will load all the
rules, actions, properties and scripts.
However, the following manual configuration changes will still be necessary:

e Set the correct values in configuration/system.properties for the host and peer before

loading the VP

e [Edit the uca.properties and set the 'system.mode' property before restarting

e [Edit the remotehandler.properties

e [Edit the genericcollector.properties

15.6 Assumptions

15.6.1 Namespace

e The namespace is defined as the concatenation of both the group and name
information held in the VP manifest file

e The namespace is not case-sensitive (i.e. it will always be converted to lower case
only) therefore com.name.vp.example and com.name.vp. EXAMPLE refer to the same
namespace

e Individual class names with a VP are case sensitive with respect to data-loading, so if
a class i1s delcared as TPLink’ in the namespace ‘com.company.product.vp’, then the
fully qualified name in the inventory would be com.company.product.vp.IPLink (i.e.
not the lower case variant)

e The namespace information is used when generating the inventory tables in the
database. For example com.name.vp.IPLink will create the database table
md_com_name_vp_iplink

Class Names
e (Class names must not contain the underscore character since this is the escaped class
name for VPs

Metamodel
e It is possible to start a system with no metamodels deployed since VPs can be hot
deployed into an ‘empty’ system. Therefore, if no metamodel has been loaded, a
default Model-only metamodel will be used by the system

176

15.7 Current Limitations

e There is currently no support for VP updates
¢ Oracle tables names longer than 30 chars are currently not supported
e Actions can be hot deployed but NOT hot undeployed or hot updated; UCA will need
to be restarted to pick-up the new changes. Currently, this leads to two issues:
- Undeploying and re-deploying a VP with actions will not pick-up the changes to
the actions until a restart
- Using an action in a non-VP rule and undeploying that VP will have the effect
that the action will continue to work until the system is restarted, at which point
it will fail to work.
e Rules will require re-compilation — you must change the import and re-compile
against the latest codebase

177

Chapter 16 Reference Information

16.1 Object Type Attributes
16.1.1 Object

Attribute Name Type ‘ Purpose

Base Class String Base class name selected from list of
classes defined in metamodel

Sub Class String Sub (derived) class name

Instance String Friendly name or alias

Unique String Unique identifier

Reference

State Enumeration Selected from list of possible states
(normal, degraded, failed)

Service State Enumeration Selected from list of possible service states
(in service, commissioning, out of service,
in maintenance)

Current Problem Integer Number of synthetic and external alarm

List Entry Count reports currently attached to this mesh

(Current Total object

Event Count)

Current Problem Enumeration Selected from a list of possible values

List Entry Count (increased, unchanged, decreased)

Changed

(Current Total

Event Count

Trend)

Total Synthetic Integer Number of synthetic alarm reports

(Degraded + currently attached to this mesh object

Failed) Event

Count

Total Synthetic Enumeration Selected from a list of possible values

(Degraded + (increased, unchanged, decreased)

Failed) Event

Count Changed

External Event Integer Number of external alarm reports

Count currently attached to this mesh object

External Event Enumeration Selected from a list of possible values

Count Changed (increased, unchanged, decreased)

Degraded Integer Number of synthetic alarm reports with

Synthetic Event degraded target state currently attached

Count to this mesh object

Degraded Enumeration Selected from a list of possible values

Synthetic Event (increased, unchanged, decreased)

Count Changed

Failed Synthetic Integer Number of synthetic alarm reports with

Event Count failed target state currently attached to
this mesh object

Failed Synthetic Enumeration Selected from a list of possible values

Event Count (increased, unchanged, decreased)

Changed

Parent Base String Parent mesh object base class name, as for

Class Base Class

Parent Sub Class String Parent mesh object sub (derived) class

name

178

Attribute Name

Type |

Purpose

Parent Instance String Parent mesh object friendly name or alias
Parent Unique String Parent mesh object unique identifier
Reference

Parent Mesh Mesh Object Parent mesh object reference e.g. obj0

Object

Grandparent String Grandparent mesh object base class name,

Base Class as for Base Class

Grandparent String Grandparent mesh object sub (derived)

Sub Class class name

Grandparent String Grandparent mesh object friendly name or

Instance alias

Grandparent String Grandparent mesh object unique identifier

Unique

Reference

Grandparent Mesh Object Grandparent mesh object reference e.g.

Mesh Object obj0

Importance Enumeration Chosen from a list of possible values
(unknown, gold, silver, bronze)

Parent State Enumeration Selected from list of possible states
(normal, degraded, failed)

Grandparent Enumeration Selected from list of possible states

State (normal, degraded, failed)

Timer State Enumeration Selected from a list of possible values
(undefined, initialised, running,
suspended, expired, completed)

Timer State Boolean Selected from true or false

Changed

Last Event Date Time at which the latest event mapped to

Creation Time this object was raised in UCA

Last Event Date Time at which the latest event mapped to

Originating this object was raised in the originating

Time system

Last Event MO String The name of the Managed Object in the

Instance originating system on which the latest
event mapped to this object was raised

Last Event MO String The unique identifier assigned by the

External Event originating system to the latest event

1D mapped to this object

Last Event String Contents of the Additional Text field of the

Additional Text latest alarm report

(Last Event

Additional Data)

Last Event String Contents of the Probable Cause field of the

Probable Cause latest alarm report

Last Event Enumeration Contents of the Severity field of the latest

Severity alarm report

Last Event Enumeration Contents of the Severity field of the

Previous previous alarm report

Severity

Update pending Integer The number of outstanding alarm update

count

events

179

16.1.2 Child Group

Attribute Name

Type |

Purpose

Base Class String Base class name of the mesh objects held
in this group, selected from list of classes
defined in metamodel

Parent Base String Parent mesh object base class name

Class selected from list of classes defined in
metamodel

Parent Sub Class String Parent mesh object sub (derived) class
name

Parent Instance String Parent mesh object friendly name or alias

Parent Unique String Parent mesh object unique identifier

Reference

Parent Mesh Mesh Object Parent mesh object reference

Object

Grandparent String Grandparent mesh object base class name

Base Class selected from list of classes defined in
metamodel

Grandparent Sub String Grandparent mesh object sub (derived)

Class class name

Grandparent String Grandparent mesh object friendly name or

Instance alias

Grandparent String Grandparent mesh object unique identifier

Unique

Reference

Grandparent Mesh Object Grandparent mesh object reference

Mesh Object

Member Count Integer Number of member mesh objects in group

Normal Count Integer Number of normal member mesh objects
in group

Normal Count Enumeration Selected from a list of possible values

Changed (increased, unchanged, decreased)

Normal Integer in Percentage of member mesh objects in

Percentage range 0 — group that are normal

100%

Normal Enumeration Selected from a list of possible values

Percentage (increased, unchanged, decreased)

Changed

Degraded Count Integer Number of degraded member mesh objects
in group

Degraded Count Enumeration Selected from a list of possible values

Changed (increased, unchanged, decreased)

Degraded Integer in Percentage of member mesh objects in

Percentage range 0 — group that are degraded

100%

Degraded Enumeration Selected from a list of possible values

Percentage (increased, unchanged, decreased)

Changed

Failed Count Integer Number of failed member mesh objects in
group

Failed Count Enumeration Selected from a list of possible values

Changed (increased, unchanged, decreased)

Failed Integer in Percentage of member mesh objects in

Percentage range 0 — group that are failed

100%

180

Attribute Name

Type |

Purpose

Failed Enumeration Selected from a list of possible values

Percentage (increased, unchanged, decreased)

Changed

List Of Children Child Group Reference to Child Group

External Event Integer Number of external (non-synthetic) events

Count on members of this group

Synthetic Event Integer Number of synthetic (non-external) events

Count on members of this group

Total (External Integer Number of synthetic & external events on

& Synthetic) members of this group

Event Count

Timer State Enumeration Selected from a list of possible values
(undefined, initialised, running,
suspended, expired, completed)

Timer State Boolean Selected from true or false

Changed

181

16.1.3 Associate Group

Attribute Name \ Type \

Purpose

Base Class String Base class name of the mesh objects held
in this group, selected from list of classes
defined in metamodel

Parent Base String Parent mesh object base class name

Class selected from list of classes defined in
metamodel

Parent Sub String Parent mesh object sub (derived) class

Class name

Parent Instance String Parent mesh object friendly name or
alias

Parent Unique String Parent mesh object unique identifier

Reference

Parent Mesh Mesh Object Parent mesh object reference

Object

Grandparent String Grandparent mesh object base class

Base Class name selected from list of classes defined
in metamodel

Grandparent String Grandparent mesh object sub (derived)

Sub Class class name

Grandparent String Grandparent mesh object friendly name

Instance or alias

Grandparent String Grandparent mesh object unique

Unique identifier

Reference

Grandparent Mesh Object Grandparent mesh object reference

Mesh Object

Member Count Integer Number of member mesh objects in group

Normal Count Integer Number of normal member mesh objects
in group

Normal Count Enumeration Selected from a list of possible values

Changed (increased, unchanged, decreased)

Normal Integer in Percentage of member mesh objects in

Percentage range 0 —100% group that are normal

Normal Enumeration Selected from a list of possible values

Percentage (increased, unchanged, decreased)

Changed

Degraded Count Integer Number of degraded member mesh
objects in group

Degraded Count Enumeration Selected from a list of possible values

Changed (increased, unchanged, decreased)

Degraded Integer in Percentage of member mesh objects in

Percentage range 0 —100% group that are degraded

Degraded Enumeration Selected from a list of possible values

Percentage (increased, unchanged, decreased)

Changed

Failed Count Integer Number of failed member mesh objects in
group

Failed Count Enumeration Selected from a list of possible values

Changed (increased, unchanged, decreased)

Failed Integer in Percentage of member mesh objects in

Percentage range 0 —100% group that are failed

182

Attribute Name \ Type \

Purpose

Failed Enumeration Selected from a list of possible values

Percentage (increased, unchanged, decreased)

Changed

Hops Integer Number of ‘hops’ to propagate state
changes to peers

List Of Associate Reference to Associate Group

Associates Group

Timer State Enumeration Selected from a list of possible values
(undefined, initialised, running,
suspended, expired, completed)

Timer State Boolean Selected from true or false

Changed

183

16.1.4 Notification

Attribute Name \ Type Purpose

Notification Enumeration Selected from list of possible types(primary,

Type marker, problem report, service impact,
root cause)

Notification Integer Severity or Importance of the notification,

Rank in range 1 to 10 (1 = highest)

Base Class String Base class name of mesh object that
Notification is owned by, selected from list
of classes defined in metamodel

Unique String Unique identifier of mesh object that

Reference Notification is owned by

Context Name String Name of the ‘target’ context in which this
Notification may also be inserted

Originating String Base class name of mesh object that

Base Class Notification originates from (same as Base
Class if this is a primary Notification),
selected from list of classes defined in
metamodel

Originating String Unique identifier of originating mesh object

Unique

Reference

Originating String Name of the context in which this

Context Name Notification is inserted

Notification ID Integer Unique numerical identifier (-1 if marker
Notification)

Notification Enumeration Selected from list of possible states (not

Master Alarm created, pending, present, terminated) —

Status reports existence or otherwise of master
alarm report from NMS

Associated String Unique identifier of an associated Trouble

Trouble Ticket Ticket (empty if none present)

1D

Associated Enumeration Selected from list of possible states (not

Trouble Ticket created, pending, present, closed)

Status

Associated Enumeration Selected from list of possible visibilities

Trouble (unknown, visible, hidden)

Visibility

Associated Boolean Selected from true or false

Trouble Ticket

State Changed

Notification Boolean Indicates whether attached alarm reports

Alarms have been demoted under master alarm

Demoted report in NMS

Administrative Integer Selected from list of possible states (active,

State locked, no action)

Event List Size Integer Current alarm report list size of mesh
object that Notification is attached to

Original Integer Previous alarm report list size of mesh

Problem List object that Notification is attached to

Size

Build Time Date Time that Notification object was created

Current Time Date The current UCA system time

Attribute Name \ Type Purpose

Notification Integer Unique numerical identifier (Notification

Owner ID ID of primary Notification if this is a
marker Notification, otherwise identical to
Notification ID)

Notification Boolean Indicates if Base Class and Originating

Common Base Base Class fields are identical (do not rely

Classes on this as a test for a primary Notification)

Notification Boolean Indicates if Unique Reference and

Common Originating Unique Reference fields are

Unique identical (if true, then this is a primary

References Notification)

Notification Boolean Indicates if Context Name and Originating

Common Context Name are identical

Context Names

Timer State Enumeration Selected from a list of possible values
(undefined, initialised, running,
suspended, expired, completed)

Timer State Boolean Selected from true or false

Changed

Notification Date Time that the Notification object was

Creation Time created

Notification Date Time that the Notification object was

Locked Time administratively locked

Notification String Message associated with Notification

Message

185

16.1.5 Script
Attribute Name \ Type \ Purpose

Changed

Script Name String Name of script file to execute

Script Owner String Base class name of mesh object that

Base Class originated this Script selected from list of
classes defined in metamodel

Script Owner String Unique identifier of mesh object that

Unique originated this Script

Reference

Script State Enumeration Selected from list of possible states
(initialising, running, finished)

Script Status Enumeration | Selected from list of possible status (normal,
error)

Script Exit Integer Script return code

Code

Script Output String Latest Script stdout text

Script Error String Latest Script stderr text

Timer State Enumeration Selected from a list of possible values
(undefined, initialised, running, suspended,
expired, completed)

Timer State Boolean Selected from true or false

186

16.1.6 System

Attribute Name Type .~ Purpose
Platform Integer in UCA server platform average CPU load
Average CPU range 0 —

100%
Platform Disk Integer in UCA server platform disk #1 free space
#1 Free Space range 0 —

100%
Platform Disk Integer in UCA server platform disk #2 free space
#2 Free Space range 0 —

100%
Platform Integer in UCA server platform database tablespace
Database range 0 — used
Percentage 100%
Tablespace
Used
Platform OS Integer in UCA server platform physical memory used
Physical range 0 —
Memory Used 100%
Platform OS Integer in UCA server platform swap memory used
Swap Memory range 0 —
Used 100%
System JVM Integer in UCA system JVM heap memory used
Heap Memory range 0 —
Used 100%
System JVM Integer in UCA system JVM non-heap memory used
Non-Heap range 0 —
Memory Used 100%
TomCat JVM Integer in UCA TomCat JVM heap memory used
Heap Memory range 0 —
Used 100%
TomCat JVM Integer in UCA TomCat JVM non-heap memory used
Non-Heap range 0 —
Memory Used 100%
Latest String UCA system latest Information exception
Information text
Exception Text
Latest Warning | String UCA system latest Warning exception text
Exception Text
Latest Non- String UCA system latest Non-Recoverable
Recoverable exception text
Exception Text
Latest Fatal String UCA system latest Fatal exception text
Exception Text
Server Identfier | String Either “A” or “B”
Server Enumeration Selected from a list of possible values
Operating (standalone, resilient)
Mode
Server Resync Boolean Selected from true or false
Cycle Running
Server Enumeration Selected from a list of possible values
Operating Role (singleton, primary, secondary, unknown)
Server Enumeration Selected from a list of possible values
Operating (offline, in service, archiving, updating,
State resyncing, blocked, blocked and archived,

closed down, unknown)

187

Attribute Name Type \

Purpose

Server Event Enumeration Selected from a list of possible values

Processing (discarding, pending, buffering, gathering,

Mode processing)

Peer Server Boolean Selected from true or false

Resync Cycle

Running

Server Event Enumeration Selected from a list of possible values

Activity (normal, missing, unknown)

Local (this) Enumeration Selected from a list of possible values

Server to Peer (normal, timeout, failed, bad arguments,

Server Link unknown)

State

Peer (Server) Enumeration | Selected from a list of possible values

Operating Role (singleton, primary, secondary, unknown)

Peer Server Enumeration Selected from a list of possible values

Operating (offline, in service, archiving, updating,

State resyncing, blocked, blocked and archived,
closed down, unknown)

Current NMS String DNS Name or IP Address of current NMS

Heartbeat Heartbeat Source (Platform on which

Source Generic Collector is running)

Previous NMS String DNS Name or IP Address of previous NMS

Heartbeat Heartbeat Source (Platform on which

Source Generic Collector is running)

Current & Boolean Selected from true or false

Previous

Heartbeat

Sources Are

Same

Heartbeat Boolean Selected from true or false

From Generic

Collector (on

NMS) Late

State of Link Enumeration Selected from a list of possible values

between (normal, failed, unknown)

Generic

Collector (on

NMS) and

Local (this)

Server

State of Link Enumeration Selected from a list of possible values

between (normal, failed, unknown)

Generic

Collector (on

NMS) and Peer

Server

Local (this) Enumeration | Selected from a list of possible values

Server Role
reported by
Generic
Collector (on
NMS)

(singleton, primary, secondary, unknown)

Attribute Name Type \

Purpose

Peer Server Enumeration Selected from a list of possible values

Role reported (singleton, primary, secondary, unknown)

by Generic

Collector (on

NMS)

Older Than Boolean Selected from true or false if System Time of

Peer Local (this) Server is older than System
Time of Peer Server

Timer State Enumeration Selected from a list of possible values
(undefined, initialised, running, suspended,
expired, completed)

Last Update Enumeration Selected from a list of possible values

Type (unknown, system status, peer status, timer

status, event activity status, heartbeat
status, platform attributes, information
exception, warning exception, non-
recoverable exception, fatal exception)..

