
Peregrine Systems, Inc.
3611 Valley Centre Drive
San Diego, CA 92130
www.peregrine.com

Tailoring Guide
Release 1.3
September 2000

© 2000 by Peregrine Systems, Inc. 3611 Valley Centre Drive, San Diego, CA 92130 U.S.A.
All Rights Reserved. Information contained in this document is proprietary to Peregrine Systems, Incorpo-
rated, and may be used or disclosed only with written permission from Peregrine Systems, Inc. This book,
or any part thereof, may not be reproduced without the prior written permission of Peregrine Systems, Inc.
This document refers to numerous products by their trade names. In most, if not all, cases these designations
are claimed as Trademarks or Registered Trademarks by their respective companies.

Peregrine Systems is a registered trademark of Peregrine Systems, Inc.

Microsoft, Windows, and Windows NT are either trademarks or registered trademarks of Microsoft Corpo-
ration in the United States and/or other countries.

The Motive logo, Motive Communications, Motive Duet, Motive Duet Server, Motive Solo, Motive Solo
Server, Motive Support Tuner, Motive Support Portal, Motive Studio, Motive Support Desktop, Motive
ActiveLink, Motive ActiveSense, and Motive Integration Server are trademarks or registered trademarks of
Motive Communications, Inc.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Solaris is a registered trademark in the United
States and other countries licensed exclusively through Sun Microsystems. The code examples provided
herein are for illustrative purposes only and are not intended for actual customer use without additional cus-
tomization and proper testing prior to deployment.

This document and the related software described in this manual is supplied under license or nondisclosure
agreement and may be used or copied only in accordance with the terms of the agreement. The information
in this document is subject to change without notice and does not represent a commitment on the part of Per-
egrine Systems, Inc.

The names of companies and individuals used in the sample database and in examples in the manuals are fic-
titious and are intended to illustrate the use of the software. Any resemblance to actual companies or individ-
uals, whether past or present, is purely coincidental.

This edition applies to version 1.3 of the licensed program.

Contents
Contents

Introduction

About this Manual ...1-1

Organization of the Manual ..1-2

Conventions Used in this Manual..1-3

Buttons, Directories, and File Names...1-3

Get.It! Architectural Overview

High Level Architecture..2-2

Archway Internal Architecture ...2-4

Archway Requests ...2-6
Scripting ...2-8
The Document Manager ..2-10
Weblications...2-11
Contents 1

Introduction to Document Schemas

Definition of a Document Schema .. 3-1

Using Schemas in a Weblication .. 3-4

Tailoring Get.It!

Archway Architecture .. 4-1

Weblication Toolset.. 4-2

Before You Make Changes .. 4-3

File Structures.. 4-3
Application Definition File...4-4
Archway.ini Use of Packages ..4-4
Presentation Folders..4-4
Common Components ...4-5

Displaying Form Information.. 4-5
Debugging Changes .. 4-7
Where to Make the Modifications .. 4-8
Printing Forms ... 4-9

Prepare Report for Default Printer (browser directs the print spool). ...4-9
Necessary Information... 4-11
Running the wbuild Command.. 4-11

Changing Form Contents .. 4-12

Adding Form Fields.. 4-12
Data for the New Field (Scripts)...4-15

Split Frames (forms) .. 4-15
Localizing Your Changes... 4-15

Adding Fields to a Document.. 4-16
Undefined Schema Fields..4-17

Changing Script Behavior ... 4-19

Changing JScript ... 4-19

Changing Weblication Components Layout (XSL).. 4-22

When Do I Change the XSL? .. 4-22
2 Contents

Integrating a New Product with Get.It! ..4-22

Integrating a URL ...4-23
Adding a URL as a Module.. 4-23
Adding a URL as an Activity .. 4-24

Adding a New Module ..4-25

Adding a Feature from AssetCenter..4-26

Portal ..4-27
Customizing (GUI) ... 4-29
Customize.. 4-29
Copy .. 4-29
Move.. 4-29
Hide/Show ... 4-29
Remove ... 4-30

Select Content..4-30
Get.It! Weblication Components.. 4-30
Personal Utilities.. 4-31
Create New (web page)... 4-31

Change Layout...4-32
Netscape Navigator ... 4-33
Edit Preferences .. 4-34
Portal API .. 4-34
Portal Components.. 4-35
<portal-category> .. 4-36
<portal-component> .. 4-37
<plugin>... 4-37

Portal Plug-Ins..4-38

Skins and Stylesheets ..4-39
Directory Structure... 4-41
XML Usage.. 4-43
XSL (example)... 4-43
JSP (example) ... 4-43
JAVA Source Code (example)... 4-44
External JavaScripts.. 4-44
Contents 3

Production Environment.. 4-44

Tailoring Get.Answers!

Modifying the Site Definition File.. 5-2

Modifying the Hit List ... 5-3
Hiding a Hit List Column ..5-3
Including the Path Name with the Title ..5-4

Adapters

ServiceCenter Adapter... 6-2

Archway.ini Parameters... 6-2

ServiceCenter Event Handling... 6-2
Using the _event parameter...6-3

Troubleshooting the ServiceCenter Database Connection.. 6-4

AssetCenter Adapter.. 6-5

INI Parameters... 6-5
Troubleshooting the AssetCenter Database Connection... 6-7
AssetCenter Feature Links .. 6-7

JDBC Adapter ... 6-9

Adding a JDBC Adapter... 6-10
Verifying the System DSN ...6-10
Updating the Archway.ini File ..6-12
Validating the JDBC Adapter Connection ..6-13

Adding the New Database Settings ... 6-14
Updating the Admin.xml File ..6-14

Creating an Interface to the Database... 6-16
Preventing Lost Connections... 6-17
Calling a Stored Procedure.. 6-18

Using a URL...6-18
Using a JScript...6-18
Using a Document Insert Or Update..6-19

LDAP Adapter ... 6-20

Connecting LDAP to Get.It! ... 6-20
4 Contents

Updating the archway.ini file ..6-21

E-mail Adapter...6-21

Verifying Adapter Connections ...6-24

Log Files ..6-25

Localization Support

General Localization Steps ..7-1
Archives ...7-2

Externalizing ECMAScript Messages..7-2

Externalizing ECMAScript
Messages with Variables..7-3

Externalizing Messages in XSL Templates ..7-3

Japanese Locale ...7-4

Troubleshooting

Weblication...8-1

Weblication Reference

Weblication Structure .. A-1

Weblication Tags ... A-2

<application>... A-2
<module> .. A-3
<activity> ... A-4
<form>... A-6
<redirect> .. A-8
component .. A-9
form fields ... A-10
<fieldtable>.. A-11
<action> .. A-14
TARGET.. A-16
Contents 5

TEXT..A-17
$$(X) ..A-18
<menu>..A-18

Link Attributes ... A-19
<table>...A-20

Column Types... A-21
<columns> ...A-23
<listbox> ..A-24
<field> ..A-25
<input>...A-26

<input> (Text Field) ... A-27
<input> (Text Area) ... A-28
<input> (Combo/Selection Box) .. A-28
<input> (Checkbox)... A-29
<input> (Radio) ... A-30
<input> (Hidden) ... A-31
<input> (Date) ... A-32
<input> (Money) .. A-32

<link> ...A-33

Reusable Form Components (Subforms) ..A-33

Additional Tags...A-35

<html>..A-35

Additional Functionality...A-35

Searchable Popup Window ...A-36
Defining New Popup Windows.. A-36

Document Schema DTD

Document Schema Files ..B-1

Schema Attributes..B-2

<document>...B-2
Nested <document> Tags ...B-2
<attribute>..B-3
<collection>..B-5
ServiceCenter-Specific Attributes ..B-5
6 Contents

JavaScript

Script Polling Manager .. C-1
File Initialization Format.. C-1
Writing A Polling Routine.. C-2
Sample Polling Scripts.. C-2

Read History Array.. C-3
Extract URL Argument .. C-3
Searchable Popup Window... C-4

Passing External JavaScript... C-5

 Index
Contents 7

8 Contents

Chapter 1
Introduction
Peregrine Systems’ Get.It! product suite is a line of employee self-service applications.
The Get.It! applications empower employees to help themselves to functions once requir-
ing numerous e-mails, phone calls, inter-office correspondence, and paperwork to com-
plete. For example, the Get.Resources! application streamlines the MRO procurement
cycle by drastically reducing cost and time while simultaneously increasing employee
productivity and satisfaction.

Get.It! applications are accessible on the corporate intranet via web browsers. The user
interface, a best of the web experience, is role-based and you can tailor it to meet your
needs.

Get.It! applications benefit organizations both by freeing employees from time-consuming
tasks and by automating inefficient processes such as procurement, service, and searching
for answers to common questions.

About this Manual
The Get.It! Tailoring Guide describes the underlying architecture of Peregrine Systems’
Get.It! applications and how to tailor the applications to suit your needs.

The Get.It! Tailoring Guide is used with several other manuals, which are:

• Operating guides, reference manuals, and other documentation for your PC hardware
and operating software.

• The Get.It! Installation Guide which describes how to install and configure Get.It! on
both a Windows and Solaris server.

• The Get.It! Administration Guide which describes the administration functions of
Get.It! including the Administration Module and user ID maintenance.

• The Get.It! online help and documentation, located in the ...\Program
Files\getit\docs directory.

• JRun documentation located in the ...JRun\docs directory.

To use this manual effectively, you should have a working knowledge of XML and java
scripting.
Get.It! Tailoring Guide 1-1

Organization of the Manual

This manual is organized around the main functions associated with tailoring Get.It!. The
following chart shows you which parts of the manual you need to reference to find the
information you need.

To Find This Look Here

Background information; how to use this manual. Chapter 1: Introduction

Information about the Archway Architecture; archway
requests; scripting; the Document Manager; basic
information about weblications.

Chapter 2: Get.It! Architectural
Overview

Introduction to document schema definitions;
definition of a document schema; and using a schema
in a weblication.

Chapter 3: Introduction to Document
Schemas

Steps on how to tailor Get.It!; what to do before you
change anything; where to save your changes;
changing scripts; changing schemas; changing
components of a weblication; integrating a new
module into Get.It! Also explains the new portal
interface and how to modify it.

Chapter 4: Tailoring

Explains how to use Get.Answers! Chapter 5: Get.Answers!

Information about the Get.It! adapters, including
instructions for connecting to a database using the
JDBC adapter.

Chapter 6: Adapters

There are five compatible languages: English, French,
German, Italian, and Japanese.

Chapter 7: Localization

The weblication structure; descriptions of individual
elements and attributes (tags) used in documents;
reusable form components.

Appendix A: Weblication Reference

Document schema files; schema attributes; tags you
can use in schemas.

Appendix B: Document Schema DTD
1-2 About this Manual

Conventions Used in this Manual
Most screen shots in this manual come from the Windows version of Get.It!. The action
you should take on the window is usually explained in the step below the sample. Pay spe-
cial attention to text, or notes, next to a screen shot. For example:

Note: Make sure your form statistics are displayed. See “Showing Form Information” on
page 4-3 for instructions.

All screens in this manual are for sample purposes only. They are shown in the Classic
stylesheet.

Buttons, Directories, and File Names

The following conventions are used when describing buttons on the windows, paths for
directories, and file names.

• Buttons you click on are shown in bold such as “Click Next.”

Fig. 1.1 Adding a Field to a Form.
Introduction 1-3

• Directory paths are shown in Courier New font, such as C:\Program
Files\getit\. The directories used in this manual are the default directories
assigned during the installation. If you change the directory into which you install
Get.It! or JRun, take note of the correct directory and replace the default path with the
one that is correct for your system.

• File names are shown in Courier New font, such as login.asp.

• When showing XML codes in the samples, “...” is often used to signify that some of
the lines have been removed because they are unnecessary to the topic. Samples of
code are not entire files but they are representative of the information being discussed
in that section.
1-4 Conventions Used in this Manual

Ge
Chapter 2
Get.It! Architectural Overview
This document introduces the architecture behind Get.It!, Peregrine Systems’ product
suite that includes applications such as Get.Resources!, Get.Answers!, and Get.Service!
The Get.It! suite is built on top of the Archway architecture. This architecture offers a sim-
ple and extensible way of creating new applications and interfacing with Peregrine Sys-
tems existing systems, including AssetCenter and ServiceCenter.

The architecture has been designed with specific goals:

• Offer services to everyone in an organization

• Offer access everywhere users need it

• Offer support related to everything in the infrastructure that helps employees get things
done

These goals mean that the Get.It! architecture is designed to make services available to
users through common interfaces like web browsers, handheld computing, and even
mobile phones. The applications are designed to provide a wide range of services, from
helping a user with a PC problem, to allowing the creation of a purchase request, to report-
ing a problem with the employee's office space. Peregrine Systems Infrastructure Manage-
ment applications offer many of these services, and the Get.It! suite makes the services
available to everyone, everywhere.
t.It! Tailoring Guide 2-1

High Level Architecture
Get.It! applications and interfaces are implemented using basic building blocks that
include:

The following diagram illustrates the architecture:

HTTP A simple and widely supported protocol for sending client requests to a
server. Variations such as HTTPS provide security as well.

XML This rising technology is a very natural way to represent data rich
documents.

Commercial web
servers

The services provided by the Archway architecture can be served from
any commercial web server, including IIS, Apache, Netscape Enterprise
Server, or the Java Web Server.

Common clients Applications can be built to be deployed via web browsers (IE,
Netscape), handheld devices (Palm Pilot), or mobile phones (through
HDML).

Fig. 2.1 The architecture

Archway
(XML, Query,
Events, db)

Adapter

Adapter

Adapter

Adapter

Adapter

Browser

Palm

Phone

Web Server
(IIS, Apache, Netscape, etc.)

Templates
(JSP/ASP)

ServiceCenter

Rome

FacilityCenter

AssetCenter

FleetAnywhere

DatabaseJDBC Adapter
2-2 High Level Architecture

At the center of the architecture is a component named Archway. This component is
designed for a simple purpose: it listens to HTTP requests from arbitrary clients, routes the
requests to an appropriate server, and returns data or documents. The requests supported
by Archway can vary, but they fundamentally consist of queries, data updates, or system
events.

For example, a client can contact Archway and ask to query ServiceCenter for a list of
tickets. Another client could contact Archway and supply it with a new purchase request
that should be entered into AssetCenter's database. Yet another client could contact Arch-
way to open a new problem ticket through an Event Services event (e.g., a PMO).

All requests and responses are formatted using XML (Extensible Markup Language).
XML provides a human readable self-describing syntax for defining documents. For
example, a problem ticket expressed in XML could appear as follows:

<problem>
<number> PM5670 </number>
<contact> Joe Smith </contact>
<description> My printer is out of paper </description>

</problem>

Clients that interact with Archway can do anything they need with the XML that is
returned as a response. Very frequently, the client initiating the request is a user interface
such as a web browser. Such a client could easily display the XML documents returned by
Archway. However, to be of better use, the XML documents are often displayed within a
formatted HTML page. This is accomplished by using popular and commercially sup-
ported technologies such as Microsoft's ASP (Active Server Pages) or Java's JSP (Java
Sever Pages).

Both JSP and ASP provide a syntax for creating HTML pages that is pre-processed by the
web server before being sent to the browser. During this processing, XML data obtained
from Archway is merged into the HTML page. Later in this document we introduce the
related concept of a weblication. A weblication is a term used to refer to an application
running on the web. Archway's architecture includes special support for automatically
generating the pages (i.e. HTML, JSP) that make up a weblication.
Get.It! Architectural Overview 2-3

Archway Internal Architecture
The internal design of Archway is simple and very flexible. Archway is implemented as a
Java servlet—a Java application that is executed by a web server. HTTP requests sent to
the web server are forwarded to the Archway servlet for processing. When the processing
is done, the web server returns the output generated by Archway.

Each request is interpreted to determine its destination. Specifically, Archway is able to
communicate with a variety of back-end systems like AssetCenter or ServiceCenter.
Requests can be handled in one of three ways:

1. A request can be sent directly to an adapter that talks to a back-end server. For
instance, a query request for opened tickets could be forwarded to an adapter capable
of communicating with ServiceCenter.

2. A request can be sent to a script interpreter hosted by Archway. This is a very
powerful feature. It allows Peregrine Systems and customer developers to define their
own application specific services. Within a script, calls can be made back to Archway
to access the back-end system with database operations and events.

3. Finally, a request can be sent to a component known as a Document Manager. This
component provides automated services for combining logical documents.
2-4 Archway Internal Architecture

The following diagram illustrates the internal Archway architecture.

Archway communicates with back-end systems with the help of specialized adapters that
support a predefined set of interfaces for performing connections, database operations,
events, and authentication. All adapters use DLLs to communicate with each application.

Messages can be routed to a script interpreter hosted by Archway. The interpreter supports
ECMAScript. JavaScript (Netscape) and JScript (Microsoft) were both created based upon
the original ECMAScript language.

Messages can be routed to the Document Manager component. This component reads spe-
cial schema definitions that describe application documents for logical entities such as a
Purchase Request, Problem Ticket, or Product Catalog. The Document Manager uses
these schemas to automatically generate database operations that query, insert, or update
such documents.

Fig. 2.2 Archway’s internal architecture

Archway

Script Runner Adapter

Schema

Doc Manager

Schema

SC Adapter

DatabaseDatabase

JSJS

AC Adapter JDBC Adapter
Get.It! Architectural Overview 2-5

Archway Requests

Archway supports a variety of requests, all of which are based on two basic technologies:
HTTP and XML. The HTTP protocol defines a simple way for clients to request data from
a server. The requests are stateless and a client/server connection is maintained only dur-
ing the duration of the request. All this brings several advantages to Archway, including
the ability to support a large load of requests with the help of any of today's commercial
Web Servers.

Another important advantage is that any system capable of making HTTP requests can
contact Archway. This includes web Browsers, of course. But in addition, all modern pro-
gramming environments support HTTP. This makes it very simple to write new adapters
that communicate with Peregrine Systems servers without the need of specialized APIs.

From a simple point of view, an HTTP connection consists of:

• A client request

• A server response

The messages exchanged normally have a number of header lines and some content lines.
For this discussion, let’s focus on two principal parts of a request:

Archway uses the query string of a request to determine what it has been asked to do. The
following query string syntax is expected:

archway?target.command¶m=value¶m=value&…

Query String This represents the parameters sent along with the URL for the HTTP
connection.
For instance, consider the following URL:
http://prgn/archway?hello&world. This URL is made up of
a server locator (http://prgn/archway) and a query string
(hello&world).

Content A request can also include an arbitrary amount of data appended to the
request. This data could follow any format, but for Archway, the data is
always formatted as XML.
2-6 Archway Internal Architecture

Let's consider each part of the request.

The following are some sample URLs that illustrate the power of contacting Archway
with HTTP requests that return XML documents. These samples are intended as an intro-
duction.
archway?sc.query&_table=probsummary&priority.code=1

This sends a query request to ServiceCenter for all records in the probsummary table with
a priority code of 1.

archway?ac.query&_table=amProduct&_return=Brand;mPrice;Model&_coun
t=2

This sends a query request to AssetCenter for the first two records in the amProduct table.
Only the Brand, mPrice, and Model fields are returned for each record.

archway?sc.pmo&contact.name=David+Baron&$ax.field.name=This+is+a+d
emo

The sample above creates a new ticket in SC by sending a pmo request with two parame-
ters.
archway?test.helloWorld&greeting=Hello

This sample sends a helloWorld request to a script object named test.

You could try URLs like these from a web browser to see first hand how the Archway
requests work. The figure below illustrates this by showing the XML results of a query for

Target The name of a target object that should handle the request. Remember
that Archway's job is to forward requests to a system and return the
response. Thus, the target could be ServiceCenter, AssetCenter, etc. As
we will see, the target may also be the name of a Script Object that
contains customizable logic for handling the request.

Command The command describes the action that the target object should take. By
default, there are five basic actions that may be supported: query,
update, insert, delete, and event. However, when the target is a Script
Object, the action can be any function defined by the script.

Param=Value An arbitrary number of parameters can be passed along with the
request. The encoding of these parameters is the same as that used by
CGI (the Common Gateway Interface). This makes it seamless to make
Archway calls from a web page. As with CGI, data sent by a browser is
provided by fields embedded in an HTML form. This data is
automatically formatted as a CGI request in a way that Archway
understands.
Get.It! Architectural Overview 2-7

products from AssetCenter.

Scripting

A great deal of Archway's flexibility and power comes from its support of the ECMAS-
cript language. This enables application developers to define arbitrary code that handles
client requests. ECMAScript is a standard version of the language originally made popular
by Netscape (JavaScript) and later adopted by Microsoft (JScript).

ECMAScript is a very powerful language, but it allows for simple tasks to be accom-
plished in a simple manner. Its syntax is similar to that of Java, and yet traditional JavaS-
cript is not Java. While this is true, one interesting aspect of Archway's ECMA support is
that it includes the ability to access any arbitrary Java object. This makes Archway scripts
even more powerful since they have all the power of Java available within the easy pro-
gramming syntax of ECMAScript.

It is beyond the scope of this document to describe all aspects of ECMAScripting. One
reason for adopting this language is that it is standard, well known, and widely docu-
mented. Numerous references and guides exist for the language. To start, the ECMA web
site can be located at http://www.ecma.ch. A good book with very comprehensive lan-
guage description and references is JavaScript - The Definitive Guide by David Flanagan
(O'Reilly).

ECMAScript, JavaScript, and JScript tend to vary in some way or another. This is espe-
cially true in the APIs for what is known as Client Side JavaScript. This is the type of
scripting supported by a browser to allow dynamic manipulation of what gets displayed

Fig. 2.3 Testing URLs from a web browser
2-8 Archway Internal Architecture

within a web page. However, none of this really matters in the context of Archway. Arch-
way uses what is known as Core JavaScript. This is the subset of the language that is inde-
pendent of any client side (Browser) features. Archway executes all script code on the
server while processing a request. When the script is done executing, its response is sent
back as XML to the client.

Much of the ability to write useful scripts comes from a very small set of Scriptable
Objects that are supplied with the Archway architecture. Two of the main objects provided
are:

Below is a sample ECMAScript that illustrates the ease of programming provided by these
objects. The script executes a query against AssetCenter:
function getCatalog(msg)
{

var msgProducts;
msgProducts = archway.sendQuery(

"ac", "SELECT Brand,mPrice FROM AmProduct", 0, 10);
return msgProducts;

}

Here is another sample script that sends a PMO event to ServiceCenter:
function getCatalog(msg)
{

var msgEvent;
var msgResponse;

msgEvent = new Message("pmo");
msgEvent.set("contact.name", msg.get("UserName"));
msgEvent.set($ax.field.name, msg.get("Description"));
msgResponse = archway.sendEvent("sc", msgEvent);

return msgResponse;
}

These examples are shown to demonstrate the basic concept of scripting in Archway.
Details on script design and the Object interfaces that they may use are documented in
Chapter 3, "Introduction to Document Schemas."

Messenger This object allows any script to send messages back to Archway. For
example, through the messenger, a script can ask Archway to send a
query to AssetCenter or an event to ServiceCenter.

Message This object encapsulates XML documents in a very easy to use API.
With this object, scripts can very easily build and interpret complex
XML documents.
Get.It! Architectural Overview 2-9

The Document Manager

The Archway uses XML to exchange data and documents between clients and the sup-
ported back-end systems. Fundamentally, the XML data returned by Archway is obtained
by executing queries against one or more systems. The queries could be executed by a
direct URL request or indirectly within an ECMAScript.

Simple queries are only capable of returning record sets of data. However, clients are
more often interested in exchanging documents. A Document is a logical entity built up of
several pieces of data that can come from various physical database sources. For example,
consider a Product document. Products have a number of individual fields such as Price or
Brand. They also may have collections of other related documents, such as a collection of
Vendors. Below is sample XML for a Product document:
<product>

<brand> IBM </brand>
<model> ThinkPad 770 </model>
<price> 1250 </price>
<vendors>

<vendor>
<name> Best Buy </name>
<phone> 267-8967 </phone>

</vendor>
<vendor>
<name> Super City </name>
<phone> 267-8967 </phone>

<vendor>
</vendors>

</product>

Building such a Product document can certainly be accomplished by running several que-
ries and putting the results together in an XML message. An ECMAScript is a perfect
place to code such logic.

However, there is an even better way to build documents with the use of Archway's Docu-
ment Manager. This component provides the very important service of processing logical
Document Schema Definitions and automatically generating queries or database opera-
tions to create and process these documents.

Here is a small example of a document schema that defines what Product documents
should look like:

<document name="Product">
<attribute name="Id" type="num"/>
<attribute name="Brand" type="string"/>
<attribute name="Model" type="string"/>
<attribute name="Price" type="money"/>
2-10 Archway Internal Architecture

<collection name="Suppliers">
<document name="Supplier">

<attribute name="Name" type="string"/>
<attribute name="Phone" type="string"/>

</document>
</collection>

</document>

Note: The principal concept to notice is that a document schema describes the fields and
collections that make up a document. The details on how to construct document
schemas are documented in Chapter 3, "Introduction to Document Schemas.".

The Document Manager can be accessed with direct URL calls to Archway, as well as
from ECMAScripts. Here is a sample script that retrieves Product documents:
function Product(msg)
{

return archway.sendDocQuery("ac", "Product", msg);
}

Weblications

So far we've described architecture components that make up the plumbing of Get.It!
applications. If an application is to be deployed on a web Browser, there remains one
piece that must be defined to create the application: the screens and the flow for navigat-
ing among them.

