
Peregrine Systems, Inc.
3611 Valley Centre Drive
San Diego, CA 92130
www.peregrine.com

Tailoring Guide
Release 1.2 SP1
July 2000

© 2000 Peregrine Systems, Inc. 3611 Valley Centre Drive, San Diego, California 92130 U.S.A.

All Rights Reserved.

Information contained in this document is proprietary to Peregrine Systems, Incorporated, and may be used or disclosed
only with written permission from Peregrine Systems, Inc. This book, or any part thereof, may not be reproduced
without the prior written permission of Peregrine Systems, Inc. This document refers to numerous products by their
trade names. In most, if not all, cases these designations are claimed as Trademarks or Registered Trademarks by their
respective companies.

Peregrine Systems is a registered trademarks of Peregrine Systems, Inc.

This document and the related software described in this manual is supplied under license or nondisclosure agreement
and may be used or copied only in accordance with the terms of the agreement. The information in this document is
subject to change without notice and does not represent a commitment on the part of Peregrine Systems, Inc.

The names of companies and individuals used in the sample database and in examples in the manuals are fictitious and
are intended to illustrate the use of the software. Any resemblance to actual companies or individuals, whether past or
present, is purely coincidental.

This edition applies to version 1 of the licensed program

Contents
Introduction

About this Manual ...1-1

Organization of the Manual ..1-2

Conventions Used in this Manual..1-3

Buttons, Directories, and File Names...1-3

Get.It! Architectural Overview

High Level Architecture..2-2

Archway Internal Architecture ...2-4

Archway Requests ...2-6
Scripting ...2-8
The Document Manager ..2-10
Weblications...2-11

Introduction to Document Schemas

Definition of a Document Schema...3-2

Using Schemas in a Weblication ...3-5

Tailoring Get.It!

Archway Architecture ...4-2

Weblication Toolset ..4-3
Contents 7/20/00 1

Before You Make Changes .. 4-4

File Structures.. 4-4
Application Definition File...4-5
Archway.ini Use of Packages ..4-5
Presentation Folders..4-5
Common Components ...4-6

Displaying Form Information.. 4-6
Debugging Changes .. 4-8
Where to Make the Modifications .. 4-9
Necessary Information... 4-10
Running the wbuild Command.. 4-10

Changing Form Contents .. 4-12

Adding Form Fields.. 4-12
Data for the New Field (Scripts)...4-15

Localizing your Changes ... 4-15

Adding Fields to a Document.. 4-17
Undefined Schema Fields..4-17

Changing Script Behavior ... 4-20

Changing a JScript .. 4-20

Changing Weblication Components Layout (XSL).. 4-23

When Do I Change the XSL? .. 4-23

Integrating a New Product with Get.It! ... 4-24

Integrating a URL... 4-24
Adding a URL as a Module ..4-25
Adding a URL as an Activity ..4-25

Adding a SC or AC Feature as a New Module .. 4-26

Adding a Feature from AssetCenter ... 4-28

Adding a JDBC Adapter... 4-30

Updating the Archway.ini File .. 4-30
Updating the admin.xml File .. 4-31
2 7/20/00 Get.It! Tailoring Guide

Portal

Portal ..5-2

Customizing (GUI)..5-2
Customize.. 5-3
Copy .. 5-3
Move.. 5-3
Hide/Show ... 5-3
Remove ... 5-3

Select Content..5-4
Get.It! Weblication Components.. 5-4
Personal Utilities.. 5-4

Create New (web page) ...5-5
Change Layout...5-6
Edit Preferences...5-7

Portal API ...5-9

Portal Components...5-10
<portal-category> .. 5-11
<portal-component> .. 5-11
<plugin>... 5-12

Portal Plug-Ins...5-13

Get.It! Localization Support

General Localization Steps ..6-1
Archives ...6-2

Externalizing ECMA Script Messages...6-3

Externalizing ECMA Script Messages with Variables..6-4

Externalizing Messages in XSL Templates ..6-5

Troubleshooting

Weblication...7-1
Contents 7/20/00 3

Weblication Reference

Weblication Structure...A-1

Weblication Tags ..A-2

<application> ...A-2
<module>...A-3
<activity>..A-4
<form> ...A-6
<redirect>...A-9
component ...A-10
form fields ...A-11
<fieldtable> ..A-12
<action> ...A-15
TARGET ..A-16
TEXT..A-17
$$(X) ..A-18
<menu>..A-18

Link Attributes ... A-19
<table>...A-19

Column Types... A-21
<columns> ...A-23
<listbox> ..A-25
<field> ..A-26
<input>...A-27

<input> (Text Field) ... A-27
<input> (Text Area) ... A-28
<input> (Combo/Selection Box) .. A-29
<input> (Checkbox)... A-30
<input> (Radio) ... A-31
<input> (Hidden) ... A-31
<input> (Date) ... A-32
<input> (Money) .. A-32

<link> ...A-33

Reusable Form Components (Subforms) ..A-34

Additional Tags...A-36

<html>..A-36
<popupwindow>...A-36
4 7/20/00 Get.It! Tailoring Guide

Additional Functionality .. A-38

Searchable Popup Window... A-38
Defining New Popup Windows ..A-38

Document Schema DTD

Document Schema Files ... B-2

Schema Attributes ... B-3

<document> .. B-3
Nested <document> Tags... B-3
<attribute> ... B-4
<collection> ... B-6
ServiceCenter Specific Attributes.. B-6

Script Polling

Script Polling Manager .. C-1
File Initialization Format .. C-2
Writing A Polling Routine .. C-2
Sample Polling Scripts .. C-3

 Index
Contents 7/20/00 5

6 7/20/00 Get.It! Tailoring Guide

Ge
Chapter 1
Introduction
Peregrine Systems’ Get.It! product suite is a line of employee self-service applications.
The Get.It! applications empower employees to help themselves to functions once
requiring numerous e-mails, phone calls, inter-office correspondence, and paperwork to
complete. For example, the Get.Resources! application streamlines the MRO procurement
cycle by drastically reducing cost and time while simultaneously increasing employee
productivity and satisfaction.

Get.It! applications are accessible on the corporate intranet via Web browsers. The user
interface, a best of the web experience, is role-based and you can tailor it to meet your
needs.

Get.It! applications benefit organizations both by freeing employees from time-consuming
tasks and by automating inefficient processes such as procurement, service, and searching
for answers to common questions.

About this Manual
The Get.It! Tailoring Guide describes the underlying architecture of Peregrine Systems’
Get.It! applications and how to tailor the applications to suit your needs.

The Get.It! Tailoring Guide is used with several other manuals, which are:

• Operating guides, reference manuals, and other documentation for your PC hardware
and operating software.

• The Get.It! Installation Guide which describes how to install and configure Get.It! on
both a Windows and Solaris server.

• The Get.It! Administration Guide which describes the administration functions of
Get.It! including the Administration Module and user ID maintenance.

To use this manual effectively, you should have a working knowledge of XML and java
scripting.
t.It! Tailoring Guide 6/12/00 1-1

Organization of the Manual

This manual is organized around the main functions associated with tailoring Get.It!. The
following chart shows you which parts of the manual you need to reference to find the
information you need.

To Find This Look Here

Background information; how to use this manual Chapter 1: Introduction

Information about the Archway Architecture; archway
requests; scripting; the Document Manager; basic
information about weblications.

Chapter 2: Get.It! Architectural
Overview

Introduction to document schema definitions;
definition of a document schema; and using a
schema in a weblication.

Chapter 3: Introduction to Document
Schemas

Steps on how to tailor Get.It!; what to do before you
change anything; where to save your changes;
changing scripts; changing schemas; changing
components of a weblication; integrating a new
module into Get.It!

Chapter 4: Tailoring Get.It!

The weblication structure; descriptions of individual
elements and attributes (tags) used in documents;
reusable form components.

Appendix A: Weblication Reference

Document schema files; schema attributes; tags you
can use in schemas.

Appendix B: Document Schema DTD
1-2 6/12/00 About this Manual

Conventions Used in this Manual
Most screen shots in this manual come from the Windows version of Get.It!. The action
you should take on the window is usually explained in the step below the sample. If
information is printed next to the window, it is important and you should pay special
attention to it. For example:

Buttons, Directories, and File Names

The following conventions are used when describing buttons on the windows, paths for
directories, and file names.

• Buttons you click on are shown in bold such as “Click Next.”

• Directory paths are shown in italics, such as C:\Program Files\getit\. The directories
used in this manual are the default directories assigned during the installation. If you
change the directory into which you install Get.It! or JRun, make sure you make note
of the correct directory and replace the default path with the one that is correct for your
system.

• File names are also shown in Courier New font, such as login.asp.

Fig. 3-8 Adding a field to a form.

Make sure your
form statistics are
displayed. See
“Showing Form
Information” on
page 4-3 for
instructions
Introduction 6/12/00 1-3

• When showing XML codes in the samples, “...” is often used to signify that some of
the lines have been removed because they are unnecessary to the topic being discussed.
The samples of code are not entire files; they are only representative of the information
being discussed in that section.
1-4 6/12/00 Conventions Used in this Manual

Ge
Chapter 2
Get.It! Architectural Overview
This document introduces the architecture behind Get.It!, Peregrine Systems’ product
suite that includes applications like Get.Resources! and Get.Service!. The Get.It! suite is
built on top of the Archway architecture. This architecture offers a simple and extensible
way of creating new applications and interfacing with Peregrine's existing systems,
including AssetCenter and ServiceCenter.

The architecture has been designed with specific goals:

• Offer services to everyone in an organization

• Offer access everywhere users need it

• Offer support related to everything in the infrastructure that helps employees get things
done

These goals mean that the Get.It! architecture is designed to make services available to
users through common interfaces like Web Browsers, handheld computing, and even
mobile phones. The applications are designed to provide a wide range of services, from
helping a user with a PC problem, to allowing the creation of a purchase request, to
reporting a problem with the employee's office space. Peregrine's Infrastructure
Management applications offer many of these services, and the Get.It! suite makes the
services available to everyone, everywhere.
t.It! Tailoring Guide 7/13/00 2-1

High Level Architecture
Get.It! applications and interfaces are implemented using basic building blocks that
include:

The following diagram illustrates the architecture:

HTTP A simple and widely supported protocol for sending client requests to a
server. Variations such as HTTPS provide security as well.

XML This rising technology is a very natural way to represent data rich
documents.

Commercial web
servers

The services provided by the Archway architecture can be served from
any commercial Web Server, including IIS, Apache, Netscape
Enterprise Server, or the Java Web Server.