189

The 'Last Update Type’ attribute is an indicator that allows the user to identify which sub-group
of attributes in the System object were last updated. The following table lists the possible values
of the ‘Last Update Type’ indicator and the associated attributes that may have been updated:

Last Update Type
Indicator
system status

Attributes Updated

Server Operating Role

Server Operating State
Server Event Processing Mode
Server Resync Cycle Running

peer status

Local (this) Server to Peer Server Link State
Peer Server Operating Role

Peer Server Operating State

Older Than Peer

Peer Server Resync Cycle Running

Timer status

Timer State

event activity status

Server Event Activity

heartbeat status

Current NMS Heartbeat Source

Previous NMS Heartbeat Source

Current & Previous Heartbeat Sources Are Same
Heartbeat From Generic Collector (on NMS) Late

State of Link between Generic Collector (on NMS) and Local
(this) Server

State of Link between Generic Collector (on NMS) and Peer
Server

Local (this) Server Role reported by Generic Collector (on
NMS)

Peer Server Role reported by Generic Collector (on NMS)

platform attributes

Platform Average CPU

Platform Disk #1 Free Space

Platform Disk #2 Free Space

Platform Database Tablespace Used
Platform Physical Memory Used
Platform Swap Memory Used

System JVM Heap Memory Used
System JVM Non-Heap Memory Used
TomCat JVM Heap Memory Used
TomCat JVM Non-Heap Memory Used

information exception

Latest Information Exception Text

warning exception

Latest Warning Exception Text

non-recoverable
exception

Latest Non-Recoverable Exception Text

Fatal exception

Latest Fatal Exception Text

190

16.2 Actions

16.2.1 External and Synthetic Alarm Reports

UCA processes alarm reports from two distinct sources:
e External alarm reports are those that originate from an external NMS and as a
result of the filtering and mapping process are attached to target mesh objects in
the state mesh.

e Synthetic alarm reports originate from actions carried out by UCA in response to
Rules firing. They are the mechanism by which UCA artificially modifies the
state of mesh objects in the state mesh.

Each mesh object maintains a current problem list and this may simultaneously contain both
external and synthetic alarm reports. The overall state of a mesh object is determined by the
highest state of any alarm reports attached to it (external and synthetic).

External alarm reports are uniquely identifiable and UCA is able to identify the full details of the
original alarm report received from the external NMS using the event database. In contrast,
synthetic alarm reports do not have a unique identifier and simply serve to modify the state of an
object.

A mesh object may, as a result of ‘overlapping’ or simultaneous correlations contain any number
of synthetic alarm reports of the same or different severity.

To aid with processing simultaneous correlations, each mesh object maintains a number of alarm
report counts and trend indicators. These include:
o Current problem list count — the sum of all external and synthetic alarm reports
in the current problem list.

o Current problem list count changed — the trend in the current problem list count
(increased, unchanged, decreased).

e External event count - the sum of all external alarm reports in the current
problem list.

e External event count changed - the trend in the external event list count
(increased, unchanged, decreased).

e Synthetic degraded event count — the sum of all synthetic degraded alarm
reports in the current problem list.

e Synthetic degraded event count changed — the trend in the synthetic degraded
event count (increased, unchanged, decreased).

e Synthetic failed event count — the sum of all synthetic failed alarm reports in the
current problem list.

e Synthetic failed event count changed — the trend in the synthetic failed event
count (increased, unchanged, decreased).

191

The following table summarises the values of these attributes under varying conditions:

Current | Current Externa | External Syntheti Synthetic Syntheti Synthetic
Proble Problem 1 Event Event ¢ Degraded ¢ Failed Failed
m List List Count Count Degrade Event Event Event
Count Count Changed d Event Count Count Count
Changed Count Changed Changed
External | +1 increased | +1 increased (as unchange (as unchange
Alarm before) d before) d
Raise
External | -1 decrease -1 decreased (as unchange (as unchange
Alarm d before) d before) d
Clear
Syntheti | +1 increased | (as unchange +1 increased (as unchange
c before) d before) d
Degrade
d Raise
Syntheti | -1 decrease (as unchange -1 decreased (as unchange
c d before) d before) d
Degrade
d Clear
Syntheti | +1 increased | (as unchange (as unchange +1 increased
¢ Failed before) d before) d
Raise
Syntheti | -1 decrease (as unchange (as unchange -1 decreased
¢ Failed d before) d before) d
Clear

16.2.2 Action Groups

The Trigger and Teardown Action tabs in the UCA Scenario Manager contain a number of action
groups. Each such group gathers together those actions that are logically related e.g. timer
management. The following illustrations show the available groups and give examples of the
actions that are contained within them:

%4 Add New Rule

Deseription

Trigger Conditions| Irigger Actions | Teardown Conditions | Teardown Aections

Priority

X3

al=

-

E-{2) Available Actions :,
= user defined
=) ticket handling (:
=) alarm handling
=] analysis
E""perform standard root cause analysis
g""update standard root cause analysis
perform root cause analysis
update root cause analysis
perform problem extent analysis
broadeast analysis refresh reguest
broadeast identified analwysis refresh request
-2 unlmown
E}'{:' measurement handling
E}'{:' notification handling
- script handling
[}'{2‘ state propagation
[}"{2’ statistics
[}'f‘-_:' timer management
[}'f‘-_:' resilience
ok || cancal

192

#+ Add New Rule (3]

ry

Description Priority 0O

-

|Trigger Conditions | Irigger Actions | Teardown Conditions| Teardown Actions

A2 Available Actions
f-_:' ticket handling

=
]
3
s
5
B
H
N

; perform standard root cause analysis

pdate standard root cause analysis
perform root cause analysis

pdate root cause analysis

perform problem extent analysiz
roadcast analysis refresh request
broadcast i1dentified analysis refresh request
H- 2 unlmonn

H-2) measurement handling

}L:' housekeaping

}L:' notification handling

}L:' seript handling

}L:' state propagation

}L:' timer management

}L:' resilience

o 1O e OO e OO o IO O e OB e O

[ox || cemcer |

Each group may simultaneously contain symmetric actions (where the same action is available
from both Trigger and Teardown rules) e.g. Run Script, and asymmetric actions (where
complementary or opposite actions only made available in Trigger or Teardown rules) e.g. Lock
Notification. In addition, the Housekeeping group is only available from Teardown Rules.

Depending on system configuration, the Resilience group may not be available in a standalone
system and the User-defined actions group may be extended with user-supplied actions.

The following sections describe the currently available set of system actions.

193

16.2.2.1 Housekeeping

Remove Object In Normal State from WM

State Mesh Model

Figure 26 - Remove Object In Normal State from WM

Fired Rule Viewer Mnemonic
tearRemoveMONormStateWM

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action removes the supplied (mesh) object from the current context (working memory). If the
object was dynamically created it is also destroyed, otherwise it continues to exist in the state

mesh.

This action is normally called from a low-priority housekeeping rule in the current context after
all other processing has been completed and the supplied object has returned to the normal state.

Scenario Manager Configuration Dialogue

.ﬁ Add Teardown Action

right-click fields for template details

3

Current Conkext |C|:untext1

Object |abjo]

-

I oK H Cancel]

[]Log Action To Database? *—

.+/

The context (working memory) in which the
triggering rule is deployed and where the mesh
object is inserted.

L The mesh object to remove from the current context.

[Option to record action execution details in the
database.

194

Remove Associate Group In Normal State From WM
State Mesh Model

Figure 27 - Remove Associate Group In Normal State From WM

Fired Rules Viewer Mnemonic
tearRemoveAssocGrpNormState

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action removes the supplied associate group from the current context (working memory)
although it continues to exist in the state mesh.

This action is normally called from a low-priority housekeeping rule in the current context after
all other processing has been completed and there are no longer any degraded or failed associate

group member objects.

Scenario Manager Configuration Dialogue

#3 Add Teardown Action E] The context (working memory) in which the

fight-click fields far template details trlgger'm'g rul(z 1§ deployed and where the associate
group is inserted.

Current Conkexk |Cn:nnte::<t1 0|’ —

Object |u:ubjﬂ| .|_ The associate group to remove from the current
context.

[] Log Action To Database? ®&——1— Option to record action execution details in the
database.

I oK] [Cancel]

195

Remove Child Group In Normal State from WM
State Mesh Model

Figure 28 - Remove Child Group In Normal State from WM

Fired Rules Viewer Mnemonic

tearRemoveChildGrpNormState WM

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action removes the supplied child group from the current context (working memory)
although it continues to exist in the state mesh.

This action is normally called from a low-priority housekeeping rule in the current context after
all other processing has been completed and there are no longer any degraded or failed child
group member objects.

Scenario Manager Configuration Dialogue

@3 Add Teardown Action rz|

right-click fields for template details

Current Context |C|:|ntext1 ./i’

Child Group \childo —

[]Log Action To Database? @

[0K H Cancel]

The context (working memory) in which the
triggering rule is deployed and where the child group
" is inserted.

|_The child group to remove from the current context.

[— Option to record action execution details in the
database.

196

16.2.2.2 Notification Handling

Create Notification Against Object
State Mesh Model

«— Originator

Mesh <— Owner
Object Notification

Alarm J
Qlezee] < Current
event list

Figure 29 - Create Notification Against Object

Fired Rules Viewer Mnemonics
trigCreateNotMO
tearCreateNotMO

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action builds a contributory events list in the database from the active alarm reports
attached to the supplied (mesh) object, creates a notification record in the database and attaches
the contributory events list to it.

An ‘active’ notification report with a list of contributory events (alarm reports) is automatically
displayed on the Notification Viewer GUI.

A new notification object (of the requested type and rank) is created and is inserted into the
current context (working memory) and an optional target context. Note that both the originating
and owning object references in the notification object are set to the supplied object (it is a
primary notification object). The current event list is also initialised with the contents of the
contributory events list.

Scenario Manager Configuration Dialogue

The context (working memory) in which the

¥ Add Trigger Action i object is inserted and where the new notification

right-click fields for template details / ObjeCt will be inserted.

Current Conkext |C|:|ntext1 { An alternative context in which the new notification
|_— object may also inserted (if un-used, set as Current

Targek Conkext |Cu:untext2 * Context)

Object \abj0

notification object.

Natification Type |

Message |Creatiu:un reasan .\\L
|
N

Motification R.ank (1=Highest) S \ list (0 = use all active alarm reports).

[— l [Cance]] x report on the Notification Viewer GUI.

Type and rank of notification object to create.

197

triggering rule is deployed, where the supplied mesh

The (mesh) object providing zero or more active alarm

Time Span (seconds) reports that both originates and owns the new

The maximum age of active alarm reports in the
object that will be added to the contributory events

(Optional) message to be displayed in the notification

Create Notification Against Object Using Latest Event
State Mesh Model

<«— Originator
Mesh <— Owner

Object Notification

Alarm !

Object e o Current
event list

Figure 30 - Create Notification Against Object Using Latest Event

Fired Rules Viewer Mnemonic
trigCreateNotMOLatestEvent
tearCreateNotMOLatestEvent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action builds a contributory events list in the database from the latest active alarm report
attached to the supplied (mesh) object, creates a notification record in the database and attaches
the contributory events list to it.

An ‘active’ notification report with a single contributory event (alarm report) is automatically
displayed on the Notification Viewer GUL.

A new notification object (of the requested type and rank) is created and is inserted into the
current context (working memory) and an optional target context. Note that both the originating
and owning object references in the notification object are set to the supplied object (it is a
primary notification object). The current event list is also initialised with the contents of the
contributory events list.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed, where the supplied

&8 Add Trigger Action

right-click fields for template details /' mesh object is inserted and where the new

Current Context | Context] j/ notification object will be inserted.

- P An alternative context in which the new
Target Context |CDntEXt¢ .J’ notification object may also inserted (if un-used,
Object |.;.|:.]'[| set as Current Context).

The (mesh) object providing the latest active
Message |CFEEIti'I'I'I reason alarm report, that both originates and owns the

Notification Type | new notification ObJeCt.
\ (Optional) message to be displayed in the
notification report on the Notification Viewer

GUL

Muatification Rank (1=Highest)

[oK] [Cancel] Type and rank of notification object to create.

198

Update Notification Against Object
State Mesh Model

<« Originator

Mesh <+—— QOwner
Object Notification
”"
Object [g,

event list

Figure 31 - Update Notification Against Object

Fired Rules Viewer Mnemonics

trigUpdateNotMO

tearUpdateNotMO

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action updates the contributory event list attached to the notification record in the database
for the supplied notification object, using the latest active alarm report attached to the supplied
(mesh) object

The contributory events list of the notification report associated with the supplied notification
object is automatically updated with the new alarm report on the Notification Viewer GUI.

The event list count and trend attributes of the supplied notification object are updated in the
current context (working memory) & (if used) optional target context. The current event list is
also updated in line with the contents of the contributory events list.

Optionally, the message to be displayed in the notification report on the Notification Viewer GUI
may be replaced or additional information may be appended.

Optionally (and if it is present), the Master Alarm associated with the supplied notification object
may be updated with the details of the latest active alarm report attached to the supplied (mesh)
object.

Scenario Manager Configuration Dialogue

@\ Add Trigger Action ' The cgntext (Working memory) in Which the
=l triggering rule is deployed and the supplied mesh
right-click fields far template details & notification objects are inserted.

Current Context |C':""te><t1 L An alternative context in which the supplied

¢
|C|:|nl:ext2 P~ | notification object may also inserted (if un-used,
set as Current Context).

Target Conktext

Object bil . .- L. .

1= |D] .\L\The object providing an additional active alarm

Motification ||‘|l:ltif[I o | report that both originates and owns the supplied
N notification object.

Mew Message |LI|:|date reasan .\\1\

N The notification object to be updated.

™ (Optional) updated/replacement message to be
displayed in the notification report on the
Notification Viewer GUI.

Existing Message Modification

Append to Master Alarm if Present?

Log Action To Database?\

Ok l [Cance

N Message modification options
{unchanged | append | replace}

> Option to append the latest active alarm report to
the Master Alarm associated with the notification
(if present)

/)

Jta

Option to record action execution details in the
database.

Update Notification Against Object Parent
State Mesh Model

Originator

<-"" Current
event list

Figure 32 — Update Notification Against Object Parent

Fired Rules Viewer Mnemonic
trigUpdateNotMOParent
tearUpdateNotMOParent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action updates the contributory event list attached to the notification record in the database
for the supplied notification object, using the latest active alarm report attached to the supplied
(mesh) object

The contributory events list of the notification report associated with the supplied notification
object is automatically updated with the new alarm report on the Notification Viewer GUI.

The event list count and trend attributes of the supplied notification object are updated in the
current context (working memory) & (if used) optional target context. The current event list is
also updated in line with the contents of the contributory events list.

Optionally, the message to be displayed in the notification report on the Notification Viewer GUI
may be replaced or additional information may be appended.

Optionally (and if it is present), the Master Alarm associated with the supplied notification object
may be updated with the details of the latest active alarm report attached to the supplied (mesh)
object.

200

Scenario Manager Configuration Dialogue

The context (working memory) in which the

Add Jiriggen Action triggering rule is deployed and the supplied mesh
rightclick fizlds far templata details ' & notification objects are inserted.
Current Context |Cu:untext1 / |

An alternative context in which the supplied
Target Context |':':"-'textE '/I' notification object may also inserted (if un-used,
Object |u:ubjﬂ o | set as Current Context).

I~

Motification |nDtiFU o The object providing an additional active alarm

\| report whose parent mesh object both originates
Q\\ and owns the supplied notification object.

New Message |Llpdate reason

Existing Message Maodification

N\ The notification object to be updated.

Append to Master Alarm if Present?)
\ (Optional) updated/replacement message to be
[+] Log Action Ta Database? displayed in the notification report on the
.\ Notification Viewer GUI.

L1 H é%'ﬂ N\ Message modification options
\ {unchanged | append | replace}
Option to append the latest active alarm report to
the Master Alarm associated with the notification
(if present)
Option to record action execution details in the
database.

201

Remove Notification Against Object
State Mesh Model

Mesh <C Owner
Object Notification

Originator

Figure 33 - Remove Notification Against Object

Fired Rules Viewer Mnemonics
trigRemoveNotMO
tearRemoveNotMO

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action closes the notification record in the database associated with the supplied primary

notification object.

The status of the notification report associated with the supplied notification object is
automatically set to ‘closed’ on the Notification Viewer GUI.

The supplied notification object is detached from the supplied (mesh) object and removed from the
current context (working memory) & (if used) optional target context. The notification object is

then destroyed.

Scenario Manager Configuration Dialogue

@8 Add Trigger Action

right-click fields for template details

Current Conkext |C|:|ntext1
Targek Context |Cu:untext ./r ~
Object |abi0 LN

\{
Notification Inotifo N

Log Action To Databases

[oK H Cancel]

The context (working memory) in which the
triggering rule is deployed and the supplied mesh
& notification objects are inserted.

An alternative context in which the supplied
notification object may also inserted (if un-used,
set as Current Context).

The (mesh) object that owns the
notification object.

supplied

The notification object to be removed and

destroyed.

Option to record action execution details in the
database.

202

Create Marker Notification Against Object
State Mesh Model

Mesh
ject Primarvy Coject Marker

Notification Notificatior

Figure 34 — Create Marker Notification Against Object

Fired Rules Viewer Mnemonic
trigCreateMarkerNotMO

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.
This action attempts to create a new marker notification against the supplied (mesh) object,
associated to the supplied primary notification. The new marker notification is inserted into the

current context (working memory) & (if used) optional target context.

The supplied (mesh) object is added to the affected objects list maintained for the primary
notification in the Notification database.

Scenario Manager Configuration Dialogue

& Add Trigger Action _ The context (working memory) in which the
|~ triggering rule is deployed and the supplied

right-click fields far template details

.// marker notification object is inserted.

Current Contexk Conkextl . . X .

| | An alternative context in which the supplied

Target Context |C-:unte:<t2 ./I— — marker notification object may also inserted (if un-
used, set as Current Context).

Object |abj0 - |

™ The (mesh) object to which the new marker
notification is attached

—/

Primary Matification |n|:|tiFEI

’

/

Log Action To Database?

"~ The primary notification object to which the new

[(84] [Cancel]\ marker notification is associated

~ Option to record action execution details in the
database.

203

Remove Marker Notification Against Object
State Mesh Model

Marker
Notification

Figure 35 - Remove Marker Notification Against Object

Fired Rules Viewer Mnemonic

tearRemoveMarkerNot

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action removes the supplied marker notification from the current context (working memory)
& (if used) optional target context and it is then destroyed.