Web Browsers display screens defined in HTML. The screens can contain data retrieved
from the server, and they may also provide entry fields for sending input data back to the
server.

To understand how Archway fits in with the creation of browser interfaces, let's start by
considering the example of setting up a web page that lets a user create a new Service-
Center ticket. Defining this page in HTML might appear as follows:
<form action="http://prgn/archway?sc.pmo" method="GET">
<input type="text" name="contact.name">

<input type="text" name="$ax.field.name">

<input type="submit" value="Open"/>
</form>

Even if you are not familiar with HTML, the code above should be simple to understand.
The first line defines an HTML form. All forms have an action property that tells the
browser where to send the data typed in by the user. In this case, we see that data will be
sent to http://prgn/archway?sc.pmo. The next two lines contain input fields, each
associated with a named field: contact.name and $ax.field.name.
Get.It! Architectural Overview 2-11

In essence, the HTML above sends a pmo message to ServiceCenter though Archway.
The data typed into the entry fields are passed in as PMO parameters.

What about using HTML to display data retrieved via Archway? As mentioned earlier,
Archway is designed to return XML documents that can be merged into an HTML page
using technologies such as JSP or ASP. Below is a sample snippet of JSP that sends Arch-
way a query for ServiceCenter tickets and displays the results in an HTML table.
<html>

<table>
<%
Message msg = messanger.sendQuery(
"SELECT number,brief.description FROM probsummary");
List list = msg.getList("probsummary");
for (int iCurrent = 0; iCurrent < list.getLength(); iCurrent++)
{
%>
<tr>

<td> <%= list.get(iCurrent, "number") %> </td>
<td> <%= list.get(iCurrent, "brief.description") %> </td>

</tr>
<%
}
%>

</table>
</html>

The code above is basically an HTML page with Java code mixed in. The Java code uses a
few objects defined by Archway. These are shown in bold, and they include a messenger
that talks to Archway, a message class that encapsulates XML responses, and a list object
that allows easy navigation of a result set.

While these two samples of code are interesting to understand, it is not necessary to learn
much if anything about HTML, JSP, or ASP development to write a Weblication with
Archway. This is because Archway provides some additional tools that automatically gen-
erate the underlying HTML and JSP code that makes up an application.

Before introducing these tools consider the following. Below is a screenshot of a page in
2-12 Archway Internal Architecture

Get.Resources. The page shows a table with results from a catalog search.

.

This page is part of a Get.It! weblication. As such, it conforms to a predefined template
that determines a regular layout and placement of several components within a browser
page. The actual template is customizable, and therefore not all Weblications have to look
as the one pictured above.

The creation of the page above is made possible by three ingredients:

1. XSL Layout templates - These templates define the layout and organization of items
in a web page. They are defined using the Extensible Stylesheet Language (XSL).
This is an XML based language that is becoming more and more widely used to
format Web pages out of XML data. Out of the box, Peregrine Systems may supply
one or more XSL templates. Customers could choose among templates in a similar
way that tools like Microsoft Word or Powerpoint allow writers to choose from
predefined document types or templates.

To learn more about XSL, you can consult the W3C web site. Their XSL
specification is found at http://www.w3.org/TR/1999/WD-xslt-
19990421.html. Microsoft also posts information on XSL at
http://msdn.microsoft.com/xml/xslguide/.

Note: Microsoft's XSL support varies slightly from the W3C specs. Therefore, consult
the W3C specs for the most accurate information. Because Archway's support for
XSL is implemented on the server, browser support is not necessary or relevant.

Form Title

Form
Contents

Application
TItle

Activities

Actions

Fig. 2.4 Sample Get.It! Weblication window
Get.It! Architectural Overview 2-13

2. Cascading Style Sheets (CSS) - All aesthetic aspects of a web page are defined
separately in a CSS file. This includes specifications for colors, fonts, alignment
rules, and even some special effects.

3. Weblication Definition - The actual application specific portions of a weblication are
defined using a concise high level XML description.

Defining weblications in this manner has several advantages. First, it is much simpler than
having to hand code numerous HTML and JSP pages. Second, it makes it easy to define a
consistent look and feel to a web site. A simple change to a template is quickly propagated
to what could be hundreds of page files. Finally, the pages created automatically for a
weblication include a number of features to deal with user authentication, security, access
rights, and session tracking.

To illustrate this further, here is the XML weblication description for the form displayed
above:
<form name="catalog" onload="procure.getCatalog">

<title> Get.Desktop </title>
<instructions>
Here are the items found in this category. You may click on any
one to see a detailed description, or you may simply enter a
count to add items to your order.

</instructions>
<table record="Product" rows="10">

<link target-form="product" field="Id"/>
<column label="Count" field="nCount" type="select"/>
<column label="Brand" field="Brand"/>
<column label="Model" field="Model"/>
<column label="Price" field="Price"/>

</table>
<actions target-activity="review">

<submit name="bTable"> Add to shopping cart </submit>
<back/>

</actions>
</form>

Just this small amount of XML is responsible for almost the entire window in figure 2.4.
An Archway tool parses this definition and generates the necessary HTML and JSP code
that creates proper input to the browser. Compare this to the JSP and HTML code shown
at the top of this section, and it is quickly evident that the weblication approach provides a
much simpler way to define applications.

There are a few things worth highlighting in this XML definition. First notice that the
form has an onload property. It specifies that when constructing the page, an Archway
script named getCatalog should be invoked. This script is defined to return Product docu-
ments.

For instance, each product could have the following XML definition:
<Product>

<Brand> X </Brand>
<Model> Y </Model>
2-14 Archway Internal Architecture

<Price> Z </Price>
</Product>

This XML data is easily incorporated into the HTML page. The form defines a table ele-
ment that references fields in the XML Product description, and Archway takes care of
generating the proper code to extract the fields from the XML documents.

Again, this is just an introduction to the concept of a weblication. This is probably the
most important part of the Archway architecture to understand because it is directly
related to the ability to customize the Get.It! applications or to define new ones. Details on
the weblication definition language are documented in Appendix A, "Weblication Refer-
ence." In addition, related information can be found in Chapter 4, "Tailoring Get.It!."
Get.It! Architectural Overview 2-15

2-16 Archway Internal Architecture

Ge
Chapter 3
Introduction to Document Schemas
The Archway Document class provides Archway weblications and scripts with the service
of processing logical Document Schema Definitions and implementing the physical data-
base access operations for querying and constructing documents.

For example, consider a "Product" document. Products have a number of individual fields
such as "Price" and "Brand." They also have collections of other sub-documents such as a
collection of "Vendors."

The queries that create a document vary depending on the physical schema of the system
hosting the "Product" data (such as AssetCenter and ServiceCenter). To understand how
to construct these queries, the class reads an XML "Document Type Definition" (DTD)
file.

The DTD file contains Base Document Definitions that define the fields, collections, and
nested documents that make up a logical Document.

In addition, the DTD file defines Derived Document Definitions with physical database
schema information for building a base document out of data found in a specific system
(such as AssetCenter and ServiceCenter). A Derived Document Definition may define
physical table and field information for some (but not all) of the fields in a Base Docu-
ment.

Definition of a Document Schema
A document is defined as a collection of one or more Attributes. Each attribute is a "field"
in the document. For example, a Product document may have a Price attribute, zero or
more nested Documents. This allows documents to be nested inside each other recursively
for zero or more nested Collections. A collection is a Document attribute which in turn has
a list of one or more nested documents. For instance, a Product may have a Suppliers col-
lection with one or more Supplier documents.

The following is an example that demonstrates most elements of the XML schema for
defining documents:

<documents name="base">

<!-- Product Document -->
t.It! Tailoring Guide 3-1

<document name="Product">
<attribute name="Id" type="num"/>
<attribute name="Brand" type="string"/>
<attribute name="Model" type="string"/>
<attribute name="Price" type="money"/>

<!-- Here is an example of a nested document reference -->
<collection name="Suppliers">
<document name="Supplier"/>

</collection>
</document>

<!-- Supplier Document -->
<document name="Supplier">

<attribute name="Name" type="string"/>
<attribute name="Price" type="money"/>

</document>

</documents>

The following is a more complete sample XML DTD of a Product document. The sample
shows some additional, important concepts such as:

• Schemas are organized into "base" and "derived" versions. In the examples that follow,
the first is a base schema and the second is a derived schema.

• Derived (system specific) schemas map to a specific system and are used to generate
queries. A derived schema must map to a system from which the information will be
accessed.

• Nested documents can be defined in place or as references.
3-2 Definition of a Document Schema

<?xml version="1.0"?>

<!--===
Name: schema.xml
Author: David Baron
Date: 10/99

==-->

<schema>

<!--===
Generic Schema Definitions

==-->

<documents name="base">

<!-- Product Document -->
<document name="Product">

<attribute name="Id" type="num"/>
<attribute name="Certification" type="string"/>
<attribute name="Category" type="string"/>
<attribute name="Brand" type="string"/>
<attribute name="Model" type="string"/>
<attribute name="Comment" type="string"/>
<attribute name="Price" type="money"/>
<attribute name="Description" type="string"/>
<attribute name="PhotoId" type="number"/>
<attribute name="IconId" type="number"/>

<!-- Here is an example of a nested document reference -->
<collection name="Suppliers">

<document name="Supplier"/>
</collection>

<!-- Here is an example of a nested document definition -->
<collection name="Stocks">

<document name="Stock">
<attribute name="Name" type="string"/>
<attribute name="Quantity" type="string"/>

</document>
</collection>

</document>

<!-- Supplier Document -->
<document name="Supplier">

<attribute name="Name" type="string"/>
<attribute name="Price" type="money"/>
<attribute name="Delivery" type="time"/>
<attribute name="Available" type="number"/>
<attribute name="URL" type="url"/>

</document>

<!-- Catalog Document -->
<document name="catalog">

<collection name="Products">
<document name="Product"/>

</collection>
</document>

This is an example
of a referenced
nested document.

This is an example of
a nested document in
place.

In a “base” schema
the document is
defined within the
schema.
Introduction to Document Schemas 3-3

Using Schemas in a Weblication
In using Document and Schema support, "document" type archway messages are available
to ECMAScripts. Here is a script that queries for a list of Product documents (sendDoc-
Query):
function getCatalog(msg)
{

<!--===
AssetCenter Schema Derivations

==-->

<documents name="ac">

<!-- AC Product Document -->
<document name="Product" table="amProduct">

<attribute name="Id" path="lProdId"/>
<attribute name="Catergory" path="Category.Name"/>
<attribute name="Comment" path="Comment.memComment"/>
<attribute name="Price" path="mPrice"/>
<attribute name="PhotoId" path="lPhotoId"/>
<attribute name="IconId" path="lIconId"/>
<attribute name="Description" path="cf_Description"/>

<collection name="Stocks">
<document name="Stock" table="amProdStockLine">

<attribute name="Name" path="Stock.Name"/>
<attribute name="Quantity" path="lTotalQty"/>

</document>
</collection>

</document>

<!-- Supplier Document -->
<document name="Supplier" table="amProdSupp">

<attribute name="Name" path="Supplier.Name"/>
<attribute name="Price" path="mPrice"/>
<attribute name="Delivery" path="tsDelivDelay"/>
<attribute name="Available" path="lQtyAvail"/>
<attribute name="URL"

path="Product.fv_ManufacturerURL"/>
</document>

</documents>

<!--===
Done

==-->
</schema>

In a derived schema,
the document is cre-
ated by information
which is accessed from
another system. In this
example, the data will
be accessed in the
“amProduct” table from
within AssetCenter.
3-4 Using Schemas in a Weblication

return archway.sendDocQuery("ac", "Product", msg);
}

The DocumentManager also supports SQL-like queries. For instance, you can query as in
the following example:

archway.sendDocQuery("ac", "SELECT Brand,Description FROM Product
WHERE Category='Desktop'ORDER BY Brand", 0, -1);

You can also accomplish Document querying in the following manner:
msgParam.set("_return", "Brand;Description");
msgParam.set("Category", "Desktop");
msgParam.set("_sort", "Brand");
archway.sendDocQuery("ac", "Product", msgParam, 0, -1);

Use the SQL queries sparingly, especially in a weblication, because this method defeats
one of the main purposes for setting up the DocumentManager. In a weblication setting
you do not want hard-coded queries in your scripts. All fields that go in the msgParam are
served for us by the weblication forms. This makes tailoring much easier. However, for
certain script situations, the new syntax offers some coding comfort. Other calls include
sendDocInsert and sendDocUpdate. See the Messenger API for details.

The document object works together with data provided by wbuild to do the following:

• Automatically create all queries that comprise a document.

• Use parameters passed into a script to filter the resulting Document result set. For
instance, to search for Products with a particular Brand, Model, or Certification, the
calling weblication needs a form with Brand, Model, or Certification fields. These are
automatically added to the query if they are applicable to the document search.

• While wbuild generates forms from an XML weblication, it builds a list of document
fields used by the form. This list is passed to the document search, allowing the
Document class to limit the queries to those fields that will be used. This is very
significant as it can eliminate the need for numerous sub-queries.
Introduction to Document Schemas 3-5

3-6 Using Schemas in a Weblication

Ge
Chapter 4
Tailoring Get.It!
The Get.It! applications provided by Peregrine Systems are designed to be functional out-
of-the-box. However, you may want to customize and tailor the applications to better fit
your company's needs.

You can tailor Get.It! to do almost anything you need. The types of tailoring include
things such as:

• Changing the wording or labels in a form

• Adding or removing fields on a form

• Adding fields to the Documents exchanged with the system

• Changing the behavior of a script

• Changing the layout of a weblication

• Adding or removing modules

• Translating your modifications into the supported languages

This chapter describes how to customize individual features of the weblications appear-
ance and performance. It guides you through these different scenarios and provides sev-
eral examples.

Archway Architecture
The Archway architecture is designed to accommodate the types of tailoring mentioned
above.

Before you tailor Get.It!, we highly recommend you have an understanding of the arch-
way architecture. See “Get.It! Architectural Overview” on page 2-1 for explanations of
several concepts and terms that are used throughout this chapter. For a description of the
weblication tags, see Appendix A, "Weblication Reference," at the back of this manual.
t.It! Tailoring Guide 4-1

Weblication Toolset
Before doing any customization, you may want to review the various ingredients that
make up a weblication. See Chapter 2, "Get.It! Architectural Overview," for an introduc-
tion to weblications.

The components listed here play different roles in the overall weblication definition. The
deployment of a weblication requires a compilation step that takes all of the ingredients
and generates a set of web pages that are installed into a web server directory:

Weblication XML
Definitions

The XML files that define application modules, activities, and forms.

Archway ECMA
Scripts

ECMA script files that implement application specific behavior.

Document Schema
Definitions

The XML definitions that describe the data that should be queried or
updated to create XML documents that can be interchanged with
Archway by a client such as a Weblication.

Stylesheets The colors and fonts used for pages in a Weblication.

Layout Templates Templates that define the layout and component construction rules for
creating pages in a Weblication.

WBUILD The executable tool used to create a Weblication.

Before you make
changes to the
weblication, use the
Admin Module to set
“Debug scripting” in
the General Execu-
tion Settings and
“Show form info” in
the Weblication Set-
tings to true.

When you make changes to a Weblication definition, you need to re-generate the web pages by
running wbuild application from a command prompt at the directory ...getit/bin/.

(XSL)

(CSS)

Fig. 4.1 The Weblication toolset at work
4-2 Weblication Toolset

Before You Make Changes
Since the source for the weblication is provided with the product, you can make any
changes you want to the Get.It! weblication. Before you start to modify Get.It! there are a
few items you will need to know and set regardless of the change you are making. These
tips make the process of modifying Get.It! much easier.

File Structures

The files that are used to build the Get.It! weblication are stored in the ...getit\apps
directory. The XML files, schemas, and scripts used to make up the weblication page are
grouped by application within this directory into packages. These packages make it easy
for you to determine which files, schemas, and scripts are used for each application.

Each package contains the XML files, schemas, and
scripts that make up the application. The common
folder holds the files that are used in more than one
application.

The following folders are created for each applica-
tion package. Some packages also contain folders
that are specific just to that application.

jscript = The script files for the applica-
tion.

presentation = Common browser-side presen-
tation files. Most presentation
files are generated by the
wbuild command and are not
stored in source control.

schema = The schema files for the appli-
cation.

weblication = The XML files that make up the
application.

Store all changes you make in the .../getit/apps/user/
folder. Changes to the XML files should be stored in
the weblication folder within the user directory, and
changes to schemas should be stored in the schema
folder.
Tailoring Get.It! 4-3

Application Definition File
Applications are defined within a file that lists the packages that should be included for
deployment. All applications are pulled together in the getit.xml file:

<application name="e" home="portal">
<title> Get.It! </title>

<modules>

<!--===
List of packages imported by this deployment configuration.
The "contents" attribute is optional: when specified it helps
determine the order in which content module files are included. When
not specified, all files found in a package folder are included in
alphabetical order.
==-->

<package name="common" />
<package

name="resources"contents="request;status;approve;receive"/>
<package name="asset" />
<package name="service" />
<package name="b2b" />
<package name="portal" />

</modules>

Archway.ini Use of Packages
Archway requires a setting in the archway.ini file in order to support packages:

weblication=getit.xml

The “weblication” parameter tells Archway which application has been deployed. At run
time, Archway reads the application definition file to know which packages are included
in the execution. This is important because it is used by Archway to locate scripts and
schemas.

A new method, Archway.getPackages() is now available for run-time information
about packages.

Presentation Folders
The presentation folder is a placeholder that contains no checked-in files. This folder
should only contain generated files. You can define presentation folders with specific files
and images, that are not automatically generated, in the individual packages. Wbuild pulls
all presentation files into the top-level presentation folder. You should never check in
any files in this top level folder.

The application in
this file is what you
enter as the parame-
ter in the wbuild
command.

For Solaris, the file
name is getser-
vice.xml.
4-4 Before You Make Changes

Common Components
Some of the images, forms, schemas, and XML files are used more than once within the
Get.It! weblication. These common components of the weblication are stored in the
...getit\apps\common directory.

Displaying Form Information

In a weblication, a form contains detail fields for the product, including the model, brand,
list price, etc. We have created an option in the Settings activity in the Administration
Module that allows you to display the information you can use to find the form you want
to change.

If “Show form info” is set to true, three lines of information are displayed on the left of the
window as shown in the following sample:

The common folder holds the images,
scripts, presentation files, schemas,
and XML files that are used by more
than one application package.

Fig. 4.2 The common folder.
Tailoring Get.It! 4-5

Note: Module = The name of the XML file in the ...getit\apps\ directory.
Activity/Form = Use these as search criteria to locate the exact form you want to
change. The portal home page does not show form statistics.

Use the form statistics to determine the XML file you want to use in your modification,
and to search this file to find the exact form to change.

The “module” tells us which file to edit. Look in ...\getit\apps\application-

package\weblication\<module>.xml. In this sample above, the file is login.xml.
Within that file, look for <module name=“login”>. The following is the actual line you
will find:
<module name="login" access="anonymous" appmenu="false"
apphead="false">

The “Activity” tells us which activity to look for within that module. Search for <activ-
ity name=“main”>. The following is the actual line you will find:
<activity name="main">

The “form” tells us which form to edit within the activity, and the module. Seach for
<form name=“start”. The following is the actual line you will find:
<form name="start" onload="login.init">

If what you want to change is the title of the module or activity, however, the form infor-
mation you find is not what you want to change. To find where you would change the
titles, try the following method:

Fig. 4.3 Showing the forms information
4-6 Before You Make Changes

For any given <module>.xml, look at the lines immediately following the <module
name=“...”> declaration at the beginning of the file and change the data there. Look at
the request.xml file.

<module name=”request” access=”getit.requester”>
<title> Request Menu </title>
<description
image=”images/order.gif”
short=”Resources”
long=”Request supplies, hardware, and software” />

What each line tells us:
<module name=”request” access=”getit.requester”>

This tells us which named amUserRight (or ServiceCenter capability word, if you had
that) the user needs in order to access this module.

<title> Request Menu </title>

Data to show on the left hand side (in the activities) within the module.
<description
image=”images/order.gif”

Identifies the graphic to show on the main menu.
short=”Resources”

Name to use in the menu bar and on the main menu.
long=”Request supplies, hardware, and software” />

Balloon help when you hover over the short name in the menu bar.

You can change the names of the module or activity in this area of any XML file.

Now that you know how to find the form you want to modify, let’s see how you ensure the
changes you make are not removed when you apply a future release of Get.It!

Debugging Changes

We recommend you set all “debug” options in the archway.ini file to true to make it
easier on yourself to determine what is going on in the changes you make.

1. Log in to the Get.It! Administration Module by logging into Get.It! with a user ID
that has administration rights.

2. Click Admin to access the Get.It! Administration Module.

3. In the activities, click Settings.

4. In the section titled General Execution Options, enter a path and file name in the Log
file field. This is where the debug information will be put.
Tailoring Get.It! 4-7

5. Set the Debug logging option to true.

6. Set the Debug Mode option to true.

7. Click Save to save your changes (scroll down to below the settings table to find the
Save button).

8. Be sure to set these options back to false before you release your changes to your
entire user base.

You should also enter the following line into a script you are changing; it will output
debug information to the archway log file as specified in the Get.It! Administration Mod-
ule Settings. Whatever you type for String Value is what will appear in the Archway.log
file.
env.debuglog(String Value);

Where to Make the Modifications

If you change the files we send with the Get.It! weblication, your changes will be lost the
next time you install a new version of Get.It! To prevent this, a directory called “user” has
been included within the ...\getit\apps\ directory.

Within the “user” directory are three directories called “schema,” “jscript,” and “weblica-
tion.”

• If you are updating a schema, save the updated file in the schema directory.

• If you are updating a script, save it in the jscript directory.

• If you are updating an XML file, save the updates in the weblication directory.

1. Open the file you want to change. This could be a schema file, an application file, or a
script.

2. Use the Save As command to save the file into the ...\getit\apps\user\
directory. All files saved in the correct subfolder (schema, jscript, weblication) in this
directory are read by the wbuild command.

3. Make your changes and save the file.

4. Run wbuild application, where “application” is the name of the application you
are changing.

You can test how this works using the following method:

1. Find the sample prgn.xml file in the
...getit\apps\user\weblication\samples\ directory. You can use any of the
files in this directory as a test, but in this example we will use the prgn.xml file.

2. Copy the prgn.xml file from the ...\samples\ directory into the
...getit\apps\user\weblication\ directory. After running the wbuild
command, log into Get.It! and you will see a new "PRGN" tab in the Get.It! header
menu.
4-8 Before You Make Changes

Printing Forms

You can include HTML forms that are designed with an external tool or editor, thus allow-
ing you to print to a default printer. There is an example of how to implement this func-
tionality in the ...\apps\user.xml directory. The following illustrates how to
implement this kind of form using a third-party editor.

This example uses the Health and Human Services Form 393. To enable this sample, edit
the ...\apps\user.xml file and remove the X in <Ximport href-”sam-

ples/hhs.xml”/>.

Prepare Report for Default Printer (browser directs the print spool).
1. Define a weblication form (e.g., user\weblication\hhs.xml as shown in the

example below).
<!-- The following adds an activity to the Status module that
displays a request as a "393 Form" as defined by the HHS government
agency.-->
<module name="status">
<activities>
<activity name="hhs" menu="detail;workflow;hhs">
<description short="393 Format" long="View request as 393 form fit
for printing"/>
<forms>

<!-- This form displays the policies -->
<form name="start" sidebar="false"
onload="procure.loadRequestDetails">
<jspimport href="form393.htm"/>
</form>
</forms>

Fig. 4.4 Get.It! Form Version
Tailoring Get.It! 4-9

</activity>
</activities>
</module>

All of the bold text above requires customization. The activity's menu attribute includes
the names detail, workflow, and hhs so that this activity appears in the Activity menu.
Note that the sidebar="false" attribute is unnecessary for version 1.3 and above. At
present, this is required only for backward compatibility with the older Module Tabs
implementation where an activity menu is included within the frame with the form.

After defining the weblication form, run wbuild to create the new JSP page for this HHS
activity.

2. Copy the externally created HTML file into the ...\user\presentation\
directory (e.g., form393.htm in our example). Browse through this HTML file and
locate all required dynamic data. An example may appear as follows:

<td>REQUISITION NUMBER:</td>

The actual value for this field will be found in the <Number> element of the returned XML
message from the executed onload JScript (e.g., procure.loadRequestDetails).

3. For each needed dynamic data value, add a JSP expression to insert the actual value
into the proper place in the form. For example:

<td>REQUISITION NUMBER: <%= msg.get(
"Number", user) %></td>

This sample JSP expression extracts the Number element from the XML document
returned by the JScript routine procure.loadRequestDetails, as defined above in the webli-
cation form.

The XML message returned from the JScript will look similar to the following:
<Request>
<Id>26370</Id>
<EndUserName>Hartke</EndUserName>
<Number>REQ000040</Number>
<RequestedFor>2000-8-9</RequestedFor>
<TotalCost currency="USD">9573.00</TotalCost>
<RequestLines _count="-1" _countFound="1" _more="0" _start="0">
<RequestLine>
<SupplierName>COMPUCOM</SupplierName>
<Name>PL 6500R PIII XEON/500 512KB 256MB</Name>
<Quantity>1</Quantity>

<TotalPrice currency="USD">9573.00</TotalPrice>
<DateNeeded>2000-8-9</DateNeeded>

</RequestLine>
</RequestLines>
<EndUser>
<Id>11078</Id>
<EndUserPhone>(650) 572-9000</EndUserPhone>

</EndUser>
<ApprovalStatusName>Pending approval</ApprovalStatusName>
4-10 Before You Make Changes

</Request>

4. Save the HTML file.

5. To test your work, navigate to the module that contains the new activity (e.g., 393
Format).

6. Right-click on the pop-up window and select Print.

Necessary Information

If you create your own file, or if you want to save just the part of the module you change
in the ...getit\apps\user\ directory, there are four items you must have at the begin-
ning and end of every file. (In the sample below, replace xxx with the name of the module
and yyy with the name of the activity.)

