
HP Universal CMDB

For the Windows and Red Hat Enterprise Linux operating systems

Software Version: 10.01, CP 12
HP Service Manager Integration Guide
Document Release Date: November 2012
Software Release Date: November 2012

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable
for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for
Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notices

© Copyright 2002 – 2012 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated.
AMD and the AMD Arrow symbol are trademarks of Advanced Micro Devices, Inc.
Google™ and Google Maps™ are trademarks of Google Inc.
Intel®, Itanium®, Pentium®, and Intel® Xeon® are trademarks of Intel Corporation in the U.S. and other countries.
Java and Oracle are registered trademarks of Oracle Corporation and/or its affiliates.
Microsoft®, Windows®, Windows NT®, Windows® XP, and Windows Vista® are U.S. registered trademarks of Microsoft
Corporation.
UNIX® is a registered trademark of The Open Group.

Acknowledgements

• This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

• This product includes OpenLDAP code from OpenLDAP Foundation

(http://www.openldap.org/foundation/).

• This product includes GNU code from Free Software Foundation, Inc. (http://www.fsf.org/).This product
includes JiBX code from Dennis M. Sosnoski.

• This product includes the XPP3 XMLPull parser included in the distribution and used throughout JiBX,
from Extreme! Lab, Indiana University.

• This product includes the Office Look and Feels License from Robert Futrell

(http://sourceforge.net/projects/officelnfs).

• This product includes JEP - Java Expression Parser code from Netaphor Software, Inc.

(http://www.netaphor.com/home.asp).
2

Documentation Updates

The title page of this document contains the following identifying information:

• Software Version number, which indicates the software version.

• Document Release Date, which changes each time the document is updated.

• Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.
3

Support

Visit the HP Software Support web site at:

www.hp.com/go/hpsoftwaresupport

This web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer, you
can benefit by using the support web site to:

• Search for knowledge documents of interest

• Submit and track support cases and enhancement requests

• Download software patches

• Manage support contracts

• Look up HP support contacts

• Review information about available services

• Enter into discussions with other software customers

• Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp
4

Contents
1 Introduction . 11

Who should read this guide? . 11
Purpose of the integration . 11

Supported use cases . 12
Enabling ITIL processes . 12
Managing planned changes. 12
Managing unplanned changes . 13
Retrieving Service Manager ticket information. 13
Retrieving actual state of UCMDB CIs . 13
Accessing UCMDB CIs from Service Manager . 13

Core features . 14
Push . 14
Federation . 14
Population . 14

How CI information is synchronized between UCMDB and Service Manager . 15
CI information usage . 15
High-level components of the integration . 16
Relationships between integration components . 16
What information is stored in UCMDB? . 17
What information is stored in Service Manager? . 17

2 Integration Setup . 19

Integration requirements . 20
Upgrading your integration. 20
Integration setup overview . 24
HP Service Manager setup . 25

Create an integration user account . 25
Add the UCMDB connection information . 26

HP Universal CMDB setup . 27
Create an integration point in UCMDB . 27
Update the time zone and date format for the integration adapter . 30

Populating UCMDB with Service Manager CI data . 31
Define population jobs in UCMDB. 32
View Service Manager CI data in UCMDB. 33
Schedule CI population jobs . 33

Pushing UCMDB CI data to Service Manager. 34
Define data push jobs in UCMDB . 34
View UCMDB CI data in Service Manager . 36
Schedule data push jobs . 37
 5

Federating SM ticket data to UCMDB . 38
Federation TQL queries . 38
Examples of using federation. 38

Example 1: Federate all SM Incident tickets . 39
Example 2: Federate SM Incident tickets that affect a UCMDB Business Service CI 42
Example 3: Federate SM Incident, Change and Problem ticket data of UCMDB CIs 46
Example 4: Get related SM ticket data of a UCMDB CI. 48

3 Multi-Tenancy (Multi-Company) Setup . 51

Multi-tenancy (multi-company) support. 51
Implementing multi-tenancy in the UCMDB-SM integration . 52
Mandanten SM security layer . 52
What multi-tenant information is stored in UCMDB? . 52
What multi-tenant information is stored in Service Manager? . 52
Unique logical names . 53
Synchronization of company records . 53

UCMDB Customer ID . 55
UCMDB User ID and password . 55
Company Code . 56
CI reconciliation rules . 56
Company information pushed to CI and CI Relationship records . 56
Company information replicated to incident records . 56
Schedule records . 56

Tenant-specific Discovery Event Manager (DEM) Rules . 57
Multi-tenancy functional use cases . 58

Multi-tenancy requirements . 58
Setting up the multi-tenancy integration in UCMDB . 58

Install separate data flow probes for each tenant. 59
Start tenant-specific data flow probes . 60
Configure IP ranges for tenant-specific data flow probes. 60
Configure multi-tenancy for population . 61

Setting up the multi-tenancy integration in Service Manager . 61
Start the process schedule. 62
Configure the Service Manager System Information Record . 63
Add tenant-specific UCMDB User ID and password values. 64
Add UCMDB Customer ID values to existing companies . 64
Synchronize existing companies from Service Manager to UCMDB . 64
View whether company information is in UCMDB . 65
Resynchronize an existing company with UCMDB . 65
Inactivate a synchronized company . 66
Reactivate an inactive company . 66
Add tenant-specific DEM rules . 67

4 Standards and Best Practices. 69

UCMDB-SM configuration best practices. 69
CI name mapping considerations. 69

CRG mapping. 69
Running Software mapping . 70
6

Switch & Router mapping . 70
Bi-directional data synchronization recommendations . 70
Push scheduling recommendations . 71

Scheduler time frames. 72
Scheduler frequency . 72
Push Job dependencies . 72

Push in clustered environments . 72
Dedicated Web Services. 72
Step-by-step cluster configuration process. 73
Connecting to multiple SM processes. 73

Initial load configurations . 74
Push performance in a single-threaded environment . 74
Implementing multi-threading . 75
Push performance in multi-threaded environments . 76
Push performance in multiple SM processes environments . 76
Setting up SM DEM Rules for initial loads . 76

Differential/delta load DEM Rules configuration . 77
Fault detection and recovery for push . 78

Duplicated logical.name issue. 78
Lightweight Single Sign-On (LW-SSO) configuration . 79

Frequently Asked Questions . 79
When is a new CI created in HP Service Manager? . 79
Can I analyze the reason for a CI deletion in SM? . 79
How do I monitor relationship changes between UCMDB and SM? . 80
What kinds of relationships are pushed from UCMDB to SM? . 80
What is a Root CI Node?. 80
What is a Root Relationship? . 80
What is the “friendlyType” specified in an XSLT file? . 81
What is the “Virtual-Compound” relationship type used in a UCMDB-SM integration query? 81
When do I need the Population feature? . 81
Can I populate physically deleted CIs from SM to UCMDB?. 81
How do I keep the Outage Dependency setting of a CI Relationship in SM? . 82
How do I create an XSL transformation file? . 83
How do I use the Load Fields button to add multiple managed fields?. 88
What is the purpose of the <container> element in a population XSLT file? . 88
What will happen if a population job fails or succeeds with warnings? . 89

Known issues and limitations . 90

5 Tailoring the Integration . 93

Integration architecture . 93
Integration class model . 93
Integration TQL queries. 93

TQL queries for push. 93
TQL queries for Actual State . 96
TQL queries for population . 97
TQL query requirements. 98

Service Manager web services . 98
Managed fields. 98
7

Service Manager reconciliation rules . 102
Performance implications . 103
Dependence on DEM rules . 103

Service Manager Discovery Event Manager rules . 103
Change the conditions under which a DEM rule runs . 103
Change the action the DEM rule takes . 105
Update the list of managed fields for a CI type . 105
Create custom JavaScript to open change or incident records . 105

Integration tailoring options . 107
Update the integration adapter configuration file (sm.properties) . 107
Add DEM reconciliation rules . 110

Using join tables for reconciliation . 111
Sequence of reconciliation . 111

Add Discovery Event Manager rules . 112
DEM rules . 112
Duplication rules . 115
CI attributes displayed in change and incident records . 115
Searching for change and incident records opened by the integration. 116

Add a CI attribute to the integration for data push . 116
Add the CI attribute to the UCMDB class model . 116
Add the CI attribute to the TQL layout . 118
Add the CI attribute to the Service Manager table . 119
Create a web service field to support the CI attribute . 121
Add a managed field to support the CI attribute. 122
Map the CI attribute to a web service field . 124

Add a CI type to the integration for data push . 127
Add the CI type to the UCMDB class model . 128
Create a TQL query to synchronize the CI type . 130
Add the CI type’s attributes to the TQL layout . 133
Add the CI type in Service Manager . 134
Create web service fields to support the CI type . 137
Add managed fields to support the CI type . 139
Map the CI type’s TQL query to an XSL transformation file . 140
Map the CI type’s attributes to web service fields. 142

Add a CI type’s relationship types to the integration for data push . 146
Add a push mapping entry for each relationship type of the CI type. 147
Create a TQL query to push each relationship type of the CI type . 148
Map each relationship type TQL to an XSL transformation file . 150

Add custom TQL queries to data push jobs. 151
Add a CI attribute to the integration for population . 152

Create a web service field to support the CI attribute . 152
Map the CI attribute to the web service field . 152

Add a CI type to the integration for population . 155
Create a TQL query to populate the CI type . 155
Map the CI type's TQL query to an XSL transformation file . 156
Map the CI type's attributes to web service fields. 159

Add a CI type’s relationship types to the integration for population. 167
8

Map each relationship type's attributes to web service objects . 168
Define a TQL mapping for each relationship type. 169

Customize ucmdb id pushback for a CI type . 171
Disable the ucmdb id pushback feature for a specific CI type . 172
Define a custom pushback web service and xslt file for a specific CI type. 172

Add custom TQL queries to integration population jobs . 173
Add an attribute of a supported CI type for federation . 173

6 Troubleshooting . 181

Troubleshooting data push issues. 181
Check the error message of a failed push job . 182
Check the error messages of failed CIs/CI Relationships in a push job . 182
Check the push log file . 186
Re-push failed CI/CI Relationship records . 191
Typical push errors and solutions . 192

TQL not configured in smSyncConfFile.xml . 192
Non-existing XSLT file name defined for a TQL in smSyncConfFile.xml 193
Request name not found for a TQL in smSyncConfFile.xml . 195
Wrong Service Manager WS request name defined in smSyncConfFile.xml. 196
XSLT file not well formed . 198
Wrong UCMDB attribute name in XSLT file. 200
Wrong Service Manager field name in XSLT file. 201
Empty value for No Nulls key in Service Manager . 202
CI logical name truncated or CI not pushed due to logical name truncation 204
Service Manager database case-sensitivity issue . 204
Global ID and Customer ID missing in XSLT . 205

Troubleshooting population issues . 205
Check the error message of a failed population job . 205
Check the population log file . 207
Typical error messages and solutions . 211

No TQL configured in smPopConfFile.xml. 211
Non-existing XSLT file name defined for a TQL in smPopConfFile.xml . 212
No “Retrieve” type request defined for a TQL in smPopConfFile.xml . 212
Wrong request name of retrieveKeysQueryName configured for a TQL in smPopConfFile.xml . 213
Wrong request name of retrieveListQueryName configured for a TQL in smPopConfFile.xml . . 214
XSLT file not well formed . 216
Wrong UCMDB attribute name in XSLT file. 218
Wrong Service Manager field name in XSLT file. 219
Wrong Universal CMDB attribute Data type in XSLT file . 220
UCMDB CI attribute sm_id not mapped to the right Service Manager field in XSLT 220
9

10

1 Introduction
This chapter provides an overview of the HP Universal CMDB (UCMDB) - HP Service
Manager (SM) integration (also referred to as the Universal CMDB (UCMDB) integration or
UCMDB-SM integration throughout this document):

• Who should read this guide? on page 11

• Purpose of the integration on page 11

• How CI information is synchronized between UCMDB and Service Manager on page 15

Who should read this guide?

This guide is intended for a system implementer or system administrator who will be
establishing and maintaining a connection between the UCMDB and Service Manager
systems. This guide assumes that you have administrative access to both systems. The
procedures in this guide may duplicate information available in your UCMDB and Service
Manager help systems, but is provided here for convenience.

Purpose of the integration

An integration between HP Universal CMDB (UCMDB) and HP Service Manager enables you
to share information about the actual state of a configuration item (CI) between your UCMDB
system and a Service Manager system. CIs commonly include IT services, hardware and
software. Any organization that wants to implement the best practices Configuration
Management and Change Management ITIL processes can use this integration to verify that
CIs actually have the attribute values the organization has agreed to support.

You can use this integration to automate the creation of Service Manager change or incident
records to update or rollback CIs that have unexpected attribute values. Service Manager
allows you to programmatically define what actions you want to take whenever a CI’s actual
state does not match the expected state as defined in the CI record.

The integration offers several different ways for users to view CI actual state information:

• By default, the integration automatically updates the managed fields of Service Manager
CI records as part of the regular UCMDB synchronization schedule. You can choose the
option to configure the integration to automatically create change or incident records
instead.

This document replaces the following documents that have been published before this
release:

• HP Universal CMDB Integration Guide (for Service Manager 9.30, dated July 2011)
• UCMDB-SM Integration Standards and Best Practices Guide (dated 31 May 2010)
11

• A Service Manager user can view the current actual state of a CI by looking at the Actual
State section in the CI record. When you open the Actual State section, Service Manager
makes a web services request to UCMDB and displays all CI attributes the request
returns. Service Manager only makes the web service call when you open this section.

• A Service Manager user can use the View in UCMDB option to log in to the UCMDB system
and view the current CI attributes from UCMDB. The Service Manager user must have a
valid UCMDB user name and password to log in to the UCMDB system.

Supported use cases

This section describes use cases that are supported by the UCMDB-SM integration. The
supported use cases provide the core business processes that are enabled by the UCMDB-SM
integration.

There are four main business use cases supported by the UCMDB-SM integration. They are
as follows:

• Planned Change: A change created in SM through the formal SM change process.

• Unplanned Change: A change or incident that occurred in SM and does not conform to the
formal SM change process.

• Retrieving SM Ticket Information: The ability to view SM ticket information in UCMDB.

• Actual State: The ability to view the UCMDB CI information in SM.

All of the use cases provide important functionalities that enable the user to perform ITIL(IT
Infrastructure Library) processes. The ITIL processes refer to a set of best practices that
define and outline how organizations should manage their IT.

Enabling ITIL processes

By activating CI push from UCMDB to SM the user facilitates ITIL processes such as
Incident, Problem and Change Management in SM.

SM utilizes the data pushed from UCMDB in the following modules:

• Incident Management: the Service Desk operator (SD Agent) selects the “Service” and the
“Affected CI” for the specific Incident record.

• Problem Management: the SD agent selects the “Service” and the “Primary CI” for the
specific Problem record.

• Change Management: the SD agent selects the “Service” and the “Affected CI(s)” for the
specific Change record.

In each of the previously mentioned ITIL processes, SM utilizes CI information for Service,
Affected CIs and Primary CIs that all originate in UCMDB.

Managing planned changes

The purpose of the “Planned Change” use case is to provide IT organizations a formal process
by which changes to the IT infrastructure are introduced after thorough review and analysis.
This is performed according to the “Change Management” process defined in ITIL v3.

A “Planned Change” is initiated by the SM user via the formal “Change Management” process
module in SM. This is followed by the actual change implementation.
12 Chapter 1

The actual changes are discovered by a discovery tool such as HP DDMA, and then updated in
UCMDB and the relevant modifications are pushed to SM. Once the user has validated the
change, the user closes the relevant planned change in SM.

Managing unplanned changes

The purpose of the “Unplanned Change” use case is to provide IT organizations a formal
process by which all changes that occur to the IT infrastructure are both logged and
conventionalized through the organizations formal approval process.

An “Unplanned Change” is a change that is recognized by a Discovery tool such as DDMA.
The change is first updated and visible in UCMDB and then the data is pushed to SM. SM
recognizes the change and as a result an “Incident” or “Change” record is generated.

These Changes are seen also in the SM “Pending Changes” section in the Configuration Item
form, once approved they are moved to the SM “Historic Changes” section.

Retrieving Service Manager ticket information

Retrieving SM ticket information from within UCMDB provides all HP Software applications
users with access to this information by using UCMDB's federation capabilities and
supporting APIs. These applications include Business Service Management (BSM), Asset
Manager (AM), Operations Orchestration (OO), etc.

SM ticket data is accessed from within UCMDB using UCMDB federation capabilities. SM
ticket data includes Incident, Problem and Change records as well as a key set of their
attributes.

UCMDB enables users to create reports/views that combine the federated ticket data from SM
with CI information from UCMDB.

Retrieving actual state of UCMDB CIs

The purpose of “Actual State” is to enable SM users insight into CIs’ current state as detected
by “Discovery Tools” and populated in UCMDB. This state provides up-to-date information
that may vary from the information displayed in SM both in content and in scope.

The “Actual State” of the CI is displayed in SM in order to enable the user to validate the
current state of the CI that resides in UCMDB or in another data repository.

SM users retrieve the Actual State of CIs from UCMDB or additional data sources by viewing
the CI's Actual State section in the SM Configuration Item form.

Accessing UCMDB CIs from Service Manager

SM users can open the UCMDB User Interface in the context of a specific CI, by clicking the
View in UCMDB button in the SM CI record. When the user clicks the View in UCMDB button, a
UCMDB login screen displays; After the user enters a UCMDB username and password,
UCMDB displays a topological view of the specific CI together with all related CIs that are
linked to it.

You can configure Lightweight Single Sign-On (LW-SSO) for the integration, so that Service
Manager web client users can bypass the UCMDB login screen after clicking the View in
UCMDB button. For more information, see Lightweight Single Sign-On (LW-SSO)
configuration on page 79.
Introduction 13

If the UCMDB Browser URL is specified in the SM System Information Record, this button is
replaced by the View in UCMDB Browser button. When you click the View in UCMDB Browser
button, a UCMDB Browser login screen displays; After you enter a UCMDB Browser
username and password, the CI is displayed in the UCMDB Browser UI.

Core features

This section explains the rudimentary concepts behind the Federation, Push, and Population
features as they pertain to the integration.

Push

UCMDB can automatically discover most types of CIs available in Service Manager. This
integration enables you to push these types of CIs from UCMDB to Service Manager.

Figure 1 shows how data is pushed from UCMDB to Service Manager (SM). The data is
physically pushed (copied) from UCMDB to SM. Once the data is physically located in SM, the
data is utilized by the SM user that consumes this information in various SM processes.

Figure 1 Push Model between UCMDB and SM

Federation

With the federation feature, UCMDB pulls various ticket information (for example, Incident,
Problem, and Change ticket information) from SM. This enables users to see Ticket
information in UCMDB as Ticket CIs that are connected to the relevant Nodes.

When data is federated (reflected or mirrored) from SM to UCMDB, the data is not physically
present in UCMDB, instead it is passed over to UCMDB via Web Services.

Population

You can also use this integration to populate those types of CIs that UCMDB cannot
automatically discover or CIs that have been created in Service Manager before you have a
UCMDB system deployed. For more information, see When do I need the Population feature?
on page 81.

Population is the reverse of Push. Figure 2 shows how data is populated from SM to UCMDB.
One SM CI record with multiple attributes is transferred to UCMDB as multiple CI records.

CI Type and Attribute Push

Only information that is physically present in UCMDB can be pushed to SM.
14 Chapter 1

Figure 2 Population model between SM and UCMDB

How CI information is synchronized between UCMDB and
Service Manager

This section explains how CI information is transferred between the UCMDB and Service
Manager systems.

CI information usage

When referring to the concept of CI information it is important to make the distinction
between a UCMDB CI and a Service Manager (SM) CI. The UCMDB model represents a
topology that contains a number of CI types and relationships.

The UCMDB topology can be represented in Service Manager as a single entity. Multiple CIs
from UCMDB and their attributes are merged into a single record in SM and the relevant
UCMDB attributes are mapped to their appropriate counterparts in the SM record.

Figure 3 CI information usage diagram

Figure 3 shows the correlation between the UCMDB topological model and its representation
of the Computer Instance together with its parallel representation in SM. The SM computer
CI contains all of the UCMDB information that is passed through the integration.

In the push flow, in the UCMDB topological view several CIs such as Node, IP, Interface,
Location, File System, CPU, Disk Device and their Relationships are converted into a single
SM computer record with the IP, MAC Address and Location, File System, CPU and Disk
Device attributes.

In the population flow, the conversion is reversed.
Introduction 15

High-level components of the integration

The following diagram shows the high-level components of the UCMDB integration, and
illustrates the interactions between UCMDB and Service Manager.

Relationships between integration components

Figure 4 illustrates the relationships between the Service Manager Adapter components in
UCMDB and the associated components in Service Manager.

The Service Manager Adapter includes configuration files, which are used to map UCMDB
entities to their counterparts in Service Manager during data push, as well as map Service
Manager CIs to UCMDB entities during population.

The configuration files utilize UCMDB TQL queries that define a superset of data relevant for
the integration.

Figure 4 Relationship diagram of the integration components
16 Chapter 1

What information is stored in UCMDB?

Your UCMDB system stores the actual state of CIs and CI relationships as CI attributes.
Typically, UCMDB uses one or more integrations and discovery mechanisms (feeders) to
automatically detect CI attribute values. The UCMDB-SM integration only uses a subset of
the CI attributes available in a UCMDB system.

For more information, see Tailoring the Integration on page 93.

What information is stored in Service Manager?

Your Service Manager system stores the managed or expected state of CIs and CI
relationships as attribute values in a CI record. To be part of the integration, a CI attribute in
your UCMDB system must map to a managed field in the Service Manager CI record. You can
add, remove, or update the managed fields that are part of the integration by tailoring the
Service Manager web services that manage the integration.

Service Manager runs according to a set of rules that define what actions you want the system
to take whenever a CI’s actual state does not match the expected state as defined in the CI
record. You define these rules from the Discovery Event Manager (DEM) in Service Manager
where you can do the following:

• Automatically update a CI record to match the attribute values listed in the actual state.
(This is the default behavior.)

• Automatically create a change record to review the differences between the actual state
and the managed state.

• Automatically create an incident record to review the differences between the actual state
and the managed state.
Introduction 17

18 Chapter 1

2 Integration Setup
Before implementing the integration in your production environment, you can set up the
integration in a test environment using the out-of-the-box integration configurations. This
chapter describes the basic integration setup tasks without any tailoring or multi-tenancy
configurations. It covers the following topics:

• Integration requirements on page 20

• Upgrading your integration on page 20

• Integration setup overview on page 24

• HP Service Manager setup on page 25

• HP Universal CMDB setup on page 27

• Populating UCMDB with Service Manager CI data on page 31

• Pushing UCMDB CI data to Service Manager on page 34

• Federating SM ticket data to UCMDB on page 38

Before you proceed to implementing the integration in your production environment, you can
refer to the following chapters for further information:

• Chapter 3, Multi-Tenancy (Multi-Company) Setup, which describes how you set up the
integration in multi-tenancy mode.

• Chapter 4, Standards and Best Practices, which describes best practices for
implementing the integration and also provides Frequently-Asked-Questions
information.

• Chapter 5, Tailoring the Integration, which describes how you can tailor the integration
to better suit your business needs.

• Chapter 6, Troubleshooting, which provides information on troubleshooting data push
and population issues.
19

Integration requirements

The supported product versions of this integration are listed in Table 1.

You must set up the following required components to establish an integration between
UCMDB and Service Manager.

• HP Universal CMDB installation

— Add a UCMDB Probe for the population feature if you do not already have one.

• HP Service Manager installation

— Add the UCMDB URL to the System Information Record. See Add the UCMDB
connection information on page 26.

• Network connection between the HP Universal CMDB and HP Service Manager systems.

For instructions on installing and configuring your systems, see the UCMDB and Service
Manager documentation.

Upgrading your integration

The UCMDB Integration Enhancement Content Pack 9.30.0 for Service Manager 9.30 is
already included in the Service Manager 9.31 applications, except for several code changes,
which are not included in order for backward compatibility. This means, to take advantage of
the integration enhancement in SM9.31, extra steps are required to upgrade your existing
SM-UCMDB integration after you upgrade to Service Manager applications 9.31. This section
describes these upgrade tasks.

Table 1 Supported product versions

Service Manager UCMDB

9.30 + UCMDB Integration Content Pack
9.30.0a

10.01 CP12b

9.31 10.01 CP12

a. The UCMDB Integration Content Pack 9.30.0 is available from the HP Live Network at:
https://hpln.hp.com. For instructions on installing the content package, see the
Service Manager 9.30 Applications Patch Manager Guide for Content Patches shipped
with the content pack release.

b. CI data replication (push) from UCMDB to Service Manager is supported for certain
versions of UCMDB earlier than 9.x with less content and limited error handling; however
CI data population is supported only for UCMDB 9.05 or later. For this reason, this
document does not cover information about integrating Service Manager with earlier
versions of UCMDB. For such information, see the HP Universal CMDB to HP Service
Manager Integration Guide for Service Manager version 9.20, which is available from
http://h20230.www2.hp.com/selfsolve/manuals.

If you have already applied the UCMDB Integration Enhancement Content Pack 9.30.0 for
Service Manager 9.30, the integration has been upgraded and you need to do nothing. If you
do not want to upgrade your existing integration, you need to do nothing and your integration
can continue to work as before.
20 Chapter 2

Task 1: Modify the definitions of certain CI types in Service Manager.

The SM-UCMDB integration enhancement uses the joinnode table for data mappings of the
following CI types: mainframe, networkcomponents, storage, and computer. The new data
mappings require certain changes be made to these CI types in Service Manager 9.31, as
described in Table 2.

For backward compatibility, the definitions of all out-of-the-box CI types in Service Manager
9.31 are identical to those in Service Manager 9.30.

Table 2 Changes required for certain CI types

CI Type Field Value
Added
Subtypes

Removed
Subtypes

Mainframe Old Value New Value • Logical
Partition

• CPC

LPAR

Format Name configurationItem configurationIte
mNode

Attr File mainframe node

Join Def joinmainframe joinnode

Bluk Update
Format Name

device.networkco
mponents.bulkup
date

device.node.bulk
update

 Network
Components

Old Value New Value • Load
Balancer

• Bandwidth
Manager

• CSU/DSU
• Ethernet
• FDDI
• KVM Switch
• Multicast

Enabled
Router

• Token Ring
• Voice

Gateway
• Voice Switch
• VPN

Gateway
• Wireless

Access Point

LB

Format Name configurationItem configurationIte
mNode

Attr File networkcompone
nts

node

Join Def joinnetworkcomp
onents

joinnode

Bluk Update
Format Name

device.mainframe
.bulkupdate

device.node.bulk
update
Integration Setup 21

To use the integration enhancement, you must modify the following device type definitions in
Service Manager: computer, networkcomponents, mainframe, and storage:

1 Log in to Service Manager 9.31 as a system administrator.

2 Navigate to Configuration Management > Resources > Device Types, and then click Search.

3 Select one of the CI types (computer, networkcomponents, mainframe, and storage), and
update its definition as described in Table 2.

4 Repeat the steps above for the rest of the four CI types.

Task 2: Copy data to the joinnode table.

This task in optional. It is required only if you want to use the joinnode-based data mappings.
If you want to use the original tables instead of joinnode (see Table 2), this task is not needed;
instead, you need to modify the data mappings of the Service Manager 9.xx adapter in UCMDB.

To copy your data from relevant tables to the joinnode table:

1 Log in to Service Manager 9.31 as a system administrator.

2 In Database Manager, in the Table field type cidatacopy, and then click Search. The
Copy CI Type Data form opens.

3 Click Search. A list of records displays: joincomputer, joinmainframe,
joinnetworkcomponents, and joinstorage.

4 Select each record from the list, update or add source/target fields as needed, and click the
Copy Data button. One of the following messages occurs:

— A message like “<XXX> records were successfully copied, and <YYY> records were
ignored within xxx ms”, where XXX and YYY represent the numbers of records copied
and ignored.

Storage Old Value New Value • SAN
Gateway

• SAN Router
• SAN Switch
• Storage

Array

-

Format Name configurationItem configurationIte
mNode

Attr File storage node

Join Def joinstorage joinnode

Bluk Update
Format Name

device.storage.bul
kupdate

device.node.bulk
update

Computer Old Value New Value Virtualized
System

-

Format Name configurationItem configurationIte
mNode

Attr File computer node

Join Def joincomputer joinnode

Bluk Update
Format Name

device.computer.b
ulkupdate

device.node.bulk
update

Table 2 Changes required for certain CI types (cont’d)

CI Type Field Value
Added
Subtypes

Removed
Subtypes
22 Chapter 2

— An error message: “Configuration validation failed, and no records were copied. Please
check your Source Fields/Target Fields settings and run Copy Data again.”

5 If the error message occurs, correct your Source Fields/Target Fields settings, and click
Copy Data again until all of your records have been successfully processed.

Task 3: Align the SM CI relationship data model with the UCMDB data model.

To use the integration enhancement, you need to manually update several records in Service
Manager to align the SM CI relationship data model (relationship types and subtypes) with
that of UCMDB, in order for easy data mapping between the two products.

1 Log in to Service Manager as a system administrator.

2 In Script Library, open the EnableUcmdbIntegrationUI script.

3 Click Execute. Running this script will automatically rename each record in Table 3 to
<record_name>.bak.931, and replace them with new records with the original record
names.

Table 3 Records replaced and renamed

Record Type Record Name

Format CM.relationship
CM.relationship.qbe
CM.relationship.type
CM.relationship.type.qbe
dataModEventRel.relationship.detail
dataModEventRel.relationship.qbe
am.downstream.relationships.vj
am.upstream.relationships.vj

Extaccess Relationship

Format Control CM.relationship
CM.relationship.type
dataModEvent.relationship
Integration Setup 23

4 Verify that the CI relationship form looks like the following.

If you tailored any of these records in Table 3, open the <record_name>.bak.931 record to
identify the differences, and merge your customizations in the new record.

Task 4: Update the cirelationship dbdict.

The data length of CI relationship name in Service Manager is 40 characters, which is not
sufficient for the integration. If a CI relationship name exceeds this data length, either the
relationship name is truncated after push or the relationship cannot be pushed to Service
Manager due to a duplicate key error. You need to manually increase the data length in
Service Manager:

1 Open the cirelationship table in Database Dictionary.

2 Increase the data length of the relationship.name field from 40 to an appropriate value
(recommended value: 300).

3 Save the record.

Integration setup overview

The integration requires setup on both the UCMDB and Service Manager systems.

Task 1: Set up the Service Manager system.

See HP Service Manager setup on page 25.

Task 2: Set up the UCMDB system.

See HP Universal CMDB setup on page 27.

Task 3: Run the UCMDB population jobs to synchronize CIs to UCMDB.

See Populating UCMDB with Service Manager CI data on page 31.
24 Chapter 2

Task 4: Run the UCMDB data push jobs to transfer CIs to Service Manager.

See Populating UCMDB with Service Manager CI data on page 31.

HP Service Manager setup

You must complete the following tasks from your Service Manager system to support the
integration.

Task 1: Create a dedicated integration user account in Service Manager.

See Create an integration user account on page 25.

Task 2: Add the UCMDB connection information to the system information record.

See Add the UCMDB connection information on page 26.

Create an integration user account

This integration requires an administrator user account for UCMDB to connect to Service
Manager. This user account must already exist in both UCMDB and Service Manager.

To create a dedicated integration user account in Service Manager:

1 Log in to Service Manager as a system administrator.

2 Type contacts in the Service Manager command line, and press ENTER.

3 Create a new contact record for the integration user account.

a In the Full Name field, type a full name. For example, UCMDB905x.

a In the Contact Name field, type a name. For example, UCMDB905x.

b Click Add, and then OK.

4 Type operator in the Service Manager command line, and press ENTER.

5 In the Login Name field, type the username of an existing system administrator account,
and click Search.

The system administrator account displays.

6 Create a new user account based on the existing one.

a Change the Login Name to the integration account name you want (for example,
ucmdb).

b Type a Full Name. For example, UCMDB.

c In the Contact ID field, click the Fill button and select the contact record you have just
created.

d Click Add.

e Select the Security tab, and change the password.

f Click OK.
Integration Setup 25

The integration user account is created. Later you will need to add this user account
(username/password) in UCMDB, and then specify this user account in the Credentials
ID field when creating an integration point in UCMDB. See Create an integration point in
UCMDB on page 27.

Add the UCMDB connection information

The integration requires the UCMDB connection information to obtain CI attribute
information from the UCMDB system, and display it in the Actual State section in the Service
Manager configuration item form.

1 Log in to Service Manager as a system administrator.

2 Click System Administration > Base System Configuration > Miscellaneous > System
Information Record.

3 Click the Active Integrations tab.

4 Select the HP Universal CMDB option.

The form displays the UCMDB web service URL field.

5 In the UCMDB webservice URL field, type the URL to the HP Universal CMDB web
service API. The URL has the following format:

http://<UCMDB server name>:<port>/axis2/services/ucmdbSMService

Replace <UCMDB server name> with the host name of your UCMDB server, and replace
<port> with the communications port your UCMDB server uses.

6 In UserId and Password, type the user credentials required to manage CIs on the
UCMDB system. For example, the out-of-the-box administrator credentials are admin/
admin.

7 Optionally, if you want to enable an integration to the UCMDB Browser, in the UCMDB
Browser URL field, type your UCMDB Browser URL in the following format:

http://<UCMDB browser server name>:<port>/ucmdb-browser

For example: http://myucmdbbrowserserver:8081/ucmdb-browser

The UCMDB Browser has two themes. By default, it uses the dark color theme; if you
want to use the light color theme, use this format for the UCMDB Browser URL:

http://<UCMDB browser server name>:<port>/ucmdb-browser/?theme=LIGHT

Note: If you specify the UCMDB Browser URL here, the View in UCMDB Browser button
will replace the View in UCMDB button in CI records synchronized from UCMDB; only
when you leave this field empty, the View in UCMDB button will appear.

8 Click Save. Service Manager displays the message: Information record updated.

9 Log out of the Service Manager system.

10 Log back into the Service Manager system with an administrator account.

The Actual State section and the View in UCMDB Browser or View in UCMDB button will be
available in CI records pushed from UCMDB.

If you do not specify the correct connection information, an error, instead of UCMDB CI
information, will display in the Actual State section.

The integration with UCMDB Browser is supported only for Service Manager 9.31 or later.
26 Chapter 2

HP Universal CMDB setup

You must complete the following tasks from your UCMDB system to support the integration.

Task 1: Create an integration point between UCMDB and Service Manager.

See Create an integration point in UCMDB on page 27.

Task 2: Update the configuration files of the adapter.

See Update the time zone and date format for the integration adapter on page 30.

Create an integration point in UCMDB

A default UCMDB installation already includes the ServiceManagerAdapter9-x package. To
use the integration package, you must create an integration point listing the connection
properties for the integration.

To create an integration point:

1 Log in to UCMDB as an administrator.

2 Add the integration user account that you created in Service Manager.

a Click Administration > Users and Roles.

b Click the Add New User button .

c For User Name and Password, type the user name and password you created in
Service Manager. See Create an integration user account on page 25.

d Click Next, and then in the Role List select Admin.

e Click Finish. The integration user account is added.

3 Navigate to Data Flow Management > Integration Studio. UCMDB displays a list of existing
integration points.

4 Click the New Integration Point button .

UCMDB displays a New Integration Point properties window.

Limitation: For data population, this integration supports the use of only one probe for your
Service Manager system. In other words, you should not run population jobs on different
probes by setting up multiple integration points with different probes for your Service
Manager system. Only one probe is allowed for one Service Manager system.
Integration Setup 27

5 Complete the integration and adapter property fields as described in Table 4.

Table 4 Integration and adapter properties (UCMDB 10.01 or later)

Field name Is required? Description

Integration Name Yes Type the name (unique key) of the integration
point. For example, Population_CI_From_S.

Integration Description No Type a description of current integration point.

Adapter Yes For UCMDB 9.05:
Select HP BTO Products or HP Software Products >
Service Manager > Service Manager 9.xx.
For UCMDB 10:
Select HP Software Products > Service Manager >
Service Manager 9.xx.
Note: This adapter, which supports CI/
relationship Data Push from UCMDB to Service
Manager, and Population and Federation from
Service Manager to UCMDB, is available
out-of-the-box only in UCMDB version 9.05 or
later.

