

HP Software

Unified Correlation Analyzer for Topology
Based Correlation V1.2

TeMIP Integration Documentation

Edition: 1.0

For the HP-UX (11.31) and Linux (RHEL 5.2) Operating Systems

June 2011

© Copyright 2011 Hewlett-Packard Company

2

Legal Notices

Warranty

Hewlett-Packard makes no warranty of any kind with regard to this manual, including,

but not limited to, the implied warranties of merchantability and fitness for a particular

purpose. Hewlett-Packard shall not be held liable for errors contained herein or direct,

indirect, special, incidental or consequential damages in connection with the furnishing,

performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard product can be

obtained from your local Sales and Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set

forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software

clause in DFARS 252.227-7013.

Hewlett-Packard Company

United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR

52.227-19(c)(1,2).

Copyright Notices

©Copyright 2011 Hewlett-Packard Development Company, L.P..

No part of this document may be copied, reproduced, or translated to another language

without the prior written consent of Hewlett-Packard Company. The information

contained in this material is subject to change without notice.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit

configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft® is a U.S. registered trademark of Microsoft Corporation.

Netscape is a U.S. trademark of Netscape Communications Corporation.

NMOS™ is a trademark of RiverSoft Technologies Limited.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

PostScript® is a trademark of Adobe Systems Incorporated.

UNIX® is a registered trademark of The Open Group.

Windows® and Windows NT® are U.S. registered trademarks of Microsoft Corporation.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company

Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

All other product names are the property of their respective trademark or service mark

holders and are hereby acknowledged.

3

Contents

Preface .. 7

Chapter 1 Foreword ... 10

Chapter 2 Main features .. 11

Chapter 3 Global picture ... 12

Chapter 4 Installation .. 13

Chapter 5 Models and data-load .. 14

Chapter 6 TeMIP Collector .. 15
6.1 Role .. 15
6.1.1 Basic principles ... 15
6.1.2 Startup and resynchronization .. 15
6.1.3 Collection monitoring and retries .. 16
6.2 Basic Configuration .. 16
6.3 Running the TeMIP Collector ... 16
6.4 Advanced TeMIP Collector Configuration .. 17
6.4.1 TeMIP Collector property files .. 17
6.4.2 TeMIP Collector XML configuration file .. 19
6.4.3 Log4j file .. 25
6.5 TeMIP Collector Tools ... 25
6.5.1 runCollector ... 26
6.5.2 stopCollector ... 26
6.5.3 resyncCollector ... 26
6.5.4 sourceManager ... 26

Chapter 7 TeMIP Remote Handler .. 28
7.1 Role .. 28
7.2 Basic Configuration .. 28
7.3 Running the TeMIP Remote handler ... 28
7.4 Call-outs ... 29
7.4.1 Raise Master alarm ... 29
7.4.2 Raise Root Cause Alarm .. 29
7.4.3 Update Root Cause Alarm .. 29
7.4.4 Clear Alarm ... 30
7.4.5 Update Alarm .. 30
7.5 Advance TeMIP Remote Handler Configuration.. 30
7.5.1 TeMIP Remote Handler generic part property file 30
7.5.2 TeMIP Remote Handler generic logging property file 31
7.5.3 TeMIP Remote Handler specific property file ... 32
7.5.4 TeMIP Remote Handler specifc Web service configuration file 32
7.5.5 TeMIP Remote Handler specific logging property file 33

4

7.6 UCA Alarm Object Custom fields ... 33
7.6.1 Remote Handler configuration .. 33
7.6.2 UCA Scenario Manager Configuration ... 34
7.6.3 TeMIP Client configuration ... 35

Chapter 8 TeMIP Service Manager OSS/J Trouble Ticket Support 36
8.1 Overview .. 36
8.2 Architecture .. 37
8.3 UCA Trouble Ticket Actions ... 38
8.3.1 Create TeMIP Trouble Ticket .. 38
8.3.2 Close TeMIP Trouble Ticket ... 38
8.3.3 Cancel TeMIP Trouble Ticket ... 39
8.4 Mapping Template Files ... 39
8.5 Basic Example ... 40
8.5.1 Model .. 40
8.5.2 Create a TT Associated to a Master Alarm .. 40
8.5.3 Clear all alarms and Close associated TT .. 41

Chapter 9 Problem detection example (hello world) .. 42
9.1 Description ... 42
9.2 Play this scenario step by step .. 43
9.2.1 Problem Detection example directory layout .. 43
9.2.2 Start UCA .. 45
9.2.3 Deploy the Problem Detection value-pack ... 47
9.2.4 Dataload instances into the UCA .. 48
9.2.5 Starting the engine .. 50
9.2.6 Check deployed rules ... 55
9.2.7 Load the test MSL ... 57
9.2.8 Create the demo Operation Context ... 58
9.2.9 Start the TeMIP-UCA integration processes .. 58
9.2.10 Simulate events .. 58
9.2.11 Navigate through correlated alarms.. 60

Chapter 10 Service impact and RCA example .. 62
10.1 Model ... 62
10.2 Transmission problem detection .. 63
10.3 Radio problem detection and Service Impact .. 64
10.4 Severity increase ... 65
10.5 Final picture.. 66

Glossary ... 67

5

Figures

Figure 1: interactions between components .. 12
Figure 2: Basic principles of TeMIP Collector ... 15
Figure 3: Update Alarm customized action dialog box .. 35
Figure 4: Example of UCA / OSS-J Integration ... 37
Figure 5: Trouble Ticket example, Meta Model ... 40
Figure 6: Create Trouble Ticket with associated alarms ... 40
Figure 7: Close Trouble Ticket .. 41
Figure 8: pattern detection: all BTS of a site are down ... 42
Figure 9: Desired output in TeMIP alarm handling window ... 43
Figure 10: ProblemDetection UML model ... 44
Figure 11: UCA Login page ... 46
Figure 12: UCA home page ... 46
Figure 13: UCA system manager window ... 47
Figure 14: UCA data-load window ... 48
Figure 15: Class/Instance file association ... 49
Figure 16: Import csv dialog .. 50
Figure 17: UCA status after startup ... 51
Figure 18: Updated data-load counters ... 52
Figure 19: adding a new demo user .. 53
Figure 20: UCA applications startup page ... 54
Figure 21: UCA's Mesh Viewer window .. 55
Figure 22: UCA's Scenario Manager window .. 56
Figure 23: Scenario manager with the ProblemDetection rules loaded 57
Figure 24: Mesh Viewer after the BTS alarms reception ... 59
Figure 25: Fired Rules Viewer after the BTS alarms reception ... 60
Figure 26: new SITE alarm created in TeMIP ... 60
Figure 27: Alarm navigation example .. 61
Figure 28: Service Impact example, Meta Model .. 62
Figure 29: Service Impact model, Instantiation ... 63
Figure 30: Transmission problem detection .. 63
Figure 31: New transmission alarm in TeMIP ... 64
Figure 32: Radio problem detection, and service impact up to UMT service 64
Figure 33: New Radio Problem and Service Impact alarms in TeMIP 65
Figure 34: Severity escalation on Service ... 65
Figure 34: Severity escalation in TeMIP .. 65
Figure 36: Service impact scenario, final picture ... 66
Figure 37: Service impact scenario, alarms correlated in TeMIP .. 66

7

Preface

Intended Audience

This document is aimed at the following personnel:

Delivery teams installing and using the TeMIP-UCA integration.

Software Versions

The term UNIX is used as a generic reference to the operating system,

unless otherwise specified.

The software versions referred to in this document are as follows:

The UCA

software

versions

TeMIP UNIX TeMIP Client

UCA V12I

Level 0

Revision

A

6.x HP-UX

Itanium

(11.31)

TeMIP Client V6.2 Level 1 for

Windows:

 Windows XP

 Windows Vista

 Windows Server 2003

UCA V12L

Level 0

Revision

A

6.x Red Hat

Enterprise

Linux Server

release 5.2

(Tikanga)

TeMIP Client V6.2 Level 1 for

Windows:

 Windows XP

 Windows Vista

 Windows Server 2003

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

 HP UCA Topo TeMIP Integration Guide

 HP UCA Topo Installation and Configuration Guide

8

 HP UCA Topo TeMIP Client User Guide

 HP UCA Topo User Guide

 HP UCA Advanced Configuration and Troubleshooting Guide

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison - User Guide

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison – Installation &

Configuration Guide

 TeMIP-Service Manager OSSJ Trouble Ticket Liaison - TeMIP Liaison

Adapter System Integration Guide

Support

Please visit our HP Software Web site at:

www.hp.com/go/hpsoftwaresupport for contact information, and details

about HP Software products, services, and support.

The Software support area of the Software Web site includes the

following:

 Downloadable documentation

 Troubleshooting information

 Updates

 Problem reporting

 Training information

 Support program information

Terms and Acronyms

Table 1 - List of Terms and Acronyms

UCA Unified Correlation Analyzer for Topology Based

Correlation: new software for the NGOSS market,

doing topology based alarm correlation and service

impact

OC TeMIP Operation Context

AO TeMIP Alarm Object or

UCA Affected Object

TeMIP

Adapter

The adaptation software between UCA and TeMIP.

Essentially composed of the Collector and Remote

Handler applications (see beyond).

TWS TeMIP Web Service: the north-bound web-service

interface to perform TeMIP calls

Call-out The output of UCA. The call-outs are XML packets

containing structured information. They are handled

by the TeMIP Remote Handler, which map them to

TeMIP directives.

Rule The core of UCA is a JBoss rules engine.