Common clients Applications can be built to be deployed via Web Browsers (IE,
Netscape), handheld devices (Palm Pilot), or mobile phones (through
HDML).

Fig. 2.1 The architecture

Archway
(XML, Query,
Events, db)

Adapter

Adapter

Adapter

Adapter

Adapter

Browser

Palm

Phone

Web Server
(IIS, Apache, Netscape, etc.)

Templates
(JSP/ASP)

ServiceCenter

Rome

FacilityCenter

AssetCenter

FleetAnywhere

Adapter JDBC
2-2 7/13/00 High Level Architecture

At the center of the architecture is a component named Archway. This component is
designed for a simple purpose: it listens to HTTP requests from arbitrary clients, routes the
requests to an appropriate server, and returns data or documents. The requests supported
by Archway can vary, but they fundamentally consist of queries, data updates, or system
events.

For example, a client can contact Archway and ask to query ServiceCenter for a list of
tickets. Another client could contact Archway and supply it with a new purchase request
that should be entered into AssetCenter's database. Yet another client could contact
Archway to open a new problem ticket through an Event Services event (e.g., a PMO).

All requests and responses are formatted using XML (Extensible Markup Language).
XML provides a human readable self-describing syntax for defining documents. For
example, a problem ticket expressed in XML could appear as follows:
<problem>

<number> PM5670 </number>
<contact> Joe Smith </contact>
<description> My printer is out of paper </description>

</problem>

Clients that interact with Archway can do anything they need with the XML that is
returned as a response. Very frequently, the client initiating the request is a user interface
such as a Web Browser. Such a client could easily display the XML documents returned
by Archway. However, to be of better use, the XML documents are often displayed within
a formatted HTML page. This is accomplished by using popular and commercially
supported technologies such as Microsoft's ASP (Active Server Pages) or Java's JSP (Java
Sever Pages).

Both JSP and ASP provide a syntax for creating HTML pages that is pre-processed by the
web server before being sent to the browser. During this processing, XML data obtained
from Archway is merged into the HTML page. Later in this document we introduce the
related concept of a Weblication. A Weblication is a term used to refer to an application
running on the Web. Archway's architecture includes special support for automatically
generating the pages (i.e. HTML, JSP) that make up a Weblication.
Get.It! Architectural Overview 7/13/00 2-3

Archway Internal Architecture
The internal design of Archway is simple and very flexible. Archway is implemented as a
Java servlet--a Java application that is executed by a web server. HTTP requests sent to
the Web Server are forwarded to the Archway servlet for processing. When the processing
is done, the web server returns the output generated by Archway.

Each request is interpreted to determine its destination. Specifically, Archway is able to
communicate with a variety of back-end systems like AssetCenter or ServiceCenter.
Requests can be handled in three ways:

1. A request can be sent directly to an adapter that talks to a back-end server. For
instance, a query request for opened tickets could be forwarded to an adapter capable
of communicating with ServiceCenter.

2. A request can be sent to a script interpreter hosted by Archway. This is a very
powerful feature. It allows Peregrine and customer developers to define their own
application specific services. Within a script, calls can be made back to Archway to
access the back-end system with database operations and events.

3. Finally, a request can be sent to a component known as a Document Manager. This
component provides automated services for putting together logical documents.
2-4 7/13/00 Archway Internal Architecture

The following diagram illustrates the internal Archway architecture.

As illustrated, Archway communicates with back-end systems with the help of specialized
adapters that support a predefined set of interfaces for performing connections, database
operations, events, authentication, etc. The adapters utilize DLLs for each product to
accomplish their communication.

Messages can be routed to a script interpreter hosted by Archway. The interpreter supports
ECMAScript, which is a standard based on several originating technologies, the most well
known being JavaScript (Netscape) and JScript (Microsoft).

Finally, messages can be routed to the Document Manager component. This component
reads special schema definitions that describe application documents for logical entities
like a Purchase Request, a Problem Ticket, or a Product Catalog. The Document Manager
uses the schemas to automatically generate database operations that query, insert, or
update such documents.

Fig. 2.2 Archway’s internal architecture

Archway

Script Runner Adapter

Schema

Doc Manager

Schema

SC Adapter

FC AdapterFA Adapter

JSJS

AC Adapter JDBC Adapter
Get.It! Architectural Overview 7/13/00 2-5

Archway Requests

Archway supports a variety of requests, all of which are based on two basic technologies:
HTTP and XML. The HTTP protocol defines a simple way for clients to request data from
a server. The requests are stateless and a client/server connection is maintained only
during the duration of the request. All this brings several advantages to Archway,
including the ability to support a large load of requests with the help of any of today's
commercial Web Servers.

Another important advantage is that any system capable of making HTTP requests can
contact Archway. This includes Web Browsers, of course. But in addition, all modern
programming environments support HTTP. This makes it very simple to write new
adapters that communicate with Peregrine's servers without the need of specialized APIs.

From a simple point of view, an HTTP connection consists of:

• A client request

• A server response

The messages exchanged normally have a number of header lines and some content lines.
For this discussion, lets focus on two principal parts of a request:

Query String This represents the parameters sent along with the URL for the HTTP
connection.
For instance, consider the following HTTP URL:
http://prgn/archway?hello&world. This URL is made up of a
server locator (http://prgn/archway) and a query string
(hello&world).

Content A request can also include an arbitrary amount of data appended to the
request. This data could follow any format, but for Archway, the data is
always formatted as XML.
2-6 7/13/00 Archway Internal Architecture

Archway uses the query string of a request to determine what it has been asked to do. The
following query string syntax is expected:

archway?target.command¶m=value¶m=value&…

Let's consider each part of the request.

The following are some sample URLs that illustrate the power of contacting Archway
with HTTP requests that return XML documents. These samples are intended as
introduction.

archway?sc.query&_table=probsummary&priority.code=1

This sends a query request to ServiceCenter for all records in the probsummary table with
a priority code of 1.
archway?ac.query&_table=amProduct&_return=Brand;mPrice;Model&_count=2

This sends a query request to AssetCenter for the first two records in the amProduct table.
Only the Brand, mPrice, and Model fields are returned for each record.

archway?sc.pmo&contact.name=David+Baron&$ax.field.name=This+is+a+demo

The sample above creates a new ticket in SC by sending a pmo request with two
parameters.
archway?test.helloWorld&greeting=Hollo

This sample sends a helloWorld request to a script object named test.

Target The name of a target object that should handle the request. Remember
that Archway's job is to forward requests to a system and return the
response. Thus, the target could be ServiceCenter, AssetCenter, etc. As
we will see, the target may also be the name of a Script Object that
contains customizable logic for handling the request.

Command The command describes the action that the target object should take. By
default, there are five basic actions that may be supported: query,
update, insert, delete, and event. However, when the target is a Script
Object, the action can be any function defined by the script.

Param=Value An arbitrary number of parameters can be passed along with the
request. The encoding of these parameters is the same as that used by
CGI (the common gateway interface). This makes it seamless to make
Archway calls from a web page. As with CGI, data sent by a browser is
provided by fields embedded in an HTML form. This data is
automatically formatted as a CGI request in a way that Archway
understands.
Get.It! Architectural Overview 7/13/00 2-7

You could try URLs like these from a web browser to see first hand how the Archway
requests work. The figure below illustrates this by showing the XML results of a query for
products from AssetCenter.

Scripting

A great deal of Archway's flexibility and power comes from its support of the
ECMAScript language. This enables application developers to define arbitrary code that
handles client requests. ECMAScript is a standard version of the language originally made
popular by Netscape (JavaScript) and later adopted by Microsoft (JScript).

ECMAScript is a very powerful language, but it allows for simple tasks to be
accomplished in a simple manner. Its syntax is similar to that of Java, and yet traditional
JavaScript is not Java. While this is true, one interesting aspect of Archway's ECMA
support is that it includes the ability to access any arbitrary Java object. This makes
Archway scripts even more powerful since they have all the power of Java available
within the easy programming syntax of ECMAScript.

It is beyond the scope of this document to describe all aspects of ECMAScripting. One
reasons for adopting this language is that it is standard, well known, and widely
documented. Numerous references and guides exist for the language. To start, the ECMA
web site can be located at http://www.ecma.ch. A good book with very comprehensive
language description and references is JavaScript - The Definitive Guide by David
Flanagan (O'Reilly).

Fig. 2.3 Testing URLs from a web browser
2-8 7/13/00 Archway Internal Architecture

ECMAScript, JavaScript, and JScript tend to vary in some way or another. This is
especially true in the APIs for what is known as Client Side JavaScript. This is the type of
scripting supported by a browser to allow dynamic manipulation of what gets displayed
within a web page. However, none of this really matters in the context of Archway.
Archway uses what is known as Core JavaScript. This is the subset of the language that is
independent of any client side (Browser) features. Archway executes all script code on the
server while processing a request. When the script is done executing, its response is sent
back as XML to the client.

Much of the ability to write useful scripts comes from a very small set of Scriptable
Objects that are supplied with the Archway architecture. Two of the main objects provided
are:

Below is a sample ECMAScript that illustrates the ease of programming provided by these
objects. The script executes a query against AssetCenter:

function getCatalog(msg)
{

var msgProducts;
msgProducts = archway.sendQuery(

"ac", "SELECT Brand,mPrice FROM AmProduct", 0, 10);
return msgProducts;

}

Here is another sample script that sends a PMO event to ServiceCenter:
function getCatalog(msg)
{

var msgEvent;
var msgResponse;

msgEvent = new Message("pmo");
msgEvent.set("contact.name", msg.get("UserName"));
msgEvent.set($ax.field.name, msg.get("Description"));
msgResponse = archway.sendEvent("sc", msgEvent);

return msgResponse;
}

These examples are shown to demonstrate the basic concept of scripting in Archway.
Details on script design and the Object interfaces that they may use are documented in
Chapter 3, "Introduction to Document Schemas."

Messenger This object allows any script to send messages back to Archway. For
example, through the messenger, a script can ask Archway to send a
query to AssetCenter or an event to ServiceCenter.

Message This object encapsulates XML documents in a very easy to use API.
With this object, scripts can very easily build and interpret complex
XML documents.
Get.It! Architectural Overview 7/13/00 2-9

The Document Manager

The Archway uses XML to exchange data and documents between clients and the
supported back-end systems. Fundamentally, the XML data returned by Archway is
obtained by executing queries against one or more systems. The queries could be executed
by a direct URL request or indirectly within an ECMAScript.