Is Integration Activated Yes Enable this option to indicate the integration
point is active.

Hostname/IP Yes Type the hostname or IP address of the Service
Manager server.
For example, localhost.

Port Yes Type the communications port of the Service
Manager server. For example, 13080.
28 Chapter 2

6 Click Test Connection to make sure that a successful connection is created.

7 Click OK.

The integration point is created and its details are displayed.

8 Click the Federation tab, and complete the following configuration.

a In Supported and Selected CI Types, select the following CI types as needed from
Managed Object > ItProcessRecord:

— Incident

— Problem

URL Override No This field value (if any) supersedes the Hostname/
IP and Port settings described above.
Use this field If you want UCMDB to connect to
Service Manager in any combinations of the
following ways:
• Connect to Service Manager over HTTPS or

over both HTTP and HTTPS
• Connect to multiple Service Manager server

nodes (vertically scaled environment)
• Connect to one single Service Manager server

node through multiple ports (horizontally
scaled environment)

For more information, see Push in clustered
environments on page 72.
Type one or more Service Manager web services
URLs (separated by a semicolon) in this field.
The following are two example values of this field
(each URL should use this format: http(s)://
<hostname>:<port>/sc62server/ws):
• https://localhost:13443/sc62server/

ws

• http://localhost:13080/sc62server/
ws;https://localhost:13443/
sc62server/ws;http://smfpe04:13080/
sc62server/ws

Credentials ID Yes Click Generic Protocol, click the Add button to add
the integration user account you created, and then
select it. This account must exist in both Service
Manager and UCMDB. See Create an integration
user account on page 25.

Probe Name Yes Select the name of the Data Flow Probe used to
run population jobs. You should have already
added the data flow probe for the integration after
installing UCMDB. See Integration requirements
on page 20.

Table 4 Integration and adapter properties (UCMDB 10.01 or later) (cont’d)

Field name Is required? Description
Integration Setup 29

— Request for Change

b For each CI type you selected (Incident, Problem, or Request for Change), in CI Type
Retrieval Mode select Retrieve CIs of selected CI Type.

9 Click the Population and Data Push tabs, to view the default integration job details.

10 Click the Save Integration Point button .

Update the time zone and date format for the integration adapter

The integration uses an integration user account to connect UCMDB to Service Manager. You
specified this user account in the Credentials ID setting when creating an integration point.
See Create an integration point in UCMDB on page 27. You must make sure that this
integration user account uses the same time zone and date format in both Service Manager
and UCMDB. To do so, you define the same time zone and date format in the integration
adapter configuration file and in the integration user’s operator record in Service Manager.

To update the time zone and date format for the integration adapter

1 Check or change the time zone and date format of the integration user in Service
Manager.

a Log in to Service Manager as a system administrator.

b Navigate to System Administration > Ongoing Maintenance > Operators. The Operators
form opens.

c For Login Name, type the integration user name (for example, ucmdb) you set in the
integration point (the Credentials ID field).

d Click Search. Service Manager displays the record of the operator.

e Click the Login Profiles tab.

UCMDB creates several default population and data push jobs when creating an
integration point. If needed, you can create a new job for the integration point. For
information about creating integration jobs, see the following:

• Define data push jobs in UCMDB on page 34
• Define population jobs in UCMDB on page 32
30 Chapter 2

f View or change the operator’s Time Zone and Data Format field values.

2 Set the time zone and date format for the adapter in UCMDB.

a Log in to UCMDB as an administrator.

b Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files > serviceDeskConfiguration.xml.

c At the bottom of the file, locate the elements “<date_pattern>” and “<time_zone>”,
and update the values according to the integration user’s time zone/date format
setting in Service Manager.

Populating UCMDB with Service Manager CI data

In addition to pushing CI data from UCMDB to Service Manager, this integration also
supports the population of CI data (including CIs and CI relationships) from Service Manager
to UCMDB. The integration can then update the list of CIs in UCMDB if new CIs or new
attribute values are found in Service Manager. The population of data from Service Manager
to UCMDB is defined in the Integration Studio in UCMDB. You can manually run the
population jobs, however HP recommends that you schedule these jobs to keep your CIs and
CI attributes up to date.

Task 1: Define CI/CI Relationship population jobs in UCMDB.

See Define population jobs in UCMDB on page 32

Task 2: View the transferred CI/CI Relationship data in UCMDB.

See View Service Manager CI data in UCMDB on page 33.

The date pattern and time zone are in java format pattern used by
java.text.SimpleDateFormat. Out-of-the-box, the date format and time zone values
in serviceDeskConfiguration.xml are: MM/dd/yy HH:mm:ss, and US/Mountain.
Integration Setup 31

Task 3: Schedule CI population jobs to keep CIs and CI attributes up to date.

See Schedule CI population jobs on page 33.

Define population jobs in UCMDB

A CI/CI relationship population job copies certain types of CIs/CI relationships from Service
Manager to UCMDB.

To define a CI or CI relationship population job:

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio. UCMDB displays a list of existing
integration points.

3 Open an integration point.

4 Click the Population tab, and add a new job as follows.

a Click the New Integration Job button .

b Type a Name for the integration job. For example, CI_Population_Job1.

UCMDB creates several default population and data push jobs when creating an
integration point. Table 5 lists the default population jobs and their Topology
Query Language (TQL) queries.

If needed, you can create, update or remove TQL queries for each job. For
information about tailoring population TQL queries, see Create a TQL query to
populate the CI type on page 155.

Table 5 TQL queries for CI / CI relationship population

Integration Job Related TQL queries

SM Configuration Item
Population job

Out-of-the-box, the following TQL queries are available for this job,
which populates CI records from Service Manager to UCMDB:
• SM Business Service Population: Populates CIs of the bizservice type.
• SM RunningSoftware Population: Populates CIs of the RunningSoftware

type.
• SM Computer Population: Populates CIs of the computer type.

SM Relations Population job Out-of-the-box, the following TQL queries are defined for this job, which
populates CI Relationship records from Service Manager to UCMDB:
• SM Biz To Biz With Containment: Populates CI relationships in which a

bizservice CI contains another.
• SM Biz To Biz With Usage: Populates CI relationships in which a

bizservice CI uses another.
• SM Biz To Computer With Containment: Populates CI relationships in

which a bizservice CI contains a computer CI.
• SM Biz To Computer With Usage: Populates CI relationships in which a

bizservice CI uses a computer CI.
• SM Computer To Computer With Connects: Populates CI relationships in

which a computer CI connects to another.
32 Chapter 2

c Click the Add Query button to add existing TQL queries to the job (see Table 5).

d Select the Allow Integration Job to delete removed data check box for the query.

e Click OK to save the job.

5 Run the job manually to see if the integration job works properly.

a To populate all relevant data for the job, click the button.

b To populate only CI data changes since the job last ran, click the button.

6 Wait for the job to complete, and click the Refresh button multiple times as needed until
the job is completed.

7 Click the Statistics tab to view the results, and if the job failed, click the Query Status tab
and Job Errors tab for more information. For details, see Troubleshooting population
issues on page 205.

8 Click OK.

If the job is completed successfully, you can view the transferred CI data in UCMDB and
schedule the job so that it can run automatically.

View Service Manager CI data in UCMDB

After a population job is successfully completed, you can search for the Service Manager CI
records in UCMDB, and verify that their attributes are correctly populated.

The Service Manager CI Identifier field is populated to the Name field on the Configuration Item
Properties pane in UCMDB.

Schedule CI population jobs

You can schedule CI population jobs to match the discovery/maintenance schedule of your
Service Manager feeders. For example, if your Service Manager feeders send CI data updates
on a daily schedule, then the population jobs should also run on a daily schedule. By using a
matching schedule you can ensure that your UCMDB system always has the most current CI
data.

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio. UCMDB displays a list of
integration points.

3 Open an integration point.

4 Click the Population tab, and select a population job from the list.

When the job is completed, the job status becomes one of the following: Succeeded,
Passed with failures, or Failed.

To see the entire attribute mappings of a CI type, you can open the CI type’s population XSLT
file (for example, business_service_population.xslt) and the root population xslt file
(cmdb_root_attributes_population.xslt), where the UCMDB attribute field names and the
mapped Service Manager web service field caption names are defined.

For more information, see Chapter 5, Tailoring the Integration.
Integration Setup 33

5 Click the Edit Integration Job button.

6 Select the Scheduler enabled option.

7 Select the scheduling options you want to use. For example, select Repeat every: Day and
Ends: Never.

8 Select a Time Zone.

9 Click OK.

Pushing UCMDB CI data to Service Manager

The integration requires a one-time transfer of CIs from UCMDB to Service Manager to
populate the Service Manager system with CIs. The integration will then update the list of
CIs in Service Manager when UCMDB discovers new CIs or new attribute values. The
integration accomplishes the push of CI data using data push jobs in the UCMDB system. HP
recommends that you schedule these jobs to keep your CIs and CI attributes up to date.

Task 1: Define CI/CI Relationship data push jobs.

See Define data push jobs in UCMDB on page 34

Task 2: View the CI/CI Relationship data pushed from UCMDB.

See View UCMDB CI data in Service Manager on page 36.

Task 3: Schedule data push jobs to keep CI/CI Relationship data up to date.

See Schedule data push jobs on page 37.

Define data push jobs in UCMDB

Data push jobs copy CI or CI Relationship records from your UCMDB system to your Service
Manager system.

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio. UCMDB displays a list of existing
integration points.

3 Select the Integration Point you created for Service Manager. For example, SM Integration.

4 Click the Data Push tab.

5 Add a new data push job as follows.
34 Chapter 2

a Click the New Integration Job button .

b In Name, type a unique name for the job. For example, CI_Push_Job1.

c Click the Add Query button to add existing TQL queries to the job.

d Select the Allow Integration Job to delete removed data option for each query.

e Click OK to save the job.

UCMDB creates a default data push job when creating an integration point.
Table 6 lists the default data push job and its Topology Query Language (TQL)
queries. If needed, you can create, update or remove TQL queries for the push job.
To access these out-of-the-box TQL queries for push, go to Modeling > Modeling
Studio > Resources, select Queries for Resource Type, and then navigate to Root >
Integration > SM Sync > 9.xx.

For information about tailoring data push TQL queries, see Create a TQL query to
synchronize the CI type on page 130.

Table 6 TQL queries for CI / CI relationship push

Integration job TQL queries

SM Push job Out-of-the-box, the following TQL queries are available for this job,
which pushes CI/CI Relationship records from UCMDB to Service
Manager:
• SM Mainframe Push: pushes CIs of the mainframe type.
• SM Network Component Push: pushes CIs of the network

component type.
• SM Running Software Push: pushes CIs of the running software

type.
• SM Business Service Push: pushes CIs of the business service type.
• SM Computer Push: pushes CIs of the computer type.
• SM Storage Push: pushes CIs of the storage type.
• SM Switch Push: pushes CIs of the switch type.
• SM Net Printer Push: pushes CIs of the net printer type.
• SM Cluster Push: pushes CIs of the cluster type.
• SM Mobile Device Push: pushes CIs of the mobile device type.
• SM Local Printer Push: pushes CIs of the local printer type.
Out-of-the-box, the following TQL queries are available for this job,
which pushes CI Relationship records from UCMDB to Service Manager:
• SM Layer2 Topology Relations Push: pushes compound CI

relationships between nodes.
• SM Business Service Relations Push: pushes CI relationships

whose upstream CI type is business service.
• SM CRG Relations Push: pushes CI relationships whose upstream

CI type is cluster.
• SM Node Relations Push: pushes direct CI relationships whose

upstream CI type is node.
Integration Setup 35

6 Run the job manually to see if the integration job works properly.

a To push all relevant data for the job, click the button.

b To push only changes in the data since the job last ran, click the button.

7 Wait for the job to complete, and click the Refresh button multiple times as needed until
the job is completed.

8 Click the Statistics tab to view the results; if any errors occur click the Query Status tab and
Job Errors tab for more information. For details, see Troubleshooting data push issues on
page 181.

9 Click OK.

If the job is completed successfully, you can view the UCMDB CI data in Service Manager,
and schedule the job so that it can run automatically.

View UCMDB CI data in Service Manager

After a push job is successfully completed, you can search for and verify the pushed CI/CI
relationship data in Service Manager.

CI records pushed from UCMDB contains a View in UCMDB or View in UCMDB Browser button,
which enables you to access UCMDB or the UCMDB Browser to view the CI information.

To view UCMDB CI data in Service Manager:

1 Log in to Service Manager as a system administrator.

2 Navigate to Configuration Management > Search CIs.

3 Open a CI record pushed from UCMDB.

4 If the View in UCMDB button is available, view the CI record in UCMDB.

a Click the View in UCMDB button.

The UCMDB login screen opens.

If you have a huge amount of CI data in your UCMDB system, and this is your
first time to push CI /CI Relationship data to Service Manager, it is recommended
to select the “Add the record” option instead of “Open a change” or “Open an
incident” for “Action if matching record does not exist” in each Discovery Event
Manager Rules definition. Otherwise unnecessary performance problems might
occur. For details, see Add Discovery Event Manager rules on page 112.

You can stop a running push job by pressing the Stops the selected job button .

When the job is completed, the job status becomes one of the following depending
on the results: Succeeded, Passed with failures, or Failed.

If you specified the UCMDB Browser URL in the System Information Record in SM, the View
in UCMDB Browser button displays; otherwise the View in UCMDB button displays.

The UCMDB Browser is a lightweight UI designed for simple access to UCMDB
configuration information. This is a tool for searching, locating and consuming configuration
related data. It is an optional add-on to UCMDB. For more information, refer to the UCMDB
Browser documentation.
36 Chapter 2

b Type a UCMDB username and password to log in.

The CI record opens in UCMDB. You can view its properties.

5 If the View in UCMDB Browser button is available, view the CI record in the UCMDB
Browser.

a Click the View in UCMDB Browser button.

The UCMDB Browser login screen opens.

b Type a UCMDB Browser username and password to log in. The CI record opens in the
UCMDB Browser. You can view its properties and other information.

6 Open the Actual State section.

Service Manager makes a web services request to UCMDB and displays all CI attributes
the request returns.

Schedule data push jobs

It is a best practice to schedule the data push jobs to match the discovery schedule of your
Service Manager feeders. For example, if your Service Manager feeders send CI data updates
on a daily schedule, the data push jobs should also run on a daily schedule. By using a
matching schedule you can ensure that your Service Manager system always has the most
current CI data.

UCMDB allows you to schedule updates directly from a data push job.

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio. UCMDB displays a list of
integration points.

3 Select the integration point you created for the UCMDB-SM integration. For example, SM
Integration.

4 Click the Data Push tab.

5 Select a push job. For example, SM Configuration Item Push Job.

6 Click the Edit Integration Job button .

7 Define a schedule for Changes Sync.

a Click the Changes Sync tab.

b Select the Scheduler enabled option.

You can enable Lightweight Single Sign-On (LW-SSO) for the integration so that
Service Manager web client users can bypass the UCMDB login screen. For
details, see Lightweight Single Sign-On (LW-SSO) configuration on page 79.

The web services request uses the UCMDB webservice URL and account (for
example, admin/admin) defined in the System Information Record in Service
Manager. See Add the UCMDB connection information on page 26.

UCMDB allows you to define two different schedules for two types of data push:
Changes Sync, and All Data Sync. For recommendations on push scheduling, see
Push scheduling recommendations on page 71.
Integration Setup 37

c Select the scheduling options you want to use.

8 Click All Data Sync tab, and select the scheduling options you want to use.

9 Click OK to save the data push job.

10 Repeat step 6 to step 9 for the rest of data push jobs of the integration point.

11 Save the integration point.

Federating SM ticket data to UCMDB

Federation does not physically copy SM data to UCMDB; it only retrieves SM data for
displaying in UCMDB. Out-of-the-box, the UCMDB-SM integration supports federation for
the following external CI types in UCMDB: Incident, Problem, and RequestForChange. If you
have enabled these CI types for federation when creating your integration point, in UCMDB
you can retrieve the following types of ticket data from Service Manager: Incident, Problem,
and Change.

Federation TQL queries

Federation uses TQL queries to determine what data to retrieve from Service Manager. To
retrieve specific ticket data from Service Manager, you need to create a TQL query first.
Out-of-the-box, sample federation TQL queries are available from UCMDB: Modeling >
Modeling Studio > Resources > View > Service Desk.

Examples of using federation

You can use the federation feature in many different ways. The following are only examples of
using the feature.

You can tailor the integration to federate more SM ticket attributes to UCMDB. For details,
see Add an attribute of a supported CI type for federation on page 173.
38 Chapter 2

Example 1: Federate all SM Incident tickets

This example illustrates how you retrieve information of all Incident records that exist in
Service Manager.

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > Modeling Studio > Resources.

3 For Resource Type, select Queries from the list.

4 Click New > Query.

5 On the CI Types tab, go to ItProcessRecord > Incident, and drag it to the query pane on the
right side.

6 Specify Service Manager as the data source for the Incident query node.

a Select the Incident query node, click the Data Sources tab on the lower right pane, and
then click Edit.
Integration Setup 39

b Select the Select integration points option, and then select your integration point name
(for example, sm_integration). Click OK.

7 Click the Save button, and then type a query name and select a location to save the query

(for example, select the Root > Integration > SM Query folder).

8 Select the Incident query node, and then click the Calculate Query Result Count button .
40 Chapter 2

UCMDB returns the query result count. For example, the following figure shows that
there are 131 Incident records in total in Service Manager.

9 Right-click the Incident query node, and select Show Element Instances. UCMDB displays a
list of all Incident records that exist in Service Manager.
Integration Setup 41

10 Select an Incident ticket from the list, and click the Properties button to view its
details.

Example 2: Federate SM Incident tickets that affect a UCMDB Business Service CI

The following example illustrates how you federate a list of Service Manager Incident records
whose Affected Service or Affected CI field contains a UCMDB Business Service CI.

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > Modeling Studio > Resources.

3 For Resource Type, select Queries from the list.

4 Click New > Query.
42 Chapter 2

5 On the CI Type tab, go to ConfigurationItem > BusinessElement > Service > BusinessService,
and drag it to the query pane on the right side.

6 Go to ItProcessRecord > Incident, and drag it to the query pane.

7 Click the Create Relationship button .

8 Select the Incident query node, and drag the arrow from this node to the BusinessService
node to create a regular relationship between the nodes.

a Select Regular Relationship, and click OK.
Integration Setup 43

b Select Membership, and optionally enter a relationship name (for example,
Membership_1). Click OK.

9 Specify UCMDB as the data source for the BusinessService query node.

a Select the BusinessService query node.

b On the lower right pane, click the Data Sources tab and then click Edit.

c Make sure that the Local data source (UCMDB only) option is selected.

d Click OK.
44 Chapter 2

10 Similarly, specify your integration point as the data source for the Incident query node (for
example, sm_integration).

11 Click the Calculate Query Result Count button . The number of SM Incidents and the
number of their affected UCMDB Business Service CIs display.
Integration Setup 45

12 Click the Preview button to view the query result .

13 Select each SM Incident record from either the CI Selector pane or the query pane, and

click the Properties button to view its details .

14 Select each UCMDB CI record from either the CI Selector pane or the query pane, and on
the Related CIs tab click Show Related CIs.

Example 3: Federate SM Incident, Change and Problem ticket data of UCMDB CIs

The following example illustrates how you retrieve information of SM Incident, Change and
Problem tickets that affect a UCMDB Business Service CI.

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > Modeling Studio > Resources.

3 For Resource Type, select Queries from the list.

4 Click New > Query.
46 Chapter 2

5 On the CI Type tab, go to ConfigurationItem > BusinessElement > Service > BusinessService,
and drag it to the query pane on the right side.

6 Go to ItProcessRecord, and drag Incident, Problem, and RequestForChange to the query
pane.

7 Click the Create Relationship button to create regular relationships between the
BusinessService node and the other nodes as shown in the following figure.

8 For the BusinessService node, specify UCMDB as the data source.

9 For the Incident, Problem, and RequestForChange nodes, specify your integration point as
the data source.

10 Save the query.

11 Optionally, edit the BusinessService node properties as needed.

a Select the BusinessServic node, and click Edit on the lower right pane.

b Click the Cardinality tab. The default Cardinality setting displays.
Integration Setup 47

c If you wish, change either or both of the AND operators to OR. This will change the
filter criteria and therefore the query result.

12 Click the Preview button to view the query result.

13 Select each SM Incident record from either the CI Selector pane or the query pane, and

click the Properties button to view its details.

14 Select each UCMDB CI record from either the CI Selector pane or the query pane, and on
the Related CIs tab click Show Related CIs to view its related CIs in both SM and UCMDB.

Example 4: Get related SM ticket data of a UCMDB CI

The following example illustrates how you retrieve SM ticket data related to a UCMDB CI by
using the Get Related CIs functionality.

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > IT Universe Manager.
48 Chapter 2

3 On the Search CIs tab, search for a UCMDB CI that has associated ticket(s) in Service
Manager. For example, enter bs1327232399 in the CI Name field, click Search, and
double-click the CI to open it.

4 Click the Show Get Related CIs pane button .

The Get Related CIs pane displays.

5 Click the Select target Integration Points for related CIs button .

6 Select the Select integration points option, and then select both UCMDB and your
integration point. Click OK.
Integration Setup 49

7 Click Show Related CIs. The CI’s related SM tickets and UCMDB CIs display.

8 Select each SM ticket record from the query pane, and click the Properties button to
view its details.
50 Chapter 2

3 Multi-Tenancy (Multi-Company) Setup
The UCMDB-SM Integration supports a multi-tenancy configuration in which both the
Service Manager and UCMDB systems track Configuration Items (CIs) and Configuration
Item Relationships (CIRs) by company ID. In a multi-tenancy configuration, you can tailor the
integration so that each tenant only sees and works with the CIs and CIRs that match their
company ID. Multi-tenancy is intended for managed service providers (MSPs) who wish to
offer Configuration Management as a service to multiple tenants.

This chapter covers the following topics:

• Multi-tenancy (multi-company) support on page 51

• Multi-tenancy requirements on page 58

• Setting up the multi-tenancy integration in UCMDB on page 58

• Setting up the multi-tenancy integration in Service Manager on page 61

Multi-tenancy (multi-company) support

Multi-tenancy is when a single instance of software runs on a server, serving multiple client
organizations (also referred to as tenants).

Multi-tenancy contrasted with a multi-instance architecture where separate software
instances or hardware systems are set up for different client organizations.

When implementing a multi-tenant architecture, a software application is designed to
virtually partition its data and configuration so that each client organization works with a
customized virtual application instance. Figure 5 illustrates an example multi-tenant
integration deployment.

Figure 5 Multi-tenant UCMDB-SM deployment

Explanation
51

Every tenant configured in UCMDB works with the relevant tenant in SM. If UCMDB did not
configure tenants, the tenant configuration must be activated in order to transfer the
configuration from SM to UCMDB automatically. This function is performed once only by the
system administrator.

In the event that UCMDB tenant configuration already exists and the SM configuration does
not exist, SM tenant must be manually configured according to the UCMDB configuration.

Implementing multi-tenancy in the UCMDB-SM integration

SM stores the company records that describe each tenant in the multi-tenant configuration.
The Service Manager system is the definitive source for company records and pushes all new
company IDs to the UCMDB system creating the equivalent entity in UCMDB.

SM tracks the company ID of each CI and relationship in a multi-tenant configuration. CI
records inherit the company ID of the UCMDB feeder that discovered them. Relationship
records inherit the company ID of the parent CI in the relationship.

Mandanten SM security layer

Mandanten is an SM software layer that is used to filter the customer ID from the CI
information. SM uses the Mandanten to ensure that operators only see CI and relationship
records where the CI's company ID matches the operator's company ID. If the view is
restricted with Mandanten, then Service Manager also restricts the view to all other related
records such as change requests and incidents.

What multi-tenant information is stored in UCMDB?

Your UCMDB system stores a company ID attribute for each CI and CIR. The company ID
determines what adapter and synchronization schedule your UCMDB system uses to update
CI data. Each CI and relationship record can only have one company ID. The UCMDB system
obtains a company ID from the Service Manager system.

If more than one tenant (company) shares the same CI, each tenant has their own unique CI
record describing the CI. In effect, the UCMDB system creates multiple CI records to track
one managed asset. Each tenant’s CI record is unique to that tenant and lists the company's
unique company ID.

What multi-tenant information is stored in Service Manager?

Your Service Manager stores the company records that describe each tenant in the
multi-tenant configuration. The Service Manager system is the definitive source of company
IDs and pushes new and updated information to your UCMDB system.

Service Manager tracks the company ID of each CI and relationship in a multi-tenant
configuration. CI records inherit the company ID of the UCMDB feeder that discovered them.
Relationship records inherit the company ID of the parent CI in the relationship.

In a best practices implementation, Service Manager uses Mandanten to ensure that
operators only see CI and relationship records where the CI’s company ID matches the
operator’s company ID. If you restrict the view with Mandanten, then Service Manager also
restricts the view to all other related records such as change requests and incidents.
52 Chapter 3

Unique logical names

Service Manager requires that all CIs have unique logical names. If the logical name
generation process produces a duplicate logical name value, Service Manager appends an
underscore and a number to the end of logical name to make it unique. For example, if two CIs
would have the logical name mytesthost, then the second CI will instead have the name
mytesthost_1. A second duplicate CI would have the name mytesthost_2.

Synchronization of company records

If your system meets all the conditions for multi-tenancy support, Service Manager creates a
schedule record to push the company ID of the company record to your UCMDB system.
Service Manager uses the following rules to determine whether to push the company ID to
your UCMDB system.

Table 7 Conditions where Service Manager synchronizes company ID with
UCMDB

Conditions

Tenant
information
synchronized?

Schedule record created and
action taken in UCMDB

• UCMDB-SM integration
enabled

• Multi-company mode
enabled in Service Manager

• You create a new company
record in Service Manager

Yes Synch Company with UCMDB -
<UCMDB Company ID>
• Add new company ID

• UCMDB-SM integration
enabled

• Multi-company mode
enabled in Service Manager

• You update an existing
company record that has not
been synchronized with
UCMDB

Yes Synch Company with UCMDB -
<UCMDB Company ID>
• Add new company ID

• UCMDB-SM integration
enabled

• Multi-company mode
enabled in Service Manager

• You disable the option to show
a company in multi-company
lists on a company
synchronized with UCMDB

Yes Inactivate Company with UCMDB -
<UCMDB Company ID>
• Inactivate existing company ID
Multi-Tenancy (Multi-Company) Setup 53

• UCMDB-SM integration
enabled

• Multi-company mode
enabled in Service Manager

• You select the option to
resynchronize with UCMDB
on an existing company
record

Yes Synch Company with UCMDB -
<UCMDB Company ID>
• Add new company ID

• UCMDB-SM integration
enabled

• Multi-company mode
enabled in Service Manager

• You enable the option to show
a company in multi-company
lists for an inactivated
company

Yes Synch Company with UCMDB -
<UCMDB Company ID>
• Reactivate company ID

• UCMDB-SM integration
disabled

• Multi-company mode
enabled in Service Manager

• You update an existing
company record that has
already been synchronized
with UCMDB

No None

Table 7 Conditions where Service Manager synchronizes company ID with
UCMDB (cont’d)

Conditions

Tenant
information
synchronized?

Schedule record created and
action taken in UCMDB
54 Chapter 3

UCMDB Customer ID

When you enable the multi-tenancy integration, Service Manager displays a new field in each
company record called UCMDB Customer ID. In order to synchronize a company record with
UCMDB, you must first provide a value for this field. After you provide a UCMDB Customer
ID value this field becomes read-only. You cannot change a company's UCMDB Customer ID
after you set it.

This field only accepts numeric data up to ten characters long. Service Manager requires the
field value to be a unique positive whole number. You cannot enter duplicate values or use
decimals, negative numbers, or zero.

Your UCMDB system automatically uses the UCMDB customer ID of 1 when running in
single tenant mode. You can reuse this default value in your multi-tenant implementation by
assigning a Service Manager company to have this UCMDB customer ID value.
Out-of-the-box, no Service Manager company has the UCMDB customer ID of 1.

UCMDB User ID and password

When you enable the multi-tenancy integration, Service Manager displays two new fields in
each company record called UCMDB UserId and UCMDB Password. These fields allow you to
specify the connection information you want Service Manager to use when requesting
information for the Actual State section. Any user name and password you enter in these
fields must be valid for your UCMDB system.

• UCMDB-SM integration
disabled

• Multi-company mode
enabled in Service Manager

• You create a new company
record in Service Manager

No None

• UCMDB-SM integration
enabled

• Multi-company mode
enabled in Service Manager

• You disable the option to show
a company in multi-company
lists on a company not
synchronized with UCMDB

No None

• UCMDB-SM integration
enabled

• Multi-company mode
disabled in Service Manager

• You create a new company
record in Service Manager

No None

Table 7 Conditions where Service Manager synchronizes company ID with
UCMDB (cont’d)

Conditions

Tenant
information
synchronized?

Schedule record created and
action taken in UCMDB
Multi-Tenancy (Multi-Company) Setup 55

The user name and password you provide in the Company Information record takes
precedence over the user name and password you provide in the System Information record.
This allows managed service providers to control access to the UCMDB system on a
tenant-by-tenant basis. If you do not provide a company-specific UCMDB user name and
password, Service Manager uses the credentials you provided in the System Information
record.

Company Code

The multi-tenancy integration requires that each company record has a unique Company
Code (company field) value. Since Company Code is a required field, your existing company
records should already have Company Code values. However you should ensure that each
company record has a unique Company Code value.

CI reconciliation rules

When multi-tenancy is enabled, Service Manager only reconciles the CIs whose company ID
matches the company ID in the data push job. For example, when pushing CIs from company
2, the reconciliation rules only apply to the Service Manager CI records that have the
company code corresponding to company number 2.

Company information pushed to CI and CI Relationship records

When you enable the multi-tenancy integration, Service Manager inserts the SM Company
Code value in CI and relationship records during data push. Service Manager uses the
UCMDB Customer ID to look up the matching SM Company Code value.

Company information replicated to incident records

When you enable the multi-tenancy integration and select the option to create incidents when
UCMDB discovers new, updated, or deleted CIs, Service Manager inserts the SM Company
Code value in the incident record during replication. Service Manager uses the UCMDB
Customer ID to look up the matching SM Company Code value.

Schedule records

Service Manager uses the problem schedule processor to manage the synchronization of
company IDs to your UCMDB system. You can manually enable the problem schedule
processor from the System Status form.

When the synchronization criteria are met as described in Table 7, Service Manager creates a
“Synch Company with UCMDB - <UCMDB Company ID>” schedule record (for example,
“Synch Company with UCMDB - 1234567890”). If you inactivate a company, Service Manager
creates a “Inactivate Company with UCMDB - <UCMDB Company ID>” schedule record (for
example, “Inactivate Company with UCMDB - 1234567890”). The problem schedule processor
processes the new schedule record on the next background process iteration.

If your Service Manager system cannot connect to your UCMDB system for some reason, it
will reschedule the company synchronization at the next scheduled interval (the out-box
interval is 5 minutes). The problem schedule processor updates the schedule record with the

You should not change the Company Code value after you have enabled the multi-tenancy
integration because this will cause your Service Manager data to become out of synch.
56 Chapter 3

status rescheduled. If the Service Manager system receives any other error message while
connecting to the UCMDB system, it updates the schedule record with the status “application
failed due to error - check msglog for possible messages.”

Tenant-specific Discovery Event Manager (DEM) Rules

You can implement the condition field function in order to create SM DEM rules that are
specific to a particular tenant in a multi-tenancy UCMDB-SM integration.

Tenant rules vary according to SM tenant configuration requirements, for each record
information type pushed from UCMDB to SM different tenants can configure different DEM
tenant rules.

Each tenant can have its own set of unique requirements and therefore may implement
different processes via the integration.

One tenant may require the addition of CIs directly to SM while another tenant may require
opening changes for each CI.

Table 8 shows a sample set of DEM rules that illustrate how to accomplish this.

Table 8 Tenant-specific DEM rules

DEM rule ID Action on new CI Condition

ucmdbNode_advantage Add CI company in $L.file=”advantage”

ucmdbNode_hp Create change company in $L.file=”HP”

DEM Rules

When creating DEM rules make sure to create separate DEM rules for each tenant.
Multi-Tenancy (Multi-Company) Setup 57

Multi-tenancy functional use cases

The following table describes the necessary actions to perform in various deployment
situations to address multi-tenancy issues.

Multi-tenancy requirements

Your system must meet the following requirements in order for the integration to support
multi-tenancy.

• HP Universal CMDB version 8.02 or later system

• HP Service Manager version 9.20 or later system

• Integration enabled between UCMDB and Service Manager

• Multi-company mode enabled on the Service Manager system

• Problem schedule process running on the Service Manager system

For additional information about the multi-tenancy integration, you can visit the HP Software
Support Online web site http://support.openview.hp.com or refer to the Service Manager
help.

Setting up the multi-tenancy integration in UCMDB

You need to perform the following tasks in UCMDB to set up the multi-tenancy integration.

Table 9 Multi-tenancy use cases

Deployment Integration
Type Description

UCMDB with multi-tenancy
rules
SM without multi-tenancy
rules

When implementing a UCMDB-SM deployment that has
existing multi-tenancy rules in UCMDB and does not have
multi-tenancy rules configured in SM, the user creates
multi-tenancy rules in SM manually and according to the
rules in UCMDB.

SM with multi-tenancy rules
UCMDB without
multi-tenancy rules

When implementing a UCMDB-SM deployment that has
existing multi-tenancy rules in configured SM and does not
have multi-tenancy rules configured in UCMDB, the user
creates multi-tenancy rules in UCMDB manually as well as
according to the rules previously configured in SM.

UCMDB without
multi-tenancy rules
SM without multi-tenancy
rules

When implementing a UCMDB-SM deployment that does
not have multi-tenancy rules configured in UCMDB or in
SM, the user configures the rules in SM.
During the configuration process using the SM
multi-tenancy wizard the user can create corresponding
tenancy configuration in UCMDB. By creating
corresponding tenancy configurations in SM the user also
creates a corresponding tenant in UCMDB.
58 Chapter 3

http://support.openview.hp.com

Task 1: Install a separate data flow probe for each tenant the integration will support.

See Install separate data flow probes for each tenant on page 59.

Task 2: Start tenant-specific data flow probes.

See Start tenant-specific data flow probes on page 60.

Task 3: Configure IP address ranges for tenant-specific data flow probes.

See Configure IP ranges for tenant-specific data flow probes on page 60.

Task 4: Configure multi-tenancy for population.

See Configure multi-tenancy for population on page 61.

Install separate data flow probes for each tenant

If you plan to support a multi-tenant configuration, you must install a separate data probe for
each tenant. Out-of-the-box, the UCMDB installer only installs one data flow probe and
service.

The following steps will allow you to install additional data flow probes and start them from
your operating system command prompt.

1 Log in to the host of your UCMDB system as an administrator.

2 Insert the HP Universal CMDB Setup Windows DVD into the system disc drive.

3 Start the Data Flow Probe installer (HPUCMDB_DataFlowProbe_x.xx.exe).

4 Follow the on-screen instructions to complete the wizard, but use the following values for
each data flow probe you wish to install.

a Type a unique path for each installation folder.

b Use the same UCMDB application server address for each data flow probe.

c Type a valid data flow probe address.

d Type a unique name for each data flow probe identifier.

e Create a unique customer Data Flow Probe domain for each probe (Clear the Use
Default CMDB Domain option).

f Use the same probe gateway and probe manager settings for each probe (for example,
use combined or separate processes).

See the HP Universal CMDB Deployment Guide for complete installation instructions.

5 Repeat step 3 to step 4 for each data flow probe you wish to install.

6 Open the probe’s DiscoveryProbe.properties file in a text editor. By default, this file is
located in the following folder:

<UCMDB installation folder>\<data flow probe installation folder>\conf

For example, C:\hp\UCMDB\DataFlowProbe\conf.