<module name="xxx">
<activities>
<activity name="yyy">

<forms>
...

</forms>
</activity>

</activities>
</module>

Running the wbuild Command

The wbuild command, as explained earlier in this chapter, takes all of the ingredients and
generates a set of web pages that are installed into a web server directory. You can enter
parameters to have specific applications compiled.

wbuild application = Compiles the application you enter. Replace application
with the name of the application you want to compile, such
as wbuild getit. Run wbuild getit unless you have
created your own application definition file. The valid
application parameters are those set in the Application Def-
inition file. See “Application Definition File” on page 4-4
for more information on this file.

1. Display a command prompt. One method of doing this is to use
Start>Programs>Command Prompt. Change the directory to ...\getit\bin. (To
change the directory, first ensure you are at the correct directory, for example a C:>
by typing C: and pressing ENTER. You should see C:\> as your prompt. Then type
cd program files\getit\bin and press ENTER. You should now see
C:>Program Files\getit\bin> as your prompt.)

For Solaris, since the file
name is
getservice.xml, you
would run
wbuild.sh getservice

.

Tailoring Get.It! 4-11

2. Type wbuild appname at the prompt and press ENTER. Where appname is the
name of the application package you want to recompile. The wbuild command
processes all weblication files in each package. It will list all the processing it is going
through. When the processing is complete, you can minimize or close the window.

Changing Form Contents
Each form in a weblication is defined by a <form> element in its appropriate module file.
This is where form contents are declared, including things such as Title, Instructions,
Fields, Menus, Tables, Links, and Action Buttons.

Note: Make sure you store your changes in the ...getit\apps\user\ directory.

You can add to or delete from these contents. In the example below, we will add a field to
a form.

Adding Form Fields

To add a field to a form, consider the following example. The sample below is taken from
the Get.Resources! application, and it shows the details for a specific product in the com-
pany catalog.

Note: Make sure your form statistics are displayed. See “Displaying Form Information”
on page 4-5 for instructions.

Fig. 4.5 Adding a field to a form
4-12 Changing Form Contents

The form contains detail fields for the product, including the model, brand, list price, etc.
The Form Statistics tells us exactly where to go for the form definition: we're viewing the
product form in the catalog activity of the request module (and, therefore, found in
request.xml).

1. Open the request.xml file from the ...getit\apps\resources\weblication\
directory.

2. Use the Save As command to save the file into your
...getit\apps\user\weblication\ directory.

3. Find the form named product in the activity named catalog. The form is defined in
the following manner:

<form name="product" onload="procure.getProduct">
<title field="Model"> $$(Model) </title>
<fields>

<field name="image" type="image" field="PhotoId"/>
<break/>
<field name="brand" label="Brand" field="Brand"/>
<field name="description" label="Description"

field="Description"/>
<field name="price" label="List Price" field="Price"/>
<field name="comments" label="Comments" field="Comment"/>
<link name="infos" label="More Info" target-field="URL"

window="true"/>
<break/>
<field name="vendor" label="Availability from Vendor"/>

</fields>
<table record="Supplier">

<column label="Vendor Name" field="Name"/>
<column label="Availability" field="Available"/>
<column label="Delay" field="Delivery"/>
<column label="Price" field="Price"/>

</table>
...
<actions target-form="additem">

<submit> Add to shopping cart </submit>
<back/>

</actions>
</form>

Consider how to add a Delivery field to the form that displays the average time it takes for
the catalog item to be available once ordered. This is achieved by adding a field entry to
the form, as shown below. The revised XML below contains this new field:
<form name="product" onload="procure.getProduct">

<title field="Model"> $$(Model) </title>
<fields>

<field name="image" type="image" field="PhotoId"/>
<break/>
<field name="brand" label="Brand" field="Brand"/>

In this example, we
assume you have
not previously modi-
fied the request.xml
file. If you have,
open the file from
within your
...getit/apps/user
/weblication direc-
tory instead.
Tailoring Get.It! 4-13

<field name="description" label="Description"
field="Description"/>

<field name="price" label="List Price" field="Price"/>
<field name="Delivery" field="Delivery"/>
<field name="comments" label="Comments" field="Comment"/>
<link name="infos" label="More Info" target-field="URL"

window="true"/>
<break/>
<field name="vendor" label="Availability from Vendor"/>

</fields>
<table record="Supplier">

<column label="Vendor Name" field="Name"/>
<column label="Availability" field="Available"/>
<column label="Delay" field="Delivery"/>
<column label="Price" field="Price"/>

</table>
...
<actions target-form="additem">

<submit> Add to shopping cart </submit>
<back/>

</actions>
</form>

4. Save the modified file in the ...getit\apps\user\weblication\ directory.

5. After making this modification, run the wbuild getit command to regenerate the
form. See “Running the wbuild Command” on page 4-11 if you need instructions.

The modified window in the browser is displayed below.

Fig. 4.6 With the new field.
4-14 Changing Form Contents

Data for the New Field (Scripts)
A remaining question is where does the Delivery field actually come from? All data avail-
able to a script is provided by its onload script. This is defined in the form's declara-
tion:

<form name="product" onload="procure.getProduct">

As shown, the form in our example relies on the getProduct function of the procure
script file. This script is designed to return product documents. The product document
schema includes the Delivery field we just added.

Of course, this tells us that the type of change described in this section is possible as long
as the data for a new field is already provided by the form's script. This is not always the
case. In order to display new fields, it is sometimes necessary to modify Document Sche-
mas or even the script logic. The next two sections describe how to do this.

Split Frames (forms)

If you are working with forms you have the option of displaying two or more forms on a
single page. This allows a master list of items to be displayed on top and the details of a
selected item to be displayed at the bottom. The following example illustrates the use of
rows to accomplish this. Modify the bold text to accomodate your frame dimension
requirements.
<form name=”start” type=”frameset” rows=”335,*”>
<redirect name=”lsit” target-form=”results”/>
<redirect name=”detail” target-activity=”detail”/>
</form>

Localizing Your Changes

If you want to translate the change you have made to other authorized languages, use the
following steps. See Chapter 7, "Localization Support," for more information on localiz-
ing your changes.

1. Make sure you verify the change is working in the English version of the weblication
and that wbuild has been run.

Open a command prompt (like you do when you run wbuild) and run strbuild getit.
This will create the STR files for the languages you have set in the Administration Module
Settings.

The translated *.str
files are created
only if the “resolve-
AppStrings” field in
the archway.ini file
is set to True. If it is
set to False, only
the English string
file is created.
Tailoring Get.It! 4-15

2. If your allowed languages include more than English (based on the entries in the
Locale field in the Administration Module Settings), you will need to update the
appropriate string files with the translation of the new field you added. For this
example, we will update the French file.

3. Open the getit_fr.str file and search for the field you just added. In this example,
search for “Delivery.”

4. The new field will show blank quotes unless this string has been previously translated
into this language. Type the translation of the string into the blank quotes. In the
example above, we have typed the translation for Delivery.

5. Save the file. Do not save it into a user directory.

6. Log into Get.It! and verify that the translation was successful.

Adding Fields to a Document
Most of the scripts in Peregrine Systems’ Weblications use Archway's Document Man-
ager to exchange data with back-end systems like ServiceCenter or AssetCenter. See “The
Document Manager” on page 2-10 for an introduction on the Document Manager.

Fig. 4.7 Translating the new field.

In this example, we
are using Notepad
to update the file. If
you use a different
program, your win-
dow may look dif-
ferent.
4-16 Adding Fields to a Document

One of the main reasons for using the Document Manager is that it makes customization
possible without the need to modify database operations hard coded in scripts. If your cus-
tomization needs call for adding more data to a document, you can do it by extending the
appropriate Document Schema.

Undefined Schema Fields
To add a field that is not yet defined in the schema, consider the following example. When
a user enters a request in the Get.Resources! application, the following screen queries for
various fields describing the request:

Note: Modifications of the schema are restricted to fields that exist in the database.

The form allows the user to specify a request purpose, delivery date, cost center, etc. Now
let's assume that we want to add a new field to track the requester's Internal Credit Num-
ber—a company specific number given to each employee.

The new company-specific field obviously does not exist out-of-the-box in the document
associated with this form. The document used by this particular form is the request docu-
ment and the schema is the file that defines which fields are available. Each schema file
contains a generic document definition, followed by one or more system-specific deriva-
tions. In other words, the first portion of the schema defines the fields for Get.It!, and the
second portion of the schema maps the Get.It! field to the field in a table in one of the
back-end systems. To begin to add a new field:

1. Open the request.xml file from the ...getit\apps\resources\schema\
directory.

2. Use the Save As command to save the file into your
...getit\apps\user\schema\ directory.

3. Find the “request” generic document definition, which is shown below:

Fig. 4.8 Adding information to a schema

In this example, we
assume you have
not previously modi-
fied the request.xml
schema. If you have,
open the file from
within your
...getit/apps/user
/schema/ directory
instead.
Tailoring Get.It! 4-17

<document name="Request">
<attribute name="Id" type="num"/>
<attribute name="ApprovalStatus" type="num"/>
<attribute name="Budget" type="string"/>
<attribute name="Comment" type="string"/>
<attribute name="CostCenter" type="string"/>
…

</document>

4. To add our new Internal Credit Number, we start by inserting the field into the
“request” generic document definition:

<document name="Request">
<attribute name="Id" type="num"/>
<attribute name="ApprovalStatus" type="num"/>
<attribute name="Budget" type="string"/>
<attribute name="Comment" type="string"/>
<attribute name="CostCenter" type="string"/>
<attribute name="ICN" type="num"/>
…

</document>

This new line defines a new numeric field named ICN. The field has been added to the
generic request schema definition. This definition is generic because it is not tied to
any specific back-end system. However, because the Get.Resources! application is
implemented on top of AssetCenter, we also need to extend the AssetCenter specific
request schema.

5. Each schema file contains a generic document definition followed by one or more
system-specific derivations. You can see the AssetCenter schema for request in the
...getit\apps\resource\schema\request.xml file. Here is the line added to
that definition:

<documents name="ac">

<!-- AC Request Document -->
<document name="Request" table="amRequest">

<attribute name="Id" field="lReqId"/>
<attribute name="ApprovalStatus" field="seApprStatus"/>
<attribute name="Budget" field="Budget.Name"
link="lBudgId" linktable="amBudget" linkfield="Name"/>

<attribute name="Comment" field="Comment.memComment"
link="lCommentId" linktable="amComment"
linkfield="memComment" linktype="hard"/>

<attribute name="CostCenter" field="CostCenter.Title"
link="lCostId" linktable="amCostCenter" linkfield="Title"/>

<attribute name="ICN" field="Field2"/>
…

</document>
4-18 Adding Fields to a Document

</documents>

The purpose of entries in the AssetCenter specific schema is to define the mapping
between a logical document field and its AssetCenter physical database counterpart.
In this case, we've mapped the new ICN attribute to Field2 in the amRequest table.
Field2 is a customizable generic field in the AC database, and in this example we
have chosen to use it for storing the ICN number.

6. Save the changes you made to the ...getit\apps\user\schema\request.xml
file.

7. After making this modification, run wbuild getit to regenerate the form. See
“Running the wbuild Command” on page 4-11 if you need instructions.

With just these two new lines in the request document schema, the Weblication is now
capable of tracking a new field with every request. Now we can add the field to any form
in the same way described in the previous section.

Changing Script Behavior
The Get.It! architecture is designed to minimize the need for script changes, however, you
can customize the logic of an Archway script. The Document Manager minimizes the
number of modifications you might make, because, as described in the last section, you
can modify the type of data returned by a script by simply updating the appropriate Docu-
ment Schema.

However, for those times when you must modify a script, the Archway's script model
allows you to make modifications without having to alter the base code shipped by Pere-
grine Systems. You just create your own version of the function in a user-derived script.
As with all other items you modify, store your user-derived scripts in a directory separate
from the scripts shipped by Peregrine Systems. This directory is in
...getit\apps\user\jscript\.

Changing JScript

Consider the following example. The following screenshot shows a form in the Resources
module. The form is used to enter data describing a request.
Tailoring Get.It! 4-19

This form includes selection boxes that are populated with valid choices obtained by que-
ries against the database. For this example, we will add another field to this form to cap-
ture the requester's Department in the company. To accomplish this, we will need to
modify the form's script to query for a list of valid department names that can be shown in
a new select box.

1. Determine which script is used. You can do this by looking at the form’s onload
script, which is specified in the form's XML definition. Use the Form Statistics to
determine where to look in the XML file. In figure 4.9 above, the form is defined in
the submit activity of the request module.

2. Open the ...getit\apps\resources\weblication\request.xml file.

3. Search for the form named submit, in the activity named submit. Here is the form's
declaration:

<form name="submit" onload="procure.getOrderParameters">

4. Determine the name of the jscript file by looking at the onload element. The
getOrderParameters function of the procure script is responsible for gathering
data for the form. The contents of the script can be found in the procure.js script
file.

5. Open the file called procure.js from the ...getit\apps\resources\jscript\
directory.

6. Save the file in the ...\getit\apps\user\jscript\ directory.

7. Within this file, find the following code:

Fig. 4.9 Changing JScript.

In this example, we
assume you have
not previously modi-
fied the request.xml
file. If you have,
open the file from
within your
...getit/apps/user
directory instead.
4-20 Changing Script Behavior

function getOrderParameters(msg)
{

…
// Get the list of Budgets
msg = new Message();
msg.add("_return", "Name");
msg.add("_sort", "Name");
msg = archway.sendDocQuery("ac", "Budget", msg);
msgResponse.add(msg);
…

8. Now you need to extend the work of the default script to include a new query for
company department names. The following is the new user function in its entirety and
then consider each of its lines of code:

function getOrderParameters(msg)
{

var msgResult;
var msgDepartments;

// Call base function to perform standard queries
msgResult = this.parent.getOrderParameters(msg);

// Query for departments
msgDepartments = archway.sendDocQuery(

"ac", "SELECT Name from amEmplDept WHERE bDepartment=1");

// Add departments to overall resopnse
msgResult.add(msgDepartments);

return msgResult;
}

9. Save your changes.

This procedure defines a new function with the same name as the one we're trying to
extend (getOrderParameters). The new function is stored in a new user script file with
the same name as the base script file (procure.js). By doing this, we're guaranteed that
Archway will invoke our new function instead of the base version.

Within the function, we included a call to the base function:
msgResult = this.parent.getOrderParameters(msg);

It is not mandatory to do this. However, by calling the parent function, we preserve the
base queries and only add our new query on top. In some cases, you will want to bypass
the original behavior altogether.

Next, we query for the data of interest:
msgDepartments = archway.sendQuery(
"ac", "SELECT Name from amEmplDept WHERE bDepartment=1");
Tailoring Get.It! 4-21

This gives us a result set with a list of department names. Finally, the list is added to the
result set obtained from the base function:

msgResult.add(msgDepartments);

The only remaining task is to add the actual department field to the weblication form. We
already saw how to do this in an earlier section.

Changing Weblication Components Layout (XSL)
The layout and organization of each form is determined by a set of template files. The
templates are defined in the Extensible Stylesheet Language (XSL).

The purpose of XSL is to process an XML document and convert it into a different desired
format. For instance, an XSL template could define rules for converting an XML docu-
ment into HTML that can be displayed by a browser. A different XSL document could
generate an RTF-like document that is more suitable for printing.

The XSL templates provided with the product are used by the wbuild command in con-
junction with the weblication XML definition to generate web pages. Get.It! includes a set
of templates that generate Java Server Pages (JSP) files.

When Do I Change the XSL?

There are two reasons for extending or customizing the templates provided by Peregrine
Systems.

• To add support for a new type of weblication component

• To change the layout or organization of a web site

You can make the modifications without altering the existing template source files. Again,
this is important for upgrade purposes. The source for XSL templates can be found in the
...\getit\templates\jsp directory. The directory also contains a file named
user.xsl. This is where you can enter your own customization.

The user.xsl file shows basic instructions and examples for customization. Template
customization with XSL is an advanced topic and further description is beyond the scope
of this guide.

Integrating a New Product with Get.It!
The method you use to integrate new products into Get.It! depends on the type of product
you want to integrate.
4-22 Changing Weblication Components Layout (XSL)

Integrating a URL

If you are linking a product that can be accessed through a web browser using a URL, you
can add the product as a new module or as an activity on an existing module.

Note: If you integrate a URL as an activity, it will be available to users as part of the
activity list for an existing module.

Adding a URL as a Module
If you add the URL as a module, users can access it through a button on the main menu
and on the menu bar.

1. Create a new XML file.

2. Save the new file in the ...\getit\apps\user\weblication directory.

3. Open a file from one of the Get.It! application packages that most closely matches the
module you want to add. There are also samples in the
...\getit\apps\user\weblication\samples directory.

4. Copy the tags from the existing file and paste them into the new XML file you created
in step 1.

5. Update the module name with the name of the product you are integrating. Make sure
to change the module name, title, image, short description, and long description to
match the module you are adding. Update the “target-url” with the URL of the
product you are integrating.

Fig. 4.10 Adding a URL as a module or as an activity

The default path is
the path we
recommended at
installation. If you
installed Get.It! into
a different folder,
your default path will
be the path you
chose at installation.
Tailoring Get.It! 4-23

6. Save the new file in the ...\getit\apps\user\weblication directory. Make
sure it has an extension of XML.

7. Run wbuild getit. See “Running the wbuild Command” on page 4-11 if you need
detailed instructions.

8. Log out and log back in to Get.It! and the new module is available.

Adding a URL as an Activity
If you add a URL as an activity, users can access it through a link on the activity list in an
existing module.

1. Log into Get.It! and determine the module in which you want the new activity to be
available.

2. Determine if there is an activity that behaves similarly to the activity you are adding.
For example, is there an existing activity that links to a different URL?

3. Open the XML file from an existing application package (in the ...getit\apps\
directory) for the module into which you want to integrate the new activity.

4. Use the Save As command to save this file into the
...getit\apps\user\weblication\ directory.

5. Find the section of the XML file where the activities are defined and enter the
following, replacing the Peregrine Systems information with the information for the
URL you want to integrate.
4-24 Integrating a New Product with Get.It!

<!--==
Activity: link to Peregrine

===-->

<activity name="prgn">
<description
short="Peregrine"
long="Link to Peregrine’s web site."
target-url="http://www.peregrine.com"

</activity>

6. Update the name of the activity to be the name of the product you are integrating.
Make sure to change the activity name, short description, and long description to
match the product you are integrating. Update the “target-url” with the URL of the
product you are integrating.

7. Save your changes.

8. Run wbuild. See “Running the wbuild Command” on page 4-11 if you need detailed
instructions.

9. Log out and log back in to Get.It! and the new activity is available.

Adding a New Module

Adding a new module requires you to copy an existing XML file, make your updates, and
then save the new module to the ...\getit\apps\user\weblication\ directory. You
define the module in the new XML file and then add it to the Weblication when you
import it.

To start, determine an existing XML file that is the closest to the new module.

1. Open an XML file from an existing application package (in the ...getit\apps\
directory) that you want to change, or that does a similar action to what you want the
new module to do. If no existing XML closely matches what you want to do, we
recommend you still open a file to use as a guide.

2. Use the Save As command to save this file in the
...getit\apps\user\weblication\ directory with a name that allows you to
easily recognize what this module does. Remember to include the XML extension on
the file.

3. Update the applicable portions of the file, including header information, nested tags,
etc. Update the new XML file until it includes all the functions that you want it to do.
Use the instructions in the previous sections of this chapter.
Tailoring Get.It! 4-25

4. If you need to populate tables in the new module, you may need to create a new script
in the ...\getit\apps\user\jscript\ directory. Copy an existing script, just as
you did to create the new XML file. When you save the new script, be sure to include
the JS extension on the file name. See “Changing JScript” on page 4-19 for
instructions on updating a script file.

5. Run wbuild getit. See “Running the wbuild Command” on page 4-11 if you need
detailed instructions.

6. Log out and back into Get.It! to see the changes you have made.

Modules can be removed from a Weblication by removing their entry in the
...\getit\apps\user\ directories (if they are modules you created) or from the
getit.xml file if they are modules that came with Get.It!.

Adding a Feature from AssetCenter
Within AssetCenter, features may be added to track information not provided for by the
out of the box database schemas. The Get.It! weblication allows features to be incorpo-
rated as well, allowing customization of the databases and screens for use by all users.

1. Add the feature to the desired table within AssetCenter. This should be done in the
typical AssetCenter fashion.

2. Add access to the feature via amUserRight entry. You must give access to the feature
via amUserRight modification. Select the amUserRight entries for which the new
feature is relevant and provide access as necessary.

3. Add the feature to a schema. Once the feature has been created within AssetCenter,
add it to the weblication’s schema. An excerpt from the request.xml schema is shown
here. The necessary addition has been highlighted in bold. See “Adding Fields to a
Document” on page 4-16 for details on updating a schema.

<schema>

<documents name="base">
<!-- Request Document -->
<document name="Request">

<attribute name="Id" type="num"/>
[…]

<attribute name="TestFeature" type="string"/>
[…]

</document>
</documents>

<!--==
4-26 Adding a Feature from AssetCenter

AssetCenter Schema Derivations
===-->

<documents name="ac">

<!-- AC Request Document -->
<document name="Request" table="amRequest">

<attribute name="Id" field="lReqId"/>
[…]

<attribute name="TestFeature" field="fv_TestReq"/>
</document>

</documents>

4. Add the feature to an application. After the feature is referenced in the schema, you
need to incorporate it in to the screen definitions. See “Changing Form Contents” on
page 4-12 for details on updating an application.

5. An example is given here from the ...getit\apps\request.xml:
<!-- This form requests order information for submission -->

<form name="submit" onload="procure.getOrderParameters">
<title> Request Information </title>
<instructions>

Please provide the following information necessary
for submitting your request.

</instructions>
<fields>

<input label="Purpose" type="text" field="Purpose"
size="50"/>

[…]

<input label="Test Feature" type="text"
field="TestFeature" />

</fields>

6. Run wbuild getit. See “Running the wbuild Command” on page 4-11 if you need
detailed instructions.

Portal
The Portal is the Get.It! interface, customizable to your specific requirements. There are
numerous Components that comprise the Portal. Each Component has a different function,
some of which are also customizable. You can modify the layout, open and close Compo-
nents, or remove Components from the interface. The Portal that you receive upon install-
ing Get.It! will look similar to the following. This is an example of one Component that
you have access to within Portal. There are many more Components, each divided
Tailoring Get.It! 4-27

amongst two categories. The first category is Weblications, including Application Menu,
Problem Tickets, Request To Approve, and Status Review. The second category is Per-
sonal Utilities, including Calendar, Calculator, Weather, Stock Quotes, Top News, Busi-
ness News, Technology, Sports News, and Date And Time.

Note: If you are using Netscape Navigator as your default browser, some screens may
appear differently than stated. Notes are given where differences occur.

Fig. 4.11 Module Menu Component
4-28 Portal

Customizing (GUI)
The Get.It! Portal is a dynamic interface. You may move and remove all Components. The
Stock Quotes Component is modifiable, adjustable to those stock quotes that you specify.
Each Component contains a toolbar in its upper-right corner. Depending on the type of
Component, each corner will contain Customize (wrench), Copy (superimposed win-
dows), Move (vertical arrows), Hide (dash), and Remove (X) options.

Customize
The Customize option is for customizing the Component. Not all Components are custom-
izable (e.g., News, Sports). Clicking on the Customize button will link you to the Change
Layout screen, where you can modify the layout. To save your modifications click on the
Save button at the bottom of the screen.

Copy
Copy allows you to copy a Component. The only Component that you can copy is the
Problem Tickets Component. When you copy the Problem Tickets Component, the sec-
ond Component will be identified by its title within the title bar (e.g., Problem Tickets:
Copy 1).

Move
The Move arrows move Components up and down. You cannot move a Component left
and right. To move a Component up press the up arrow. Pressing an arrow will move the
Component by one increment. For instance, if the Weather Component is on top and the
Stock Quotes is directly beneath, pressing the down arrow on the Weather Component
will move it one notch down, or below the Stock Quotes Component.

Hide/Show
Hide closes the Component, reducing the window to a menu bar with selectable options
(i.e., Window Tools). If a Component is in a Hidden state, then the option becomes Show.
Pressing the Show button will display the Component. The Hide and Show buttons alter-
nate.

Fig. 4.12 Window Tools
Tailoring Get.It! 4-29

Remove
Pressing the Remove button removes the selected Component from the portal. When you
press Remove, a prompt will appear: Remove This Component? Click OK to remove the
Component or Cancel to void the process. You can always reinstate a Component once it
is removed by pressing the Select Content link and then selecting the desired Component.

Select Content

Clicking on Select Contents links you to Customize My Home Page. Within this page are
two main features, each containing multiple options that allow you to customize your
home page (or Portal). Each feature allows various selections to be made. You can cus-
tomize anything from Problem Tickets and Status Reviews to personal Stock Quotes and
the Weather. All of these features are available as Components on your front page.