Simple queries are only capable of returning record sets of data. However, clients are
more often interested in exchanging documents. A Document is a logical entity built up of
several pieces of data that can come from various physical database sources. For example,
consider a Product document. Products have a number of individual fields such as Price
or Brand. They also may have collections of other related documents, such as a collection
of Vendors. Below is sample XML for a Product document:
<product>

<brand> IBM </brand>
<model> ThinkPad 770 </model>
<price> 1250 </brand>
<vendors>

<vendor>
<name> Best Buy </name>
<phone> 267-8967 </phone>

</vendor>
<vendor>
<name> Super City </name>
<phone> 267-8967 </phone>

<vendor>
</vendors>

</product>

Building such a Product document can certainly be accomplished by running several
queries and putting the results together in an XML message. An ECMAScript is a perfect
place to code such logic.

However, there is an even better way to build documents with the use of Archway's
Document Manager. This component provides the very important service of processing
logical Document Schema Definitions and automatically generating queries or database
operations to create and process these documents.
2-10 7/13/00 Archway Internal Architecture

Here is a small example of a document schema that defines what Product documents
should look like:

<document name="Product">
<attribute name="Id" type="num"/>
<attribute name="Brand" type="string"/>
<attribute name="Model" type="string"/>
<attribute name="Price" type="money"/>

<collection name="Suppliers">
<document name="Supplier">

<attribute name="Name" type="string"/>
<attribute name="Phone" type="string"/>

</document>
</collection>

</document>

Note: The principal concept to notice is that a document schema describes the fields and
collections that make up a document. The details on how to construct document
schemas are documented in Chapter 3, "Introduction to Document Schemas.".

The Document Manager can be accessed with direct URL calls to Archway, as well as
from ECMAScripts. Here is a sample script that retrieves Product documents:
function Product(msg)
{

return archway.sendDocQuery("ac", "Product", msg);

}

Weblications

So far we've described architecture components that make up the plumbing of Get.It!
applications. If an application is to be deployed on a Web Browser, there remains one
piece that must be defined to create the application: the screens and the flow for
navigating among them.

Web Browsers display screens defined in HTML. The screens can contain data retrieved
from the server, and they may also provide entry fields for sending input data back to the
server.

To understand how Archway fits in with the creation of browser interfaces, let's start by
considering the example of setting up a web page that lets a user create a new
ServiceCenter ticket. Defining this page in HTML might appear as follows:

<form action="http://prgn/archway?sc.pmo" method="GET">
Name: <input type="text" name="contact.name">

Description: <input type="text" name="$ax.field.name">

Get.It! Architectural Overview 7/13/00 2-11

<input type="submit" value="Open"/>
</form>

Even if you are not familiar with HTML, the code above should be simple to understand.
The first line defines an HTML form. All forms have an action property that tells the
browser where to send the data typed in by the user. In this case, we see that data will be
sent to http://prgn/archway?sc.pmo. The next two lines contain input fields, each
associated with a named field: contact.name and $ax.field.name.

In essence, the HTML above sends a pmo message to ServiceCenter though Archway. The
data typed into the entry fields are passed in as PMO parameters.

What about using HTML to display data retrieved via Archway? As mentioned earlier,
Archway is designed to return XML documents that can be merged into an HTML page
using technologies such as JSP or ASP. Below is a sample snippet of JSP that sends
Archway a query for ServiceCenter tickets and displays the results in an HTML table.
<html>

<table>
<%
Message msg = messanger.sendQuery(
"SELECT number,brief.description FROM probsummary");
List list = msg.getList("probsummary");
for (int iCurrent = 0; iCurrent < list.getLength(); iCurrent++)
{
%>
<tr>

<td> <%= list.get(iCurrent, "number") %> </td>
<td> <%= list.get(iCurrent, "brief.description") %> </td>

</tr>
<%
}
%>

</table>
</html>

The code above is basically an HTML page with Java code mixed in. The Java code uses a
few objects defined by Archway. These are shown in bold, and they include a messenger
that talks to Archway, a message class that encapsulates XML responses, and a list object
that allows easy navigation of a result set.

While these two samples of code are interesting to understand, it is not necessary to learn
much if anything about HTML, JSP, or ASP development to write a Weblication with
Archway. This is because Archway provides some additional tools that automatically
generate the underlying HTML and JSP code that makes up an application.
2-12 7/13/00 Archway Internal Architecture

Before introducing these tools, lets consider the Get.It! Weblications as an example.
Below is a screenshot of a page in Get.Resources. The page shows a table with results
from a catalog search.

.

This page is part of a Get.It! Weblication. As such, it conforms to a predefined template
that determines a regular layout and placement of several components within a browser
page. The actual template is customizable, and therefore not all Weblications have to look
as the one pictured above.

The creation of the page above is made possible by three ingredients:

1. XSL Layout templates - These templates define the layout and organization of items
in a Web page. They are defined using the Extensible Stylesheet Language (XSL).
This is an XML based language that is becoming more and more widely used to
format Web pages out of XML data. Out of the box, Peregrine may supply one or
more XSL templates. Customers could choose among templates in a similar way that
tools like Microsoft Word or Powerpoint allow writers to choose from predefined
document types or templates.

To learn more about XSL, you can consult the W3C web site. Their XSL
specification is found at http://www.w3.org/TR/1999/WD-xslt-19990421.html.
Microsoft also posts information on XSL at
http://msdn.microsoft.com/xml/xslguide/.

Modules

Form Title

Form
Contents

Application
TItle

Activities

Actions

Fig. 2.4 Sample Get.It! Weblication window
Get.It! Architectural Overview 7/13/00 2-13

Note: Microsoft's XSL support varies slightly from the W3C specs. Therefore, consult
the W3C specs for the most accurate information. Because Archway's support for
XSL is implemented on the server, browser support is not necessary or relevant.

2. Cascading Style Sheets (CSS) - All aesthetic aspects of a web page are defined
separately in a CSS file. This includes specifications for colors, fonts, alignment
rules, and even some special effects.

3. Weblication Definition - The actual application specific portions of a Weblication are
defined using a concise high level XML description.

Defining Weblications in this manner has several advantages. First, it is much simpler
than having to hand code numerous HTML and JSP pages. Second, it makes it easy to
define a consistent look and feel to a web site. A simple change to a template is quickly
propagated to what could be hundreds of page files. Finally, the pages created
automatically for a Weblication include a number of features to deal with user
authentication, security, access rights, and session tracking.

To illustrate this further, here is the XML Weblication description for the form displayed
above:
<form name="catalog" onload="procure.getCatalog">

<title> Get.Desktop </title>
<instructions>
Here are the items found in this category. You may click on any
one to see a detailed description, or you may simply enter a
count to add items to your order.

</instructions>
<table record="Product" rows="10">

<link target-form="product" field="Id"/>
<column label="Count" field="nCount" type="select"/>
<column label="Brand" field="Brand"/>
<column label="Model" field="Model"/>
<column label="Price" field="Price"/>

</table>
<actions target-activity="review">

<submit name="bTable"> Add to shopping cart </submit>
<back/>

</actions>
</form>

Just this small amount of XML is responsible for almost the entire window in figure 2.4.
An Archway tool parses this definition and generates the necessary HTML and JSP code
that creates proper input to the browser. Compare this to the JSP and HTML code shown
at the top of this section, and it is quickly evident that the Weblication approach provides a
much simpler way to define applications.

There are a few things worth highlighting in this XML definition. First notice that the
form has an onload property. It specifies that when constructing the page, an Archway
script named getCatalog should be invoked. This script is defined to return Product
documents.
2-14 7/13/00 Archway Internal Architecture

For instance, each product could have the following XML definition:

<Product>
<Brand> X </Brand>
<Model> Y </Model>
<Price> Z </Price>

</Product>

This XML data is easily incorporated into the HTML page. The form defines a table
element that references fields in the XML Product description, and Archway takes care of
generating the proper code to extract the fields from the XML documents.

Again, this is just an introduction to the concept of a Weblication. This is probably the
most important part of the Archway architecture to understand because it is directly
related to the ability to customize the Get.It! applications or to define new ones. Details on
the Weblication definition language are documented in the Appendix A, "Weblication
Reference." In addition, related information can be found in Chapter 4, "Tailoring Get.It!."
Get.It! Architectural Overview 7/13/00 2-15

2-16 7/13/00 Archway Internal Architecture

Ge
Chapter 3
Introduction to Document Schemas
The Archway Document class provides Archway weblications and scripts with the service
of processing logical Document Schema Definitions and implementing the physical
database access operations for querying and constructing documents.

For example, consider a "Product" document. Products have a number of individual fields
such as "Price" and "Brand." They also have collections of other sub-documents such as a
collection of "Vendors."

The queries that create a document vary depending on the physical schema of the system
hosting the "Product" data (such as AssetCenter and ServiceCenter). To understand how
to construct these queries, the class reads an XML "Document Type Definition" (DTD)
file.

The DTD file contains Base Document Definitions that define the fields, collections, and
nested documents that make up a logical Document.

In addition, the DTD file defines Derived Document Definitions with physical database
schema information for building a base document out of data found in a specific system
(such as AssetCenter and ServiceCenter). A Derived Document Definition may define
physical table and field information for some (but not all) of the fields in a Base
Document.
t.It! Tailoring Guide 6/12/00 3-1

Definition of a Document Schema
A document is defined as a collection of one or more Attributes. Each attribute is a "field"
in the document. For example, a Product document may have a Price attribute. Zero or
more nested Documents. This allows documents to be nested inside each other recursively.
Zero or more nested Collections. A collection is a Document attribute which in turn has a
list of one or more nested documents. For instance, a Product may have a Suppliers
collection with one or more Supplier documents.

The following is an example that demonstrates most elements of the XML schema for
defining documents:

<documents name="base">

<!-- Product Document -->
<document name="Product">

<attribute name="Id" type="num"/>
<attribute name="Brand" type="string"/>
<attribute name="Model" type="string"/>
<attribute name="Price" type="money"/>

<!-- Here is an example of a nested document reference -->
<collection name="Suppliers">

<document name="Supplier"/>
</collection>

</document>

<!-- Supplier Document -->
<document name="Supplier">

<attribute name="Name" type="string"/>
<attribute name="Price" type="money"/>

</document>

</documents>

Attached is a more complete sample XML DTD of a Product document. The sample
shows some additional, important concepts such as:

• Schemas are organized into "base" and "derived" versions. In the examples that follow,
the first is a base schema and the second is a derived schema.

• Derived (system specific) schemas map to a specific system and are used to generate
queries. A derived schema must map to a system from which the information will be
accessed.