The <data flow probe installation folder> must be unique for each tenant.
Multi-Tenancy (Multi-Company) Setup 59

7 Edit the following properties in the configuration file.

8 Save the configuration file.

9 Repeat step 6 to step 8 for each tenant’s data flow probe.

Start tenant-specific data flow probes

1 Open the OS command prompt and navigate to the probe’s bin folder. For example,
C:\hp\UCMDB\DataFlowProbe1\bin.

2 Type gateway console.

3 Repeat step 1 to step 2 for each data flow probe you want to start.

Configure IP ranges for tenant-specific data flow probes

1 Log in to UCMDB as an administrator using the company ID of the tenant whose data
flow probe you want to configure.

2 Navigate to Data Flow Management > Data Flow Probe Setup.

3 Expand the data flow probe domain containing the probe you want to start. For example,
Customer2.

Table 10 Discovery Probe properties set for each tenant

Property Value

serverName Verify the name of the UCMDB server

customerId Type the customer ID for the tenant this data flow
probe supports

appilog.collectors.probe.name Verify the probe name is unique such as server +
tenant ID

applilog.collectors.domain Verify the domain name of the data flow probe

appilog.collectors.local.ip Verify the data flow probe gateway name

appilog.collectors.probe.ip Verify the data flow probe manager name

appilog.collectors.rmi.port Type a unique port for each probe

appilog.collectors.rmi.gw.port Type a unique port for each probe

appilog.collectors.probe.html.port Type a unique port for each probe

appilog.collectors.local.html.port Type a unique port for each probe

appilog.collectors.ProbeUseSpecific
RMIPortFrom

Type a unique port for each probe or type 0 to have
the system automatically select it

appilog.collectors.bigBrother.port Type a unique port for each probe
60 Chapter 3

4 Expand the Probe node and select the data flow probe you want to start. For example,
Probe2Customer2.

5 Click the Add IP range button .

6 Type an IP range you want the Data Flow Probe to scan. Optionally, add any IP ranges
you want to exclude.

7 Click OK to save the IP range.

8 Repeat step 1 to step 7 for each data flow probe you want to configure.

Configure multi-tenancy for population

To support multi-tenancy for population, you need to configure the basicQueryCondition
setting for each TQL defined in the population configuration file (smPopConfFile.xml).

To configure multi-tenancy for population

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.

3 Click the smPopConfFile.xml file.

4 For each TQL defined in this file, update the basicQueryCondition setting by adding the
following:

and company= "{customerId}"

For example:

basicQueryCondition="type="bizservice" and company=
"{customerId}""

5 Save the configuration file.

Setting up the multi-tenancy integration in Service Manager

You need to perform the following tasks in Service Manager to set up the multi-tenancy
integration.

Multi-tenancy support is an optional feature of the integration intended for Managed Service
Providers (MSPs) who want to offer Configuration Management as a service to their tenants.
In a multi-tenancy configuration, each CI and CIR record has a corresponding company ID.
Out-of-the-box, Service Manager allows all operators to view CI data regardless of the

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
Multi-Tenancy (Multi-Company) Setup 61

company ID. If you wish to restrict access to CI data by company ID, you must enable
Mandanten and use the company ID field as a restricting query. See the Service Manager help
for more information about multi-company mode and Mandanten.

You must complete the following tasks from your Service Manager system to enable
multi-tenancy support for the integration.

Task 1: Start the process schedule.

See Start the process schedule on page 62.

Task 2: Configure the Service Manager System Information Record.

See Configure the Service Manager System Information Record on page 63.

Task 3: Add tenant-specific UCMDB ID and password values to company records (optional).

See Add tenant-specific UCMDB User ID and password values on page 64.

Task 4: Add UCMDB Customer ID values to existing company records.

See Add UCMDB Customer ID values to existing companies on page 64.

Task 5: Synchronize existing company records with UCMDB.

See Synchronize existing companies from Service Manager to UCMDB on page 64.

Task 6: Verify that Service Manager synchronized company records with UCMDB (optional).

See View whether company information is in UCMDB on page 65.

Task 7: Resynchronize existing company records with UCMDB (as needed).

See Resynchronize an existing company with UCMDB on page 65.

Task 8: Inactivate company records you do not want to be part of the integration (as needed).

See Inactivate a synchronized company on page 66.

Task 9: Reactivate inactive company records you want to be part of the integration (as needed).

See Reactivate an inactive company on page 66

Task 10: Add tenant-specific DEM rules.

See Add tenant-specific DEM rules on page 67.

Start the process schedule

This integration needs the process schedule to synchronize company records from Service
Manager to UCMDB. You need to make sure it is started before synchronizing company
records.

1 Log in to Service Manager as a system administrator.

2 From the System Navigator, click System Status.

A list of the currently started schedules displays.

3 Click the Refresh Display button to refresh the list.
62 Chapter 3

4 If the problem schedule is not in the list, do the following:

a Click the Start Scheduler button.

b Double-click the process schedule.

A message displays that indicates the process schedule is started.

Configure the Service Manager System Information Record

To enable the integration to support multi-tenancy, you must provide additional information
in the Service Manager System Information Record.

1 Log in to Service Manager as a system administrator.

2 Navigate to System Administration > Base System Configuration > Miscellaneous > System
Information Record.

3 Click the General tab.

4 Enable the Run in Multi-Company Mode option.

5 Click the Active Integrations tab.

6 Select the HP Universal CMDB option.

The form displays the UCMDB web service URL field.

7 In the UCMDB web service URL field, type the URL to the synchronize CIs web service
API. The URL has the following format:

http://<UCMDB server name>:<port>/axis2/services/ucmdbSMService

Replace <UCMDB server name> with the host name of your UCMDB server, and replace
<port> with the communications port your UCMDB server uses.

8 In UserId and Password, type the user credentials required to manage CIs on the
UCMDB system. For example, the out-of-the-box administrator credentials are admin/
admin.

9 In the Multi-tenant web service URL field, type the URL to the synchronize company IDs
web service API. The URL has the following format:

http://<UCMDB server name>:<port>/axis2/services/UcmdbManagementService

Replace <UCMDB server name> with the host name of your UCMDB server, and replace
<port> with the communications port your UCMDB server uses.

10 Type the user name and password required to synchronize company IDs on the UCMDB
system. For example, the out-of-the-box system administrator credentials for UCMDB 9.x
are sysadmin/sysadmin.

11 Click Save. Service Manager displays the message: Information record updated.

12 Log out of the Service Manager system, and log in again with an administrator account.

13 Click System Status > Display Options > All Tasks.

14 Type k in the Command field next to the problem schedule process and click Execute
Commands. Wait a few minutes for the problem schedule process to close.

15 Click Start Scheduler.

In order to enable multi-tenancy support, you must use HP Universal CMDB version 8.02 or
greater. Earlier versions of HP Universal CMDB will produce an error message if you attempt
to run them in multi-tenancy mode.
Multi-Tenancy (Multi-Company) Setup 63

16 Double-click the problem schedule process. The system now supports multi-tenancy for
UCMDB.

Add tenant-specific UCMDB User ID and password values

You can provide a tenant-specific UCMDB user name and password for Service Manager to
use when requesting information for the Actual State section. If you provide no credentials,
Service Manager uses the credentials in the System Information Record for all tenants.

1 Log in to Service Manager as a system administrator.

2 Navigate to System Administration > Base System Configuration > Companies.

3 Type the search criteria you want to use to find company records. For example, leave the
search form blank to search all company records.

4 Click Search.

5 Type the user name you want this company to use to connect to UCMDB in the UCMDB
UserId field.

6 Type the password for the UCMDB user name in the UCMDB Password field.

7 Click Save.

8 Repeat step 3 through step 7 for each company you want to provide credentials for.

Add UCMDB Customer ID values to existing companies

You can use the following steps to add a UCMDB Customer ID value to your existing Service
Manager company records.

1 Log in to Service Manager as a system administrator.

2 Navigate to System Administration > Base System Configuration > Companies.

3 Type the search criteria you want to use to find company records. For example, leave the
search form blank to search all company records.

4 Click Search.

5 Type a numeric value in the UCMDB Customer ID field for this company.

6 Click Save.

7 Service Manager prompts to confirm that you want to synchronize the record with
UCMDB. Click Yes if you want to synchronize the company now, or click No if you want
synchronize the company later.

8 Click Next to go to the next company in the record list.

9 Repeat step 5 through step 8 for each company in the record list.

Synchronize existing companies from Service Manager to UCMDB

Your Service Manager system may already contain company records that you want to use
with the multi-tenancy integration.

Any credentials you provide in the company record take precedence over credentials you
provide in the System Information Record. The UCMDB UserId and UCMDB Password fields
are available only when you have enabled the multi-tenancy integration.
64 Chapter 3

If you update any field in a company record that has not yet been synchronized to UCMDB,
Service Manager prompts whether you want to synchronize the company to UCMDB.

1 Log in to Service Manager as a system administrator.

2 Navigate to System Administration > Base System Configuration > Companies.

3 Type the search criteria you want to use to find company records. For example, leave the
search form blank to search all company records.

4 Click Search.

5 Select a company record to update.

6 Update the company record.

7 Click Save. Service Manager prompts to confirm that you want to synchronize the record
with UCMDB.

View whether company information is in UCMDB

When you enable the multi-tenancy integration, Service Manager displays a read-only field in
each company record that lists whether the UCMDB Customer ID has been synchronized
with your UCMDB system.

1 Log in to Service Manager as a system administrator.

2 Navigate to System Administration > Base System Configuration > Companies.

3 Type the search criteria you want to use to find company records. For example, leave the
search form blank to search all company records.

4 Click Search.

5 Review the status of the Synched with UCMDB field.
If the check box is checked, then Service Manager has already synchronized the company
ID with your UCMDB system. If the check box is unchecked, then Service Manager has
yet to add this company to your UCMDB system.

Resynchronize an existing company with UCMDB

Service Manager provides you a means to resynchronize company records with your UCMDB
system in case you lose UCMDB data for some reason. For example, you might intentionally
remove UCMDB data during integration testing, or you might need to recover data after a
disaster. You can force Service Manager to synchronize companies with your UCMDB system
with the Re-synch with UCMDB option.

1 Log in to Service Manager as a system administrator.

Service Manager will not prompt you to synchronize the company record if you have disabled
the option to show the company in multi-company lists, or if there is a pending schedule
record associated with the company. See Inactivate a synchronized company on page 66 for
more information.

Service Manager saves the company record regardless of your synchronization
choice.

The UCMDB Customer ID field is visible only when you enable the multi-tenant UCMDB
integration.

For more information about synchronization failures, see Schedule records on
page 56.
Multi-Tenancy (Multi-Company) Setup 65

2 Navigate to System Administration > Base System Configuration > Companies.

3 Type the search criteria you want to use to find company records. For example, leave the
search form blank to search all company records.

4 Click Search.

5 Select a company record to synchronize.

6 Click the Re-synch button next to the Synched with UCMDB? check box.

Inactivate a synchronized company

After you have synchronized a company record with UCMDB you can no longer delete the
record. Instead, you can inactivate a company record, which causes the UCMDB system to
cease all further CI updates for the company. Any existing CI data for the company remains in
the UCMDB system associated with the inactive UCMDB Customer ID, but both the company
and any associated CIs will no longer be visible from the UCMDB system.

1 Log in to Service Manager as a system administrator.

2 Navigate to System Administration > Base System Configuration > Companies.

3 Type the search criteria you want to use to find company records. For example, leave the
search form blank to search all company records.

4 Click Search.

5 Select a company record to inactivate.

6 Select No from Show Company in Multi-Company Lists.

7 Click Save.

8 If this company was previously synchronized with UCMDB, Service Manager prompts you
to confirm the inactivation.

9 Click Yes to confirm the inactivation or No to cancel your changes.

Reactivate an inactive company

You can reactivate any inactive companies on your Service Manager system to include them in
the multi-tenancy integration. You must also synchronize the company with UCMDB for
UCMDB to process any CI updates for this company.

1 Log in to Service Manager as a system administrator.

2 Navigate to System Administration > Base System Configuration > Companies.

3 Type the search criteria you want to use to find company records. For example, leave the
search form blank to search all company records.

4 Click Search.

The Re-synch button is available only from company records that have already
been synchronized with UCMDB and have the Synched with UCMDB check box
checked.

If your UCMDB system already has a company with this ID value, it will ignore
the resynchronization request. Service Manager will also ignore a
resynchronization request if there is an existing schedule record to resynchronize
the company with UCMDB. In this case, it displays the message “A schedule
record has already been added to re-synch this company with UCMDB.”
66 Chapter 3

5 Select a company record to reactivate.

6 Select Yes from Show Company in Multi-Company Lists.

7 Click Save. Service Manager prompts you to reactivate the company with UCMDB.

8 Click Yes. Service Manager creates a schedule record to reactivate the company.

Add tenant-specific DEM rules

You can use the condition field to create DEM rules that are specific to a particular tenant in
a multi-tenancy UCMDB-SM integration. For example, one tenant may want to add CIs
directly to Service Manager while another tenant may want to open changes for each CI. The
following sample DEM rules illustrate how to accomplish this.

Table 11 Tenant-specific DEM rules

DEM rule Id
Action on new
CI Condition

ucmdbNode_advantage Add CI company in $L.file=”advantage”

ucmdbNode_hp Create change company in $L.file=”HP”

It is a best practice to create a separate DEM rule for each tenant.
Multi-Tenancy (Multi-Company) Setup 67

68 Chapter 3

4 Standards and Best Practices
This chapter includes the following information:

• UCMDB-SM configuration best practices on page 69

• Frequently Asked Questions on page 79

• Known issues and limitations on page 90

UCMDB-SM configuration best practices

This section provides best practices and recommendations for successfully implementing this
integration in various environments. This section provides you with valuable understandings
and techniques that will enhance the UCMDB-SM integration as well as solve common
problems by providing solutions and workarounds to these issues.

The practices and recommendations may vary slightly according to each implementation, as
the specific system requirements and settings alter per system environment.

CI name mapping considerations

UCMDB allows duplicate CI names while Service Manager requires unique logical names.
Before pushing UCMDB CIs, you need to define a correct CI name mapping for them. For
example, many UCMDB CIs (such as CIs of the Running Software, CRG, Switch, or Router
type) have the same display label.

To prevent duplicate CI names from occurring in Service Manager when pushing UCMDB
CIs, the following mappings are provided out-of-the-box.

CRG mapping

Out-of-the-box, UCMDB CRG records are mapped to Service Manager as follows:

• If a Cluster exists for a CRG, the CRG is mapped to this CI logical name: <Cluster display
label>_<CRG display label>;

• If the CRG does not have a Cluster, but has several IP addresses, the CRG is mapped to
the following (where the IP addresses are sorted alphabetically):

— <IpAddress1>_..._<IpAddressN>.<authoritativeDnsName>_<CRG display label>
(when IpAddress.authoritativeDnsName exists)

— <IpAddress1>_..._<IpAddressN>_<CRG display label> (when
IpAddress.authoritativeDnsName does not exist)

• If neither a Cluster nor an IP address exists for the CRG, it is mapped directly to <CRG
display label>.
69

Running Software mapping

Running Software CIs are prefixed with their root container node display label when mapped
to a Service Manager CI: <Node display label>_<Running Software display label>.

Switch & Router mapping

Switch or Router type CI records in UCMDB are prefixed with their MAC adresses when
mapped to a Service Manager CI: <MACAddress1>_..._<MACAddressN>_<Switch or Router
display label>, where the MAC addresses are sorted alphabetically.

Bi-directional data synchronization recommendations

The UCMDB-SM integration supports bi-directional data synchronization between UCMDB
and Service Manager (SM). HP recommends that you follow the following best practices to
avoid unnecessary problems due to improper use of the data push and population features:

• For CIs/CI Relationships that UCMDB can automatically discover, use UCMDB as the
data source. Do not make changes to them in Service Manager, instead always let
UCMDB discover their changes and push the changes to SM.

• For CIs/CI Relationships that UCMDB cannot automatically discover, use SM as the data
source. Do not make changes to them in UCMDB, instead always make changes to them
in SM and populate the changes to UCMDB.
70 Chapter 4

• For CIs/CI Relationships that are already created in SM and UCMDB can automatically
discover, run a one-time population to synchronize them to UCMDB, and then use
UCMDB as their data source.

Push scheduling recommendations

Push jobs are run using two main methods, the first method is by manually executing the
push job and the second is by scheduling the push job.

All push jobs can potentially produce a strain on the UCMDB and SM systems therefore; HP
recommends that you adhere to the following guidelines.

Problems like the following may occur if you do not follow these best practices:

Problem 1

[Population Adapter] After CIs/CI Relationships are pushed from UCMDB, if you directly
make changes in SM to these records without ever populating them back to UCMDB first, the
changes cannot be populated to UCMDB.

Workaround: Changing these UCMDB records in SM is not recommended; however if you
need to do so you can do the following to solve this issue: After the records are pushed to SM,
populate them back to UCMDB first before making any changes to them in SM. This way the
changes can then be populated to UCMDB.

Problem 2:

[Population Adapter] After a Composition relationship between a Node CI (node 1) and
Running Software CI is pushed to SM, if you change the upstream CI of the relationship from
node 1 to node 2 and then run a change population to populate this change, the Running
Software CI will be removed in UCMDB.

Workaround: It is recommended that you remove the running software in UCMDB and
create a new one instead of directly replacing the container of the running software in SM. If
you cannot avoid doing so, do the following:

After you change the upstream CI of the relationship from node 1 to node 2, do not directly
run the change population. Follow these steps to avoid this issue:

1 Update the Running Software CI in SM (or simply save it to mark it as updated).

2 Run a Running Software CI change population. This will create node 2 (if it does not
already exist in UCMDB) and a new Composition relationship between node 2 and this
Running Software CI.

3 Run a change population to synchronize the relationship change to UCMDB. The
relationship between node 1 and the Running Software CI will be removed, and the new
relationship created in step 2 will remain.

If you have run the change population after changing the upstream CI of the relationship
from node 1 to node 2, and as a result the Running Software CI has been removed in UCMDB,
follow these steps to solve this issue:

1 Update the Running Software CI in SM (or simply save it to mark it as updated).

2 Run a Running Software CI change population. This will create the Running Software CI,
node 2 (if it does not already exist in UCMDB) and a new Composition relationship
between node 2 and this Running Software CI.
Standards and Best Practices 71

Scheduler time frames

It is important for you to understand the function of the Scheduler “time frame” concept.
Running push jobs creates an increase in system activity and may affect application
responsiveness. In order to enable users to effectively interact with applications HP
recommends the following guidelines:

In order to reduce system strain, schedule the UCMDB to SM push to run at non-peak usage
hours, preferably when system usage is at a minimum.

Scheduler frequency

It is important to be aware of the business requirements when configuring the schedule
frequency. The scheduler frequency depends on infrastructure environment changes that
must be synchronized between UCMDB and SM.

Define the scheduling frequency based on the business requirements for consuming
up-to-date CI information. Most implementations require a daily update. When scheduling
small IT systems that are prone to frequent changes, the scheduling frequency may need to be
increased.

Push Job dependencies

UCMDB Push Jobs do not support dependencies between each other. Each “Push Job” is
considered a separate task and users cannot define job dependencies. For example, that one
job is dependent on another or upon completion before the next job is run.

It is important that both CI TQLs and their dependent Relationship TQLs exist in the same
Job in order to avoid relationships not being pushed to Service Manager. UCMDB always
pushes the CI TQLs before their dependent Relationship TQLs.

Push in clustered environments

A clustered SM environment is comprised of multiple servlets running in parallel with a load
balancer that dispatches user requests to any available servlet. You must configure the
UCMDB-SM integration to point to a specific servlet and not to the SM loadBalancer. In order
to perform this, you must first create a dedicated web service listener.

Dedicated Web Services

A Service Manager system configured for vertical or horizontal scaling uses a load balancer to
redirect client connection requests to an available SM process. However, most Web Services
clients cannot handle a redirect request and will fail if they use the SM load balancer as the
endpoint URL.

HP recommends creating one or more SM processes dedicated to Web Services requests. The
user must configure the relevant external web service clients to connect directly to the
dedicated Service Manager processes.

Suffix usage

The out-of-the-box job for CI push uses queries that end with the “Push” suffix, for example,
“SM Computer Push”.

Queries that create relationships between the CIs uses an extra “Relations” suffix, for
example, “SM Node Relations Push”.
72 Chapter 4

Step-by-step cluster configuration process

Perform the following steps in order to configure the relevant external web clients:

1 Stop the Service Manager service.

2 Open the sm.cfg file, and create a dedicated SM process to listen for Web Services requests
using the -debugnode parameter.

The following entries create a dedicated process listening on ports 13085 and 13445.

Explanation

The code excerpt illustrates the various settings for each of the SM process listeners (web
services) that enable SM clients to connect to the SM service.

Line 01 defines the load balancer port (13080).

Lines 02 and 03 define the SM ports to which non-dedicated SM clients are redirected by
the SM load balancer.

Line 04 defines the debugnode port that is utilized by the dedicated SM clients.

Configuring the debugnode

1 Start the SM service.

2 Configure any external web service clients to connect directly to the SM processes running
in debugnode. When performing an integration using UCMDB, the UCMDB Service
Manager Adapter for SM should be configured to connect to the debugnode port.

For example, for normal connections set the endpoint URL to:

http://<fully qualified host name>:13085/SM/7/<Service Name>

 and for SSL-encrypted connections set the URL to:

https://<fully qualified host name>:13445/SM/7/<Service Name>.

These clients may include UCMDB (for push purposes), Connect-It and additional
applications.

Connecting to multiple SM processes

If you want to have better performance, you can connect to multiple Service Manager
processes. The integration supports in both Service Manager vertical or horizontal load
balancer environment.

You can create more than one SM processes dedicated to Web Services requests, and configure
the field URL Override of integration point with the dedicated SM processes. This field value
(if any) overrides the Hostname/IP and Port settings.

Debugnode parameter

The debugnode parameter tells the SM load balancer not to forward any client connection
requests to this Service Manager process. Only clients that directly connect to the process can
access this port.

01 sm -httpPort:13080 -loadbalancer

02 sm -httpPort:13081 -httpsPort:13443

03 sm -httpPort:13083 -httpsPort:13444

04 sm -httpPort:13085 -httpsPort:13445 -debugnode
Standards and Best Practices 73

The following is an example value of this field, which connects two SM processes:

http://<fully qualified host name1>:13080/SM/7/ws;http://<fully qualified host
name2>:13082/SM/7/ws

Initial load configurations

Before the configuration process can begin, you must first assess the amount of CI and
relationships data is to be transferred from UCMDB to SM and ascertain the iteration process
that is required based on the volume.

You must first assess whether all of the data can be pushed in a single iteration. This is
ascertained by the amount of data that is included in the push queries and the amount of time
you have to push this data.

Push performance in a single-threaded environment

The Push of 22,500 UCMDB root CIs (roots in TQLs) and/or Relationships in a
single-threaded environment takes about an hour and is performed in a linear fashion. See
Table 12.

To view or edit the sm.properties file in UCMDB, navigate to Data Flow Management > Adapter
Management > ServiceManagerAdapter9-x > Configuration Files > sm.properties.

The push time (in hours) in any given environment is calculated as follows:

Number of Root CIs and Relationships/22,500

If the push of a single planned query has the potential of breaching the permitted time frame
the data must be divided into several queries. Each query must be pushed individually.

This query division is performed by creating several queries, each with different node
conditions that enable data filtering. Once all queries are pushed for the first time, the Initial
Load process is complete.

The performance data presented in this document is based on tests that were performed at
HP and is provided for reference only. The integration performance may significantly differ in
your environment depending on your hardware configuration.

Table 12 Performance data in a single-threaded environment

Number of root CIs/CI Relationships
pushed per hour Multi-threading settings in sm.properties

22,500 number.of.concurent.sending.threads=1

min.objects.for.concurent.sending=50

number.of.chunks.per.thread=3

Applying node conditions

When applying node conditions to the various SM Sync Queries, you must make sure that all
of the information is included in the queries, so that all relevant data is copied to SM.
74 Chapter 4

Implementing multi-threading

In order to improve performance, the Service Manager Adapter utilizes multiple threads for
the push of CI and Relationship data to SM. The following section explains these settings and
how to configure them for maximum performance.

The multi-threading configuration is defined in the sm.properties file on the UCMDB server.
To view or edit the file in UCMDB, navigate to Data Flow Management > Adapter Management >
ServiceManagerAdapter9-x > Configuration Files > sm.properties.

The following are example multi-threading definitions in the sm.properties file:

Explanation

The code excerpt illustrates the relevant multi threading settings on the UCMDB server.

• Line 01 defines the number of parallel threads UCMDB will open to SM for CI push.
Setting this parameter to 1 disables multi-threading, while a values of 2 or higher enables
multi-threading.

• Line 02 defines the minimum number of SM objects needed to use multiple threads as
opposed to a single thread.

• Line 03 defines the number of chunks per thread. This number multiplied by the number
of threads gives you the total number of CI data chunks.

• The total number of chunks = number.of.chunks.per.thread *
number.of.concurent.sending.threads

The integration implements a queue mechanism as follows:

The data passed from UCMDB to SM is divided into equal chunks, and these chunks are
placed in a queue.

Each available thread pulls the next chunk from the queue until all threads are available.
Once this process has completed, the push is complete.

The mechanism is designed to minimize idle time of each thread. As each thread processes its
chunk in parallel, some threads may finish before others and it is inefficient for them to wait
for each other.

Defining too many threads

It is ineffective to over-increase the number of threads as this causes the SM server to
overload. In enterprise environments where the SM server processing the push data is very
robust the number of threads can be increased to 10 and in some cases even 20; however, you
must take into account that increasing the number of threads raises CPU usage on the SM
server during push, which may reduce application performance.

01 number.of.concurent.sending.threads=6

02 min.objects.for.concurent.sending=50

03 number.of.chunks.per.thread=3
Standards and Best Practices 75

Push performance in multi-threaded environments

The push of 60,000 UCMDB root CIs (roots in TQLs) and/or Relationships in an out-of-the-box
multi-threaded environment takes about an hour and is performed in a linear fashion. See
Table 13.

The push time (in hours) in any given environment is calculated as follows:

Number of Root CIs and Relationships/60,000

Push performance in multiple SM processes environments

The Push of 190,000 UCMDB root CIs (roots in TQLs) and/or Relationships in a
multi-threaded environment with multiple SM processes takes about an hour and is
performed in a linear fashion. See Table 14.

For more information about defining multiple SM processes for the integration, see Create an
integration point in UCMDB on page 27.

The push time (in hours) in any given environment is calculated as follows:

Number of Root CIs and Relationships/190,000

Setting up SM DEM Rules for initial loads

SM Discovered Event Manager Rules (DEM Rules) enable the user to define the appropriate
action to take for each event type that is reported to SM.

Each CI and relationship record pushed from UCMDB to SM is analyzed against the existing
SM records and open Change requests. SM rules define the appropriate action to be taken for
each type of CI data update sent to SM.

To view or update the SM Discovered Event Manager Rules

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Web Services > Discovered Event Manager Rules.

Table 13 Performance data in an out-of-the-box multi-threaded environment

Number of root CIs/Relationships
pushed per hour

Multi-threading settings in sm.properties
(default)

60,000 number.of.concurent.sending.threads=6

min.objects.for.concurent.sending=50

number.of.chunks.per.thread=3

Table 14 Performance data in a multiple SM processes environment

Number of root
CIs/Relationships
pushed per hour SM processes

Multi-threading settings in sm.properties
(default)

190,000 2 server hosts, with
each host running 3
processes

number.of.concurent.sending.threads=90

min.objects.for.concurent.sending=50

number.of.chunks.per.thread=3
76 Chapter 4

3 Press Enter or click the Search button.

A list of all the Discovered Event Manager Rules displays. Each rule is usually linked to a
CI Type or a subset of CIs of the same type.

4 Click on the individual CI Discovered Event Manager Rule to view its details.

To set up DEM Rules for initial loads

For each of the Discovered Event Manager Rules, perform the following steps:

1 Select the relevant Discovered Event Manager Rule.

2 Go to the “Action if matching record does not exist” section, select the Add the record
option.

3 In the “Action if record does not exist but unexpected data discovered” section, select the
Log Results and Update Record option.

4 In the “Action if record is to be deleted” section, select the Delete Record option.

5 Save the Discovered Event Manager Rule record.

Differential/delta load DEM Rules configuration

The following steps describe how to set up the SM DEM Rules for Differential/Delta Loads.

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Web Services > Discovered Event Manager Rules.

3 Press Enter or click the Search button.

A list of all the Discovered Event Manager Rules in SM displays.

4 For each of the Discovered Event Manager Rules, perform the following steps:

a Select the relevant Discovered Event Manager Rule.

b In the “Action if matching record does not exist” section, select the appropriate action
required for each newly detected CI. If uncertain, select the Add the record option.

c In the “Action if record does exist but unexpected data discovered” section, select the
appropriate action for each CI that was modified, resulting in an unexpected or
incorrect result. The recommended best practice is to select the Open a Change option.

d In the “Action if record is to be deleted” section, select the appropriate action required
for each CI that was removed/deleted. The recommended best practice is to select the
Delete Record option for CI Relationship, and select the Update record to the selected
status option for CI.

e Save the Discovered Event Manager Rule record.

When performing “Initial Loads”, HP recommends setting the SM Discovered Event Manager
Rules to add newly reported CIs as described below. This minimizes the “noise” of an Initial
Load, that could potentially create tens of thousands of Changes/Incidents.

Once the “Initial Load” or “Data Load” of the CI data is completed, HP recommends applying
Differential/Delta Load settings. These settings apply to all data loaded from UCMDB to SM.

These loads send only updates regarding modifications discovered in the IT infrastructure
from UCMDB to SM.
Standards and Best Practices 77

Fault detection and recovery for push

Universal CMDB provides a fault detection and recovery mechanism since version 9.05:
individual CI failures no longer cause the entire push to fail, and you can review all failed CIs
in the Universal CMDB studio and then re-push them.

Duplicated logical.name issue

A typical fault you may encounter is the duplicated logical name issue because of the different
unique key fields used in Universal CMDB and Service Manager: CI logical.name in Service
Manager is unique, and it usually maps to CI display label in Universal CMDB (which is not
unique). HP recommends that you follow the following guidelines (listed from highest to
lowest priority) to resolve this issue:

• Make sure that each display label field value in UCMDB is unique;

• If uncertain of the above, in the adapter mapping configuration (XSLT file) avoid direct
mapping between Universal CMDB display label and SM logical name.

• Map SM logical name to another Universal CMDB field that is unique;

• Add a prefix or suffix to UCMDB display label value;

• If you cannot do any of the above, you can use the UCMDB Fault Detection and Recovery
mechanism together with the “Duplication Rule” setting of DEM rules (see the following).

Set up DEM Rules for duplicated logical names

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Web Services > Discovered Event Manager Rules > Duplication Rule
tab.

3 For each of the Discovered Event Manager Rules, perform the following steps:

a Go to the “Action if logical name is duplicated” section, and select the Return Error
option.

b Save the Discovered Event Manager Rule record.

Out-of-the-box, the SM logical name of Running Software is mapped with a prefix
of DNS name:

<xsl:variable name="fullDNSName" select="nodes/node/@primary_dns_name"/>

<xsl:for-each select="@display_label">

 <CIIdentifier><xsl:value-of select="$fullDNSName"/>_<xsl:value-of
select="."/></CIIdentifier>

 </xsl:for-each>

After you run a push job, CIs with a duplicated logical name are reported as failed
CIs with a duplicated name exception. You can review the failed CIs in the
Universal CMDB studio, fix the errors by either changing the data in Universal
CMDB or in the adapter mapping configuration file (XSLT), and then re-push the
failed CIs.
78 Chapter 4

Lightweight Single Sign-On (LW-SSO) configuration

You can enable LW-SSO for the integration so that users can directly view UCMDB CI records
from the Service Manager web client by clicking the View in UCMDB button, without providing
a UCMDB username and password.

To enable LW-SSO for the integration

1 For each Service Manager user account that needs LW-SSO, create a user account in
UCMDB with the same username. The passwords in the two systems can be different.

2 Enable LW-SSO in the Service Manager Web tier. For details, see the Configure LW-SSO
in the Service Manager Web tier topic in the Service Manager help.

3 Enable LW-SSO in UCMDB. For details, see the HP Universal CMDB Deployment Guide.

Frequently Asked Questions

The following section provides answers to frequently asked questions about the UCMDB-SM
integration.

When is a new CI created in HP Service Manager?

CIs are created in SM under the following circumstances:

• A CI is manually added to SM via the “Configuration Management” module.

• UCMDB reports a newly discovered CI according to the following:

— When a new CI is reported and the “Discovered Event Manager Rules” are set to “Add
the Record”.

— When a new CI is reported, the “Discovered Event Manager Rules” are set to “Open
an Incident” and the Incident has been closed.

— When a new CI is reported, the “Discovered Event Manager Rules” are set to “Open a
Change” and the Change has been verified.

Can I analyze the reason for a CI deletion in SM?

No.

SM opens a change request on the deleted CI and includes the following information:

“Delete event for CI “CI Name” triggered by discovery”.

Workaround

An SM change request does not contain a description of the reason for deletion, however it is
possible to extract specific information about CI deletions from the UCMDB “History
Database”. UCMDB data provides information about the user or the discovery pattern that
initiated the CI deletion.

LW-SSO is not supported for the Service Manager Windows client.
Standards and Best Practices 79

How do I monitor relationship changes between UCMDB and SM?

To understand the relationship change in SM, a distinction must be made between the
various types of Relationship Changes:

• The second endpoint of the relationship has Changed, so instead of CI X being linked to CI
Y via a relationship, now CI X is related to CI Z.

• An attribute of a relationship has changed.

The first type of Relationship change is supported by the UCMDB-SM integration, therefore,
such “Relationship Changes” can either invoke CI relationship updates, or perform the
creation of Incidents or Changes, which are then reviewed and monitored.

The second is also supported, but it is not covered out-of-the-box; you can configure the
Universal CMDB TQL to expose such attributes of relationship, and configure the Service
Manager WSDL to expose the mapped field, and then configure the adapter mapping
configuration in the XSLT. However such “Relationship Attribute Changes” cannot perform
the creation of Incidents or Changes, and only supports invoking CI relationship updates
directly.

What kinds of relationships are pushed from UCMDB to SM?

Any kinds of “Relationships” are pushed from UCMDB to SM under the following conditions:

• The relationship appears in a “Push TQL” located in the “SM Sync” folder in the UCMDB
Query Manager.

• The relationship is named “Root” in the Push TQL.

• The relationship is mapped to an appropriate target in SM in the UCMDB configuration
files (XML and XSLT files).

The out-of-the-box relationships that are pushed from UCMDB to SM are relationships
between two CIs such as:

• Between Business Services and Applications;

• Between Business Service and Host;

• Between an Application and a Network Component; or

• Between Host, Network Components and Printers.

What is a Root CI Node?

A “Root” Node is a TQL Node that represents the CI type that is created via push to SM from
the TQL structure. The rest of the TQL structure contains information that can be
incorporated within the “Root” CI type and is used to enrich the record in SM with additional
information and or attributes.

What is a Root Relationship?

A “Root” Relationship is a Relationship within a TQL and created in SM via push. It
represents a Relationship between two Root CIs. Only the relationships marked with “Root”
are pushed to SM.
80 Chapter 4

What is the “friendlyType” specified in an XSLT file?

friendlyType is another name for the UCMDB “CI Type”. These “friendly-types” are usually
pushed into the SM Device subtype field/attribute.

What is the “Virtual-Compound” relationship type used in a UCMDB-SM
integration query?

When more than two UCMDB CI entities are connected in series, the “Virtual-Compound”
represents the relationship between the first and last entities. This is a virtual relationship,
as no physical representation exists.

The “Virtual-Compound” relationship type is a relationship that links two CI type entities
that have a logical relationship. See Figure 6.

Figure 6 Virtual-Compound relationship

Explanation

The illustration shows an example of a Virtual-Compound relationship. The relationship in
SM is created directly between the “Host” and the “Business Service”.

When do I need the Population feature?

You need the population feature under any of the following circumstances:

• You have done modeling in SM, especially when you are in the planning and design
phases, and you want your models to be reflected in UCMDB;

• You want to implement the UCMDB-SM integration, however you have already invested
in your SM CMDB and do not want to lose that investment;

• You want to continue to maintain some parts of the SM CMDB while maturing your
UCMDB/Discovery implementation.