You do not have the option of customizing all Components. For instance, if you select the
Weather option located within Personal Utilities, you will not have the option of locating
the forecast for your specific area. Selecting the Weather option provides a United States
map with various forecasts from around the country. There are other Components that are
customizable. For instance, the Stock Quotes option allows you to edit the displayed stock
(the default for this option is PRGN). All of the news options are provided by iSyndicate
and are not customizable.

Get.It! Weblication Components
Within the Get.It! Weblication Components, you can select Application Menu, Problem
Tickets, Requests To Approve, and Status Review. Each of these options is selectable by
clicking on its check box. A check mark in the box means that the option is selected and
that it will appear on your home page. Each selection is accompanied by a brief descrip-
tion located to its right. Once a selection is made it must be saved. Saving is accomplished
by clicking on the Save button located at the bottom of the Select Contents screen.

Component Function

Application Menu Quick links to various modules that comprise the application.

Problem Tickets Lists unresolved tickets. Click on a ticket to verify its status or to
provide updated information.

Requests To Approve Allows you to select the approval action for resource requests. You may
click on any request to view more details. This component requires
access to Peregrine Systems’ AssetCenter.

Status Review Displays the list of active requests so that you may view their status.
This component requires access to Peregrine Systems’ AssetCenter.
4-30 Portal

Personal Utilities
The Personal Utilities section allows you to customize your home page with a variety of
up-to-date options. You can select items from the latest Business News to the Date And
Time. There are numerous possibilities. Select each option (check box) that you want for
the home page and press the Save button located at the bottom of the page.

Create New (web page)
Create New, located at the bottom of the Select Content page, allows the creation of a new
web page. To create a new page you must insert a Title, a Display URL Link, and a Con-
figure URL Link. The Title is the title of the page. This is synonymous with the HTML
<Title> tag. The Display URL (Uniform Resource Locator) Link is the address where
the page will be located. The Configure URL Link is where the page will be configured.
There are also two options for page layout: Wide and Narrow.

For instance, in the Display URL Link you can insert http://<your-
host>getit/timedate.asp if you are running IIS or JSP. For the Configure URL Link
you can insert http://<your-host>/getit/timedate_configure.asp or JSP. The
Date And Time component uses the JSP version. The ASP version is included as an exam-
ple of how to incorporate Active Server Page technology within Get.It!

Component Function

Calendar A monthly calendar. This component can be viewed using MS Internet
Explorer 4.0 or higher.

Calculator A standard calculator. This component can be viewed using MS Internet
Explorer 4.0 or higher.

Weather A map of the United States containing various forecasts around
the country.\

Stock Quotes The latest quotes of your most frequented stocks.

Top News The latest headlines provided by iSyndicate.

Business News All things business provided by iSyndicate.

Technology All things technological provided by iSyndicate.

Sports News All things sport provided by iSyndicate.

Date and Time Your choice of Coordinated Universal Time (UTC or GMT) or
Standard Local Time.
Tailoring Get.It! 4-31

Create A New Page

1. Click on Select Content.

2. Click Create New (at the bottom of the page).

3. Insert a Title.

4. Insert a Display URL Link.

5. Insert a Configure URL Link.

6. Click Save.

Change Layout

Your portal or home page is divided into two areas: Narrow for the left and Wide for the
right.

The Narrow section occupies about one-third of the screen; the Wide section occupies
about two-thirds of the screen. These proportions are not modifiable. Within both the Nar-
row Components and Wide Components sections are Up, Down, and Remove buttons.
These buttons either move or delete a component. All active components are listed within
the drop-down box.

To move a component up or down, or to remove it, first select the component in the drop-
down box and use the arrow and delete keys to its right. Press the Save button at the bot-
tom of the screen to save all changes of your layout. You may modify the layout at any
time. While this functionality exists within the portal or main page, the Change Layout
option allows you to customize the look more efficiently.

Fig. 4.13 Create A New Page
4-32 Portal

Netscape Navigator
If you are using Netscape Navigator as your default browser, the Change Layout link
allows you to move components either up or down. This feature is the same as the Compo-
nent Move button (for Internet Explorer users).

Fig. 4.14 Change Layout
Tailoring Get.It! 4-33

Edit Preferences
The Problem Tickets component, part of the Get.It! Weblication Components section, pro-
vides an editing option for customization. Each field allows you to select information that
is relevant to this component. You can select fields for: Status, Priority, who it is Assigned
To, who it is Opened By, and Contact. You can also Add, Move, or Remove Field
Choices, those items that are displayed in your table. You can also delimit the number of
tickets to show. This illustration has 25 in its text box. This means that as many as 25
Problem Tickets can display at any given time.

Portal API
Portal is customizable. You can add, remove, and modify Components. Portal gives you
the opportunity to use HTML plug-ins or Active X components.

Located within the following directory are five samples of code, each containing high-
lighted script (in bold) that should be modified when making it user-specific.
...\getit\src\apps\user\weblication\samples

These samples include (1) Adding A New Module, (2) Overriding A Form, (3) Adding A
New Activity, (4) Adding A New Activity Link, and (5) Changing the Requestform Com-
ponent. Each of these samples is explained, detailing those sections of the code that must
be modified when you initiate changes.

Fig. 4.15 Customize
4-34 Portal

Portal Components
Similar to the <component> tag, the <portal-components> tag defines the individual
windows found on the home page. These windows can be moved, minimized, and config-
ured to provide the user with a concise view of multiple aspects of the Get.It environment.
Portal components can also be linked to third-party plug-ins like news and weather, so that
all the resources of the Internet can be brought together.

Out-of-box Portal components are defined in a file called plugins.xml, located in the
apps\portal\weblication\plugins.xml directory. This file is structured as follows:
<portal-components>
<portal-category name=”getit”>
<title>Get.It! Weblication Components</title>
<portal-component
name="tickets"
copy="true"
adapter="SC"
access="getit.service">
<title>Problem Tickets</title>
<instructions>
Here is the list of unresolved tickets that you have reported. Please
click on any one of them to check the latest status or to provide us
with updated information. This component requires access to
Peregrine's <i>ServiceCenter</i>.
</instructions>
<contents onload="portal.getTickets">
<table record="Problem" columns="_Columns">
<link target-module="service"
target-activity="status"
target-form="detail"
field="Id" />

Sample Function

Add Module Adds a new module menu entry associated with another web site.

Override Form Changes the login form to remove the Register option.

Add Activity Adds a new activity to the Service module to allow searching for an
arbitrary ticket.

Add Activity Link Adds a new activity to the Resources module to display company
request policies.

Modify Requestform
Component

Changes the generic Get.Resources! Request Form by renaming
several fields. This form is normally defined as a <component>
entry in components\reqform.xml.
Tailoring Get.It! 4-35

</table>
</contents>
<configure onload="portal.editTickets">
<fields>
<input type="select"
label="Status"
field="Status"
record="status"
valuelist="StatusValue"
displaylist="StatusDisplay" />
...
</fields>
</configure>
</portal-component>
...
</portal-category>
...
</portal-components>

<portal-category>

Attribute Description

name Defines part of the name used in the construction of the JSP file name.

<title> Portal components are divided into categories. These categories define
the caption that appears in the “Select Content” form that you can use
for selecting the Components that you want on your home page.
4-36 Portal

<portal-component>
The portal component defines the content and configuration forms that are linked together.

<plugin>
A plug-in element provides the user with the ability to reference third-party URLs to be
included in a portal component. The URL can point to an HTML, JSP, or ASP page, or a
GIF or JPG file from anywhere on the Internet.

Attribute Description

name Defines part of the name used in the construction of the JSP file name.

copy If copy=”true”, then an icon appears on the component toolbar that
allows the configuration of a component to be duplicated. Use this in
conjunction with <configure> to create multiple copies of a
component configured to display different information.

adapter Defines the adapter that is required to support this component. If that
adapter is not accessible, then the component will not be listed in the
“Select Content” form.

browser Defines the browser that is required to display this component. If a user
uses a different browser, the component will not be listed in the “Select
Content” form.

access Defines the access right that the user must possess to access this
component. If a user does not have this access right, the component will
not be listed in the “Select Content” form.

<title> Defines the caption that appears on the toolbar of the component and
next to the checkbox of the “Select Content” form.

<instructions> Defines the text that describes the purpose of the component in the
“Select Content” form.

<contents> The contents of this element can be any weblication element, like
<table> or <fieldtable>. This tag is equivalent to the <form>
tag, including the ability to specify an onload script to gather data for
the elements contained within.

<configure> This optional form defines configuration parameters to be used
by the <contents> form. If this tag is present, a wrench icon
appears in the portal components toolbar. This tag is equivalent
to the <form> tag. The result of this form submit is stored as
<component.attributes> that are passed in the msg
parameter of the <contents> onload function.
Tailoring Get.It! 4-37

Portal Plug-Ins

Portal allows the use of plug-ins, small software programs that plug into a larger applica-
tion to provide additional functionality. Plug-ins permit the browser to access and execute
files embedded in HTML documents that are in formats the browser would not recognize
such as animation, video, and audio files. Most plug-ins are proprietary.

The following XML script defines reusable plug-in components such as Stock Quotes.
The complete version of this file can be found in plugin.xml.
<!--Generic Component Samples-->
<portal-components>
<portal-category name=”getit”>
<title>Get.It! Weblication Components</title>

<!--AppMenu-->
<portal-component name=”appmenu”>
<title>Application Menu</title>
<instructions>Links to various modules that comprise this

application.</instructions>
<contents>
<appmenu/>
</contents>
</portal-component>

<!--Custom Component Container-->
<portal-component name=”custom” display=”hidden”>
<contents>
<custom-portal-component/>
</contents>
<configure>
<custom-portal-configure/>
</configure>

Attribute Description

href Defines the URL address of the resource.

post If the post attribute is set to “true”, then the data stored in
<component.attributes> (see <configure> above) will be
passed as post data to the URL.

ID If the optional ID attribute is defined, the HTML response received
from the URL will be scanned, and the HTML element with the given
ID will be extracted from the result, discarding all other page
information.
4-38 Portal

</portal-component>

<!--Yahoo Stock Quotes-->
<portal-component name=”stockquotes” column=”narrow”>
<title>Stock Quotes</title>
<instructions>Monitor your personal portfolio.</instructions>
<contents onload=”portal.getStockQuotes”>
<table record=”MyPortfolio”>
<column label=”Symbol” field=”Symbol”/>
<column label=”Price” field=”Price”/>
<column label=”Change” field=”Change”/>
<column label=”Link” field=”Link”/>
<link target-url=”redirect.jsp” field=”Link”/>
</table>
</contents>
<configure onload=”portal.editStockQuotes”>
<list-builder field=”Symbol” size=”5” default=”PRGN”>
<src type=”edit” label=”Symbol” record=”SymbolChoices”

displaylist=”Symbol” valuelist=”Symbol”/>
<dest label=”My Portfolio” record=”MyPortfolio”

displaylist=”Symbol” valuelist=”Symbol”/>
</list-builder>
</configure>
</portal-configure>

Skins and Stylesheets
New skins and stylesheets can be selected from either the Skins & Stylesheets Portal
Component or by using the navigational tree menu. There are several predefined themes,
each consisting of a skin (images and graphics) and a stylesheet (fonts, colors, and special
background images). You can select a new Skin, Stylesheet, or Both from the drop-down
selection box located on the Portal home page or through the Skins and Stylesheets link.

New stylesheets can be created using the Userschemes.xml file and the cssbuild com-
mand. Working within the Userschemes.xml file, you must copy an entire <sceme> def-
inition and then paste it in the same file. Rename the new <scheme> by changing the
<name>...</name> element. Do not modify the names or locations of images because
this will break the skin.

Creating New Stylesheets

1. Right-click on the Userschemes.xml file, located within the ...\program
files\getit\templates\css\ directory, and deselect the Read-Only attribute.
Tailoring Get.It! 4-39

2. Open Userschemes.xml.

3. Copy the first <scheme>...</scheme> (this is named “blues”).

4. Paste the new <scheme> definition in the same file.

5. Rename the new <scheme> (between the <name>...</name> element).

6. Modify applicable font colors and images (do not modify any of the elements).

7. Save the file.

8. Open a Command Prompt and run cssbuild.

Note: You must restart JRun to see the new stylesheet in the Stylesheets drop-down box.

All Skin and Stylesheet selections are predefined, thereby allowing you to quickly create a
new portal design without modifying CSS, XML, or HTM files. It is important to under-
stand the file structure when working with Skins and Stylesheets. The purpose of the
directory structure is to provide image organization and user-friendly customization. You
do not need to hard-code paths. All paths are dynamic and filled at runtime, allowing for
instant updates without recompiling. You must use JSP files to process image paths. Other
file formats will not be parsed by the JavaServlet engine. Do not modify the Css.xml file.
If you add any new CSS files or Skins then place them in the ...\src\apps\user\pre-
sentation\ directory as a backup.

All image paths in the generated JSP are similar to the following.

Skinned Images

 <img src=”<%=skins%><%=defaultskin%>/buttons/back_button.gif”>

Non-Skinned Images

<img src=”<%=logo%>”> and <img src=”<%=images%> /spacer.gif”>

The paths are set by Archway.ini as in the following.
logo=images/logos/logo_getit_green.gif
images=images
skins=images/skins/
defaultskin=classic

When adding new images you will need to decide how it fits within the application struc-
ture. But remember that you will not create a fully qualified path for the image. In most
instances the XSL file will suffice for the first half of the path.

All images are referenced in the XSL using token replacement, as in the following.
$$IMG(buttons/your_button.gif)
$$IMG(icons/your_button.gif)
$$IMG(backgrounds/your_button.gif)

There are other versions of this use in the XSL, as in the following.
$$IMG(<xsl:variable name=”your var”/>)
4-40 Skins and Stylesheets

$$IMG(@image)

Directory Structure
The following directory structure applies to all images, logos, and skins. All directories
are dynamic, generated at runtime.

Directory Purpose

Images Generally, do not place images here. Use this directory only for images
not set by skins; in other words, images that will never change and are
common to all skins (e.g., spacer.gif, a transparent GIF for forcing
spaces in table cells or forced breaks).

Logo This is for application logos such as the Get.It! logo. These are not part
of skins so they will never be affected in a skin or stylesheet change.

Skins No images should be placed in this level. This file is for the
organization of lower level skins directories.

Classic The default skin. This directory can be copied, renamed, and placed
within the skins directory. You can also place images at this level that
do not fit elsewhere. You can also create new directories to further
categorize images at this level.

Fig. 4.16 Skins/Stylesheets Directory Structure
Tailoring Get.It! 4-41

Backgrounds All background images are placed in this file.

Banners Currently empty, but suggested for organizing large banner-like images.

Photos Suggested for any images used in applications.

Buttons Defined as any graphic that is used as a button in the browser, except for
icons.

Icons Defined as the main button-like images used as the navigational
elements in the application menu (i.e., oval-shaped image:
...graphics\logo\icon).

Nav_menu Used for all navigational sidebar or menu true images.

Portal Used for all portal and portal component-related graphics.

Directory Purpose
4-42 Skins and Stylesheets

XML Usage
<module name="b2badmin" access="getit.b2badmin">
<title> B2BAdmin </title>
<description

image="icons/order.gif"
short="B2BAdmin"
long="Manage B2B sites and catalog data" />

<columns>
<column>
<fields>

<link target-url="e_b2bshop_return_b2blist.jsp"
param="ListAction=CatalogUpdate" image="icons/capturecatitems.gif">
Capture Catalog Items </link>

<link target-form="ConfigureSites" image="icons/configsites.gif">
Configure Sites </link>

<link target-form="CheckVersions" image="icons/updateobjects.gif">
Update Objects </link>

<link target-form="BillingOptions"
image="icons/billingoptions.gif"> Billing Settings </link>

</fields>
</column>

XSL (example)
Global_vars.xsl contains all the path variables for XSL documents.
<img src="{$skins}{$defaultskin}/{description/@image}"
align="absmiddle" border="0"/>

JSP (example)
This is the minimum requirement in any JSP to parse the dynamic paths.

<%@ page language="java" buffer="16kb"
import="com.peregrine.archway.*, com.peregrine.archway.jsp.*,
com.peregrine.util.*,java.util.*,
java.beans.*,java.io.*,java.net.*"%>
<%@ include file="globals.jsp"%>
<img src=”<%=skins%><%=defaultskin%>/buttons/back_button.gif”>
Tailoring Get.It! 4-43

JAVA Source Code (example)
out.println("<IMG SRC='" + Archway.getIni().getProperty("skins",
"images/skins/") + Archway.getIni().getProperty("defaultskin",
"classic") + "/buttons/calendar.gif' BORDER=0/>");

}

External JavaScripts
This is more difficult in that any images written to the browser will not be affected by the
skins. This is because JSP expressions for establishing image paths cannot be parsed. This
can be resolved by creating variables in a JSP that is referenced by external JavaScript.
The Login.jsp file is a good example. Make sure your vars are loaded before the exter-
nal JavaScript file.

Note that all JavaScript vars are hard-coded into the XSL and then passed onto the
Login.jsp. Login.jsp requires the external Menubuilder.js file because global Jav-
aScript vars are established ahead of the Menubuilder.js call. They are then used by
the JS file and parsed by the JSP to provide all necessary paths.

<script language="JavaScript">
var m_expandedIcon = "<img
src='<%=skins%><%=defaultskin%>/nav_menu/expand.gif' width='12'
height='14' border='0'/>";
var m_collapsedIcon = "<img
src='<%=skins%><%=defaultskin%>/nav_menu/collapse.gif' width='12'
height='14' border='0'/>";
var m_selectedIcon = "<img
src='<%=skins%><%=defaultskin%>/nav_menu/select.gif' width='12'
height='14' border='0'/>";
var m_noselectedIcon = "<img
src='<%=skins%><%=defaultskin%>/nav_menu/noselect.gif' width='12'
height='14' border='0'/>";
var m_blankIcon = "<img
src='<%=skins%><%=defaultskin%>/nav_menu/blank.gif' width='12'
height='14' border='0'/>";

</script>

<script language="JavaScript1.2" SRC="js/menubuilder.js">
</script>

Production Environment
Before you enter the production environment you should note a few settings to help your
transition.
java.args in(jrun n/jsm-default/properties/jsm.properties)
4-44 Production Environment

Be sure to set this parameter to something like the following.

java.args=-Xmx128m

This defines the size of heap memory given to JRun's Java VirtualMachin, providing 128
MB of memory. Larger settings may be appropriate on larger systems.

debugscript (archway.ini)

This should be set to false. (Starting with release 1.3, this is no longer important). Failing
to do so will cause slower execution and substantial memory consumption.

scripttimeout (archway.ini)

This specifies the number of seconds alloted to each user to execute a script. The default
setting is 30 seconds. If a user script runs longer than this maximum timeout value then all
script operations are aborted.

Proper setting of this option is important to prevent run-away scripts from stopping all
servers.
logstdout (archway.ini)

This should be set to false to avoid duplicate logging sent to stdout, potentially consuming
disk space.
sessiontimeout (archway.ini)

Specifies the number of milliseconds to allow inactive sessions to exist before they expire.
The default setting is as follows.
sessiontimeout=600000

This gives users 10 minutes before expiration. Sometimes smaller time limits may be
appropriate. This setting is important because it ensures proper cleanup of old sessions
that may potentially be holding on to required memory resources.
maxscriptrunners (archway.ini)

This setting controls the size of the FESI ScriptRunner pool created for Archway. A
proper setting should rarely be greater than 10 (the default). However, some 1.2 systems
may have shipped with a setting of 100. This setting is too large. Each ScriptRunner can
consume a significant amount of memory, yet the efficiency of the system does not
increase with a number of script runners greater than 10.
maxquerycount(archway.ini)

This is a new parameter added in 1.3 (originating with the 1.2 SP1 build update). If this
parameter is set, it can limit the number of records that Archway will fetch for any given
query. It is a good idea to set this parameter as a safety measure against runaway queries
or bad scripts that attempt to fetch thousands of records into a single XML response. In
some instances a system will need to process a large number of records. But the recom-
mendation in such scenarios is to perform several queries for smaller record chunks. The
Start and Count parameters to sendDocQuery() help accomplish this.
Tailoring Get.It! 4-45

4-46 Production Environment

Ta
Chapter 5
Tailoring Get.Answers!
This section describes how to customize certain areas of Get.Answers! when you link to
document collections and knowledgebases. You can change the following items for
Get.Answers!:

• Change the color of the hit key words

• Change the title name of a knowledgebase folder in an advanced search

• Hide or show a hit list column

• Include a path name with the title of the document in the hit list

These items are specific to Get.Answers!. To change other areas of the weblication
specific to Get.It!, see “Tailoring Get.It!” on page 4-1.

To customize
Get.Answers! for
IR Expert see your
IR Expert
documentation.
iloring Get.Answers! 5-1

Modifying the Site Definition File
You can make the following changes to the site definition file in a text or XML editor:

• Change the color of the hit key words

• Change the title of a knowledgebase folder in an advanced search

To modify the site definition file:

1. Open the GetAnswers.sdf file in Notepad. It is located in the bin directory.

<?xml version="1.0"?>

<!DOCTYPE site SYSTEM "file:SiteDefinitionFile.dtd">

<site

content-type="text/html"

document="main-h.htm"

hidden="no"

highlight-style="font-weight: bold; color: #ffcc00;"

id="1.3/GetAnswers"

images="C:\Program Files\GetAnswers\templates"

name="GetAnswers"

objects="C:\Program Files\GetAnswers\objects"

online="yes"

query-timeout="30000"

session-timeout="900000"

stylesheets="C:\Program Files\GetAnswers\templates"

templates="C:\Program Files\GetAnswers\templates"

title="Get.Answers!"

version="2.0"

<folder

id="Getanswers"

name="Getanswers"

title="Getanswers"

2. Save the changes.

Note: Knowledgebase documents are the only files that display the hit color on key
words. Documents such as Word, PowerPoint, and PDF cannot display color on
hit key words. For a list of hex color codes, refer to a color chart which you can
usually find in any HTML book.

Change the color
attribute using the
desired color’s
hexadecimal code.

Change the title
attribute within a
folder tag to the
desired text. Don’t
change the id or
name for the folder.
5-2 Modifying the Site Definition File

Modifying the Hit List
Using the Answers.xml document in Get.It!, you can modify the following elements of the
hit list:

• Hide or show a hit list column

• Include a path name with the title of the document

Hiding a Hit List Column
To hide a hit list column:

1. Open the Answers.xml file located in \Program Files\getit\apps\answers\weblication.

2. Locate the column type you want to remove as shown in the example below. You also
need to modify the field attributes so that the values are sequential (i.e. h1, h2, h3, h4)
for the remaining columns, as shown below:

<module name="answers">

<title> Get.Answers! </title>

<description image="images/approve.gif" short="Answers"
long="Answers"/>

<activities>

<activity name="search">

<description short="Search" long="Search"/>

<forms>

<!-- Show search results -->

<form name="search" >

<title> Get.Answers! </title>

<instructions> Please enter your question. </instructions>

<fields>

<input label="Question" type="text" field="q" size="60"
required="true" />

<input type="hidden" field="f" value="hitlist"/>

<input type="hidden" field="t" value="main-hit-h.htm"/>

<input type="hidden" field="tf" value="doc"/>

<input type="hidden" field="tt" value="document-frame.htm"/>

<input type="hidden" field="x" value="Simple"/>

<input type="hidden" field="d" value=""/>

<input type="hidden" field="c" value="redirect"/>

<input type="hidden" field="s" value="Relevance-Weight"/>

<input type="hidden" field="ht" value="hitlist.htm"/>

<!-- These determine the hit list arrangement: -->

<input type="hidden" field="a" value="Title"/>

<input type="hidden" field="h1" value="Hit[Hit,3]/>

Delete the line
shown in bold
from the xml file.
Tailoring Get.Answers! 5-3

<input type="hidden" field="h1" value="Relevance-
Weight[Rank,7]"/>

<input type="hidden" field="h2" value="Title[Document,90]"/>

</fields>

<actions target-url="http://localhost/lpBin20/lpext.dll">

<submit> Search </submit>

<home> Home </home>

</actions>

</form>

</forms>

</activity>

3. Save the changes and rebuild the weblication using wbuild.

Including the Path Name with the Title
To include the path name with the title:

1. Open the Answers.xml file located in \Program Files\getit\apps\answers\weblication.

2. Locate the Title type and replace it with “Title-Path[Document,90]”. This will list
the titles of a hit document’s parent nodes and the document’s title. Node titles are
separated by the forward slash (/). If you change Title to Title-Path, you also need to
change the value attribute for the “a” input. The “a” input defines which column will
have the link anchors (where a user clicks to open the document). Look at the
example below to do this.

<module name="answers">

<title> Get.Answers! </title>

<description image="images/approve.gif" short="Answers" long="Answers"/>

<activities>

<activity name="search">

<description short="Search" long="Search"/>

<forms>

<!-- Show search results -->

<form name="search" >

<title> Get.Answers! </title>

<instructions> Please enter your question. </instructions>

<fields>

<input label="Question" type="text" field="q" size="60"
required="true"/>

<input type="hidden" field="f" value="hitlist"/>

<input type="hidden" field="t" value="main-hit-h.htm"/>

<input type="hidden" field="tf" value="doc"/>

<input type="hidden" field="tt" value="document-frame.htm"/>

Make sure you
modify the remaining
field values to reflect
the column you
removed.
5-4 Modifying the Hit List

<input type="hidden" field="x" value="Simple"/>

<input type="hidden" field="d" value=""/>

<input type="hidden" field="c" value="redirect"/>

<input type="hidden" field="s" value="Relevance-Weight"/>

<input type="hidden" field="ht" value="hitlist.htm"/>

<!-- These determine the hit list arrangement: -->

<input type="hidden" field="a" value="Title-Path"/>

<input type="hidden" field="h1" value="Hit[Hit,3]"/>

<input type="hidden" field="h2" value="Relevance-
Weight[Rank,7]"/>

<input type="hidden" field="h3" value="Title-Path[Document,90]"/>

</fields>

<actions target-url="http://localhost/lpBin20/lpext.dll">

<submit> Search </submit>

<home> Home </home>

</actions>

</form>

</forms>

</activity>

3. Save the changes and rebuild the weblication using wbuild.

This line defines
which column has the
link anchors (where a
user clicks to open
the document).