• Nested documents can be defined in place or as references.
3-2 6/12/00 Definition of a Document Schema

<?xml version="1.0"?>

<!--===
Name: schema.xml
Author: David Baron
Date: 10/99

==-->

<schema>

<!--===
Generic Schema Definitions

==-->

<documents name="base">

<!-- Product Document -->
<document name="Product">

<attribute name="Id" type="num"/>
<attribute name="Certification" type="string"/>
<attribute name="Category" type="string"/>
<attribute name="Brand" type="string"/>
<attribute name="Model" type="string"/>
<attribute name="Comment" type="string"/>
<attribute name="Price" type="money"/>
<attribute name="Description" type="string"/>
<attribute name="PhotoId" type="number"/>
<attribute name="IconId" type="number"/>

<!-- Here is an example of a nested document reference -->
<collection name="Suppliers">

<document name="Supplier"/>
</collection>

<!-- Here is an example of a nested document definition -->
<collection name="Stocks">

<document name="Stock">
<attribute name="Name" type="string"/>
<attribute name="Quantity" type="string"/>

</document>
</collection>

</document>

<!-- Supplier Document -->
<document name="Supplier">

<attribute name="Name" type="string"/>
<attribute name="Price" type="money"/>
<attribute name="Delivery" type="time"/>
<attribute name="Available" type="number"/>
<attribute name="URL" type="url"/>

</document>

<!-- Catalog Document -->
<document name="catalog">

<collection name="Products">
<document name="Product"/>

</collection>
</document>

</documents>

This is an example
of a nested docu-
ment as a reference.

This is an example of
a nested document in
place.

In a “base” schema
the document is
defined within the
schema itself.
Introduction to Document Schemas 6/12/00 3-3

<!--===
AssetCenter Schema Derivations

==-->

<documents name="ac">

<!-- AC Product Document -->
<document name="Product" table="amProduct">

<attribute name="Id" path="lProdId"/>
<attribute name="Catergory" path="Category.Name"/>
<attribute name="Comment" path="Comment.memComment"/>
<attribute name="Price" path="mPrice"/>
<attribute name="PhotoId" path="lPhotoId"/>
<attribute name="IconId" path="lIconId"/>
<attribute name="Description" path="cf_Description"/>

<collection name="Stocks">
<document name="Stock" table="amProdStockLine">

<attribute name="Name" path="Stock.Name"/>
<attribute name="Quantity" path="lTotalQty"/>

</document>
</collection>

</document>

<!-- Supplier Document -->
<document name="Supplier" table="amProdSupp">

<attribute name="Name" path="Supplier.Name"/>
<attribute name="Price" path="mPrice"/>
<attribute name="Delivery" path="tsDelivDelay"/>
<attribute name="Available" path="lQtyAvail"/>
<attribute name="URL" path="Product.fv_ManufacturerURL"/>

</document>

</documents>

<!--
===

Done
==-
->

</schema>

In a derived schema,
the document is cre-
ated by information
which is accessed from
another system. In this
example, the data will
be accessed in the
“amProduct” table from
within AssetCenter.
3-4 6/12/00 Definition of a Document Schema

Using Schemas in a Weblication
In using Document and Schema support, "document" type archway messages are available
to ECMA scripts. Here is a script that queries for a list of Product documents
(sendDocQuery):

function getCatalog(msg)
{
return archway.sendDocQuery("ac", "Product", msg);

}

The DocumentManager also supports SQL-like queries. For instance, you can query as in
the following example:

archway.sendDocQuery("ac",
"SELECT Brand,Description FROM Product WHERE Category='Desktop'
ORDER BY Brand", 0, -1);

You can also accomplish Document querying in the following manner:
msgParam.set("_return", "Brand;Description");
msgParam.set("Category", "Desktop");
msgParam.set("_sort", "Brand");
archway.sendDocQuery("ac", "Product", msgParam, 0, -1);

Use the SQL queries sparingly, especially in a weblication, because this method defeats
one of the main purposes for setting up the DocumentManager. In a weblication setting
you do not want hard-coded queries in our scripts.

All fields that go in the msgParam are served for us by the weblication forms. This makes
tailoring much easier. However, for certain script situations, the new syntax offers some
coding comfort.

Other calls include sendDocInsert and sendDocUpdate. See the Messenger API for
details.

The "document" object works together with data provided by wbuild to do the following:

• Automatically create all queries that comprise a document.

• Use parameters passed into a script to filter the resulting Document result set. For
instance, to search for Products with a particular Brand, Model, or Certification, the
calling weblication needs a form with Brand, Model, or Certification fields. These are
automatically added to the query if they are applicable to the document search

• While wbuild generates forms from an XML weblication, it builds a list of document
fields used by the form. This list is passed to the document search, allowing the
Document class to limit the queries to those fields that will be used. This is very
significant as it can eliminate the need for numerous sub-queries.
Introduction to Document Schemas 6/12/00 3-5

3-6 6/12/00 Using Schemas in a Weblication

Ge
Chapter 4
Tailoring Get.It!
The Get.It! applications provided by Peregrine Systems are designed to be
functional out-of-the-box. However, you may want to customize and tailor the
applications to better fit your company's needs.

You can tailor Get.It! to do almost anything you need. The types of tailoring
include things such as:

• Changing the wording or labels in a form

• Adding or removing fields on a form

• Adding fields to the Documents exchanged with the system

• Changing the behavior of a script

• Changing the layout of a Weblication

• Adding or removing modules

• Translating your modifications into the supported languages

This chapter describes how to customize individual features of the
weblications appearance and performance. It guides you through these
different scenarios and provides several examples.
t.It! Tailoring Guide 7/20/00 4-1

Archway Architecture
The Archway architecture is designed to accommodate the types of tailoring
mentioned above.

Before you tailor Get.It!, we highly recommend you have an understanding of
the archway architecture. See “Get.It! Architectural Overview” on page 2-1 for
explanations of several concepts and terms that are used throughout this
chapter. For a description of the weblication tags, see the Appendix A,
"Weblication Reference," at the back of this manual.
4-2 7/20/00 Archway Architecture

Weblication Toolset
Before doing any customization, you may want to review the various
ingredients that make up a Weblication. See Chapter 2, "Get.It! Architectural
Overview," for an introduction to Weblications.

The components listed here play different roles in the overall Weblication
definition. The deployment of a Weblication requires a compilation step that
takes all of the ingredients and generates a set of web pages that are installed
into a web server directory:

Weblication XML
Definitions

The XML files that define application modules, activities, and
forms.

Archway ECMA
Scripts

ECMA script files that implement application specific
behavior.

Document Schema
Definitions

The XML definitions that describe the data that should be
queried or updated to create XML documents that can be
interchanged with Archway by a client such as a Weblication.

Stylesheets The colors and fonts used for pages in a Weblication.

Layout Templates Define the layout and component construction rules for
creating pages in a Weblication.

WBUILD Executable tool used to create a Weblication.

Before you make
changes to the
weblication, use the
Admin Module to set
“Debug scripting” in
the General Execu-
tion Settings and
“Show form info” in
the Weblication Set-
tings to true.

When you make changes to a Weblication definition, you need to re-generate the web pages by
running wbuild application from a command prompt at the directory ...getit/bin/.

(XSL)

(CSS)

Fig. 4.1 The Weblication toolset at work
Tailoring Get.It! 7/20/00 4-3

Before You Make Changes
Since the source for the Weblication is provided with the product, you can
make any changes you want to the Get.It! weblication. Before you start to
modify Get.It! there are a few items you will need to know and set regardless
of the change you are making. These tips make the process of modifying
Get.It! much easier.

File Structures

The files that are used to build the Get.It! weblication are stored in the
...getit/apps directory. The XML files, schemas, and scripts used to make up
the weblication page are grouped by application within this directory into
packages. These packages make it easy for you to determine which files,
schemas, and scripts are used for each application.

Each package contains the XML files, schemas, and
scripts that make up the application. The common
folder holds the files that are used in more than one
application.

The following folders are created for each applica-
tion package. Some packages also contain folders
that are specific just to that application.

jscript = The script files for the applica-
tion.

presentation = Common browser-side presen-
tation files. Most presentation
files are generated by the
wbuild command and are not
stored in source control.

schema = The schema files for the appli-
cation.

weblication = The XML files that make up the
application.

Store all changes you make in the .../getit/apps/user/
folder. Changes to the XML files should be stored in
the weblication folder within the user directory, and
changes to schemas should be stored in the schema
folder.
4-4 7/20/00 Before You Make Changes

Application Definition File
Applications are defined within a file that lists the packages that should be
included for deployment. All applications are pulled together in the getit.xml
file:

<application name="e" home="portal">
<title> Get.It! </title>

<modules>

<!--===
List of packages imported by this deployment configuration.
The "contents" attribute is optional: when specified it helps
determine the order in which content module files are included. When
not specified, all files found in a package folder are included in
alphabetical order.

==-->
<package name="common" />
<package name="resources"contents="request;status;approve;receive"/>
<package name="asset" />
<package name="service" />
<package name="b2b" />
<package name="portal" />

</modules>

Archway.ini Use of Packages
Archway requires a setting in the archway.ini file in order to support
packages:

weblication=getit.xml

The “weblication” parameter tells Archway which application has been
deployed. At runtime, Archway reads the application definition file to know
what packages are included in execution. This is important because it is used
by Archway to locate scripts and schemas.

A new method, Archway.getPackages() is now available for run-time
information about packages.

Presentation Folders
The presentation folder is a placeholder that contains no checked-in files. This
folder should only contain generated files. You can define presentation folders
with specific files and images, that are not automatically generated, in the
individual packages. Wbuild pulls all presentation files into the top-level
presentation folder. You should never check-in any files in this top level folder.

The application in
this file is what you
enter as the parame-
ter in the wbuild
command.

For Solaris, the file
name is
getser-
vice.xml.
Tailoring Get.It! 7/20/00 4-5

Common Components
Some of the images, forms, schemas, and XML files are used more than once
within the Get.It! weblication. These common components of the weblication
are stored in the ...getit/apps/common directory.

Displaying Form Information

In a Weblication, a form contains detail fields for the product, including the
model, brand, list price, etc. We have created an option in the Settings activity
in the Administration Module that allows you to display the information you
can use to find the form you want to change.

The common folder holds the images,
scripts, presentation files, schemas,
and XML files that are used by more
than one application package.

Fig. 4.2 The common folder.
4-6 7/20/00 Before You Make Changes

If the “Show form info” is set to true, a box is displayed on the left of the
window as shown in the sample below:

Use the form statistics to determine the XML file you want to use in your
modification, and to search this file to find the exact form to change.