Scenario Manager Configuration Dialogue

.ﬁ Add Teardown Action

right-click fields far template details

Current Context |C|:|ntext1 ./i’

Target Conkext |Cn:nnte::<t2 .\L

Marker Matification |n-:utiFL'I .\ |

Log Action To Database?

The context (working memory) in which the

— triggering rule 1s deployed and the supplied

marker notification object is inserted.

L. An alternative context in which the supplied

marker notification object may also inserted (if un-
used, set as Current Context).

\ N\ The marker notification object to be removed.
[Ok l [Cancel]

Option to record action execution details in the
database.

204

Create Notification Against Associate Group Parent
State Mesh Model

Originator
<+— Owner

Notification

Associate
Group

< Current
event list

Figure 36 — Create Notification Against Associate Group Parent

Fired Rules Viewer Mnemonic
trigCreateNotAssocGrpParent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action builds a contributory event list in the database from the active alarm reports attached
to the (mesh) objects contained in the supplied associate group, creates a notification record in the
database and attaches the contributory event list to it.

An active notification report with a list of contributory events (alarm reports) is automatically
displayed on the Notification Viewer GUL.

A new notification object (of the requested type and rank) is created and is inserted into the
current context (working memory) and an optional target context. Note that both the originating

and owning object references in the notification object are set to the associate group’s parent
object (it is a primary notification object). The current event list is also initialised with the

contents of the contributory events list.

Scenario Manager Configuration Dialogue
The context (working memory) in which the

@ Add Trigger Action LadN triggering rule is deployed, where the supplied
associate group is inserted and where the new
notification object will be inserted.

right-click fields for template details

Current Conkext |Cn:nnte::<t1

v /|
An alternative context 1in which the new
Target Context |':':""t‘3-"<t2 gl’ ™ notification object may also inserted (if un-used,
o
« |

Aericke Googs |assu:uc[| set as Current Context).

N The associate group whose member objects will
provide zero or more active alarm reports and
whose parent object both originates and owns the
new notification object.

Message |Creati|:|n reasaon

Matification Type | \ |
Notification Rank {1 =Highest)

(Optional) message to be displayed in the
notification report on the Notification Viewer GUI.

oK Cancel i - .
I] [] N\ Type and rank of notification object to create

205

Remove Notification Against Associate Group Parent

State Mesh Model

Originator
<+— Owner
Mesh
Object N[elujile=1eoly]

Associate
Group

< Current
event list

Figure 37 - Remove Notification Against Associate Group Parent

Fired Rules Viewer Mnemonic

tearRemoveNotAssocGrpParent

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action closes the notification record in the database associated with the supplied primary

notification object.

The status of the notification report associated with the supplied notification object is
automatically set to ‘closed’ on the Notification Viewer GUI.

The supplied notification object is detached from the supplied associate group’s parent (mesh)
object and removed from the current context (working memory) & (if used) optional target

context. The notification object is then destroyed.

Scenario Manager Configuration Dialogue

ﬁ Add Teardown Action

right-click fields far template details

Current Conbext |Cu:nnte>:t1

Targek Conkext |Cnntext2
Associate Group |assu:u:[l
Notification Inotifo

Log Action To Database?

/
v
-
‘4 as Current Context).

database.

The context (working memory)
/ triggering rule 1s deployed and the supplied
associate group & notification objects are inserted.

in which the

|~ An alternative context in which the supplied
notification object may also inserted (if un-used, set

N The associate group whose parent (mesh) object
owns the supplied notification object.

N\ The notification object to be removed and

o
[(84][Cancel]\'\ destroyed.

Option to record action execution details in the

206

Create Notification Against Referenced Associate Group Parent
State Mesh Model

Mesh

Originat
riginator—» Object

<+—— Owner

Notification

Mesh
Object

Associate
Group

< Current
event list

Figure 38 — Create Notification Against Referenced Associate Group
Parent

Fired Rules Viewer Mnemonic
trigCreateNotRefAssocGrpParent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action builds a contributory event list in the database from the active alarm reports attached
to the (mesh) objects contained in the supplied associate group, creates a notification record in the
database and attaches the contributory event list to it.

An active notification report with a list of contributory events (alarm reports) is automatically
displayed on the Notification Viewer GUI.

A new notification object (of the requested type and rank) is created and is inserted into the
current context (working memory) and an optional target context. Note that the originating object
reference in the notification object is set to the supplied object while the owning object reference is
set to the associate group’s parent object. The current event list i1s also initialised with the
contents of the contributory events list.

Scenario Manager Configuration Dialogue

The context (working memory) in which the

& Add Trigger Action | triggering rule is deployed, where the supplied
e ik fielde £ te datail mesh object and associate group are inserted and
rghtelickfields fartemplate detalls y " where the new notification object will be inserted.

Current Conkext |Cn:-ntext1 0/|

S |Cu:-ntext" .\|‘ An alternative context in which the new
- = ~ notification object may also inserted (if un-used,

.\| set as Current Context).

Assaciabe Group |assu:ur:tl

N\ The associate group whose member objects will
provide zero or more active alarm reports and
Message |Creat|n:|n reason Q\ whose parent object owns the new notification

A bject
pmblem repark *X object.

Object |abi0

Motification Type

The object that originates the new notification

Muatification Rank (1=Highast) biect
object.

(Optional) message to be displayed in the
notification report on the Notification Viewer GUL.

[oK H Cancel]

\ Type and rank of notification object to create
207

Remove Notification Against Referenced Associate Group Parent

State Mesh Model

Mesh
Object

Associate
Group

Fired Rules Viewer Mnemonic
tearRemoveNotRefAssocGrpParent

Summary

Originator—»
<+— Owner

Notification

Mesh
Object

<« Current
event list

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action closes the notification record in the database associated with the supplied primary

notification object.

The status of the notification report associated with the supplied notification object is
automatically set to ‘closed’ on the Notification Viewer GUI.

The supplied notification object is detached from the supplied associate group’s parent (mesh)
object and removed from the current context (working memory) & (if used) optional target
context. The notification object is then destroyed.

Scenario Manager Configuration Dialogue

.ﬁ Add Teardown Action

right-click fields for template details

Current Conkext |Cu:untext1

Targek Cankext |Cnntext2

Associate Group |assu:n:0

Object (abj0 e
N

Notification Inotifo

Log Action To Database?

I oK H Cancel]

Pad
v

\
N

The context (working memory) in which the
triggering rule is deployed and the supplied mesh
object, associate group and notification object are
inserted.

An alternative context in which the supplied
notification object may also inserted (if un-used,
set as Current Context).

The associate group whose parent (mesh) object
owns the supplied notification object.

The (mesh) object that originates the notification
object.

The notification object to be removed and
destroyed.

Option to record action execution details in the
database.

208

Create Notification Against Associate Group Grandparent

State Mesh Model
«+— Originator

Object [\le)uijle=]eely!

Child
Group

A

Mesh
Object

Associate /
Group i

Alarm
.-* Current
- <
Object event list

Figure 39 - Create Notification Against Associate Group Grandparent

Fired Rules Viewer Mnemonic
trigCreateNotAssocGrpGparent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.
This action builds a contributory event list in the database from the active alarm reports attached
to the (mesh) objects contained in the supplied associate group, creates a notification record in the

database and attaches the contributory event list to it.
An active notification report with a list of contributory events (alarm reports) is automatically

displayed on the Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the
current context (working memory) and an optional target context. Note that both the originating

and owning object references in the notification object are set to the associate group’s
grandparent object (it is a primary notification object)._The current event list is also initialised

with the contents of the contributory events list.

209

Scenario Manager Configuration Dialogue

3 Add Trigger Action | The context (working memory) in which the
=1 triggering rule is deployed, where the supplied
associate group is inserted and where the new

right-click fields for template details

Current Context |C-:unte:<t1 .ﬁ{f’ notification object will be inserted.
Target Context |Cnntext2 " | An alternative context in which the new
_ notification object may also inserted (if un-used,
Assaciate Group |‘355':“:° O\I set as Current Context).
[~ . . .
[Cemzere |Creatiu:un R The .assomate group Whos.e member objects will
‘A provide zero or more active alarm reports and
Motification Type | N whose grandparent object both originates and
N

owns the new notification object.

(Optional) message to be displayed in the
notification report on the Notification Viewer GUI.
Type and rank of notification object to create

Notification Rank [1=Highest) N

I oK H Cancel]

210

Remove Notification Against Associate Group Grandparent
State Mesh Model

«— Originator

0s)cell Notification

Child
Group

A

Mesh
Object

Associate :
Group ;

<~ Current
event list

Figure 40 - Remove Notification Against Associate Group Grandparent

Fired Rules Viewer Mnemonic
tearRemoveNotAssocGrpGparent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.
This action closes the notification record in the database associated with the supplied primary

notification object.
The status of the notification report associated with the supplied notification object is

automatically set to ‘closed’ on the Notification Viewer GUL.

The supplied notification object is detached from the supplied associate group’s grandparent
(mesh) object and removed from the current context (working memory) & (if used) optional target

context. The notification object is then destroyed.

211

Scenario Manager Configuration Dialogue

@\ Add Teardown Action ' The context (working memory) in which the
— triggering rule is deployed and the supplied
/ associate group & notification objects are inserted.

right-click fields for template details

Current Cantext |Cnntext1

An alternative context in which the supplied
notification object may also inserted (if un-used,
set as Current Context).

Targek Context |Cnntext2

Associake Group |asscn:0

o p o o

The associate group whose grandparent (mesh)

Motificati i} . . o . .
PHEsHan |nn ! object owns the supplied notification object.
(] Log Action To Database? The notification object to be removed and
destroyed.
[oK } [Cancel I

Option to record action execution details in the
database.

212

Create Notification Against Child Group Parent
State Mesh Model

<« Originator
<+— Owner

Notification

7

_ _.~"Current
SaEeT] « event list

Figure 41 - Create Notification Against Child Group Parent

Fired Rules Viewer Mnemonic
trigCreateNotChildGrpParent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action builds a contributory event list in the database from the active alarm reports attached
to the (mesh) objects contained in the supplied child group, creates a notification record in the
database and attaches the contributory event list to it.

An active notification report with a list of contributory events (alarm reports) is automatically
displayed on the Notification Viewer GUI.

A new notification object (of the requested type and rank) is created and is inserted into the
current context (working memory) and an optional target context. Note that both the originating

and owning object references in the notification object are set to the child group’s parent object (it
is a primary notification object). The current event list is also initialised with the contents of the

contributory events list.

Scenario Manager Configuration Dialogue

&N Add Trigger Action

The context (working memory) in which the
— triggering rule is deployed, where the supplied
Lz L HE |C':"-":E}d:1 . child group is inserted and where the new
notification object will be inserted.

right-click fields for template details

Target Conkext |Cnntext2 .\L [
.\L An alternative context in which the new
notification object may also inserted (if un-used,

Message |Creatiu:un reasan .\| set as Current Context).

N\
Matification Type pr‘nblem repork L |\
notification object.

Notification Rank (1=Highest)
(Optional) message to be displayed in the

[ok,] [Cancel] notification report on the Notification Viewer GUI.

Child Group \childo

/

The child group whose member objects will provide
zero or more active alarm reports and whose
parent object both originates and owns the new

v/

213

Update Notification Against Child Group Parent
State Mesh Model

Originator
<+— QOwner

Notification

7

] _."Current
DT «7 avent list

Figure 42 - Update Notification Against Child Group Parent

Fired Rules Viewer Mnemonics
trigUpdateNotChildGrpParent
tearUpdateNotChildGrpParent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action updates the contributory event list attached to the notification record in the database
for the supplied notification object, using the latest new active alarm report attached to each

(mesh) object contained in the supplied child group.
The contributory events list of the notification report associated with the supplied notification
object is automatically updated with the new alarm report on the Notification Viewer GUI.

The event list count and trend attributes of the supplied notification object are updated in the
current context (working memory) & (if used) optional target context. The current event list is
also updated in line with the contents of the contributory events list.

Optionally, the message to be displayed in the notification report on the Notification Viewer GUI
may be replaced or additional information may be appended.

Optionally (and if it is present), the Master Alarm associated with the supplied notification object
may be updated with the details of the latest active alarm reports attached to each (mesh) object
contained in the supplied child group.

214

Scenario Manager Configuration Dialogue

@3 Add Trigger Action

right-click fields for template details The context (working memory) in which the
Current Context |Cu:untext1 | triggering I'll,ll.e is_ deplgyed and.the supplied child
group & notification objects are inserted.
T b Context Conkext2
Arget Hontex | ontex OJ-— An alternative context in which the supplied
Child Group |chi|dCI notification object may also inserted (if un-used,
set as Current Context).
Notification Inotifo \
N
New Message |Llpdate — \ The child group containing one or more objects

which may provide their latest new active alarm

Existing Massage Modification report, whose parent object both originates and
: - : owns the supplied notification object.
[+] Append to Master Alarm if Present: .\ The notification object to be updated.

Log Action To Database? . Message modification options
{unchanged | append | replace}

—] [= ~ Option to append the latest active alarm reports to
the Master Alarm associated with the notification
(if present)

Option to record action execution details in the
database.

215

Remove Notification Against Child Group Parent
State Mesh Model

<«— Originator
<+— Owner

Notification

] _.~"Current
OLEE <= avent list

Figure 43 - Remove Notification Against Child Group Parent

Fired Rules Viewer Mnemonic
tearRemoveNotChildGrpParent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.
This action closes the notification record in the database associated with the supplied primary

notification object.
The status of the notification report associated with the supplied notification object is
automatically set to ‘closed’ on the Notification Viewer GUI.

The supplied notification object is detached from the supplied child group’s parent (mesh) object
and removed from the current context (working memory) & (if used) optional target context. The

notification object is then destroyed.

Scenario Manager Configuration Dialogue

@3 Add Teardown Action E'
|~ The context (working memory) in which the

ight-click fialds f late detail X
LR AT S T T P EE T triggering rule is deployed and the supplied child
group & notification objects are inserted.

Current Conbext |Cn:nnte>c:t1

Target Context |Cu:untext2 An alternative context in which the supplied
Child Group |'Ch"d[' set as Current Context).
Notification Inotifo N , ,

The child group whose parent (mesh) object owns

Log Action To Database? \ the supplied notification object.
The notification object to be removed and

™~ destroyed.

%\ notification object may also inserted (if un-used,
N

[oK l [Cancel

216

Create Notification Against Child Group Grandparent

State Mesh Model
<+ Originator
4—
Mesh Owner
oli)Codll Notification
Child
Group 1
7y !
Mesh
Object |

.~ Current
0l5[<a| €7 event list

Figure 44 - Create Notification Against Child Group Grandparent

Fired Rules Viewer Mnemonic
trigCreateNotChildGrpGparent

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.
This action builds a contributory event list in the database from the active alarm reports attached
to the (mesh) objects contained in the supplied child group, creates a notification record in the

database and attaches the contributory event list to it.
An active notification report with a list of contributory events (alarm reports) is automatically

displayed on the Notification Viewer GUI.
A new notification object (of the requested type and rank) is created and is inserted into the
current context (working memory) and an optional target context. Note that both the originating

and owning object references in the notification object are set to the child group’s grandparent
object (it is a primary notification object). The current event list is also initialised with the

contents of the contributory events list.

217

Scenario Manager Configuration Dialogue

#3 Add Trigger Action : . . N
s &5 The context (working memory) in which the triggering
right-click fields for template details y / rule is deployed, where the supplied child group is
Current Context | Context1 ./| }nserteg and where the new notification object will be
inserted.
Target Context |Cnntext2 .‘L — An alternative context in which the new notification object
Child Group |child0 .\l may also inserted (if un-used, set as Current Context).
N

Message |Creati|:|n reasan d \ The Child gI‘Oup Whose member ObjeCtS Will pI‘OVide Zero or

o more active alarm reports and whose grandparent object
Notification Type | ‘N\ both originates and owns the new notification object.

Notification Rank (1=Highest) N\

(Optional) message to be displayed in the notification
report on the Notification Viewer GUI.

[oK] [Cancel] Type and rank of notification object to create

218

Remove Notification Against Child Group Grandparent
State Mesh Model
<«— Originator

<— Owner
Mesh
Object [W\le]uile=]ile]y

Child
Group

A

Mesh
Object

.~ Current
event list

Figure 45 - Remove Notification Against Child Group Grandparent

Fired Rules Viewer Mnemonic
tearRemoveNotChildGrpGparent

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.
This action closes the notification record in the database associated with the supplied primary

notification object.
The status of the notification report associated with the supplied notification object is

automatically set to ‘closed’ on the Notification Viewer GUI
The supplied notification object is detached from the supplied child group’s grandparent (mesh)
object and removed from the current context (working memory) & (if used) optional target

context. The notification object is then destroyed

219

Scenario Manager Configuration Dialogue

&3 Add Teardown Action [5__<| The context (working memory) in which the
triggering rule is deployed and the supplied child

right-click fields for template details L e R K .
group & notification objects are inserted.

A
Current Context |C|:|ntext1 O/|

| An alternative context in which the supplied
Target Conkext |CDI'ItE><t2 ‘/r notification object may also inserted (if un-used,
set as Current Context).

Child Group |childo 'q
Hukkieskion |,-,.:,tim o | ™~ The child group whose grandparent (mesh) object
\| owns the supplied notification object.
Log Action To Database? N o)
The notification object to be removed and
[oK H Cancel] destroyed.

Option to record action execution details in the
database.

220

Force Removal Of Notification Against Object
State Mesh Model

Mesh

Object | Notification

Figure 46 — Force Removal Of Notification Against Object

Fired Rules Viewer Mnemonic
trigForceRemNotMO
tearForceRemNotMO

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action closes the notification record in the database associated with the supplied primary
notification object.

The status of the notification report associated with the supplied notification object is
automatically set to ‘closed’ on the Notification Viewer GUI.