Master Alarm A new alarm created by UCA, usually grouping other

http://www.hp.com/go/hpsoftwaresupport

9

TeMIP alarms together. UCA has the ability to group

alarms together by creating a new one.

Contributory

alarm/event

Alarms that contribute to a problem or service impact.

They are the conditions, necessary and sufficient, to

trigger the creation of a new master alarm.

Sympathetic

alarm/event

Side effects of a problem or service impact. The

resulting alarms are correlated to the master but are

marked as “sympathetic” alarms. Often, the

sympathetic alarms can arrive after the problem

detection: they are therefore called “late arriving”

sympathetic.

Correlation

Tag

A new custom AO attribute, filled for master alarms

created by UCA. Example values are “Service Impact”,

“Problem Report”, “Root Cause Alarm”.

(Association)

Category

Or simply Category for short. It‟s a new column added

in the Alarm Handling Window when the operator

navigates from one alarm to the other. Its value is

contextual regarding the source alarm. Example values

are: “Contributory”, “Sympathetic”, “Master”. The

Category field qualifies an association between alarms

and not an alarm. In particular, it is not an alarm

attribute, even though it appears as such in the client

window.

State Mesh The internal network topology representation

maintained in UCA. The mesh objects are loaded in

database, and also in memory to maintain their state,

and be visible to the rules engine.

Mesh object One element of the state mesh.

Notification Logical object used in UCA attached to a mesh object.

A notification holds contributory and sympathetic

events and can be associated to a newly created master

alarm.

Instance

Name

A mesh object attribute containing a TeMIP entity

specification, making a correspondence with a TeMIP

object.

Unique

Reference

The unique identifier of a state mesh object in UCA.

RCA Root Cause Analysis

SI Service Impact

PR Problem Report

MSL Management Specification Language: the modelling

language for TeMIP

FCL Framework Command Line: the command line

language of TeMIP

AHFM Alarm Handling Functional Module

ACS Alarm Collection Service

10

Chapter 1 Foreword

This document is not the UCA user‟s guide nor an installation guide (these are available

separately in the relevant documentation directory), but an overall description of the

current integration between UCA and TeMIP.

It is assumed that you already have a significant knowledge of TeMIP and UCA to

understand the wording (jargon) and general concepts used in this TeMIP integration

description.

Since nothing replaces a simple use case to understand what a product can do, a basic

“Problem Detection” sample scenario is proposed as a “hello world” step-by-step example,

to eventually start with a concrete demonstration and see what UCA does live.

11

Chapter 2 Main features

UCA, which stands for Unified Correlation Analyzer for Topology Based Correlation, is a

universal correlation engine, not specifically dedicated to TeMIP, which can be plugged to

any management system to act as an external analyzer and service impact engine.

However, it is currently tightly integrated with TeMIP to perform topology-based

correlation and service impact. It can be seen as a replacement of TSM (TeMIP Service

Monitor). It has also some problem detection or root cause analysis (*) abilities.

* We know that these words may have different meanings for various people, so we use

them here in their intuitive sense. They will be defined later in more details, with

examples.

UCA has no real operator user interfaces and can then be seen as a “black-box” engine.

On the other hand, it has a rich development GUI and environment. When used for

TeMIP, the output of the analysis is therefore sent back to TeMIP as new alarms,

alarm enrichment, or the creation of associations between alarms, so that the results

are directly visible in the Alarm Handling window of the TeMIP Client. For instance, new

“service impact” alarms can be created in a dedicated Operation Context. Thus the

number of alarms can be drastically reduced and only “root cause” or “service affecting”

alarms can be displayed, with a drill-down facility to the other alarms, part of the

problem but redundant.

As the AHFM does not yet manage associations between alarms natively, we have

emulated this feature with additional AO attributes maintaining a list of “parents” and

“children” alarms. Furthermore, a dedicated TeMIP client plug-in allows the operator to

navigate through the resulting graphs or trees of alarms.

We don‟t reflect yet the calculated mesh states values in TeMIP or in a dedicated GUI

(even though the mesh viewer GUI is available for rules developers).

The UCA integration makes an extensive use of the TeMIP Web Service (TWS) interface

to TeMIP, which is therefore a necessary prerequisite for the integration.

UCA and TeMIP can be located on the same host or distributed. UCA itself can be made

redundant (resilient) for fault tolerance and high availability.

12

Chapter 3 Global picture

The integration between TeMIP and UCA is composed of three software components: a

“Collector”, a “Remote Handler” and a TeMIP Client plug-in. The Collector and Remote

Handler are two Java processes exchanging data between TeMIP and UCA through web-

service interfaces. The Collector and Remote Handler applications are sometimes called

the TeMIP “adapter” for UCA. The TeMIP Client plug-in displays alarm associations

computed by UCA, and allows navigating through associated alarms (parent-child

relationships).

Figure 1: interactions between components

The TeMIP Collector is responsible for collecting alarms coming from some selected OCs,

mapping them to the relevant XML format and forwarding them to UCA.

The TeMIP Remote Handler listens to the output of UCA, in the form of so called “call-

outs” and maps them to TeMIP directives (mainly). The Remote Handler can also execute

user defined scripts to perform any desired user defined actions.

 TWS
subscribe

events

call-outs

events

directives

requests

TeMIP host

UCA host

UCA
TeMIP

Remote Handler

TeMIP
Collector TeMIP

13

Chapter 4 Installation

The TeMIP adapter is natively bundled with the UCA kit.

An automated setup procedure is available to complete the configuration after

installation.

Two correlation “examples” are present in the kit as sample Value Packs (a set of files for

rules, data-load, MSL and FCL scripts) demonstrating a simple use case. They are useful

to test the correct behavior of the system but also (and essentially) to serve as example to

see how to write rules, populate the state mesh, and use UCA.

The TeMIP Client plug-in is part of the TeMIP Client V6.2 Level 1 or upper version.

For the TeMIP-UCA integration to work, the TeMIP Web Services Northbound interface

must be installed on the TeMIP side (at least on one director).

Currently, the Collector and Remote Handler processes must run on the same UCA host.

The following custom TeMIP Alarm Object attributes are added in the TeMIP dictionary

for UCA:

10053 Correlation Tag

10054 UCA Notif Key

10061 UCA Custom Field1

10062 UCA Custom Field2

10063 UCA Custom Field3

10064 UCA Custom Field4

10065 UCA Custom Field5

10066 UCA Custom Field6

10067 UCA Custom Field7

10068 UCA Custom Field8

10069 UCA Custom Field9

14

Chapter 5 Models and data-load

There is no real constraint of model alignment between UCA and TeMIP: the two can

work on fairly different, or on the contrary very similar, models.

In particular, no one-to-one mapping between TeMIP entities and UCA mesh objects is

imposed. For instance, TeMIP can manage a typical network model made of managed

objects and network equipment classes, while UCA can exhibit more abstract service or

“domain logic” models, used for correlation and analysis.

UCA‟s mesh objects are loaded from files or native SQL commands (please refer to the

UCA user‟s guide for more details). During the so-called “data-load” phase, the

neighborhood of an object (i.e. the relationships with the sibling objects in the mesh) must

be made explicit, and a unique reference name must be given to each object. In addition,

the object can also be given an “alias” or so-called “instance name”. The TeMIP

integration makes use of this mesh object “instance name” attribute to hold a TeMIP

entity specification, and therefore eventually link the UCA mesh object with a

corresponding TeMIP instance. It is the responsibility of the integrator to populate theses

“instance name” fields with the relevant TeMIP information during the UCA data-load

phase. This entity specification value is then used by the Remote Handler when creating

new alarms in TeMIP, to set the Managed Object mandatory attribute of the alarm. By

default, if no “instance name” is given to the UCA mesh object, the TeMIP director name

(“mcc 0“) is used. This default value can be changed by configuration.

Here is example of a UCA data-load file, where the TeMIP entity specification is

highlighted (the first line describes the file data-load columns format):

#Parent_Ref,Parent_Subclass,Parent_Class,Relative_Ref,Relative_Subcla

ss,Relative_Class,Class_Name,Subclass_Name,Instance_Name,Unique_Ref,S

ervice_State,Importance,Latitude,Longitude

Sprint 3 Model,V1.0,Model,ServiceComponent Sprint 3

Model,V1.0,Model,,,ServiceComponent,NetworkElement,Gateway,NetworkEle

ment .gateway_1,gateway_1_unique_ref,IN_SERVICE,1,0,0

So for instance, if one UCA rule raises an alarm on the “gateway_1_unique_ref” object,

the Managed Object of the resulting alarm will be set to “NetworkElement .gateway_1”.

The Operation Context where to create the alarm is provided in the rule itself.

For more details on the CSV file format and the data-load phase, please refer to the UCA

user guide.

On real projects, with big topologies and daily updates, UCA and TeMIP can be populated

and synchronized with the help of the Unified Topology Manager tool (UTM). Please go to

the UTM product documentation for more details.

15

Chapter 6 TeMIP Collector

6.1 Role

The TeMIP collector subscribes to a list TeMIP Operation Contexts (through the TeMIP

Alarm Collection Server module) and transforms incoming AHFM configuration events,

such as object creations or attributes value changes, into UCA events formatted in XML.

The Subscribe call is made through the TeMIP Web-Service (TWS) interface. The TeMIP

Collector runs on the UCA server hosts and is monitored (e.g started or stopped

automatically) by the UCA server.

6.1.1 Basic principles

The TeMIP Collector is an alarm forwarder between TeMIP and the UCA server. It is

bound on one side on the TeMIP ACS (Alarm Collection Server) via the TeMIP Web

Services (TWS); and on the other side on the UCA server by using the Generic Collector

API. It Processes TeMIP alarms from TeMIP to give them a format suitable for being

processed by the UCA server as UCA events.