The “module” tells us which file to edit. Look in
.../getit/apps/applicationpackage/weblication/<module>.xml. In this sample
above, the file is login.xml. Within that file, look for <module name=”login”.
The following is the actual line you will find:

<module name="login" access="anonymous" appmenu="false" apphead="false">

The “Activity” tells us which activity to look for within that module. Search
for <activity name=“main”. The following is the actual line you will find:

<activity name="main">

The “form” tells us which form to look edit within the activity, and the module.
Seach for <form name=”start”. The following is the actual line you will find:

<form name="start" onload="login.init">

If what you want to change is the title of the module or activity, however, the
form information you find is not what you want to change. To find where you
would change the titles, try the following method:

For any given <module>.xml, look at the lines immediately following the
module name=”...” declaration at the beginning of the file and change the data
there. Look at the request.xml file.

Module= The name
of the XML file in the
...getit/apps/ direc-
tory.
Activity and Form=
Use these as search
criteria to locate the
exact form you want
to change.

The portal home
page does not show
form statistics.

Fig. 4.3 Showing the forms information
Tailoring Get.It! 7/20/00 4-7

<module name=”request” access=”getit.requester”>
<title> Request Menu </title>
<description

image=”images/order.gif”
short=”Resources”
long=”Request supplies, hardware, and software” />

What each line tells us:

<module name=”request” access=”getit.requester”>

This tells us which named amUserRight (or ServiceCenter capability word, if
you had that) the user needs in order to access this module.

<title> Request Menu </title>

Data to show on the left hand side (in the activities) within the module.

<description
image=”images/order.gif”

Identifies the graphic to show on the main menu.

short=”Resources”

Name to use in the menu bar and on the main menu.

long=”Request supplies, hardware, and software” />

Balloon help when you hover over the short name in the menu bar.

You can change the names of the module or activity in this area of any XML
file.

Now that you know how to find the form you want to modify, lets see how you
ensure the changes you make are not removed when you apply a future
release of Get.It!

Debugging Changes

We recommend you set all “debug” options in the archway.ini file to true to
make it easier on yourself to determine what is going on in the changes you
make.

1. Log in to the Get.It! Administration Module by logging into Get.It! with a
user ID that has administration rights.

2. Click Admin to access Get.It!’s Administration Module.

3. In the activities, click Settings.

4. In the section titled General Execution Options, enter a path and file name
in the Log file field. This is where the debug information will be put.
4-8 7/20/00 Before You Make Changes

5. Set the Debug logging option to true.

6. Set the Debug Mode option to true.

7. Click Save to save your changes (scroll down to below the settings table to
find the Save button).

8. Be sure to set these options back to false before you release your changes
your entire user base.

You should also enter the following line into a script you are changing, it will
output debug information to the archway log file as specified in the Get.It!
Administration Module Settings.

env.debuglog(String Value);

Where to Make the Modifications

If you change the files we send with the Get.It! weblication, your changes will
be lost the next time you install a new version of Get.It! To keep your changes
safe, we have devised a method for you to use.

1. A directory called “user” exists within the .../getit/apps/ directory. Within
the “user” directory are three directories called “schema,” “jscript,” and
“weblication.” If you are updating a schema, save the updated file in the
schema directory. If you are updating a script, save it in the jscript
directory. If you are updating an XML file, save the updates in the
weblication directory.

1. Open the file you want to change. This could be a schema file, an
application file, or a script.

2. Use the Save As command to save the file into the .../getit/apps/user/
directory. All files saved in the correct subfolder (schema, jscript,
weblication) in this directory are read by the wbuild command.

3. Make your changes and save the file.

4. Run wbuild application, where “application” is the name of the
application you are changing.

You can test how this works using the following method:

1. Find the sample prgn.xml file in the
...getit/apps/user/weblication/samples/ directory. You can use any of the
files in this directory as a test, but in this example we will use the
prgn.xml file.
Tailoring Get.It! 7/20/00 4-9

2. Copy the prgn.xml file from the .../samples/ directory into the
...getit/apps/user/weblication/ directory. After running the wbuild
command, log into Get.It! and you will see a new "PRGN" tab in the Get.It!
header menu.

Necessary Information

If you create your own file, or if you want to save just the part of the module
you change in the ...getit/apps/user/ directory, there are four items you must
have at the beginning and end of every file. (In the sample below, replace xxx
with the name of the module and yyy with the name of the activity.)

<module name="xxx">
<activities>
<activity name="yyy">

<forms>
...

</forms>
</activity>

</activities>
</module>

Running the wbuild Command

The wbuild command, as explained earlier in this chapter, takes all of the
ingredients and generates a set of web pages that are installed into a web
server directory. You can enter parameters to have specific applications
compiled.

wbuild application = Compiles the application you enter. Replace application
with the name of the application you want to compile, such
as wbuild getit. Run wbuild getit unless you have created
your own application definition file. The valid application
parameters are those set in the Application Definition file.
See “Application Definition File” on page 4-5 for more
information on this file.

1. Display a command prompt. One method of doing this is to use
Start>Programs>Command Prompt. Change the directory to
C:>Program Files\getit\bin. (To change the directory, first ensure you are
at a C:> by typing C: and pressing Enter. You should see C:\> as your
prompt. Then type cd program files\getit\bin and press Enter. You
should now see C:>Program Files\getit\bin> as your prompt.)

For Solaris, since the file
name is
getservice.xml, you
would run
wbuild.sh getservice.
4-10 7/20/00 Before You Make Changes

2. Type wbuild appname at the prompt and press Enter. Where appname
is the name of the application package you want to recompile. The wbuild
command processes all weblication files in each package. It will list all the
processing it is going through. When you see “Done” the processing is
complete. Minimize this window.
Tailoring Get.It! 7/20/00 4-11

Changing Form Contents
Each form in a Weblication is defined by a <form> element in its appropriate
module file. This is where form contents are declared, including things like:

• Title

• Instructions

• Fields

• Menus

• Tables

• Links

• Action buttons

You can add to or delete from these contents. In the example below, we will
add a field to a form.

Adding Form Fields

To add a field to a form, consider the following example. The sample below is
taken from the Get.Resources! application, and it shows the details for a
specific product in the company catalog.

Make sure you store
you changes in the
...getit/apps/user
directory. See
“Where to Make the
Modifications” on
page 4-9 for details.

Fig. 4.4 Adding a field to a form

Make sure your
form statistics are
displayed. See
“Displaying Form
Information” on
page 4-6 for
instructions
4-12 7/20/00 Changing Form Contents

The form contains detail fields for the product, including the model, brand, list
price, etc. The Form Statistics tells us exactly where to go for the form
definition: we're viewing the product form in the catalog activity of the request
module (and, therefore, found in request.xml).

1. Open the request.xml file from the ...getit/apps/resources/weblication/
directory.

2. Use the Save As command to save the file into your
...getit/apps/user/weblication/ directory.

3. Find the form named product in the activity named catalog. The form is
defined in the following manner:

<form name="product" onload="procure.getProduct">
<title field="Model"> $$(Model) </title>
<fields>

<field name="image" type="image" field="PhotoId"/>
<break/>
<field name="brand" label="Brand" field="Brand"/>
<field name="description" label="Description" field="Description"/>
<field name="price" label="List Price" field="Price"/>
<field name="comments" label="Comments" field="Comment"/>
<link name="infos" label="More Info" target-field="URL" window="true"/>
<break/>
<field name="vendor" label="Availability from Vendor"/>

</fields>
<table record="Supplier">

<column label="Vendor Name" field="Name"/>
<column label="Availability" field="Available"/>
<column label="Delay" field="Delivery"/>
<column label="Price" field="Price"/>

</table>
...
<actions target-form="additem">

<submit> Add to shopping cart </submit>
<back/>

</actions>
</form>

4. Consider how to add a Delivery field to the form that displays the
average time it takes for the catalog item to be available once ordered.
This is achieved by adding a field entry to the form, as shown below. The
revised XML below contains this new field:

<form name="product" onload="procure.getProduct">
<title field="Model"> $$(Model) </title>
<fields>

<field name="image" type="image" field="PhotoId"/>
<break/>
<field name="brand" label="Brand" field="Brand"/>
<field name="description" label="Description" field="Description"/>
<field name="price" label="List Price" field="Price"/>
<field name="Delivery" field="Delivery"/>

In this example, we
assume you have
not previously modi-
fied the request.xml
file. If you have,
open the file from
within your
...getit/apps/user/we
blication directory
instead.
Tailoring Get.It! 7/20/00 4-13

<field name="comments" label="Comments" field="Comment"/>
<link name="infos" label="More Info" target-field="URL" window="true"/>
<break/>
<field name="vendor" label="Availability from Vendor"/>

</fields>
<table record="Supplier">

<column label="Vendor Name" field="Name"/>
<column label="Availability" field="Available"/>
<column label="Delay" field="Delivery"/>
<column label="Price" field="Price"/>

</table>
...
<actions target-form="additem">

<submit> Add to shopping cart </submit>
<back/>

</actions>
</form>

5. Save the modified file in the ...getit/apps/user/weblication/ directory.

6. After making this modification, run the wbuild getit command to
regenerate the form. See “Running the wbuild Command” on page 4-10 if
you need instructions.

The modified window in the browser is displayed below.

Fig. 4.5 With the new field.
4-14 7/20/00 Changing Form Contents

Data for the New Field (Scripts)
A remaining question is where does the Delivery field actually come from?
All data available to a script is provided by its onload script. This is defined in
the form's declaration:

<form name="product" onload="procure.getProduct">

As shown, the form in our example relies on the getProduct function of the
procure script file. This script is designed to return product documents. The
product document schema includes the Delivery field we just added.

Of course, this tells us that the type of change described in this section is
possible as long as the data for a new field is already provided by the form's
script. This is not always the case. In order to display new fields, it is
sometimes necessary to modify Document Schemas or even the script logic.
The next two sections describe how to do this.

Localizing your Changes

If you want to translate the change you have made to other authorized
languages, use the following steps. See Chapter 6, "Get.It! Localization
Support," for more information on localizing your changes.

1. Make sure you verify the change is working in the English version of the
weblication and that wbuild has been run.

2. Open a command prompt (like you do when you run wbuild) and run
strbuild getit. This will create the *.str files for the languages you
have set in the Administration Module Settings.

3. If your allowed languages include more than English (based on the entries
in the Locale field in the Administration Module Settings), you will need
to update the appropriate string files with the translation of the new field
you added. For this example, we will update the French file.