The supplied notification object is removed from the current context (working memory) and is
then destroyed

Scenario Manager Configuration Dialogue

@5 Add Trigger Action

right-click fields for tamplate details The context (working memory) in which the
— triggering rule is deployed and the supplied
Current Context |Cu:untext1 ./r notification object is inserted.
Notification |”Dtim [The notification object to be removed.
[¥] Loa Ackion o Batabasss @—— dOptti]c;n to record action execution details in the
atabase.
[oK H Cancel]

221

Append Event To Notification Sympathetic Event List
State Mesh Model

Marker
Notification

Mesh)
Object Primary
Notification
- A/Master alarm i

unigue identifier |
q v

Sympathetic

Alarm " Current
S:Jajrengt Object event list

Figure 47 - Append Event To Notification Sympathetic Event List

Fired Rules Viewer Mnemonic
trigAppEventNotSymList

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The purpose of this action is to associate the latest sympathetic alarm report in the supplied
(mesh) object’s current event list with a ‘master’ alarm report in an external NMS.

The action also supports the option to build this association only if the latest sympathetic alarm
report’s EMS originating time (or alternatively its creation time in this system) lies within a
configurable time exclusion window either side of the primary notification object’s creation time

This action updates the current problem list size in the supplied marker notification (attached to
the supplied object).

If the sympathetic alarm report lies within the exclusion time window (or the exclusion time
window is not used):
The sympathetic alarm report is also added to a sympathetic event list attached to
the notification record in the database associated with the supplied primary
notification object.

The sympathetic alarm list in the notification report associated with the primary
notification object is automatically updated on the Notification Viewer GUI.

If the option to append the sympathetic alarm report to an existing Master Alarm
is chosen (and the Master Alarm is present):
A sympathetic alarm report request (including the ‘master’ alarm report
external NMS reference) is sent to the external NMS via the Remote
Handler's REPORT_SYMPATHETIC_ALARMS callout function. The
effect in the external NMS depends on the level of integration and its
inherent capabilities.

If the sympathetic alarm enrichment option is chosen, a list of the primary
notification’s contributory alarm report external NMS references, together with
the sympathetic alarm report’s external NMS reference is sent to the external
NMS via the Remote Handler's ENRICH_SYMPATHETIC_ALARMS -callout
function. The effect in the external NMS depends on the level of integration and
its inherent capabilities.

On successful completion of the action, the ‘child alarms demoted’ attribute in the supplied
marker notification object is set to true and this may be evaluated by additional rules.

222

Scenario Manager Configuration Dialogue

The context (working memory) in which the triggering rule is deployed and where the mesh
and primary & marker notification objects are inserted.

An alternative context in which the mesh and primary & marker notification objects may also
e inserted (if un-used, set as Current Context).

The mesh object whose current event list contains the latest sympathetic algrm report.
The primary notification object containing the external NMS ‘master’ alarm rgpoXt reference.

The marker notification object whose current event list is updated with the latdst sympathetic
alarm report.

&% Add Trigger Action

right-click fields for template details ‘

L Current Context —®ontexti
Target Conkext —® onkext?
Ohbject abij0 o1 —
Primary Motification nokifd o1+ —
Marker Matification nakif i L

@] Use Exclusion Time Window?
L@ Uise Alarm Originating Time?

Time (seconds) Before RCA Matification Creation Time ba Exclude Alarms 10

4

4

Time (seconds) After RCA Matification Creation Time to Exclude Alarms 10

Append to RCA Notification?

[] Eni Sy'rTathetic Alarm?

Log Action [To Dalgbase?

QK l [Cancel

Option to use time ¢xclugion window.

Option to use the dympathetic alarm report’s EMS originating time (checked) or the UCA
creation time (uinchédcked) in conjunction with the time exclusion|window.

Time exclusion wind¢w edrly limit (in seconds before primary notification creation time).
Time exclusion wyinddw late limit (in seconds after primary notificafion creation time).

Option to append synlpathktic alarm report to primary notification master alarm if present.

Option to enrich primary potification contributory alarm reports with details of sympathetic
alarm report.

Option to record action execution details in the database.

223

Update Notification Rank
State Mesh Model

Mesh

Object | Notification

Figure 48 - Update Notification Rank

Fired Rules Viewer Mnemonic
trigUpdateNotRank
tearUpdateNotRank

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action updates the rank of the notification record in the database associated with the
supplied primary notification object.

The rank of the notification report associated with the supplied notification object 1is
automatically updated on the Notification Viewer GUI.

The rank of the supplied notification object is updated in the current context (working memory)
and in the optional target context (if used)

Scenario Manager Configuration Dialogue

The context (working memory) in

&8 Add Trigger Action

) which the triggering rule 1is
right-click fields for template details / deployed and the supplied child
group & notification objects are
Current Context |Cu:untext1 .
inserted

An alternative context in which

Motification |n|:n1jﬁ:I the supplied notification object

may also inserted (if un-used, set
as Current Context).

Target Context |Cu:untext2 ._I. I—
L\

Motification Rank (1=Highest)

Log Action To Database?

The notification object whose

[=].[>el] \ rank is to be updated.

Updated rank value

Option to record action execution
details in the database.

224

16.2.2.3 State Propagation

Force Object To Degraded State Via Notification
State Mesh Model

Notification

Synthetic
Alarm

Object

Figure 49 - Force Object To Degraded State Via Notification

Fired Rules Viewer Mnemonic
trigForceMODegViaNotif

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action attempts to locate the (mesh) object that owns the supplied notification. It then
creates and attaches a synthetic alarm report to the object (with a target state of degraded) to
attempt to force it to the degraded state.

Note that the object may not actually change state if it is already degraded or failed; however the
synthetic alarm report will remain attached and may affect the future state of the object as other
attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

8 Add Trigger Action

The context (working memory) in which the
right-click fields far template details triggering rule 1is deployed and the supplied
y notification object is inserted.

Current Context |C|:|ntext1

o - The notification object owned by the target object.
Matification |nu:ut|FU

[¥] Log Action To Databases Option to record action execution details in the
database.

[(814 l [Cancel

225

Force Object To Failed State Via Notification

State Mesh Model

Synthetic
Alarm
Object

Notification

Figure 50 - Force Object To Failed State Via Notification

Fired Rules Viewer Mnemonic
trigForceMOFailedViaNotif

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to locate the (mesh) object that owns the supplied notification. It then
creates and attaches a synthetic alarm report to the object (with a target state of failed) to

attempt to force it to the failed state.

Note that the object may not actually change state if it is already failed; however the synthetic
alarm report will remain attached and may affect the future state of the object as other attached

alarm reports are cleared.

Scenario Manager Configuration Dialogue

&% Add Trigger Action

right-click fields for template details

X

Current Context |Cu:untext1

oﬁ

Notification Inotifo

o

[Ok H Cancel]

Lag Action Ta Databased — |

The context (working memory) in which the
| triggering rule is deployed and the supplied
notification object is inserted.

-~ The notification object owned by the target object.
| Option to record action execution details in the
database.

226

Force Degraded Object To Failed State
State Mesh Model

Synthetic
Alarm
Object

Synthetic
Alarm
Object

Figure 51 - Force Degraded Object To Failed State

Fired Rules Viewer Mnemonic
trigForceMOStateChange

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action creates and attaches a synthetic alarm report to the (mesh) object (with a target state
of failed) to attempt to force it to the failed state. A common use of this action is to force an
already degraded object to the failed state.

Note that the object may not actually change state if it is already failed; however the synthetic
alarm report will remain attached and may affect the future state of the object as other attached

alarm reports are cleared.

Scenario Manager Configuration Dialogue

&8 Add Trigger Action

right-click fields for template details

Current Context |Cu:untext1

Object |abi0

o

[oK H Cancel]

Log Action To Database? — |

The context (working memory) in which the
| triggering rule is deployed and the supplied mesh
object is inserted.

L The mesh object to be forced to the failed state.

[~ Option to record action execution details in the
database.

227

Force Named Object To Change State
State Mesh Model

Non Service
Affected

Service
Affected

Synthetic
Alarm

Object

Synthetic

Alarm
Object

Figure 52 - Force Named Object To Change State

Fired Rules Viewer Mnemonic
trigForceNamedMO

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The purpose of this action is to attempt to force a state change on a (mesh) object for which the
triggering rule does not have an existing (mesh) object reference and so has to provide an explicit
class and instance name.

The action first verifies that the explicitly named (mesh) object currently exists in the system. If
1t does not exist, then an exception is reported and the action is aborted.

If the ‘Is Service Affected’ option is chosen, this action creates and attaches a synthetic alarm
report to the (mesh) object (with a target state of failed) to attempt to force it to the failed state.

If the ‘Is Service Affected’ option is not chosen, this action creates and attaches a synthetic alarm
report to the (mesh) object (with a target state of degraded) to attempt to force it to the degraded
state.

Note that the object may not actually change state if it is already failed; however the synthetic
alarm report will remain attached and may affect the future state of the object as other attached
alarm reports are cleared.

Scenario Manager Configuration Dialogue

@3 Add Trigger Action

right-click fields for template details

4 Owner Base Class "ClassA” .—I— — change state (literal or stored in a rule variable).

Owner Unique Reference "a_1" ® lF The unique reference of the mesh object to be

Is Service Affected? — variable).

Option to treat as ‘service affecting’
Log Ackion To Database? @— P &

database.

[OK H Cancel]

228

The base class of the mesh object to be forced to

forced to change state (literal or stored in a rule

Option to record action execution details in the

Force Parent Object To Degraded State Via Associate Group
State Mesh Model

Synthetic
Alarm
Object

Associate
Group

Figure 53 - Force Parent Object To Degraded State Via Associate Group

Fired Rules Viewer Mnemonic
trigForceParentDegViaAssoc

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action attempts to locate the parent (mesh) object that owns the supplied associate group. It
then creates and attaches a synthetic alarm report to the object (with a target state of degraded)
to attempt to force it to the degraded state.

Note that the object may not actually change state if it is already degraded or failed; however the
synthetic alarm report will remain attached and may affect the future state of the object as other
attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

@8 Add Trigger Action [z|
right-click fields far templata details The context (working memory) in which the
Current Context |Cu:|ntext1 B~ triggering rule is deployed and the supplied

associate group is inserted.

Associate Group |assu:ucCl ._|_ =

Log Action To Datsbase®? @—— 34—

The associate group owned by the target object.

Option to record action execution details in the
I 0K][Cancel] database.

229

Force Parent Object To Failed State Via Associate Group
State Mesh Model

Associate
Group

Synthetic
Alarm
Object

Figure 54 - Force Parent Object To Failed State Via Associate Group

Fired Rules Viewer Mnemonic

trigForceParentFailedViaAssoc

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to locate the parent (mesh) object that owns the supplied associate group. It
then creates and attaches a synthetic alarm report to the object (with a target state of failed) to
attempt to force it to the failed state.

Note that the object may not actually change state if it is already failed; however the synthetic
alarm report will remain attached and may affect the future state of the object as other attached
alarm reports are cleared.

Scenario Manager Configuration Dialogue

8 Add Trigger Action E'

right-click fields for template details

Current Context |Cu:unte>c:t1 Oﬁl’ ~

Associate Group |ass-:u:0 P |

Log Action To Database? @—m —o-—8

[OK H Cancel]

The context (working memory) in which the
triggering rule is deployed and the supplied
associate group is inserted.

The associate group owned by the target object.
Option to record action execution details in the
database.

230

Force Parent Object To Degraded State Via Child Group
State Mesh Model

Synthetic
Alarm
Object

Figure 55 - Force Parent Object To Degraded State Via Child Group

Fired Rules Viewer Mnemonic
trigForceParentDegViaChild

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action attempts to locate the parent (mesh) object that owns the supplied child group. It then
creates and attaches a synthetic alarm report to the object (with a target state of degraded) to
attempt to force it to the degraded state.

Note that the object may not actually change state if it is already degraded or failed; however the
synthetic alarm report will remain attached and may affect the future state of the object as other
attached alarm reports are cleared.

Scenario Manager Configuration Dialogue

&5 Add Trigger Action

The context (working memory) in which the
B triggering rule is deployed and the supplied child
Current Conkext |C|:unl:exl:1 ./i’ group 1s inserted.

right-click fields for template details

child Group |childn ._|. | The child group owned by the target object.

[v] Log Action To Database?: Option to record action execution details in the

database.

[oK H Cancel]

231

Force Parent Object To Failed State Via Child Group
State Mesh Model

Synthetic
Alarm
Object

Figure 56 - Force Parent Object To Failed State Via Child Group

Fired Rules Viewer Mnemonic
trigForceParentFailedViaChild

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action attempts to locate the parent (mesh) object that owns the supplied child group. It then
creates and attaches a synthetic alarm report to the object (with a target state of failed) to
attempt to force it to the failed state.

Note that the object may not actually change state if it is already failed; however the synthetic
alarm report will remain attached and may affect the future state of the object as other attached
alarm reports are cleared.

Scenario Manager Configuration Dialogue

@8 Add Trigger Action [zl

right-click fields for template details Tl:le C(.)nteXt (Working memory) in Wthh the
| triggering rule is deployed and the supplied child

Current Cantext |C|:|ntext1 ./i’ group is inserted.

Child Group |'5|‘Ii|l5|'3I 0—|— — The child group owned by the target object.

Log Action To Databass? @———

Option to record action execution details in the
database.

[0K H Cancel]

232

Force Degraded Object To Normal State
State Mesh Model

Synthetic
Alarm
Object

Figure 57 — Force Degraded Object To Normal State

Fired Rules Viewer Mnemonic
tearForceDegMONormState

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action attempts to clear a synthetic alarm report (with a target state of degraded) from the
supplied (mesh) object.

Following clearance and if no other alarm reports with degraded or failed target state are
attached to the supplied object, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

&\ Add Teardown Action b—<| The C(?ntext (yvorking memory) in vyhich the
— triggering rule is deployed and the supplied (mesh)

right-click fields far template details Y d object is inserted.

Current Conkext |CDI'I'EE>¢1 e | |_ The target (mesh) object to which at least one

Object ||:|I:|ju ./I synthetic alarm report with a target state of

degraded is attached.

LogAction To Database? o |

~ Option to record action execution details in the
I oK l [Cancel] database.

233

Force Failed Object To Normal State
State Mesh Model

Synthetic
Alarm
Object

Figure 58 - Force Failed Object To Normal State

Fired Rules Viewer Mnemonic
tearForceFailedMONormState

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to clear a synthetic alarm report (with a target state of failed) from the

supplied (mesh) object.

Following clearance and if no other alarm reports with degraded or failed target state are
attached to the supplied object, it will automatically return to the normal state.

Scenario Manager Configuration Dialogue

.‘FS Add Teardown Action

right-click fields for template details

X]

Current Conkext |C|:untext1

el

Object |abj0

o

[oK H Cancel]

Log Action Ta Database® — |

The context (working memory) in which the
| triggering rule is deployed and the supplied (mesh)
object is inserted.

- The target (mesh) object to which at least one
synthetic alarm report with a target state of failed
is attached.

B Option to record action execution details in the
database.

234

Forced Failed Object To Degraded State
State Mesh Model

Synthetic
Alarm
Object

Synthetic
Alarm
Object

Figure 59 - Forced Failed Object To Degraded State

Fired Rules Viewer Mnemonic
tearForceMOStateChange
Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.
This action attempts to clear a synthetic alarm report (with a target state of failed) from the
supplied (mesh) object. It is commonly used to return an object that also has a synthetic alarm
report (with a target state of degraded) to the degraded state.
Following clearance and if:

e at least one alarm report with a target state of degraded is attached to the

target object;

e no other alarm reports with a target state of failed are attached to the supplied
object;

It will automatically return to the degraded state.

Scenario Manager Configuration Dialogue

.‘h Add Teardown Action

. The context (working memory) in which the
right-click fields for template details ’

Current Conkexk |C|:untext1 ./I object is inserted.

Object | obj0 The target (mesh) object to which at least two

Log Action To Database? .\ degraded and failed are attached.

I OK ” Cancel] database.

235

triggering rule is deployed and the supplied (mesh)

synthetic alarm reports with target states of

Option to record action execution details in the

Clear Named Object To Normal State
State Mesh Model

Non Service
Affected

Service
Affected

Synthetic
Alarm
Object

Synthetic

Alarm
Object

Fired Rules Viewer Mnemonic
trigClearNamedMO

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The purpose of this action is to attempt to clear the current Degraded or Failed state on a (mesh)
object for which the triggering rule does not have an existing (mesh) object reference and so has to
provide an explicit class and instance name.

The action first verifies that the explicitly named (mesh) object currently exists in the system. If
1t does not exist, then an exception is reported and the action is aborted.

If the (mesh) object is in the failed state, this action sends a clear failed synthetic alarm report to
the (mesh) object to attempt to force it to the normal state.

If the (mesh) object is in the degraded state, this action sends a clear degraded synthetic alarm
report to the (mesh) object to attempt to force it to the degraded state.

Note that the object may not actually change state if other non-normal alarm reports are
associated with it; however the system will attempt to clear and remove one synthetic alarm
report of the specified severity.

Scenario Manager Configuration Dialogue

@3 Add Teardown Action kadll The base class of the mesh object to be forced to

R LI i At TR It Htai the. normal state (literal or stored in a rule
variable).

Cwner Base Class "Classa” ./|

Owner Unigue Reference. |"A_1" |,/ The unique reference of thg mesh object tq be
forced to the normal state (literal or stored in a

Log Action To Database? rule variable).

[(a4] [Cancel] ~ Option to record action execution details in the

database.

236

Reset Object to Normal State
State Mesh Model

Mesh
Object

Figure 60 - Reset Object to Normal State

Fired Rules Viewer Mnemonic
tearResetMONormState

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

If the option is selected, this action attempts to clear all synthetic alarm reports (with a target
state of degraded and/or failed) from the supplied (mesh) object.

If the option is selected, this action attempts to un-map i.e. remove from the Current Problem
List, any associated external alarm reports.

If no alarm reports remain in the objects Current Problem List, it will automatically return to the

normal state.

Scenario Manager Configuration Dialogue

.ﬁ Add Teardown Action

right-click fields for template details
Current Context Contextl
Object obji

Clear Synthetic Alarms? o

&

cdl

.—-—

Unmap External Alarms?

Log Action To Database?

[Ok, H Cancel]

The context (working memory) in which the
rule is deployed and the supplied (mesh) object
is inserted

The target (mesh) object to which the synthetic
and/or external alarm reports are attached.