Figure 2: Basic principles of TeMIP Collector

6.1.2 Startup and resynchronization

When the TeMIP Collector starts, it performs a full re-synchronization before listening

for normal incoming live event flow.

The resynchronization consists in collecting all pending alarms from the configured

TeMIP Operation contexts (all alarms that are not terminated, by using the summarize

TeMIP Server

ACS

AH FM

TWS

TeMIP Collector

TeMIP

UCA Server

UCA
Engine

Alarm Processing

TeMIP collector
positioning

16

results of the Subscribe ACS directive) and sending them between two specific marker

events (begin of synchronization/End of synchronization) to the UCA server.

On receipt of the resynchronization flow the UCA server reprocesses all the received

events using a time contraction algorithm which ensures that the UCA server internal

data (mesh and database) are in synch with the alarms states contained in the TeMIP

Operation Contexts.

During this phase, the UCA server resynchronizes its event database with the TeMIP

Operation Context alarm database. The associate rules are executed as if these alarm

state changes (new alarm, state changes, termination) were received in a normal

collection flow. The UCA server ensures that the rules execution do not lead to alarm

duplication in TeMIP.

When the re-synchronization phase is over, the collector starts reporting the live events

coming from normal (Getevent) ACS alarm collection.

6.1.3 Collection monitoring and retries

The TeMIP Collector is based on the TeMIP Web Service Client layer. This layer provides

facilities for monitoring and - if required - re-establishing a collection to TeMIP when this

collection has been interrupted

This is typically the case when the TEMIP application is stopped and restarted, but also

if only parts of the TeMIP application are down for maintenance or for temporary

unavailability (TWS, ACS, Alarm Handling).

In such case some retries are performed until the full collection chain is operational

again. The collection is re-established and a full re-synchronization is performed again

(as in the case of a TeMIP collector start).

6.2 Basic Configuration

The TeMIP Collector configuration is done through the UCA setup script that must be

run after the installation (Refer to the “UCA installation guide” for that).

Another section “6.4 Advanced TeMIP Collector Configuration” gives full details on all

configurations properties.

6.3 Running the TeMIP Collector

In a „normal‟ production environment, the UCA server is capable of starting

automatically the TeMIP collector and Remotehandler processes thanks to a set of rules

called „Resilience rules‟. These rules also insure the event resynchronization and are

performed automatically at UCA server startup.

However, in some specific cases (troubleshooting, development) one can have the need of

starting the collector and remote handler manually.

This can be achieved by setting the following uca property (uca.properties file) as:

system.mode=standalone

and by using the following command to start the collector:

$UCA_HOME/UCAcollector/bin/runCollector.sh

17

6.4 Advanced TeMIP Collector Configuration

This section gives the full details of all configurable parameters of the TeMIP collector.

These parameters are located in two different configuration files. One is a properties file

that drives the TEMIP collector behavior and its integration within the UCA system, the

second is an XML configuration file dedicated to the TeMIP collection configuration.

The TeMIP Collector is controlled by 3 configuration files.

6.4.1 TeMIP Collector property files

Two property files are driving the TeMIP Collector configuration:

 One for the UCA Generic collection Part :

 $UCA_HOME/UCAcollector/configuration/ucacollector.properties

(Which is a symbolic link to a file located in the /var/opt/uca directory) and contains the

customizable variables driving the UCA generic event collector and specifically its

connection with the UCA server.

All the properties defined in this file have default values set for a TeMIP collector

running in a „standard‟ configuration (i.e the remote handler is running on the same host

than the UCA server, standard communication ports used).

date.timezone The timezone in which the UCA systems operate.

Default setting : GMT
date.format The date/time format expected by the UCA

DataCollector on both Server A & B.
Default setting : yyyy-MM-dd HH:mm:ss

genericcollector.hostname Should be set to the DNS name or IP address of

the host on which the GenericCollector or its

derivative is intended to run.

Default setting : localhost
managementservice.rmiport The RMI port number used by the UCA server

Management service.

Note: this should match the setting of the

remoteHandler_TeMIP properties on each UCA

server.

Default setting : 18083
managementservice.name The RMI name of the Management service.

Note: this should match the setting of the

remoteHandler_TeMIP properties on each UCA

server.

Default setting : Management_Service
aserver.hostname The DNS Name or IP Address of the UCA A

server platform.

Default setting : localhost
aserver.ipport The IP Port number used by the UCA A

DataCollector

Default setting : 6666
bserver.hostname DNS Name or IP Address of the UCA B server

platform.

A value of „none‟ means no server B present.

Default setting : none

18

bserver.ipport IP Port number used by the UCA B DataCollector

Default setting : 6666
heartbeat.period Number of seconds between two heartbeat

messages to UCA servers.

Default setting : 10
History.flushdivider How many heart beats elapse between flushes of

the notification history.

Default setting: 0
socket.connectiontimeout UCA DataCollector input socket timeout in

milliseconds.

Default setting : 250
autostart.rmiregistry Flag controlling the rmiregistry auto-start.

Default setting : true
webservice.username The username for the UCA webservice endpoints.

Default setting : system
webservice.password The password for the UCA webservice endpoints.

Default setting : system
datacollection.webservice The name of the data collector's webservice on

each peer.

Default setting : datacollector/service
webservice.port The port number of the data collectors webservice

on each peer

Default setting : 18080
buffer.size The number of events that can be buffered waiting

to send to UCA server sockets.

Default setting : 1000
throttle.size The number of events that can be buffered before

the generic collector starts

throttling input.

Default setting : 100
throttle.sleep How long the generic collector will throttle input

for in milliseconds.

Default setting: 10
secondary.resync.delay Secondary resync delay, when sending a

CYCLE_START there is the possibility of

it racing a secondary resync start message. This

property determines, in seconds, how long

sendResyncCycleStart method waits for a

secondary resync start to come in after sending a

CYCLE_START.

Default setting: 6

19

 One for the TeMIP Specific collection Part :
$UCA_HOME/UCAcollector/configuration/temipcollector.properties

(which is a symbolic link to a file located in the /var/opt/uca directory) and contains the

customizable variables driving the TeMIP specific properties of the Collector.

Collector_TeMIP.alarmTerm

inationPolicy
Flag controlling the event termination policy.

 A value of „ClearAndTerminate‟ means that a

termination event will be sent to the UCA

server on both Clear Alarms and Terminated

Alarms.

 A Value of „TerminateOnly‟ means that the

terminate event will be forwarded only on

receipt of terminated Alarm.

Default Value: ClearAndTerminated
uca.userDefAttr.notificat

ionKey
Alarm Custom attribute that will hold the UCA

notification key.

Default Setting: UCA_notif_key

6.4.2 TeMIP Collector XML configuration file

The file $UCA_HOME/UCAcollector/configuration/TeMIP_configuration.xml

contains the customizable variables driving the Web service Client configuration for the

connection to TeMIP. This file holds two different sections:

 The TeMIP Director Information

 The TeMIP Collection Information

6.4.2.1 TeMIP Director Information

<Authentication>

<UserName>user</UserName>

<Password></Password>

</Authentication>

<Axis>
<RepositoryPath>conf/repository</RepositoryPath>

<XmlPath>conf/axis2.xml</XmlPath>

</Axis>

<DirectorConfiguration>
<MachineName>supra.fra.hp.com</MachineName>

<TeMIPDirectorEntity>.temip.FM2_temip</TeMIPDire

ctorEntity>

<TWSServerPort>7180</TWSServerPort>

</DirectorConfiguration>

<CallParameters>
<BulkSize>150</BulkSize>

<CallMaxDuration>5000</CallMaxDuration>

<CallTimeOut>600000</CallTimeOut>

</CallParameters>

<EntityFiltering>
<ToUpper>false</ToUpper>

<ToLower>false</ToLower>

<Trim>true</Trim>

<FilterDot>true</FilterDot>

<FilterDoubleQuote>true</FilterDoubleQuote>

</EntityFiltering>

20

<Authentication/> Defines the authentication

parameters to connect to the TeMIP

Web Service North Bound Interface.

Refer to the TWS User

Documentation for authentication

policies.

<Axis/> Internal parameter, do not change

it

<DirectorConfiguration/> Defines the TeMIP Director

information required to access the

Web Service North Bound Interface

<CallParameters/> Defines the parameters used for

each TeMIP Call.

<EntityFiltering/> Defines the way TeMIP instances

name will be filtered on the whole

application. For instance,

depending on the follwing

parameter, a TeMIP entity define

in TeMIP as „.myinstance‟ can be

used in UCA as „MYINSTANCE‟.

Authentication

<UserName/> User used for all TeMIP calls

<Password/> To ease the usage of the

authentication, one basic security

implementation is provided with

the PWCallback class (See Note

below).

If you choose the “no Security”

mode or if you customize the

“OutflowSecurity” with a specific

class (using a tier authentication

tool for instance), this parameter

is not required.

Optional parameter.

Note

For authentication policies, refer to the TWS User Documentation and

also the Security configuration file located at:

$UCA_HOME\collector_TeMIP\configuration\axis2.xml

Example of configuration in Low Security Mode:

<module ref="rampart" />

<parameter name="OutflowSecurity">

<action>

<items>UsernameToken Timestamp</items>

<passwordCallbackClass>com.hp.temip.temip_ws.common.p

wcallback.PWCallback</passwordCallbackClass>

<passwordType>PasswordText</passwordType>

</action>

</parameter>

21

The com.hp.temip.temip_ws.common.pwcallback.PWCallback class is a

minimal security implementation using the User/Password parameters

given in the TeMIP_configuration.xml file. Where

 The Username tag defines the UNIX user name

 The Password tag is the Unix password for this user.