The translated *.str
files are created
only if the “resolve-
AppStrings” field in
the archway.ini file is
set to True. If it is
set to False, only
the English string
file is created.
Tailoring Get.It! 7/20/00 4-15

4. Open the getit_fr.str file and search for the field you just added. In this
example, search for “Delivery.”

5. The new field will show blank quotes unless this string has been
previously translated into this language. Type the translation of the string
into the blank quotes. In the example above, we have typed the
translation for Delivery.

6. Save the file. Do not save it into a user directory.

7. Log into Get.It! and verify that the translation was successful.

Fig. 4.6 Translating the new field.

In this example, we
are using Notepad
to update the file. If
you use a different
program, your win-
dow may look dif-
ferent.
4-16 7/20/00 Changing Form Contents

Adding Fields to a Document
Most of the scripts in Peregrine Systems’ Weblications use Archway's
Document Manager to exchange data with back-end systems like
ServiceCenter or AssetCenter. See “The Document Manager” on page 2-10 for
an introduction on the Document Manager.

One of the main reasons for using the Document Manager is that it makes
customization possible without the need to modify database operations hard
coded in scripts. If your customization needs call for adding more data to a
document, you can do it by extending the appropriate Document Schema.

Undefined Schema Fields
To add a field that is not yet defined in the schema, consider the following
example. When a user enters a request in the Get.Resources! application, the
following screen queries for various fields describing the request:

The form allows the user to specify a request purpose, delivery date, cost
center, etc. Now let's assume that we want to add a new field to track the
requester's Internal Credit Number - a company specific number given to each
employee.

Modifications of the
schema are
restricted to fields
that exist in the
database.

Fig. 4.7 Adding information to a schema
Tailoring Get.It! 7/20/00 4-17

The new company-specific field obviously does not exist out-of-the-box in the
document associated with this form. The document used by this particular
form is the request document and the schema is the file that defines which
fields are available. Each schema file contains a generic document definition,
followed by one or more system-specific derivations. In other word, the first
portion of the schema defines the fields for Get.It!, and the second portion of
the schema maps the Get.It! field to the field in a table in one of the back-end
systems. To begin to add a new field:

1. Open the request.xml file from the ...getit/apps/resources/schema/
directory.

2. Use the Save As command to save the file into your
...getit/apps/user/schema/ directory.

3. Find the “request” generic document definition, which is shown below:

<document name="Request">
<attribute name="Id" type="num"/>
<attribute name="ApprovalStatus" type="num"/>
<attribute name="Budget" type="string"/>
<attribute name="Comment" type="string"/>
<attribute name="CostCenter" type="string"/>
…

</document>

4. To add our new Internal Credit Number, we start by inserting the field
into the “request” generic document definition:

<document name="Request">
<attribute name="Id" type="num"/>
<attribute name="ApprovalStatus" type="num"/>
<attribute name="Budget" type="string"/>
<attribute name="Comment" type="string"/>
<attribute name="CostCenter" type="string"/>
<attribute name="ICN" type="num"/>
…

</document>

This new line defines a new numeric field named ICN. The field has been
added to the generic request schema definition. This definition is generic
because it is not tied to any specific back-end system. However, because
the Get.Resources! application is implemented on top of AssetCenter, we
also need to extend the AssetCenter specific request schema.

5. Each schema file contains a generic document definition followed by one
or more system-specific derivations. You can see the AssetCenter schema
for request in the ...getit/apps/resource/schema/request.xml file. Here is
the line added to that definition:

In this example, we
assume you have
not previously modi-
fied the request.xml
schema. If you have,
open the file from
within your
...getit/apps/user/sc
hema/ directory
instead.
4-18 7/20/00 Adding Fields to a Document

<documents name="ac">

<!-- AC Request Document -->
<document name="Request" table="amRequest">

<attribute name="Id" field="lReqId"/>
<attribute name="ApprovalStatus" field="seApprStatus"/>
<attribute name="Budget" field="Budget.Name"
link="lBudgId" linktable="amBudget" linkfield="Name"/>

<attribute name="Comment" field="Comment.memComment"
link="lCommentId" linktable="amComment"
linkfield="memComment" linktype="hard"/>

<attribute name="CostCenter" field="CostCenter.Title"
link="lCostId" linktable="amCostCenter" linkfield="Title"/>

<attribute name="ICN" field="Field2"/>
…

</document>
</documents>

The purpose of entries in the AssetCenter specific schema is to define the
mapping between a logical document field and its AssetCenter physical
database counterpart. In this case, we've mapped the new ICN attribute
to Field2 in the amRequest table. Field2 is a customizable generic field in
the AC database, and in this example we have chosen to use it for storing
the ICN number.

6. Save the changes you made to the ...getit/apps/user/schema/request.xml
file.

7. After making this modification, run wbuild getit to regenerate the form.
See “Running the wbuild Command” on page 4-10 if you need
instructions.

With just these two new lines in the request document schema, the
Weblication is now capable of tracking a new field with every request. Now we
can add the field to any form in the same way described in the previous
section.
Tailoring Get.It! 7/20/00 4-19

Changing Script Behavior
The Get.It! architecture is designed to minimize the need for script changes,
however, you can customize the logic of an Archway script. The Document
Manager minimizes the number of modifications you might make, because, as
described in the last section, you can modify the type of data returned by a
script by simply updating the appropriate Document Schema.

However, for those times when you must modify a script, the Archway's script
model allows you to make modifications without having to alter the base code
shipped by Peregrine Systems. You just create your own version of the
function in a user-derived script. As with all other items you modify, store
your user-derived scripts in a directory separate from the scripts shipped by
Peregrine Systems. This directory is in ...getit/apps/user/jscript/.

Changing a JScript

Consider the following example. The following screenshot shows a form in the
Resources module. The form is used to enter data describing a request.

Fig. 4.8 Changing jscripts.
4-20 7/20/00 Changing Script Behavior

This form includes selection boxes that are populated with valid choices
obtained by queries against the database. For this example, we will add
another field to this form to capture the requester's Department in the
company. To accomplish this, we will need to modify the form's script to query
for a list of valid department names that can be shown in a new select box.

1. Determine which script is used. You can do this by looking at the form’s
onload script, which is specified in the form's XML definition. Use the
Form Statistics to determine where to look in the XML file. In figure 4.8
above, the form is defined in the submit activity of the request module.

2. Open the ...getit/apps/resources/weblication/request.xml file.

3. Search for the form named submit, in the activity named submit. Here is
the form's declaration:

<form name="submit" onload="procure.getOrderParameters">

4. Determine the name of the jscript file by looking at the onload element.
The getOrderParameters function of the procure script is responsible for
gathering data for the form. The contents of the script can be found in the
procure.js script file.

5. Open the file called procure.js from the ...getit/apps/resources/jscript/
directory.

6. Save the file in the .../getit/apps/user/jscript/ directory.

7. Within this file, find the following code:

function getOrderParameters(msg)
{

…
// Get the list of Budgets
msg = new Message();
msg.add("_return", "Name");
msg.add("_sort", "Name");
msg = archway.sendDocQuery("ac", "Budget", msg);
msgResponse.add(msg);
…

8. Now you need to extend the work of the default script to include a new
query for company department names. The following is the new user
function in its entirety and then consider each of its lines of code:

function getOrderParameters(msg)
{

var msgResult;
var msgDepartments;

In this example, we
assume you have
not previously modi-
fied the request.xml
file. If you have,
open the file from
within your
...getit/apps/user
directory instead.
Tailoring Get.It! 7/20/00 4-21

// Call base function to perform standard queries
msgResult = this.parent.getOrderParameters(msg);

// Query for departments
msgDepartments = archway.sendDocQuery(

"ac", "SELECT Name from amEmplDept WHERE bDepartment=1");

// Add departments to overall resopnse
msgResult.add(msgDepartments);

return msgResult;
}

9. Save your changes.

10. This defines a new function with the same name as the one we're trying to
extend (getOrderParameters). The new function is stored in a new user
script file with the same name as the base script file (procure.js). By doing
this, we're guaranteed that Archway will invoke our new function instead
of the base version.

11. Within the function, included a call to the base function:

msgResult = this.parent.getOrderParameters(msg);

It is not mandatory to do this. However, by calling the parent function, we
preserve the base queries and only add our new query on top. In some
cases, you will want to bypass the original behavior altogether.

12. Next, we query for the data of interest:

msgDepartments = archway.sendQuery(
"ac", "SELECT Name from amEmplDept WHERE bDepartment=1");

13. This gives us a result set with a list of department names. Finally, the list
is added to the result set obtained from the base function:

msgResult.add(msgDepartments);

14. The only remaining task is to add the actual department field to the
Weblication form. We already saw how to do this in an earlier section.
4-22 7/20/00 Changing Script Behavior

Changing Weblication Components Layout (XSL)
The layout and organization of each form is determined by a set of template
files. The templates are defined in the Extensible Stylesheet Language (XSL).

The purpose of XSL is to process an XML document and convert it into a
different desired format. For instance, an XSL template could define rules for
converting an XML document into HTML that can be displayed by a browser.
A different XSL document could generate an RTF like document that is better
fit for printing.

The XSL templates provided with the product are used by the wbuild
command in conjunction with the Weblication XML definition to generate web
pages. Get.It! includes a set of templates that generate Java Server Pages
(JSP) files.

When Do I Change the XSL?

There are two reasons for extending or customizing the templates provided by
Peregrine Systems.

• To add support for a new type of Weblication component.

• To change the layout or organization of a web site.

You can make the modifications without altering the existing template source
files. Again, this is important for upgrade purposes. The source for XSL
templates can be found in the .../getit/templates/jsp/ directory. The directory
also contains a file named user.xsl. This is where you can enter your own
customization.

The user.xsl file shows basic instructions and examples for customization.
Template customization with XSL is an advanced topic and further
description is beyond the scope of this guide.
Tailoring Get.It! 7/20/00 4-23

Integrating a New Product with Get.It!
The method you use to integrate new products into Get.It! depends on the type
of product you want to integrate.

Integrating a URL

If you are linking a product that can be accessed through a web browser using
a URL you can add the product as a new module or as an activity on an
existing module.

If you integrate a
URL as a module,
the product will be
available to users in
the menu bar and
from the users main
menu.
If you integrate a
URL as an activity, it
will be available to
users as part of the
activity list for an
existing module.

Fig. 4.9 Adding a URL as a module or as an activity
4-24 7/20/00 Integrating a New Product with Get.It!

Adding a URL as a Module
If you add the URL as a module, users can access it through a button on the
main menu and on the menu bar.