This line determines
what the title looks like
in the hit list.
Tailoring Get.Answers! 5-5

5-6 Modifying the Hit List

Ge
Chapter 6
Adapters
Get.It! ships with several adapters you can use to connect to one or more databases. In
addition to the ServiceCenter and AssetCenter adapters that are set up during the Get.It!
installation, the following adapters are included with Get.It!:

• JDBC adapter—allows you to establish a full database connection to a database other
than the default ServiceCenter and AssetCenter databases.

• LDAP adapter—provides you with a centralized source for information about the
people within an organization, eliminating the need to maintain user data in more than
one location.

• E-mail adapter—allows you to connect to an external mail server.

This chapter includes detailed information about each adapter. There is also a section at
the end of the chapter that contains information about the log files produced by JRun, Ser-
viceCenter, AssetCenter, and the archway connector. These log files can be helpful in
troubleshooting connectivity problems.
t.It! Tailoring Guide 6-1

ServiceCenter Adapter
This section includes information about the archway.ini parameters that are specific to
ServiceCenter, ServiceCenter event handling, and tips for troubleshooting the Get.It! con-
nection to ServiceCenter.

Archway.ini Parameters
The archway.ini file contains parameters that are specific to ServiceCenter. The fol-
lowing table lists the parameters and gives a description of each.

ServiceCenter Event Handling

The ServiceCenter adapter has been enhanced to provide a detailed eventin record that
will give status when an event fails to execute or fails to create an eventout response.

The following is an example of an eventin record. The record was generated because an
illegal approver tried to send an approval event:

SC Parameter Description

scadmin An administrator login must be defined in order to connect to
ServiceCenter. The default is falcon, the sample administrator
login supplied with ServiceCenter.

scadminpassword By default, no admin password is required.

scanonymous With this login, requests sent to archway are processed without
going through the Get.It! user interface. Used by the scriptpoller
function. The default is falcon.

scanonymouspassword By default, no anonymous password is required.

schost The host name for your ServiceCenter installation. The default is
localhost.

scport The port number for your ServiceCenter installation. The default
port number for a full client is 12670.

sclog The location of the sclog file. The default is C:\Program
Files\getit\sc.log.
6-2 ServiceCenter Adapter

<eventin>
<evtype>approval</evtype>
<evtime></evtime>
<evsysseq>3991b1ff0036f001</evsysseq>
<evusrseq>3991b1ff0036f001</evusrseq>
<evsysopt></evsysopt>
<evuser>Hartke</evuser>
<evpswd></evpswd>
<evsepchar>^</evsepchar>
<evfields>^ocmq^Q1102^approve^^Hartke^^^</evfields>
<evexpire>0</evexpire>
<evstatus>error</evstatus>
<evnumber></evnumber>
<evlist></evlist>
<evtimestamp>2000-08-09T19:40:05+00:00</evtimestamp>
<evcount></evcount>
<evnetnm></evnetnm>
<evcode></evcode>
<evmsg>

<entry>Cannot execute application: es.approval</entry>
<entry>Unrecoverable error in application: es.approval on
panel decide.exit</entry>
<entry>You are not authorized to access Request Mgmt Quotes.
</entry>

</evmsg>
<evid></evid>
<sysmodcount>1</sysmodcount>
<sysmoduser>N/A</sysmoduser>
<sysmodtime>2000-08-09T19:40:05+00:00</sysmodtime>

</eventin>

The Archway script can use this information as necessary. For instance, it may display the
evmsg error messages returned by the RAD application, or messages indicating that an
event has failed because of customized Format Control rules.

Using the _event parameter
The “_event” parameter can be used in a script to specify the name of the event to be used
in an SCDocManager operation.

If an _event parameter is not defined, the standard insert or update attributes of the docu-
ment are used. Refer to “ServiceCenter-Specific Attributes” in Appendix B for informa-
tion on the insert and update attributes.

The following is an example of the use of the _event parameter:
var msgTicket = new Message("Problem");

...
msgTicket.set("_event", "epmc");
// Tell SCDocManager to use an epmc event for this update
Adapters 6-3

archway.sendDocUpdate("sc", msgTicket);

These lines will override the default insert and update attributes and instruct the SCDoc-
Manager to use the attributes defined in the script instead.

Troubleshooting the ServiceCenter Database Connection

If you are having trouble making a connection between Get.It! and the ServiceCenter data-
base, verify the following:

1. Check the Control Panel page in the Admin module to confirm the database
connectivity status. See “Verifying Adapter Connections” on page 5-24.

2. If “sc” is disconnected, verify that the ServiceCenter service is running (the
ServiceCenter console has been started).

3. If the ServiceCenter service was not running and you have started it, also restart JRun
after the connection is established.

4. Verify that you have ServiceCenter full client connectivity by starting a client that is
pointed to the port listed in the archway.ini file.
6-4 Archway.ini Parameters

AssetCenter Adapter
This section includes information about the archway.ini parameters that are specific to
AssetCenter, tips for troubleshooting the AssetCenter connection, and tells how to set
AssetCenter feature links.

INI Parameters

The following table lists the archway.ini AssetCenter parameters and gives a descrip-
tion of each.

AC Parameter Description

acadmin An administrator login must be defined in order to connect to
AssetCenter. The default is Admin, the sample administrator login
supplied with AssetCenter.

acadminpassword By default, no admin password is required.

acanonymous With this login, requests sent to archway are processed without going
through the Get.It! user interface. Used by the scriptpoller function. The
default is Admin.

acanonymouspassword By default, no anonymous password is required.

acdatabase The name of the AssetCenter database to which Get.It! will connect.
The default is ACDemo350ENG.

acdateformat Establishes the date format for AssetCenter. The default is yyyy-MM-
dd.
Adapters 6-5

acapidll Used with AssetCenter version 3.5 and above. This parameter is not
mandatory, since Get.It! is able to detect which DLL to load and where
to find it, based on the connection name defined by the acdatabase
parameter.

When this parameter is not specified, Get.It! uses the information
provided by AssetCenter in the connection description (in amdb.ini),
to determine the DLL name. Use this parameter only if the default name
determination is not successful.

acapidllpath Gives the path to the folder in which the AssetCenter API DLL is
located. If this parameter is left blank, Get.It! will search the folders in
which AssetCenter is installed for a DLL with the expected name. If the
requested DLL is not found, Get.It! will load it from its bin folder.

This parameter should be used only if the default path determination
does not work as expected. Note that in the case where the locale
parameter in archway.ini contains “ja” (meaning that you intend to
use Japanese), Get.It! will only load the API DLL from an AssetCenter
Japanese folder, and if it does not find it there, it will load it from
bin/ja.

acdefaultloginclass Establishes the type of default user login. This parameter can have four
different values:

• If it is empty or not specified in archway.ini, the self-registered
users are added to AssetCenter with the default login class defined
in AssetCenter. Out of the box, the default for a registered user in
AssetCenter is named user.

• If the value is casual, (acdefaultloginclass=casual) the
self-registered user will be added as a casual user.

• If the value is floating, (acdefaultloginclass=
floating) the self-registered user will be added as a floating
user.

• If the value is named, (acdefaultloginclass=named) the
self-registered user will be added as a named user.

Casual user, floating user, and named user are described in the
AssetCenter documentation.

AC Parameter Description
6-6 AssetCenter Adapter

Troubleshooting the AssetCenter Database Connection

If you are having trouble making a connection between Get.It! and the AssetCenter data-
base, verify the following:

1. Check the Control Panel page in the Get.It! Admin module to confirm the database
connectivity status.

2. If “ac” is disconnected, verify that the “acdatabase” parameter in the archway.ini
file is the same as the database name displayed when you log into AssetCenter. For
example, in the system as shipped, the acdatabase parameter is set to
ACDemo300ENG. Refer to your AssetCenter documentation for assistance with
login procedures.

3. Verify that all AssetCenter settings match Get.It! settings. Log into the AssetCenter
database. Make sure that the login account referenced in the Get.It! settings matches
the login for AssetCenter. Also verify that Get.It! is using the correct user name and
password for the connection. You can do this by selecting File | Manage Connections
in AssetCenter.

4. Check the Get.It! ODBC connections to AssetCenter. Depending on the way you run
JRun, it will look for either an ODBC User DSN or an ODBC System DSN.

• If you start JRun as a service (the usual method), it references the System DSN
for the ODBC connection to the AssetCenter database.

• If you start JRun as an application, it references the User DSN to determine the
ODBC connection.

AssetCenter Feature Links

The following is a JScript function to set feature links, a solution for an AssetCenter limi-
tation.
//general case assetcenter feature link population.
//to be used when a feature link is defined to a
//table in assetcenter. you must link with multiple
//tables to link with the required record.

//expects many parameters: amFeature table, SQLName,
//amFeature, TargetTableName, field name of ID field
//in target table.

function featureLink(

//amFeature SQLName
sFeatureSQLName,

//table that Feature points to
Adapters 6-7

sTableName,

//ID field in sTableName
sld,

//string value of destination record
sDestinationValue,

//ID of destination record of link
IDestinationId
)

{
var msgFeature;
var strFeatId;
var msgFeatureRelative;

//locate the amFeature record
msgFeature = archway.sendQuery(“ac”,
“SELECT IFeatId FROM amFeature WHERE SQLName = “‘
+ sFeatureSQLName + “‘”,
0,1);

//convenient storage for the Id
strFeatId = msgFeature.get(“IFeatId”);

//locate the record in sTableName identified via the
//amFeature record
msgFeatureRelative = archway.sendQuery(“ac”,
“SELECT IFeatValld FROM” + sTableName +
“WHERE” + sld + “=” + msgDestinationRecord.get(“Id”)+
“AND IFeatId = “ + strFeatId,
0,1);

//modify the record in sTableName with data from
//msgDestinationRecord
msgFeatureRelative.set(“fval”, IDestinationId);
msgFeatureRelative.set(“ValString”, sDestinationValue);
archway.sendUpdate(“ac”, msgFeatureRelative);

return;
}

6-8 AssetCenter Adapter

You can call this to set feature link values. The following example adds a “Manager” fea-
ture link to the amemplDept table to link an employee to a manager.

featureLink(

//SQLName of the amFeature entry
“Manager”,

//feature table associated with feature added to “amEmplDept”
“amFvEmplDept”,

//name of ID field in amEmplDept
“IEmplDeptId”,

//string value of the manager record (e.g., Name, FirstName)
sManagerName,

//ID of destination record of link (the “manager” we’re linking with)
IManagerId);

JDBC Adapter
The Java Database Connectivity (JDBC) adapter allows you to create a connection
between Get.It! and a third-party database.

You can set up as many JDBC adapters as you need. The only limitation is that each
adapter must point to a different database target string.

Adding and configuring a JDBC adapter requires several steps:

• Creating the connection between Get.It! and the database.

• Validating the connection.

• Adding the database settings to the Settings form.

• Creating a module in the portal so that information from the database will be displayed
in the desired format.

The following procedures outline these steps, using the example of establishing a connec-
tion to a database that stores data about employees.
Adapters 6-9

Adding a JDBC Adapter

There are two steps to adding a JDBC Adapter to Get.It!:

• Verify the Data Source Name (DSN) for the database to which you want to connect.

• Update the archway.ini file with information about the database.

Verifying the System DSN
The first step in adding the JDBC adapter is to verify the DSN for your database. You will
need to add this information to the archway.ini file.

If you have not yet created a system DSN for your database, use the following procedure
to do so.

1. Open the Control Panel (Start->Settings->Control Panel) and double-click the ODBC
Data Sources icon.

2. Select the System DSN tab, and then click Add.

3. Select the driver for which you want to set up a data source. For this example, we are
using the Microsoft Access Driver, because the example database was created using
Microsoft Access.

Fig. 6.1 ODBC Data Source Administrator
6-10 JDBC Adapter

4. Click Finish.

5. In the dialog box displayed, give the data source a name. You can name it anything
you want. For this example, we have used “Access_JDBC_test”.

6. Click OK. The new DSN is added to the list of data source names.

Fig. 6.2 List of available drivers

Fig. 6.3 ODBC setup—data source name
Adapters 6-11

7. Click OK.

Updating the Archway.ini File
1. Open the archway.ini file in the C:\Program Files\getit\bin\ directory.

2. Update the adapters line with the JDBC Adapter, so the line would look something
like:

adapters=sc=SCAdapter;portalDB=SCAdapter;xx=JDBCAdapter

where xx is a two character designation of the database to which you are linking.

3. Add the following lines to the archway.ini file. Replace xx with the two character
designation of the database to which you are linking. Replace <odbc name> with the
system DSN for your database.

xxdatabase=<odbc name>
xxdatabaseurl=jdbc:odbc:
xxdatabasedriver=sun.jdbc.odbc.JdbcOdbcDriver
xxcasesensitive=false
xxanonymous=
xxanonymouspassword=
xxadmin=
xxadminpassword=

Fig. 6.4 New system DSN added
6-12 JDBC Adapter

For this example, the modified lines would look like this:

madatabase=Access_JDBC_test
madatabaseurl=jdbc:odbc:
madatabasedriver=sun.jdbc.odbc.JdbcOdbcDriver
macasesensitive=false
maanonymous=
maanonymouspassword=
maadmin=jsmith
maadminpassword=test

The fields can be updated after you have changed the Administration module
weblication to display them. The “xxadmin” and “xxadminpassword” are used to
actually connect to the database and, therefore, must be a valid database user.

The “xxanonymous” and “xxanonymouspassword” as well as names used in the login
screen are used for Get.It! user sessions.

The “xxdatabaseurl,” “xxdatabasedriver,” and “xxcasesensitive,” and anonymous
login fields are optional. All others are required.

4. Save the file.

Validating the JDBC Adapter Connection
Once you have completed the steps for adding an adapter, you can verify that the connec-
tion has been made.

1. Go to the database you want to query and find a table against which you can run a
query. Make note of the table name.

2. Type the following query in the address field of your Web browser, and then press
Enter:

<hostname>\servlet\archway?<adapter name>.query&_table=<table name>

where <name of adapter> is the two-letter designation you gave your database in the
archway.ini file.

For our example, we used a table called “Employees” in the sample database, so our
query would look like this:

localhost\servlet\archway?ma.query&_table=Employees

3. In the dialog box displayed, select to open the file from its current location, and then
click OK.

4. Select a text editor to display the data, and then click OK.

Figure 1.5 shows an example of data displayed using Notepad.
Adapters 6-13

Adding the New Database Settings

The Settings form in the Get.It! Admin module contains the settings for the ServiceCenter
and AssetCenter database connections.

You will need to update the admin.xml file to add the JDBC adapter settings to this form.

Updating the Admin.xml File
1. Open the admin.xml file from the C:\Program

Files\getit\apps\common\weblication\ directory.

2. Find the activity called “Settings.”

3. Scroll down until you see where the AssetCenter and ServiceCenter adapters are set
up.

Enter the following lines after the AssetCenter and ServiceCenter adapter
information. Be sure to update the “JDBC” and “xx” with the information for the
system to which you are linking. Where “xx” is used, replace uppercase “XX” with
uppercase letters and lowercase “xx” with lowercase letters:

<section label="JDBC (xx) Adapter Settings">
<entry>

Fig. 6.5 Verification that the JDBC adapter is processing data
6-14 JDBC Adapter

<input field="XXAdmin" type="text" label="Administrator name"
size="20" />

<instructions>Administration user used by Get.It! when performing
tasks such as user authentication and registration</instructions>

</entry>
<entry>
<input field="XXAdminpassword" type="password"
label="Administrator password" size="20" blank="_blank" />
<instructions>Administration password</instructions>

</entry>
<entry>
<input field="XXAnonymous" type="text" label="Anonymous name"

size="20" />
<instructions>Anonymous user name used when an unknown user
attempts to communicate through archway</instructions>

</entry>
<entry>
<input field="XXAnonymouspassword" type="password"

label="Anonymous password" size="20" blank="_blank" />
<instructions>Anonymous user password</instructions>

</entry>
<entry>
<input field="XXDatabase" type="text" label="DataSource"

size="20" />
<instructions>Data source name for ODBC driver</instructions>

</entry>
<entry>
<input field="XXDatabaseUrl" type="text" label="JDBC Url"

size="20" />
<instructions>Url for JDBC driver (optional)</instructions>

</entry>
<entry>
<input field="XXDatabaseDriver" type="text" label="JDBC Driver"

size="20" />
<instructions>Alternate JDBC driver (optional)</instructions>

</entry>
<entry>
<input field="XXCaseSensitive" type="checkbox" label="Case

Sensitivity" value="true" valueoff="false" />
<instructions>Select this to toggle case sensitivity in the JDBC

driver</instructions>
</entry>

</section>

4. Save the file in your ...\user directory. If you save it in the common
Get.It!directory it will be overwritten the next time you load a new version of Get.It!

5. Run wbuild getit. See Chapter 4 for detailed instructions on running the wbuild
command.

6. Verify that the fields have been added to the Settings page.
Adapters 6-15

Creating an Interface to the Database

In order to display formatted data from your database or to add new information from
Get.It! to the database, you will need to add a new module to the Get.It! portal. This pro-
cess includes the following three steps:

• Modify an XML file to establish how you would like the data to be formatted.

• Modify schemas to map to the fields in your database tables.

• Modify the JavaScript to point to your database.

All of these procedures can be done by copying existing files and changing them to pull
data from your database and format it. The files you will need are located in the
...getit\apps\common directory. Copy the files you want to use into the equivalent
folders in the ...getit\apps\user directory so that they will not be lost when you
upgrade to a later version of Get.It!. See “Adding a New Module” on page 4-25 for
instructions for adding a module to the portal.

Fig. 6.6 JDBC adapter settings added to the settings page
6-16 JDBC Adapter

Preventing Lost Connections

If you experience lost connections while using the JDBC adapter, you can use a polling
script which will periodically check for database connectivity and reconnect when a con-
nection is lost. The script is then run through scriptpoller.ini on a periodic basis.

The following script (pingDB.js) is an example. You will need to customize this script
for your own database name and queries as noted.
//---
// PingDB - attempts a well known query periodically, on error
// reconnects the JDBCAdapter to the database using the "_connect"
// event which will attempt a disconnect and then reconnect.
//
// Two functions are defined:
// start() - executes exactly once
// run() - executes on the polling interval
//
//---
Archway = Packages.com.peregrine.archway;
Message = Archway.Message;

//---
// Start function .. can build parameters for run method
//---
function start(msg)
{

var msgRet = new Message();
msgRet.set("message","ok");
return msgRet;

}

//---
// run function .. subsequent invocations
//---
function run(msg)
{

var msgDB = new Message("test_query");
var msgRes = null;
var msgRet = new Message();

msgDB.set("query", "select * from tab");
msgDB.set("_count", "1");

msgRes = archway.send("xx", "query", msgDB);
if (msgRes.get("message"))
{

msgDB = new Message("_connect");
msgRes = archway.sendEvent("xx", msgDB);

}

Replace this
query with one
that you have
used with your
database and you
know will suc-
ceed every time.

Replace “xx” with
the two-letter des-
ignation of the tar-
get database
identified in the
archway.ini file.
Adapters 6-17

msgRet.set("message","ok");

return msgRet;
}

Calling a Stored Procedure

Stored procedures can be called with input and output parameters. When the procedure is
executed, the adapter first attempts to get any result sets that may have been returned, then
attempts to retrieve the set of parameters with which the function was called. The resulting
parameter list includes both input and output parameters and their values.

All parameters are treated as (and assumed to be declared as) Varchar or String type, with
other data types to be supported in a future release.

Input and output parameters are specified with the "type" attribute; valid settings are
"IN/OUT/INOUT".

There are three ways to call a stored procedure:

• From the Web browser through CGI syntax in a URL.

• From a JScript file or post stream with an XML document containing _call and _sql
tags.

• Using the Get.It! Document Manager.

The following is an example using a stored procedure called "insertEvent()" in an
MSSQL7.0 database with two parameters; the first is of type “input” and the second, “out-
put”. When called, the procedure verifies the input data and inserts a row returning the
new row ID number.

Using a URL
http://localhost:8080/prgn/servlet/archway?ja.event
&_sql={call insertEvent('User1',?)}&name=User&value=User1&type=IN
&name=Id&type=OUT

Using a JScript
function processInsert(msg)
{

var msgEvent = new Message("event");
var strCall = "{CALL insertEvent('User1',?)}";

msgEvent.set("_sql", strCall);
msgArg = new Message("_arguments");

elTag = msgArg.add("name", "UserName");
elTag.setAttribute("type", "IN");
elTag.setAttribute("value", "User1");
6-18 JDBC Adapter

elTag = msgArg.add("name", "Id");
elTag.setAttribute("type", "OUT");

msgEvent.add(msgArg);

msg = archway.sendEvent("ja", msgEvent);

return msg;
}

Using a Document Insert Or Update
This example uses the following schema definitions:
<?xml version="1.0"?>

<schema>

<!--==
Generic Schema Definitions

===-->

<documents name="base">
<document name="ProcEvent">

<attribute name="UserName" type="string"/>
<attribute name="Id" type="id"/>

</document>
</documents>

<!--==
JDBCAdapter Schema Definition

===-->

<documents name="ja">
<document name="ProcEvent" table="None" insert="insertEvent"

update="updateEvent">
<attribute name="UserName" field="NAME" insertEvent="IN"

updateEvent="IN"/>
<attribute name="Id" field="ID" insertEvent="OUT"

updateEvent="IN"/>
</document>

</documents>

</schema>

using the following JScript function:
function processInsert(msg)
{

var msgRequest = new Message("ProcEvent");
Adapters 6-19

msgRequest.add("UserName", "User1");
msgRequest = archway.sendDocInsert("ja", msgRequest);

return(msgRequest);
}

All methods above will produce the following output:
<?xml version="1.0" ?>
<_doc>

<_arguments>
<Id>915326</Id>
<UserName>User1</UserName>

</_arguments>
</_doc>

LDAP Adapter
Lightweight Directory Access Protocol (LDAP) directories provide a centralized source
for information about the people within an organization. E-mail addresses, telephone
numbers, fax numbers, user IDs, and passwords can be defined in the LDAP directory and
referenced by various applications, eliminating the need to maintain user data in more than
one location.

The use of an LDAP directory allows users without ServiceCenter operator records to log
on to Get.It! by providing minimal login information, such as login ID and password.

The information in this section assumes prior knowledge of the general setup and configu-
ration of LDAP, and ability to write the associated JScript.

Connecting LDAP to Get.It!

There are three procedures that need to be completed in order to connect to Get.It! using
LDAP:

• Update the archway.ini file to include the LDAP parameter.

• Create a JavaScript to query Get.It!.

• Reset the server.

This section provides information on updating the archway.ini file. Refer to your LDAP
documentation for instructions on setting up an LDAP adapter. Sample scripts are not pro-
vided with Get.It! because of the variety of possible configurations. However, Chapter 4
of this guide includes instructions for modifying JScripts.

Note: LDAP function-
ality is not available
on MVS systems.
6-20 LDAP Adapter

Updating the archway.ini file

To configure the LDAP adapter, update the archway.ini file with the following infor-
mation:

1. Add the adapter name to the adapters line:

adapters=sc=SCAdapter;ac=ACAdapter;ldap=LDAPAdapter

2. Define the LDAP connection parameters:

ldapurl=xxx
ldaplogin=xxx
ldappassword=xxx

Replace the “xxx” with your system and user-specific information.

E-mail Adapter
The E-mail adapter can be set up using Java or from an Archway ECMA script. The vari-
ous calls that are available are the same either way. The E-mail adapter is based on the Sun
Javax.mail classes for mail, especially:

• javax.mail.Session

• javax.mail.Message

• javax.mail.Transport

• javax.mail.search

and several other related classes. Detailed documentation on these is available from Sun's
java.sun.com site.