One can customize or implement differently depending on its specific

security constraints. In this case, it is not mandatory to specify the

password in the configuration file.

Axis2

<RepositoryPath/> Internal parameter, do not change

it

<XmlPath/> Internal parameter, do not change

it

DirectorConfiguration

<MachineName/> The TeMIP director IP address or

name.

Example:

16.133.155.256 or

Machine.fra.hp.com

<TeMIPDirectorEntity/> The name of the TeMIP Director

Example:

.temip.DIRECTOR1_director

<TWSServerPort/> The port configured for the TeMIP

Web Server North Interface.

Example: 7180

Note

For authentication policies, refer to the TWS User Documentation and

This next section is related to the configuration of the TeMIP director that

hosts the Web Services server.

The MachineName represents the TeMIP director IP address or name.

Example: 16.133.155.256 or Machine.fra.hp.com

The TeMIPDirectorEntity is the name of the TeMIP entity on that director

Example: .temip.ibis_temip

Note: the TeMIP entity name can be obtained by issuing the following command with

an FCL_PM : “SHOW temip * “

The TWSServerPort is the port configured for the TeMIP Web Server Interface

(default is 7180).

Note that even if your TeMIP platform is distributed and has several directors, only

one TWS access point may be defined. After this point the standard TeMIP call

dispatching will be used.

CallParameters

22

<BulkSize/> Passed to the Web server during a

TeMIP call.

Defines the maximum size of TeMIP

Call reply packet during Web

Service communication. Refer to

TWS Documentation for more

information.

Example: 20

<CallMaxDuration/> Passed to the Web server during a

TeMIP call.

It is the maximum time in

millisecond before sending the

bulk reply to the client, even if

the bulk is not yet to its

“BulkSize”.

Example: 5000

<CallTimeOut/> Passed to the Web server during a

TeMIP call.

It is the time after one inactive

call is removed from the server.

Example: 600000

EntityFiltering

<ToUpper/> Transform the TeMIP entity name to

Upper Case in UCA.

<ToLower/> Transform the TeMIP entity name to

Lower Case in UCA.

<Trim/> Trim the TeMIP entity name in UCA.

<FilterDot/> Remove all dot „.‟ occurrence in

the TeMIP entity name while

transferring information to UCA.

<FilterDoubleQuote/> Remove all Double Quote „”‟

occurrence in the TeMIP entity

name while transferring

information to UCA.

6.4.2.2 TeMIP Collection information

<OperationContexts>

<OperationContext>temip_op</OperationContext>

</OperationContexts>

<CustomAttributes>
<CustomAttribute>

<Attribute>Custom Field1</Attribute>

<Datatype>XmlString</Datatype>

</CustomAttribute>

<CustomAttribute>

<Attribute>Parents</Attribute>

<Datatype>XmlString</Datatype>

</CustomAttribute>

</CustomAttributes>

<QueueSize>100</QueueSize>

<PassingClasses>
<ClassHierarchy>

<Class>BOX</Class>

</ClassHierarchy>

23

</PassingClasses>

<DiscriminatorConstruct>
<BlockingSubFilters>

<BlockingSubFilter>

<FilterItem>

<attribute>Perceived Severity</attribute>

<operator>equality</operator>

<value>Indeterminate</value>

</FilterItem>

</BlockingSubFilter>

</BlockingSubFilters>

<PassingSubFilters>

<PassingSubFilter>

<FilterItem>

<attribute>Additional Text</attribute>

<operator>present</operator>

<value></value>

</FilterItem>

</PassingSubFilter>

</PassingSubFilters>

</DiscriminatorConstruct>

<OperationContexts/> List of Operation Context

<OperationContext/> subscribed in

the Alarm Collection

<CustomAttributes/> List of Customized Attributes

that need to be decoded during

Alarm reception

<QueueSize/> Internal parameter, for a Message

Queue.

Example: 100

<PassingClasses/> Optional parameter.

List of <ClassHierarchy/>

representing the entities that

are effectively

created/transferred to UCA.

Internally, this parameter

defines a piece of Discriminator

Construct applied to Managed

Object attribute.

If not present, all entities and

associated alarms are transferred

to UCA.

<DiscriminatorConstruct/> Optional parameter

Defines the Discriminator

Construct (Filter) parameter

applied to all alarms coming

through the TeMIP Service Console

Collection.

If not present, all alarms are

transferred to UCA.

Linked with the <PassingClasses/>

tag.

For additional information, refer

to Alarm Filtering description in

TeMIP Documentation.

OperationContexts

24

<OperationContext/> An Operation Context name

CustomAttributes

<CustomAttribute/> A Custom Attribute that needs to

be decoded and transferred to UCA

during Alarm reception.

CustomAttribute

<Attribute/> The Attribute Name as described

in the TeMIP metadata (TeMIP

Dictionary Presentation name).

<Datatype/> Datatype of the Attribute.

Supported Datatypes:

"XmlDecimal", "XmlString",

"XmlBoolean", "EntitySpec",

"EntitySet", "BinAbsTime"

PassingClasses

<ClassHierarchy/> Sequence of <Class/> representing

a path to a TeMIP class or

subclass.

ClassHierarchy

<Class/> The name of the TeMIP class

DiscriminatorConstruct

<BlockingSubFilters/> Optional parameter

List of <BlockingSubFilter/>.

Alarms matching the criterias are

not forwarded to UCA.

<PassingSubFilters/> Optional parameter

List of < PassingSubFilters />.

Only alarms matching the

criterias are forwarded to UCA.

BlockingSubFilters

<BlockingSubFilter/> List of <FilterItem/>

25

BlockingSubFilter

<FilterItem/> Defines the minimal information

to specify a TeMIP filter

FilterItem
<attribute/> The TeMIP Attributes that is

subject to filtering as described

in the TeMIP metadata (TeMIP

Dictionary Presentation name).

Example: „Perceived Severity‟

<operator/> The operator used to evaluate

Should be part of the list:

"initialstring", "finalstring",

"anystring", "present",

"equality", "greaterOrEqual",

"lessorEqual", "match" or

"matchsyno"

<value/> The value evaluated with the

operator. Depends on the datatype

of the attribute.

Example: „Indeterminate‟

PassingSubFilters

<PassingSubFilter/> List of <FilterItem/>

PassingSubFilter

<FilterItem/> Defines the minimal information

to specify a TeMIP filter

6.4.3 Log4j file

The file:
$UCA_HOME/UCAcollector/configuration/log4j.properties

is the standard Log4j configuration file for the TeMIP collector.

The syntax for log4j configuration is not given here, but can easily been found on the

Internet.

6.5 TeMIP Collector Tools

This is a set of tools for TeMIPCollector administration purpose. These tools are used to

start/stop the collector or make some dynamic configuration such as adding a new

collection source (Operation Context) or making a re-synchronization of all active sources.

All these tools are based on JMX communication and as such need a JMX port to be

specified. This port is the JMX port used by the TeMIPCollector which is by default 9999

but can be changed by positioning the UCA_COLLECTOR_JMX_PORT environment variable

to another value before starting the TeMIPCollector (runCollector command).

All other tools must use the same value for a correct behavior.

26

All the TeMIP Collector tools are located under the $UCA_HOME/UCAcollector/bin
directory.

All the TeMIPCollector commands require the UCA_HOME environment

variable to be defined on both Unix and Windows.

6.5.1 runCollector

This is the command for starting the TeMIP collector.

Usage :

 runCollector.sh

Description:

 Starts the TeMIP Collector.

6.5.2 stopCollector

This is the command used to stop the TeMIP Collector.

Usage :

 stopCollector.sh

Description:

 Stop properly the TeMIP Collector. A stop request is sent to the TeMIP Collector via a

JMX bean request. The Collector stops the Collection by cancelling the pending TeMIP

Calls. This allows to properly releasing the TeMIP resources allocated by the TeMIP

Alarm collection chain. The TeMIP Collector process exits when all collections are

cancelled.

6.5.3 resyncCollector

This is the Command used to resynchronize the UCA server with the collection sources.

Usage :

 resyncCollector.sh

Description:

 By using this command, the TeMIPCollector fully re-initializes its collection sources.

On the TeMIP side this means the collection is restarted (including the summarize

operation). On the UCA server side, all the summarized alarms are sent back as „resync‟

event, forcing the UCA server to make a full resynchronization.

6.5.4 sourceManager

This is the command used to dynamically add/remove a new TeMIP source (Operation

Context) as collection source.

Usage :

 sourceManager.sh -add|-remove source_name

Description:

27

 This command allows adding or removing dynamically a TeMIP operation Context to

the set of monitored Operation Context. When a new Operation Context is successfully

added, the standard summarize operation is performed leading to a re-synchronization of

the summarized alarms on the UCA server side.

Options:

 -add : to add monitoring of an additional operation context

 -remove : to remove monitoring of an operation context.

 source_name : operation context name.

Warning: invoking this command doesn‟t update the Operation Context list in the

TeMIPCollector configuration file.

28

Chapter 7 TeMIP Remote Handler

7.1 Role

The TeMIP Remote Handler listens to call-outs from the UCA server and maps them to

TeMIP directives, for example for creating new high-level alarms (i.e. “master” alarms) or

grouping alarms together (association).

7.2 Basic Configuration

As for the Collector, a default configuration is made by the UCA setup.sh script run after

then installation.

This configuration is sufficient most of the times. However, if a finer configuration is

needed, the TeMIP Remote Handler is controlled by 5 configuration files:

RH generic part property file:
$UCA_HOME/jars/configuration/remotehandler

.properties

This is the configuration file that

controls the connection to the UCA

server.