Option to clear all attached synthetic alarm
reports

Option to un-map all attached external alarm
reports

Option to record action execution details in the
database.

237

16.2.2.4 Script Handling

Run Script
State Mesh Model

Script

Figure 61 - Run Script

Fired Rules Viewer Mnemonics
trigRunScript
tearRunScript

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action builds a new script object in the current context (working memory). The script object
acts as a proxy object for the actual script and to preserve concurrency automatically executes the
requested script in a separate thread of execution. Depending on configuration, the actual script
may be executed directly by the Notification Manager on the host platform or remotely via an
instance of the Remote Handler (using the RUN_SCRIPT callout function) which in turn may be
running on the local and/or remote platforms.

Once the script has finished executing (and again depending on configuration) the script object
may remain in the current context. At this point completion status, normal and error outputs and
return codes are available to be evaluated by rules deployed in the current context.

Alternatively, the script object may be automatically removed from the current context and
destroyed on script completion.

Scenario Manager Configuration Dialogue

&3 Add Trigger Action

Execute Remately?

Auto-terminate On Completion?

right-click fields far template details

/

Log Action To Database?

| ok

H Cancel]

The context (working memory) in which the
d triggering rule is deployed.

Current Context Conkextl ./))
| _The base class (literal or stored in a rule
Owner Base Class "ClassA” o | variable) of the owning mesh object.
Owner Unique Reference |"A_1" | The unique reference (l}teral or stqred in a
rule variable) of the owning mesh object.
Scripk To Run "Scripk_1" | .)
~ The name of the script file to execute. The
Parameter 1 "argl” file must be executable and reside in the
P— UCA_HOMZE/scripts directory on the target
Parameter 2 argz2 .\ platform.
" n .\
broosis arg3 Optional arguments (literal values or stored
Parameter 4 "arg4” ./ in rule variables). Gaps in the argument list
are not supported - use .
Parameter 5 "args”

| Option to execute the script remotely via the
Remote Handler on a local and/or remote
platform.

— Option to automatically remove & destroy
the script object from the current context on
script completion.

— Option to record action execution details in
the database.

238

End Script
State Mesh Model

Figure 62 - End Script

Fired Rules Viewer Mnemonics

trigEndScript
tearEndScript

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action removes the supplied script object from the current context (working memory) and
terminates the thread of execution it is running in. The script object is then destroyed.

Scenario Manager Configuration Dialogue

.ﬁ Add Trigger Action

right-click fields for template details

Current Conkexk |b:untext1

Scripk Ta End |script.sh

Ll
e

Log Action To Database?

e

| ok

H Cancel]

The context (working memory) in which the
triggering rule is deployed and the supplied script
object is inserted.

- The script object to terminate and remove.

- Option to record action execution details in the
database.

239

16.2.2.5 Alarm Handling

Raise Alarm
State Mesh Model

Master alarm & Notification
unique identifiers

M ter al \ A Master alarm

/_ Master alarm % [10):2e aster. alarm

SN) unique identifier

NMS Alarm ekl = —— NMS Alarm [—
Object [um———— Notification Object |y Notification

Notification‘\ / Notification Master alarm / Master alarm
unique identifier unique identifier unique identifier unique identifier
NMS NMS

Figure 63 - Raise Alarm

Fired Rules Viewer Mnemonics
trigRaiseAlarm
tearRaiseAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

If the option to create a master alarm report in the NMS is chosen, the master alarm PENDING
option is set in the supplied notification object and it is updated in the chosen context(s).

This action submits an alarm creation request to the external NMS via the Remote Handler
RAISE_ALARM callout function. The alarm creation request is targeted at the (mesh) object to
which the supplied notification object is attached.

Depending on the level of integration with the external NMS and the intended use of the new
alarm e.g. creation of a master alarm report, the unique identifier of the supplied notification
object may or may not be passed in the alarm creation request.

If the external NMS subsequently delivers a master alarm report to the system in direct response
to the creation request and it includes the notification object unique identifier, the master alarm
report (with its own external NMS unique identifier) may be mapped (automatically or manually)
directly into the originating notification object itself rather than the targeted (mesh) object.

An alternative Remote Handler integration, again triggered on receipt of a master alarm creation
request, may artificially generate a system-specific external NMS master alarm report unique
1dentifier and set this directly in the supplied notification object, without the need for the actual
external master alarm report to be delivered back to the system and mapped onto the originating
notification. This mechanism still requires the system to send the generated system-specific
master alarm report unique identifier along with the creation request out to the external NMS, so
that it can (in subsequent requests from the system) associate the generated system-specific
master alarm report unique identifier with the equivalent identifier for the actual external NMS
alarm report.

Regardless of integration technique, this optional ability to map generated alarms to notification
objects 1s useful for the creation and handling of ‘master’ alarms. These are typically used to act
as an artificial indicator of a problem, often on an object that may not otherwise report events.
They may also act as a container for contributory and/or sympathetic alarms since the existence
of this mapped ‘master’ alarm report in a notification object may be evaluated in rules using the
‘master alarm status’ attribute and further actions may attach contributory and/or sympathetic
alarms to it. Existence of the ‘master’ alarm report therefore implies that the system has access to
the ‘master’ alarm’s external NMS unique identifier, since it will need to issue instructions to the
external NMS to carry out such operations.

240

Scenario Manager Configuration Dialogue

&3 Add Trigger Action

right-click fields for template details

Current Context
Target Context
Matification

Ewent Type
Probable Cause
Perceived Severity
Additional Text

Master Alarm?

|Cnntext1

|Cnntext2

Inotifo -

|cu:ummunicatiu:-ns.ﬁ.larm &I\\ -
.\ \L

L
critical v \

|Alarn'| text @ |
\

| adapterError

Log Action To Database?

o]

The context (working memory) in which
the triggering rule is deployed and the
supplied notification object is inserted.

An alternative context in which the
supplied notification object may also be
inserted (if un-used, set as Current
Context).

The notification object attached to the
targeted (mesh) object.

X.733 Event Type for the new alarm
report.
X.733 Probable Cause for the new alarm
report.

X.733 Perceived Severity for the new
alarm report.

Optional Additional Text message to be
inserted into the alarm report in the
external NMS e.g. creation reason.

Option to create a normal or master
alarm report.

Option to record action execution details
in the database.

241

Update Alarm Field In Latest Alarm
State Mesh Model

Update Field
]

NMS

Figure 64 - Update Alarm Field In Latest Alarm

Fired Rules Viewer Mnemonic
trigUpdateAlarmField
tearUpdateAlarmField

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action attempts to retrieve details of the latest alarm report from the supplied (mesh) object
and if successful, an update alarm request is sent to the external NMS via the Remote Handler’s
UPDATE_ALARM callout function.

The update pending flag is set on the alarm object representing the alarm report and the update
pending count is incremented in the supplied (mesh) object. When the alarm report update is
received from the external NMS, the update pending flag is cleared on the alarm object
representing the alarm report and the update pending count is decremented in the supplied
(mesh) object.

When the alarm field to be updated is chosen, the new field value entered will override the

existing alarm field value unless either or both of the Append or Prefix are selected.

Scenario Manager Configuration Dialogue
&3 Add Trigger Action

right-click fields for template details

|Context1 ¢
|Context2 e /|
Obiject |abj0 o
\additionalText ~ ~@—]

|.ﬁ.dditi|:|na| alarm text .’I'

—
Append?

[] Prefix? ‘\
Log Actm
=

Current Context

Targek Conkext

Event Field Mame

Field Value

Additional Field Info

| ok

242

The context (working memory) in which the
triggering rule is deployed and the supplied
(mesh) object is inserted.

An alternative context in which the supplied
(mesh) object may also be inserted (if un-used, set
as Current Context).

The (mesh) object whose latest alarm report is to
be updated.

The field in the alarm report to be updated.

The new field value to be used to update the
alarm report. This will replace the existing value
unless the one or both of the Append or Prefix
options are selected

Optional additional information to control how the
field in the alarm is to be updated

Option to append the new field value to the
existing field value..

Option to prefix the existing field value with the
new field value.

Option to record action execution details in the
database.

Update Alarm Field In Master Alarm

State Mesh Model

NMS

Update Field

Primary

Notification FVaster

Figure 65 - Update Alarm Field In Master Alarm

Fired Rules Viewer Mnemonic

trigUpdateAlarmFieldForNotif
tearUpdateAlarmField ForNotif

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to retrieve details of the master alarm report from the supplied primary
notification object and if successful, an update alarm request is sent to the external NMS via the
Remote Handler’'s UPDATE_ALARM callout function.

The update pending flag is set on the alarm object representing the master alarm report. When
the master alarm report update is received from the external NMS, the update pending flag is
cleared on the alarm object representing the master alarm report.

When the alarm field to be updated is chosen, the new field value entered will override the
existing alarm field value unless either or both of the Append or Prefix are selected.

Scenario Manager Configuration Dialogue

@3 Add Trigger Action

Makification

Field Valus

Append?

[] Prefix?

right-click fields for template details

Current Conkext

Target Conkexk

Event Ficld Mame

Additional Field Info

|C|:untext1 ¢

|Cnntext2 (r
Inatifg o

| additional Text w |.'

|.ﬁ.ddit|:unal alarm text ﬁ'

| el

.\

Log Actionglo Database?

I

oK

] [Cancel\]\

X]
LA NN

[

The context (working memory) in which the triggering
rule is deployed and the supplied notification object is
inserted.

An alternative context in which the supplied
notification object may also be inserted (if un-used, set
as Current Context).

The notification object whose master alarm report is to
be updated.

The field in the alarm report to be updated.

The new field value to be used to update the alarm
report. This will replace the existing value unless one
or both of the Append or Prefix options are selected
Optional additional information to control how the
field in the alarm is to be updated

This will replace the existing value unless the one or
both of the Append or Prefix options are selected.
Option to append the new field value to the existing
field value.

Option to prefix the existing field value with the new
field value.

Option to record action execution details in the
database.

243

Acknowledge Latest Object Alarm
State Mesh Model

NMS

Figure 66 - Acknowledge Latest Object Alarm

Fired Rules Viewer Mnemonics
trigAckLatestAlarm
tearAckLatestAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action sends an acknowledge alarm request to the external NMS via the Remote Handler’s
ACKNOWLEDGE_CAUSAL_ALARM callout function. It includes the external NMS alarm report
unique identifier extracted from the latest alarm report received by the supplied (mesh) object.

Scenario Manager Configuration Dialogue

The context (working memory) in which the
triggering rule is deployed and the supplied
right-click fields for template details mesh object is inserted.

Current Conkext |C|:|ntext1 ./ |

| The mesh object containing the latest alarm

Object |DbjU report.

Additional Text |ndditinnal alarm kext

— Optional Additional Text message to be
Log Action To Database? inserted into the alarm report in the external

.\ NMS e.g. acknowledgement reason.
[(8]4 l [Cancel]

Option to record action execution details in
the database.

244

Terminate Latest Object Alarm
State Mesh Model

NMS

Figure 67 - Terminate Latest Object Alarm

Fired Rules Viewer Mnemonic
trigTermLatestAlarm
tearTermLatestAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action sends a terminate alarm request to the external NMS via the Remote Handler’s
TERMINATE_CAUSAL_ALARM callout function. It includes the external NMS alarm report
unique identifier extracted from the latest alarm report received by the supplied (mesh) object.

Scenario Manager Configuration Dialogue

)) B The context (working memory) in which the
#0 Add Trigger Action LaJN triggering rule is deployed and the supplied

rightelick fields for template details | mesh object is inserted.

Current Context |Cu:untext1 ./| . o
The mesh object containing the latest alarm

Object ||:|I:|jIZI .V'|' |~ report.

Addtional Text |.C'.|:||:||I:||:|naIText I~ Optional Additional Text message to be

Log Action To Database? inserted into the alarm report in the external

.\ NMS e.g. termination reason.
[Ik l [Cancel] L

Option to record action execution details in

the database.

245

Terminate Master Alarm
State Mesh Model

Master alarm
\El7a70 | unique identifier

(0s)[Slodll ¢-—--—------- Notification
\ / Master alarm

unique identifier
NMS

Figure 68 - Terminate Master Alarm

Fired Rules Viewer Mnemonic
trigTermMasterAlarm
tearTermMasterAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action examines the supplied notification object for the presence of a ‘master’ alarm report.

If a ‘master’ alarm report has never been received, a record is added to this effect in the action log
in the database and processing is terminated.

If a ‘master’ alarm report has been received but is not attached to the supplied notification object,
a record is added to this effect in the action log in the database and processing is terminated.

An alarm termination request is sent to the external NMS via the Remote Handler
TERMINATE_MASTERALARM callout function. The alarm termination request is implicitly
targeted at the equivalent alarm report maintained by the external NMS, identified by the
previously received ‘master’ alarm external NMS unique identifier held in the supplied
notification object.

Scenario Manager Configuration Dialogue

@\ Add Trigger Action M The context (working memory) in which the
== triggering rule is deployed and the supplied
right-click fields for template details notification object is inserted.

t-urrent Context |C|:untext1 The notification object attached to the targeted

o—
Matification |matifo —t (mesh) object.
.\L

Additionial Test \AdditionalText

Optional Additional Text message to be
" appended to the alarm report in the external

.\ NMS e.g. termination reason.

[0k] [Cancel] Option to record action execution details in the
database.

Log Action To Database?

246

Clear Alarm
State Mesh Model

Master alarm

/N\Eldasl | unique identifier
Object [Ryu Notification
\ / X.733 clearance

or master alarm
NMS unique identifier

Figure 69 - Clear Alarm

Fired Rules Viewer Mnemonic
trigClearAlarm
tearClearAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

If the option to create a master alarm report in the NMS is chosen, the master alarm PENDING
option is set in the supplied notification object and it is updated in the chosen context(s).

This action sends an alarm clearance request to the external NMS via the Remote Handler
CLEAR_ALARM callout function.

Depending on the level of integration with the external NMS and the availability or otherwise of
a previously received or generated external NMS ‘master’ alarm unique identifier in the supplied
notification object, the Remote Handler integration must adopt an appropriate technique to clear
an existing alarm in the external NMS. This may vary from an X.733-style alarm clearance
relying solely on the supplied fields to a closure based on an external NMS ‘master’ alarm unique
identifier. An alarm clearance request may clear alarm reports on (mesh) objects or ‘master’
alarm reports on notification objects.

Scenario Manager Configuration Dialogue

. % The context (working memory) in which
&3 Add Trigger Action L) the triggering rule is deployed and the
supplied notification object is inserted.

tight-click fields for template details
An alternative context in which the

Current Context Conkext1 . e . .
| supplied notification object may also be
Target Context Context? ./ inserted (if un-used, set as Current
o _ Context).
Hotification notf) —_1 The notification object attached to the
Event Type communicationsalarm O——— = ¥ targeted (mesh) object.

- X.733 Event Type for the clearance alarm

Probable Cause adapterError O\V report.

. _ — - X.733 Probable Cause for the clearance

Perceived Severity | critical O\V alarm report.

additional Text AddtionalText | X.733 Perceived Severity for the clearance
alarm report.

[v] Master Alarm? | Optional Additional Text message to be

inserted into the alarm report in the
Log Action To Database? ‘\ external NMS e.g. clearance reason.
| Option to clear a normal or master alarm

I oK l [Caniel] report.
Option to record action execution details in

the database.

247

Associate Marker Notification Alarms to Master
State Mesh Model

Marker

Primary
Notification

A/Master alarm

unique identifier v /

Notification

NMS

.- Current

Alarm .
event list

Object

Alarm [

Figure 70 - Associate Marker Notification Alarms to Master

Fired Rules Viewer Mnemonic
trigAssociateMarkerAlarmsToMaster

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

The purpose of this action is to associate one or more alarm reports in the supplied marker
notification’s current event list with a ‘master’ alarm report in an extermal NMS.

This action examines the supplied primary notification object for the presence of a ‘master’ alarm
report.

If a ‘master’ alarm report has never been received, a record is added to this effect in the action log
in the database and processing is terminated.

If a ‘master’ alarm report has been received but is not attached to the supplied notification object,
a record is added to this effect in the action log in the database and processing is terminated.

For each alarm object in the supplied marker notification object’s current event list, an alarm
demotion request (including the ‘master’ alarm report external NMS reference) is sent to the
external NMS via the Remote Handler's DEMOTE_CHILD ALARMS callout function. The effect
in the external NMS depends on the level of integration and its inherent capabilities.

On successful completion of the action, the ‘child alarms demoted’ attribute in the supplied
marker notification object is set to true and this may be evaluated by additional rules.

Scenario Manager Configuration Dialogue

&8 Add Trigger Action

right-click fields for template details

Current Conkext |Cu:-ntext1

Target Conktext |Cnntext2

Primary Matification |ru:|tiFEI

Marker Makification |ru:|tiF1

a

AN

248

The context (working memory) in which the triggering rule
is deployed and where the primary and marker notification
objects are inserted.

An alternative context in which the primary and marker
notification objects may also be inserted (if un-used, set as
Current Context).

The primary notification containing the external NMS

‘master’ alarm report reference.
N
i N - . .
[]Leg Action To Database? The marker notification object whose current event list
contains the set of alarm reports to be associated with the
I Ok l [Cancel] ‘master’ alarm report.
N

Option to record action execution details in the database.

Dissociate Marker Notification Alarms From Master
State Mesh Model

Primary Marker
Notification Notification
A/Master alarm | /
NMS unique identifier i i
~Current
Alarm Alarm .
« event list

Object

Figure 71 - Dissociate Marker Notification Alarms From Master

Fired Rules Viewer Mnemonic
tearDissociateMarkerAlarmsFromMaster

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

The purpose of this action is to dissociate one or more alarm reports in the supplied marker
notification’s current event list from a ‘master’ alarm report in an extermal NMS.

This action examines the supplied primary notification object for the presence of a ‘master’ alarm
report.

If a ‘master’ alarm report has never been received, a record is added to this effect in the action log
in the database and processing is terminated.