The following script illustrates how the E-mail adapter can be used to connect to a mail
server and how a given mailbox at that server can be processed:

// FESI definitions to point to the Archway mail adapter Java classes
Archway = Packages.com.peregrine.archway;
MailAdapter = Archway.adapters.MailAdapter;

// Allocate a new MailAdapter object
var ma0 = new MailAdapter();

// Optional: Turn on Javax.mail debug mode by calling
// "setDebug(true)"
// If this is done, copious javax.mail debug messages will be written
// to JRUN standard output log

ma0.setDebug(true);

// Connect to a specified mailbox at a specified IMAP4-capable
Adapters 6-21

// mail server, passing the hostname of the server, a userid,
// and a password

ma0.setConnection("exchange.mycorp.com", "joesmith",
"opensesame");

// If we could not connect for some reason, print MailAdapter last
// error in the log and return false

if (ma0.connect() != 0)
{

var err = ma0.getLastError();

// This returns an Archway error message containing last javax.mail
// error info

env.error("Got error: " + err.getErrorMessage() +
"trying to connect to mailbox");
return false;
}

// Get a logical Archway lock on the mailbox we are going to process
var strMailLock = "MailAdapter:" + "joesmith"
env.getLock(strMailLock);

// Build the SQL query to query the mailbox
var mailQuery = "SELECT * FROM INBOX ";
if (docType != null)
{

mailQuery += " WHERE subject = '" + docType + "' ";
}
if (lastRecvDate != null && lastRecvDate != "")
{

mailQuery += " AND receivedDate > " + lastRecvDate ;
}

// Issue the query. Ask for 4 messages starting with zeroeth message.
// Specifying -1 for the count retrieves all messages

var m = ma0.doQuery(mailQuery, 0, 4);

// Make sure it worked
if (m == null)
{

env.error(ma0.getLastError());
env.releaseLock(strMailLock);
return false;

}

env.debuglog("Response from mailadapter was: " + m.getContent());
var i = 0;
var docsProcessed = 0;
var list = m.getList("message");
for (i=0; i < list.getLength(); i++)
6-22 E-mail Adapter

{

// Get the mail message represented by this list entry
var mm = ma0.getMailMessageByNumber(list.get(i,
"messageNumber"));
if (mm == null)
{

env.log("Failed to retrieve mail message by number - " +
ma0.getLastError().getErrorMessage());
env.releaseLock(strMailLock);
return false;
}
env.debuglog("Mail message " + i + " is: " + mm.getContent
(false));

// Get a few elements out of the Mail message
var msgID = mm.get("messageID");
var msgNo = mm.get("messageNumber");
var text = mm.get("text");
var subject = mm.get("subject");
var dtReceived = new Date(mm.get("receivedDate"));

// Delete the Mail message
ma0.deleteMailMessageByNumber(msgNo);

}

// Commit inbox folder changes. This does a Java mail expunge
// operation

ma0.commitInboxFolderChanges();

// Release lock on mailbox
env.releaseLock(strMailLock);

// Close the mail box
ma0.disconnect();
Adapters 6-23

Verifying Adapter Connections
The status of a connection from Get.It! to a database can be verified from the Control
Panel in the Admin module. In the example in figure 6.7, “sc” and “getanswers” are
shown as disconnected because the ServiceCenter console was not started before logging
into Get.It!.

For more information on connectivity troubleshooting with each adapter, refer to the
appropriate section on each Get.It! adapter provided in this chapter.

Fig. 6.7 Verifying adapter connections.
6-24 Verifying Adapter Connections

Log Files
There are a number of log files produced by JRun, ServiceCenter, AssetCenter, and the
archway connector that provide information that can help you troubleshoot your Get.It!
installation, including connectivity problems.

The following table lists the paths to the log files and gives a description of the types of
messages written to each file.

Path to Log File Description

\JRun\jsm-default\logs\stdout.log Standard output from JRun, including “writeIn” and Log.log
statements from Jscript.

\JRun\jsm-default\logs\event.log A log of events: initialization of objects, need to re-initialize
objects after modifications, and so forth.

\JRun\jsm-default\logs\stderr.log Standard Error output from JRun. Includes Java exceptions
and similar errors.

\JRun\jsm-default\services\jse\logs\error.log Logs information similar to stderr.log above.

\JRun\jsm-default\services\jse\logs\event.log Logs information similar to event.log above.

archway.log The location of this log file is specified in the
archway.ini file. The information included in the log file
is also determined by the INI file, but includes things like
env.log, env.debuglog, and query information.

\Program Files\ServiceCenter\sc.log Information regarding the ServiceCenter connection.

\Program Files\AssetCenter\ac.log Information regarding the AssetCenter connection.
Adapters 6-25

6-26 Log Files

Ge
Chapter 7
Localization Support
Get.It! allows each user to dynamically select the language in which they would like the
Get.It! windows displayed. This is supported through language-specific string files which
you can update if you are adding your own strings.

General Localization Steps

Before you can localize the strings you create, complete the following two steps:

1. Use the Administration Module to update the Settings so the “Locale” field includes
the languages you want to have available. Use the two-character language code
defined in the ISO standard. You can find a chart of the ISO codes in Chapter 2,
"Get.It! Administration Module," of the Get.It! Administration Guide.

2. Update or create your modifications to Get.It! just as you always would. If needed,
refer to Chapter 4, "Tailoring Get.It!," for the steps to complete.

The following is a general overview of the steps you will do to translate your modifica-
tions.

3. Run wbuild getit.

4. Run strbuild getit. This will update your weblication string files.

5. After you run strbuild, look in these files and update all empty quotes with the
correctly translated strings. Search for quote quote (““) to find all the empty strings.

6. Log into Get.It! When Get.It! attempts to write a screen, it first looks for a string in a
country-specific file. If a string is not found in a country-specific file, Get.It! then
looks in the language-specific file.

See “</form>” on page 4-15 for an step-by-step example of this process.

You can further define language within regions by creating STR files defining only those
strings which are different and adding the country name the file names. For example, the
English extract file for Great Britain could be getit_en_GB.str.

Make sure the
Locales and Curren-
cies fields in the
Administration Mod-
ule Settings are set
correctly before you
begin localizing files.
t.It! Tailoring Guide 7-1

Archives

A copy of all STR files is stored in an archive file. This archive file is called
...getit\apps\getit.zip. You can transmit this file to a third party translation ser-
vice if you do not want to update the STR files yourself.

Externalizing ECMAScript Messages
The ECMA scripts defined in each Get.It! package also contain some messages. For
example, the following is a script that sends a message to the user:

User.addMessage(“You have no open problem tickets”);

Messages like these are externalized by storing them in a file named <package>_en.str
found in each package folder. For example, messages belonging to the Get.Service! pack-
age are stored in ...getit/apps/service/service_en.str.
The externalization process is as follows:

1. During development, all messages should be placed in a STR file. For example:

statusNoTickets, “You have no open problem tickets”

2. Instead of including the message in the ECMA script, use the API interface shown
below:

User.addMessage(IDS.get(“service”, “statusNoTickets”));

The IDS.get() API requires three parameters. The first is package name where a mes-
sage is defined. The second is the string ID defined for the entry. The user’s preferred lan-
guage is determined by the ScriptRunner.
ID names must be unique within a package. In addition, each ID should be prefixed by the
name of the script file where it is associated.

3. When ready to localize, open the appropriate string file. Save the file in the same user
directory where you saved the script file you updated as user_languagecode.str
where languagecode is the two character code for the language (user_fr.str for
French).

At runtime, Archway picks up messages from the appropriate STR file as determined by
the user session language preferences. Thus, one user could view English messages while
other views them in French at the same time.
7-2 Externalizing ECMAScript Messages

Externalizing ECMAScript
Messages with Variables

The IDS interface includes methods for replacing variables into a message. For example,
consider the following message
"Asset " + strOld + "will be replaced by asset " + strNew

Such a message should be externalized as follows:

ID, "Asset %1 will be replaced by asset %2"

This allows translators to place the %1 and %2 replacement tags anywhere that makes
sense according to grammatical rules of the target locale.
The IDS interface supports the %1 tags with calls such as:

IDS.get(user, strID, str1, str2, ..., strN);

Where str1, str2, ... strN respectively replace %1, %2, ... %N

IDS defines functions for up to three replacement strings. For greater numbers of
replacements, use the get() function that takes a string array.

Externalizing Messages in XSL Templates
While it is rare, the Get.It! XSL templates define some messages of their own. For exam-
ple, the label for a “back” button is hard coded in the XSL templates, providing a uniform
label anywhere a <back> weblication element is found.
There are two ways XSL templates externalize strings. The first is by using the $$IDS()
sequence, as shown in the following example:

<xsl:template name=”genBackButton”>

<input type=”button” value=”$$IDS(common,xslBack)”>

</xsl:template>

The XSL above refers to a string defined in the common module’s message STR file:

xslBack, “Go Back”

The $$IDS() sequence is useful when embedding IDS strings in generated HTML. How-
ever, some XSL code may actually generate JSP scriptlet code. In such cases, use the nor-
mal IDS APIs already described above for Java code externalization. For example:
Localization Support 7-3

<jsp:scriptlet>

if (user.getName().length() > 0)

out.println(IDS.get(user, "portal", "xslWelcome") +
user.getName());

</jsp:scriptlet>

The code above retrieves anIDS string defined in the portal module.

Japanese Locale
You must run the wbuild command when running the Japanese version or locale of Get.It!
To run the Japanese version you must type the correct locale in the Locales field. You can
find this field by clicking on the Admin module and then scrolling to the Locales field. In
this field type “ja.” Click the Save button, located at the bottom of the screen.

Because Japanese characters are not presently supported under the ISO-8859-1 character
set, you must run the wbuild command. All character sets that fall outside of theISO-8859-
1 character set require the wbuild command to be executed.
7-4 Japanese Locale

Ge
Chapter 8
Troubleshooting
Weblication

Q: How do I include links in a weblication form that can lead to different queries executed
and displayed on the resulting form?

A: Let's say that you want two links on a page: One that lists Open tickets and another that
lists Closed tickets.

Your form might look like the following:

<form name="search">
<title> Search tickets </title>
<fields>

<link target-form="list" param="Status=open"> Open Tickets </link>
<link target-form="list" param="Status=closed"> Closed Tickets </
link>

</fields>
</form>

Both of these links will call the "list" form. The "list" will have an onload script that is
called and receives the value passed in the param attribute of the links. When you click on
Open Tickets, the Status=open values are passed on to the script and subsequently used
by the script’s queries.

Q: Is it safe to use a global script variable in FESI script running within the Archway
environment? The global would be private to the thread but wider in scope. Is there any
possibility of two threads colliding into the variable?

A: The way to maintain session-specific data is to store it in the User object. Each logged
in user has their own user object. You can use something similar to the following script:

user.set("name", "value");
and
value = user.get("name");

Q: I want to obtain details about the Requester into the PurchaseOrder docu-
ment.amPOrder has a link field to amRequest, and amRequest has a link field to amEmp-
Dept. What is the schema syntax for creating the "double" link so that I can get, for
t.It! Tailoring Guide 8-1

example, Requester.EMail into the PurchaseOrder document?

A: If you want to display the requester's email as a field of a PurchaseOrder then you can
try including an attribute such as the following:

<attribute name="RequesterEMail"
field="Request.Requester.EMail"/>

If you want to include the entire Requestor record instead of having EMail as a Purchase-
Order field, you can add nested Documents to the PurchaseOrder document:

<document name="Request" ...>
<document name="Requester" ...>
<attribute name="EMail" ...>

Q: How do you format a non-editable field?

A: Do not assign a type="text" tag. For example,

<field label="Ticket number" field="Id"/>
<field label="Category" field="Category"/>

Q: How do you adjust Listbox size? The rows and cols and size do not work.

A: You cannot control table width. Height depends on the number of elements in the result
set. You can set the rows attribute but it is maximum value. If the result set has more then
you can use Next and Prev buttons.

Q: Is there a method for determining current user and password?

A: Yes.

user.getName() or user.get("_name") and user.get("_password");

Q: How can I test a script?

A: Assuming, for example, that you have two script functions in a script file named
script.js:

function getTicket(msg)
{

return archway.sendDocQuery("sc", "Problem", msg);
}

8-2 Troubleshooting

function newTicket(msg)
{

var msgProblem = new Message("Problem");
msgProblem.addChildren(msg);
return archway.sendDocInsert("sc", msgProblem);

}

You can test these in a browser by hitting Archway using either (target.command) or
(object.method), as in the following.

http://webservername/servlet/archway?script.test
Troubleshooting 8-3

Q: How do I process input data entered by a user in a form containing a table. For exam-
ple, the Get.Resources! catalog screen contains a table of products, and each row has a
spinner field that allows the user to enter a count value. How are these count values sub-
mitted to an archway script, and how should they be processed?

A: Archway defines APIs to, thereby simplifying this process. The first step is to define
the table in a weblication. The following is sample code that defines the product catalog
tables:

<table record="Product" rows="10">
<link target-form="product" field="Id"/>
<column label="Count" field="nCount" type="spinner" key="Id"
size="3"/>
<column label="Brand" field="Brand"/>
<column label="Model" field="Model"/>
<column label="Price" field="Price"/>
</table>

Notice the definition of the "Count" column. It defines a column of spinner fields. This
column contains two important attributes:

The second step is to process the data that is entered into the table after the form is submit-
ted. The following script illustrates this:

function update(msg)
{
// Retrieve a list of all parameters sent to the script
var list = msg.getFieldList();
for (i = 0; i < list.getLength(); i++)

{
// Retrieve the name of the next parameter

var strParam = list.getName(i);

// If the param came from a table "nCount" cell, get the value typed
in

var strCellValue = Table.getValue("nCount", strParam, msg);

if (strCellValue != "")
{

// Get the key value of the cell
var strRowKey = Table.getKey("nCount", strParam);

Attribute Function

field="nCount" States that the column edits and displays "nCount" data.

key="Id" States that the "Id" field of the table's Product records will be used to
uniquely identify each nCount entry.
8-4 Troubleshooting

// Do something with strRowKey and strCellValue
...
}

}
}

This code reads all parameters sent to the script. It then determines those that are part of
the nCount column in the table. Finally, it obtains the unique key that identifies the value.
Once the script obtains these pieces of data it can do whatever is appropriate in the appli-
cation.
Troubleshooting 8-5

8-6 Troubleshooting

Ge
Appendix A
Weblication Reference
This chapter is a reference for the weblication Extensible Markup Language Document
Type Definition (XML DTD). XML DTD is the high level XML language used to define
all Get.It! weblications.

Weblication Structure

All XML structure is comprised of tags with supporting attribute and element information.
All basic weblications have the following structure:

<application>
<modules>

<module>
<components>

<component>
</component>

</components>
<activities>

<activity>
<forms>

<form>
</form>

</forms>
</activity>

</activities>
</module>

</modules>
</application>

Weblications are defined by an initial application entry or tag. The application tag is com-
prised of one or more modules (e.g., service, request, approval, status, and receiving).
Modules contain elements called components. Each module contains one or more activi-
ties (e.g., the request module contains the following activities: browse catalog, review
shopping cart, submit order, retrieve saved cart). Each activity can have one or more forms
(e.g., the request browser catalog activity has the following forms: category menu, product
list, product detail, bundle list, bundle detail).
t.It! Tailoring Guide A-1

Weblication Tags

<application>

The <application> element is the starting point for defining a weblication. It accepts
the following attributes and nested elements:

Attribute Description

name A unique name for the weblication. The name should be a single word
starting with a letter.

onload The name of the script that will be invoked when the weblication’s main
menu is displayed. For example, the login.xml application file
contains the onload login.login. The script name is made up of the
script file name followed by the script function name.

param When a script is defined with the onload attribute then it can define
parameters that are included within the request message sent to the
script. The string value should be constructed as key=value pairs
with multiple parameters separated by ampersands (&). Because an
ampersand is a special character in XML, you should use &&(_amp).
The plus sign (+) is converted into a space character. Special characters
can be encoded as a three character string beginning with the percent
sign followed by a two-digit hexadecimal representation of the lower
8-bits of the character. For example:
<application onload=”login.login”
param=”p1=yada$$(_amp)p2=what+ever”>.

home Designates the module which is to be considered the “Home” module
and is reached by clicking on the first module tab. The label for the
home tab will be the short name given to the module in the
description attribute.

<title> Title used in the application's main menu.

<instructions> Instructions that will be displayed in the application’s main menu.

<modules> List of modules that make up the application.

frame Specify whether you want the Get.It! banner to frame your windows.
frame=“true” causes the banners to display.
frame=“false” causes the banner to not display.
A-2 Weblication Reference

<module>

The <module> element defines an application component designed to offer users a spe-
cific application function. For instance, the Request module defines interfaces that permit
users to create purchase requests. This element can contain the following attributes and
nested elements:

Attribute Description

name A unique name for the module. The name should be a single word
starting with a letter.

access Defines the name assigned to a user-access definition that is required in
order to access the module. User access is defined by capability words
in ServiceCenter and UserRights in AssetCenter and is set for each
user profile. See “User Authentication” on page 3-3 of the Get.It!
Administrator’s Guide for more information. Enter a valid capability
word or UserRight, or for more general access enter one of the
following:

anonymous = The module can be accessed by any user,
regardless of the user’s profile capabilities. The
module can even be accessed by users who are
not logged into the Weblication.

all = The module can be accessed by all users who
are logged into Get.It!

access-redirect The URL displayed when a user is denied access based on the “access”
attribute (above). If no default URL is specified then
e_login_main_refuse.jsp is used.

appmenu Controls whether the module is included in the header shortcut menu.
When set to false the module is not listed in the Weblication’s header
shortcut menu. The default is true.

apphead Controls whether the module is included on the main menu. When set
to false the module is not listed in the weblication's main menu form.
The default is true.

<title> The title used to identify the module.

<description
image=”X”
short=”Y”
long=”Z”>

This element defines attributes that further describe the module.
• The image attribute defines an image that can be used as a module

logo or link. This is a URL (relative or absolute) pointing to a spe-
cific image of browser-supported file type.

• The short attribute should be defined by one or two words that can
be used in a link that takes a user to the module.

• The long attribute should contain a longer description.
Weblication Reference A-3

Note: If you did not want this module included in the header menu, you would have
included
<appmenu=”false”> before the <title> attribute.

<activity>

The <activity> element defines a step within a module's functionality. For instance, the
browse activity in the Request module defines interfaces that allow users to browse the
catalog to make a request.

This element can contain the following attributes and nested elements:

<target URL> Link a different module into this module.You can link any URL. See
“Adding a URL as a Module” on page 4-23 of the Get.It! Tailoring
Guide for details.

<components> The list of forms and subforms that can be used in activities. These
must be defined as components. See “Reusable Form Components
(Subforms)” on page A-33 for details.

<activities> List of activities that comprise the module.

Attribute Description

Attribute Description

name A unique name for the activity. The name should be a single word
starting with a letter.

access The name of a user capability word that is required to access the
activity. The default value is anonymous, meaning that the activity may
be accessed by any user, regardless of that user’s profile capabilities.
An anonymous activity can be accessed by users that are not even
logged into the weblication.

<title> Title used to identify the activity.
A-4 Weblication Reference

See figure A.1 for a sample of how the <activity> weblication tag can be used.

<description
image=”X”
short=”Y”
long=”Z”>

This element defines attributes that further describe the activity.
• The image attribute defines an image that can be used as an activ-

ity logo or link.
• The short attribute should be defined by one or two words that can

be used in a link that takes a user to the activity.
• The long attribute should contain a longer description that is used

as balloon help for links to the activity.

<target URL> Link a module as an activity.You can link any URL. See “Adding a
URL as an Activity” on page 4-24 for details.

<forms> List of forms that comprise the activity.

Attribute Description

Fig. A.1 Using the <activity> tag
Weblication Reference A-5

<form>

The specific contents for a screen are defined in the <form> element. For instance, the
browser activity in the request module has a number of forms used to show product cate-
gories, product lists, product details, and so forth.

This element can contain the following attributes and nested elements:

Attribute Description

name A unique name for the form. The name should be a single word
starting with a letter.

onload Name of script to invoke before displaying the form. The message
returned by the script is used to populate fields in the form.

param When a script is defined with the onload attribute then it can define
parameters that are included within the request message sent to the
script. The string value should be constructed as key=value pairs
with multiple parameters separated by ampersands (&). Because an
ampersand is a special character in XML, you should use &&(_amp).
The plus sign (+) is converted into a space character. Special
characters can be encoded as a three character string beginning with
the percent sign followed by a two-digit hexadecimal representation
of the lower 8-bits of the character. For example:
<application onload=”login.login”
param=”p1=yada$$(_amp)p2=what+ever”>.

onbrowserload Name of the script to invoke on the client before displaying the form.

homepage If set to true, the form is created to become the weblication's
homepage. Only one form should be given this attribute.

<redirect> This element defines a condition that is evaluated before displaying
the form. If the condition is true, an alternative form is displayed
instead. See “<redirect>” on page A-8 for more information.

<title> TEXT
</title>

Title used to identify the form.

<instructions>
TEXT
</instructions>

Text giving the user instructions for the form.

<form fields> One or more elements that make up the form, such as entry fields,
labels, tables, menus, etc. See “form fields” on page A-10 for more
information.

<actions> Definition of actions that a user may take when viewing the form.
These are typically displayed as buttons or links that submit the
contents of the form or send the user to another form.
A-6 Weblication Reference

Note: When a form is loaded to send to a client, it is supplied with an input document.
The input document is a representation of an XML document containing the data
to be displayed in the form. In most cases, the form's input document is obtained
by executing the form's onload script. The script returns a message object which
represents the document.

Another important point to understand is that a form is frequently invoked with a number
of parameters. Normally these parameters are made up of the values entered in input fields
within the previous form. These parameters are passed on to the form's onload script.

See figure A.2 for a sample of how the <form> tag can be used.

type=”frameset” Specifies number of frames. Also accepts rows=”” and cols=””
attributes.

sidebar Sidebar refers to the leftmost frame. Setting this attribute to
false eliminates this frame.
<form name=”xyz” sidebar=”false”>

frame Frame refers to the uppermost frame. Setting this attribute to false
eliminates this frame.
<form name=”xyz” frame=”false”>

Attribute Description
Weblication Reference A-7

<redirect>

This element defines a condition that is evaluated before displaying the form. If the condi-
tion is true, an alternative form is displayed instead.

For instance, a weblication could have the following:
<form name="hello" onload="weather.getTemperature">
<redirect target-form="coats" condition="cold"/>
<redirect target-form="shorts" condition="hot"/>

</form>

The code above would redirect the user to the coats page when
weather.getTemperature returns a condition of cold.

It redirects to shorts when the condition is hot. It is the script's responsibility to estab-
lish a condition value that makes the redirection work. This is accomplished via the
Message.setCondition() method.

Fig. A.2 Using the <form> tag
A-8 Weblication Reference

The <redirect> element can take the following attributes:

component

A component is an element that can be used (and reused) within an activity’s form. The
component is defined separately and then referenced in the form by name. It may contain
a number of fields or elements that are used to display and input data.

Attribute Description

TARGET Defines the target location for the form.

condition The condition value that makes the statement execute. If the condition
value matches the value set in the form's script return message, the
redirection will take place. If no condition is provided, the redirection is
always executed.

Fig. A.3 Using the <redirect> tag

<!-- This form is shown when the search found nothing -->
<form name="catalognone">

<title>Search Results</title>
<instructions>
No catalog entries were found to match search criteria.
</instructions>
<actions>

<back/>
<home> Home </home>

</actions>
</form>

<form name="catalog" onload="procure.getCatalog">
<redirect target-form="catalognone" condition="catalognone"/>
<title> $$(Title) </title>

In the previous example, we used the following string, which includes the <redirect> tag:

When no catalog can be found (the condition of “catalognone”) the following string of tags is used:
Weblication Reference A-9

form fields

A form may contain a number of fields or elements that are used to display and input data.
Each is described in detail separately below. The following is the list of possible elements:

Attribute Description

<name> The unique name for the component used as reference within an
activity’s form using the tag <component name=”<name>”/>.

{form fields} One or more elements that comprise a form, such as entry fields, labels,
tables, menus, and other (these elements are described in {form fields}.

Attribute Description

<fields> Groups one or more “field” elements, which include <input> and
<field> elements. Sample fields include text boxes, combos, check
boxes, static text fields, and input fields. When fields are grouped they
are treated as a group by the weblication, meaning the field labels are
aligned and the input fields are aligned in the window automatically.

<menu> A menu of links.

<table> A table whose rows are obtained dynamically at run time from the
form's input message.

<listbox> A table whose rows are pre-defined within the weblication.

<html> Allows the insertion of arbitrary HTML code.

<entry table> A table that allows entries in one column and contains descriptions in
another.

<plug in> Allows you to plug in content from any web page that is accessible
through a URL.
A-10 Weblication Reference

<fieldtable>

A <fieldtable> element allows the creation of a formatted table of entry fields. For
example, the Request form is displayed using <entrytable>. This element is used in the
following manner:

<fieldtable>
<heading> Section heading ... </heading>
<row>

<input> or <field>
<input> or <field>
...

</row>
...

</fieldtable>

Fig. A.4 Using the table element of the form fields
Weblication Reference A-11

The sample below shows the tag as it is used in the Request form definition in the
request.xml file.

<component name="requestform">
<fieldtable>
<heading> When would you like this and what is it for? </heading>
<row>
<input label="Date"
type="date"
field="RequestedFor"
scope="user"/>

<input label="Purpose"
type="text"
field="Purpose"
size="35"
scope="user"
required="true"/>
</row>

<heading> Who is this for and where should it be delivered?
</heading>
<row>
<input label="First"
type="text"
field="FirstName"
scope="user"
required="true"/>
<input label="Location"
type="text"
field="LocationName"
scope="user" size="35"/>
</row>
<row>
<input label="Last"
type="text"
field="LastName"
scope="user"
required="true"/>
<input label="Address"
type="text"
field="Address1"
scope="user"
size="35"/>
<input type="hidden"
field="Address2"
scope="user"
value="$$(Address2)"/>
</row>
...
<row>
A-12 Weblication Reference

<input label="Project"
type="select"
field="Project"
record="Project"
valuelist="Title"
displaylist="Title"
scope="user" />
<input type="textarea"
field="Comment"
rows="3"
cols="35"
scope="user"
colspan="2"
rowspan="2"/>
</row>
<row>
<input label="Budget"
type="select"
field="Budget"
record="Budget"
valuelist="Name"
displaylist="Name"
scope="user" />
</row>

<heading> Request contents: </heading>
</fieldtable>

This code, when displayed in Get.It!, is shown below.