RH generic part logging property file:
$UCA_HOME/jars/configuration/remotehandler

.logging.properties

This is the logging configuration file

for the generic (i.e common to all

remote handlers) part of the TeMIP

Remote Handler.

RH TeMIP specific property file:
$UCA_HOME/remoteHandler_TeMIP/configuratio

n/temipremotehandler.properties

This is the configuration file that

controls all actions towards TeMIP.

RH TeMIP specific logging property file
$UCA_HOME/remoteHandler_TeMIP/configuratio

n/log4j.properties

This is the logging configuration file

for the TeMIP specific part of the

Remote handler

RH TeMIP specifc Web service

configuration file:
$UCA_HOME/remoteHandler_TeMIP/configuratio

n/TeMIP_configuration.xml

This is the configuration file that

configures the Web service Client

connection to TeMIP

Another section “7.5 Advance TeMIP Remote Handler Configuration” gives full details on

all configurations properties.

7.3 Running the TeMIP Remote handler

In a „normal‟ production environment, the UCA server is capable of starting

automatically the TeMIP collector and Remotehandler processes thanks to the

„Resilience‟ set of rules.

However, in some specific cases (troubleshooting, development) one can need to start the

collector and remote handler manually.

This can be achieved by setting the following uca property (uca.properties file) as:

system.mode=standalone

29

and by using the following command to start the remoteHandler:

$UCA_HOME/UCAremotehandler/bin/runRemoteHandler.sh

When started manually, it is strongly recommended to start the Remote Handler before

the Collector in order to guarantee that no actions will be missed during the

resynchronization phase.

7.4 Call-outs

The purpose of a UCA Remote Handler is to listen to call-outs and map them to TeMIP

directives. They are essentially Alarm Object directives, to create new alarms, update

alarms, or demote alarms below previously created ones.

This section describes what the TeMIP remote handler does for the main standard UCA

call-outs. For the description of the call-outs themselves, please refer the UCA Remote

Handler API documentation.

7.4.1 Raise Master alarm

This call-out results in the creation of a new Alarm in TeMIP. The Correlation Tag

attribute is set to the UCA notification type value (retrieved with a request to UCA as not

present in the call-out).

The contributory events and sympathetic events are associated to the newly created

alarm. Their “category” attributes in the Children AO are marked respectively as

contributory or the sympathetic.

This is the principal means of correlating alarms together. A new “complex event” is

created to group a bunch of contributory events together.

7.4.2 Raise Root Cause Alarm

This call-out results in the creation of a new Alarm in TeMIP. The Correlation Tag

attribute is set to the UCA notification type value given in the action dialog (retrieved

with a request to UCA as not present in the call-out).

The contributory events, sympathetic events, and master alarms are associated to the

newly created alarm. Their “category” attributes in the Children AO are marked

respectively.

The Problem Report list is discarded.

This call-out is the result of the “Perform Root Cause Analysis” UCA action, which is a

high value-added algorithm for doing topology based analysis.

7.4.3 Update Root Cause Alarm

The content of this call-out is similar to the “Raise Root Cause” alarm one.

No new alarm is created when receiving this call-out. Only new associated alarms are

added to the previously created master alarm (with a previous “raise root cause alarm”

call-out).

30

7.4.4 Clear Alarm

This call-out results in a Clear_Alarm directive on the given Alarm Id.

7.4.5 Update Alarm

These call-out results in one or several Set directives on the given Alarm Object

attributes.

Even though TeMIP supports only an “overwrite” policy for the Set directive (except for

the Operator Note attribute), the Remote Handler emulates the “prefix” or “append”

policies for a finer control of alarm modifications.

AO User-defined attributes can also be populated to enrich the alarm with UCA

information (please refer to the UCA Alarm Object Custom fieldschapter).

7.5 Advance TeMIP Remote Handler
Configuration

This section gives the full details of all configurable parameters of the TeMIP Remote

Handler. These parameters are located in two different configuration files. One is a

properties file that drives the TEMIP remote Handler behavior and its integration within

the UCA system, the second is an XML configuration file dedicated to the TeMIP Web

Service configuration.

7.5.1 TeMIP Remote Handler generic part property file

The file:

$UCA_HOME/jars/configuration/remotehandler.properties is the configuration

file that handles the configuration of the connection to the UCA server.

All the properties defined in this file have default values set for a remote handler running

in a „standard‟ configuration (i.e the remote handler is running on the same host than the

UCA server, standard communication ports used).

Here is the detailed list of supported properties:

verbose.reports Control flag for verbose reporting (true|false).

Default setting : true
eventmanager.webservice The full URI of the EventManager web service,

including the host, port and name of the
EventManager web service end-point.
Default value:
http://localhost:18080/eventmanager/service

notificationmanager.webservi

ce
The full URI of the NotificationManager web

service, including the host, port and name of

the NotificationManager web service end-point.

Default value:

http://localhost:18080/notificationmanager/servi

ce

31

notificationuiserver.webserv

ice
The full URI of the NotificationUIServer web

service, including the host, port and name of

the NotificationUIServer web service end-point.

Default value:

http://localhost:18080/notificationuiserver/servic

e
rulesserver.webservice The full URI of the RulesServer web service,

including the host, port and name of the

RulesServer web service end-point.

Default value:

http://localhost:18080/rulesserver/service
datacollector.webservice The full URI of the DataCollection web service,

including the host, port and name of the

DataCollection web service end-point.

Default value:

http://localhost:18080/datacollector/service
scripts.directory Path to scripts directory on the host the remote

handler is running on.

Default value: scripts.
management.rmiport The HeartbeatResponse RMI registry port

(usually 18083 but may be changed if conflicts

occur on platform running the generic collector

engine)

Note: this is only used for resilient UCA

configurations

Default value: 18083
management.service The HeartbeatResponse RMI service name

provided by the generic collector engine.

Note: this is only used for resilient UCA

configurations

Default value: Management_Service
buffer.size The RMI call buffer size

Default value: 10
throttle.size The number of rmi commands that can be

buffered before the remote handler starts

Default values: 3
Throttle.sleep How long the remote handler will throttle rmi

commands in milliseconds

Default value 10

All other properties within this file should not be changed.

7.5.2 TeMIP Remote Handler generic logging property file

The file :
$UCA_HOME/jars/configuration/remotehandler.logging.properties

is the standard Log4j configuration file for the TeMIP generic part of the TeMIP

remoteHandler.

32

7.5.3 TeMIP Remote Handler specific property file

The file
$UCA_HOME/remoteHandler_TeMIP/configuration/temipremotehandler.proper

ties (which is a symbolic link to a file in the /var/opt/uca directory) contains the

customizable variables driving the TeMIP Remote Handler.

All properties in this file are commented out, meaning that the system default values are

used. To change one of these properties, remove the comment sign at the beginning of the

line and set the new value.

List of supported properties driving the TeMIP configuration
temip.default_oc Operation Context where new alarms are created.

The Operation context is usually specified in the „raise

alarm‟ action but if it is missing this value will be used.

Default value: oc
temip.default_mo Default manage object of newly created alarms.

The Managed Object is usually specified in loaded

topology (Instance_Name attribute of a mesh object) but

if it is missing this value will be used.

Default value: mcc 0

List of supported properties driving the configuration for Trouble Ticket directives.
temip.tt.user User name given in Trouble Ticket directives.

Default value: temip.
temip.tt.server.name TT Server name

Global class TeMIP TT_SERVER of the JSR91_FM and

represents the Trouble Ticket Server

Default value:TT_SERVER SM

temip.tt.template.create OSS-J Mapping Template file for the Create TT operation

in Trouble Ticket.

Default value: createTroubleTicketByValueRequest.xml
temip.tt.template.associat
e

OSS-J Mapping Template file for the Create TT operation

in Trouble Ticket.

Default value: setTroubleTicketByValueRequest.xml
temip.tt.template.dissociat
e

OSS-J Mapping Template file for the Create TT operation

in Trouble Ticket.

Default value:

trySetTroubleTicketsByValuesRequest.xml
temip.tt.template.close OSS-J Mapping Template file for the Create TT operation

in Trouble Ticket.

Default value: closeTroubleTicketByKeyRequest.xml
temip.tt.template.cancel OSS-J Mapping Template file for the Create TT operation

in Trouble Ticket.

Default value: cancelTroubleTicketByKeyRequest.xml

7.5.4 TeMIP Remote Handler specifc Web service
configuration file

The file

33

$UCA_HOME/remoteHandler_TeMIP/configuration/TeMIP_configuration.xml

addresses the TeMIP Web Service Client configuration points. This file holds mainly the

TeMIP Director Information required by the TeMIP Remote Handler.

This TeMIP web service client configuration file is usually the same than the one used for

the TeMIP Collector. You can refer to the “Advanced TeMIP Collector Configuration” for

more details.

Note that the Collection section is not required within this files because very specific to

the collector.

7.5.5 TeMIP Remote Handler specific logging property file

The file :
$UCA_HOME/remoteHandler_TeMIP/configuration/log4j.properties

is the standard Log4j configuration file for the TeMIP specific part of the TeMIP

remoteHandler.

7.6 UCA Alarm Object Custom fields

Nine TeMIP Alarm Object Fields have been reserved in the TeMIP dictionary for UCA

users. They all have string values that can be set from rules through the “Update Alarm”

action. Albeit the TeMIP MSL presentation name for these attribute is “UCA Custom

Field X” in the TeMIP dictionary, the visible field name in the “Update Alarm” action

dialog box can be easily be changed with configuration to a more meaningful name (e.g

“temperature” or whatever) . The TeMIP Remote Handler is then responsible for mapping

the UCA meaningful name to the corresponding generic TeMIP name.