If a ‘master’ alarm report has been received but is not attached to the supplied notification object,
a record is added to this effect in the action log in the database and processing is terminated.

For each alarm object in the supplied marker notification object’s current event list, an alarm
promotion request (including the ‘master’ alarm report external NMS reference) is sent to the
external NMS via the UCA Remote Handler's PROMOTE_CHILD_ ALARMS callout function. The
effect in the external NMS depends on the level of integration with UCA and its inherent
capabilities.

On successful completion of the action, the ‘child alarms demoted’ attribute in the supplied
marker notification object is set to false and this may be evaluated by additional rules.

Scenario Manager Configuration Dialogue

@ Add Teardown Action] The cpntext (working memory) in whlch the triggering
= rule is deployed and where the primary and marker

right-click fields for tamplate details notification ObjeCtS are inserted.

Current Conkext |Cantext1 J | An alternative context in which the primary and marker

Targek Context |Cuntext2

as Current Context).

Primary Natification |ncutif0

Marker Natification |notif0 ‘master’ alarm report reference.

L E

notification objects may also be inserted (if un-used, set

The primary notification containing the external NMS

[] Log Action To Database? N The marker notification object whose current event list

[ok H Cancel I

contains the set of alarm reports to be promoted from
under the ‘master’ alarm report.

Option to record action execution details in the database.

249

Associate Object Alarms To Master
State Mesh Model

Mesh

Object Primary
Notification

A/Master alarm

unique identifier

NMS

<4-----

Alarm
Object

Figure 72 - Associate Object Alarms To Master

Fired Rules Viewer Mnemonic
trigAssociateObjectAlarmsToMaster

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The purpose of this action is to associate one or more alarm reports in the supplied (mesh) object’s
current event list with a ‘master’ alarm report in an extermal NMS.

This action examines the supplied primary notification object for the presence of a ‘master’ alarm
report.

If a ‘master’ alarm report has never been received, a record is added to this effect in the action log
in the database and processing is terminated.

If a ‘master’ alarm report has been received but is not attached to the supplied notification object,
a record is added to this effect in the action log in the database and processing is terminated.

For each alarm object in the supplied object’s current event list, an alarm demotion request
(including the ‘master’ alarm report external NMS reference) is sent to the external NMS via the
Remote Handler’'s DEMOTE_CHILD_ALARMS callout function. The effect in the external NMS
depends on the level of integration and its inherent capabilities.

Scenario Manager Configuration Dialogue

&8 Add Trigger Action

right-click fields for template details ¥ and primary notification objects are inserted.
Current Context |C-:untext1 7{ The primary notification object containing the
Primary Motification |n|:|tiﬂ:| M—I— — external NMS ‘master’ alarm report reference.
Object |':'|:'j':I .*4~ | The (mesh) object whose current event list
Log Action To Database? \ 3;1;;:1&;;1: ‘gzsiz’ (;fi Eflrlla;lr]r:; ;szérts to be associated
I ok l [Cancel] ~ Option to record action execution details in the

database.

250

The context (working memory) in which the
triggering rule is deployed and where the mesh

Dissociate Object Alarms From Master
State Mesh Model

Mesh

Object Primary
Notification

A/Master alarm

unique identifier

NMS

Alarm
Object

Figure 73 - Di Dissociate Object Alarms From Master

Fired Rules Viewer Mnemonic
tearDissociateObjectAlarmsFromMaster

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

The purpose of this action is to dissociate one or more alarm reports in the supplied (mesh)
object’s current event list from a ‘master’ alarm report in an extermal NMS.

This action examines the supplied primary notification object for the presence of a ‘master’ alarm
report.

If a ‘master’ alarm report has never been received, a record is added to this effect in the action log
in the database and processing is terminated.

If a ‘master’ alarm report has been received but is not attached to the supplied notification object,
a record 1s added to this effect in the action log in the database and processing is terminated.

For each alarm object in the supplied object’s current event list, an alarm promotion request
(including the ‘master’ alarm report external NMS reference) is sent to the external NMS via the
UCA Remote Handler’'s PROMOTE_CHILD ALARMS callout function. The effect in the external
NMS depends on the level of integration with UCA and its inherent capabilities.

Scenario Manager Configuration Dialogue

4 Add Teardown Action triggering rule is deployed and where the mesh
right-click fields far template details and primary notification objects are inserted.
current Context Context1 [4 | The primary notification object containing the

A4 external NMS ‘master’ alarm report reference.

Primary Maotification | naokifo ./(|

. : - The mesh object whose current event list contains
Object obijo
: |] .XI— the set of alarm reports to be promoted from under
[Log Action Ta Database? the ‘master’ alarm report.
[oK] [Cancel] ™ Option to record action execution details in the

database.

251

The context (working memory) in which the

Associate Alarms
State Mesh Model

Primary

Secondary

Figure 74 — Associate Alarms

Fired Rules Viewer Mnemonic

trigAssociateAlarms
Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The action attempts to obtain the latest alarm report from each of the supplied (mesh) objects.

If the latest alarm reports are not obtainable from either of the supplied (mesh) objects, a record
is added to this effect in the action log in the database and processing is terminated.

An alarm associate request (including both alarm report external NMS references) is sent to the
external NMS via the Remote Handler's DEMOTE_CHILD_ALARMS callout function. The
association request will attempt to make the latest alarm report from the secondary (mesh) object
a child of the latest alarm report from the primary (mesh) object. The effect in the external NMS
depends on the level of integration and its inherent capabilities.

Scenario Manager Configuration Dialogue

&8 Add Trigger Action

right-click fields for template details

Current Conbext |Cu:untext1

Primary Object ||:|I:|jIZI

Secondary Object |-:||:qu|

The context (working memory) in which the
' triggering rule is deployed and where the primary
and secondary (mesh) objects are inserted.

- The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.

Log Action To Database?

[04 l [Cancel

¢]
o
o
T~

~ The secondary (mesh) object whose current event
list contains the child external NMS alarm
reference.

~ Option to record action execution details in the

252

Dissociate Alarms
State Mesh Model

Primary

Secondary

Figure 75 — Dissociate Alarms

Fired Rules Viewer Mnemonic

tearDissociateAlarms

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The action attempts to obtain the latest alarm report from each of the supplied (mesh) objects.

If the latest alarm reports are not obtainable from either of the supplied (mesh) objects, a record
is added to this effect in the action log in the database and processing is terminated.

An alarm dissociation request (including both alarm report external NMS references) is sent to

the external NMS via the Remote Handler's DEMOTE_CHILD_ALARMS callout function. The

dissociation request will attempt to remove the latest alarm report from the secondary (mesh)
object as a child of the latest alarm report from the primary (mesh) object. The effect in the
external NMS depends on the level of integration and its inherent capabilities.

Scenario Manager Configuration Dialogue

.ﬁ Add Teardown Action

right-click fields for template details

Current Conkext |Cnntext1

Primary Object |nbjU

Secondary Object |DbjU

el
o
o]

[]Log Action To Database?

e

| ok || can

el]

The context (working memory) in which the
triggering rule is deployed and where the primary
and secondary (mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.

The secondary (mesh) object whose current event
list contains the child external NMS alarm
reference.
Option to record action execution details in the
database.

253

Associate CPL Alarms
State Mesh Model

Primary

Fired Rules Viewer Mnemonic
trigAssociateCPLAlarms

Summary

Secondary Mesh
Object

CPL

Alarm

Objects

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The action attempts to obtain the latest alarm report from the Primary mesh object and the CPL
(Contributing Problem List) of the Secondary mesh object.

If the either are not obtainable from the supplied (mesh) objects, a record is added to this effect in
the action log in the database and processing is terminated.

An alarm associate request (including both alarm report external NMS references) is sent to the
external NMS via the Remote Handler's DEMOTE_CHILD_ALARMS callout function for each
alarm in the CPL. The association request will attempt to make the alarm reports from the
secondary (mesh) object a child of the latest alarm report from the primary (mesh) object. The
effect in the external NMS depends on the level of integration and its inherent capabilities.

Scenario Manager Configuration Dialogne

&3 Add Trigger Action

right-click fields for template details

Current Context |C-:untext1

o
Primary Object ||:ubj0 .-I-
ol

Secondary Object ||:|bj1

Log Action To Database? ‘\

[OK H Cancel]

The context (working memory) in which the
triggering rule is deployed and where the primary
and secondary (mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.

The secondary (mesh) object whose current event
list contains the child external NMS alarm
reference.
Option to record action execution details in the
database.

254

Dissociate CPL Alarms
State Mesh Model

Primary

Latest
Alarm
Object

Secondary Mesh
Object

CPL

Alarm
Objects

Figure 76 — Dissociate CPL Alarms

Fired Rules Viewer Mnemonic
tearDissociateCPLAlarms

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The action attempts to obtain the latest alarm report from the Primary mesh object and the CPL
(Contributing Problem List) of the Secondary mesh object.

If the either are not obtainable from the supplied (mesh) objects, a record is added to this effect in
the action log in the database and processing is terminated.

An alarm dissociation request (including both alarm report external NMS references) is sent to
the external NMS via the Remote Handler's DEMOTE_CHILD_ALARMS callout function. The
dissociation request will attempt to remove the alarm reports from the secondary (mesh) object
CPL as a child of the latest alarm report from the primary (mesh) object. The effect in the
external NMS depends on the level of integration and its inherent capabilities.

Scenario Manager Configuration Dialogue

.ﬁ Add Teardown Action

right-click fields far template details

\

Current Context ‘Cnntext1|

Primary Object ‘ol:u]t]

Secondary Object ‘ ohjl

./
[] Log Action To Database? \

I oK [Cancel]

The context (working memory) in which the
triggering rule is deployed and where the primary
and secondary (mesh) objects are inserted.

The primary (mesh) object whose current event list
contains the parent external NMS alarm reference.

The secondary (mesh) object whose current event
list contains the child external NMS alarm
reference.
Option to record action execution details in the
database.

255

Forward Last Alarm
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigForwardLastAlarm
tearForwardLastAlarm

Summary

If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The action attempts to obtain the latest alarm report the supplied (mesh) object and in turn
attempts to retrieve the original alarm report details from the Alarms database.

The alarm report details are sent on to the destination external NMS via the Remote Handler’s

FORWARD_LAST ALARM callout function.

If the latest alarm report is of cleared severity and the option to remove cleared alarms is checked
in the action dialogue, the cleared alarm will be automatically removed from the Alarms

database.

Scenario Manager Configuration Dialogue

.h Add Trigger Action

right-click fields for template details

Current Conkext Contexkl
Object obil

Sutornatically Remove Last alarm if Cleared?

[Ok H Cancel]

@

Log Action To Database? — |

The context (working memory) in which the
triggering rule is deployed and where the (mesh)
object is inserted.

The (mesh) object whose last alarm report is to be
forwarded to the destination external NMS

Option to automatically remove the last alarm
report from the Alarm database if its severity is
cleared.

Option to record action execution details in the
database.

256

Remove Accumulated Alarms
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigRemoveAccumulatedAlarms
tearRemoveAccumulatedAlarms

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to prevent the build-up of accumulated external alarms on a (mesh) object in
the situation where alarm clears are never received from the source system. It is normally used
when the count of external alarms in the target (mesh) object’s Current Problem List has reached
or exceeded a threshold value.

The action has been designed to be as flexible as possible and may be used in a number of
alternate configurations, depending on the capabilities of the source system and individual user
requirements. It may be safely used in combination with the Forward Last Alarm action, provide
that action is executed at a higher priority to avoid false triggers. Care should also be taken to
ensure that the effect of each option is fully understood and that combinations of options are
chosen to avoid conflict.

The following diagram illustrates the effect of the various configuration options on information
flows within and between the connected systems:

oot Databuase ModSator Optons wrchanged -

Alarm
Database
Mesh Ongect Alem Retenton Ootons
Source | Generic i Data o Event ___ Topology Remote ___ Destination
System Collector Collector Manager Server T Handler System

Tj—l v | Parwerd Actaratcaty Generated Cewr Alwrms To Samcte aruder !

V| Automascaly Gemer ste Osar Narms!

Socrce Syvten Evertt Updale Oplrs

Cxtra Message Text

Figure 77 - Remove Accumulated Alarms

The action attempts to retrieve the Current Problem List (CPL) from the supplied originating

(mesh) object.

If the list is valid (i.e. contains at least on external alarm):
The Mesh Object Alarm Retention option is applied to the CPL to identify the
Oldest or Newest alarm if required. If an entry is identified, it is excluded from
further processing and will be left unmodified in the (mesh) object’s CPL on
completion of the action.
Each of the non-excluded alarms in the CPL is subjected to the following
processing:

257

If the alarm’s event ID is invalid (e.g. it is a sympathetic alarm), then it is
ignored and an exception is reported.

If acknowledgement (or acknowledgement & termination) of the alarm is
required in the Source System according to the Source System Event
Update option, an acknowledgement callout is delivered to the Remote
Handler. It is the responsibility of the integrator to ensure that the
appropriate operation is carried out on the Source System in response to
the callout.

If termination (or acknowledgement & termination) of the alarm is
required in the Source System according to the Source System Event
Update option, a termination callout is delivered to the Remote Handler.
It is the responsibility of the integrator to ensure that the appropriate
operation is carried out on the Source System in response to the callout.
Note: termination of an alarm in the Source System would normally be
expected to result in an equivalent alarm update message being received
by the system, in turn causing the alarm to be terminated (and therefore
closed) within the system.

Whenever the Source System Event Update option is exercised, extra text
may be appended to the end of the Additional Text field of the alarm in
the Source System using the Additional Text dialogue field.

If clearance of the alarm in the Alarms database is required according to
the Event Database Modification option, the relevant entry is updated to
close the alarm and the originating time of the clearance is set to be the
current time.

If removal of the alarm in the Alarms database is required according to
the Event Database Modification option, .the relevant entry is removed.

If internal generation of a clearance alarm is required for the alarm
according to the Automatically Generate Clear Alarms checkbox:

If the subsequent generated alarm clearance is NOT required to be
forwarded by the Remote Handler according to the Forward
Automatically Generated Clear Alarms To Remote Handler
checkbox, the system will prepend “IGNORE:“ to any text from the
Additional Text dialogue field (the Forward Last Alarm action will
subsequently ignore any alarm clearance whose Additional Text
field starts with “IGNORE.”).

The alarm clearance will be automatically generated and sent
internally to the system KEvent Manager where it will be
processed, resulting in the alarm being removed from the CPL of
the supplied (mesh) object.

258

Scenario Manager Configuration Dialogue

& Add Trigger Action

right-click fields for template details

The context (working memory) in which the
) triggering rule is deployed and where the
/’ (mesh) object is inserted.

The (mesh) object whose Current Problem

OA’ List (CPL) is to be processed.

Option to retain none, oldest or newest

alarm in the CPL. Note oldest or newest
alarms are not processed by the action.

T~ Option to leave the processed alarms in the

CPL unchanged, acknowledged, terminated

Current Conkexk ‘Cnntextl ./ ‘
Object obj0

Mesh Object Alarm Retention Options ‘nnne P LY !
Source System Event Modification Options ‘unchanged .\ W ‘
Addtional Text AddticnalText LN

Event Database Modification Options ‘unchanged .\ \\ v

or acknowledged & terminated in the

Automatically Generate Clear Alarms?
Forward Automatically Generated Clear Alarms To Re

Lag Action Ta Database?

Source System.

N\
Optional extra text to append to the
Additional Text field of alarms that are
modified in the Source System.

N Option to leave the processed alarms in
CPL unchanged, cleared or cleared &

N

removed in the Alarms database.

Option to automatically generate clear
alarms for the processed alarms in the CPL.
Option to forward automatically generated
clear for the processed alarms in the CPL.

Option to record action execution details in
the database.

259

Raise Expedited Alarm
State Mesh Model

Mesh
Cbject Primary

Notification

NMS

Figure 78 -Raise Expedited Alarm

Fired Rules Viewer Mnemonic
trigRaiseExpeditedAlarm
tearRaiseExpeditedAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action submits an alarm creation request to the external NMS via the Remote Handler
RAISE_EXPEDITED_ALARM callout function. The purpose of this callout is to allow a system to
report a host platform resource problem e.g. disk space exhaustion, to the external NMS. This
implies that an expedited alarm creation request should be carried out even if the system is
operating in secondary mode (when its Remote handler outputs are normally turned off, thus
preventing the standard alarm creation mechanism from being used for this purpose). The
supplied notification is that created by rules in a user-supplied host platform problem detection
scenario and may contain additional information relevant to the detected problem.

Depending on the level of integration with the external NMS and the intended use of the new
alarm, the unique identifier of the supplied notification object may or may not be passed in the
expedited alarm creation request, although it is not intended that this action will create a master
alarm as described in the Raise Alarm action.

Scenario Manager Configuration Dialogue

A dd Trigger Action Il , The context (working memory) in

=4/ which the triggering rule is deployed
right-click fields for template details / and the supplied notification object is
Current Conkext Context1 inserted.
NatfFication a0 o—1— The notification object .attached to

the targeted (mesh) object.
Event: Type communicationsAlarm ® 3 X.733 Event Type for the new alarm
] y ° report.

hesEE LEnEe anapterError “TI X.733 Probable Cause for the new

Perceived Severity | critical .N alarm report.

[— X.733 Perceived Severity for the new

Addiional Text AdditionalText .\ alarm report.
Log Actian Ta Database?

|~ Optional Additional Text message to

m - be inserted into the alarm report in
i the external NMS e.g. creation
reason.

Option to record action execution
details in the database.

260

Clear Expedited Alarm
State Mesh Model

Mesh
Cbject

NMS

Figure 79 - Clear Expedited Alarm

Fired Rules Viewer Mnemonic
trigClearExpeditedAlarm
tearClearExpeditedAlarm

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

This action submits an alarm clearance request to the external NMS via the Remote Handler
CLEAR_EXPEDITED_ALARM callout function. The purpose of this callout is to allow a system
to report the resolution of a host platform resource problem e.g. disk space exhaustion, to the
external NMS. This implies that an expedited alarm clearance request should be carried out even
if the system is operating in secondary mode (when its Remote handler outputs are normally
turned off, thus preventing the standard alarm clearance mechanism from being used for this
purpose). The supplied notification is that created by rules in a user-supplied host platform
problem detection scenario and may contain additional information relevant to resolution of the
previously detected problem.