The following attributes can be specified within the <input> or <field> elements in a

Fig. A.5 The <fieldtable> tag in use.
Weblication Reference A-13

row:

<action>

The <action> element contains actions that a user may take when viewing the form.
These are typically displayed as buttons or links that submit the contents of the form or
send the user to another form.

The element may contain several attributes and nested elements. Consider the following
example which is referenced by the descriptions of these attributes and elements below:
<actions target-activity="review">
<submit> Add to shopping cart" </submit>
<submit name="Remove"> Remove from cart </submit>
<link target-form="help"> Help </link>
<back/>
</actions>

Attribute Description

colspan=N Normally an input field fills out two columns in a table: a column for its
label, and a column for the field. However, you can use colspan to
specify that the field should take up both columns. For example:

<input type="textarea" field="descriptiom" colspan="2" ...>

The field above is given no label and is defined to span two columns.
Therefore, the text area takes up both the label and entry columns in a
table. Typical values for colspan are 2 or 4.

rowspan=N Allows a field to span more than one row in height. This is also
typically used with textarea fields in a fieldtable.
A-14 Weblication Reference

Attribute Description

TARGET Defines the destination where the user is taken when the current form is
submitted. Currently, each form may only have one submit destination.
In the sample above, the TARGET for the actions is the review activity
of the current module.

<submit> Defines a submit button for a form. In the example above, the first
submit entry displays a button with the caption Add to shopping cart.
Clicking the button sends you to the form's action target (the review
activity). Any data entered in the form is sent along to the target form
and will be available to the target form's onload script.
Forms typically have one submit button. However, forms with more
than one submit button can differentiate between them using the
optional name attribute.
For example, notice the second submit button. It also sends the user to
the form's target destination (the review activity). However, the script of
the target form can distinguish that is was invoked with the Remove
from cart button because the button's name is sent along with the form.
The script can check for this as follows:
if (msg.get("Remove") != "")
// form called with the "Remove" button ...

<link> Link actions are typically displayed by the weblication just like any
submit button. However, a link button offers a way to sent the user to
any arbitrary TARGET destination. However, when a link is used, the
form's data is not submitted to the target.

<back> Creates a button that takes the user to the previous form.

<home> Creates a button that takes the user to the home menu.
Weblication Reference A-15

TARGET

Various weblication elements support a set of TARGET attributes that are translated into
links to a browser destination. One of the powerful concepts in a weblication is its ability
to make navigation between pages easy without requiring the developer to hard code
actual destination page names.

The goal behind the target’s design is to encapsulate the contents of each module and
activity, reducing interdependencies. Therefore, the targets listed in the following table
allow a developer to say something like “take me from the current activity to some other
activity in this module.” This is done without specifically listing the target form name,
thus reducing dependencies which would make a weblication harder to maintain as mod-
ules and activities are added or rearranged.

Fig. A.6 Using the <action> tag
A-16 Weblication Reference

The following are possible TARGET attributes:

TEXT

Various Weblication elements support the display of arbitrary text. For example, form
instructions are specified by the <instructions> element with some embedded text:

<instructions>Press button with mouse</instructions>

However, wherever an element is documented to support TEXT, you can enter more than
just plain words. The text can contain embedded HTML mark-up elements, and it may
also contain references to values in the form's input document. For instance:
<instructions>Press button with mouse.

Attribute Description

target-form Leads to a named form. This target is used for navigation within the
current activity. That is, the target form must be in the current activity.

target-activit
y

Leads to the first form of the named activity. This target is used for
navigation within activities of the current module. That is, the target
activity must be in the current module.

target-module Links to the first form of the first activity in the named module.

target-url Links to any URL. Anything that could be used in an HTTP href tag
can appear here.

target-script Executes a client-side script when the button is pushed.

target-field Sometimes the target is not known until run time. This attribute causes
the weblication to look for an input document field that contains a target
URL. For example:

<link target-field="VendorURL"> More information </link>

The target above is evaluated at run time by retrieving the VendorURL
from the form's input document.

param This attribute can accompany any of the target attributes mentioned
above. It defines additional parameters that should be sent to the target
form. For example:

<link target-form="catalog" param="Certification=Desktop">
Desktop Computers </link>

The link above passes a parameter named Certification with a value of
Desktop to the target catalog form.
Weblication Reference A-17

If nothing happens repeat until it works!!
</instructions>

The instructions above have embedded HTML tags
, , and . Embedded
HTML must be XML compliant. This means that each starting HTML tag should have an
ending tag (e.g., ...) or use the XML shorthand for the tag (e.g.,

rather than
). Attributes inside HTML elements also must be quoted (e.g., rather than).

In addition, you can embed field values in text. For example:
<instructions>Hello $$(UserName),
How are you doing?
</instructions>

The $$(X) syntax is used to extract a field from the form's input document.

$$(X)

The $$(X) element is used to extract information from a field in the form’s input docu-
ment. It embeds field values in text. For example:
<instructions>Hello $$(UserName),
How are you doing?
</instructions>

This example will display the value in the UserName field within the form instructions.

Within the HTML contents, you can use $$(X) expressions to include values of fields in
the form's input document.

<menu>

The <menu> element creates a menu of links in a form. For example, the request module
uses a menu to show catalog categories. The <menu> element can accept a series of
<links>. This is supported if a record attribute is not specified for the menu. When a
record attribute is specified it behaves similar to the <table> element. This means that
it accepts a rows=10 attribute so that when there are more than ten items you can insert
both Next and Previous buttons on the bottom of the page.

<menu record=”{MessageElement}” rows=”{max-rows-displayed}”
image=”{field-with-image-path}”
label=”{field-with-display-string}”>

<link target-form=”{target-form}” field=”{field-with-ID-key}”
content=”{optional-context-value}”/>

</menu>
A-18 Weblication Reference

OR

<menu record=”Category” rows=”10” image=”ImageName” label=”Name”>
<link target-form=”subcategory” field=”Id”/>
</menu>

If this is implemented as a table then it will appear as in the following.

<table record=”Category” rows=”10”>
<link target--form=”subcategory” field=”Id”/>
<column field=”ImageName” type=”image”/>
<column field=”Name”/>
</table>

.

Link Attributes

Note: <link> elements may also appear inside a <fields> collection.

Attribute Description

<link> Defines an item in the menu. Each <menu> tag should have one or
more embedded <link> tags. Link attributes are described in the table
below.

Attributes Description

<link TARGET> Defines the destination target of the link.

<link image=X> An image URL to use for the menu link.

<link
window="true">

If this attribute is set, the target of the link is displayed in a separate
browser window.

<link> TEXT
</link>

The text used in the link.
Weblication Reference A-19

<table>

The <table> element provides a concise way to create tables in the form. This tag is spe-
cialized in generating tables that are populated with XML documents obtained from data-
base queries. The following attributes and embedded elements are supported:

Attribute Description

record This attribute identifies the specific record the table is designed to
display. This record type is found in the form's input XML document.
For instance, consider the following document:
<recordlist>

<Product>
<Brand> X </Brand>
<Price> 1 </Price>
<ProductId> 1356 </ProductId>
<nCount> 1 </nCount>

</Product>
...

</recordlist>

To display a table with a list of products, the record attribute is set to
Product. (This sample XML is used in the examples below.)

rows The max number of rows to display in the table. If the query result set
for the table is larger than this number of rows, the table automatically
displays “Next” and “Previous”. If this attribute is not specified, the
table is made as large as needed to display all rows in the record set.

<link TARGET
field=X>

Table element used to make the rows in a table into links to another
form. For example, a catalog table has rows that when clicked display
each product's detail. This element takes two attributes. The TARGET
attribute determines where the link is to take the user. The field
attribute is used as a parameter passed to the target page. It is intended
to uniquely identify the row. For example:

<link target-form="details" field="ProductId" target=”detail”/>

The link above comes from the catalog table. It creates row links that
take the user to the details form. In addition, the ProductId field
of the row's record is sent along as a parameter to the target form. This
way, the target form can be initialized to display the correct details. The
detail field is for inserting a URL.
A-20 Weblication Reference

Column Types

<column> Each table should have one or more columns. Columns can be used to
display a variety of things, including static text, pictures, and entry
fields. Each type of column is described in more detail below:

<submit> Allows the transmission of data upon pressing the relevant button.
When set to true the form’s contents are submitted to the target of the
link. User globals are updated. Other changes may be saved.

<submit
target-X>

This supplies a target-X in a <submit> element. For instance,
<actions target-form=”someDefault”
<submit>Save</submit>
<submit target-activity=”review”>
Review Before Saving</submit>
</actions>

Attribute Description

Type Description

Static Text The default content of a column is static text. The label attribute
specifies the column's heading. The field attribute defines the record
field to display in the column. For example,

<column label=X field=X>

Entry Field These columns display a text entry field where the user can type in
some text. The label and field attributes serve the same purpose as
those of static text columns. The key attribute should contain the name
of a record field that uniquely identifies each row in the column.

<column type="entry"
label=X field=X key=X size=X>

The optional size attribute defines how wide to make the entry fields
(in number of characters). For example:

<column label="Count"
field="nCount" type="entry" key="ProductId" size="3"/>

This is a column in the product catalog table that lets users enter a count
with the number of products to order. The column displays the nCount
field from the table's record. The column uses each row's ProductId
to uniquely identify the entry fields. This is necessary so that scripts that
interpret the input entered in a table can match up table entries with an
application or item context.
Weblication Reference A-21

Select Box
(populated
dynamically)

<column type="select" label=X field=X
key=X record=X valuelist=X displaylist=X >

You can display a select box or combo-box in a column with a list of
valid entry choices from which the user can choose. The choices are
obtained dynamically from the form's input document. The attributes
listed here work the same way as described for entry field columns.
There are two additional attributes: valuelist and displaylist.
These are used to specify the name of the record field containing the
choices for the select box. For example:

<column label="Project"
type="select" field="ProductProject" record="Project"
valuelist="Id" displaylist="Title"/>

This column displays select boxes with a list of Project choices. For
this to work, the form's input document should include Project
entries such as:

<recordlist>
<Project>
<Id> 123 </Id>
<Title> New Development 99 </Title>

</Project>
...

</recordlist>

The selected choice is associated with the ProductProject field of
the table's Product record. The choices displayed are determined by the
Title field on the Project records, and the actual values submitted
for each choice are those of the Id field in the Project records.

Select Box
(populated
statically

<column type="select" label=X field=X key=X>

Columns can display select boxes with statically defined choices. The
label, field, and key attributes are the same as those defined above. Here
is an example:

<column label="Approval" type="select" field="Approve">
<option value="1"> Yes </choice>
<option value="0"> No </choice>

</column>

This column displays Approval choices of Yes and No.

Lookup Opens a searchable, pop-up window.

Image <column label=X field=X>

This column displays an image. The image's URL is obtained from the
specified field in the table's input record.

Type Description
A-22 Weblication Reference

<columns>

It is possible to split a weblication form into columns, as shown in the following:
<columns>

<column>
Weblication elements for this column

</column>
<column>
Weblication elements for this column

</column>
<column>

The sample below shows the tag as it is used in the request.xml catalog category win-
dow.
<columns>

<column>
<fields>

<link target-form="bundles" image="images/catbundle.gif">
Employee Bundles </link>

<link target-form="catalog" param="Certification=Desktop"
image="images/catdesktop.gif"> Desktop Computers </link>

<link target-form="catalog" param="Certification=Laptop"
image="images/catportable.gif"> Portable Computers </link>

Radio Button <column label="Current employee" type=”radio”
field="Field1"/>

The field attribute specifies the record field in the form's input
document that should be used to populate the field's value. See
“<columns>” on page A-23 for more information.

<link TARGET
field=X>

Table element used to make the rows in a table into links to another
form. For example, a catalog table has rows that when clicked display
each product's detail. This element takes two attributes. The TARGET
attribute determines where the link is to take the user. The field
attribute is used as a parameter passed to the target page. It is intended
to uniquely identify the row.

Label The column label.

Image This is a static image file name, which can be provided as an alternative
to “field”

Balloon Used only when target-X is defined. This specifies balloon help for the
image link

Type Description
Weblication Reference A-23

<link target-form="catalog" param="Certification=Server"
image="images/catserver.gif"> Servers </link>

<link target-form="catalog" param="Certification=Software"
image="images/catsoftware.gif"> Software </link>

</fields>
</column>
<column>

<fields>
<link target-url="e_b2bshop_return_b2blist.jsp"

param="ListAction=B2BShopOnly"
image="images/catshopdirect.gif"> ShopDirect </link>

<link target-form="catalog"param="Certification=Accessories"
image="images/cataccessories.gif"> Accessories </link>

<link target-activity="offcatalog"
image="images/catoffcat.gif"> Request an item not in the
catalog </link>

<link target-form="search" image="images/catsearch.gif">
Search for a specific item </link>

</fields>
</column>

</columns>

This code, when displayed in Get.It!, is shown below.

<listbox>

The <listbox> element is used to display a table in a form. However, unlike the
<table> element, listbox tables contain rows that are statically defined in the weblica-

Fig. A.7 The <column> tag in use.
A-24 Weblication Reference

tion. For example, a listbox is used to display the details of a Knowledge solution in the
service module. (See the solution form in the service.xml file).

The following attributes and nested elements are supported:

Here is a sample listbox that results in a small table with phone numbers to call to contact
support or sales.
<listbox>

<heading>
<field> Name </field>
<field> Phone </field>

<heading>
<row>

<row>
<field> Customer Support </field>
<field> 123-4567 </field>

</row>
<field> Sales </field>
<field> 765-4321 </field>

</row>
</listbox>

<field>

The <field> element creates a static text or image field on a form. These elements must

Attribute Description

<heading> Defines the listbox headings. This element should be followed by one or
more nested <field> elements that describe each heading.

<row> Defines a row in a listbox. This should be followed by one or more
nested <field> elements that are part of the row.

<field image=X
field=X> Text
</field>

A single element that may be placed in a heading or row cell. The
optional image attribute may point to an image URL to display for the
field. The field attribute may point to a field from the form's input
document. Otherwise, the field displays its text contents.

<input> You can enter any valid input element. See “<input>” on page A-26 for
types of input elements.
Weblication Reference A-25

be placed within the <fields> parent element. The following attributes are supported:

Using the <submit> element will depend upon your data transmission destination. When
set to true, the form's contents are submitted to the target of the link. The <submit> tag
sends data to the default destination. The <submit target-x> tag sends data to a
defined destination.

<input>

The <input> element is used to create a variety of entry fields. Each type of field is

Attribute Description

label Specifies the label for the field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the value text field.

type Specifies the type of data expected for this field. The default is text type
data. If the type is set to image, the field's value is assumed to be a
URL to an image.

<link TARGET
field=X>

Table element used to make the rows in a table into links to another
form. For example, a catalog table has rows that when clicked display
each product's detail. This element takes two attributes. The TARGET
attribute determines where the link is to take the user. The field
attribute is used as a parameter passed to the target page. It is intended
to uniquely identify the row. For example:

<submit> Allows the transmission of data upon pressing the relevant button.
When set to true the form’s contents are submitted to the target of the
link. User globals are updated. Other changes may be saved.

<submit
target-X>

This supplies a target-X in a <submit> element. For instance,
<actions target-form=”someDefault”
<submit>Save</submit>
<submit target-activity=”review”>Review Before
Saving</submit>
</actions>

<field>TEXT<fi
eld>

The value displayed in the field, displayed if no field attribute is
already defined.
A-26 Weblication Reference

described in its own section. Here we define a list of attributes shared by all input fields:

<input> (Text Field)
The <input> element is used to create a variety of entry fields. Below are the attributes
used to define a single line entry field.

Attribute Description

label Specifies the label for the input field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type Specifies the type of field. Examples include submit, spinner,
password, and composite. Additional examples can be found in
the
...\apps\service\weblications\servicelookup.xml
file.

class Denotes the value of input, such as Action Button.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

scope Normally data entered in fields is sent along to the server and then
forgotten. However, fields can be given a longer term scope, making
their values available beyond a single submit. Right now, only one
scope is supported: scope="user”. When set, the values entered in a
field are stored in the current user session scope. When the form is
displayed again, or when other forms display <input> elements for a
field with user scope, the last value entered is always remembered.

required If true, the field is flagged as being required. The form will not be
submitted unless the user provides data for the field.

Attributes Description

label Specifies the label for the input field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="text" To create text entry fields, type should be set to “text”. This is the
default value.
Weblication Reference A-27

<input> (Text Area)
The <input> element is used to create a variety of entry fields. Below are the attributes
used to define a multiline entry text area.

<input> (Combo/Selection Box)
The <input> element is used to create a variety of entry fields. Below are the attributes

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

size Defines the width of the text entry field in characters.

readonly=
”true”

Removes ability to edit. If this attribute is set, the text area will not be
editable. This works only with the Internet Explorer browser.

Attributes Description

Attribute Description

label Specifies the label for the input field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type=
"textarea"

To create multiline text entry fields, type should be set to “textarea”.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

rows Number of rows in the textarea.

cols Width of the textarea in number of characters.

readonly=
“true”

Removes ability to edit. If this attribute is set, the text area will not be
editable. This works only with the Internet Explorer browser.
A-28 Weblication Reference

used to define a select box.

For example, consider:
<input label="Budget" type="select" field="RequestBudget"
record="Budget" valuelist="BudgetId" displaylist="Name"/>

This generates a combo box with a label of Budget. The choices in the combo box are pop-
ulated by looking at records of type Budget. The current selection is obtained from the
RequestField field in the form's input document.

You can also define selection boxes with static choices (instead of populating the choices
from a database record). Here is a sample:
<input type="select" label="Approval" field="Approve">

<option value="1"> Yes </option>
<option value="0"> No </option>

</input>

<input> (Checkbox)
The <input> element is used to create a variety of entry fields. Below are the attributes

Attribute Description

label Specifies the label for the select box.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="select" To create text entry fields, type should be set to “text”. This is the
default value.

record Specifies the record in the form's input document that contains the list
of display and value lists.

valuelist Specifies the field in the select box record that contains the values for
each of the select choices.

displaylist Specifies the field in the select box record that contains the labels for
each of the select choices.
Weblication Reference A-29

used to define a checkbox:

For example:
<input type="checkbox" label="Remember me" field="remember"
value="true"> Enable automatic login </input>

This generates a checkbox associated with the form's remember field. If remember is set to
true upon building the form, the checkbox will appear selected. If the user selects the
checkbox the remember field is posted as true with the form.

<input> (Radio)
The <input> element is used to create a variety of entry fields. Below are the attributes

Attribute Description

label Specifies the label for the checkbox.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="checkbox
"

To create checkboxes text entry fields, type should be set to
“checkbox”.

value Specifies the value that the checkbox field should have when the
checkbox is selected.

valueoff When this attribute is specified two radio buttons are generated. The
first displays the value (“value=<text>”) when the check box is
selected. The second displays the value when the checkbox is not
selected. This form is also used for selecting one of two items. When
valueoff is used the checkbox description is ignored.

<checkbox>
Text
</checkbox>

The checkbox description.
A-30 Weblication Reference

used to define a radio button:

For example:
<input type="radio" label="Remember me" field="remember"
value="true"> Enable automatic login </input>

This generates a radio button associated with the form's remember field. If remember is
set to true upon building the form, the radio button will appear selected. If the user selects
the radio button the remember field is posted as true with the form.

<input> (Hidden)
Sometimes it is useful to create a hidden field in a form whose only purpose is to add some
data that should be posted when the form's contents are sent back to the server. Below are
the attributes used to define such a hidden field.

Attribute Description

label Specifies the label for the radio button.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="radio" To create radio buttons, type should be set to “radio”.

value Specifies the value that the radio button should have when the radio is
selected.

<radio> Text
</radio>

The radio button description.

Attribute Description

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="hidden" To create text entry fields, type should be set to text. This is the
default value.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.
Weblication Reference A-31

<input> (Date)
The <input> element can be used to create a Date entry field. The field contains
drop-down lists for day, month, and year. A calendar button can be pressed to display a
calendar that can be used to select a specific day. Below are attributes to define a single
line entry field.

<input> (Money)
The <input> element can be used to create a Money entry field. The field contains
drop-down lists displaying currency names as defined in the Currency property of the
archway.ini file..

Attribute Description

label This optional attribute specifies the label for the <input> field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="date" To create date entry fields.

value This is an optional attribute. Normally the value is obtained from the
field attribute to extract a field value from the form’s input document.

startyear Number representing the last year in the drop-down list. This value can
be a positive or negative number, whereby the given number is added to
or subtracted from the current year. If this is omitted the default value
will be 20 years prior to the current year.

endyear Number representing the last year in the drop-down list. This value can
be a positive or negative number, whereby the given number is added to
or subtracted from the current year. If this is omitted the default value
will be 20 years prior to the current year.

Attribute Description

label This optional attribute specifies the label for the input field.
A-32 Weblication Reference

<link>

The <link> element creates a hyperlink field in a form. For example, the request module
uses a menu to show catalog categories. The following attributes and tags are supported in
a menu:

Reusable Form Components (Subforms)
It is common for a weblication to have several forms that need to display a common set of
components. For example, in Get.Resources!, several forms display a detailed description
of a request containing the request purpose, description, budget, department. These details
appear in places like approval screens, request status screens, and shopping cart review

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="money" To create money entry fields. Specifies the type of data expected for this
field. The default is “text” type data. If the type is set to “image,” the
field’s value is assumed to be a URL to an image. If the type is “date” or
“money,” the value of the field is formatted to user’s preferred locale.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

Attribute Description

Attribute Description

<link TARGET> Defines the destination target of the link. See “” on page A-16 for
details about the TARGET attribute.

<link image=X> An image URL to use for the menu link.

<link
window="true">

If this attribute is set, the target of the link is displayed in a separate
browser window.

<link> TEXT
</link>

The text used in the link.

<link field>
Weblication Reference A-33

screens.

To address this need weblications support the definition of reusable component blocks, or
subforms, that can be included wherever necessary. Reusable components are defined at
the beginning of a module definition as shown in this example:
<module name="login">
...

<components>
<!-- Basic "login" screen -->
<component name="login">
<fields>
<input type="text" label="User Name" field="loginuser"
record="Employee" valuelist="Name" displaylist="Name"
required="true"/>
<input type="password" label="Password"
field="loginpass"/>
<break/>
<input type="checkbox" label="Remember me"
field="remember" value="true"> Enable automatic login
</input>
</fields>

</component>
...
</components>

This example defines a reusable subform named login. This block can then be inserted in
any form as shown below:
<!-- This form lets the user logon -->
<form name="start" onload="login.init">
<title> Welcome </title>
<instructions>
Please enter your user name and password to enter the
Get,It! site
</instructions>
<component name="login"/>
<actions target-url="appmenu.jsp">
<login> Login </login>
<link target-activity="register"> Register </link>

</actions>
</form>

The contents of a <component> definition can be anything that is a valid form compo-
nent, including tables, listboxes, and fields, etc. Forms can use any number of embedded
component blocks, and they may include other form components as well.

Note: Components referenced in a form must be declared in the form's module. This
makes most blocks reusable across all forms in a module. To define components
that can be reused across modules, you should define the components in their own
A-34 Weblication Reference

files and use <import> statements to add them at the top of a <module>
definition.

A component definition can include an onload attribute. This optional attribute names a
script that should be invoked to provide data used by the component code. If this is pro-
vided, the document returned by the onload script is used for fields and $$(X) expressions
in the component instead of using the form's input document.

Additional Tags

<html>

The <html> tag allows the insertion of any arbitrary HTML code. This should be used
with care, and only when the use of existing Weblication components is not sufficient.
Within the HTML contents, you can use $$(X) expressions to include values of fields in
the form's input document.

The following attributes are supported:

Additional Functionality

Attribute Description

onload Names a script that should be invoked to provide data used by the
HTML code. If this is provided, the document returned by the onload
script is used in $$(X) expressions instead of using the form's input
document.

param When a script is defined with the onload attribute then it can define
parameters that are included within the request message sent to the
script. The string value should be constructed as key=value pairs
with multiple parameters separated by ampersands (&). Because an
ampersand is a special character in XML, you should use &&(_amp).
The plus sign (+) is converted into a space character. Special characters
can be encoded as a three character string beginning with the percent
sign followed by a two-digit hexadecimal representation of the lower
8-bits of the character. For example:
<application onload=”login.login”
param=”p1=yada$$(_amp)p2=what+ever”>.
Weblication Reference A-35

Searchable Popup Window

Searchable Popup Windows (Lookup Window) are used for searching entries in a form.
Implementing the Lookup field allows you to reuse it throughout the weblication. To use
this function you must add a lookup input field to any form. The following example illus-
trates an Employee Lookup:

<input label=”User”
field=”UserId”
displayfield=”UserFullName”
type=”lookup”
readonly=”true”
balloon=”Change User”
target-module=”commonlookup”
target-activity=”employee”/>

The label is the label or name of the field. Field is the hidden field that is to be returned
to the server. The displayfield field is an optional display field name. The type field
is the lookup type. The readonly field controls the edit/read function. The balloon field
is for lookup help when the cursor is placed over an icon. The target-module field is
for generic searching. The target-activity field is for searching activity.