The registered AO custom fields are the following:

10061 UCA Custom Field1

10062 UCA Custom Field2

10063 UCA Custom Field3

10064 UCA Custom Field4

10065 UCA Custom Field5

10066 UCA Custom Field6

10067 UCA Custom Field7

10068 UCA Custom Field8

10069 UCA Custom Field9

You can perfectly keep these default names in the actions. If you prefer using more

meaningful names in your UCA rules, two configuration steps are necessary: customize

the “Update Alarm” action dialog box, and customize the TeMIP Remote Handler.

7.6.1 Remote Handler configuration

The file TeMIP remote handler configuration file:
$UCA_HOME/UCAremoteHandler/configuration/temipremotehandler.properties

contains the following properties to define the AO custom fields aliases (they are all

commented by default):

34

temip.ao.ucacustomfield1.alias :

temip.ao.ucacustomfield2.alias:

temip.ao.ucacustomfield3.alias :

temip.ao.ucacustomfield4.alias :

temip.ao.ucacustomfield5.alias :

temip.ao.ucacustomfield6.alias :

temip.ao.ucacustomfield7.alias :

temip.ao.ucacustomfield8.alias :

temip.ao.ucacustomfield9.alias :

If you wish to give a friendly name to one of the free UCA custom AO field, provide its

name to the corresponding property value. For example:

temip.ao.ucacustomfield1.alias : myUcaStatus

temip.ao.ucacustomfield1.alias : myUcaText

This is sufficient for the TeMIP Remote Handler to know how to map the incoming UCA

event change notification (i.e “callout” result of the Update Alarm action) to the

corresponding TeMIP AO attribute.

7.6.2 UCA Scenario Manager Configuration

To make the meaningful name visible in the UpdateAlarm dialog box you need to edit the

“gui.fieldname” property in the file:

 $UCA_HOME/properties/actiondialogkey.properties.

The value for this property is comma separated list of event field name. Just add your

new user friendly name there. For instance:

gui.fieldname : combobox,Event Field Name, true, eventRank,

systemClass, systemInstance, eventId, dataType, originatingTime,\

updateState,moClass,moInstance,severity,alarmType,probableCause,specificProb

lems,\

additionalText,additionalTextTag1,additionalTextTag2,additionalTextTag3,\

additionalTextTag4,additionalTextTag5,additionalTextTag6,\

primoEvento,ultimoEvento,nomoApparato,rete,descrAllarme,journal,campo2,\

myUcaStatus, myUcaText

35

Figure 3: Update Alarm customized action dialog box

7.6.3 TeMIP Client configuration

Finally, it is also easy to customize the TeMIP Client Alarm Handling column names to

reflect these new friendly names for the operator. Please refer to the TeMIP client

documentation.

36

Chapter 8 TeMIP Service Manager
OSS/J Trouble Ticket Support

8.1 Overview

The HP UCA / TeMIP-Service Manager OSS-J Trouble Ticket Liaison provides an end-to-

end integrated service management solution in the trouble ticket domain based on a

OSS/J JSR91 interface.

OSS/J JSR91 defines and standardizes a set of XML and Java APIs that facilitate the

integration of OSS products with each other and makes it almost seamless. The OSS

Trouble Ticket API is focused on defining a standard API that facilitates the data

exchange among TT and non-TT components within the context of incident management.

One or more alarm objects in TeMIP can be associated with one or more trouble tickets

through a case object, while trouble tickets can be mapped into incidents in HPSM. The

TeMIP UCA-SM OSS/J Liaison manages these relationships, using the OSS/J JSR91

specification to communicate with these applications. It is based on 2 OSS/J Adapters:

The HP OSS/J Trouble Ticket Server Adapter for Service Manager

The HP OSS/J Trouble Ticket Client Adapter for TeMIP and UCA

Unified Correlation Analyzer can use the OSS/J JSR91 interface to perform Trouble

Ticket Operations like:

Create Trouble Ticket

Close Trouble Ticket

Cancel Trouble Ticket

New UCA actions are available in the scenario designer user interface to integrate this

trouble ticket rules in correlation scenarios.

37

8.2 Architecture

Figure 4: Example of UCA / OSS-J Integration

HP TeMIP is the Network Management Platform

HP UCA is the Unified Correlation Analyzer product in charge of the topology based

correlation. It contains 2 parts: Collector in charge of collecting events from TeMIP and

sending them to UCA correlation Engine, and the Remote Handler in charge of executing

actions defined in the correlation rules.

HP JSR91 FM is the TeMIP Function Module, used to interface to TeMIP Server. (entity

TT_SERVER)

HP OSS-J JSR91 Client Adapter is an adapter built to processes the JSR91 requests

and TT Server notifications.

HP OSS-J Server Adapters is the JSR91 Adapter connection to the Application server

where TT Server is deployed

HP Service Manager is the TT Server Manager that manages incidents.

HP TeMIP Client OSS-J Plug-in is the JSR91 Plug-in provides the user interface to

the trouble ticket management operations. It interfaces between TeMIP Client and the

JSR91 adapter through a socket communication, constructs a well-formed JSR91 request

and sends it to the JSR91 adapter.

38

Note: OSS/J only supports today HP Service Manager as TT server.

UCA is only interface to the JSR91_FM directly to execute TT directives via the TeMIP

Web Service interface to the TeMIP Entity TT_SERVER (global class of the JSR91_FM

and represents the Trouble Ticket Server).

Please refer to the User documentation of HP SM OSS-J Trouble Tickets to have all the

details on the OSS-J support in TeMIP.

8.3 UCA Trouble Ticket Actions

Specific Actions have been implemented to integrate OSS-J in UCA scenario designer.

8.3.1 Create TeMIP Trouble Ticket

This action creates a new case in the TT Server associating a list of alarms contributory

and sympathetic.

Arguments Mandatory Description

Notification Yes UCA Notification identifier

Include contributory

alarms

No Checked if the contributory alarms are included in the

Trouble ticket

Include sympathetic

alarms

No Checked if the sympathetic alarms are included in the

Trouble ticket

Selected Alarms Yes The alarm list of alarms associated to the case. The

first alarm is considered as the mapping alarm for the

template file, and parents correlated alarms

Template File No Mapping Template file used for the create TT

operation.. A default Template File will be used if this

argument is empty

(createTroubleTicketByValueRequest.xml)

User Input Yes This is an optional arguments dependant of the

Mapping Template File. The user Input should be in

the XML format.

Log Action to

Database

No This means that the Rule and

associated action will be recorded in the UCA

notification database

8.3.2 Close TeMIP Trouble Ticket

Arguments Mandatory Description

Notification Yes UCA Notification identifier

Template File No Mapping Template file used for the close TT operation..

A default Template File will be used if this argument is

empty (closeTroubleTicketByKeyRequest.xml)

User Input Yes This is an optional arguments dependant of the

39

Mapping Template File. The user Input should be in

the XML format.

Log Action to

Database

No This means that the Rule and

associated action will be recorded in the UCA

notification database

8.3.3 Cancel TeMIP Trouble Ticket

Arguments Mandatory Description

Notification Yes UCA Notification identifier

Template File No Mapping Template file used for the close TT operation..

A default Template File will be used if this argument is

empty (cancelTroubleTicketByKeyRequest.xml)

User Input Yes This is an optional arguments dependant of the

Mapping Template File. The user Input should be in

the XML format.

Log Action to

Database

No This means that the Rule and

associated action will be recorded in the UCA

notification database

8.4 Mapping Template Files

Mapping files are used to provide an efficient way to map alarm object information and

incident case information (value association, function association or script association)

Mapping Template Files are in charge of the translation between the OSS-J Domain

model and the HP SM incident model.

This Mapping enables operators to customize their mapping rules according to their

business logic.

The OSS/J request template XML files are used to provide a default template when

making the request. When making the request if user doesn‟t provide a value for a

specific attribute, it will be filled in by the default value in the template.

The template files are located in the /etc/hp/ism/adapters/jsr91adapter/templates

directory

It is recommended to read the complete documentation about Mapping in the OSS-J

product to fully understand the feature. Any invalid template will fail a UCA trouble

ticket operation.

40

8.5 Basic Example

8.5.1 Model

Imagine we have a simple model describing a site and 3 network equipments (cells). Each

time a Master alarm is created by correlation rule, we want to automatically create a

Trouble Ticket with the associated alarms hierarchy.

Figure 5: Trouble Ticket example, Meta Model

8.5.2 Create a TT Associated to a Master Alarm

Figure 6: Create Trouble Ticket with associated alarms

1. Alarms Mapping rules generate state changes

2. Automatic Model-Driven State Propagation on NE Child Group

41

3. Rule-Driven Alarm creation: Raises an Problem Alarm on the Site when a

Primary Notification is created and associate a contributory alarm (cell1)

4. Rule-Driven TT creation: Create a TT on the site If an Alarm exist and no Ticket

Associated

8.5.3 Clear all alarms and Close associated TT

Figure 7: Close Trouble Ticket

1. Clearance received on all cells.

2. Automatic Model-Driven State Propagation on NE Child Group. Status back to

normal.

3. Rule-Driven Alarm clearance: Master alarm is automatically cleared

4. Rule-Driven TT creation: Close TT if all associated alarms are cleared.

42

Chapter 9 Problem detection
example (hello world)

9.1 Description

This example can be considered as a “hello world” scenario to start with UCA and test its

effective integration with TeMIP. It is inspired from a very simplified GSM network

management situation.