Can I populate physically deleted CIs from SM to UCMDB?

No.

Physical deletions of CIs are allowed in SM, but SM cannot get such “deletion changes” and
the population feature will not synchronize such changes to UCMDB.

Physical deletions of CIs can be considered as exceptions, which only occur after you create
CIs by mistake. Normally, you delete a CI by setting its status to something like “Disposed/
Retired”. In case such CIs have been populated to UCMDB, it is your responsibility to remove
them manually from UCMDB.
Standards and Best Practices 81

How do I keep the Outage Dependency setting of a CI Relationship in SM?

Out-of-the-box, CI relationships that are pushed from UCMDB to SM do not have outage
dependency information by default. If you need such information, you can set the DEM rule of
the CI Relationship WSDL as follows:

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Web Services > Discovered Event Manager Rules.

3 Open the ucmdbRelationship record.

4 On the Rules tab, select Add the record, and set dependency as true.

This will set the Outage Dependency of each CI Relationship to true, and set the number
of dependent downstream CIs to 1 (because UCMDB only supports one-to-one
relationships).

If you want to set outage dependency only for some relationships, for example, if you want to
configure outage dependency for relationships that starts from Business Service, you can
configure the adapter configuration file (XSLT) and WSDL definition; you can also configure
outage dependency per relationship type (UCMDB TQL).

1 In the WSDL definition, expose fields outage.dependency and outage.threshold.
82 Chapter 4

2 In the XSLT file, set the exposed outage fields. For example, if you want to set the outage
dependency to true and threshold to 1 for Business Service relationships, you simply need
to change the mapping of TQL and XSLT in the smSyncConfFile.xml file:

<tql name="applicationRelationsData" xslFile="bizservice_relations.xslt">

 <request type="Create" name="CreateRelationship"/>

 <request type="Update" name="UpdateRelationship"/>

 <request type="Delete" name="DeleteRelationship"/>

 </tql>

3 In the bizservice_relations.xslt file, use the following OutageDependency and
OutageThreadhold settings:

<xsl:stylesheet version='1.0' xmlns:xsl='http://www.w3.org/1999/XSL/
Transform'>

 <xsl:template match="/relation">

 <model>

 <keys/>

 <instance>

 <ParentCI><xsl:value-of select="@parentID"/></ParentCI>

 <ChildCIs>

 <ChildCIs><xsl:value-of select="@childID"/></ChildCIs>

 </ChildCIs>

 <RelationshipType>Logical</RelationshipType>

 <RelationshipSubtype><xsl:value-of select="@friendlyType"/
></RelationshipSubtype>

 <OutageDependency>true</OutageDependency>

 <OutageThreadhold>1</OutageThreadhold>

 </instance>

 </model>

 </xsl:template>

</xsl:stylesheet>

How do I create an XSL transformation file?

You create an XSL transformation file in Adapter Management. You can copy the content of
an existing XSL transformation file to the new file and then make necessary edits.

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management. ServiceManagerAdapter9-x >
Configuration Files.

3 Click the Create new resource button .

4 Select New Configuration File.
Standards and Best Practices 83

5 Enter a name for the file. The file name should use this format: <AdapterID>/<filename>.
For example: ServiceManagerAdapter9-x/test_relation_population.xslt.

6 In the Package field, select the adapter name. For example, ServiceManagerAdapter9-x.

7 Click OK. A file extension warning dialog displays.

8 Click Yes to continue.

UCMDB creates the new XSL transformation file in the Configuration Files folder of the
adapter. For example, ServiceManagerAdapter9-x > Configuration Files >
ServiceManagerAdapter9-x/test_relation_population.xslt.

9 Copy the content of an existing XSL transformation file to the new file. For example, for
population you can copy the content of an out-of-the-box population XSL transformation
file.

10 Make necessary edits to the new file.

Out-of-the-box, the businessservice_to_computer_containment_population.xslt file is as the
following:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">

 <xsl:template match="/Retrievecirelationship1to1ListResponse">

 <topology>

 <xsl:for-each select="instance">

 <xsl:choose>

 <xsl:when test="upstreamci.subtype='Infrastructure Service'">

 <ci class="infrastructure_service">

 <attribute name="name" type="String"><xsl:value-of
select="upstreamci.logical.name"/></attribute>

 <attribute name="sm_id" type="String"><xsl:value-of
select="upstreamci.id"/></attribute>

 <link direction="outgoing" linkType="containment">

 <ci class="node">

 <attribute name="name"
type="String"><xsl:value-of select="downstreamci.logical.name"/></attribute>

 <attribute name="sm_id"
type="String"><xsl:value-of select="downstreamci.id"/></attribute>

 </ci>

 </link>

 </ci>

 </xsl:when>

 <xsl:when test="upstreamci.subtype='Application Service'">

Invalid XML

When removing XSL elements from an XSLT file, keep in mind that the remaining XML
should be a valid XML file, which will be used to translate the UCMDB Query Definition. See
the following for an example.
84 Chapter 4

 <ci class="business_application">

 <attribute name="name" type="String"><xsl:value-of
select="upstreamci.logical.name"/></attribute>

 <attribute name="sm_id" type="String"><xsl:value-of
select="upstreamci.id"/></attribute>

 <link direction="outgoing" linkType="containment">

 <ci class="node">

 <attribute name="name"
type="String"><xsl:value-of select="downstreamci.logical.name"/></attribute>

 <attribute name="sm_id"
type="String"><xsl:value-of select="downstreamci.id"/></attribute>

 </ci>

 </link>

 </ci>

 </xsl:when>

 <xsl:otherwise>

 <ci class="business_service">

 <attribute name="name" type="String"><xsl:value-of
select="upstreamci.logical.name"/></attribute>

 <attribute name="sm_id" type="String"><xsl:value-of
select="upstreamci.id"/></attribute>

 <link direction="outgoing" linkType="containment">

 <ci class="node">

 <attribute name="name"
type="String"><xsl:value-of select="downstreamci.logical.name"/></attribute>

 <attribute name="sm_id"
type="String"><xsl:value-of select="downstreamci.id"/></attribute>

 </ci>

 </link>

 </ci>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:for-each>

 </topology>

 </xsl:template>

</xsl:stylesheet>

The file becomes an invalid XML file if you change it to the following:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">

 <xsl:template match="/Retrievecirelationship1to1ListResponse">
Standards and Best Practices 85

 <topology>

 <xsl:for-each select="instance">

 <xsl:choose>

 <xsl:when test="upstreamci.subtype='Infrastructure Service'">

 <ci class="infrastructure_service">

 </xsl:when>

 <xsl:when test="upstreamci.subtype='Application Service'">

 <ci class="business_application">

 </xsl:when>

 <xsl:otherwise>

 <ci class="business_service">

 </xsl:otherwise>

 </xsl:choose>

 <attribute name="name" type="String"><xsl:value-of
select="upstreamci.logical.name"/></attribute>

 <attribute name="sm_id" type="String"><xsl:value-of
select="upstreamci.id"/></attribute>

 <link direction="outgoing" linkType="containment">

 <ci class="node">

 <attribute name="name"
type="String"><xsl:value-of select="downstreamci.logical.name"/></attribute>

 <attribute name="sm_id"
type="String"><xsl:value-of select="downstreamci.id"/></attribute>

 </ci>

 </link>

 </ci>

 </xsl:for-each>

 </topology>

 </xsl:template>

</xsl:stylesheet>

Using choose to set CI subtypes

<Type>switch</Type>

<xsl:variable name="prefix" select="'Value>'"/>

<xsl:variable name="suffix" select="'</Value'"/>

<Subtype>

Sample usages of XSLT

For your reference, the following are some samples of using XSLT functionalities in this
integration.
86 Chapter 4

 <xsl:choose>

 <xsl:when
test="contains(@node_role,concat($prefix,'atm_switch',$suffix))">ATM Switch</
xsl:when>

 <xsl:when
test="contains(@node_role,concat($prefix,'frame_relay_switch',$suffix))">Fram
e Relay Switch</xsl:when>

 <xsl:when
test="contains(@node_role,concat($prefix,'lan_switch',$suffix))">Lan Switch</
xsl:when>

 <xsl:otherwise><xsl:value-of select="@friendlyType"/></xsl:otherwise>

 </xsl:choose>

</Subtype>

Getting the substrings from a string

<xsl:variable name="calculatedLocation" select="@calculated_location"/>

<Building>

 <xsl:value-of select="substring-after($calculatedLocation,' Building:')"/>

</Building>

<Floor>

 <xsl:value-of
select="substring-before(substring-after($calculatedLocation,'Floor:'),'
Building:')"/>

</Floor>

<Room>

 <xsl:value-of
select="substring-before(substring-after($calculatedLocation,'Room:'),'
Floor:')"/>

</Room>

Reading the value mappings from an XML file

The SM_CIT_Subtype_list.xml file defines the value mappings for subtypes:

<lists>

 <list name="CIType_bizservice">

 <entry ucmdb="BusinessApplication" sm="Application Service"/>

 <entry ucmdb="BusinessService" sm="Business Service"/>

 <entry ucmdb="InfrastructureService" sm="Infrastructure Service"/>

 </list>

</lists>

The business_service_push.xslt file uses this mapping definition XML file:

<xsl:variable name="CIlists" select="document('SM_CIT_Subtype_list.xml')/
lists"/>
Standards and Best Practices 87

<xsl:variable name="CIT" select="@bdmType"/>

<xsl:for-each select="$CIlists/list[@name='CIType_bizservice']">

 <Subtype><xsl:value-of select="entry[@ucmdb=$CIT]/@sm"/></Subtype>

</xsl:for-each>

How do I use the Load Fields button to add multiple managed fields?

Service Manager stores the list of managed fields in the ucmdbIntegration web service, which
consists of a number of web services objects. You can add more managed fields to DEM Rules
so that Service Manager can monitor changes in more CI attributes in UCMDB and trigger
the actions defined in relevant DEM Rules.

You can manually add managed fields that are exposed in associated WSDL definitions to
DEM Rules; however, you can use the Load Fields button to automatically (and therefore
correctly) add managed fields to DEM Rules.

1 Click the Managed Fields tab of the DEM Rule.

2 Click the Load Fields button.

3 If the table (in the Table Name field) of the DEM rule record has only one WSDL
definition associated to it, all fields exposed in the WSDL definition are immediately
added to the Managed Fields list.

A message displays: <XX> new fields loaded.

4 If the table has more than one WSDL definition associated to it, the Managed Fields
Importing wizard opens, and a list of WSDL definitions (ucmdbIntegration web service
objects) displays.

a Select one or more objects, and click Next.

All new fields that can be added from the selected web service objects display.

b If you want to add all of the fields, click Finish; if you want to ignore some of them,
change their Action value from Add to Ignore, and then click Finish.

A message displays: <XX> new fields loaded.

5 Save the DEM Rule record.

What is the purpose of the <container> element in a population XSLT file?

Out-of-the-box, in the runningsoftware_population.xslt file, there is a container element:

<link direction="incomming" linkType="composition">

 <ci class="node">

 <container tql="SM Computer Population" keyFields="CIIdentifier">

 <linkTql>SM Computer To Software With Composition</linkTql>

 <linkRetrieveCondition>downstreamci.logical.name="<xsl:value-of
select="CIIdentifier"/>"</linkRetrieveCondition>

 <linkValueFields>upstreamci.logical.name</linkValueFields>

 </container>

For more information about XSL transformations, visit the following site: http://
www.w3schools.com/xsl/
88 Chapter 4

 </ci>

</link>

The <container> element has been introduced to solve the following population problem with
RunningSoftware CIs:

• In UCMDB, RunningSoftware CIs must exist together with a Root Container (Node),
however Service Manager allows RunningSoftware CIs without a Node.

• The current integration adapter synchronizes CIs and Relationships separately; when
populating a RunningSoftware CI, the integration has no chance to check if a relationship
exists between the CI and a Node.

With the <container> element, the integration populates RunningSoftware CIs together with
a container.

Can I populate sub-item deletions?

Yes.

Service Manager and UCMDB store CI information in different data structures, and therefore
one SM CI may be synchronized to UCMDB as several CIs. For example, during population,
an SM computer CI record is synchronized to a Node CI in UCMDB, and the computer CI’s
attributes to CIs such as IP, Interface, Location, etc (which are referred to as sub-items of the
Node CI.). In this case, the Node CI is the root CI.

The integration allows you to populate sub-item deletions to UCMDB (for example, if you
delete the IP Address attribute value of a computer, the corresponding IP CI record in UCMDB
will be deleted too). To do so, you need to specify a root in the CI type’s population xslt file, using
parameter isRoot="true". For example, for Computer CIs, the “node” should be specifed as
the root.

Out-of-the-box, only the computer_population.xslt file requires the “node” CI be specified as
the root, as shown below:

<ci class="node" isRoot="true">

What will happen if a population job fails or succeeds with warnings?

When a population job fails

The failure prevents the remaining population tasks from running. The next job run will start
from the last Success time. If pagination occurs (that is, the tasks are divided into multiple
pages), the tasks will run again and again within the first page from the last “Success” time
(once the end of the first page is reached, no new tasks will be executed).

When a population job succeeds with warnings

A warning does not prevent the remaining population tasks from running. The next job run
will run all tasks again starting from the last Success time. If pagination occurs (the tasks are
divided into multiple pages), the tasks on all pages will be re-run (including those that were
successfully completed last time).
Standards and Best Practices 89

Known issues and limitations

The following table lists the known issues and limitations of this integration.

Table 15 Known Issues and Limitations

Global ID Known Issue/Limitation Workaround

QCCR1E72246 [Population Adapter] Cannot populate deleted CIs in a
full population.
While you run a full population, if there are CIs that
have been deleted since the last job run in Service
Manager, the deleted CIs in Service Manager will not be
populated to UCMDB.
However, the data push feature first pushes deleted CIs
while running a full push.

In UCMDB, manually delete
all CIs that were populated
from SM by using appropriate
filter criteria and then run a
full population.
Warning: You must be very
careful when using this
workaround.

QCCR1E72222 NodeRole is case-sensitive when mapping Node's
NodeRole in UCMDB to Node's Subtype in SM.
Steps to reproduce this issue:
1 Create a Node in UCMDB.
2 Set the Node's NodeRole property to "Printer".
3 Run a data push in UCMDB to push Node CIs.
4 Check the CI's attributes in SM.
Result: The CI's subtype is "Node", which should be
"Net Printer".
When the NodeRole is "printer", the result is correct.

Use lower-case names for
NodeRole (printer).

QCCR1E72327 When you run a full population for the first time to
synchronize a large amount of CIs, if some of the CIs
have an invalid attribute value (for example, IP
address), the population job will ignore such CIs and run
to completion with a Failed status and with errors logged
on the Job Errors tab; In addition, the last job execution
time will not be logged because the job is run for the first
time but fails.
As a result, after fixing the invalid attribute values in
Service Manager, you will not have a chance to
re-populate the failed CIs through a change (delta)
population. This is because when you run a change
population, a full population will be executed instead
(because the last job execution time is null).

None.
90 Chapter 4

QCCR1E84364 When “Run in Multi-Company Mode” is enabled in the
System Information Record in Service Manager (SM),
the UCMDB integration fails to create changes or
incidents in SM because the configuration item data
modification event fails. The following error occurs:
ERROR TypeError:
lib.uCMDBConfiguration.isEnable is not a
function at char 1

To solve this issue, manually
update a JavaScript:

1 Log in to Service Manager
as a system
administrator.

2 Go to Tailoring > Script
Library, and open the
"discoveryEvent" script.

3 In this file, replace all
instances of string
"lib.uCMDBConfiguratio
n.isEnable" with
"lib.uCMDBConfiguratio
n.isEnabled". Note: You
can find the string in
lines 43, 86 and 405.

4 Click Compile to make
sure the code is correct,
and then click Save.

5 Log off and log back in.

Table 15 Known Issues and Limitations (cont’d)

Global ID Known Issue/Limitation Workaround
Standards and Best Practices 91

QCCR1E72511 If you set the use.global.id parameter in the adapter's
sm.properties file to true, the federation feature does not
work.

Set the parameter to false to
solve this issue.
• When you deploy the

adapter on the UCMDB
standalone server (which
is defined as a global-id
generator by default),
globalId and ucmdbId are
the same thing. For this
reason, setting this
parameter to false can
meet all of your needs
satisfied by setting the
parameter to true.

• When you deploy the
adapter on a
non-standalone UCMDB
(for example, BSM's
RTSM), setting this
parameter to true is not
supported. In addition, HP
does not recommend
integrating the
non-standalone CMDB
(for example, BSM's
RTSM) with Service
Manager.

QCCR1E72578 The data length of CI relationship name in Service
Manager is 40 characters, which is not sufficient for the
integration. Installing this content pack does not
automatically increase this data length in Service
Manager.
If a CI relationship name exceeds the data length, either
the relationship name is truncated after push or the
relationship cannot be pushed to Service Manager due to
a duplicate key error.

Manually increase the data
length in Service Manager:
Open the cirelationship table
in Database Dictionary, and
increase the data length of
the relationship.name field
from 40 to an appropriate
value (recommended value:
300).

QCCR1E73004 Double quotes in UCMDB CI names (for example:
"laptop - 003") are removed when the CIs are
synchronized to SM.

None.

Table 15 Known Issues and Limitations (cont’d)

Global ID Known Issue/Limitation Workaround
92 Chapter 4

5 Tailoring the Integration

You can tailor the HP Universal CMDB integration to meet your business needs by adding or
removing managed CI types, attributes, and relationship types. This chapter describes the
integration architecture and tailoring options for data push, population, and federation:

• Integration architecture on page 93

• Integration tailoring options on page 107

Integration architecture

Before you tailor the integration, you should understand how the following components of the
out-of-the-box integration work.

• Integration class model on page 93

• Integration TQL queries on page 93

• Service Manager web services on page 98

• Service Manager reconciliation rules on page 102

• Service Manager Discovery Event Manager rules on page 103

Integration class model

UCMDB 9.x or later no longer uses a private class model of CI types to manage integration CIs,
as was required in prior versions. Instead, the integration uses the standard UCMDB managed
objects and maps them to Service Manager CI types and attributes with queries and
transformation files.

Integration TQL queries

This section describes out-of-the-box Topology Query Language (TQL) queries used for data
push, Actual State, and population.

TQL queries for push

For the push feature, the integration uses a collection of TQL queries to gather CI attribute
information from Universal CMDB and send it to the Service Manager system.

To access the out-of-the-box data push queries, navigate to Modeling > Modeling Studio, select
Queries for Resource Type, and then navigate to the Root > Integration > SM Sync > 9.xx folder.
93

If you want to change what CI/Relationship types or attributes are part of the integration, you
must also edit the integration queries to support your updated CI/CI Relationship types and
attributes.

Table 16 Out-of-the-box TQL queries for data push

Query name Description

SM Running Software Push This query gathers CI attributes from Running
Software CIs.

SM Business Service Push This query gathers CI attributes from business
service CIs.

SM Business Service Relations Push This query gathers relationships between the
following components:
• Business service and Running Software CIs
• Business service and node CIs
• Two or more business services
The query includes compound relationships because
the relationships can extend through a group.

SM Computer Push This query gathers CI attributes from the node CI
type with NodeRole containing “desktop”, “server”,
“virtualized_system” or not set.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
and Location.

SM Switch Push This query gathers CI attributes from the node CI
type with NodeRole containing “atm_switch”,
“frame_relay_switch”, or “lan_switch”.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
and Location.

SM Storage Push This query gathers CI attributes from the node CI
type with NodeRole containing “san_switch”,
“san_gateway”, “san_router” or exact CI type equal
to “storage Array”.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
and Location.

SM Net Printer Push This query gathers CI attributes from the node CI
type with NodeRole containing “printer”.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
and Location.
94 Chapter 5

SM Mainframe Push This query gathers CI attributes from the node CI
type with exact CI type equal to “Mainframe Logical
Partition”, or “Mainframe CPC”.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
and Location.

SM Mobile Device Push This query gathers CI attributes from the node CI
type with NodeRole containing “pda_handheld”.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
and Location.

SM Network Component Push This query gathers CI attributes from the node CI
type with NodeRole containing “router”,
“adsl_modem”, “appletalk_gateway”,
“bandwith_manager”, “cable_model”, “csu_dsu”,
“ethernet”, “fddi”, “firewall”, “hub”, “kvm_switch”,
“load_balancer”, “multicast_enabled_router”,
“nat_router”, “token_ring”,
“undefined_network_component”, “voice_gateway”,
“voice_switch”, or “vpn_gateway”.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
and Location.

SM Cluster Push This query gathers CI attributes from the node CI
type with exact CI type equal to
“ClusterResourceGroup”.
It also gathers related CI attributes from the
following CI types through containers and links:
IPAddress, Interface, CPU, FileSystem, DiskDevice,
Location, and Cluster.

SM Node Relations Push This query gathers relationships between the
following components:
• Node and Printer CIs
• Node and RunningSoftware CIs
The root class of the relationship is composition.

Table 16 Out-of-the-box TQL queries for data push (cont’d)

Query name Description
Tailoring the Integration 95

TQL queries for Actual State

Out-of-the-box, the following TQL queries (see Table 17) are used for retrieving CI
information from UCMDB to the Actual State section of the Service Manager Configuration
Item (CI) form. Service Manager retrieves CI Actual State information by calling a UCMDB
web service that retrieves CI data according to these queries.

The queries are located in the Integration > SM Query folder in the UCMDB Modeling Studio.

SM CRG Relations Push This query gathers relationships between the
following components: Node and Cluster Resource
Group CIs.
The query includes compound relationships because
the relationships can extend through a group.

SM Layer2 Topology Relations Push This query gathers relationships between the
following components: Two or more nodes.
The query includes compound relationships because
the relationships can extend through a group.

SM Local Printer Push This query gathers CI attributes from printer CIs.
It also gathers related CI attributes from the Node
CI type.

Table 16 Out-of-the-box TQL queries for data push (cont’d)

Query name Description

Table 17 Out-of-the-box TQL queries for Actual State

Query name Description

localPrinterExtendedData This query gathers real-time extended information from
Printer CIs in UCMDB.

applicationExtendedData This query gathers real-time extended information from
RunningSoftware CIs in UCMDB.

businessServiceExtendedData This query gathers real-time extended information from
business service CIs in UCMDB.

hostExtendedData This query gathers real-time extended information (such
as Asset, Party, Location, LogicalVolume,
WindowsService, Printer, InstalledSoftware, FileSystem,
IPAddress, Interface, DiskDevice, and Cpu) from the node
CI type in UCMDB.
96 Chapter 5

TQL queries for population

For CI/CI Relationship population, the integration does not need TQL queries to save CI/CI
Relationship attribute information to Universal CMDB; however in the population
configuration file the following TQL query names are mapped to relevant population XSL
transformation files (see Table 18).

Table 18 TQL queries for population

Query name Description

SM Business Service Population This query defines the CI store structure of business
service CIs.

SM Computer To Computer With
ConnectM Running Software
Population

This query defines the CI store structure of running
software CIs.

SM Computer Population This query defines the CI store structure of computer
CIs.

SM Biz To Biz With Containment This query defines the CI store structure of CI
relationships in which a bizservice CI contains another.

SM Biz To Biz With Usage This query defines the CI store structure of CI
relationships in which a bizservice CI uses another.

SM Biz To Computer With
Containment

This query defines the CI store structure of CI
relationships in which a bizservice CI contains a
computer CI.

SM Biz To Computer With Usage This query defines the CI store structure of CI
relationships in which a bizservice CI uses a computer
CI.

SM Biz To Software With
Containment

This query defines CI store structure of CI relationships
in which a bizservice CI contains a RunningSoftware CI.

SM Biz To Software With Usage This query defines CI store structure of CI relationships
in which a bizservice CI uses a RunningSoftware CI.

SM Computer To Computer With
Connects

This query defines the CI store structure of CI
relationships in which a computer CI connects to
another.

SM Computer To Software With
Composition

This query defines the CI store structure of CI
relationships in which a RunningSoftware CI is
contained within a computer CI and the
RunningSoftware CI cannot exist without the container.

CLIP Down Time Population This query defines the CI store structure of
ScheduledDowntime CIs.

CI To Down Time CI With
Connection

This query defines the CI store structure of CI
relationships in which a ScheduledDowntime CI
connects to an affected CI.
Tailoring the Integration 97

TQL query requirements

The integration requires that any custom TQL queries you create meet certain formatting
conditions. Any TQL queries that you want to include in the integration must meet these
conditions:

• To query CIs, a query must contain one CI type labeled Root. The Root node is the main
CI that the UCMDB synchronizes. All other CIs are contained CIs of the Root CI.

• To query relations, a query must contain one or more relationships labeled Root.

• A query must contain only the Root CI and CIs that are directly connected to it. The Root
CI is always the top node of the TQL hierarchy.

• A TQL graph cannot have cycles.

• If a query synchronizing relationships has cardinality, it must be cardinality 1...*.
Additional cardinality entries must have an OR condition between them.

• If you only want the integration to synchronize specific CIs, you must configure the
condition on the TQL query to filter such CIs.

Service Manager web services

Service Manager uses web services messages to get and receive CI information from your
UCMDB system. Out-of-the-box, UCMDB sends more CI attribute information than the
Service Manager system actually manages. Service Manager users can view all of the CI
attribute information the UCMDB system sends from the Actual State section of the CI
record.

Service Manager publishes several web services for use by the UCMDB-SM integration. The
UCMDB system uses the web services to map UCMDB CI types and CI attributes to web
services objects the Service Manager system recognizes. If you add UCMDB CI types or CI
attributes that you want Service Manager to manage, then you must update one or more of
these web services to define them as web services objects. See the Service Manager Web
Services Guide for more information about publishing web services.

Managed fields

A Service Manager managed field is a field where the system compares the CI attribute value
in the incoming UCMDB web services message to the value in a Service Manager CI record. If
the values in the web services message do not match those in the CI record, Service Manager
runs a Discovery Event Manager (DEM) rule to determine what action to take. The DEM rule
determines which of the fields that are published as web services objects are fields managed
by the integration. Only value changes in managed fields trigger the DEM rule.

Managed fields are used only for the data push feature.
98 Chapter 5

Service Manager stores the list of managed fields in the ucmdbIntegration web service. The
ucmdbIntegration web service consists of a set of web services objects. Out-of-the-box, the
integration uses only part of them (see Table 19), some of them (along with their relevant
DEM Rules) have been deprecated (see Table 20), and some are used for population or
federation (see Table 21).

The following sections list the fields published as web services objects used for data push (see
Table 19) and indicate whether they are managed fields in an out-of-the-box Service Manager
system. You can use this reference to determine if you need to publish a field as a web service
object, and also if you need to create a DEM rule for the object.

Table 19 Mappings between Service Manager web service objects, tables, and
DEM rules

This web service object Publishes fields from this
table

And uses this DEM rule ID

Relationship cirelationship ucmdbRelationship

ucmdbRunningSoftware device ucmdbRunningSoftware

ucmdbBusinessService joinbizservice ucmdbBusinessService

ucmdbNode joinnode ucmdbNode

Table 20 Deprecated ucmdbIntegration web service objects for data push

This web service
object

Publishes fields from
this table Recommended replacement (object)

ucmdbApplication device ucmdbRunningSoftware

ucmdbComputer ucmdbComputer ucmdbNode

UcmdbDevice device ucmdbRunningSoftware

ucmdbNetwork joinnetworkcomponents ucmdbNode

ucmdbPrinter joinofficeelectronics ucmdbNode

Table 21 ucmdbIntegration web service objects used for population or federation

This web service
object

Publishes fields
from this table And is used for

Requires a DEM
Rule?

cirelationship1to1 cirelationship1to1 Population No

ucmdbIDPushBack device Population No

UcmdbChange cm3r Federation No

UcmdbChangeTask cm3t Federation No

UcmdbIncident probsummary Federation No

UcmdbProblem rootcause Federation No
Tailoring the Integration 99

Object Name: Relationship

Service Manager publishes the following fields from the cirelationship table:

Object Name: ucmdbRunningSoftware

Service Manager publishes the following fields from the device table:

Object Name: ucmdbBusinessService

Service Manager publishes the following fields from the joinbizservice table:

Table 22 Web service and managed fields of the Relationship object

Field published as web
service object

Caption used in web
service messages

Is the field a managed
field?

relationship.name RelationshipName

logical.name ParentCI

related.cis ChildCIs Yes

relationship.subtype RelationshipSubtype

Table 23 Web service and managed fields of the ucmdbRunningSoftware object

Field published as web
service object

Caption used in web
service messages

Is the field a managed
field?

ucmdb.id UCMDBId

ci.name ApplicationName Yes

type Type

subtype Subtype

company CompanyId

logical.name CIIdentifier Yes

product.version ProductVersion

vendor Vendor

version Version

ida

a. This attribute is used only for the population feature.

CIName

Table 24 Web service and managed fields of the ucmdbBusinessService object

Field published as web
service object

Caption used in web
service messages

Is the field a managed
field?

ucmdb.id UCMDBId

ci.name ServiceName Yes

type Type
100 Chapter 5

Object Name: ucmdbNode

Service Manager publishes the following fields from the joinnode table:

subtype Subtype

company CustomerId

logical.name CIIdentifier Yes

vendor ServiceProvider

ida CIName

a. This attribute is used only for the population feature.

Table 24 Web service and managed fields of the ucmdbBusinessService object

Field published as web
service object

Caption used in web
service messages

Is the field a managed
field?

Table 25 Web service and managed fields of the ucmdbNode object

Field published as web service
object

Caption used in web
service messages

Is the field a managed
field?

ucmdb.id UCMDBId

type Type

subtype Subtype

company CustomerId

logical.name CIIdentifier Yes

default.gateway DefaultGateway Yes

network.name DNSName Yes

building Building Yes

room Room Yes

floor Floor Yes

location Location

addlIPAddr[addlIPAddress] AddlIPAddress Yes

addlIPAddr[addlSubnet] AddlSubnet Yes

addlMacAddress AddlMacAddress Yes

bios.id BIOSId Yes

operating.system OS Yes

os.version OSVersion Yes

physical.mem.total PhysicalMemory Yes

serial.no. SerialNo
Tailoring the Integration 101

Service Manager reconciliation rules

Service Manager reconciliation rules allow the integration to identify CI records in your
Service Manager system that match CIs in your UCMDB system. Service Manager attempts
to reconcile CI records with every push of CI attributes from your UCMDB system. The
integration uses the following workflow to match UCMDB CIs with Service Manager CIs.

1 The UCMDB system sends a web service message to Service Manager containing the
latest CI attribute data.

2 Service Manager scans the web service message for the CI ucmdb.id value.

3 Service Manager searches for an existing CI record that has the same ucmdb.id value.

4 If Service Manager finds a CI with a matching ucmdb.id value, no reconciliation is
needed. Service Manager compares the UCMDB CI attributes to the Service Manager
managed fields and runs the appropriate Discovery Event Manager (DEM) rules as
needed.

vendor Vendor

cpu[cpu.id] CpuID

cpu[cpu.name] CpuName

cpu[cpu.clock.speed] CpuClockSpeed

file.system[mount.point] MountPoint

file.system[disk.type] DiskType

file.system[file.system.type] FilesystemType

file.system[disk.size] DiskSize

asset.tag AssetTag

machine.name HostName Yes

disk.device[model.name] ModelName

disk.device[disk.vendor] DiskVendor

disk.device[disk.name] DiskName

ida CIName

isVisualization IsVisualization

istatus AssetStatus

a. This attribute is used only for the population feature.

Table 25 Web service and managed fields of the ucmdbNode object (cont’d)

Field published as web service
object

Caption used in web
service messages

Is the field a managed
field?

Out-of-the-box, Service Manager does not display the ucmdb.id field on CI record
forms to prevent users from changing the value. If you want to add this value to
your forms, you can find the ucmdb.id field defined in the device table. HP
recommends that you make this a read-only field.
102 Chapter 5

5 If Service Manager cannot find a CI with a matching ucmdb.id value, it runs the
reconciliation rules.

6 Service Manager searches for an existing CI record with the same reconciliation field
values.

7 If Service Manager finds a CI with a matching reconciliation field value, it updates the CI
record with the ucmdb.id value of matching UCMDB CI. Service Manager compares the
UCMDB CI attributes to the Service Manager managed fields and runs the appropriate
DEM rule as needed.

8 If Service Manager cannot find a CI with a matching reconciliation field value, it runs the
DEM rule for “Action if matching record does not exist.” Out-of-the-box, the DEM rule has
Service Manager create a new CI record. Service Manager creates the CI record using the
ucmdb.id value of incoming UCMDB CI.

Performance implications

Because Service Manager attempts to reconcile CIs with every push, the number of
reconciliation fields you have will affect the integration’s performance. The more
reconciliation rules you have, the more searches Service Manager must perform to match CIs.
To improve the performance of reconciliation searches, you should choose reconciliation fields
that are unique keys of the underlying Service Manager table. For example, if you want to
reconcile CI records in the device table, use the logical.name field as a reconciliation field
because it is a unique key. See Add DEM reconciliation rules on page 110 to create a
reconciliation rule.

Dependence on DEM rules

Service Manager uses the “Action if matching record does not exist” DEM rule whenever it
cannot reconcile CIs. You should review the DEM settings and decide if they meet your
business standards prior to the initial push of CIs from UCMDB to Service Manager. For
example, you can have Service Manager create a change request for every CI in the initial CI
push by selecting the “Open a change” option.

Service Manager Discovery Event Manager rules

You only need to create Discovery Event Manager (DEM) rules if you want to accomplish any
of the following custom actions:

• Change the conditions under which a DEM rule runs on page 103

• Change the action the DEM rule takes on page 105

• Update the list of managed fields for a CI type on page 105

• Create custom JavaScript to open change or incident records on page 105

Change the conditions under which a DEM rule runs

Service Manager will run a DEM rule only if the condition field evaluates to true.
Out-of-the-box, no DEM rule has a condition statement that restricts when the rule runs, and
all the integration DEM rules will always run by default.

You can update a DEM rule's condition statements if you want to restrict when Service
Manager runs your DEM rules. For example, adding the following condition to the
ucmdbNode DEM rule restricts the rule to desktop CIs.
Tailoring the Integration 103

subtype in $L.file=”Desktop”

You can also use the condition field to create multiple DEM rules that apply to the same table
name. For example, the following DEM rules both apply to the joinnode table.

Typically, you will only need to add conditions if your business processes require the
integration to take different actions with certain CI types or SLAs.

Table 26 DEM rules using different conditions to affect the same table

DEM rule Id Table Name Condition

ucmdbNode joinnode subtype in $L.file!=”Desktop”

ucmdbDesktop joinnode subtype in $L.file=”Desktop”
104 Chapter 5

Change the action the DEM rule takes

Out-of-the-box, the integration DEM rules take the following actions:

• Add a CI record when the UCMDB data does not match an existing Service Manager CI
record

• Open a Change or log results and update a CI record when the UCMDB CI attribute data
does not match the CI attribute data in the Service Manager CI record

• Delete a CI record when the UCMDB data specifies that the CI has been deleted

You can change the integration DEM rules to meet your business processes. For example, you
could use the ucmdbNode DEM rule to open a change when the integration finds a
non-desktop CI with unexpected data, and use the ucmdbDesktop DEM rule to log results and
update the record when the integration finds a desktop CI with unexpected data.

Update the list of managed fields for a CI type

If you add CI attributes to your UCMDB system that you want to include in the integration,
you must also create matching managed fields in Service Manager. Each managed field must
have a corresponding web services object definition in order to receive CI attribute updates
from your UCMDB system. See Add a CI attribute to the integration for data push on
page 116 and Add a CI type to the integration for data push on page 127 for information on
how to add managed fields.

Create custom JavaScript to open change or incident records

Service Manager uses the discoveryEvent JavaScript to create CI names and to set the
values of required fields when opening change or incident records. Out-of-the-box, the script
uses the following default values.

Default values to create a new CI

You can update the createCIName and populateNewCI functions to set the following CI
values.

If you want to use the Change Management verification and Change Management validation
features of the integration, your DEM rules must use the Open a Change option for the
“Action if record exists but unexpected data discovered” event.

Table 27 Default values used to create a new CI

CI attribute Default value defined in discoveryEvent

record.logical_name System generated ID number

record.assignment AUTO

record.istatus Installed

record.os_name Value in record.operating_system
Tailoring the Integration 105

Default values to create a new change

You can update the populateChange function to set the following change values.