1. Create a new XML file.

2. Save the new file in the .../getit/apps/user/weblication/ directory.

3. Open a file from one of the Get.It! application packages that most closely
matches the module you want to add. There are also samples in the
.../getit/apps/user/weblication/samples/ directory.

4. Copy the tags from the existing file and paste them into the new XML file
you created in step 1.

5. Update the module name with the name of the product you are
integrating. Make sure to change the module name, title, image, short
description, and long description to match the module you are adding.
Update the “target-url” with the URL of the product you are integrating.

6. Save the new file in the .../getit/apps/user/weblication/ directory. Make
sure it has an extension of “.xml”.

7. Run wbuild getit. See “Running the wbuild Command” on page 4-10 if
you need detailed instructions.

8. Log out and back in to Get.It! and the new module is available.

Adding a URL as an Activity
If you add a URL as an activity, users can access it through a link on the
activity list in an existing module.

1. Log into Get.It! and determine the module in which you want the new
activity to be available.

2. Determine if there is an activity that behaves similarly to the activity you
are adding. For example, is there an existing activity that links to a
different URL?

3. Open the XML file from an existing application package (in the
...getit/apps/ directory) for the module into which you want to integrate
the new activity.

4. Use the Save As command to save this file into the
...getit/apps/user/weblication/ directory.

5. Find the section of the XML file where the activities are defined and enter
the following, replacing the Peregrine Systems information with the
information for the URL you want to integrate.

The default path is
the path we
recommended at
installation. If you
installed Get.It! into
a different folder,
your default path will
be the path you
chose at installation.
Tailoring Get.It! 7/20/00 4-25

<!--==
Activity: link to Peregrine

===-->

<activity name="prgn">
<description

short="Peregrine"
long="Link to Peregrine’s web site."
target-url="http://www.peregrine.com"

</activity>

6. Update the name of the activity to be the name of the product you are
integrating. Make sure to change the activity name, short description, and
long description to match the product you are integrating. Update the
“target-url” with the URL of the product you are integrating.

7. Save your changes.

8. Run wbuild. See “Running the wbuild Command” on page 4-10 if you
need detailed instructions.

9. Log out and back in to Get.It! and the new activity is available.

Adding a SC or AC Feature as a New Module

Adding a new module requires you to copy an existing XML file, make your
updates, and then saving the new module to the
.../getit/apps/user/weblication/ directory. You define the module in the new
XML file and then add it to the Weblication when you import it.

To start, determine an existing XML file that is the closest to the new module.

1. Open an XML file from an existing application package (in the
...getit/apps/ directory) that you want to change, or that does a similar
action to what you want the new module to do. If no existing XML closely
matches what you want to do, we recommend you still open a file to use as
a guide.

2. Use the Save As command to save this file in the
...getit/apps/user/weblication/ directory with a name that allows you to
easily recognize what this module does. Remember to include the “.xml”
extension on the file.

3. Update the applicable portions of the file, including header information,
nested tags, etc. Update the new XML file until it includes all the
functions that you want it to do. Use the instructions in the previous
sections of this chapter.
4-26 7/20/00 Integrating a New Product with Get.It!

4. If you need to populate tables in the new module, you may need to create a
new script in the .../getit/apps/user/jscript/ directory. Copy an existing
script, just as you did to create the new XML file. When you save the new
script, be sure to include the “.js” extension on the file name. See
“Changing a JScript” on page 4-20 for instructions on updating a script
file.

5. Run wbuild getit. See “Running the wbuild Command” on page 4-10 if
you need detailed instructions.

6. Log out and back into Get.It! to see the changes you have made.

Modules can be removed from a Weblication by removing their entry in the
.../getit/apps/user/ directories (if they are modules you created) or from the
getit.xml file if they are modules that came with Get.It!.
Tailoring Get.It! 7/20/00 4-27

Adding a Feature from AssetCenter
Within AssetCenter, features may be added to track information not provided
for by the out of box database schemas. The Get.It! weblication allows features
to be incorporated as well, allowing customization of the databases and
screens for use by all users.

1. Add the feature to the desired table within AssetCenter. This should be
done in the typical AssetCenter fashion.

2. Add access to the feature via amUserRight entry. You must give access to
the feature via amUserRight modification. Select the amUserRight
entries for which the new feature is relevant and provide access as
necessary.

3. Add the feature to a schema. Once the feature has been created within
AssetCenter, add it to the weblication’s schema. An excerpt from the
request.xml schema is shown here. The necessary addition has been
highlighted in bold. See “Adding Fields to a Document” on page 4-17 for
details on updating a schema.

<schema>

<documents name="base">
<!-- Request Document -->
<document name="Request">

<attribute name="Id" type="num"/>
[…]

<attribute name="TestFeature" type="string"/>
[…]

</document>
</documents>

<!--==
AssetCenter Schema Derivations

===-->

<documents name="ac">

<!-- AC Request Document -->
<document name="Request" table="amRequest">

<attribute name="Id" field="lReqId"/>
[…]

<attribute name="TestFeature" field="fv_TestReq"/>
</document>

</documents>
4-28 7/20/00 Adding a Feature from AssetCenter

4. Add the feature to an application. After the feature is referenced in the
schema, you need to incorporate it in to the screen definitions. See
“Changing Form Contents” on page 4-12 for details on updating an
application.

5. An example is given here from the ...getit/apps/request.xml:

<!-- This form requests order information for submission -->
<form name="submit" onload="procure.getOrderParameters">

<title> Request Information </title>
<instructions>

Please provide the following information necessary
for submitting your request.

</instructions>
<fields>

<input label="Purpose" type="text" field="Purpose"
size="50"/>

[…]

<input label="Test Feature" type="text"
field="TestFeature" />

</fields>

6. Run wbuild getit. See “Running the wbuild Command” on page 4-10 if
you need detailed instructions.
Tailoring Get.It! 7/20/00 4-29

Adding a JDBC Adapter
You can set up as many JDBC adapters as you need. The only limitation is
that each adapter must point to different database target strings.

There are three steps you need to do to add a JDBC Adapter to Get.It!:

• Update the archway.ini file.

• Update the Get.It! Administration module Settings to include the new
archway.ini fields.

• Run the wbuild getit command.

Updating the Archway.ini File

1. Open the archway.ini file in the C:\Program Files\getit\bin\ directory.

2. Update the “adapters” line with the JDBC Adapter, so the line would look
something like:

 adapters=sc=SCAdapter;portalDB=SCAdapter;xx=JDBCAdapter

Replace xx with the two character designation of the database you are linking
(such as “ac” for AssetCenter or “sc” for ServiceCenter).

3. Add the following lines to the archway.ini file. Replace xx with the two
character designation of the database you are linking.

xxdatabase=<odbc name>
xxdatabaseurl=jdbc:odbc:
xxdatabasedriver=sun.jdbc.odbc.JdbcOdbcDriver
xxcasesensitive=false
xxanonymous=
xxanonymouspassword=
xxadmin=
xxadminpassword=

The fields can be updated after you have changed the Administration module
weblication to display them. The “xxadmin” and “xxadminpassword” are what
are used to actually connect to the database, and, therefore must be a valid
database user. The “xxanonymous” and “xxanonymouspassword” as well as
names used in the login screen are used for Get.It! user sessions.

The “xxdatabaseurl,” “xxdatabasedriver,” and “xxcasesensitive” fields are
optional. All others are required.

4. Update the “jdbc” and “odbc” with the name of the database you are
connecting.

5. Save the file.
4-30 7/20/00 Adding a JDBC Adapter

Updating the admin.xml File

1. Open the admin.xml file from the C:\Program
Files\getit\apps\common\weblication\ directory.

2. Find the activity called “Settings.”

3. Scroll down until you see where the AssetCenter and ServiceCenter
adapters are setup. Enter the following lines after the AssetCenter and
ServiceCenter adapter information. Be sure to update the “JDBC” and
“xx” with the information for the system to which you are linking. Where
“xx” is used, be sure to mimic the case of the letters. Replace uppercase
“XX” with uppercase letters and lowercase “xx” with lowercase letters:

<section label="JDBC (xx) Adapter Settings">
<entry>
<input field="XXAdmin" type="text" label="Administrator name"
size="20" />

<instructions>Administration user used by Get.It! when performing
tasks such as user authentication and registration</instructions>

</entry>
<entry>
<input field="XXAdminpassword" type="password"
label="Administrator password" size="20" blank="_blank" />
<instructions>Administration password</instructions>

</entry>
<entry>
<input field="XXAnonymous" type="text" label="Anonymous name"

size="20" />
<instructions>Anonymous user name used when an unknown user
attenpts to communicate through archway</instructions>

</entry>
<entry>
<input field="XXAnonymouspassword" type="password"

label="Anonymous password" size="20" blank="_blank" />
<instructions>Anonymous user password</instructions>

</entry>
<entry>
<input field="XXDatabase" type="text" label="DataSource" size="20" />
<instructions>Data source name for ODBC driver</instructions>

</entry>
<entry>
<input field="XXDatabaseUrl" type="text" label="JDBC Url" size="20"/>
<instructions>Url for JDBC driver (optional)</instructions>

</entry>
<entry>
<input field="XXDatabaseDriver" type="text" label="JDBC Driver"

size="20" />
<instructions>Alternate JDBC driver (optional)</instructions>
Tailoring Get.It! 7/20/00 4-31

</entry>
<entry>
<input field="XXCaseSensitive" type="checkbox" label="Case

Sensitivity" value="true" valueoff="false" />
<instructions>Select this to toggle case sensitivity in the JDBC

driver</instructions>
</entry>

</section>

4. Save the file in your user directory. If you save it in the standard
Get.It!directory it will be overwritten the next time you load a new version
of Get.It!

5. Run wbuild getit. See “Running the wbuild Command” on page 4-5 if you
need detailed instructions.
4-32 7/20/00 Adding a JDBC Adapter

Ge
Chapter 5
Portal
Portal is the term that describes the initial interface with Get.It! Portal is a dynamic
interface, customizable to your specific requirements. There are numerous Components
that comprise the portal. Each Component has a different function. Some Components are
also customizable. You can modify the layout of the portal, open and close Components,
or remove them from the interface.

This chapter addresses:

• Portal (generic)

• Customizing

• Select Content

• Create New

• Page Layout

• Edit Preferences

• Components
t.It! Tailoring Guide 6/12/00 5-1

Portal
Portal that you receive upon installing Get.It! will look similar to the following. This is an
example of one Component that you have access to within portal. There are many more
Components. They are divided amongst two categories. The first category is that of Get.It!
Weblications, including Application Menu, Problem Tickets, Request To Approve, and
Status Review. A second category is that of Personal Utilities, including Calendar,
Calculator, Weather, Stock Quotes, Top News, Business News, Technology, Sports News,
and Date And Time.