Imagine you have 3 base stations (BTS) on a GSM radio site (SITE). The BTS are

managed by TeMIP and we receive alarms on them: indicating “BTS down”.

We then want to detect the situation where all BTS of the site are down, and create a

new alarm for this “problem”. This is what we call a typical “problem detection” case:

detect a pattern of alarms and make a single visible unit out of it, usually a new alarm

grouping all the others.

Site

BTS2 BTS1 BTS3

Figure 8: pattern detection: all BTS of a site are down

If we translate this in a fault management vision, we would like to create a new alarm

representing this problem, and which group all the underlying alarms under it.

43

Site Down Alarm

BTS1 down

BTS2 down

BTS3 down

Figure 9: Desired output in TeMIP alarm handling window

Reversely, if one of the BTS alarm is cleared, the Site Alarm is then cleared

automatically by UCA.

Note that this alarm can also be seen a “root cause alarm”, for instance if the cause of the

BTS down alarms is a power failure in the site.

New created alarms (master alarms), have a “Correlation Tag” attribute set to associated

Notification type in UCA (refer to UCA user‟s guide) indicating for instance “Root Cause”

or “Service Impact”.

9.2 Play this scenario step by step

As a “hello world” example, we provide hereunder a detailed step by step procedure in

order to run the scenario, and eventually discover UCA.

For an easier deployment/un-deployment of the complete example, this scenario is

implemented as an UCA Value-pack. The following sections describe how to load the

value pack, dataload instances for making a real test with TeMIP alarms.

9.2.1 Problem Detection example directory layout
As any other valuePacks, the Problem Detection example is delivered as a directory tree

located under the $UCA_HOME/valuepacks directory.

The Problem Detection example directory hierarchy is made of a set of mandatory

directories plus a set of directories containing data specific to this value-pack.

Mandatory files and directories:

 vp-manifest.xml

 models

 actions

rules

The vp-manifest.xml file is the Problem Detection value pack description file. It

contains the name and description of the value-pack and also the name space to which it

belongs.

The models directory contains the UML model that is loaded in UCA.

Two files are delivered :

ProblemDetection_model.xmi : The model is in the xmi format.

ProblemDetection_model.zargo : Editable format with the zargo editor

44

Note: if you are curious you may also have a look at the UML representation of the

model by using the ArgoUML tool shipped with UCA, with a hyperlink at the bottom

of the home page. It is a very basic generic representation of a telecom network. We

use only a part of it in the scenario.

Figure 10: ProblemDetection UML model

This model is almost generic and could be applied to many network topologies. It is

mainly based on containment relations (the black diamonds in the picture above indicate

a UML composition relationship). A network is made of Sites that contain Network

Element, that contain Cards, etc…

The actions directory is a mandatory and contains the specific actions that may have

been developed for this value-pack. In the case of Problem Detection the rules are base on

the standard system actions and thus this directory remains empty.

45

The rules directory contains the rules that implement the Problem detection scenario

and that have to be loaded in UCA.

Specific files and directories:

The dataload directory contains the csv files used to populate UCA‟s topology mesh.

Each file corresponds to a model class.

The fcl directory contains TeMIP scripts to simulate the incoming events to be able to

play the scenario.

The msl directory contains the TeMIP part of the model, as a set of MSL files to be

loaded. These new classes are needed in the TeMIP dictionary essentially because new

alarms are created by UCA with a Managed Object that has to be present.

In the following sections, the file names are given with a path relative to this current

ProblemDetection value-pack directory.

9.2.2 Start UCA
UCA is embedded in a tomcat server that should be started first:

su - uca

$UCA_HOME/bin/tomcatserver.sh

Note: it‟s important to log first as the uca user so that the UCA_HOME, JAVA_HOME

and CATALINA_HOME environment variables are correctly set.

UCA‟s graphical user interfaces are all web based. Once the tomcat server has been

started, you can open the UCA login page at the following URL:

http://<uca host name>:18080/uca/

Note: the port number depends on your configuration, the default value is given here.

Also, make sure that the host name is reachable from your client host (where the browser

is executing). Usually, the server name must be fully qualified with a domain name. You

can also give directly the IP address instead if you know it!

46

Figure 11: UCA Login page

From the UCA login page, Use system/system as login/password to log in.

A successful login will show you the UCA home page:

Figure 12: UCA home page

47

From the UCA home page, press the “UCA Manager” button to launch the System

Manager applet window. Use system/system as login/password to log in and push the

login button.

Note: The System Manager application is executed thanks to the “Java Web Start” utility

that should therefore be installed on the client system. This a prerequisite for using UCA.

Figure 13: UCA system manager window

9.2.3 Deploy the Problem Detection value-pack

The Problem detection example deployment in UCA is made by using the vp_deploy.sh

command line tool.

As the “uca” user, execute the following command:

vp_deploy.sh hot-deploy ProblemDetection system system

VP deployed ok

By doing so, both the Problem detection model and rules are deployed in UCA server.

The effective deployment can be check with the following command:
 # vp_deploy.sh list system system

48

9.2.4 Dataload instances into the UCA

UCA instances (objects corresponding to the UCA model) are loaded through the GUI

before starting up the engine. In the System Manager, select the “Data-load” tab.

Figure 14: UCA data-load window

The left pane shows the count of objects currently loaded for the various classes in the

Model.

Instances are organized by classes and loaded through comma-separated values files

(CSV), to be found in the ProblemDetection/dataload directory.

Press the “Upload” button to add a file in the library. Do this for the following classes:

Network.csv

NetworkElement.csv

Site.csv

Then we need to associate one file to its corresponding class.

In the “Available classes” list select the “Network” line by clicking on it: it will remain

highlighted. Then select “Network.csv” in the “Available files” list (which has been filled

by the previous upload phase).

Once both lines are highlighted, press the “Associate” button.

You should see the “Class and Import File Association” section updated with the new

association.

Not that no data-load has been achieved yet (until you press “Import”) and that the

counters are still at 0.

49

Figure 15: Class/Instance file association

Repeat the operation on the NetworkElement.csv and Site.csv files (logically

associated with the NetworkElement and Site classes respectively).

NOTE: For the next sequence, UCA must be shutdown to have access to the

models and Data-Load tabs. To stop the engine, go in the “Status” tab and press

the “Shutdown” button. Once the data-load is complete, press “Startup”. This

sequence is different from the “uca_start” and “uca_stop” utilities, which also

stops and starts the tomcat server.

Now, return back to the dataload tab and press the “Import” button to perform the data-

load.

When prompted, make sure to check the “Delete the table(s) contents before importing”

and “The CSV file(s) have a first-line header row” options before pressing “OK”.

50

Figure 16: Import csv dialog

If the parsing of the files is correct, the import is silent. Note that the object counters will

remain to 0 as long as we don‟t start the system, which is the next section!

9.2.5 Starting the engine

In the System Manager window, select now the “Status” tab, and press the “Startup”

button. All UCA components statuses should go green.

51

Figure 17: UCA status after startup

And if you go back to the “Data-load” tab, you should notice that the counters have

changed.

52

Figure 18: Updated data-load counters

Once the system has been started, we can now browse the state mesh to visualize the

current states of the objects and deploy new rules to implement correlation scenarios. We

do this be using applications called the “Mesh Viewer” and the “Scenario Manager”.

We suggest that you create a new user in the UCA system, with the good credentials to

use the applications for this demo. To do this, simply choose the “Users” tab in the

System Manager and fill in the form as shown.

53

Figure 19: adding a new demo user

Now, log in the applications page with your new demo user (or else): open again the UCA

home page (URL: http://<uca host name>:18080/uca/). Use the credentials of the newly

created user.

And you should now see:

54

Figure 20: UCA applications startup page

Press the “Mesh Viewer” button to launch the Mesh Viewer applet.

55

Figure 21: UCA's Mesh Viewer window

In the left pane, you can browse through the currently loaded objects.

The right part is used to display the object with a failed or degraded state.

9.2.6 Check deployed rules

From the UCA main page, press now the “Scenario Manager” button to launch the

Scenario Manager applet. It is the development user interface to edit, load or see rules.

56

Figure 22: UCA's Scenario Manager window

To check the deployed rules, click on the “Load Current Deployment From Server” button

(red arrow icon).

Then click on the example.problemdetection Tab.

57

Figure 23: Scenario manager with the ProblemDetection rules

loaded

You can see that two scenarios are deployed in the server:

Resilience Failover and recovery – which a system scenario used for internal processes

monitoring

Site Problem Detection – which is our current example.

The ProblemDetection example configuration is now completed on the UCA side.

We will now configure the TeMIP side in the next sections.

9.2.7 Load the test MSL

The ProblemDetection will create new a TeMIP alarm on the Site object, and BTS alarms

will be created. We therefore need these new classes in the TeMIP dictionary.

To do see, execute the following commands from the temip or root account.

cd msl

load_msl.sh

You can eventually check with the TeMIP dictionary browser (mcc_dap_browser) that the

new Site, BSS and BTS classes are present in the dictionary.

58

9.2.8 Create the demo Operation Context

Create the Operation Context in TeP

cd fcl

manage do create_oc.cmd

This command creates a new Operation Context named “oc”.

9.2.9 Start the TeMIP-UCA integration processes

Please refer to the TeMIP Collector and TeMIP Remote Handler sections to see how to

configure these two components that make the link between TeMIP and UCA. (You may

already have done this during the UCA setup phase).

Usually, they are started automatically after the uca_start command.

Check with the uca_show command:

su – uca

uca_show

In case your server is configured in “Standalone” mode (not the default) the processes are

not started automatically. In this case only, here is how to start them.