Default values to create a new incident

You can update the populateIncident function to set the following incident values.

Table 28 Default values used to create a new change

CI attribute Default value defined in discoveryEvent

change.category Unplanned Change

change.reason Value in reason

change.initial_impact 3

change.severity 3

change.coordinator Change.Coordinator

change.requested_by discovery

change.status initial

Table 29 Default values used to create a new incident

CI attribute Default value defined in discoveryEvent

incident.category incident

incident.subcategory hardware

incident.product_type missing or stolen

incident.assignment Hardware

incident.initial_impact 3

incident.severity 3

incident.logical.name Value of id

incident.site_cateogry C

incident.contact_name ANALYST, INCIDENT

incident.affected_item MyDevices
106 Chapter 5

Integration tailoring options

The integration offers the following tailoring options:

• Update the integration adapter configuration file (sm.properties) on page 107

• Add DEM reconciliation rules on page 110

• Add Discovery Event Manager rules on page 112

• Add a CI attribute to the integration for data push on page 116

• Add a CI type to the integration for data push on page 127

• Add a CI type’s relationship types to the integration for data push on page 146

• Add custom TQL queries to data push jobs on page 151

• Add a CI attribute to the integration for population on page 152

• Add a CI type to the integration for population on page 155

• Add a CI type’s relationship types to the integration for population on page 167

• Customize ucmdb id pushback for a CI type on page 171

• Add custom TQL queries to integration population jobs on page 173

• Add an attribute of a supported CI type for federation on page 173

Update the integration adapter configuration file (sm.properties)

The integration uses a properties file (sm.properties) as a configuration file of the adapter.
Out-of-the-box, this file has been set up based on best practices, so usually you can keep the
default parameter values. Optionally, you can update the parameter values to better suit your
needs.

To update the sm.properties file

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.

3 Click the properties configuration file: sm.properties.
Tailoring the Integration 107

4 Update the parameter values as needed. For a list of the parameters, see Table 30.

Table 30 Parameters in the sm.properties file

Parameter Default value Comment

timeout.minutes 10 The integration connection
timeout value (in minutes).

number.of.concurent.sending.
threads

6 The number of concurrent
threads used for the data push
feature.

• 1: Disabled
• 2 or higher: Enabled

Note: If you are connecting to
multiple Service Manager
instances to improve the CI
data push performance (see the
URL Override configuration in
Create an integration point in
UCMDB on page 27), you are
recommended to increase this
value for optimized
performance. For example, set
it to 12 if you are connecting to
two Service Manager
instances.

min.objects.for.concurent.sen
ding

50 The minimum number of
Service Manager objects that is
required to use concurrent
sending instead of single
thread sending.

Note: It is used for the push
feature.

number.of.chunks.per.thread 3 The number of chunks per
thread used for the push
feature.

number.of.cis.per.request 1000 The maximum number of
objects retrieved from Service
Manager by ID.

Note: It is used for the
population and federation
features. Do not set it to a
number greater than 1000 in
case the request has a 64K
limit.
108 Chapter 5

use.global.id false If set to true, globalId instead
of ucmdbId is used in the
integration. For more
information about the
differences between UcmdbID
and GlobalID, see the UCMDB
documentation.

type.of.expand.enum 2 It configures the value
mapping rule for the UCMDB
enum type.

• 0: The feature will be
disabled

• 1: The enum type will
expand to “{value}”

• 2: The enum type will
expand to “{index}-{value}”

Note: It is used for the push
feature.

use.type.label true It configures whether the
generated source XML uses the
real CI/Relationship type
directly or uses the label that
is defined in the TQL.

If set to false, the real type is
used directly instead of the
label.

op.pagination.switch on It indicates if pagination
(client driven) is enabled.

• on: Enabled.
• off: Disabled.
Note: It is used for the
population feature.

pop.pagination.recordcount 1000 The maximum number of
records displayed on each page
when pagination is enabled.

Note: It is used for the
population feature.

pop.createci.key sm_id The UCMDB field of a CI
record that stores the Service
Manager CI ID.

Note: It is used for the
population feature.

Table 30 Parameters in the sm.properties file (cont’d)

Parameter Default value Comment
Tailoring the Integration 109

Add DEM reconciliation rules

It is possible that your Service Manager system already contains CI records that match CIs in
your UCMDB system. Rather than add duplicate CI records to your Service Manager system,
you can configure Service Manager to reconcile CI records between the two systems based on
the values of specific fields.

Service Manager always attempts to reconcile CI records based on the unique key field of the
Service Manager table and the ucmdb.id field. You can specify additional fields to reconcile
on from the DEM Reconciliation Rules form. If Service Manager finds a matching value in any
one of these fields, it updates the Service Manager CI record with the attributes from the
incoming UCMDB record.

When multi-tenancy is enabled, Service Manager only reconciles the CIs whose company ID
matches the company ID in the data push job. For example, when pushing CIs from company
2, the reconciliation rules only apply to the Service Manager CI records that have the
company code corresponding to company number 2.

ucmdbid.pushback.request UpdateucmdbIDPushBack
Request

The web service request for
pushing the UCMDB ID back
to Service Manager.

Note: It is used for the
population feature.

ucmdbid.pushback.xslt ucmdbid_pushback.xslt The xslt configuration file for
pushing the UCMDB ID back
to Service Manager.

Note: It is used for the
population feature.

check.sm.connections false It indicates whehter to check
the SOAP connections to
Service Manager instances
before running a job.

You can enable it under any of
the following circumstances:

• Your Service Manager is
running in High
Availability mode (with load
balancing), and you want to
connect UCMDB to
multiple Service Manager
instances.

• You want UCMDB to not
run a job when no
integration connections are
available, rather than run
the job and then report a
failure.

Table 30 Parameters in the sm.properties file (cont’d)

Parameter Default value Comment
110 Chapter 5

In order to specify reconciliation fields, you will need to be familiar with the table and field
names in both your Service Manager and UCMDB systems. If you want to reconcile on a
particular attribute from the UCMDB system, you should verify that there is a corresponding
Service Manager managed field for the attribute. Without such a mapping, Service Manager
will not know to search for matching values in the CI record.

Using join tables for reconciliation

When setting reconciliation rules, if the device type you are reconciling has a joindef
definition (as defined in the devtype table), use the join table name instead of the device table.
For example, if you want to reconcile computer CIs, use the joincomputer table instead of the
device table.

Sequence of reconciliation

A reconciliation rule specifies what Service Manager table and field you want to search for
matching CI values. It also specifies the sequence in which you want Service Manager to
process reconciliation rules. By default, Service Manager processes rules in alphabetical order
by field name. For example, Service Manager will reconcile CIs against the asset.tag field
before reconciling CIs on the ci.name field.

To change the order in which Service Manager reconciles CIs, you can add a numeric value to
the sequence field. For example, the following reconciliation rules ensure that Service
Manager processes CIs by the ci.name field prior to reconciling them against the asset.tag
field.

A Discovery Event Manager (DEM) reconciliation rule allows you to specify which Service
Manager fields you want to use to determine if an existing CI record matches a CI in a
UCMDB system. An administrator typically specifies reconciliation rules prior to starting
UCMDB data push jobs so that Service Manager will not create duplicate CI records.

To create a DEM reconciliation rule:

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Web Services > DEM Reconciliation Rules. Service Manager displays
the DEM Reconcile Record form.

3 In Table Name, type the name of the Service Manager table containing the field you want
to reconcile on.

4 In Field Name, type the name of the Service Manager field containing the values you
want to reconcile on.

Not all UCMDB attributes have a corresponding field in Service Manager. You may need to
tailor your Service Manager system to add a matching field if one does not already exist.

Table 31 Sample reconciliation rules ordered by sequence

Table Name Field Name Sequence

joincomputer ci.name 1

joincomputer asset.tag 2
Tailoring the Integration 111

5 In Sequence, type a number to specify what order you want Service Manager to run this
rule.

6 Click New. Service Manager creates the reconciliation rule.

Add Discovery Event Manager rules

Service Manager uses the Discovery Event Manager (DEM) to define which actions the
system should perform when the actual state of an incoming configuration item (CI) record
differs from the managed state of a CI record in HP Service Manager. The DEM rules allow
you to define whether the Service Manager system adds, updates, or deletes CI records based
on incoming UCMDB data.

For CI records only, the DEM rules also allow you to define how Service Manager should
handle duplicated logical names.

DEM rules

Service Manager offers the following rules options:

• Action if matching record does not exist: This is the action you want Service
Manager to take if it cannot find a matching CI record.

— Add the record: (Default) Service Manager will add a CI record when it cannot find
a matching record. See Add DEM reconciliation rules on page 110 to define what
fields Service Manager uses to match CI records.

— Add the record, and set dependency as true: This option is available only for
synchronization of CI relationship data. Service Manager adds the CI relationship
record and enables outage dependency for the record by doing the following:

– Checks the Outage Dependency check box;

If you do not specify a sequence value, Service Manager will process field names
alphabetically.
112 Chapter 5

– Sets the number of dependent downstream CIs to 1. This is because UCMDB only
supports one-to-one CI relationships.

— Open an Incident: Service Manager opens an incident for someone to review the
new CI record. The incident enables someone to investigate whether the new CI
record is compliant with your business practices.

— Open a Change: Service Manager opens an unplanned change for someone to review
the new CI record. The change allows you to investigate whether the new CI record is
compliant with your business practices. If the CI record is compliant, the change can
be approved. If the CI record is not compliant, then the change can be denied and the
CI record removed. The change record lists both the current and proposed attribute
values.

• Action if record exists but unexpected data discovered: This is the action you want
Service Manager to perform if it does not find a matching CI attribute value.

— Open a Change: (Default) Service Manager opens an unplanned change to review
the actual state of the CI record. The change allows someone to investigate whether
the new attribute value is compliant with your business practices. If the value is
compliant, the change can be approved. If the value is not compliant, then the change
can be denied and the CI attribute value reverted to its managed state.

— Log Results and update record: Service Manager logs the results of the actual
state of the CI record, and then updates the CI record.

— Open an Incident: Service Manager opens an Incident to investigate the actual state
of a CI record and determines what actions must be performed or initiated to bring
the record into compliance with Service Manager.

• Action if record is to be deleted: This is the action you want Service Manager to
perform if an external event specifies that the record needs to be deleted.

— Delete record: (Default for CI Relationship records) This option is available for
synchronization of both CI and CI Relationship records. Service Manager
automatically deletes the CI/CI Relationship record.
Tailoring the Integration 113

— Open an Incident: This option is available only for synchronization of CI
Relationship records. Service Manager opens an incident to investigate the deleted
record and determines which actions must be performed or initiated to bring the
record into compliance with Service Manager.

— Open a Change: This option is available only for synchronization of CI Relationship
records. Service Manager opens an unplanned change to review the deleted record.
The change allows someone to investigate whether the deleted record is compliant
with your business practices. If the record is compliant, the change can be approved. If
the record is not compliant, then the change can be denied and the record added back
to the system.

— Update record to the selected status: (Default for CI records) This option is
available only for synchronization of CI records. Service Manager updates the status
of the CI record to a value selected from the drop-down list (for example, Retired/
Consumed), rather than delete the record permanently.

— Open a Change to update record to the selected status: This option is available
only for synchronization of CI records. Service Manager opens an unplanned change
to update the CI record’s status to a value selected from the drop-down list (for
example, Retired/Consumed). The change allows someone to investigate whether the
requested status change is compliant with your business practices. Once the change
has been approved and closed, Service Manager automatically changes the CI record
to the selected status. If the change has been denied, Service Manager makes no
changes to the CI record.

— Open an Incident to update record to the selected status: This option is
available only for synchronization of CI records. Service Manager opens an incident to
update the record’s status to a value selected from the drop-down list (for example,
Retired/Consumed). Once the incident has been closed, Service Manager automatically
updates the CI record to the selected status.

Values available from the drop-down list are defined in the ICM Status global list.
114 Chapter 5

Duplication rules

UCMDB may create two completely separate yet legit CI records that happen to have the
same “name”. The UCMDB name field is mapped to the logical.name field (which must be
unique) in Service Manager. Pushing the two CI records to Service Manager would cause a
duplicate logical name problem. You have several ways to avoid this problem. See Table 32.

Service Manager offers the following duplication rule options on the Duplication Rule tab in
each DEM rule with a Table Name other than “cirelationship”:

• Action if logical name is duplicated (CI with different uCMDB ID): This is the
action you want Service Manager to perform if the logical name is already used by another
CI record when a CI record is added or updated.

— Rename to <name>_[RENAMED]_1/2/3: (Default) Service Manager changes the
logical name by adding a suffix.

— Return Error: Service Manager returns a duplicate key error to UCMDB.

CI attributes displayed in change and incident records

Service Manager displays a Change Details section on the corresponding change or a CMDB
Changes section on the corresponding incident when you configure DEM to open either
change records or incident records when it discovers CI attribute changes through the
UCMDB-SM integration. Service Manager only displays a tab for CI attributes when the
UCMDB-SM integration is enabled and you have defined a rule in the Discovery Event
Manager to create a change or incident record when a CI is added, updated, or deleted.

Table 32 Solutions to the duplicate logical name problem

Product side Solution

UCMDB Change the names directly in UCMDB or change the
UCMDB reconciliation rule to make sure the names are not
the same.
This is highly recommended.

In the integration adapter mapping configuration (xslt) file,
avoid mapping the UCMDB name field to the SM logical
name field directly in either of these ways:
• Map another UCMDB unique attribute to the SM

logical.name field, and map the UCMDB name field to
another SM field;

• Add a prefix to the name. The following are examples.
— UCMDB switches or routers are simply named as

“Router” or “Switch” and identified by their underlying
MACs. You can configure their “SM logical name” to be
“<MAC> + <name>”.

— UCMDB databases often have the same name (due to
the implementation of clusters and Oracle RACs). You
can configure their “SM logic name” to be “<full DNS
name> + <name>”.

Service Manager Use the duplication rule options in DEM Rules in Service
Manager.
Tailoring the Integration 115

Both the Change Details and CMDB Changes sections display the current CI attribute values
alongside the actual attribute values discovered by UCMDB. You can use this information to
approve or deny a change or escalate an incident to the proper assignment group.

Searching for change and incident records opened by the integration

You can use the following search criteria to find change and incident records opened by the
UCMDB-SM integration.

Add a CI attribute to the integration for data push

You can use the following steps to add a CI attribute to the integration.

Task 1: Does the CI attribute already exist in the UCMDB class model?

Yes. Go to Task 3.

No. Go to Task 2.

Task 2: Add the CI attribute to the UCMDB class model.

See Add the CI attribute to the UCMDB class model on page 116.

Task 3: Add the CI attribute to the TQL layout.

See Add the CI attribute to the TQL layout on page 118.

Task 4: Add the CI attribute to the Service Manager table.

See Add the CI attribute to the Service Manager table on page 119.

Task 5: Create a web service field to support the CI attribute.

See Create a web service field to support the CI attribute on page 121.

Task 6: Add a managed field to monitor changes in the CI attribute.

See Add a managed field to support the CI attribute on page 122.

Task 7: Map the CI attribute to a web service field.

See Map the CI attribute to a web service field on page 124.

Add the CI attribute to the UCMDB class model

The integration only uses a subset of the CI attributes available from your UCMDB system.
Out-of-the-box, the integration consists of CI attributes that are typically managed from a
Service Manager system such as host name and host DNS name. Before creating a new

Table 33 Search options available for change and incident records

Record type Search option available

Change Search for records with the category unplanned change.

Incident Search for records using the generated by the UCMDB integration
option.
116 Chapter 5

UCMDB CI attribute, you should determine if there are any existing CI attributes in your
UCMDB system that provide the data you want. In most cases, there is an existing attribute
tracking the data you want to add to the integration. For example, if you review the attributes
of the Node CI type, you see that there are many attributes available to be added to the
integration.

The following steps illustrate how to add a new CI attribute to an existing CI type. This
scenario is not the expected typical case. Typically, you would add an existing CI attribute to
the integration.

To add a CI attribute to the UCMDB class model:

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > CI Type Manager.

3 Select the CI type to which you want to add a new CI attribute from the CI Types
navigation tree. For example, ConfigurationItem > InfrastructureElement > RunningSoftware >
Database.

4 Click the Attributes tab.

5 Click the Add button.

The Add Attribute window opens.

6 In Attribute Name, type the unique name you want to use for the new CI attribute. For
example, database_owner.

7 In Display Name, type the name you want UCMDB to display in the interface. For
example, Database Owner.

The integration does not require any special steps to add a CI attribute to the UCMDB class
model. You can use the standard CI attribute creation procedures to add a CI attribute. For
more information on CI attribute creation, see the HP Universal CMDB CI Attribute
Customization Guide.

 The name cannot include any of the following characters: ‘ / \ [] : | < > +
= ; , ? *.
Tailoring the Integration 117

8 In Description, type a description of the new CI attribute. This is an optional field. For
example, System user who owns the database.

9 In Attribute Type, select either Primitive or Enumeration/List. For example, select
Primitive and select string.

10 In Value Size, type the maximum character length the attribute can have. For example,
300.

11 In Default Value, type the value to be used when no other value is available. For example,
leave the default value blank.

12 Click OK to save the attribute.

13 Click the Save button to save attribute changes to the CI type.

Add the CI attribute to the TQL layout

To add a CI attribute to the integration, you must add this attribute to the layout setting from
the TQL query that synchronizes the CI type. You must know what CI type contains the CI
attributes you want to add to the integration.

Keep a list of the attributes that you enable, because you will need to create a matching XSL
transformation for each attribute you enable.

To add a CI attribute to the TQL layout:

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > Modeling Studio.

3 For Resource Type, select Queries.

4 From the Queries navigation tree, click Integration > SM Sync > 9.xx.

5 Select the query that manages the CI type whose attributes you want to add to the
integration. For example, SM Computer Push. UCMDB displays the TQL for the
integration query.

6 Select the node from the TQL layout that contains the CI attribute you want to add to the
integration. For example, Root.

7 Right-click the node and select Query Node Properties. The Query Node Properties window
opens.

8 Click Element layout tab. The Layout Settings tab opens.
118 Chapter 5

9 Select the CI attribute you want to include in the integration from the Available Attributes
list, and click the Add button to add it to Specific Attributes list. For example, OsVendor.

10 Click OK to save the node properties.

11 Click the Save button to save the TQL query.

Add the CI attribute to the Service Manager table

The integration uses only a subset of the CI attributes available from your Service Manager
system. Before creating a new Service Manager CI attribute, you should determine if there
are any existing CI attributes in your Service Manager system that provide the data you
Tailoring the Integration 119

want. In most cases, there is an existing attribute tracking the data you want to add to the
integration. For example, if you review the attributes of the Computer CI type, you see that
there are many attributes available to be added to the integration.

The following steps illustrate how to add a new CI attribute to an existing CI type.

The integration does not require any special steps to add a CI attribute to the Service
Manager table. You can use the standard table attribute creation procedures to add a CI
attribute. For more information on table attribute creation, see the Service Manager help and
Service Manager Tailoring Best Practices Guide.

To add a CI attribute to the Service Manager table

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Database Dictionary.

3 In File Name, type the name of the table where you want to add the new CI attribute. For
example, node.

4 Click the Search button .

The node dbdict record opens.

5 Click the Fields tab.

6 Click the New Field/Key button.

The Add Attribute window opens.
120 Chapter 5

7 In Name, type the name you want to use for the new CI attribute. For example,
os.manufacturer.

8 In Type, select a type from the list. For example, select character.

9 Click the Add Field button to save the attribute.

10 Click the OK button to save attribute changes to the table.

Create a web service field to support the CI attribute

UCMDB uses the Service Manager ucmdbIntegration web service to send CI data. This web
service publishes the objects that match the out-of-the-box CI types and CI attributes
provided by the UCMDB-SM integration. For a list of the out-of-the-box web service fields and
their mappings to Service Manager tables, see Managed fields on page 98.

If you add a CI attribute to the integration on your UCMDB system, you must create a
corresponding web service field on your Service Manager system to receive the incoming CI
data from UCMDB. Each web service field must map to a valid Service Manager table and
column.

The following steps illustrate how to create a web service field for the OSVendor attribute
described in previous sections.

To create a web service field for the CI attribute

1 Log in to Service Manager with an administrator account.

2 Navigate to Tailoring > Web Services > WSDL Configuration. The External Access Definition
form opens.

3 For Service Name, type ucmdbIntegration.

4 Click Search. Service Manager displays a record list of the objects that make up the
ucmdbIntegration web service.

5 Select an existing web service object to which you want to add the CI attribute. For
example, select ucmdbNode.

6 Click the Fields tab. Service Manager displays the fields published as web service fields.

7 Select an empty row in the Fields list.

8 For Field, select the Service Manager column name where you want to store the incoming
CI attribute values. For example, os.manufacturer.

9 For Caption, type the name you want Service Manager to use when publishing the field as
a web service field. For example, OSVendor.

10 Click Save.

The name cannot include any of the following characters: ' / \ [] : | < > + =
; , ? *.

Service Manager displays the fields from all join tables associated with the table
listed in the Name field. For example, for joinnode Service Manager displays the
fields from the device and node tables.

The Caption name must match the object name you listed in the XSL
transformation file in Universal CMDB, or Service Manager will not receive any
CI updates from your Universal CMDB system.
Tailoring the Integration 121

The new web service field is available immediately; you do not need to restart the Service
Manager system.

Add a managed field to support the CI attribute

In order for a CI attribute you add to the integration to trigger the automated Change
Management validation and verification processes, you must add a managed field for the CI
attribute. Service Manager managed fields are part of the Discovery Event Manager Rules.
For a list of fields that trigger Change Management validation and verification, see Service
Manager Discovery Event Manager rules on page 103.

To add a managed field to the integration

1 Log in to Service Manager with an administrator account.

2 Navigate to Tailoring > Web Services > Discovered Event Manager Rules. Service Manager
displays a record search/creation form.

3 Click Search to display a list of all Discovery Event Manager rules.

4 Select the rule ID that matches the web services object where you mapped the incoming
CI attribute. For example, ucmdbNode. See Create a web service field to support the CI
attribute on page 121.

Service Manager displays the rules for this web service object.

5 Click the Managed Fields tab. Service Manager displays the list of fields that trigger
Change Management validation and verification.
122 Chapter 5

6 Select an empty row in the Managed Fields list.

7 For Field Name, select the caption name of the Service Manager column that you
previously selected to store the incoming CI attribute values. For example, Os
Manufacturer.

8 If the field you use to store the incoming CI attribute is an array of structure, use the
Structure field to select the name of the array of structure where the column can be found.
For example, Os Manufacturer is a primitive character field and therefore does not need to
identify an array of structure name.

9 If the field you use to store the incoming CI attribute is an array of structure, use the
Index field to select the index number that identifies the column in the array of structure.
For example, Os Manufacturer is a primitive character field and therefore does not need to
identify an array of structure index.

10 Click Save.

Service Manager displays the fields from all join tables associated with the table
listed in the Table Name field. For example, joinnode displays fields from the
device and computer tables.

If you want to add all fields that are exposed in the WSDL definition, you can click
the Load Fields button. For more information, see How do I use the Load Fields
button to add multiple managed fields? on page 88.
Tailoring the Integration 123

Map the CI attribute to a web service field

The integration uses an adapter to transform UCMDB CI attributes to web services objects
recognized by Service Manager. The adapter in turn specifies what XSL transformation files
the integration should use to convert UCMDB TQL queries into properly formatted Service
Manager web services messages.

Out-of-the-box, each integration query has a corresponding XSL transformation file that
maps to a particular CI type in UCMDB. In addition, each attribute for which you enabled
calculation requires its own entry in the XSL transformation file. Without an XSL
transformation entry, Service Manager cannot receive any CI attribute updates from your
UCMDB system.

If you want to add a new attribute to the integration, you must edit the XSL transformation
file for the parent CI type and add an entry for the CI attribute. For information about which
CI types each query manages, see TQL queries for push on page 93. In order to create a proper
XSL mapping, you must be familiar with the service and object names Service Manager
publishes as web services. For information on publishing tables and columns as web service
objects, see the Service Manager Web Services Guide available from the Service Manager help.

The following steps illustrate how to map a UCMDB CI attribute called host_vendor to a
Service Manager web service object called OSVendor.

To map a CI attribute to a web service field

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.

3 Double-click the XSL transformation file that manages the parent CI type of your CI
attribute. For example, open computer_push.xslt to add an attribute to the SM Computer
Push TQL query.

4 Find the element that defines the Service Manager table name where the integration will
store CI attribute values. For example, the element <file.device> will store CI attributes
in the Service Manager device table.

5 Within the table naming element (<file.device>), you will see an element of the
following format that defines how to transform each UCMDB CI attribute into a web
service object:

<xsl:for-each select="@CI_attribute_name">

 <SMAttributeName><xsl:value-of select="."/></SMAttributeName>

</xsl:for-each>

@CI_attribute_name is the name of attribute in the UCMDB system.

SMAttributeName is the name of a web service attribute published by the Service
Manager system.

The web service attribute name is case-sensitive.
124 Chapter 5

Figure 7 CI attributes in the computer_push.xslt XSL transformation file

Figure 8 CI attributes in the sm_node_attributes.xslt XSL transformation file
Tailoring the Integration 125

Figure 9 Matching CI attributes in the ucmdbNode web service

6 Copy an existing XSL transformation element to use it as a template to create a new
transformation entry.

7 Paste the new XSL transformation element within the proper table naming element. For
example, <file.node>.

8 Update the CI attribute name and web service object name within the new element to
match the attribute you want to add to the integration. For example, create the following
XSL transformation element to add an attribute to the integration.

<xsl:for-each select="@os_vendor">

 <OSVendor><xsl:value-of select="."/></OSVendor>

</xsl:for-each>
126 Chapter 5

Figure 10 New attribute in the computer_push.xslt XSL transformation file

9 Save the XSL transformation file.

Add a CI type to the integration for data push

You can use the following steps to add a CI type to the integration.

Task 1: Does the CI type already exist in the UCMDB class model?

Yes. Go to Task 3.

No. Go to Task 2.

Task 2: Add the CI type to the UCMDB class model.

See Add the CI type to the UCMDB class model on page 128.

Task 3: Add CI attributes to the CI type as needed.

See Add a CI attribute to the integration for data push on page 116.

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
Tailoring the Integration 127

Task 4: Create a TQL query to synchronize the CI type.

See Create a TQL query to synchronize the CI type on page 130.

Task 5: Add the CI type’s attributes to the TQL layout.

See Add the CI type’s attributes to the TQL layout on page 133.

Task 6: Add the CI type to Service Manager.

See Add the CI type in Service Manager on page 134.

Task 7: Create web service fields to support the CI type.

See Create web service fields to support the CI type on page 137.

Task 8: Add managed fields to support the CI type.

See Add managed fields to support the CI type on page 139.

Task 9: Map the CI type’s TQL query to an XSL transformation file.

See Map the CI type’s TQL query to an XSL transformation file on page 140.

Task 10: Map the CI type’s attributes to web service fields.

See Map the CI type’s attributes to web service fields on page 142.

Task 11: Add custom TQL queries to integration data push jobs.

See Add custom TQL queries to data push jobs on page 151.

Add the CI type to the UCMDB class model

Before creating a new UCMDB CI type, you should determine if there are any existing CI
types in your UCMDB system that provide the CI attributes you want. In most cases, you can
create links to one or more existing CI types to create a new logical CI type for use by the
integration.

The following steps illustrate how to create a new CI type called SM RDBMS based on an
existing CI type called database.

To add a CI type to the UCMDB class model

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > CI Type Manager.

3 Select the base CI type you want to use for your new CI type from the CI Types navigation
tree: Managed Object > ConfigurationItem > Infrastructure Element > Running Software >
Database.

4 Click the New button .

The Create Configuration Item Type window opens.

The integration does not require any special steps to add a CI type to the UCMDB class
model. You can use the standard CI type creation procedures to add a CI type. For more
information on CI type creation, see the HP Universal CMDB CI Attribute Customization
Guide.
128 Chapter 5

5 In Name, type the unique name you want to use for the new CI type. For example,
sm_rdbms.

6 In Display Name, type the name you want UCMDB to display in the interface. For
example, SM RDBMS.

7 In Description, type a description of the new CI type. This is an optional field. For
example, Hosts running relational databases.

8 In Base CI Type, verify that the proper base CI type is selected. Your new CI type will
inherit the attributes of the base CI type you select here. For example, Database.

9 Click Next. The wizard displays a list of CI attributes from the base CI type.

10 Add, edit, or remove CI attributes as needed for the new CI type. For example, accept the
default attributes inherited from Database.

11 Click Next. The wizard displays a list of qualifiers from the base CI type.

12 Add or remove qualifiers as needed for the new CI type. For example, accept the default
qualifiers.

13 Click Next. The wizard displays a list of icons associated with the CI type.

14 Select the icons associated with this CI type. For example, accept the default abstract
class icon.

15 Click Next to add any menu item properties or label definitions as needed. For example,
accept the default settings from the base CI type.

16 Click Finish to create the CI type.

17 Select your new CI type from the tree. For example, SM RDBMS.

18 Browse to an existing CI type you want to link to, and control-click it to add it to your
selection. For example, Node.

19 Right-click one of the selected CI types, and click Add/Remove Relationship. The
Relationships window opens.

 The name cannot include any of the following characters: ‘ / \ [] : | < > +
= ; , ? *.

Choose an existing CI type that has the attributes that you want to be part of
your new logical CI type.
Tailoring the Integration 129

20 Create an SM Link relationship from the existing CI type to the new CI type. For
example, from Node to SM RDBMS.

21 Click OK to create the relationship.

22 Click the Save button to save the CI type.

Create a TQL query to synchronize the CI type

The integration uses Topology Query Language (TQL) queries to gather CI attribute values
and pass them to your Service Manager system. You must create a TQL query for any CI type
you add to the integration. Any TQL query you create must conform to the TQL query
requirements on page 98.

The following steps illustrate how to create a new TQL query called rdbmsData for the SM
RDBMS CI type described in previous sections.

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > Modeling Studio.

3 From the Queries navigation tree, click Integration > SM Sync.

4 Right-click SM Sync, and select the New > Query.

The Query Definition window opens.

5 Find the CI type that will be the root node of your query from the CI Type Selector. This
CI type is typically the one that provides the most attributes for the CI. For example,
Managed Object > ConfigurationItem > InfrastructureElement > RunningSoftware > Database >
SM RDBMS.

6 Drag the root CI type from the CI Type Selector and drop it into the empty Editing pane.
UCMDB displays the icon of the CI type.

You need to create a new SM Link relationship if it does not exist.
130 Chapter 5

7 Select the CI type, and click Edit from the Information Pane. The Node properties window
opens.

8 Change the Element name to Root.

9 Click OK to save the node properties.

10 Find any additional CI types you want to add to the query from the CI Type Selector.
These CI types typically provide additional CI attributes. For example, Managed Object >
ConfigurationItem > Infrastructure Element > Node.

11 Drag the additional CI type from the CI Type Selector and drop it into the empty Editing
pane. UCMDB displays the icon of the additional CI type.
Tailoring the Integration 131

12 Create relationships between the Root CI type and the additional CI types as needed. For
example, create an SM Link between Root and Node.

a Select Root and control-click the additional CI type. For example, Node.

b Right-click one of the selected items, and click Add Relationship. The Add Relationship
window opens.

c Select SM Link.

d Type a Relationship Name. For example SM Link.

e Click OK to add the relationship.

13 Repeat step 10 to step 12 for each additional CI type you want to add to the TQL. For
example, SM RDBMS does not need any additional CI types.

14 Click the Save button to save the TQL query.
132 Chapter 5

15 In Query Name, type the unique name you want to use for the new query. For example,
rdbmsData.

16 In Description, type a description of the new query. This is an optional field. For example,
Query for hosts running relational databases.

17 In the folder tree, select the folder in which you want to save the TQL. For example, Root >
Integration > SM Sync.

18 Click OK. UCMDB adds your new query to the Queries list.

Add the CI type’s attributes to the TQL layout

To add a CI attribute to the integration, you must enable the calculation layout setting from
the TQL query that synchronizes the CI type. Because you must enable calculation for each
attribute you want to add to the integration, you should be familiar with the integration CI
types and the CI attributes they contain.

The following steps illustrate how to enable calculation for attributes of the SM RDBMS CI
type described in previous sections.

To add a CI type’s attributes to the TQL layout

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > Modeling Studio.

3 From the Queries navigation tree, click Integration > SM Sync.

4 Select the query that manages the CI type whose attributes you want to add to the
integration. For example, rdbmsData. UCMDB displays the TQL for the integration query.

5 Select the Root node from the TQL layout, and then click the Edit button from the
Information Pane. The Node properties window opens.

6 Click the Element Layout tab, and select the option Select attributes for layout.

Keep a list of the attributes you enable, because you will need to create a matching XSL
transformation for each one.

Your integration query must contain a node called Root. See TQL query
requirements on page 98 for more information.
Tailoring the Integration 133

7 Select Specific Attributes from the Attributes condition list, and from the Available
Attributes list select each CI attribute you want to add to the Specific Attributes list. For
example, select the Product Name, Application Version Description, Vendor, Version,
Description, The Database Instance Name, and Port attributes.

8 Click OK to save the query node properties.

9 Select any additional nodes that contain CI attributes you want to add to the integration.
For example, Node.

10 Click the Edit button from the Information Pane. The Node properties window opens.

11 Click Element Layout tab, and select the option Select attributes for layout.

12 Select Specific Attributes in Attributes condition, and from the Available Attributes list
select each CI attribute you want to add to the Specific Attributes list. For example, select
attributes for the OS Vendor, and name attributes.

13 Click OK to save the query node properties.

14 Repeat step 9 to step 13 for each additional node that contains CI attributes that you
want to add to the integration.

15 Click the Save button to save the TQL query .

Add the CI type in Service Manager

Before creating a new Service Manager CI type, you should determine if there are any
existing CI types in your Service Manager system that provide the CI attributes you want. In
most cases, you can reuse the existing CI types for the integration.
134 Chapter 5

The integration does not require any special steps to add a CI type to Service Manager. You
can use the standard CI type creation procedures to add a CI type. For more information on CI
type creation, see the HP Service Manager online help.

To add a new CI type in Service Manager, you need to do the following:

1 Create a table for storing the specific attributes of this new CI type.

2 Create a join definition to join the device table.

3 Create an erddef definition that defines a relationship between the two tables.

4 Create a view form and a bulk update form for the new CI type.

5 Add the CI type.

The following steps illustrate how to create a new CI type called RDBMS.

To create a table in Service Manager

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Database Dictionary.

3 In File Name, type the table name you want to add. For example, rdbms.

4 Click the New button .

5 Click the Fields tab.

6 Click the New Field/Key button. The Add Field window opens.

7 In Name, type a field name you want to add. For example, logical.name, which is
mandatory for joining the device table.

8 In Type, select a type from the list. For example, select character.

9 Click the Add Field button to save the attribute.

10 Repeat step 7 to step 9 for each attribute you wish to add. For example, dbinstance, and
port.

11 Click the Keys tab.

12 Place the cursor on the first line of the structure, and click the New Field/Key button. The
Add Key window opens.

13 In Type, select unique from the list.

14 In Fields list, type the name of a field that you want to use as the unique key. For example,
logical.name.

15 Click Add Key button to save the key.

16 Click the OK button to save attribute changes to the table.

This example is provided only as an illustration of the steps. The best practice is to reuse the
existing Service Manager CI type RunningSoftware to map with UCMDB CI type SM
RDBMS.

The name cannot include any of the following characters: ' / \ [] : | < > + = ; , ? *.
Tailoring the Integration 135

To create a join definition in Service Manager

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Database Manager.

3 In Table, type the table name joindefs.

4 Click the Search button .

5 In Join Table Name, type a name for the join definition. For example, joinRDBMS.

6 In File Names, select the names of the tables to join. For example, device and rdbms.

7 Click Add to save the join definition.

To create an ERD definition in Service Manager

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Database Manager.