Defining New Popup Windows
The first step to defining a new searchable popup window is to add an activity to
commonlookup.xml., unless the lookup is module-specific whereby the activity can be
added elsewhere. Searching activities take two forms. The first is to display search results.
The second is to process the results. The following is an example of an Employee search:
<activity name=”employee” menu=”false”>

<forms>

<!-- Basic search and result screen-->
<form name=”start” onload=”lookup.getEmployees”

frame=”false” sidebar=”false”>
<table record=”Employee” rows=”10”>

<link target-form=”process” field=”Id”/>
<column label=”Last” field=”Name”/>
<column label=”First” field=”FirstName”/>

</table>
</form>

Once the lookup.getEmployees function is in the code the getX and selectX scripts
must be implemented. For generic activities this occurs in
common/jscript/lookup.js. The following is an example of this script for the
Employee search:
function getEmployees(msg)
{

return archway.sendDocQuery(“ac”, “Employee”, msg);
}

A-36 Weblication Reference

The selectX() script processes and returns both the selection field ID and the selection
display field.

function selectEmployee(msg)
{

var msgResponse = new Message();
var strId = msg.get(“Id”);

// Return selected ID as the searchable field
var strField = user.get (“_lookupfield”);
msgResponse.set(strField, strId);

// Return employee’s Full Name as the display field
var strDisplayField = user.get (“_lookupdisplay”);
var msgEmp = archway.sendDocQuery(“ac”,

“SELECT FirstName,LastName,FullName FROM Profile WHERE Id=” =
strId, 0, -1);

msgResponse.add(strDisplayField, msgEmp.get(“FullName”));

This script returns the selected Employee ID as the Lookup Field and then returns the
Employee Full Name field as the LookupDisplay field. These values update all fields in
the calling browser window. The lookup field is a hidden field returned to the server when
a form is submitted. The Lookup Display field is a text or entry field to display a
user-friendly version of the selection.
Weblication Reference A-37

A-38 Weblication Reference

Ge
Appendix B
Document Schema DTD
This chapter is a specification reference for defining document schemas. See Chapter 3,
"Introduction to Document Schemas," for additional information, including background
and a complete example of a schema.

This chapter addresses:

• The Document Schema file template

• Schema attribute tags

• ServiceCenter-specific attributes

Document Schema Files
Define each document in its own schema file. The name of the schema file must match the
document’s name. For example, the Problem document is defined in Problem.xml.

The structure of a schema file must fit the following template:

<?xml version="1.0"?>

//filename.xml
<schema>

//Generic Schema Definitions
<documents name="base">

<document name="XXX">
...

</document>
</documents>

//derivations; you may have several of these sections (for
//servicecenter, assetcenter, user derivations, and so on)
<documents name="DERIVED_TARGET">

<document name="XXX">
...

</document>
</documents>
</schema>
t.It! Tailoring Guide B-1

Schema Attributes
The following describes all applicable document schema attributes.

<document>

This tag defines a document. The document may contain nested <attribute>, <col-
lection>, and <document> tags.

A schema file should only define a single top-level document and its derivations.

The <document> tag can contain the following attributes:

Nested <document> Tags

Top-level documents may include one or more nested documents. These children (or
nested) documents may be defined in two ways.

The first way is to define nested documents in-place. For instance:
<document name="TopLevel">
<document name="Child">

<attribute name="x">
...

</document>
</document>

More typically, nested documents will reference a document defined in its own schema
file. For instance:
<document name="Product">

<document name="Vendor"/>
</document>

Attribute Description

name
(required)

Uniquely identifies the document being defined. The name of the
schema file must match the document’s name. For example, the
Problem document is defined in Problem.xml.

table Defines the primary database table associated with this document.
While not all document fields have to come from this table, the Primary
Key (ID) for the document must reside in this table. This attribute is
normally only defined by derived document schemas. That is, the
derivations for ServiceCenter, AssetCenter, etc. must define where to
get the document.
B-2 Document Schema DTD

Here the Product document contains a nested Vendor description. But because the nested
Vendor document is defined to be empty, we assume that its definition should be looked
up in the proper schema file (i.e. vendor.xml).

You can find nested documents by doing a search of the following type:
SELECT <Fields> FROM <NestedDocTable>
WHERE <joinfield>=<joinvalue>

The joinfield and joinvalue settings come from the schema’s <collection> entry. For
example:
<collection name="Assets">
<document name="Asset" joinfield="lUserId" joinvalue="Id"/>
</collection>

The entry above defines a nested collection of assets that could appear within a parent
"User" document. The joinfield and joinvalue specify that we want to find entries in the
asset table whose "lUserId" field matches the parent table’s ID field. (The parent’s join-
value is specified as a logical document field name).

If no "joinfield" or "joinvalue" are defined, the default is to use the parent table’s ID field
name as the join field.

<attribute>

The <attribute> tag defines a field within a document. Right now this tag can only
appear within a <document> tag. All documents must define at least one mandatory
attribute:

<attribute name="Id">

This attribute defines the unique key for locating document instances.
Document Schema DTD B-3

The <attribute> tag can have the following XML attributes:

Attribute Description

name
(required)

Uniquely identifies an attribute within a document.

type
(optional)

Identifies the type of the field being defined. Possible values are:

id, string, number, date, url

This attribute is currently not used by the document manager. However,
in the future it could be used to verify at run-time that a document is
properly formed.

field The name of the physical field to use in when building queries or
updating the document table. This can be a simple name in the
document’s primary table, or it can be linked field name (AssetCenter
only).

<document name="Request" table="amRequest">
...

<attribute name="TotalCost" field="mTotalCost"/>
<attribute name="Budget" field="Budget.Name"/>

...
</document>

TotalCost is associated with the mTotalCost field in amRequet.
Budget is associated with the linked field Budget.Name.

link, linktable,
linkfield, linktype,
linkkey

These attributes work together to define how a field from a linked table
should be accessed. Consider the following attribute in the Request
document definition for AssetCenter:

<attribute name="Budget" field="Budget.Name" link="lBudgId"
linktable="amBudget" linkfield="Name"/>

Now consider a request to insert a Request document such as:
<Request>
<Budget> 1999 IS Budget </Budget>

...
</Request>

When the DocumentManager updates of inserts a Request document,
the schema tells it to:

• search the linktable (amBudget) for an entry where the linkfield
(Name) matches "1999 IS Budget".

• use the link entry ID (lBudgId) to update the Request document
table.
B-4 Document Schema DTD

<collection>

The <collection> tag allows the nesting of collections inside a top level document. For
example:

<document name="Request">
...

<collection name="RequestLines">
<document name="RequestLine"/>

</collection>
</document>

This example shows a Request document with a nested collection of RequestLine docu-
ments.

Nested documents are found by doing a search of the following type:

SELECT <Fields> FROM <NestedDocTable> WHERE <joinfield>=<joinvalue>

The "joinfield" and "joinvalue" settings come from the schema’s <collection> entry. For
instance:

For instance, consider a list of assets owned by a user:
<collection name="Assets" joinfield="lUserId" joinvalue="Id">

The entry above defines a nested collection of assets that could appear within a parent
"User" document. The joinfield and joinvalue specify that we want to find entries in the
asset table whose "lUserId" field matches the parent table’s Id field. (The parent’s join-
value is specified as a logical document field name).

If no "joinfield" or "joinvalue are defined, the default is to use the parent table’s Id field
name as the join field.

ServiceCenter-Specific Attributes

Several attributes have been defined specifically for supporting ServiceCenter derived
schemas. These are necessary for the following reasons:

• Documents should not be inserted directly into the ServiceCenter database. Instead,
they should be created and updated by related EventServices calls.

• The basic elements of the schema DTD assumes a relational organization of data. Ser-
viceCenter’s non-relational database introduces some requirements.

Consider the following example or a derived Problem schema where ServiceCenter spe-
cific attributes are shown in bold:

<document name="Problem" table="probsummary" insert="pmo"
update="pmu">

A collection can
only have one thing
inside of it: a nested
document.
Document Schema DTD B-5

<attribute name="Id" field="number"/>

<attribute name="OpenTime" field="open.time"/>
<attribute name="Status" field="status"/>
<attribute name="AssignedTo" field="assignee.name"/>
<attribute name="Priority" field="priority.code"/>

<attribute name="Description" field="brief.description"
insert="$ax.field.name" update="_null"/>

<attribute name="Updates" field="update.action"/>
<attribute name="Resolution" field="resolution"/>

</document>

The following attributes are used by SCDocManager, a derived DocManager class that is
used by the SCAdapter:

Note: A field, update, or insert setting with a value of _null tells the
DocumentManager that the particular document element is not supported by the
system.

Attribute Description

insert This attribute ties a document to a specific input event. The attribute can
be used in two ways.

Within a <document> tag, the insert attribute names the event to use
for inserting document instances.

Within an <attribute> tag, the insert attribute names an event
parameter name to use for a document field. If no insert attribute is
defined, the default field setting is used instead.

update This attribute ties a document to a specific update event. It can be used
within <document> and <attribute> tags in the same way as
insert.
B-6 Document Schema DTD

Ge
Appendix C
JavaScript
This chapter contains JavaScript functions for a variety of processes.

Script Polling Manager

There are several classes in Archway that can be used as utilities to facilitate workflow
between two or more systems. There are classes that provide basic message queuing (the
Qman package) and there are classes that support polling. The following is an overview of
the polling package.

Script Polling is a function that establishes a repetitive routine. A scheduler initiates a rou-
tine at a specified time as opposed to every n seconds. For example, a scheduler can run a
routine at midnight, every Sunday night, at the end of the month or quarter or every hour
(meaning the top of the hour, not 60 minutes from the last run).

You can define Script Pollers in each package. For example, the B2B and B2BServer
packages have their own scriptpollers.ini files. At run time, Archway processes all
scriptpollers.ini files in the registered packages.

File Initialization Format
The format of the initialization file is XML, located within the ...\getit\apps\com-
mon\ directory. The following is a sample for version 1.0, specifying two scripts to run.
Note the vpollShowTime script.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!--==
Name: ScriptPollers.ini
Specifies a collection of scripts to run at periodic intervals
(seconds) and a parameter to pass to the script.
===-->
<pollers>
<poller>
<name>vpollPmoSco2Q</name>
<interval>4</interval>
<parm></parm>
</poller>
<poller>
<name>vpollShowTime</name>
<interval>1</interval>
<parm></parm>
t.It! Tailoring Guide C-1

</poller>
</pollers>

Writing A Polling Routine
To create a polling routine, write an FESI script and save it in the
...getit/apps/user/jscript directory. Add the script name and polling interval to
the scriptpollers.ini file in the archway bin directory. You can perform a quick test
by adding the following line of code to the ArchwayDebug class:

ScriptPollingManager.test(m_archway);

Put the same functionality that is in the test() function into a more mainstream class (as
discussed above).

Sample Polling Scripts
There are several polling scripts that exist in Get.It!, each beginning with the characters
vpoll. They display the current time on the console (for illustrative purposes), read from
ServiceCenter eventin, and are then sent to a qman queue in XML format (from eventin
format). They are then received from a qman input queue (specified by arbitrary name)
and send to a qman output queue (as would happen during transliteration). Receive from
the qman output queue and insert back to ServiceCenter eventin.

The following is the simplest of polling scripts, as described above.

//simple poller script, displays current time of day
//two functions are defined
//start() - executes once
//run() - executes on the polling interval
Archway = Packages.com.peregrine.archway;
Message = Archway.Message;
Event = Archway.Event;

//start funtion .. can build parameters for run method
function start(msg)
{

return msg;
}

//run function .. subsequent invocations
function run(msg)
{

var date = new Date();
writeln(">>> The time is " + date.toLocaleString());
return msg;

}

Note: Sample JScript are available within the ...\getit\apps\examples\jscript\
directory.
C-2 JavaScript

Read History Array

This function requests the UniversalBrowserRead privilege to enable it to read the
array elements of the History object.

function openHistoryWindow(){

//open a new window
var w=window.open(““,”historyWindow”,
“width=500,height=300,menubar,resizable”);
var d=w.document;

//request a privilege
netscape.security.PrivilegeManager.enablePrivilege(“
UniversalBrowserRead”);

//output the browsing history as links in the new
for (var i=0;i<history.length;i++) {
d.write(‘’);
d.write(history[i]);
d.writeIn(‘’);

}
d.close();

//return the new window
return.w;

//the privilege is automatically disable with function returns
}

Extract URL Argument

The following sample parses comma-separated name=value argument pairs from the
URL query string. It stores the name=value pairs in properties of an object and returns
that object.

//get arguments
function getArgs() {
var args=new Object();

//get query string
var query=location.search.substring(1);

//break at comma
var pairs=query.split(“,”);

for(var i=0; i<pairs.length; i++) {

//look for “name=value”
var pos=pairs[i].indexOf(‘=’);

//if not found, skip
JavaScript C-3

if (pos==-1) continue;

//extract name
var argname=pairs{i}.substring(0.pos);

//extract value
var value=pairs[i].substring(pos+1);

//store as property
args[argname]=unescape(value)

You can also use the getArgs(); function to parse optional animation parameters from
the URL.

//get arguments
var args=getArgs();

//if arguments are defined
if (args.x) x=parseInt(args.x);

//...overide default values
if (args.y) y=parseInt(args.y);
if (args.w) w=parseInt(args.w);
if (args.h) h=parseInt(args.h);
if (args.dx) dx=parseInt (args.dx);
if (args.dy) dy=parseInt(args.dy);
if (args.interval) interval=ParseInt(args.interval);

Searchable Popup Window

Searchable Popup Windows (Lookup Window) are used for searching entries in a form.
Implementing the Lookup field allows you to reuse it throughout the weblication.To use
this function you must add a lookup input field to any form. The following example illus-
trates an Employee Lookup.

<input label=”User” field=”UserId” displayfield=”UserFullName”
type=”lookup” readonly=”true” balloon=”Change User”
target-module=”commonlookup” target-activity=”employee”/>

The label is the label or name of the field. Field is the hidden field that is to be returned to
the server. The displayfield field is an optional display field name. The type field is
the lookup type. The readonly field controls the edit/read function. The balloon field
is for lookup help when the cursor is placed over an icon. The target-module field is
forgeneric searching. The target-activity field is for searching activity.

Once the lookup.getEmployees function is in the code the getX and selectX scripts
must be implemented. For generic activities this occurs in

common\jscript\lookup.js. The following is an example of this script for the
C-4 JavaScript

Employee search.

function getEmployees(msg)
{
return archway.sendDocQuery(“ac”, “Employee”,msg);
}

The selectX() script processes and returns both the selection field ID and the selection
display field.
function selectEmployee(msg)
{

var msgResponse = new Message();
var strId = msg.get(“Id”);

// Return selected ID as the searchable field
var strField = user.get (“_lookupfield”);
msgResponse.set(strField, strId);

// Return employee’s Full Name as thedisplay field
var strDisplayField = user.get (“_lookupdisplay”);
var msgEmp = archway.sendDocQuery(“ac”,
“SELECT FirstName,LastName,FullName FROM Profile WHERE Id=” =
strId, 0, -1);
msgResponse.add(strDisplayField, msgEmp.get(“FullName”));

This script returns the selected Employee ID as the Lookup Field and then returns the
Employee Full Name field as the LookupDisplay field. These values update all fields in
the calling browser window. The lookup field is a hidden field returned to the server
when a form is submitted. The Lookup Display field is a text or entry field to display a
user-friendly version of the selection.

Passing External JavaScript
If you want to pass a JavaScript function to the archway.ini file that is not in the
...\getit\apps\ directory then you must define the following path.

derivedscriptpath=<path...>

Inserting this line will cause Archway to seek alternative paths for user-defined scripts.
This also becomes the path that Archway uses to locate “derived” scripts that override
standard out-of-box scripts. If you define this in the archway.ini file then the new path
replaces the ...\src\apps\user\jscript\ path. Original or out-of-box scripts reside
in the same place.
JavaScript C-5

C-6 JavaScript

Ge
 Index
Symbols
$$(X) A-18
... 1-4
<action> A-14

<back> A-15
<home> A-15
<link> A-15
<submit> A-15
TARGET A-15

<activity> A-4
<application> A-2
<attribute>

insert B-6
update B-6

<back> A-15
<columns> A-23
<component> A-34
<document>

insert B-6
update B-6

<entrytable> A-11
<field> A-25

colspan A-13
rowspan A-13

<fieldtable> A-11
<form>

adding a field 4-12
<home> A-15
<html> A-35
<input> A-26

checkbox A-29
colspan A-13
combo box A-28
hidden field A-31
radio button A-30
rowspan A-13
selection box A-28
text area A-28
text field A-27

<link image=X> A-19
<link TARGET> A-19
<link window="true"> A-19

<link> A-15
attributes A-18
hypertext link A-33

<listbox> A-10, A-24
<menu> A-10, A-18
<module> A-3

access to A-3
attributes A-3

<popupwindow> A-35
<submit> A-15
<table> A-20

<column> A-20
<link TARGET> A-20
record A-20
rows A-20

<target URL> A-4
_null B-6

A
action property 2-11
activity

changing the name 4-7
adapters

AssetCenter 6-5
e-mail 6-21
JDBC 6-9
LDAP 6-20
ServiceCenter 6-2
using log files to troubleshoot 6-25
verifying connections 6-24

admin.xml
updating for the JDBC adapter 6-14

apphead A-3
appmenu A-3
t.It! Tailoring Guide 10/09/00 Index-1

archway architecture 4-1
building blocks 2-2
clients 2-3
diagram 2-2
document manager 2-10
executing queries against a system 2-10
how it works 2-3
internal architecture 2-5
query string 2-6
requests 2-6
weblications 2-11
XML 2-3

archway.ini
updating for JDBC adapter 6-12

archway.ini parameters 6-2, 6-5
AssetCenter adapter 6-5

archway.ini parameters 6-5
setting feature links 6-7
troubleshooting the DB connection 6-7

C
cascading style sheets 2-14
changes

required steps 4-2
where to store 4-3

child documents, See nested documents
clients 2-3
colspan A-13
column

field to display A-21
headings A-21
productid A-21
select box A-22

condition A-9
CSS, See cascading style sheets

D
debugging

script C-2
displaylist A-22, A-29
document manager 2-10, 4-17

E
ECMA script 2-8
e-mail adapter 6-21
entry table A-11
event handling in ServiceCenter 6-2

F
feature links in AssetCenter, setting 6-7
field table A-11

form
changing contents 4-12
create a menu of links A-18
finding to edit 4-6
image A-25
input document A-7
reusable components A-33
static text A-25

form fields
<entry table> A-10
<fields> A-10
<html> A-10
<listbox> A-10
<menu> A-10
<plug in> A-10
<table> A-10

form statistics
using to find files 4-6

G
Get.Answers!

modify hit list 5-3
modify site definition file 5-2

getCatalog 2-14
getOrderParameters 4-20
getProduct 4-15

H
hidden field A-31
hit list

modifying 5-3
HTML A-18, A-35
hypertext A-35
hypertext link A-33

I
input document A-7

J
JDBC adapter

adding 6-10
adding a new module 6-16
adding to the Settings page 6-14
calling a stored procedure 6-18
overview 6-9
updating the admin.xml file 6-14
updating the archway.ini file 6-12
validating the connection 6-13
verifying the system DSN 6-10

joinfield B-3
joinvalue B-3
Index-2 10/09/00 Get.It! Tailoring Guide

L
LDAP adapter

connecting 6-20
updating the archway.ini file 6-21

log files 6-25

M
module

adding 4-22
changing the name 4-7
removing from Get.It! 4-26

N
nested documents B-2

finding B-3
in-place B-2
reference B-2

null B-6

O
onload property 2-14
onload script 4-15

P
param A-17
popup window A-36
presentation folders 4-4
productid A-21
Production Environment 4-44

Q
query string 2-6

R
regenerating web pages 4-2
reusable form components A-33
rowspan A-13

S
schema 4-17

<attribute> B-3
<collection> B-5
<document> B-2
attributes B-2
document file B-1
nested documents B-2
ServiceCenter B-5
structure B-1

script
changing 4-19
debugging C-2
user-derived 4-19

script pollers C-1
scripting 2-8

scripts
hard-coded queries 3-5
SQL queries 3-5

searchable popup window A-36
sendDocInsert 3-5
sendDocQuery 3-4
sendDocUpdate 3-5
ServiceCenter

derived schemas B-5
ServiceCenter adapter 6-2

_event parameter 6-3
archway.ini parameters 6-2
event handling 6-2
troubleshooting the DB connection 6-4

site definition file
modifying 5-2

software
linking in to Get.It! 4-22

stored procedures, calling 6-18
subforms A-33
submit A-15

T
table 2-15
tags A-1
tailoring

basics 4-3
testing the user directory 4-8

TARGET
param A-17
target-activity A-17
target-field A-17
target-form A-17
target-module A-17
target-url A-17

TEXT A-17
troubleshooting using log files 6-25

U
user derived script 4-19
user.xml 4-3
user.xsl 4-22
user-access A-3

V
valuelist A-22, A-29

W
wbuild 3-5, 4-2

parameters 4-4
XSL templates 4-22

web pages
regenerating 4-2
Get.It! Tailoring Guide 10/09/00 Index-3

weblication 2-3, 2-11
additional functionality A-35
cascading style sheets
definition 2-14
ingredients 2-13
structure A-1
XSL layout templates 2-13

windows
popup A-36

X
XML 2-3
XSL

purpose of 4-22
to learn more 2-13
wbuild 4-22
when to change 4-22

XSL layout templates 2-13
Index-4 10/09/00 Get.It! Tailoring Guide

	Introduction
	About this Manual
	Organization of the Manual

	Conventions Used in this Manual
	Buttons, Directories, and File Names

	Get.It! Architectural Overview
	High Level Architecture
	Archway Internal Architecture
	Archway Requests
	Scripting
	The Document Manager
	Weblications

	Introduction to Document Schemas
	Definition of a Document Schema
	Using Schemas in a Weblication

	Tailoring Get.It!
	Archway Architecture
	Weblication Toolset
	Before You Make Changes
	File Structures
	Application Definition File
	Archway.ini Use of Packages
	Presentation Folders
	Common Components

	Displaying Form Information
	Debugging Changes
	Where to Make the Modifications
	Printing Forms
	Prepare Report for Default Printer (browser directs the print spool).

	Necessary Information
	Running the wbuild Command

	Changing Form Contents
	Adding Form Fields
	Data for the New Field (Scripts)

	Split Frames (forms)
	Localizing Your Changes

	Adding Fields to a Document
	Undefined Schema Fields

	Changing Script Behavior
	Changing JScript

	Changing Weblication Components Layout (XSL)
	When Do I Change the XSL?

	Integrating a New Product with Get.It!
	Integrating a URL
	Adding a URL as a Module
	Adding a URL as an Activity

	Adding a New Module

	Adding a Feature from AssetCenter
	Portal
	Customizing (GUI)
	Customize
	Copy
	Move
	Hide/Show
	Remove
	Select Content
	Get.It! Weblication Components
	Personal Utilities
	Create New (web page)

	Change Layout
	Netscape Navigator
	Edit Preferences
	Portal API
	Portal Components
	<portal-category>
	<portal-component>
	<plugin>

	Portal Plug-Ins

	Skins and Stylesheets
	Directory Structure
	XML Usage
	XSL (example)
	JSP (example)
	JAVA Source Code (example)
	External JavaScripts

	Production Environment

	Tailoring Get.Answers!
	Modifying the Site Definition File
	Modifying the Hit List
	Hiding a Hit List Column
	Including the Path Name with the Title

	Adapters
	ServiceCenter Adapter
	Archway.ini Parameters
	ServiceCenter Event Handling
	Using the _event parameter

	Troubleshooting the ServiceCenter Database Connection

	AssetCenter Adapter
	INI Parameters
	Troubleshooting the AssetCenter Database Connection
	AssetCenter Feature Links

	JDBC Adapter
	Adding a JDBC Adapter
	Verifying the System DSN
	Updating the Archway.ini File
	Validating the JDBC Adapter Connection

	Adding the New Database Settings
	Updating the Admin.xml File

	Creating an Interface to the Database
	Preventing Lost Connections
	Calling a Stored Procedure
	Using a URL
	Using a JScript
	Using a Document Insert Or Update

	LDAP Adapter
	Connecting LDAP to Get.It!
	Updating the archway.ini file

	E-mail Adapter
	Verifying Adapter Connections
	Log Files

	Localization Support
	General Localization Steps
	Archives
	Externalizing ECMAScript Messages
	Externalizing ECMAScript Messages with Variables
	Externalizing Messages in XSL Templates
	Japanese Locale

	Troubleshooting
	Weblication
	Weblication Structure
	Weblication Tags
	<application>
	<module>
	<activity>
	<form>
	<redirect>
	component
	form fields
	<fieldtable>
	<action>
	TARGET
	TEXT
	$$(X)
	<menu>
	Link Attributes

	<table>
	Column Types

	<columns>
	<listbox>
	<field>
	<input>
	<input> (Text Field)
	<input> (Text Area)
	<input> (Combo/Selection Box)
	<input> (Checkbox)
	<input> (Radio)
	<input> (Hidden)
	<input> (Date)
	<input> (Money)

	<link>

	Reusable Form Components (Subforms)
	Additional Tags
	<html>

	Additional Functionality
	Searchable Popup Window
	Defining New Popup Windows

	Document Schema Files
	Schema Attributes
	<document>
	Nested <document> Tags
	<attribute>
	<collection>
	ServiceCenter-Specific Attributes

	JavaScript
	Script Polling Manager
	File Initialization Format
	Writing A Polling Routine
	Sample Polling Scripts

	Read History Array
	Extract URL Argument
	Searchable Popup Window
	Passing External JavaScript