Scenario Manager Configuration Dialogue

&\ Add Trigger Action / The context (working memory) in
= which the triggering rule is deployed

right-click fields for template details and the supplied notification object is
Current Context ‘Contextl inserted.
Notification ‘notiﬂ] O_VI-— The notification objec_t attached to
the targeted (mesh) object.
Event Type ‘cnmmunicationsnlarm P V! X.733 Event Type for the clearance
| alarm report.
Probable Cause ‘adapterErrnr PS o X733 Probable Cause for the
Perceived Sevetity ‘critical ® V| clearance alarm report.
- — X.733 Perceived Severity for the
Additional Texk ‘ﬂ.ddltmnalText P | clearance alarm report.
| Log Action To Database? . R
SEpTER — Optional Additional Text message to
m — be inserted into the cleared alarm
report in the external NMS e.g.

clearance reason.

Option to record action execution
details in the database.

261

16.2.2.6 Timer Management

Create Countdown Timer
State Mesh Model

Timer
Cbiect

Model
Chiect

Mesh Cbject, Child Group, Associate Group

Timer
Cbject

Correlation

Notification, Script, Data

Timer

Chject Global

System (reserved)

Cbject

Figure 80 - Create Countdown Timer

Fired Rules Viewer Mnemonics
trigCreateCountdownTimer
tearCreateCountdownTimer

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to create a new countdown timer object that is associated with the supplied
owner object (may be a (mesh) object, a child group object, an associate group object, a notification
object, a script object, a data object or a system object (reserved for use by the Resilience
package). Only one timer is currently allowed per owner object and the timer resolution is 1
second.

The new timer may be created and optionally not started (state = INITIALISED) or automatically
started (state = RUNNING). A running timer may be suspended (state = SUSPENDED), resumed
(state = RUNNING) and re-initialised (state = INITIALISED) at any time.

When the countdown timer reaches the end of a cycle, it will inform the owning object that a cycle
has completed (state = TIMEOUT).

When all cycles are completed, the timer will cease to operate (state = COMPLETED) unless re-
initialised.

Scenario Manager Configuration Dialogue
& hdd Trigger Action

The new countdown timer owning object

right-click fields for template details

Cwner |

Repeat Cycles (0 = Infinike) |EI / |
Cycle Duration (seconds) |1 .\I.
Swvnchronisation Boundary |nu:une —__ ¥ |
Aukomatically start? .

Lag Action Ta Database?

[Ok, H Cancel]

The number of countdown cycles that the

| timer will execute before stopping. A value
of 0 causes the timer execute an infinite
number of countdown cycles

|_The duration of a countdown timer cycle in
seconds

—First countdown cycle synchronisation
options {none | minute | hour | day}

- Option to automatically start the new timer
once created

I~

Option to record action execution details in

the database.

262

Start Initialised/Restart Running Countdown Timer
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigStartCountdownTimer
tearStartCountdownTimer

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to start an INITIALISED or restart a RUNNING countdown timer object
that is associated with the supplied owner object.

In each case, the synchronisation setting for the timer object is taken into account when
determining the remaining time to the first or next timeout. Unless the resynchronisation =
NONE option was chosen, this will result in the current cycle duration being less than or equal to
the cycle duration as the system will synchronise the timer object cycle with the next
synchronisation boundary.

Scenario Manager Configuration Dialogue

.ﬁ Add Trigger Action

right-click fields far template details

Owner |_—v‘|’ — The countdown timer owning object

Log Action To Database? @— Option to record action execution details in the
database.

[8] 4 H Cancel]

263

Suspend Running Countdown Timer
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigSuspendCountdownTimer
tearSuspendCountdownTimer

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to suspend a RUNNING countdown timer object that is associated with the
supplied owner object. If successful, the timer state is set to SUSPENDED and the countdown is
stopped at the current point in the cycle.

Scenario Manager Configuration Dialogue

@8 Add Trigser Action

right-click fields for template details

Owne |_v—|— — The countdown timer owning object

Log Action To Database? ®—1— Option to record action execution details in the
database.

[Ok H Cancel]

264

Resume Suspended Countdown Timer
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigResumeCountdownTimer
tearResumeCountdownTimer

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

This action attempts to resume a SUSPENDED countdown timer object that is associated with
the supplied owner object. If successful, the timer state is set to RUNNING and the countdown is
resumed at the current point in the cycle.

Scenario Manager Configuration Dialogue

8 Add Trigger Action

right-click fields far template details

CMner |_ - The countdown timer owning object

Option to record action execution details in the
" database.

Lag Action To Database? *———

[oK, H Cancel]

265

Re-Initialise Countdown Timer
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigReinitialiseCountdownTimer
tearReinitialiseCountdownTimer

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.

The number of remaining cycles for the countdown timer object is reset to the original number of
countdown cycles that were specified when it was first created.
This action attempts to set the timer state to INITIALISED i.e. not currently running.

Scenario Manager Configuration Dialogue

8 Add Trigger Action

right-click fields far template details

Owner |_ | The countdown timer owning object

[] Log Action To Database? &———i— Option to record action execution details in the
database.

[oK, H Cancel]

266

Delete Countdown Timer
State Mesh Model
N/A

Fired Rules Viewer Mnemonics
trigDeleteCountdownTimer
tearDeleteCountdownTimer

Summary
If loop detection is active, the requested action is tested and if a loop is detected the action is

aborted.
This action attempts to delete the timer object that is associated with the supplied owning object.

Scenario Manager Configuration Dialogue

8 Add Trigger Action

right-click fields for template details

Onaner |_ | The countdown timer owning object

[“] Lag Action Ta Database? @—1— Option to record action execution details in the
database.

[Ok H Zancel]

267

16.2.2.7 Analysis
Perform Standard Root Cause Analysis

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigPerformStandardRootCauseAnalysis
tearPerformStandardRootCauseAnalysis

Summary
This action provides a standard root cause analysis tool whose purpose is to identify and report

those problems in a network that are the root cause(s) of a service impact. It operates on a state
mesh, normally beginning at a (mesh) object that represents the impacted service. It offers
standard root cause analysis with very few options; if greater flexibility is required the Perform
Root Cause Analysis provides a much finer degree of control over the analysis.
The following description of the root cause analyser algorithm includes references to the various
configuration options (in bold underlined type) at the points at which they affect the flow of
processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh) object
that has suffered the service impact. It descends recursively through the state mesh, searching
for (mesh) objects whose state has been affected directly or indirectly by underlying network
problems. Objects that satisfy the following search criteria are added to a Non-Normal Objects
List (NNOL):

e In Service Objects

e Degraded Objects
e Failed Objects

Objects that match the following criteria are excluded from the Non-Normal Objects List (NNOL):
e Commissioning Objects

e Out Of Service Objects

e In Maintenance Objects

The recursive search automatically descends through parent-child relationships and uncle-
nephew (relative) relationships below the supplied (mesh) object until the lowest level of the
state mesh is reached at which point it stops. If the Follow Associate Links option is checked,
the analysis will traverse an associative relationship between peer (mesh) objects, before
continuing down through the state mesh.
At the end of the search phase, the analyser has identified the set of non-normal(mesh) objects
that may have directly or indirectly affected the state of the supplied (mesh) object. Once this
phase of operation is complete, the root cause analyser begins a second analytical phase of
processing:
e The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL
object is compared with the list of current (non-marker) notifications. Where an
NNOL object is also found to have an associated notification, the rank of the
notification is compared with the worst notification rank seen so far and if it exceeds
this value, it becomes the new worst rank.

e The NNOL entries are again processed in turn and each entry is compared with the
list of current (non-marker) notifications.

o If an NNOL object is found to have an associated notification:

= If the Only Include Worst Ranked Problem Reports option is
unchecked or the rank of the current notification is equal to the worst
rank:

268

(¢]

e The notification is added to the Problem Reports List

e The events in the notification’s contributory events list are
added to the Contributory Events List.

e The associated master alarm external NMS alarm ID (f
present) together with the notification ID are added to the
Master Alarm List

If an object in the NNOL does not have an associated notification or no
contributory events were added to the Contributory Events List:

= The NNOL object is added to the Affected Objects List
= The NNOL object is added to the Markers List.

= Any events attached to the NNOL object are added to the Sympathetic
Events List.

e A root cause notification is built and:

(@]

A contributory events list is built in the Notification database from the
Contributory Events List constructed previously.

A new notification is built in the Notification database using the contributory
events list in the database.

The Affected Objects List constructed previously is added to the new
notification in the Notification database.

A new notification object is constructed and if the Deliver Results To
Remote Handler option is checked, the RCA Pending flag in the new
notification object is set.

If there are entries in the Sympathetic Events List constructed previously,
they are added to the sympathetic events list for the new notification in the
Notification database.

The new notification object is inserted into the Working Memories (Contexts)
defined in Current Context & Target Context

A marker notification object is created (tied to the new notification object
created above) for each entry in the Markers List

e If the Deliver Results To Remote Handler option is checked, for the String based
remote handler:

(@]

Details of the new notification object (Base Class, Unique Reference, Message
and Notification ID) are added to Alarm Raise block

An entry is added to the Alarm Raise block for each entry in the Problem
Reports List (Base Class, Unique Reference, Rank and the external NMS
events IDs of each of the contributory events in the notification)

An entry is added to the Alarm Raise block for each entry in the Contributory
Events List (the external NMS events ID)

An entry is added to the Alarm Raise block for each entry in the Sympathetic
Events List (the external NMS events ID)

An entry is added to the Alarm Raise block for each entry in the Affected
Objects List (Base Class, Unique Reference)

A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

e If the Deliver Results To Remote Handler option is checked, for the XML based
remote handler see the Remote Handler XML specification for details.

269

Scenario Manager Configuration Dialogue

7 Oy Inchud Worst Ranked Prabler Reparts? = Folow Assodate ks
[V Deliver Results To Remotz Handler? [Log Action To Distzhase? ’

270

Update Standard Root Cause Analysis
State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigUpdateStandardRootCauseAnalysis
tearUpdateStandardRootCauseAnalysis

Summary
This action updates the results of a previous root cause analysis. It operates on a state

mesh, normally beginning at a (mesh) object that represents the impacted service and
updates the notification created by the previous analysis. It offers standard root cause
analysis with very few options; if greater flexibility is required the Update Root Cause
Analysis provides a much finer degree of control over the analysis.
The following description of the root cause analyser algorithm in update mode includes
references to the various configuration options (in bold underlined type) at the points at
which they affect the flow of processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh)
object that has suffered the service impact. It descends recursively through the state
mesh, searching for (mesh) objects whose state has been affected directly or indirectly by
underlying network problems. Objects that satisfy the following search criteria (set in the
configuration dialogue) are added to a Non-Normal Objects List (NNOL):

e In Service Objects

e Degraded Objects
e Failed Objects

Objects that match the following criteria are excluded from the Non-Normal Objects List (NNOL):
e Commissioning Objects

¢ Out Of Service Objects
¢ In Maintenance Objects

The recursive search automatically descends through parent-child relationships and

uncle-nephew (relative) relationships below the supplied (mesh) object until the lowest

level of the state mesh is reached at which point it stops. If the Follow Associate Links
option is checked, the analysis will traverse an associative relationship between peer

(mesh) objects, before continuing down through the state mesh.

At the end of the search phase, the analyser has identified the set of non-normal (mesh)

objects that may have directly or indirectly affected the state of the supplied (mesh)

object. Once this phase of operation is complete, the root cause analyser begins a second
analytical phase of processing:

e The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL
object is compared with the list of current (non-marker) notifications. Where an
NNOL object is also found to have an associated notification, the rank of the
notification is compared with the worst notification rank seen so far and if it exceeds
this value, it becomes the new worst rank.

e The NNOL entries are again processed in turn and each entry is compared with the
list of current (non-marker) notifications.

o If an NNOLobject is found to have an associated notification:

= If the Only Include Worst Ranked Problem Reports option is
unchecked or the rank of the current notification is equal to the worst
rank :

e The notification is added to the Problem Reports List

e The events in the notification’s contributory events list are
added to the Contributory Events List.

271

e The associated master alarm external NMS alarm ID (f
present) together with the notification ID are added to the
Master Alarm List

o If an object in the NNOL does not have an associated notification or no
contributory events were added to the Contributory Events List:

= The NNOL object is added to the Affected Objects List
= The NNOL object is added to the Markers List.

* Any events attached to the NNOL object are added to the Sympathetic
Events List.

A root cause notification is built and:

o A contributory events list is built in the Notification database from the
Contributory Events List constructed previously.

o A new notification is built in the Notification database using the contributory
events list in the database.

o The Affected Objects List constructed previously is added to the new
notification in the Notification database.

o A new notification object is constructed and if the Deliver Results To
Remote Handler option is checked, the RCA Pending flag in the new
notification object is set.

o If there are entries in the Sympathetic Events List constructed previously,
they are added to the sympathetic events list for the new notification in the
Notification database.

o The new notification object is inserted into the Working Memories (Contexts)
defined in Current Context & Target Context

o A marker notification object is created (tied to the new notification object
created above) for each entry in the Markers List

The Notification message is updated if required in the Working Memory contexts.
The Root Cause Notification is updated in the database:

o Any new events in the Contributory Events List constructed previously are
added to the contributory events list attached to the existing notification in
the Notification database

o Any new entries in the Affected Objects List constructed previously are added
to the affected objects list attached to the existing notification in the
Notification database.

o The message attached to the existing notification in the Notification
database is updated is required

If the Deliver Results To Remote Handler option is checked, for the String based
remote handler:

o Details of the new notification object (Base Class, Unique Reference, Message
and Notification ID) are added to Alarm Raise block

o An entry is added to the Alarm Raise block for each entry in the Problem
Reports List (Base Class, Unique Reference, Rank and the external NMS
events IDs of each of the contributory events in the notification)

o An entry is added to the Alarm Raise block for each entry in the Contributory
Events List (the external NMS events ID)

o An entry is added to the Alarm Raise block for each entry in the Sympathetic
Events List (the external NMS events ID)

272

o An entry i1s added to the Alarm Raise block for each entry in the Affected
Objects List (Base Class, Unique Reference)

o A Raise Alarm request is passed to the Notification Manager for delivery to all
attached Remote Handlers

e If the Deliver Results To Remote Handler option is checked, for the XML based
remote handler see the Remote Handler XML specification for details.

Scenario Manager Configuration Dialogue

&8 Add Trigger Action

right-click fields for template details

Current Context |Cu:untext1 |
Target Conktext |Cu:untext2 |
Object | obj v |
Rook Cause Motification |n|:|I:iFIZI " |

Only Include Worst Ranked Problem Reports?

[] Follow Associate Links?

Mew Message |NewMessage |

Existing Message Modification | unchanged w |

[] Celiver Results To Remaote Handler?

0, l [Cancel

273

Perform Root Cause Analysis

State Mesh Model

Not applicable.

Fired Rules Viewer Mnemonics

trigPerformRootCauseAnalysis
tearPerformRootCauseAnalysis

Summary
This action encapsulates a very flexible root cause analysis tool whose purpose is to

identify and report those problems in a network that are the root cause(s) of a service
impact. It operates on a state mesh, normally beginning at a (mesh) object that represents
the impacted service.
The detailed behaviour of the root cause analyser is highly configurable and uses a large
number of options supplied by the Scenario Manager configuration dialogue. The
following description of the root cause analyser algorithm includes references to the
various configuration options (in bold underlined type) at the points at which they affect
the flow of processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh)
object that has suffered the service impact. It descends recursively through the state
mesh, searching for (mesh) objects whose state has been affected directly or indirectly by
underlying network problems. Objects that satisfy the following search criteria (set in the
configuration dialogue) are added to a Non-Normal Objects List (NNOL):

e Include In Service Objects (default true)

e Include Commissioning Objects (default false)
e Include Out Of Service Objects (default false)

¢ Include In Maintenance Objects (default false)
¢ Include Degraded Objects (default true)
¢ Include Failed Objects (default true)

The recursive search automatically descends through parent-child relationships and

uncle-nephew (relative) relationships below the supplied (mesh) object until the lowest

level of the state mesh is reached at which point it stops. If the Follow Associate Links
option is checked, the analysis will traverse an associative relationship between peer

(mesh) objects, before continuing down through the state mesh.

At the end of the search phase, the analyser has identified the set of non-normal(mesh)

objects that may have directly or indirectly affected the state of the supplied (mesh)

object. Once this phase of operation is complete, the root cause analyser begins a second
analytical phase of processing:

e The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL
object is compared with the list of current (non-marker) notifications. Where an
NNOL object is also found to have an associated notification, the rank of the
notification is compared with the worst notification rank seen so far and if it exceeds
this value, it becomes the new worst rank.

e The NNOL entries are again processed in turn and each entry is compared with the
list of current (non-marker) notifications.

o If an NNOL object is found to have an associated notification:

= If the Only Include Worst Ranked Problem Reports option is
unchecked or the rank of the current notification is equal to the worst
rank :

e If the Build Problem Reports List option is checked, the
notification is added to the Problem Reports List

274

e If the Build Contributory Events List option is checked,
the events in the notification’s contributory events list are
added to the Contributory Events List.

e If the Build Master Alarms List option is checked, the
associated master alarm external NMS alarm ID (f present)
together with the notification ID are added to the Master
Alarm List

If an object in the NNOL does not have an associated notification or no
contributory events were added to the Contributory Events List:

= If the Build Affected Objects List option is checked, the NNOL
object is added to the Affected Objects List

= If the Attach Marker Notifications to Affected Objects option is
checked, the NNOL object is added to the Markers List.

» If both the Build Affected Objects List & Build Sympathetic
Events List options are checked, any events attached to the NNOL
object are added to the Sympathetic Events List.

e If the Build Root Cause Notification option is checked:

O

A contributory events list is built in the Notification database from the
Contributory Events List constructed previously.