3 In Table, type the table name erddef.

4 Click the Search button .

5 In First Filename, type the name of the first table of the join definition. For example,
device.

6 In Second Filename, type the name of the second table of the join definition. For example,
rdbms.

7 In Relationship type, select a value from the list. For example, One to One.

8 In Field Names from First Filename, add the unique field name of first table. For
example, logical.name.

9 In Field Names from Second Filename, add the unique field name of the second table. For
example, logical.name.

10 Click the Add button to save the ERD definition.

To create forms for view and bulk update in Service Manager

Create a view form named configurationItemRDBMS, and a bulk update form named
device.rdbms.bulkupdate.

You can create them in Forms Designer based on existing view forms and bulk update forms.
To view the form names of an existing CI type in Service Manager, click Configuration
Management > Resources > Device Types > Search, and then open the CI type record.

To access Forms Designer in Service Manager, type fd in the command line or go to Tailoring >
Forms Designer.

For more information about creating forms in Service Manager, see the Service Manager 9.31
online help and the Tailoring Best Practices Guide.

To add a CI type to the Service Manager

1 Log in to Service Manager as a system administrator.

2 Navigate to Configuration Management > Administration > Add New Device Type, and click
Next.
136 Chapter 5

3 In Device Type Name, type a descriptive name for the new CI type. For example, RDBMS.

4 In Device Type, type a name for the new CI type. For example, rdbms.

5 Click Next.

6 In View Form, type the name of the view form you created for the new CI type. For
example, configurationItemRDBMS.

7 In Bulk Update Form, type the name of the bulk update form you created for the new CI
type. For example, device.rdbms.bulkupdate.

8 Click Next.

9 In Attribute File, select the table you created for the CI type. For example, rdbms.

10 Click Next.

11 Click Next to keep the default setting for Fields Specific to the Attribute File.

12 In Join Def Record, select the join definition you created for this CI type. For example,
joinRDBMS.

13 Click Next.

14 In Subtypes, add necessary subtypes for the CI type. For example, Oracle, and SQL
Server.

15 Click Next.

16 Check the Activate Device Type check box.

17 Click Next to save the new CI type.

Create web service fields to support the CI type

In order to add a CI type to the integration, you must create a Service Manager web service
object for each CI attribute for which you created an XSL transformation on the UCMDB
system. Service Manager uses the web service object to determine which Service Manager
table and column to store the incoming CI attribute values.

The following steps illustrate how to create a web service object necessary to support the SM
RDBMS CI type described in previous sections.

To create web service fields to support your new CI type

1 Log in to Service Manager with an administrator account.

2 Navigate to Tailoring > Web Services > WSDL Configuration.

3 In Service Name, type ucmdbIntegration.

4 In Name, select the name of the join file you have created for the new CI type. For
example, joinRDBMS.

5 In Object Name, type a name. For example, ucmdbRDBMS.

This example of creating a new web service object (ucmdbRDBMS) is provided only as an
illustration of the steps. The best practice is to reuse the existing Service Manager web
service object ucmdbRunningSoftware to map with Universal CMDB CI type SM RDBMS.
Tailoring the Integration 137

6 Click the Allowed Actions tab, and specify the actions as shown in the following figure.

7 Click Add to create the WSDL configuration.

8 Click the Fields tab, select fields from the list and type a caption for each of them, as
shown in the following figure.

9 Click Save to save WSDL configuration changes.

The new web service fields are now available to the integration.

For UCMDB integration WSDL configurations, be sure to use the “Create only”
action type for the “add” and “save” actions, and “Application Pass Through” for
the “delete” action. For more information about the action types, see the Service
Manager 9.31 Web Services Guide.
138 Chapter 5

Add managed fields to support the CI type

In order for your custom CI type to trigger the automated Change Management validation
and verification processes, you must add a managed field for each CI attribute within your CI
type. Service Manager managed fields are part of the Discovery Event Manager Rules. For a
list of fields that trigger Change Management validation and verification, see Service
Manager Discovery Event Manager rules on page 103.

The following steps illustrate how to add the managed fields for the SM RDBMS CI type
described in the previous sections.

To add managed field to support your CI type

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Web Services > Discovered Event Manager Rules.

3 In ID, type the ID you want to create for the new Discovered Event Manager Rule. For
example, ucmdbRDBMS.

4 In Table Name, select the table or join definition you want to associate to the new
Discovered Event Manager Rule. For example, joinRDBMS.

5 Click New.

6 Click Next.

7 Click the Managed Fields tab.

8 Select an empty row in the Managed Fields list.

9 For Field Name, select the caption names of the Service Manager fields that you
previously selected to store the incoming CI attribute values. See Create web service
fields to support the CI type on page 137.

10 If the field you use to store the incoming CI attribute is an array of structure, use the
Structure field to select the name of the array of structure where the column can be found.
For example, Vendor is a primitive character field and therefore does not need to identify
an array of structure name.

11 If the field you use to store the incoming CI attribute is an array of structure, use the
Index field to select the index number that identifies the column in the array of structure.
For example, Vendor is a primitive character field and therefore does not need to identify
an array of structure index.

The list of fields you will add here will trigger Change Management validation and
verification.

Service Manager displays the fields from all join tables associated with the table
specified in the Table Name field. For example, for the joinRDBMS table, the fields
from the device and rdbms tables are available from the Field Name list.

If you want to add all fields that are exposed in the WSDL definition, you can click
the Load Fields button. For more information, see How do I use the Load Fields
button to add multiple managed fields? on page 88.
Tailoring the Integration 139

12 Click Save.

Map the CI type’s TQL query to an XSL transformation file

The integration uses a configuration file called smSyncConfFile.xml to map each
Universal CMDB TQL query to an XSL transformation file. In order for custom TQL queries
to be part of the integration, you must add a mapping entry for each TQL query in the
configuration file.

The following steps illustrate mapping the TQL query rdbmsData described in previous
sections to the Service Manager ucmdbRDBMS web service.

To map a TQL query to an XSL transformation file

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.

3 Click the smSyncConfFile.xml file.

4 Add a TQL mapping element to the file by copying an existing one. A TQL mapping
element uses the following format:

<tql name="TQL_query" xslFile="XSL_File">
<!-- Description of mapping -->
<request type="Create" name="Create_web_service"/>
<request type="Update" name="Update_web_service"/>

Wildcard support for TQL names in smSyncConfFile.xml

When adding a TQL name in the smSyncConfFile.xml file, you can use a wildcard (an
asterisk) in the TQL name. This is helpful in the debugging phase when you may have
updated an out-of-the-box TQL query and saved it as several TQL names. For example, if you
have saved the <TQL_name> query to <TQL_name>_1, and <TQL_name>_2, you can specify
the TQL name as <TQL_name>* in the configuration file, and the integration will
automatically use this mapping entry on all of the three TQLs.

Out-of-the-box, all TQL names in the smSyncConfFile.xml file are suffixed with a
wildcard (an asterisk) .
140 Chapter 5

<request type="Delete" name="Delete_web_service"/>
</tql>

TQL_query is the name of the UCMDB TQL query you created.

XSL_File is the name of the XSL transformation file the integration will use to map
Universal CMDB attributes to Service Manager web service fields.

Create_web_service is the name of the Service Manager web service you want to the
integration to use to create CIs from this TQL query.

Update_web_service is the name of the Service Manager web service you want to the
integration to use to update CIs in this TQL query.

Delete_web_service is the name of the Service Manager web service you want to the
integration to use to delete CIs from this TQL query.

Figure 11 Excerpt of smSynchConfFile.xml

5 Add or update TQL mapping elements for each TQL query you want to add to the
integration. For example, the following TQL creates a mapping between the rdbmsData
TQL query and the rdbms_push.xslt file.

<tql name="rdbmsData" xslFile="rdbms_push.xslt">
<!-- this is database tql -->
<request type="Create" name="CreateucmdbRDBMSRequest"/>
<request type="Update" name="UpdateucmdbRDBMSRequest"/>
<request type="Delete" name="DeleteucmdbRDBMSRequest"/>
</tql>

6 Save the configuration file.

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
Tailoring the Integration 141

Map the CI type’s attributes to web service fields

The integration uses the Service Manager Adapter to transform UCMDB CI attributes to web
services objects recognized by Service Manager. The Service Manager Adapter Service
Manager Adapter uses XSL transformation files to convert UCMDB TQL queries into a
properly formatted Service Manager web services messages. Out-of-the-box, each integration
query has a corresponding XSL transformation file. In addition, each attribute you enable for
synchronization from Advanced layout settings requires its own entry in the XSL
transformation file.

If you want to add a CI type to the integration, you must create a matching XSL
transformation file that defines how the Service Manager Adapter transforms each CI type
into a Service Manager web service object. See Integration TQL queries on page 93 for
information about which CI types each query manages. In order to create a proper XSL
mapping, you must be familiar with the service and object names Service Manager publishes
as Web services. See the Service Manager help for information on publishing tables and
columns as Web service objects.

The following steps illustrate creating an XSL transformation file for the rdbmsData TQL
query described in previous sections.

To map a CI type’s attributes to web service fields

1 Log in to UCMDB with an administrator account.

2 Navigate to Data Flow Management > Adapter Management.

3 Click the Create New Resource button .

4 Select New Configuration File.

5 Select the ServiceManagerAdapter9-x package.

6 Enter the full file name: <AdapterID>/<filename>. For example,
ServiceManagerAdapter9-x/rdbms_push.xslt.

7 Copy the content of an existing XSL transformation file (for example,
runningsoftware_push.xslt) to the new XSL transformation file.

8 Find the CI type definition element in the new file. The CI type definition element uses
the following format:

<xsl:template match="/CI_type_name">

CI_type_name is the name of CI type in the UCMDB system.

The following is an example from the runningsoftware_push.xslt file:

<xsl:template match="/running_software">

9 Update the CI type name to match the CI type you want to add to the integration. For
example, create the following CI type definition element to add the database CI type to
the integration.

<xsl:template match="/sm_rdbms">

10 Add or update table naming elements as needed. By default, UCMDB sends CI attribute
data to the Service Manager device table. If you want to send CI attributes to one of the
join tables of device, you must add an element to specify the table name using the format
<file.table_name>. For example, you do not need to specify an additional jointable to
define a database CI type since Service Manager does not use a separate jointable to
manage database CI types.
142 Chapter 5

11 Find the elements that transform UCMDB CI attributes into Service Manager web
service fields. The CI attribute transformation elements use the following format:

<xsl:for-each select="@CI_attribute_name">
<WSFieldName><xsl:value-of select="."/></WSFieldName>
</xsl:for-each>

@CI_attribute_name is the name of attribute in the UCMDB system.

WSFieldName is the name of a web service field published by the Service Manager
system.

The following figures show an example. Figure 12 shows one CI attribute named
product_name is mapped to a web service field with a caption of ApplicationName;
Figure 13 shows the web service field name and caption defined in the
ucmdbRunningSoftware web service object; Figure 14 shows how the product_name
attribute is mapped in the RunningSoftware CI type in UCMDB.

Figure 12 CI attributes in runningsoftware_push.xslt
Tailoring the Integration 143

Figure 13 Mapping CI attributes in the ucmdbRunningSoftware web service object

Figure 14 Mapping CI attributes in the UCMDB RunningSoftware CI type

12 Add or update CI attribute transformation elements for each CI attribute you want to add
to the integration. For example, create the following XSL transformation elements for the
database CI type.
144 Chapter 5

Table 34 Sample XSL transformation elements for database CIs

UCMDB attribute Sample transformation elements

port <xsl:for-each select="@port">

 <Port><xsl:value-of select="."/></Port>

</xsl:for-each>

database_dbsid <xsl:for-each select="@database_dbsid">

 <DBInstance><xsl:value-of select="."/></DBInstance>

</xsl:for-each>

description <xsl:for-each select="@description">

 <Description><xsl:value-of select="."/>

 </Description>

</xsl:for-each>
Tailoring the Integration 145

Figure 15 New attribute mappings in rdbms_push.xslt

13 Save the new XSL transformation file.

Add a CI type’s relationship types to the integration for data push

Once you have added a new CI type to the integration and have created relationships between
it and other CI types in UCMDB, for each of these relationship types you need to perform the
following tasks so that UCMDB can push the relationships to Service Manager.

As an example, the following steps illustrate how you add a relationship type named
Ownership (between the Cost and CostCategory CI types) to the integration for data push.
These steps assume that you have already added the Cost and CostCategory CI types to the
integration and have created an Ownership relationship between them in UCMDB.

Task 1: Add a mapping entry for each relationship type in the push relationship mapping definition file.

See Add a push mapping entry for each relationship type of the CI type on page 147.

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
146 Chapter 5

Task 2: Create a TQL query to push relationships of the CI type.

See Create a TQL query to push each relationship type of the CI type on page 148.

Task 3: Map the relationship TQL to an XSL transformation file in the push configuration file.

See Map each relationship type TQL to an XSL transformation file on page 150.

Add a push mapping entry for each relationship type of the CI type

For data push, the SM_CIT_Subtype_list.xml file defines how UCMDB relationship types are
mapped to SM ones.

If this file does not contain a mapping entry for a new relationship type, you need to add an
entry for it.

The following example illustrates how you add a push mapping entry for the Ownership
relationship type.

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.

3 Double-click the SM_CIT_Subtype_list.xml file.

4 Go to the RelationshipType list section, and add a mapping entry for Ownership.

<list name="RelationshipType">

<!--ucmdb is link display lable, ucmdbType is link type, sm is the relationship
type. compound link will use root_* as the lable -->

 <entry ucmdb="Aggregation" ucmdbType="aggregation" sm="Aggregation" />

 ...

 <entry ucmdb="Ownership" ucmdbType="ownership" sm="Ownership" />

 ...

</list>

Where:

ucmdb: the display name of the UCMDB relationship type (see Figure 16).

ucmdbType: the name of the UCMDB relationship type (see Figure 16).

sm: the name of the relationship type in Service Manager.

This XML file can be found from Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.
Tailoring the Integration 147

Figure 16 Name and Display Name of Ownership

5 Click OK to save the file.

Create a TQL query to push each relationship type of the CI type

Once you have created CI Relationship types for the new CI type, you must create a TQL
query for each relationship type to push it to Service Manager.

The following steps illustrate how to create a new TQL query called
cost_costcategory_ownership_relation_push for Ownership relationships between the Cost
and CostCategory CI types.

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > Modeling Studio.

3 Click New > Query. The Query Definition pane displays.

4 From the CI Type Selector, drag the Cost and CostCategory CI types to the query pane.

5 Create an Ownership relationship from Cost to CostCategory.

a Click the Create Relationship button.

b Click the Cost node, and drag the arrow from it to the CostCategory node.

c Select Regular Relationship, and click OK.

Any TQL query you create must conform to the TQL query requirements on page 98.
148 Chapter 5

d Select Connection > Ownership, and click OK. An Ownership relationship is created
between the CI types.

6 Right-click the relationship arrow, and select Relationship Properties.

7 Change the element name from Ownership to Root (or a name starting with “Root_”), and
then click OK.

8 Click the Save button, and save the query as described in the following.

a Enter a query name. For example, cost_costcategory_ownership_relation_push.

b Select the Integration > SM Sync > 9.xx folder.
Tailoring the Integration 149

c Click OK.

The TQL query is now created. You are ready to map this TQL to an XSL transformation file.

Map each relationship type TQL to an XSL transformation file

Once you have created a TQL query for a relationship type, you need to map the TQL to an
XSL transformation file as described in the following steps.

1 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.

2 Click the smSyncConfFile.xml file.

3 Add an TQL mapping entry by copying an existing one for relationship push. For example,
copy the following TQL mapping entry.

 <tql name="SM Layer2 Topology Relations Push*" xslFile="common_relations.xslt">

 <request type="Create" name="CreateRelationship"/>

 <request type="Update" name="UpdateRelationship"/>

 <request type="Delete" name="DeleteRelationship"/>

</tql>

4 Change the TQL name to the name of the query you created for the relationship type. For
example, cost_costcategory_ownership_relation_push.

<tql name="cost_costcategory_ownership_relation_push"
xslFile="common_relations.xslt">

 <request type="Create" name="CreateRelationship"/>

 <request type="Update" name="UpdateRelationship"/>

Out-of-the-box, there is a common XSL transformation file (common_relations.xslt), which is
used for pushing all types of CI relationships. For this reason, you do not need to create a new
XSL transformation file; instead, you only need to map the new relationship TQL query to
this existing XSLT file.
150 Chapter 5

 <request type="Delete" name="DeleteRelationship"/>

 </tql>

5 Click OK to save the configuration file.

Now, you have added the new relationship type to the integration. Next, you need to add the
new relationship TQL query to a data push job (see Figure 17 and Add custom TQL queries to
data push jobs on page 151).

Figure 17 Add a new relationship TQL query to a data push job

Add custom TQL queries to data push jobs

In order for the integration to send your custom CI types and attributes to your Service
Manager system, you must add your custom TQL queries to the data push job between your
Changes data store and your Service Manager data store. The following steps illustrate how
to add an custom TQL query named rdbmsData, which is described in the previous sections.

To add custom TQL queries to a data push job

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio.

3 Click the name of your Service Manager integration point. For example, SM Integration.

4 Click the Data Push tab.

5 Click the name of your data push job. For example, SM Configuration Item Push job.

6 Click the Edit button .

7 Click the Add button.

8 Click Integration > SM Sync > rdbmsData.

9 Click OK to add the custom query.

10 Enable the Allow Integration Job to delete removed data option for the query.

11 Click OK to close the Update Job Definition window.
Tailoring the Integration 151

Add a CI attribute to the integration for population

To add a CI attribute to the integration for population, perform the following tasks:

Task 1: Create a web service field to support the CI attribute.

See Create a web service field to support the CI attribute on page 152.

Task 2: Map the CI attribute to the web service field.

See Map the CI attribute to the web service field on page 152.

Create a web service field to support the CI attribute

UCMDB uses the Service Manager ucmdbIntegration web service to retrieve CI data from
Service Manager. This web service publishes the objects that match the out-of-the-box CI
types and CI attributes provided by the UCMDB integration.

If you want to populate an additional CI attribute from Service Manager to your Universal
CMDB system, you must create a corresponding web service field on your Service Manager
system to provide the CI data from Service Manager. Each web service field must map to a
valid Service Manager table and column.

For the steps of creating a web service field, see Create a web service field to support the CI
attribute on page 121.

Map the CI attribute to the web service field

The integration uses an adapter to transform Service Manager web service fields to Universal
CMDB CI attributes. The adapter in turn specifies what XSL transformation files the
integration should use to convert Service Manager web services messages into a properly
formatted Universal CMDB CI and/or relationship.

Out-of-the-box, each integration query has a corresponding XSL transformation file that
maps to a particular CI type in Universal CMDB. Without an XSL transformation entry,
Universal CMDB cannot receive any CI attribute updates from your Service Manager system.

Unlike for the Push feature, you do not need to create real Topology Query Language (TQL)
queries for Population on the UCMDB server.

If you want to add a new attribute to the integration, you must edit the XSL transformation
file for the parent CI type and add an entry for the CI attribute. For information about which
CI types each population query manages, see Integration TQL queries on page 93. In order to
create a proper XSL mapping, you must be familiar with the service and object names that
Service Manager publishes as Web services. For information on publishing tables and
columns as Web service fields, see the Service Manager help.

The following steps illustrate how to map a UCMDB CI attribute called host_vendor to a
Service Manager web service field called OSVendor.

To map a CI attribute to a web service field

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management.

3 Navigate to the Service Manager Adapter configuration files path:
ServiceManagerAdapter9-x > Configuration Files.
152 Chapter 5

4 Click the XSL transformation file that manages the parent CI type of your CI attribute.
For example, open computer_population.xslt to add an attribute to the SM Computer
Population TQL query.

5 Find the element that defines the name of the Universal CMDB CI Type where the
integration will store CI attribute values. For example, the element <ci class="node"> will
store CI attributes in the Universal CMDB Node CI Type.

6 Within the ci naming element (<ci class="node">), you will see an element of the following
format that defines how to transform each web service field into an Universal CMDB CI
attribute:

<attribute name="UCMDB_CI_attribute_name" type="UCMDB_CI_attribute_type"
ignoreCIIfEmpty="true"><xsl:value-of select="SMAttributeName "/></attribute>

UCMDB_CI_attribute_name is the name of attribute in the Universal CMDB system.

UCMDB_CI_attribute_type is the type of attribute of the Universal CMDB system which
this integration supports. Currently the following types are supported: String, StringList,
Integer, Long, Double, Boolean, IPAddress, Date, Float, and IntList.

ignoreCIIfEmpty is a parameter that specifies whether or not to ignore the CI during
population if this attribute has an empty value (true: ignore; false: not ignore).

SMAttributeName is the name of a web service attribute published by the Service
Manager system.

Figure 18 CI attributes in the computer_population.xslt file

A StringList is a list of strings separated by a semicolon (;). For example,
str1;str2;str3.

An IntList is a list of integers separated by a semicolon (;). For example, 1;2;3.

For information about time zone and date format configuration of the Date type,
see Update the time zone and date format for the integration adapter on page 30.
Tailoring the Integration 153

Figure 19 Matching CI attributes in the ucmdbNode web service object

7 Copy an existing XSL transformation element to use it as a template to create a new
transformation entry.

8 Paste the new XSL transformation element within the proper table naming element. For
example, <ci class="node">.

9 Update the CI attribute name and web service field name within the new element to
match the attribute you want to add to the integration. For example, create the following
XSL transformation element to add the os_vendor attribute to the integration.

<attribute name="os_vendor" type="String"><xsl:value-of select="file.node/
OSVendor"/></attribute>
154 Chapter 5

Figure 20 New attribute in the computer_population.xslt file

10 Save the XSL transformation file.

Add a CI type to the integration for population

You can use the following steps to add a CI type to the integration for population.

Task 1: Create a TQL query to populate the CI type.

See Create a TQL query to populate the CI type on page 155.

Task 2: Map the CI type's TQL query to an XSL transformation file.

See Map the CI type's TQL query to an XSL transformation file on page 156.

Task 3: Map the CI type's attributes to web service fields.

See Map the CI type's attributes to web service fields on page 159.

Create a TQL query to populate the CI type

Unlike for push, for population the integration does not require you to create custom Topology
Query Language (TQL) queries in Universal CMDB to save CI attribute values.

The population feature only needs the smPopConfFile.xml file and population XSL
transformation files to synchronize CI/CI Relationship types and attributes; however for each
CI/CI Relationship type you still need to define a TQL mapping in the smPopConfFile.xml file,
and the TQL query does not necessarily have to exist in UCMDB. It is simply a query name,
which will appear in the query list when you add queries to a population job.

HP still recommends you to create TQL queries to help you better understand what CI types
or attributes are part of population. For information on how to create a TQL query in
UCMDB, see Create a TQL query to synchronize the CI type on page 130.

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
Tailoring the Integration 155

Map the CI type's TQL query to an XSL transformation file

The integration uses a configuration file called smPopConfFile.xml to map each Universal
CMDB TQL query to an XSL transformation file. In order for custom TQL queries to be part
of the integration, you must add a mapping entry for each TQL query in the configuration file.

The following steps illustrate mapping the TQL query rdbmsData described in previous
sections to the Service Manager ucmdbRDBMS web service.

To map a TQL query to an XSL transformation file

1 Log in to UCMDB with an administrator account.

2 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files > smPopConfFile.xml.

3 Add a TQL mapping element by copying an existing one. A TQL mapping element uses
the following format:

<tql name="TQL_query" xslFile="XSL_File">

 <request type="Retrieve"

 dataType="Data_Type"

 retrieveFileList="Retrieve_SM_Tables"

 retrieveKeysQueryName="Retrieve_keys_web_service"

 retrieveListQueryName="Retrieve_Objects_web_service"

 ballQueryCondition="Full_Query_Condition"

 changedUpdateQueryCondition="Changed_Update_Condition"

 changedDeletionQueryCondition="Changed_Deletion_Condition"/>

</tql>

TQL_query is a TQL query name. The TQL query does not have to exist in UCMDB.

XSL_File is the name of the XSL transformation file that the integration will use to map
Service Manager web service fields to Universal CMDB attributes.

Data_Type is the type of the object retrieved from Service Manager. The possible values
are “ci” and “relationship”.

Retrieve_SM_Tables is the table name list in the Service Manager web service
configuration; if you define the WSDL on a join definition, you need to list all the table
names of the join definition to which the fields of XSLT mapping belongs; if you define the
WSDL on a simple table, simply leave Retrieve_SM_Tables empty. You can also check this
by opening the WSDL URL: http://<SM server>:<port>/SM/7/<object name>.wsdl. For
example, out-of-the-box, the instance type of ucmdbNode is as shown in Figure 21, so the
Retrieve_SM_Tables value is "file.device, file.node".
156 Chapter 5

Figure 21 SM tables of the ucmdbNode instance type in the ucmdbNode WSDL

Retrieve_keys_web_service is the name of the Service Manager web service that you want
the integration to use to retrieve a CI Key list from Service Manager.

Retrieve_Objects_web_service is the name of the Service Manager web service that you
want the integration to use to retrieve a CI Object list from Service Manager.

Basic_Query_Condition is an internal Query Condition of Service Manager that you want
the integration to use to retrieve a CI list from Service Manager for a CI type; it is used as
the basic condition for a full or changes population.

Full_Query_Condition is an additional internal Query Condition of Service Manager.
Along with the Basic_Query_Condition, it is used to retrieve a list of all CIs from Service
Manager for a full population.

Changed_Update_Condition is an additional internal Query Condition of Service
Manager; along with the Basic_Query_Condition, it is used to retrieve a list of updated
CIs from Service Manager since the last job execution; it includes both updated CIs and
newly created CIs. It is used for a changes population.

Changed_Deletion_Condition is an additional internal Query Condition of Service
Manager; along with the Basic_Query_Condition, it is used to retrieve a list of deleted CIs
from Service Manager since the last job execution. It is used for a changes population.

Figure 11 shows an excerpt of the smPopConfFile.xml.
Tailoring the Integration 157

Figure 22 Excerpt of smPopConfFile.xml

4 Add or update TQL mapping elements for each TQL query you want to add to the
integration.

For example, the following TQL creates a mapping between the rdbmsData TQL query
and the rdbms_population.xslt file.

<tql name="rdbmsData" xslFile="rdbms_population.xslt">

 <request type="Retrieve" dataType="ci"

 retrieveFileList="file.device,file.rdbms"

 retrieveKeysQueryName="RetrieveucmdbRDBMSKeysListRequest"

 retrieveListQueryName="RetrieveucmdbRDBMSListRequest"

 basicQueryCondition="type#"rdbms""

 fullQueryCondition="istatus~="Disposed/Retired""

 changedUpdateQueryCondition="(devicemodtime>'{fromDate}' or
(devicemodtime=NULL and created.by.date>'{fromDate}')) and
istatus~="Disposed/Retired""

 changedDeletionQueryCondition="devicemodtime>'{fromDate}' and
istatus="Disposed/Retired""/>

</tql>

Figure 23 shows the above-mentioned TQL mapping elements in the
smPopConfFile.xml file.

Figure 23 TQL mapping elements in smPopConfFile.xml

Figure 24 shows an excerpt of the ucmdbRDBMS WSDL for your reference.
158 Chapter 5

Figure 24 An excerpt of the ucmdbRDBMS WSDL

5 Save the configuration file.

Map the CI type's attributes to web service fields

The integration uses the Service Manager Adapter to transform Service Manager web
services objects to Universal CMDB CI attributes. The Service Manager Adapter uses XSL
transformation files to convert a properly formatted Service Manager web services messages
into Universal CMDB CI. Out-of-the-box, each integration query has a corresponding XSL
transformation file. In addition, each attribute you want to populate to Universal CMDB
requires its own entry in the XSL transformation file.

If you want to add a CI type to the integration, you must create a matching XSL
transformation file that defines how the Service Manager Adapter transforms each Service
Manager web service field into a CI type. In order to create a proper XSL mapping, you must
be familiar with the service and object names that Service Manager publishes as Web
services. For information on publishing tables and columns as Web service fields, see the
Service Manager 9.31 Web Services Guide.

The following steps illustrate creating an XSL transformation file for the SM RDBMS CI type,
which is described in previous sections.

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
Tailoring the Integration 159

To map web service fields to a CI type's attributes

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management.

3 Click the Create new resource button .

4 Select New Configuration File.

5 Select the ServiceManagerAdapter9-x package.

6 Enter the full file name using this format: <AdapterID>/<filename>. For example,
ServiceManagerAdapter9-x/rdbms_population.xslt.

7 Copy the content of an existing XSL transformation file to use it as a template to create
the new transformation file. For example, copy the content of
business_service_population.xslt to the new file.

8 Find the web service response name definition element, which uses the following format:

<xsl:template match="/SM_WEBSERVICE_RESPONSE_NAME">

SM_WEBSERVICE_RESPONSE_NAME is the name of web service response in the
Service Manager system.

Figure 25 shows an example.

Figure 25 Web Service response definition in business_service_population.xslt

9 Update the web service response name to match the response name that you want to add
to the integration. For example, you can create the following CI type definition element to
add the database response of retrieve object list to the integration.

<xsl:template match="/RetrieveucmdbRDBMSListResponse">

10 Find the Universal CMDB CI type definition element, which uses the following format:

<ci class="UCMDB_CI_TYPE_NAME">

UCMDB_CI_TYPE_NAME is the CI type name in the Universal CMDB System.

Figure 26 shows an example CI type definition.
160 Chapter 5

Figure 26 CI type definition in business_service_population.xslt

11 Update the Universal CMDB CI type definition name to match the name you want to add
to the integration. For example, create the following CI type definition element to add the
database response of retrieve object list to the integration.

<ci class="sm_rdbms">

12 Find the elements that transform Service Manager web service fields into Universal
CMDB CI attributes. The CI attribute transformation elements use the following format:

<attribute name="UCMDB_CI_attribute_name" type="UCMDB_CI_attribute_type"
ignoreCIIfEmpty="true"><xsl:value-of select="SMAttributeName "/></attribute>

UCMDB_CI_attribute_name is the name of the CI attribute in the Universal CMDB
system.

UCMDB_CI_attribute_type is the type of the CI attribute in the Universal CMDB system
that this integration supports. Currently the following types are supported: String,
StringList, Integer, Long, Double, Boolean, IPAddress, Date, Float, and IntList.

ignoreCIIfEmpty is a parameter that specifies whether or not to ignore the CI during
population if this attribute has an empty value (true: ignore; false: not ignore).

SMAttributeName is the name of a web service attribute published by the Service
Manager system.

See Figure 27, Figure 28, and Figure 29 for an example.

A StringList is a list of strings separated by a semicolon (;). For example,
str1;str2;str3.

An IntList is a list of integers separated by a semicolon (;). For example, 1;2;3.

For information about setting a time zone and date format for the Date type, see
Update the time zone and date format for the integration adapter on page 30.
Tailoring the Integration 161

Figure 27 CI attributes in business_service_population.xslt

Figure 28 Matching CI attributes in the Universal CMDB BusinessService CI type
162 Chapter 5

Figure 29 Matching CI attributes in the Service Manager ucmdbBusinessService
web service

13 In the SM RDBMS population example, there are no sub items of a CI. If you want to
populate the sub items of a CI, for example, to populate the IP addresses of a computer
together with the computer CI, you need to add a “link” element under the “ci” element. A
link transformation element uses the following format:

<link direction="Link_Direction" linkType="UCMDB_Link_Type">
 <ci class="UCMDB_SUB_CI_TYPE_NAME">
 <attribute name="UCMDB_CI_attribute_name"
type="UCMDB_CI_attribute_type"><xsl:value-of select="SMAttributeName "/></
attribute>
 <attribute name="UCMDB_CI_attribute_name2"
type="UCMDB_CI_attribute_type2"><xsl:value-of select="SMAttributeName 2"/></
attribute>
 </ci>
 </xsl:for-each>
</link>

Link_Direction is the direction between a parent CI and sub CI. The supported directions
are:

— outgoing: The link direction is from an upstream CI to the current downstream CI (for
example, from node to ip_address).

— incoming: The link direction is from a downstream CI to the current upstream CI.

UCMDB_Link_type is the relationship type in the Universal CMDB system.

Figure 30 through Figure 34 show the out-of-the-box configurations for populating the
Computer CI together with its IP addresses.
Tailoring the Integration 163

Figure 30 CI attributes and links in computer_population.xslt

Figure 31 Link definition in the import xslt file (ips_mapping_population.xslt)
164 Chapter 5

Figure 32 Matching CI attributes and links in the Service Manager WSDL(http://
<SM server>:<port>/SM/7/ucmdbNode.wsdl)

Figure 33 Matching CI links in UCMDB at the TQL level

Figure 33 is provided here only to give you a graphic view of how relevant CIs are
stored in UCMDB. You do not need to create the TQL query, since the population
feature does not require it.
Tailoring the Integration 165

Figure 34 Matching CI type and attributes in the UCMDB CI Type (IpAddress)

14 Add or update the CI attribute transformation elements for each CI attribute you want to
add to the integration. For example, you can use the following XSL transformation
elements for the database CI type.

Table 35 Sample XSL transformation elements for database CIs

UCMDB attribute Sample transformation elements

discovered_product_name <attribute name="discovered_product_name"
type="String"><xsl:value-of select="file.device/
CIIdentifier"/></attribute>

product_name <attribute name="product_name"
type="String"><xsl:value-of select="file.device/
ApplicationName"/></attribute>

application_version <attribute name="application_version"
type="String"><xsl:value-of select="file.device/
ProductVersion"/></attribute>

vendor <attribute name="vendor" type="String"><xsl:value-of
select="file.device/Vendor"/></attribute>

version <attribute name="version" type="String"><xsl:value-of
select="file.device/Version"/></attribute>
166 Chapter 5

Figure 35 Attribute mappings in rdbms_population.xslt

15 Save the XSL transformation file.

Add a CI type’s relationship types to the integration for population

Once you have added a new CI type to the integration for population, you need to add the new
CI type’s relationship types to the integration. For each relationship type, perform the
following tasks.

As an example, the following steps describe how to add the Ownership relationship type to the
integration; these steps assume that you have already added the Cost and CostCategory CI
types to the integration for population.

dbinstance <attribute name="dbinstance"
type="String"><xsl:value-of select="file.rdbms/
DBInstance"/></attribute>

port <attribute name="port" type="String"><xsl:value-of
select="file.rdbms/Port"/></attribute>

description <attribute name="description"
type="String"><xsl:value-of select="file.rdbms/
Description"/></attribute>

Table 35 Sample XSL transformation elements for database CIs (cont’d)

UCMDB attribute Sample transformation elements

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
Tailoring the Integration 167

Task 1: Create an XSL transformation file to map each relationship type’s attributes to web service objects.

See Map each relationship type's attributes to web service objects on page 168.

Task 2: Add a TQL mapping for each relationship type to the population configuration file.

See Define a TQL mapping for each relationship type on page 169.

Map each relationship type's attributes to web service objects

This example illustrates how to create an XSL transformation file to map the attributes of the
Ownership relationship type to web service objects.

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management.

3 Click the Create new resource button .

4 Select New Configuration File.

5 Select the ServiceManagerAdapter9-x package.

6 Enter the full file name using this format: <AdapterID>/<filename>. For example,
ServiceManagerAdapter9-x/cost_to_costcategory_population.xslt.

7 Click Yes to ignore the file extension warning. The file is added to the Configuration Files
folder.

8 Copy the content of an existing relationship population XSLT file (for example,
computer_to_computer_connects_population.xslt) to the new XSLT file.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/Retrievecirelationship1to1ListResponse">

 <topology>

 <xsl:for-each select="instance">

 <ci class="node">

 <attribute name="name" type="String"><xsl:value-of
select="upstreamci.logical.name"/></attribute>

 <attribute name="sm_id" type="String"><xsl:value-of
select="upstreamci.id"/></attribute>

 <link direction="outgoing" linkType="tcp">

 <ci class="node">

 <attribute name="name" type="String"><xsl:value-of
select="downstreamci.logical.name"/></attribute>

 <attribute name="sm_id" type="String"><xsl:value-of
select="downstreamci.id"/></attribute>

 </ci>

 </link>

 </ci>

 </xsl:for-each>

 </topology>

In the next step, you will update the <ci class> names and linkType value.
168 Chapter 5

 </xsl:template>

</xsl:stylesheet>

9 Change the <ci class> names to cost and cost_category, and linkType to ownership.

 ...