The TeMIP Remote Handler must be started before the Collector so that when the first

alarms come in, and rules triggered by UCA, the Remote Handler is ready to execute

output actions to TeMIP.

To start the TeMIP Remote Handler manually, use the following start-up script:

su – uca

$UCA_HOME/UCAremoteHandler/bin/runRemoteHandler.sh

Edit the $UCA_HOME/UCAcollector/configuration/TeMIP_configuration.xml

file for the TeMIP collector to add the Operation Context “oc” in the collector operation

context list, as follows:

<OperationContexts>

 <OperationContext>oc</OperationContext>

</OperationContexts>

Once configured (mainly with the correct hostname and OC to monitor), start the

Collector with the following script, being the uca user:

su – uca

$UCA_HOME/UCAcollector/bin/runCollector.sh

9.2.10 Simulate events

59

At this stage, everything should be in place to be able to run the demonstration example.

There are fcl scripts to let you send the events and trigger the rules.

Emit the first BTS alarm, and eventually check the Mesh Viewer that the bts-1 object is

failed.

cd fcl

manage do send_bts1_down.cmd

Then, send the 2 remaining BTS alarms:

manage do send_bts2_down.cmd

manage do send_bts3_down.cmd

Here, the rules should have fired and should see the Site object with a failed state in the

Mesh Viewer.

Figure 24: Mesh Viewer after the BTS alarms reception

You can also launch the “Fired Rules Viewer” from the System Manager “Tools tab”. You

will then see the 2 rules that have fired for this scenario:

60

Figure 25: Fired Rules Viewer after the BTS alarms reception

And finally, more importantly, in the TeMIP Client you should see the new SITE alarm

created by UCA, with the Correlation Tag attribute equal to “PROBLEMREPORT”.

It means that our scenario has achieved its problem detection target. The 3 BTS down

alarms have been replaced by a unique SITE problem alarm grouping the 3 others.

Figure 26: new SITE alarm created in TeMIP

9.2.11 Navigate through correlated alarms

If you double-click on the SITE alarm, you can navigate to the contributory alarms of the

problem, which are the BTS alarms.

61

Figure 27: Alarm navigation example

Notice the “Category” column added to the tabular view.

You can also go back to the “parent” problem alarm by using the navigation buttons

(yellow arrows).

62

Chapter 10 Service impact and RCA
example

This is a more elaborated scenario, based on a service impact phase on a UMTS service,

followed by a “root cause analysis” phase to retrieve all alarms participating to this

service degradation.

Of course, one can use the step by step description detailed for the previous example to

run this scenario. The steps are exactly the same, and the example directory is structured

in the same way.

10.1 Model

The model is somehow the following one (you can see the full UML one in the model

directory):

UMTS Service

NetworkElement Connection

Equipment Equipment

Figure 28: Service Impact example, Meta Model

The model is fairly generic and can be reused for many other network representations,

even though the class names does match very well with the reality. For instance, in our

example, the “Cell” objects of the UMTS network become instances of the “Equipment”

class, what is not very logical.

This is a typical trade-off to do: re-use an existing simple and generic model and use the

UCA sub classing concept (please refer to the UCA user‟s guide for details), or write a

new specialized model each time, which strictly match the network topology.

Working on a specialized model can ease the rules writing, since the domain specific logic

(e.g SDH) is easier to express, whereas using a generic model enables re-usability,

especially rules templates and patterns.

In the example, the model is instantiated with the following mesh objects populated, with

their relationships.

63

UMTS_Service

NodeB Connection

Cell2 If
1

Cell1 Cell3 If
2

Radio
part

Transmission part

Figure 29: Service Impact model, Instantiation

The idea of the scenario is to have a service relying on two separate part of the

infrastructure: a radio part and a transmission part. The service can be affected if either

one or the other part is down. In each sub-system, we implement problem detection rules

to detect either a radio problem (one or several cells down) or a transmission problem

(two ends of a connection down). If a problem is detected, it is propagated up to the

service, to generate a new Service Impact alarm in TeMIP.

10.2 Transmission problem detection

 A Connection is modeled as an “Associate Group” with two ends, which represent

network interfaces. The connection is detected as down when its two end interfaces are

down.

UMTS_Service

NodeB Connection

Cell2 If
1

Cell1 Cell3 If
2

New PR on
connection

2 ifs down

Figure 30: Transmission problem detection

64

In TeMIP, a new Problem Report alarm is created on the Connection managed Object.

This Problem Report alarm associates the two initial Interface Down alarms, marked as

“Contributory” to the problem.

Transmission Problem (PR)

If1 down

If2 down

Figure 31: New transmission alarm in TeMIP

10.3 Radio problem detection and Service
Impact

On the radio part, we also have a problem detection pattern in place. It is trigged when

we receive a “cell down” alarm. A new Problem Report alarm is then created in the

NodeB managed object. The state of the NodeB is then propagated to the above UMTS

service. Because this one is now degraded a new Service Impact alarm is therefore

created in turn into TeMIP.

UMTS_Service

NodeB Connection

Cell2 If1 Cell1 Cell3 If2

New PR on
NodeB

New SI on
UMT_SERVICE

Figure 32: Radio problem detection, and service impact up to

UMT service

65

In the end, we have the following linkage between alarms in TeMIP. The operator sees

only one alarm.

Service Impact Alarm

Radio Problem Report

Cell1 down

Figure 33: New Radio Problem and Service Impact alarms in

TeMIP

10.4 Severity increase
Now, if all cells related to a NodeB are down, we wish to increase the severity of the

Radio Problem and UMTS Service Impact alarms to critical.

UMTS_Service

NodeB Connection

Cell2 If
1

Cell1 Cell3 If
2

Update on
service alarm

100%

Figure 34: Severity escalation on Service

Service Impact Alarm

Cell1 down

Cell2 down

Cell3 down

Radio Problem Report

Figure 35: Severity escalation in TeMIP

66

10.5 Final picture

Finally, as a “cross domain” example, we can see that both the Radio and Transmission

problem participate to the same service degradation.

UMTS_Service

NodeB Connection

Cell2 If1 Cell1 Cell3 If2

Figure 36: Service impact scenario, final picture

Thanks to UCA, this is now visible in TeMIP with the following alarm hierarchy.

Service Impact Alarm

Cell1 down

Cell2 down

Transmission Problem
Report

If1 down

If2 down

Cell3 down

Radio Problem Report

Figure 37: Service impact scenario, alarms correlated in TeMIP

In the end in TeMIP, the operator sees only one alarm, the one on the service, from which

he can drill-down to the associated alarms. In the picture above, the alarms with a white

font are the ones created by UCA, whereas the ones with a black font are the 4 ones

received initially in TeMIP and "demoted" under the new created ones (master).

67

Glossary

This glossary contains definitions of terminology used in the TeMIP User

Documentation set.

Agent

The portion of an entity that performs management procedures on behalf

of a director, receiving requests from, and returning responses to, the

director. TeMIP supplies off-the-shelf Agent functionality for OSI

networks through a dedicated Presentation Module, the OSI PM.

Alarm

A condition or occurrence in a managed network that is recognized as

requiring notification to a user for further analysis, possibly leading to

corrective action.

Alarm Objects

Alarm Objects are entities derived from alarms generated by network

elements, which can be handled and manipulated using AH NT. Alarms

that satisfy the Alarm Handling filtering criteria are transformed into

Alarm Objects.

Attribute

A piece of information that describes an entity such as a status or a

characteristic. A property of an alarm object. An attribute has a value.

Alarm Rule

A user-defined logic statement that specifies an alarm condition to be

detected and passed to the Notification FM.

Dictionary

The dictionary is a shared information store available to all management

modules. It is replicated on each director.

The dictionary contains the definitions of all global classes, including their

child classes, their attributes, their events, and the directives that they

support.

Director

A software system that interacts with a user, initiates management

operations on behalf of the user, coordinates management activities with

entities, and provides high-level management applications.

Discriminator

An OSI-compliant data structure that filters the received event reports,

allowing only those that satisfy the specified criteria to be passed through.

Entity Model

An entity is an item in a model stored in a database, representing a real-

world object or concept. The TeMIP Entity Model exists for the purpose of

network management. It provides a framework for extensible

architectures for managed objects.

68

The only network management actions currently initiated by an entity as

opposed to by a director, are the processing of events into event reports

and the forwarding of event reports.

Entity Hierarchy

A set of entities defined in the TeMIP management model comprising one

ancestor entity and all its descendants.

Event

An occurrence of a normal or abnormal condition detected by a network

element that might be of interest for network management.

Filters

In an Alarm Handling context, filters allow for the specification of criteria

that alarm objects must meet in order to have a handling function

performed. Filter patterns are used to determine whether or not an alarm

object should appear in the alarm list. The filter pattern is expressed in

terms of the presence or value of certain attributes of the alarm object,

and is satisfied if it evaluates to TRUE.

Framework Command Line (FCL)

A user interface comprising a command line and command language,

which essentially duplicates the services of the iconic map but without its

graphical representations. The FCL commands are used to apply

management functions to managed objects. They are specifically useful

when there is a requirement to manage a network from a non-graphical

terminal.

Managed Object

A network element that is managed.

Operation Context

An independent and self-contained view of a management domain that

defines an instance of alarm handling to achieve a specific management

objective.

OSS-J

Operational Support System through Java. It defines and standardizes a set of

XML and Java APIs that facilitate the integration of OSS products with each other

and makes it almost seamless.

TeMIP Framework

Digital object-oriented management product (framework and

applications).

TeMIP Operator or User

The owner (in the OS sense) of an application process invocation.

TTR

Trouble Ticketing Report. Raised against one or more alarm reports to

initiate repair actions.