A new notification is built in the Notification database using the contributory
events list in the database.

If the Build Affected Objects List option is checked, the Affected Objects
List constructed previously is added to the new notification in the Notification
database.

A new notification object is constructed and if the Deliver Results To
Remote Handler option is checked, the RCA Pending flag in the new
notification object is set.

If the Build Affected Objects List option is checked and there are entries in
the Sympathetic Events List constructed previously, they are added to the
sympathetic events list for the new notification in the Notification database.

The new notification object is inserted into the Working Memories (Contexts)
defined in Current Context & Target Context

If the Attach Marker Notifications to Affected Objects option is checked,
a marker notification object is created (tied to the new notification object
created above) for each entry in the Markers List

e If the Deliver Results To Remote Handler option is checked:

(@]

Details of the new notification object (Base Class, Unique Reference, Message
and Notification ID) are added to Alarm Raise block

An entry is added to the Alarm Raise block for each entry in the Problem
Reports List (Base Class, Unique Reference, Rank and the external NMS
events IDs of each of the contributory events in the notification)

An entry is added to the Alarm Raise block for each entry in the Contributory
Events List (the external NMS events ID)

An entry is added to the Alarm Raise block for each entry in the Sympathetic
Events List (the external NMS events ID)

An entry is added to the Alarm Raise block for each entry in the Affected
Objects List (Base Class, Unique Reference)

275

(@]

attached Remote Handlers

e Enrich Contributory Alarms option — not yet supported

List are added to the Master Alarms block

Scenario Manager Configuration Dialogue

S Ml Tigger Acoon
Currerd Contet cortentl
Ewert Typw omTLrCasTRAlTe
Cperates Corrlext o
oude Comewaanng Ctiects?
¢ bdute Faled Ojecs)
| Ordy Inckade Worst Rarked Probler Sepers?
o | Bl Sympattede Events Lst?
roticaton Type e Opect repoct

Dedver Reauts To Renote bandes?

Target Contant cordentl

Probable Casm adepiwBor

Addsonad Test ackdtonadiet
Inoude Out OF Servoe Otyecs!

¢ Irdude Dogrades Ozgects!
7! Budd Cormrbustory Prerty Let?
Folow Assocne Links?
Mrziage reeszage |

Eonch Contrbutory Aaers?

A Raise Alarm request is passed to the Notification Manager for delivery to all

If the Build Master Alarm List option is checked, all entries in the Master Alarms

=l
Clygmce o) -
Pertmved Severty aral -

v Idude In Serves Otjmcts
Osde In Mawrienance Oteects’

¥ Bl Mrobdern Nepoels Lal)

7 Pt Affected Otgecty List?

- Buid Root Cause hotficason)

U Aktach Marior fictticators m Affected Clipete)

Bl Master Morm Lst?

276

Update Root Cause Analaysis

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigUpdateRootCauseAnalysis
tearUpdateRootCauseAnalysis

Summary
This action updates the results of a previous root cause analysis. It operates on a state

mesh, normally beginning at a (mesh) object that represents the impacted service and
updates the notification created by the previous analysis.
The detailed behaviour of the root-cause analyser is highly configurable and uses a large
number of options supplied by a Scenario Manager configuration dialogue. The following
description of the root cause analyser algorithm in update mode includes references to the
various configuration options (in bold underlined type) at the points at which they affect
the flow of processing.
The root cause analyser begins a first stage of discovery processing at the supplied (mesh)
object that has suffered the service impact. It descends recursively through the state
mesh, searching for (mesh) objects whose state has been affected directly or indirectly by
underlying network problems. Objects that satisfy the following search criteria (set in the
configuration dialogue) are added to a Non-Normal Objects List (NNOL):

e Include In Service Objects (default true)

e Include Commissioning Objects (default false)
¢ Include Out Of Service Objects (default false)

¢ Include In Maintenance Objects (default false)

¢ Include Degraded Objects (default true)
¢ Include Failed Objects (default true)

The recursive search automatically descends through parent-child relationships and

uncle-nephew (relative) relationships below the supplied (mesh) object until the lowest

level of the state mesh is reached at which point it stops. If the Follow Associate Links
option is checked, the analysis will traverse an associative relationship between peer

(mesh) objects, before continuing down through the state mesh.

At the end of the search phase, the analyser has identified the set of non-normal (mesh)

objects that may have directly or indirectly affected the state of the supplied (mesh)

object. Once this phase of operation is complete, the root cause analyser begins a second
analytical phase of processing:

e The Non-Normal Objects List (NNOL) entries are processed in turn and each NNOL
object is compared with the list of current (non-marker) notifications. Where an
NNOL object is also found to have an associated notification, the rank of the
notification is compared with the worst notification rank seen so far and if it exceeds
this value, it becomes the new worst rank.

e The NNOL entries are again processed in turn and each entry is compared with the
list of current (non-marker) notifications.

o If an NNOLobject is found to have an associated notification:

= If the Only Include Worst Ranked Problem Reports option is
unchecked or the rank of the current notification is equal to the worst
rank :

e If the Build Problem Reports List option is checked, the
notification is added to the Problem Reports List

277

e If the Build Contributory Events List option is checked,
the events in the notification’s contributory events list are
added to the Contributory Events List.

e If the Build Master Alarms List option is checked, the
associated master alarm external NMS alarm ID (f present)
together with the notification ID are added to the Master
Alarm List

If an object in the NNOL does not have an associated notification or no
contributory events were added to the Contributory Events List:

= If the Build Affected Objects List option is checked, the NNOL
object is added to the Affected Objects List

= If the Attach Marker Notifications to Affected Objects option is
checked, the NNOL object is added to the Markers List.

» If both the Build Affected Objects List & Build Sympathetic
Events List options are checked, any events attached to the NNOL
object are added to the Sympathetic Events List.

e If the Update Root Cause Notification In WM option is checked:

O

The Notification message is updated if required in the Working Memory
contexts.

e If the Update Root Cause Notification In Database option is checked:

O

Any new events in the Contributory Events List constructed previously are
added to the contributory events list attached to the existing notification in
the Notification database

If the Build Affected Objects List option is checked, any new entries in the
Affected Objects List constructed previously are added to the affected objects
list attached to the existing notification in the Notification database.

The message attached to the existing notification in the Notification
database is updated is required

If the Attach Marker Notifications to Affected Objects option is checked,
new marker notification objects are created (tied to the notification object)
for each new entry in the Markers List

e Ifthe Deliver Results To Remote Handler option is checked:

O

Details of the originating (mesh) object (Base Class, Unique Reference) and
updated notification object (new Message, Notification ID, Notification
Type, Notification Rank and master alarm external NMS event ID - if
present) are added to Alarm Update block

An entry is added to the Alarm Update block for each entry in the Problem
Reports List (Base Class, Unique Reference, Rank and the external NMS
events IDs of each of the contributory events in the Notification)

An entry is added to the Alarm Update block for each entry in the
Contributory Events List (the external NMS events ID)

An entry is added to the Alarm Update block for each entry in the
Sympathetic Events List (the external NMS events ID)

An entry is added to the Alarm Update block for each entry in the Affected
Objects List (Base Class, Unique Reference)

A Update Alarm request is passed to the Notification Manager for delivery to
all attached Remote Handlers

Enrich Contributory Alarms option — not yet supported

278

o If the Build Master Alarm List option is checked, all entries in the Master
Alarms List are added to the Master Alarms block

Scenario Manager Configuration Dialogue

4 Add Trigger Action

3
rightec Bok fields far temal e details N
Curest Context [ontests Taget Contest | Context? e b v
Root Cause Mothicstion | notf0 ¥ [V]inchds In Service Objects? [indhade Commissioning Objects?
[linchude Qut OF Service Dl [inchigs In Mantenance Obiects? [V] Inchde Faed Obiects?
7] Inchids Degradd Objects? [V] Budd Protken Reparts Lit? [V] Only Inchude Worst Ranked Problem Reports?
[¥] Budd Contrbutory Evenks st [V] Bdd Affected Obpects Lst? [V] Buid Sympathebs Events Lst?
[Foboss Assoodte Lnks? NewHessags Mesdhessae Exitg Message Medfiation nchanged v
7] Update Roct Cause Notfieation In Dafabass? [Updiste oot Cause Hotfcation Tn WH Cantest{sP? [V] &tach Miarker Hiotfications to Affected Cbjects?
(| Dever Resuts To Remote Hander? [T Evvich Contributory Harms? [Buid Master tlamist?

[][=]

279

Perform Problem Extent Analysis

State Mesh Model

Not applicable.

Fired Rules Viewer Mnemonics

trigPerformProblemExtentAnalysis
tearPerformProblemExtentAnalysis

Summary
This action encapsulates a very flexible problem extent analysis tool whose purpose is to

identify and report those (mesh) objects that are affected by a problem at a lower level in
a layered network. It operates on a state mesh, normally beginning at a (mesh) object that
has been previously identified as a problem source (and therefore already has a primary
notification attached). It is particularly useful for analysing upwardly divergent network
models with the purpose of identifying affected objects and annotating them with marker
notifications for the purposes of gathering sympathetic alarms.
The detailed behaviour of the problem extent analyser is highly configurable and uses a
number of options supplied by the Scenario Manager configuration dialogue. The
following description of the problem extent analyser algorithm includes references to the
various configuration options (in bold underlined type) at the points at which they affect
the flow of processing.
The problem analyser begins search processing at the supplied problem source (mesh)
object, on which the supplied primary_notification also exists. It ascends recursively
through the state mesh, beginning with its immediate parent and/or relative (mesh)
objects, search for (mesh) objects whose state has been affected directly or indirectly by
the originating problem. Objects that satisfy the following search criteria (set in the
configuration dialogue) are added to an Affected Objects List (AOL):

¢ Include Degraded Objects (default true)

e Include Failed Objects (default true)

e Use Parent Object (default true)

e Attach Marker Notification To Parent Object (default true)

e Use Relative Objects (default true)

e Attach Marker Notifications To Relative Objects (default true)

e Attach Marker Notifications To Associate Objects (default true)

The search for affected objects starts at the supplied problem source (mesh) object and
ascends recursively through the parent (if Use Parent Object is selected) and/or relative
(mesh) objects (if Use Relative Objects option is selected).

If the (mesh) object currently being evaluated is not normal (and satisfies the Include
Degraded Objects or Include Failed Objectstest criteria) it is added to the AOL.

If a marker notification (linked to the supplied primary notification) is required (either
from Attach Marker Notification To Parent Object or Attach Marker
Notifications To Relative Objects), it is created and added to the (mesh) object.

If the Attach Marker Notifications To Associate Objects option is chosen, then all
associate (mesh) objects of the supplied (mesh) object are added to the AOL and marker
notifications are created and added to them, again linked to the supplied primary
notification.

If state propagation from the current (mesh) object is enabled to its parent (mesh) object,
the recursive analysis continues in this direction until the network extremity is reached.
If state propagation from the current (mesh) object is enabled to its relative (mesh)
objects, the recursive analysis continues in this direction until the network extremity is
reached.

280

At the end of the search phase, the analyser has identified those (mesh) objects that have
been affected by the original problem and the resulting AOL is added to the supplied
primary notification.

Scenario Manager Configuration Dialogue

- : The context (working memory) in
Add Trigger Action Rl which the triggering rule is
deployed and where any new
marker notification objects will be

right-click fields for template details

Current Conkext |Cu:untext1 ./l inserted.
Targek Conkext |C|:|ntext2 ® |

_ : An alternative context in which
Object |':'t']':' o | any new marker notification

Primary Notification |nu:utiFl:| objects may also be inserted (if un-
used, set as Current Context).

Include Failed Objects?

The supplied problem source
Include Degraded GbiECtS:\ (mesh) object
[#] Use Parent Object? \ The primary notification object
\ attached to the problem source

(mesh) object.

Atkach Marker Motification to ParentSkject? .\
[/] Use Relative Objects? Options to include affected objects
that are in the failed and degraded
states.

Attach Marker Matifications to Relall

#itkach Marlker Motifications ko Associate Objects?

« Options to include parent (mesh)
objects and attach marker
notification objects to them.

[2.1] [e Options to include relative (mesh)

objects and attach marker
notification obiects to them

281

Broadcast Analysis Refresh Request

State Mesh Model

Not applicable.

Fired Rules Viewer Mnemonics

trigBroadcastAnalysisRefreshRequest
tearBroadcastAnalysisRefreshRequest

Summary
This action encapsulates a very flexible tool whose purpose is to identify and deliver an

analysis (refresh) request to those (mesh) objects that may be affected by a problem at a
lower level in a layered network. It operates on a state mesh, normally beginning at a low
level (mesh) object that has been previously identified as a problem source. It is
particularly useful for identifying target (service) objects in higher network layers on
which an initial or an updated root cause analysis needs to be performed.
The detailed behaviour of the broadcast tool is highly configurable and uses a number of
options supplied by the Scenario Manager configuration dialogue. The following
description of the broadcast algorithm includes references to the various configuration
options (in bold underlined type) at the points at which they affect the flow of processing.
The broadcast tool begins search processing at the supplied problem source (mesh)
object. It ascends recursively through the state mesh, beginning with its immediate
parent and/or relative (mesh) objects, and searches for target (mesh) objects that may
have been affected directly or indirectly by the originating problem. Objects that satisfy
the following search criteria (set in the configuration dialogue) have their Analysis
Refresh Required attribute set to true:

e Target Base Class (required)

e Target Sub Class (optional)

e Include Degraded Objects (default true)
e Include Failed Objects (default true)

e Use Parent Object (default true)

e Use Relative Objects (default true)

The search for affected objects starts at the supplied problem source (mesh) object and
ascends recursively through the parent (if Use Parent Object is selected) and/or relative
(mesh) objects (if Use Relative Objects option is selected).

If the (mesh) object currently being evaluated is not normal (and satisfies the Include
Degraded Objects or Include Failed Objects test criteria) and is of the Target Base
Class and optionally the Target Sub Class, then its Analysis Refresh Required attribute
is set to true .

If state propagation from the current (mesh) object is enabled to its parent (mesh) object,
the recursive analysis continues in this direction until the network extremity is reached.
If state propagation from the current (mesh) object is enabled to its relative (mesh)
objects, the recursive analysis continues in this direction until the network extremity is
reached.

282

Scenario Manager Configuration Dialogue

&8 Add Trigger Action

right-click fields for template details
|l:||:-jEI 0—/’r
|BaseCIass .—'—

|SL|I:|CIa55 |
'—

Criginating Object

Target Object Base Class

Target Object Sub Class

Include Failed Objects?

Include Degraded Ol:uject*s?._\

Use Parent Object?

’\

Use Relative Objects?

.\

Log Action To Databases

—
| ok || cancel]\.\

The supplied problem
(mesh) object
The target (mesh) object base class

source

The (optional) target (mesh) object
sub class (leave empty if all sub
classes are required)

Options to include affected objects
that are in the failed and degraded
states.

Option to include parent (mesh)
objects.

Option to include relative (mesh)
objects.

283

Acknowledge Analysis Refresh Request

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonics
trigAcknowledgeAnalysisRefreshRequest
tearAcknowledgeAnalysisRefreshRequest

Summary
This action provides a facility to set the Analysis Refresh Required attribute of a target (mesh)

object to false. It is normally used once an initial or updated Root Cause Analysis on the target
(mesh) object has been carried out (usually in response to the Analysis Refresh Required attribute
having been previously set to true).

Scenario Manager Configuration Dialogue

&3 Add Trigger Action Pz|

right-click fields for templ ate details

Objeck obild @—— |

| The (mesh) object whose Analysis Refresh Required
attribute requires setting to

Log Action To Databasere |

— Option to record action execution details in the
[ok, H Cancel] database.

284

Ticket Handling

The Trouble Ticketing actions are specific to the HP UCA TeMIP Integration document.
Please refer to this documentation for full explanation and examples..

285

16.2.2.8 Measurement Handling

Create Data Object

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
trigCreateDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

286

Refresh Data Object Raw Data

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
trigRefreshDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

287

Perform Derived Data Calculation On Data Object

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
trigPerformCalculation

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

288

Report Derived Data Calculation On Data Object Completed

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
trigReportCalculationFinished

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

289

Remove Data Object

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
tearRemoveDataObject

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

16.2.2.9 Statistics

Refresh Statistics Object Raw Data

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
trigStatisticsRefresh

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

Perform Derived Data Calculation On Statistics Object

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
trigStatisticsPerformCalculation

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

Report Derived Data Calculation On Statistics Object Completed

State Mesh Model
To Be Completed

Fired Rules Viewer Mnemonic
trigStatisticsCalculationsFinished

290

Summary
To Be Completed

Scenario Manager Configuration Dialogue
To Be Completed

Notify Objects Affected By Site Failure

State Mesh Model
Not applicable.

Fired Rules Viewer Mnemonic
trigNotObjSiteFailure

Summary
This action is an example of a user action and is used in the DTV example supplied with UCA.

If loop detection is active, the requested action is tested and if a loop is detected the action is
aborted.

The action performs a recursive search, starting from the supplied failed Site (mesh) object,
identifying potentially impacted DualReceiver, Receiver and child Site objects. Each located
object is added to a list of impacted objects and a marker notification object is attached (with the
‘originating’ object reference set to the original failed Site).

The action recursively repeats the search for each child Site object located, thus it is able to follow
chains of Sites.

When the search is completed, the impacted objects list is added to the failed notification record
on the failed Site in the database (identified using the supplied marker notification), causing
them to be displayed on the Notification Viewer GUI under the original Site failure notification
report.

Scenario Manager Configuration Dialogue

@ Add Trigger Action ' he context (working memory) in which the
triggering rule is deployed and where the mesh and

furrent Conkext | Confextl ol Lotification objects are inserted.
Target Conkext | Conbext2 ®—1— An alternative context in which the mesh and
i - notification objects may also be inserted (if un-used,
Object abjl o
L set as Current Context).
Fatification nokifo [

| The failed Site mesh object.
The notification object attached to the failed Site
mesh object..

Log Action To Database?

[ok H Cancel]

Option to record action execution details in the
database.

291