<ci class="cost">

 <attribute name="name" type="String"><xsl:value-of
select="upstreamci.logical.name"/></attribute>

 <attribute name="sm_id" type="String"><xsl:value-of
select="upstreamci.id"/></attribute>

 <link direction="outgoing" linkType="ownership">

 <ci class="cost_category">

...

ci class: the name (not display name) of the each CI type involved in the relationship. It
should be the Name field value on the General Details tab of the CI type definition.

linkType: the name of the relationship type. It should be the Name field value on the
General Details tab of the relationship type definition.

10 Save the XSL transformation file.

Define a TQL mapping for each relationship type

For each relationship type of the new CI type, you need to define a TQL mapping in the
smPopConfFile.xml file.

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files > smPopConfFile.xml.

3 In the smPopConfFile.xml file, add a TQL mapping for the relationship type, by copying
an existing TQL mapping element.

<tql name="SM Biz To Biz With Usage"
xslFile="businessservice_to_businessservice_usage_population.xslt">

 <request type="Retrieve" dataType="relationship"

 retrieveKeysQueryName="Retrievecirelationship1to1KeysListRequest"

 retrieveListQueryName="Retrievecirelationship1to1ListRequest"

 basicQueryCondition="upstreamci.type="bizservice" and
downstreamci.type="bizservice" and
relationship.subtype="Usage""

 fullQueryCondition="status~="Removed""

 changedCreationQueryCondition="create.datetime>'{fromDate}' and
status~="Removed""

In this example, you do not need to change the link direction (outgoing). This is
because the relationship (Ownership) direction is from cost to cost_category, that
is, from a <ci class> outside of the <link> element to a <ci class> inside it).

In the next step, you will update the highlighted values with values of the new
relationship type.
Tailoring the Integration 169

 changedUpdateQueryCondition="created.datetime<='{fromDate}' and
update.datetime>'{fromDate}' and status~="Removed""

 changedDeletionQueryCondition="update.datetime>'{fromDate}' and
status="Removed""/>

</tql>

4 Update the TQP mapping element with the values of the new relationship type.

<tql name="SM Cost to CostCategory with Ownership"
xslFile="cost_to_costcategory_population.xslt">

 <request type="Retrieve" dataType="relationship"

 retrieveKeysQueryName="Retrievecirelationship1to1KeysListRequest"

 retrieveListQueryName="Retrievecirelationship1to1ListRequest"

 basicQueryCondition="upstreamci.type="cost" and
downstreamci.type="costcategory" and
relationship.subtype="Ownership""

 fullQueryCondition="status~="Removed""

 changedCreationQueryCondition="create.datetime>'{fromDate}' and
status~="Removed""

 changedUpdateQueryCondition="created.datetime<='{fromDate}' and
update.datetime>'{fromDate}' and status~="Removed""

 changedDeletionQueryCondition="update.datetime>'{fromDate}' and
status="Removed""/>

</tql>

5 Save the population configuration file.

Now the relationship type is added to the integration for population. Next, you need to add
the relationship TQL name you specified in the population configuration file (in this example,
SM Cost to CostCategory with Ownership) to a relationship population job, so that the
integration can populate this type of relationships to UCMDB. See Figure 36 and also Add
custom TQL queries to integration population jobs on page 173.

For the TQL name, you can enter any descriptive name as you like (for example,
SM Cost to CostCategory with Ownership). This TQL query does not really
exist, since population does not require it.

The upstreamci.type, downstreamci.type, and relationship.subtype values are
defined in the cirelationship1to1 table in Service Manager.

When you create/edit and then save a configuration file in Adapter Management,
UCMDB automatically restarts the adapter with the new configuration file.
170 Chapter 5

Figure 36 Add a new relationship TQL name to a relationship population job

Customize ucmdb id pushback for a CI type

Out-of-the-box, UCMDB pushes the ucmdb id of each CI type back to Service Manager during
population, by calling a Service Manager web service (ucmdbIDPushBack) based on the
ucmdbid.pushback.request and ucmdbid.pushback.xslt settings in the sm.properties
file in UCMDB (see Table 30 on page 108).

To better suit your business needs, you can make the following tailorings to the ucmdb id
pushback feature, using the <idPushbackConfigurations> element in the
ServiceDeskConfiguration.xml file:

• Disable the ucmdb id pushback feature for a specific CI type on page 172

• Define a custom pushback web service and xslt file for a specific CI type on page 172

For a specific UCMDB class (CI type), its definitions in the ServiceDeskConfiguration.xml file
supercede the following global settings in the sm.properties file:

• idPushbackEnable: In the sm.properties file, this setting is not present; however,
out-of-the-box, it is set to true for all CI types.

• idPushbackRequest: In the sm.properties file, its out-of-the-box value is
UpdateucmdbIDPushBackRequest.

• idPushbackXSLT: In the sm.properties file, the out-of-the-box value is
ucmdbid_pushback.xslt.
Tailoring the Integration 171

Disable the ucmdb id pushback feature for a specific CI type

You may want to disable the pushback feature for certain UCMDB CI types, for example,
UCMDB classes that are mapped to a sub-item type (IP Address, CPU, etc.) in Service
Manager. Doing so can aviod unnecessary system overload.

To disable the pushback feature for a UCMDB CI type (class), use this format:

<idPushbackConfiguration ucmdbClassName="<ucmdbClassName>"
idPushbackEnable="false"/>

Where, <ucmdbClassName> is the name of the UCMDB CI type.

Here are the out-of-the-box settings in the ServiceDeskConfiguration.xml file:

<idPushbackConfigurations>

<idPushbackConfiguration ucmdbClassName="interface"
idPushbackEnable="false"/>

<idPushbackConfiguration ucmdbClassName="cpu" idPushbackEnable="false"/>

<idPushbackConfiguration ucmdbClassName="disk_device"
idPushbackEnable="false"/>

<idPushbackConfiguration ucmdbClassName="file_system"
idPushbackEnable="false"/>

<idPushbackConfiguration ucmdbClassName="ip_address"
idPushbackEnable="false"/>

 </idPushbackConfigurations>

Define a custom pushback web service and xslt file for a specific CI type

There are occasions when you need to define a custom pushback web service and XSLT for a
specific CI type (class), for example, when a CI type you want to populate is not stored in the
device table in Service Manager. This is because the out-of-the-box ucmdbIDPushBack web
service is based on the device table.

For example, you have tailored the integration in order to populate the Functional Group from
Service Manager to UCMDB. If the Functional Group in Service Manager is not stored in the
device table, you can define a custom web service and XSLT like the following:

<idPushbackConfigurations>

<idPushbackConfiguration ucmdbClassName="functional_group"
idPushbackEnable="true"
idPushbackRequest="UpdateucmdbIDPushBackForFunctionalGroupRequest"
idPushbackXSLT="ucmdbid_pushback_functionalgroup.xslt"/>

......

</idPushbackConfigurations>

To enable the pushback feature for a CI type, set idPushbackEnable="true" for it.

To support your pushback customizations, you need to create the specified custom web service
record in Service Manager and XSLT file in UCMDB.
172 Chapter 5

Add custom TQL queries to integration population jobs

In order for the integration to send your custom Service Manager web service object and fields
to your UCMDB system, you must add your custom TQL queries to the population job
between your Service Manager data store and your UCMDB data store. The following steps
illustrate how to add the custom rdbmsData TQL query described in previous sections.

To add custom TQL queries to population job definitions

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio.

3 Double-click the name of your Service Manager integration point. For example, SM
Integration.

4 Click the Population tab.

5 Select a population job. For example, SM Configuration Item Population job.

6 Click the Edit Integration Job button .

7 Click the Add button .

The TQL names configured in the smPopConfFile.xml file are listed.

8 Click Root > rdbmsData.

9 Click OK to add a custom query.

10 Click OK to close the Update Job Definition window.

Add an attribute of a supported CI type for federation

Out-of-the-box, the integration supports federation for three external CI types in UCMDB:
Incident, Problem, and RequestForChange.

For each of the supported CI types, there is a list of attributes in UCMDB that you can map to
Service Manager web service objects for federation. Figure 37 shows the out-of-the-box
UCMDB CI attributes available for the Incident CI type.
Tailoring the Integration 173

Figure 37 Incident CI attributes supported for federation

For example, to add an SM Incident attribute for federation, you need to expose the field in
the SM UcmdbIncident web service object and then map it to an appropriate UCMDB
attribute (if one does not already exist, you need to create it in UCMDB first).

Figure 38 shows the fields that are exposed in the UcmdbIncident web service object in
Service Manager.

Figure 38 Incident fields exposed in the UcmdbIncident web service object
174 Chapter 5

You can expose more fields so that more Incident attributes can be federated to UCMDB. As
an example, the following describes how to add the “action” field in the Service Manager
probsummary (Incident) file for federation, by mapping it to a new UCMDB attribute named
“details”.

Task 1: Add the SM attribute to its web service object.

The following example describes how to expose the SM “action” field of Incident in the
UcmdbIncident web service object.

1 Log in to Service Manager as a system administrator.

2 Navigate to Tailoring > Web Services > WSDL Configuration.

3 Enter the following field values, and then click Search.

• Service Name: ucmdbIntegration

• Name: probsummary

The UcmdbIncident web service object displays.

4 On the Fields tab, add the following row:

• Field: action.

On the Incident form in Service Manager, the “action” field is labeled “Description”, which
describes the incident ticket in more detail. See the following figure.
Tailoring the Integration 175

• Caption: Description

5 Save the web service object.

Task 2: Map the SM attribute to a UCMDB attribute.

The following example describes how to map the SM “action” attribute to a new UCMDB
attribute named “details”.

1 Log in to UCMDB as an administrator.

2 Navigate to Modeling > CI Type Manager.

3 Browse to ItProcessRecord > Incident, and open its properties pane.
176 Chapter 5

4 Click the Add button to add a new attribute named “details” to the Incident CI type.

• name: details

• Display Name: Details

• Description: Incident details

• Attribute Type: Primitive > List of strings (this is because the “action” field in SM is
an array)

5 Save the Incident CI type record.

6 Navigate to Data Flow Management > Adapter Management > ServiceManagerAdapter9-x >
Configuration Files.

7 Click the ServiceDeskConfiguration.xml file.

8 Add a mapping entry for the “details” attribute in the Incident attributeMappings section,
as shown in the following.

 <ucmdbClassConfiguration ucmdbClassName="incident">

 <attributeMappings>

 <attributeMapping ucmdbAttributeName="reference_number"
serviceDeskAttributeName="IncidentID"/>

 <attributeMapping ucmdbAttributeName="name"
serviceDeskAttributeName="BriefDescription"/>

 ...

 <attributeMapping ucmdbAttributeName="incident_status"
serviceDeskAttributeName="IMTicketStatus"
converterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.converter.
Tailoring the Integration 177

PropertyValueConverterFirstLetterToUpperAndReplaceUnderscoreWithSpace"
reversedConverterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.co
nverter.PropertyValueConverterFirstLetterToLowerAndReplaceSpaceWithUnderscore"/>

 ...

 <attributeMapping ucmdbAttributeName="urgency"
serviceDeskAttributeName="Urgency"/>

 <attributeMapping ucmdbAttributeName="details"
serviceDeskAttributeName="Description"/>

 </attributeMappings>

9 Click OK to save the file.

Now the Description (field name: action) attribute of SM Incident has been added to the
integration for federation. You can run an Incident federation query in the UCMDB Modeling
Studio to see if the SM Description data is properly federated. For details, see Examples of
using federation on page 38.

Figure 39 shows an example where the Description of an SM incident ticket has been
federated to UCMDB as Details.

The attribute mapping entry uses the following format:

<attributeMapping ucmdbAttributeName="details"
serviceDeskAttributeName="Description"/>

Where:

ucmdbAttributeName is the UCMDB attribute name in the Incident CI type definition to
which you want to map the SM attribute;

serviceDeskAttributeName is the field caption you defined in the SM web service object.

For an SM attribute (for example, problem.status) that is a drop-down list, the attribute
mapping uses the following format (you only need to change the attribute names):

<attributeMapping ucmdbAttributeName="incident_status"
serviceDeskAttributeName="IMTicketStatus"
converterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.converter.Pro
pertyValueConverterFirstLetterToUpperAndReplaceUnderscoreWithSpace"
reversedConverterClassName="com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.conve
rter.PropertyValueConverterFirstLetterToLowerAndReplaceSpaceWithUnderscore"/>
178 Chapter 5

Figure 39 SM Incident description federated to UCMDB
Tailoring the Integration 179

180 Chapter 5

6 Troubleshooting
When data push and population errors occur, you can check the error messages and the
integration log files to identify the root causes and fix the errors. This chapter describes the
general troubleshooting steps, as well as typical errors and solutions.

• Troubleshooting data push issues on page 181

• Troubleshooting population issues on page 205

Troubleshooting data push issues

When data push errors or problems occur, you can check the error messages and the log file to
figure out the root causes and then fix the errors.

This integration uses the following error codes for data push.

When a data push job has failed, the job status becomes Failed. Troubleshoot the failed job as
follows:

• Check the error messages of the failed job in the Universal CMDB studio.

See Check the error message of a failed push job on page 182.

• Check the log file for more details.

See Check the push log file on page 186.

Table 36 Data push error codes

Error code Description

-1 Unspecified error.

0 Success.

3 Resource unavailable.

28 Not authorized.

51 Record modified since last retrieved.

70 Invalid SOAP action / unrecognized application action.

71 Validation failed.

881 CI does not exist in Service Manager.

882 Unable to remove the relationship because at least one of CIs involved in the
relationship does not exist in Service Manager.
181

When a data push job was completed, but with partial records failed, the job status becomes
Passed with failures. Troubleshoot the failed records as follows:

• Check the error messages of failed CIs in the Universal CMDB studio.

See Check the error messages of failed CIs/CI Relationships in a push job on page 182.

• Check the log file for more details.

See Check the push log file on page 186.

Once you have fixed the issues with the failed records, you can re-push them one by one or in
batches. For details, see Re-push failed CI/CI Relationship records on page 191.

Check the error message of a failed push job

To check the error message of a failed job

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio.

3 Select the integration point for this integration from Integration Point list.

4 Click the Data Push tab.

5 Select the job from Integration Jobs.

6 Click the Job Errors sub-tab, and double-click the Severity of a message from the list.

A popup window displays the detailed error message of this failed job. Following is an
excerpt of a sample error message indicating that an XSLT file was not found.

Check the error messages of failed CIs/CI Relationships in a push job

When a data push job is completed with partial records failed, in the Universal CMDB studio,
you can check the source CI XML of Universal CMDB, the XSLT-transformed XML and the
response XML from Service Manager to see if the failure is caused by data issues.

java.io.FileNotFoundException: Resource:
business_service_push_file_not_exist.xslt, was not found

at
com.mercury.topaz.cmdb.server.fcmdb.adapterstate.AdapterStateResourceServerFacade
.openResourceForReading(AdapterStateResourceServerFacade.java:51)

at
com.mercury.topaz.cmdb.server.fcmdb.spi.adapter.environment.DataAdapterEnvironmen
tImpl.openResourceForReading(DataAdapterEnvironmentImpl.java:119)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.TransformUtils.readFromFile(T
ransformUtils.java:113)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.XsltTransformer.createTe
mplates(XsltTransformer.java:93)

... 36 more

… …
182 Chapter 6

To check the error messages of failed records in a data push job

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio.

3 Select the integration point for this integration from Integration Point list.

4 Click the Data Push tab.

5 Select the job from Integration Jobs.

6 Click the Query Status sub-tab.

7 Double-click a query with failures. The Error Message and CI Count for each failed CI
Type display.

8 Double-click an error message. A list of failed records displays.

9 Double-click a failed record.

The detailed error message of the record displays.

The following is a sample error message that indicates a validation failure, and the root
cause is that a not-null key (key definition #18 of the device table) contains an empty
value.
Troubleshooting 183

Validation Check Fails Error from SM, return code 71, the error message is
"Validation failed",

CI Push Details:

Source tree XML:

<node bdmType="Node" customer_id="1"
display_label="XMA16.asiapacific.hpqcorp.net" friendly-Type="Windows"
global_id="fd21b94ddf26dc9ee054e21adca3d4c0"
id="fd21b94ddf26dc9ee054e21adca3d4c0" os_vendor="Microsoft"
primary_dns_name="XMA16.asiapacific.hpqcorp.net">

 <ip_addresss direction="outgoing" linkLabel="Containment" linkName="32"
linkType="Containment">

 <ip_address bdmType="IpAddress" customer_id="1"
friendlyType="IpAddress" id="bd03e34189c713898712dcac500730ba"
name="16.158.154.152" realRelationType="Containment"/>

 </ip_addresss>

 <interfaces direction="outgoing" linkLabel="Composition" linkName="33"
linkType="Composition">

 <interface bdmType="Interface" customer_id="1" friendlyType="Interface"
id="5897567531c55a7bd196b42d5a6aa485" mac_address="B499BAE9AC7A"
realRelationType="Composition"
root_container="UCMDB%0Ant%0A1%0Ainternal_id%3DSTRING%3Dfd21b94ddf26dc9ee054e2
1adca3d4c0%0A"/>

 </interfaces>

 </node>

Transformed XML:

<CreateucmdbNodeRequest>

 <model>

 <keys/>

 <instance>

 <file.device>

 <UCMDBId>fd21b94ddf26dc9ee054e21adca3d4c0</UCMDBId>

 <CustomerId>1</CustomerId>

 <Type>computer</Type>

 <Subtype>Server</Subtype>

 <addlIPAddr>

 <AddlIPAddress>16.158.154.152</AddlIPAddress>

 <AddlSubnet/>

 </addlIPAddr>

 </addlIPAddr>
184 Chapter 6

 <CIIdentifier>XMA16.asiapacific.hpqcorp.net</CIIdentifier>

 <DNSName>XMA16.asiapacific.hpqcorp.net</DNSName>

 </file.device>

 <file.node>

 <OSVendor>Microsoft</OSVendor>

 <addlIPAddr>

<AddlMacAddress>

 <AddlMacAddress>B499BAE9AC7A</AddlMacAddress>

 </AddlMacAddress>

 </file.node>

 </instance>

 </model>

</CreateucmdbNodeRequest>

Response message from SM:

 <CreateucmdbNodeResponse message="Validation failed" returnCode="71"
schemaRevision-Date="2011-09-18" schemaRevisionLevel="5" status="FAILURE"
xmlns="http://servicecenter.peregrine.com/PWS" xmlns:cmn="http://
servicecenter.peregrine.com/PWS/Common" xmlns:xsd="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS http://
XMA16.asiapacific.hpqcorp.net:13080/sc62server/ucmdbNode.xsd">

 <model>

 <keys>

 <CIIdentifier type="String">XMA16.asiapacific.hpqcorp.net</
CIIdentifier>

 </keys>

 <instance
uniquequery="file.device,logical.name="XMA16.asiapacific.hpqcorp.net"
;">

 <file.device type="Structure">

 <CIIdentifier type="String">XMA16.asiapacific.hpqcorp.net</
CIIdentifier>

 <DNSName type="String">XMA16.asiapacific.hpqcorp.net</DNSName>

 <Type type="String">computer</Type>

 <CIName type="String">CI10869</CIName>

 <Subtype type="String">Server</Subtype>

 <UCMDBId type="String">fd21b94ddf26dc9ee054e21adca3d4c0</UCMDBId>

 </file.device>

 <file.node type="Structure">

 <addlIPAddr type="Array">

 <addlIPAddr type="StructureType">

 <AddlIPAddress type="String">16.158.154.152</AddlIPAddress>
Troubleshooting 185

Check the push log file

You need to set the Development adapter log level to DEBUG so that you can check the source
tree XML file of UCMDB, the XSLT-transformed XML file, and the response XML file from
Service Manager.

To set the Development adapter log level to DEBUG

1 Log in to the UCMDB server host as an administrator.

2 Navigate to the <UCMDB installation folder>\UCMDBServer\conf\log\fcmdb.properties
file. For example: C:\HP\UCMDB\UCMDBServer\conf\log\fcmdb.properties

3 Open the fcmdb.properties file in a text editor.

 </addlIPAddr>

 </addlIPAddr>

 <AddlMacAddress type="Array">

 <AddlMacAddress type="String">B499BAE9AC7A</AddlMacAddress>

 </AddlMacAddress>

 </file.node>

 </instance>

 </model>

 <messages>

 <cmn:message type="String">7=====add</cmn:message>

 <cmn:message type="String">Key #18 is empty.
(se.base.method,add.record.radd)</cmn:message>

 <cmn:message type="String">file:(device)
key:(logical.name=XMA16.asiapacific.hpqcorp.net)
(se.base.method,add.record.radd)</cmn:message>

 <cmn:message type="String">The record being added contains a NULL key
(se.base.method,add.record.radd)</cmn:message>

 <cmn:message type="String">file:(joinnode)
key:(file.device,logical.name=XMA16.asiapacific.hpqcorp.net)
(se.base.method,add.record.radd)</cmn:message>

 <cmn:message type="String">The record being added contains a NULL key
(se.base.method,add.record.radd)</cmn:message>

 <cmn:message type="String">This record contains an invalid null key.</
cmn:message>

 </messages>

 </CreateucmdbNodeResponse>

You are recommended to enable the Development Mode for the integration point so that the
above-mentioned three XML files are in a good format. See the following for the steps.
186 Chapter 6

4 Update the log4j.category.fcmdb.adapters log level to DEBUG.

5 Save the file.

To enable the Development Mode for the integration point

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio.

3 Select the integration point for this integration.

4 Click the Edit Integration Point button.

5 For Development Mode, select True from the list.

6 Click the OK button to save the integration point.

To check the push log file

1 Log in to the UCMDB server host as an administrator.

2 Navigate to the <UCMDB installation
folder>\UCMDBServer\runtime\log\fcmdb.adapters.<integration_point_name>.log file.
For example: C:\HP\UCMDB\UCMDBServer\runtime\log\fcmdb.adapters.SM
Integration.log

3 Open the log file in a text editor.

4 Search for text strings "Source tree XML:", "Transformed XML:", and "Response message
from SM:".

The following is a sample log file.
Troubleshooting 187

2011-11-30 14:22:03,325 [1751920131@Default-7] DEBUG - SM Integration >> Source
tree XML:

<node bdmType="Node" customer_id="1"
display_label="XMA16.asiapacific.hpqcorp.net" friendlyType="Windows"
global_id="fd21b94ddf26dc9ee054e21adca3d4c0"
id="fd21b94ddf26dc9ee054e21adca3d4c0" os_vendor="Microsoft"
primary_dns_name="XMA16.asiapacific.hpqcorp.net">

 <ip_addresss direction="outgoing" linkLabel="Containment" linkName="32"
linkType="Containment">

 <ip_address bdmType="IpAddress" customer_id="1"
friendlyType="IpAddress" id="bd03e34189c713898712dcac500730ba"
name="16.158.154.152" realRelationType="Containment"/>

 </ip_addresss>

 <interfaces direction="outgoing" linkLabel="Composition" linkName="33"
linkType="Composition">

 <interface bdmType="Interface" customer_id="1" friendlyType="Interface"
id="5897567531c55a7bd196b42d5a6aa485" mac_address="B499BAE9AC7A"
realRelationType="Composition"
root_container="UCMDB%0Ant%0A1%0Ainternal_id%3DSTRING%3Dfd21b94ddf26dc9ee054e2
1adca3d4c0%0A"/>

 </interfaces>

 </node>
188 Chapter 6

2011-11-30 14:22:03,423 [1751920131@Default-7] DEBUG - SM Integration >>
Transformed XML:

<CreateucmdbNodeRequest>

 <model>

 <keys/>

 <instance>

 <file.device>

 <UCMDBId>fd21b94ddf26dc9ee054e21adca3d4c0</UCMDBId>

 <CustomerId>1</CustomerId>

 <Type>computer</Type>

 <Subtype>Server</Subtype>

 <CIIdentifier>XMA16.asiapacific.hpqcorp.net</CIIdentifier>

 <DNSName>XMA16.asiapacific.hpqcorp.net</DNSName>

 </file.device>

 <file.node>

 <OSVendor>Microsoft</OSVendor>

 <addlIPAddr>

 <addlIPAddr>

 <AddlIPAddress>16.158.154.152</AddlIPAddress>

 <AddlSubnet/>

 </addlIPAddr>

 </addlIPAddr>

 <AddlMacAddress>

 <AddlMacAddress>B499BAE9AC7A</AddlMacAddress>

 </AddlMacAddress>

 </file.node>

 </instance>

 </model>

</CreateucmdbNodeRequest>
Troubleshooting 189

2011-11-30 14:22:07,615 [1751920131@Default-7] DEBUG - SM Integration >>
Response message from SM:

 <CreateucmdbNodeResponse message="Success" returnCode="0"
schemaRevisionDate="2011-09-18" schemaRevisionLevel="5" status="SUCCESS"
xmlns="http://servicecenter.peregrine.com/PWS" xmlns:cmn="http://
servicecenter.peregrine.com/PWS/Common" xmlns:xsd="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS http://
XMA16.asiapacific.hpqcorp.net:13080/sc62server/ucmdbNode.xsd">

 <model>

 <keys>

 <CIIdentifier type="String">XMA16.asiapacific.hpqcorp.net</
CIIdentifier>

 </keys>

 <instance
unique-query="file.device,logical.name="XMA16.asiapacific.hpqcorp.net&quo
t;">

 <file.device type="Structure">

 <CIIdentifier type="String">XMA16.asiapacific.hpqcorp.net</
CIIdentifier>

 <DNSName type="String">XMA16.asiapacific.hpqcorp.net</DNSName>

 <Type type="String">computer</Type>

 <Subtype type="String">Server</Subtype>

 <UCMDBId type="String">fd21b94ddf26dc9ee054e21adca3d4c0</UCMDBId>

</file.device>

 <file.node type="Structure">

 <addlIPAddr type="Array">

 <addlIPAddr type="StructureType">

 <AddlIPAddress type="String">16.158.154.152</AddlIPAddress>

 </addlIPAddr>

 </addlIPAddr>

 <AddlMacAddress type="Array">

 <AddlMacAddress type="String">B499BAE9AC7A</AddlMacAddress>

 </AddlMacAddress>

 </file.node>

 </instance>

 </model>

 <messages>

 <cmn:message type="String">0=====update</cmn:message>

 </messages>

 </CreateucmdbNodeResponse>
190 Chapter 6

Re-push failed CI/CI Relationship records

The push error handling mechanism allows you to re-push failed CI/CI Relationship records
either one by one or in batches.

To re-push failed data in a query of a data push job:

1 Select the data push job.

2 On the Query Status tab, double-click the failed query.

The query failure details (Error Message, CI Type, and CI Count) display.

3 Double-click the Error Message, to see more details of the failed records.

4 Double-click each failed record to see the detailed error message of the record.

5 Fix the issues with each failed record according to the error information.

6 Select a failed record, and then click the Push selected failed data button to re-synchronize
the record.
Troubleshooting 191

Alternatively, click the query name link (in this example, “SM Node Relations Push”), select
the error message of the query, and then click the Push selected failed data button to re-push all
failed records in the query.

Typical push errors and solutions

This section describes typical error messages that may occur during data push, as well as
their solutions.

TQL not configured in smSyncConfFile.xml

Sample configuration

The TQL query used for populating business service CIs is named “SM Business Service
Push”, however you have not configured it (or have commented it out) in the
smSyncConfFile.xml file:
192 Chapter 6

Error message

The push job fails with a “Failed” status. From both the log file and the detail error message of
the failed job in the Universal CMDB studio (see Check the error message of a failed push job
on page 182), you receive an error like the following:

Solution

Search for text “No mapping is found for TQL” to find the TQL name that is not yet
configured, and then configure the TQL name in the smSyncConfFile.xml file.

For instructions on how to add a mapping for a TQL, see Map the CI type’s TQL query to an
XSL transformation file on page 140.

Non-existing XSLT file name defined for a TQL in smSyncConfFile.xml

Sample configuration

The XSLT file for populating business service CIs is named “business_service_push.xslt”,
however you have configured a wrong name “business_service_push_wrong_name.xslt” in
smSyncConfFile.xml.

java.lang.RuntimeException: No mapping is found for TQL: "SM Business Service Push",
please configure in smSyncConfFile.xml

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.SmPusher.pushObjects(SmPush
er.java:273)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.SmPusher.push(SmPusher.java
:93)

 ... 31 more
Troubleshooting 193

Error message

The data push job fails with a “Failed” status. From both the log file and the detail error
message of the failed job in the Universal CMDB studio (see Check the error message of a
failed push job on page 182), you receive an error like the following:

Solution

Search for text “java.io.FileNotFoundException: Resource:” to find the wrong XSLT file name,
and then correct the XSLT file name in the smSyncConfFile.xml file.

For instructions on how to configure an XSLT file name for a TQL, see Map the CI type’s TQL
query to an XSL transformation file on page 140.

java.io.FileNotFoundException: Resource: business_service_push_wrong_name.xslt, was
not found

at
com.mercury.topaz.cmdb.server.fcmdb.adapterstate.AdapterStateResourceServerFacade.op
enResourceForReading(AdapterStateResourceServerFacade.java:51)

at
com.mercury.topaz.cmdb.server.fcmdb.spi.adapter.environment.DataAdapterEnvironmentIm
pl.openResourceForReading(DataAdapterEnvironmentImpl.java:119)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.TransformUtils.readFromFile(Tran
sformUtils.java:113)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.XsltTransformer.createTempl
ates(XsltTransformer.java:93)

... 36 more
194 Chapter 6

Request name not found for a TQL in smSyncConfFile.xml

Sample configuration

The Service Manager web service request of the Create type is named
“CreateucmdbBusinessServiceRequest”, however you have not configured it (or have
commented it out) in the smSyncConfFile.xml file.

Error message

The data push job fails with a “Failed” status. From both the log file and the detail error
message of the failed job in the Universal CMDB studio (see Check the error message of a
failed push job on page 182), you receive an error like the following:

Solution

In the error message find the TQL name for which a request name was not found, and then in
the smSyncConfFile.xml file add the request name for the TQL name.

For instructions on how to configure a request for a TQL, see Map the CI type’s TQL query to
an XSL transformation file on page 140.

java.lang.RuntimeException: No request name was found for operation "Create" of TQL
name "SM Business Service Push", please check in smSyncConfFile.xml file.

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.Mapping.createTransformer(M
apping.java:89)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.SmPusher.pushObjects(SmPush
er.java:276)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.SmPusher.push(SmPusher.java
:95)

... 31 more … …
Troubleshooting 195

Wrong Service Manager WS request name defined in smSyncConfFile.xml

Sample configuration

The Service Manager web service request of the Create type is named
“CreateucmdbBusinessServiceRequest”, however you have configured a wrong request name
“CreateucmdbBusinessServiceRequest_wrongname” in the smSyncConfFile.xml file.
196 Chapter 6

Error message

The data push job is completed with a “Passed with failures” status. From both the log file and
the detailed error messages of the failed CIs in the Universal CMDB studio (see Check the
error messages of failed CIs/CI Relationships in a push job on page 182), you receive an error
like the following:

Solution

In the “Transformed XML” section of the error message, check the Request name (which is
configured as CreateucmdbBusinessServiceRequest_wrongname in this sample), and make
sure that the request name specified in smSyncConfFile.xml is the exact name defined in the
WSDL.

For instructions on how to configure a Service Manager web service request for a TQL, see
Map the CI type's TQL query to an XSL transformation file on page 156.

Other exception while sending message to SM, the exception message is "SOAP fault
received: A CXmlApiException was raised in native code : error 16 : scxmlapi(16) -
Invalid or missing file name in XML request"

… …

 Source tree XML:

 <?xml version="1.0" encoding="UTF-16"?>

<business_element bdmType="BusinessService" customer_id="1"

 display_label="test_bizservice_push_1"

 friendlyType="BusinessService" id="dc57d623182d759df82c7bccd2448630"

 name="test_bizservice_push_1" provider="provider1"/>

 Transformed XML:

<?xml version="1.0" encoding="UTF-16"?>

<CreateucmdbBusinessServiceRequest_wrongname>

 <model>

 <keys/>

 <instance>

 <UCMDBId>dc57d623182d759df82c7bccd2448630</UCMDBId>

 <CustomerId>1</CustomerId>

 <Type>bizservice</Type>

 <Subtype>Business Service</Subtype>

 <ServiceProvider>provider1</ServiceProvider>

 <ServiceName>test_bizservice_push_1</ServiceName>

 <CIIdentifier>test_bizservice_push_1</CIIdentifier>

 </instance>

 </model>

</CreateucmdbBusinessServiceRequest_wrongname>
Troubleshooting 197

XSLT file not well formed

Sample configuration

The end tag of “instance” should be </instance>, however you have configured a wrong end tag
“</instance_wrong_end_tag>”.

Error message

The data push job fails with a “Failed” status. From both the log file and the detailed error
message of the failed job in the Universal CMDB studio (see Check the error message of a
failed push job on page 182), you receive an error like the following:

javax.xml.transform.TransformerConfigurationException: Failed to compile stylesheet

at
com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl.newTemplates(Unk
nown Source)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.XsltTransformer.createTempl
ates(XsltTransformer.java:100)

... 36 more
198 Chapter 6

In addition, you can find more detailed error message in the log file to see which XSLT file is
not well formed. You should see something like following:

Solution

Search for text “Not valid XSLT file” to find the XSLT file name, and then validate the XSLT
file in an XML editor (for example, XMLSpy). You can easily find and fix any validation issues.

2011-12-12 14:54:58,108 [170025072@Default-10] ERROR - SM Integration >> Got
DataAccessException while updateData

com.hp.ucmdb.federationspi.exception.DataAccessGeneralException: Not valid XSLT file
"busi-ness_service_push.xslt", please check this XSLT file

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.XsltTransformer.createTempl
ates(XsltTransformer.java:103)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.push.Mapping.parseConfig(Mapping
.java:54)
Troubleshooting 199

Wrong UCMDB attribute name in XSLT file

Sample configuration

The Universal CMCB attribute name is “provider”, however you have configured a wrong
attribute named “provider_wrong”.

Error message

You will NOT get any error messages either in the log file or in the Universal CMDB studio,
however the UCMDB attribute value will not be pushed to Service Manager.

Solution

If you find a UCMDB attribute value that cannot be pushed to Service Manager, double-check
the UCDMB attribute name and Service Manager field name of the mapping in the XSLT file.

For instructions on how to configure an attribute mapping, see Map the CI attribute to a web
service field on page 124.
200 Chapter 6

Wrong Service Manager field name in XSLT file

Sample configuration

The Service Manager field name is “ServiceProvider”, however you have configured a wrong
attribute named “ServiceProvider_wrong” in the XSLT file. This error also commonly occurs
since the attribute is case-sensitive.

Error message

You will NOT get any error messages either in the log file or in the Universal CMDB studio,
however, the Universal CMDB attribute value will not be pushed to Service Manager.

Solution

If you find a Universal CMDB attribute value that cannot be pushed to Service Manager,
check both the Universal CDMB attribute name and Service Manager field name of the
mapping in the XSLT file.

For instructions on how to configure an attribute mapping, see Map the CI attribute to a web
service field on page 124.
Troubleshooting 201

Empty value for No Nulls key in Service Manager

Sample configuration

In Service Manager you have configured a No Nulls key for field “testnotnullfield” of the
device table, however you have not mapped this field in the XSLT file.

Error message

The data push job is completed with a “Passed with failures” status. From both the log file and
the detailed error messages of the failed CIs in the Universal CMDB studio (see Check the
error messages of failed CIs/CI Relationships in a push job on page 182), you receive an error
like the following.
202 Chapter 6

Validation Check Fails Error from SM, return code 71, the error message is "Validation
failed"

CI Push Details:

 Source tree XML:

 …

 Transformed XML:

…

 Response message from SM:

<?xml version="1.0" encoding="UTF-16"?>

<CreateucmdbBusinessServiceResponse message="Validation failed"

 returnCode="71" schemaRevisionDate="2011-09-18"

 schemaRevisionLevel="5" status="FAILURE"

 xmlns="http://servicecenter.peregrine.com/PWS"

 xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
servicecenter.peregrine.com/PWS http://XMA16.asiapacific.hpqcorp.net:13080/
sc62server/ucmdbBusinessService.xsd">

 <model>

 <keys>

 <CIIdentifier type="String">test_bizservice_push_1</CIIdentifier>

 </keys>

<instance uniquequery="file.device,logical.name="test_bizservice_push_1"">

 <file.device type="Structure">

 <CIIdentifier type="String">test_bizservice_push_1</CIIdentifier>

 <ServiceProvider type="String">provider1</ServiceProvider>

 <Type type="String">bizservice</Type>

 <CIName type="String">CI10894</CIName>

 <Subtype type="String">Business Service</Subtype>

 <ServiceName type="String">test_bizservice_push_1</ServiceName>

 <UCMDBId type="String">dc57d623182d759df82c7bccd2448630</UCMDBId>

 </file.device>

</instance>
Troubleshooting 203

Solution

Find the key number in the <messages> section to see which No Nulls key has a NULL value.
For example, if you find a message “Key #1 is empty”, check the first key definition of the
device table to see which field(s) this key is for, and then make sure that a non-NULL value
has been mapped to the field(s) in the XSLT file.

For instructions on how to configure an attribute mapping, see Map the CI attribute to a web
service field on page 124.

CI logical name truncated or CI not pushed due to logical name truncation

Sample configuration

The length of a UCMDB CI name exceeds 200 characters, which is the maximum allowed field
length for logical.name (CI Identifier) in Service Manager. When this CI is pushed to Service
Manager, the CI name is truncated.

Two UCMDB CIs have the same CI name that is 200 characters in length. When the second
CI is pushed, it is supposed to be renamed if the DEM Duplication Rule is configured so;
however, the renamed logical name will be truncated to be same as the first CI’s logical name.
As a result, the second CI will not be able to be pushed to Service Manager due to an invalid
duplicate key error.

Error message

You receive an error message that contains this string: “This record contains an invalid
duplicate key.”

Solution

Update the CI type’s XSL transformation file so that, before running a push, the integration
can make sure that all CI names are significantly less than 200 characters in length.

Service Manager database case-sensitivity issue

Sample configuration

Your Service Manager database is case-insensitive. You have two UCMDB CIs with a name of
CINAME1 and ciname1, respectively.

</model>

 <messages>

 <cmn:message type="String">6=====add</cmn:message>

 <cmn:message type="String">Key #1 is empty.
(se.base.method,add.record.radd)</cmn:message>

 <cmn:message type="String">file:(device)
key:(logical.name=test_bizservice_push_1) (se.base.method,add.record.radd)</
cmn:message>

 <cmn:message type="String">The record being added contains a NULL key
(se.base.method,add.record.radd)</cmn:message>

 …

 </messages>

</CreateucmdbBusinessServiceResponse>
204 Chapter 6

When running a push job to push these CIs, the integration considers the second CI a
duplicate of the first one, and therefore either renames it or returns an error according to the
Duplication Rule setting of the relevant DEM Rule record.

Solution

HP recommends using a case-sensitive Service Manager database to avoid this issue.

Global ID and Customer ID missing in XSLT

Sample configuration

You create an XSL transformation file for push without the following element:

<!--import:cmdb_root_attributes.xslt-->

The cmdb_root_attributes.xslt file contains Global ID and Customer ID, which are required
for data push:

<UCMDBId><xsl:value-of select="@id"/></UCMDBId>

<CustomerId><xsl:value-of select="@customer_id"/></CustomerId>

Error message

No error message occurs, however when you update or delete a CI record in UCMDB, the
update or deletion will not be pushed to Service Manager.

Solution

In the XSL transformation file, include the missing element:

<!--import:cmdb_root_attributes.xslt-->

Troubleshooting population issues

When population errors or problems occur, you can check the error messages and the
population log file to identify the root causes and then solve the problems.

When a population job has failed, the job status becomes Failed. Troubleshoot the failed job
as follows:

• Check the error message of the failed job in the Universal CMDB studio.

See Check the error message of a failed population job on page 205 and Typical error
messages and solutions on page 211.

• Check the log file for more details.

See Check the population log file on page 207.

Check the error message of a failed population job

While a population job fails, you can check the detailed error messages in the Universal
CMDB studio.
Troubleshooting 205

To check the error message of a failed population job

1 Log in to UCMDB as an administrator.

2 Navigate to Data Flow Management > Integration Studio.

3 Select the integration point for this integration.

4 Click the Population tab.

5 Select the failed job from Integration Jobs, and click the Job Errors sub-tab.

6 Double-click an error message from the list.

A pop-up window opens to display the error details. The following is a sample error
message about a non-existing XSLT file:

Failed initializing the datastore. adapterID:ServiceManagerAdapter9-x destID:SM
Integration
ER-ROR:com.mercury.topaz.cmdb.shared.fcmdb.dataAccess.exception.AdapterAccessFaile
dToStartAdapterException: [ErrorCode [850] Integration Point cannot start{SM
Integration}]

Failed to start adapter [SM Integration].java.lang.RuntimeException: No XSLT file
is found "busi-ness_service_population_wrong.xslt", please configure the right XSLT
file in smPopConfFile.xml

com.hp.ucmdb.federationspi.exception.DataAccessCommunicationException:
java.lang.RuntimeException: No XSLT file is found
"business_service_population_wrong.xslt", please configure the right XSLT file in
smPopConf-File.xml

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.start(Servi
ceDeskAdapter.java:841)

at
com.mercury.topaz.cmdb.server.fcmdb.dataAccess.manager.impl.AbstractDataAccessCont
ainerManagerImpl.startAdapter(AbstractDataAccessContainerManagerImpl.java:244)

at
com.mercury.topaz.cmdb.server.fcmdb.dataAccess.manager.impl.AbstractDataAccessCont
ainerManagerImpl.addStartAndReturnBasicDataAdapterWrapper(AbstractDataAccessContai
nerManagerImpl.java:162)

at
com.mercury.topaz.cmdb.server.fcmdb.dataAccess.manager.impl.AbstractDataAccessCont
ainerManagerImpl.getStartedBasicDataAdapterWrapper(AbstractDataAccessContainerMana
gerImpl.java:187)

at
com.hp.ucmdb.discovery.probe.agents.probemgr.adapters.DataAccessAdaptersFacade.get
StartedBasicDataAdapterWrapper(DataAccessAdaptersFacade.java:139)

at
com.hp.ucmdb.discovery.probe.services.dynamic.core.AdapterService.runDiscovery(Ada
pterService.java:172)

 at
com.hp.ucmdb.discovery.probe.services.dynamic.core.AdapterService.discover(Adapter
Service.java:140)… …
206 Chapter 6

Check the population log file

You can set the Development adapter log level to DEBUG to check the incoming CI XML file
of Service Manager, and the XSLT-transformed XML file.

To set the adapter log level to DEBUG

1 Log in to the UCMDB server host as an administrator.

2 Navigate to the <UCMDB installation folder>\DataFlowProbe\conf\log
\fcmdb.properties file. For example:
C:\HP\UCMDB\DataFlowProbe\conf\log\fcmdb.properties

3 Open the fcmdb.properties configuration file in a text editor.

4 Update the log4j.category.fcmdb.adapters log level to DEBUG:

5 Save the file.

6 Wait a while for the change to take effect.

To enable the Development Mode of the integration point

For detailed steps, see Check the push log file on page 186.

To check the population log file

1 Log in to the UCMDB server host as an administrator.

2 Navigate to the <UCMDB installation
folder>\DataFlowProbe\runtime\log\fcmdb.adapters.<integration_point_name>.log
file. For example: C:\HP\UCMDB\DataFlowProbe\runtime\log\fcmdb.adapters.SM
Integration.log

3 Open the log file in a text editor.

You are recommended to enable the Development Mode for the integration point so that the
above-mentioned two XML files are in a good format.
Troubleshooting 207

4 Search for text strings “Source SM CI XML”, “Transformed XML”, “Source tree XML for
ID Pushback”, “Transformed XML for ID Pushback” and “Response message from SM For
ID Pushback”. The log looks like the following:
2011-12-13 11:01:18,063 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] DEBUG - SM Integra-tion >> Source SM CI XML:

<?xml version="1.0" encoding="UTF-16"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <RetrieveucmdbBusinessServiceListResponse

 xmlns="http://servicecenter.peregrine.com/PWS"

 message="Success" returnCode="0"

 schemaRevisionDate="2011-09-18" schemaRevisionLevel="5"

 status="SUCCESS"

 xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS http://
XMA16.asiapacific.hpqcorp.net:13080/sc62server/ucmdbBusinessService.xsd">

 <instance query=""
uniquequery="file.device,logical.name="test_biz_servcie_1"">

 <file.device type="Structure">

 <CIIdentifier type="String">test_biz_servcie_1</CIIdentifier>

 <ServiceProvider type="String">VENDOR1</ServiceProvider>

 <Type type="String">bizservice</Type>

 <CIName type="String">CI10873</CIName>

 <Subtype type="String">Business Service</Subtype>

 </file.device>

 </instance>

 <instance query=""
uniquequery="file.device,logical.name="test_biz_servcie_2"">

 <file.device type="Structure">

 <CIIdentifier type="String">test_biz_servcie_2</CIIdentifier>

 <ServiceProvider type="String">VENDOR2</ServiceProvider>

 <Type type="String">bizservice</Type>

 <CIName type="String">CI10872</CIName>

 <Subtype type="String">Business Service</Subtype>

 </file.device>

 </instance>

 </RetrieveucmdbBusinessServiceListResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
208 Chapter 6

2011-12-13 11:01:18,414 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] DEBUG - SM Integra-tion >> Transformed XML:

<?xml version="1.0" encoding="UTF-16"?>

<topology>

 <ci class="business_service">

 <attribute name="name" type="String">test_biz_servcie_1</attribute>

 <attribute name="sm_id" type="String">CI10873</attribute>

 <attribute name="global_id" type="String"/>

 <attribute name="provider" type="String">VENDOR1</attribute>

 </ci>

 <ci class="business_service">

 <attribute name="name" type="String">test_biz_servcie_2</attribute>

 <attribute name="sm_id" type="String">CI10872</attribute>

 <attribute name="global_id" type="String"/>

 <attribute name="provider" type="String">VENDOR2</attribute>

 </ci>

</topology>

… …

2011-12-13 11:01:32,061 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] DEBUG - SM Integra-tion >> Source tree XML for ID Pushback to update SM
CI "CI10873" with uCMDB ID "50fccdeaec49b1d81a1f54ca99942b27":

<?xml version="1.0" encoding="UTF-16"?>

<ucmdbIDPushBack>

 <ci id="CI10873" ucmdbid="50fccdeaec49b1d81a1f54ca99942b27"/>

</ucmdbIDPushBack>

2011-12-13 11:01:32,084 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] DEBUG - SM Integra-tion >> Transformed XML for ID Pushback:

<?xml version="1.0" encoding="UTF-16"?>

<UpdateucmdbIDPushBackRequest>

 <model xmlns:ns="http://schemas.hp.com/SM/7">

 <keys/>

 <instance>

 <ConfigurationItem>CI10873</ConfigurationItem>

 <UcmdbID>50fccdeaec49b1d81a1f54ca99942b27</UcmdbID>

 </instance>

 </model>

</UpdateucmdbIDPushBackRequest>
Troubleshooting 209

… …

2011-12-13 11:01:32,240 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] DEBUG - SM Integra-tion >> Response message from SM For ID Pushback:

<?xml version="1.0" encoding="UTF-16"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <UpdateucmdbIDPushBackResponse

 xmlns="http://servicecenter.peregrine.com/PWS"

 message="Success" returnCode="0"

 schemaRevisionDate="2011-09-18" schemaRevisionLevel="5"

 status="SUCCESS"

 xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS http://
XMA16.asiapacific.hpqcorp.net:13080/sc62server/ucmdbIDPushBack.xsd">

 <model>

 <keys>

 <ConfigurationItem type="String">CI10873</ConfigurationItem>

 </keys>

 <instance recordid="CI10873 - - "
uniquequery="logical.name="CI10873"">

 <ConfigurationItem type="String">CI10873</ConfigurationItem>

 <UcmdbID type="String">50fccdeaec49b1d81a1f54ca99942b27</
UcmdbID>

 </instance>

 </model>

 <messages>

 <cmn:message type="String">==Foundabcdefg</cmn:message>

 <cmn:message type="String">Found</cmn:message>

 <cmn:message type="String">going to update ucmdb_id to abcdefg</
cmn:message>

 <cmn:message type="String">Update done!</cmn:message>

 <cmn:message type="String">Foundabcdefg</cmn:message>

 </messages>

 </UpdateucmdbIDPushBackResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>
210 Chapter 6

Typical error messages and solutions

The following describes typical error messages that may occur during population, and their
solutions.

No TQL configured in smPopConfFile.xml

Error message

If you have not yet added a TQL to your job, you cannot select this TQL from the list while you
create/update your job.

If you have already added this TQL to your job before removing this TQL from
smPopConfFile.xml, you will get a “Failed” status while you run this population job. In
addition, in the Universal CMDB studio, you will get an error message like the following (see
Check the error message of a failed population job on page 205):

Solution

Search for text “is not supported by this adapter” to find the TQL name that has not yet been
configured, and then configure it in the smPopConfFile.xml file.

For instructions on how to add a mapping to a TQL, see Map the CI type's TQL query to an
XSL transformation file on page 156.

Failed running population. destID:SM Integration, Failed during query: , all
queries:[SM Business Service Popula-tion], finished queries:[]
ERROR:com.hp.ucmdb.federationspi.exception.DataAccessGeneralException: Query [SM
Business Service Population] is not supported by this adapter.

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.getQueryByN
ame(ServiceDeskAdapter.java:990)

at
com.hp.ucmdb.discovery.probe.services.dynamic.core.AdapterService.retrieveQueryDef
initionByRootType(AdapterService.java:247)

at
com.hp.ucmdb.discovery.probe.services.dynamic.core.AdapterService.runDiscovery(Ada
pterService.java:183)

at
com.hp.ucmdb.discovery.probe.services.dynamic.core.AdapterService.discover(Adapter
Service.java:140)

at
com.hp.ucmdb.discovery.probe.agents.probemgr.taskexecuter.JobExecuter.launchTask(J
obExecuter.java:1194)

at
com.hp.ucmdb.discovery.probe.agents.probemgr.taskexecuter.JobExecuter$JobExecuterW
orker.launch(JobExecuter.java:963)

at
com.hp.ucmdb.discovery.probe.agents.probemgr.taskexecuter.JobExecuter$JobExecuterW
orker.executeTask(JobExecuter.java:908)

at
com.hp.ucmdb.discovery.probe.agents.probemgr.taskexecuter.JobExecuter$JobExecuterW
orker.run(JobExecuter.java:813)
Troubleshooting 211

Non-existing XSLT file name defined for a TQL in smPopConfFile.xml

Error message

You will get a “Failed” status while you run the population job. In addition, from both the
population log file (see Check the population log file on page 207) and the Universal CMDB
studio (see Check the error message of a failed population job on page 205), you will get an
error message like the following:

Solution

Search for text “No XSLT file is found” to find the wrong XSLT file name, and then correct the
name in the smPopConfFile.xml file.

For instructions on how to configure an XSLT file name for a TQL, see Map the CI type's TQL
query to an XSL transformation file on page 156.

No “Retrieve” type request defined for a TQL in smPopConfFile.xml

Error message

You will get a “Failed” status while you run the population job. In addition, from both the
population log file (see Check the population log file on page 207) and the Universal CMDB
studio (see Check the error message of a failed population job on page 205), you will get an
error message like the following:

java.lang.RuntimeException: No XSLT file is found
"business_service_population_wrong.xslt", please configure the right XSLT file in
smPopConfFile.xml

com.hp.ucmdb.federationspi.exception.DataAccessCommunicationException:
java.lang.RuntimeException: No XSLT file is found
"business_service_population_wrong.xslt", please configure the right XSLT file in
smPopConf-File.xml

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.start(Servi
ceDeskAdapter.java:841)

at
com.mercury.topaz.cmdb.server.fcmdb.dataAccess.manager.impl.AbstractDataAccessCont
ainerManagerImpl.startAdapter(AbstractDataAccessContainerManagerImpl.java:244) … …

java.lang.RuntimeException: No request was configured for operation "Retrieve" of
TQL name "SM Business Ser-vice Population", please check in smPopConfFile.xml file.

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.init(
PopChunkGetter.java:134)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.<init
>(PopChunkGetter.java:104)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.getChanges(S
erviceDeskAdapter.java:1108)

at
com.mercury.topaz.cmdb.server.fcmdb.dataAccess.operation.query.impl.DataAccessAdapt
erQueryRetrieveChanges.getChangesResult(DataAccessAdapterQueryRetrieveChanges.java:
48)
212 Chapter 6

Solution

Search for text “No request was configured for operation” to find the TQL name for which a
retrieve type request is missing, and then add the missing request name in the
smPopConfFile.xml file.

For instructions on how to configure a request for a TQL, see Map the CI type's TQL query to
an XSL transformation file on page 156.

Wrong request name of retrieveKeysQueryName configured for a TQL in
smPopConfFile.xml

Error message

You will get a “Failed” status while you run the population job. In addition, from both the
population log file (see Check the population log file on page 207) and the Universal CMDB
studio (see Check the error message of a failed population job on page 205), you will get an
error message like the following:

Further more, you can find more detailed error message in the log file that indicates which
request of retrieving CI keys is wrong. The following is an example:

2011-12-13 17:18:04,394 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] ERROR - SM Integra-tion >> Populate ci data failed for element

com.hp.ucmdb.federationspi.exception.DataAccessGeneralException: SOAP fault received
for retrieving SM CI Keys: A CXmlApiException was raised in native code : error 16 :
scxmlapi(16) - Invalid or missing file name in XML request

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.SmPopulater.response
ExceptionHandle(SmPopulater.java:322)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.SmPopulater.queryKey
List(SmPopulater.java:116)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.init(
PopChunkGetter.java:139)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.<init
>(PopChunkGetter.java:104)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.getChanges(S
erviceDeskAdapter.java:1111)

… …
Troubleshooting 213

Solution

Search for text “Web Service Request XMl For getting SM CI keys” to find the wrong request
name, and then specify the right request name in the smPopConfFile.xml file for the TQL
name.

For instructions on how to configure a request for a TQL, see Map the CI type's TQL query to
an XSL transformation file on page 156.

Wrong request name of retrieveListQueryName configured for a TQL in smPopConfFile.xml

Error message

You will get a “Failed” status while you run the population job. In addition, from both the
population log file (see Check the population log file on page 207) and the Universal CMDB
studio (see Check the error message of a failed population job on page 205), you will get an
error message like the following:

2011-12-13 17:18:02,832 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] DEBUG - SM Integra-tion >> Web Service Request XMl For getting SM CI
keys:

<?xml version="1.0" encoding="UTF-16"?>

<soapenv:Envelope xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:env="http://schemas.xmlsoap.org/soap/envelop/"

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

 <soapenv:Body>

 <axis2ns1:RetrieveucmdbBusinessServiceKeysListRequest_wrong>

 <axis2ns2:model>

 <axis2ns3:keys query="type#"bizservice""/>

 <axis2ns4:instance>

 <axis2ns5:file.device/>

 </axis2ns4:instance>

 <axis2ns6:messages/>

 </axis2ns2:model>

 </axis2ns1:RetrieveucmdbBusinessServiceKeysListRequest_wrong>

 </soapenv:Body>

</soapenv:Envelope>
214 Chapter 6

Further more, you can find more detailed error message in the log file that indicates which
request of retrieving CI list is wrong. The following is an example.

com.hp.ucmdb.federationspi.exception.DataAccessGeneralException: SOAP fault received
for retrieving SM CI List: A CXmlApiException was raised in native code : error 16 :
scxmlapi(16) - Invalid or missing file name in XML request

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.SmPopulater.response
ExceptionHandle(SmPopulater.java:324)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.SmPopulater.queryRec
ordList(SmPopulater.java:188)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.addOr
DelCIsToTopology(PopChunkGetter.java:177)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.getNe
xtResultChunk(PopChunkGetter.java:164)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.getChanges(S
erviceDeskAdapter.java:1149)

… …

2011-12-13 17:30:23,424 [JobExecuterWorker-0:DS_SM Integration_bizservice
population] DEBUG - SM Integra-tion >> Web Service Request XMl For getting SM CI
List:

<?xml version="1.0" encoding="UTF-16"?>

<soapenv:Envelope xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:env="http://schemas.xmlsoap.org/soap/envelop/"

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance">

 <soapenv:Body>

 <axis2ns13:RetrieveucmdbBusinessServiceListRequest_wrong>

 <axis2ns14:keys>

 <axis2ns15:CIIdentifier>test_biz_servcie_1</axis2ns15:CIIdentifier>

 </axis2ns14:keys>

 <axis2ns16:keys>

 <axis2ns17:CIIdentifier>test_biz_servcie_2</axis2ns17:CIIdentifier>

 </axis2ns16:keys>

 </axis2ns13:RetrieveucmdbBusinessServiceListRequest_wrong>

 </soapenv:Body>

</soapenv:Envelope>
Troubleshooting 215

Solution

Search for text “Web Service Request XMl For getting SM CI List” to find the wrong request
name, and then specify the right request name in the smPopConfFile.xml file for the TQL
name.

For instructions on how to configure a request for a TQL, see Map the CI type's TQL query to
an XSL transformation file on page 156.

XSLT file not well formed

Sample configuration

The end tag of “ci” should be </ci>, however you configured a wrong end tag “</ci_wrong>”.

Error message

If you have not yet created your integration point, when you create it an error message
similar to the following example will occur in the Universal CMDB studio or the log file,
causing the creation to fail.

If you have already created your integration point, but not yet activated it, you can no longer
activate it, because when you attempt to activate it you will get a detailed error message in
the probe error log file (probe-error.log), similar to the following example.
216 Chapter 6

If you have created and activated your integration point, you will get a “Failed” status when
you run the population job. In addition, from both the population log file (see Check the
population log file on page 207) and the Universal CMDB studio (see Check the error message
of a failed population job on page 205), you will get an error message similar to the following
example.

Solution

Search for text “Got SAXException while parsing the XSLT file” to find the name of the
problematic XSLT file, and then validate the file in an XML editor (for example, XMLSpy).
You can easily find and fix any validation issues.

java.lang.RuntimeException: Got SAXException while parsing the XSLT file
"business_service_population.xslt"!

com.hp.ucmdb.federationspi.exception.DataAccessCommunicationException:
java.lang.RuntimeException: Got SAXException while parsing the XSLT file
"business_service_population.xslt"!

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.start(Servic
eDeskAdapter.java:841)

at
com.mercury.topaz.cmdb.server.fcmdb.dataAccess.manager.impl.AbstractDataAccessConta
inerManagerImpl.startAdapter(AbstractDataAccessContainerManagerImpl.java:244)

at
com.mercury.topaz.cmdb.server.fcmdb.dataAccess.manager.impl.AbstractDataAccessConta
inerManagerImpl.addStartAndReturnBasicDataAdapterWrapper(AbstractDataAccessContaine
rManagerImpl.java:162)

… …

Caused by: org.xml.sax.SAXParseException: The end-tag for element type "ci" must end
with a '>' delimiter.

at org.apache.xerces.parsers.DOMParser.parse(Unknown Source)

at org.apache.xerces.jaxp.DocumentBuilderImpl.parse(Unknown Source)… …
Troubleshooting 217

Wrong UCMDB attribute name in XSLT file

Sample configuration

The UCMDB attribute name is “provider”, however you configured a wrong attribute
“provider_wrong”. This error also commonly occurs since the attribute name is case-sensitive.

Error message

You will NOT get any error messages either in the log file or the Universal CMDB studio,
however the Service Manager field value will not be populated to Universal CMDB.

Solution

If you find that a Service Manager field value cannot be populated to Universal CMDB, check
both the UCDMB attribute name and the Service Manager field name of the mapping in the
XSLT file.

For instructions on how to configure an attribute mapping, see Map the CI attribute to the
web service field on page 152.
218 Chapter 6

Wrong Service Manager field name in XSLT file

Sample configuration

The Service Manager field name is “ServiceProvider”, however you configured a wrong
attribute “ServiceProvider_wrong”:

Error message

You will NOT get any error messages either in the log file or in the Universal CMDB studio,
however the Service Manager field value will not be populated to Universal CMDB.

Solution

If you find that a Service Manager field value cannot be populated to Universal CMDB, check
both the UCDMB attribute name and the Service Manager field name of the mapping in the
XSLT file.

For instructions on how to configure an attribute mapping, see Map the CI attribute to the
web service field on page 152.
Troubleshooting 219

Wrong Universal CMDB attribute Data type in XSLT file

Sample configuration

The data type of Universal CMCB attribute “provider” is “String”, however you configured a
wrong type “Integer”:

Error message

The CIs will be populated to Universal CMDB, but the field value with a wrong data type
configuration will not be populated to Universal CMDB.

When you run the population job, you will get a “Failed” status. In addition, from both the
population log file (see Check the population log file on page 207) and the Universal CMDB
studio (see Check the error message of a failed population job on page 205), you will get an
error message similar to the following:

Solution

Search for text “The value "xxx" of field "yyy" is not” to find the name of the attribute with a
wrong data type, and then specify the right data type in the XSLT file.

For instructions on how to configure an attribute data type, see Map the CI attribute to the
web service field on page 152.

UCMDB CI attribute sm_id not mapped to the right Service Manager field in XSLT

The Service Manager CI ID must be mapped to Universal CMDB CI attribute sm_id, since it
is used to push the Universal CMDB CI ID back to Service Manager.

Out-of-the-box, this attribute mapping is configured in XSLT file
cmdb_root_attributes_population.xslt, which is imported by the other XSLT files as a common
field mapping, and the Service Manager CI ID field is exposed as the caption “CIName”.

General datastore error: SM Integration >> The value "VENDOR1" of field "provider"
is not a integer number, ig-nore this field value!

 java.lang.NumberFormatException: For input string: "VENDOR1"

at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)

at java.lang.Integer.parseInt(Integer.java:449)
220 Chapter 6

Sample configuration

If you configured the mapping for “sm_id” in one of the following ways:

• You did not configure the mapping for “sm_id”;

• You did not expose the Service Manager CI ID field in the Service Manager web service;

• You exposed the Service Manager CI ID field with a caption other than “CIName”;

• The Service Manager CI ID field was exposed in the web service as the caption “CIName”,
but you configured a wrong name (for example, “CIName_wrong”) in the XSLT file (see
the following figure).

Error message

When you run the population job, you will get a “Failed” status. In addition, from both the
population log file (see Check the population log file on page 207) and the Universal CMDB
studio (see Check the error message of a failed population job on page 205), you will get an
error message similar to the following:

Solution

Search for text “The Universal CMDB attribute "sm_id" of CI type” to find the CI type, and
then configure the attribute mapping for this CI Type in the XSLT file.

For instructions on how to configure an attribute mapping, see Map the CI attribute to the
web service field on page 152.

 <attribute name="name" type="String"><xsl:value-of select="CIIdentifier"/></
attribute>

 <attribute name="sm_id" type="String"><xsl:value-of select="CIName_wrong"/></
attribute>

 <attribute name="global_id" type="String"><xsl:value-of select="UCMDBId"/></
attribute>

java.lang.RuntimeException: The Universal CMDB attribute "sm_id" of CI type
"business_service" is mapped to an empty value, please check this mapping in XSLT
file.

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.addOr
DelCIToTopology(PopChunkGetter.java:198)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.addOr
DelCIsToTopology(PopChunkGetter.java:184)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.population.PopChunkGetter.getNe
xtResultChunk(PopChunkGetter.java:164)

at
com.mercury.topaz.fcmdb.adapters.serviceDeskAdapter.ServiceDeskAdapter.getChanges(S
erviceDeskAdapter.java:1149)

at

… …
Troubleshooting 221

222 Chapter 6

	HP Service Manager Integration Guide
	Contents
	1 Introduction
	Who should read this guide?
	Purpose of the integration
	Supported use cases
	Enabling ITIL processes
	Managing planned changes
	Managing unplanned changes
	Retrieving Service Manager ticket information
	Retrieving actual state of UCMDB CIs
	Accessing UCMDB CIs from Service Manager

	Core features
	Push
	Federation
	Population

	How CI information is synchronized between UCMDB and Service Manager
	CI information usage
	High-level components of the integration
	Relationships between integration components
	What information is stored in UCMDB?
	What information is stored in Service Manager?

	2 Integration Setup
	Integration requirements
	Upgrading your integration
	Integration setup overview
	HP Service Manager setup
	Create an integration user account
	Add the UCMDB connection information

	HP Universal CMDB setup
	Create an integration point in UCMDB
	Update the time zone and date format for the integration adapter

	Populating UCMDB with Service Manager CI data
	Define population jobs in UCMDB
	View Service Manager CI data in UCMDB
	Schedule CI population jobs

	Pushing UCMDB CI data to Service Manager
	Define data push jobs in UCMDB
	View UCMDB CI data in Service Manager
	Schedule data push jobs

	Federating SM ticket data to UCMDB
	Federation TQL queries
	Examples of using federation
	Example 1: Federate all SM Incident tickets
	Example 2: Federate SM Incident tickets that affect a UCMDB Business Service CI
	Example 3: Federate SM Incident, Change and Problem ticket data of UCMDB CIs
	Example 4: Get related SM ticket data of a UCMDB CI

	3 Multi-Tenancy (Multi-Company) Setup
	Multi-tenancy (multi-company) support
	Implementing multi-tenancy in the UCMDB-SM integration
	Mandanten SM security layer
	What multi-tenant information is stored in UCMDB?
	What multi-tenant information is stored in Service Manager?
	Unique logical names
	Synchronization of company records
	UCMDB Customer ID
	UCMDB User ID and password
	Company Code
	CI reconciliation rules
	Company information pushed to CI and CI Relationship records
	Company information replicated to incident records
	Schedule records

	Tenant-specific Discovery Event Manager (DEM) Rules
	Multi-tenancy functional use cases

	Multi-tenancy requirements
	Setting up the multi-tenancy integration in UCMDB
	Install separate data flow probes for each tenant
	Start tenant-specific data flow probes
	Configure IP ranges for tenant-specific data flow probes
	Configure multi-tenancy for population

	Setting up the multi-tenancy integration in Service Manager
	Start the process schedule
	Configure the Service Manager System Information Record
	Add tenant-specific UCMDB User ID and password values
	Add UCMDB Customer ID values to existing companies
	Synchronize existing companies from Service Manager to UCMDB
	View whether company information is in UCMDB
	Resynchronize an existing company with UCMDB
	Inactivate a synchronized company
	Reactivate an inactive company
	Add tenant-specific DEM rules

	4 Standards and Best Practices
	UCMDB-SM configuration best practices
	CI name mapping considerations
	CRG mapping
	Running Software mapping
	Switch & Router mapping

	Bi-directional data synchronization recommendations
	Push scheduling recommendations
	Scheduler time frames
	Scheduler frequency
	Push Job dependencies

	Push in clustered environments
	Dedicated Web Services
	Step-by-step cluster configuration process
	Connecting to multiple SM processes

	Initial load configurations
	Push performance in a single-threaded environment
	Implementing multi-threading
	Push performance in multi-threaded environments
	Push performance in multiple SM processes environments
	Setting up SM DEM Rules for initial loads

	Differential/delta load DEM Rules configuration
	Fault detection and recovery for push
	Duplicated logical.name issue

	Lightweight Single Sign-On (LW-SSO) configuration

	Frequently Asked Questions
	When is a new CI created in HP Service Manager?
	Can I analyze the reason for a CI deletion in SM?
	How do I monitor relationship changes between UCMDB and SM?
	What kinds of relationships are pushed from UCMDB to SM?
	What is a Root CI Node?
	What is a Root Relationship?
	What is the “friendlyType” specified in an XSLT file?
	What is the “Virtual-Compound” relationship type used in a UCMDB-SM integration query?
	When do I need the Population feature?
	Can I populate physically deleted CIs from SM to UCMDB?
	How do I keep the Outage Dependency setting of a CI Relationship in SM?
	How do I create an XSL transformation file?
	How do I use the Load Fields button to add multiple managed fields?
	What is the purpose of the <container> element in a population XSLT file?
	Can I populate sub-item deletions?
	What will happen if a population job fails or succeeds with warnings?

	Known issues and limitations

	5 Tailoring the Integration
	Integration architecture
	Integration class model
	Integration TQL queries
	TQL queries for push
	TQL queries for Actual State
	TQL queries for population
	TQL query requirements

	Service Manager web services
	Managed fields

	Service Manager reconciliation rules
	Performance implications
	Dependence on DEM rules

	Service Manager Discovery Event Manager rules
	Change the conditions under which a DEM rule runs
	Change the action the DEM rule takes
	Update the list of managed fields for a CI type
	Create custom JavaScript to open change or incident records

	Integration tailoring options
	Update the integration adapter configuration file (sm.properties)
	Add DEM reconciliation rules
	Using join tables for reconciliation
	Sequence of reconciliation

	Add Discovery Event Manager rules
	DEM rules
	Duplication rules
	CI attributes displayed in change and incident records
	Searching for change and incident records opened by the integration

	Add a CI attribute to the integration for data push
	Add the CI attribute to the UCMDB class model
	Add the CI attribute to the TQL layout
	Add the CI attribute to the Service Manager table
	Create a web service field to support the CI attribute
	Add a managed field to support the CI attribute
	Map the CI attribute to a web service field

	Add a CI type to the integration for data push
	Add the CI type to the UCMDB class model
	Create a TQL query to synchronize the CI type
	Add the CI type’s attributes to the TQL layout
	Add the CI type in Service Manager
	Create web service fields to support the CI type
	Add managed fields to support the CI type
	Map the CI type’s TQL query to an XSL transformation file
	Map the CI type’s attributes to web service fields

	Add a CI type’s relationship types to the integration for data push
	Add a push mapping entry for each relationship type of the CI type
	Create a TQL query to push each relationship type of the CI type
	Map each relationship type TQL to an XSL transformation file

	Add custom TQL queries to data push jobs
	Add a CI attribute to the integration for population
	Create a web service field to support the CI attribute
	Map the CI attribute to the web service field

	Add a CI type to the integration for population
	Create a TQL query to populate the CI type
	Map the CI type's TQL query to an XSL transformation file
	Map the CI type's attributes to web service fields

	Add a CI type’s relationship types to the integration for population
	Map each relationship type's attributes to web service objects
	Define a TQL mapping for each relationship type

	Customize ucmdb id pushback for a CI type
	Disable the ucmdb id pushback feature for a specific CI type
	Define a custom pushback web service and xslt file for a specific CI type

	Add custom TQL queries to integration population jobs
	Add an attribute of a supported CI type for federation

	6 Troubleshooting
	Troubleshooting data push issues
	Check the error message of a failed push job
	Check the error messages of failed CIs/CI Relationships in a push job
	Check the push log file
	Re-push failed CI/CI Relationship records
	Typical push errors and solutions
	TQL not configured in smSyncConfFile.xml
	Non-existing XSLT file name defined for a TQL in smSyncConfFile.xml
	Request name not found for a TQL in smSyncConfFile.xml
	Wrong Service Manager WS request name defined in smSyncConfFile.xml
	XSLT file not well formed
	Wrong UCMDB attribute name in XSLT file
	Wrong Service Manager field name in XSLT file
	Empty value for No Nulls key in Service Manager
	CI logical name truncated or CI not pushed due to logical name truncation
	Service Manager database case-sensitivity issue
	Global ID and Customer ID missing in XSLT

	Troubleshooting population issues
	Check the error message of a failed population job
	Check the population log file
	Typical error messages and solutions
	No TQL configured in smPopConfFile.xml
	Non-existing XSLT file name defined for a TQL in smPopConfFile.xml
	No “Retrieve” type request defined for a TQL in smPopConfFile.xml
	Wrong request name of retrieveKeysQueryName configured for a TQL in smPopConfFile.xml
	Wrong request name of retrieveListQueryName configured for a TQL in smPopConfFile.xml
	XSLT file not well formed
	Wrong UCMDB attribute name in XSLT file
	Wrong Service Manager field name in XSLT file
	Wrong Universal CMDB attribute Data type in XSLT file
	UCMDB CI attribute sm_id not mapped to the right Service Manager field in XSLT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Futura-Bold
 /Futura-Book
 /Futura-BookItalic
 /Futura-Heavy
 /Futura-Light
 /Futura-Medium
 /Futura-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /Symbol
 /SymbolMT
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