Note: If you are using Netscape Navigator as your default browser, some screens may
appear differently than stated. Notes are given where differences occur.

Customizing (GUI)

The Get.It! portal is a dynamic interface. You may move and remove all Components. The
Stock Quotes Component is modifiable, adjustable to those stock quotes that specify. Each
Component contains a toolbar in its upper-right corner. Depending on the type of
Component, each corner will contain Customize (wrench), Copy (superimposed
windows), Move (vertical arrows), Hide (dash), and Remove (X) options.

Fig. 5.1 Application Menu Component
5-2 6/12/00 Portal

Customize
The Customize option is for customizing the Component. Not all Components are
customizable (e.g., News, Sports). Clicking on the Customize button will link you to
another screen, the Change Layout screen, whereby you can modify the layout. To save
your modifications press the Save button at the bottom of the screen.

Copy
Copy allows you to copy a Component. The only the Component that you can copy is the
Problem Tickets Components. When you copy the Problem Tickets Component, the
second Component will be identified by its title within the title bar (e.g., Problem Tickets:
Copy 1).

Move
The Move arrows move Components either up or down. You cannot move a Component
left and right. To move a Component up press the up arrow. Pressing an arrow will move it
by one increment. For instance, if the Weather Component is on top and the Stock Quotes
is directly beneath, pressing the down arrow on the Weather Component will move it one
notch down, or below the Stock Quotes Component.

Hide/Show
Hide closes the Component, reducing the window to a menu bar with selectable options
(i.e., Window Tools). If a Component is in a Hidden state then the option becomes Show.
Pressing the Show button will unveil the Component. The Hide and Show buttons
alternate.

Remove
Pressing the Remove button removes the selected Component from the portal. Upon
pressing Remove a prompt will appear: Remove This Component? Click OK to remove
the Component or Cancel to void the process. You can always reassert a Component after
it has been removed, accomplished by pressing the Select Content link and then selecting
the desired Component.

Fig. 5.2 Window Tools
Portal 6/12/00 5-3

Select Content

Clicking on Select Contents links you to Customize My Home Page. Within this page are
two main features, each containing multiple options that allow you to customize your
home page (or portal). Each feature allows various selections to be made. You can
customize anything from Problem Tickets and Status Reviews to personal Stock Quotes
and the Weather. All of these features are available as components on your front page. You
do not have the option of customizing all components. For instance, if you select the
Weather option located within Personal Utilities, you will not have the option of locating
the forecast for your specific area. Selecting the Weather option provides a United States
map with various forecasts from around the country. There are other components that are
customizable. For instance, the Stock Quotes option allows you to edit the displayed stock
(the default for this option is PRGN). All of the news options are provided by iSyndicate
and are not customizable.

Get.It! Weblication Components
The first feature is Get.It! Weblication Components. Within this heading you can select
Application Menu, Problem Tickets, Requests To Approve, and Status Review. Each of
these options is selectable by clicking on its check box. A check mark in the box means
that the option is selected and that it will appear on your home page. Each selection is
accompanied by a brief description located to its right. Once a selection is made it must be
saved. Saving is accomplished by pressing the Save button located at the bottom of the
Select Contents screen.

Personal Utilities
The second feature is that of Personal Utilities. This section allows you to customize your
home page with a variety of up-to-date options. You can select items from the latest
Business News to the Date And Time. There are numerous possibilities. Select each

Component Function

Application Menu Quick links to various modules that comprise the application.

Problem Tickets Lists unresolved tickets. Click on a ticket to verify its status or to
provide updated information.

Requests To Approve Allows you to select the approval action for resource requests.
You may click on any request to view more details. This
component requires access to Peregrine's AssetCenter.

Status Review Displays the list of active requests so that you may view their
status. This component requires access to Peregrine's
AssetCenter.
5-4 6/12/00 Portal

option (check box) that you want for the home page and press the Save button located at
the bottom of the page.

Create New (web page)

Create New, located at the bottom of the Select Content page, allows the creation of a new
web page. To create a new page you must insert a Title, a Display URL Link, and a Con-
figure URL Link. The Title is the title of the page. This is synonymous with the HTML
<Title> tag. The Display URL (Universal Remote Locator) Link is the address where the
page will be located. The Configure URL Link is where the page will be configured.
There are also two options for page layout: Wide and Narrow.
For instance, in the Display URL Link you can insert http://<your-
host>getit/timedate.asp if you are running IIS or JSP. For the Configure URL Link
you can insert http://<your-host>/getit/timedate_configure.asp or *.jsp. The
Date And Time component uses the *.jsp version. The *.asp version is included as an
example of how to incorporate Active Server Page technology within Get.It!

Component Function

Calendar A monthly calendar. This component can be viewed using MS
Internet Explorer 4.0 or higher.

Calculator A standard calculator. This component can be viewed using MS
Internet Explorer 4.0 or higher.

Weather A map of the United States containing various forecasts around
the country.

Stock Quotes The latest quotes of your most frequented stocks.

Top News The latest headlines provided by iSyndicate.

Business News All things business provided by iSyndicate.

Technology All things technological provided by iSyndicate.

Sports News All things sport provided by iSyndicate.

Date And Time Your choice of Coordinated Universal Time (UTC or GMT) or
Standard Local Time.
Portal 6/12/00 5-5

Create A New Page

1. Click on Select Content.

2. Click Create New (at the bottom of the page).

3. Insert a Title.

4. Insert a Display URL Link.

5. Insert a Configure URL Link.

6. Click Save.

Change Layout

Your portal or home page is divided into two areas: Narrow for the left and Wide for the
right.

The Narrow section occupies about one-third of the screen while Wide occupies about
two-thirds of the screen. These proportions are not modifiable. Within both the Narrow
Components and Wide Components sections are Up, Down, and Remove buttons. These
buttons either move or delete a component. All active components are listed within the
drop-down box.

To move a component up or down, or to remove it, first select the component in the drop-
down box and use the arrow and delete keys to its right. Press the Save button at the bot-
tom of the screen to save all changes of your layout. You may modify the layout at any
time. While this functionality exists within the portal or main page, the Change Layout
option allows you to customize the look more efficiently.

Fig. 5.3 Create A New Page
5-6 6/12/00 Portal

Netscape Navigator
If you are using Netscape Navigator as your default browser, the Change Layout link
allows you to move components either up or down. This feature is the same as the
Component Move button (for Internet Explorer users).

Edit Preferences

The Problem Tickets component, part of the Get.It! Weblication Components section,
provides an editing option for customization. Each field allows you to select information
that is relevant to this component. You can select fields for: Status, Priority, who it is
Assigned To, who it is Opened By, and Contact. You can also Add, Move, or Remove
Field Choices, those items that are displayed in your table. You can also delimit the
number of tickets to show. This illustration has 25 in its text box. This means that as many
as 25 Problem Tickets can display at any given time.

Fig. 5.4 Change Layout
Portal 6/12/00 5-7

Fig. 5.5 Customize
5-8 6/12/00 Portal

Portal API
Portal is customizable. You can add, remove, and modify Components. Portal gives you
the opportunity to use HTML plug-ins or Active X components.

Located within the following directory are five samples of code, each containing
highlighted script (in bold) that should be modified when making it user-specific.

C:/Program Files/getit/src/apps/user/weblication/samples

These samples include (1) Adding A New Module, (2) Overriding A Form, (3) Adding A
New Activity, (4) Adding A New Activity Link, and (5) Changing the Requestform
Component. Each of these samples is explained, detailing those sections of the code that
must be modified when you initiate changes.

Sample Function

Add Module Adds a new module menu entry associated with another web site.

Override Form Changes the login form to remove the Register option.

Add Activity Adds a new activity to the Service module to allow searching for an
arbitrary ticket.

Add Activity Link Adds a new activity to the Resources module to display company
request policies.

Modify Requestform
Component

Changes the generic Get.Resources! Request Form by renaming several
fields. This form is normally defined as a <component> entry in
components/reqform.xml.
Portal 6/12/00 5-9

Portal Components
Similar to the <component> tag, <portal-components> define the individual windows
found on the home page. These windows can be moved, minimized, and configured to
provide the user with a concise view of multiple aspects of the Get.It environment. Portal
components can also be linked to third-party plug-ins like news and weather, so that all the
resources of the Internet can be brought together.

Out-of-box Portal components are defined in a file called plugins.xml, located in the
apps/portal/weblication/plugins.xml directory. This file is structured as follows:

<portal-components>
<portal-category name=”getit”>
<title>Get.It! Weblication Components<title>
<portal-component
name="tickets"
copy="true"
adapter="SC
access="getit.service">
<title>Problem Tickets</title>
<instructions>
Here is the list of unresolved tickets that you have reported. Please
click on any one of them to check the latest status or to provide us
with updated information. This component requires access to
Peregrine's <i>ServiceCenter</i>.
</instructions>
<contents onload="portal.getTickets">
<table record="Problem" columns="_Columns">
<link target-module="service"
target-activity="status"
target-form="detail"
field="Id" />
</table>
</contents>
<configure onload="portal.editTickets">
<fields>
<input type="select"
label="Status"
field="Status"
record="status"
valuelist="StatusValue"
displaylist="StatusDisplay" />
...
</fields>
</configure>
</portal-component>
...
</portal-category>
...
</portal-components>
5-10 6/12/00 Portal Components

<portal-category>

<portal-component>
The portal component defines the content and configuration forms that are linked together.

Attribute Description

name Defines part of the name used in the construction of the *.jsp file
name.

<title> Portal components are divided into categories. These categories define
the caption that appears in the “Select Content” form that you can use
for selecting the Components that you want on your home page.

Attribute Description

name Defines part of the name used in the construction of the *.jsp
file name.

copy If copy=”true”, then an icon appears on the component toolbar
that allows the configuration of a component to be duplicated.
Use this in conjunction of <configure> to create multiple
copies of a component configured to display different
information.

adapter Defines the adapter that is required to support this component. If
that adapter is not accessible, then the component will not be
listed in the “Select Content” form.

browser Defines the browser that is required to display this component. If
a user uses a different browser, the component will not be listed
in the “Select Content” form

access Defines the access right that the user must possess to access this
component. If a user does not have this access right, the
component will not be listed in the “Select Content” form.

<title> Defines the caption that appears on the toolbar of the component
and next to the checkbox of the “Select Content” form.
Portal 6/12/00 5-11

<plugin>
A plug-in element provides the user with the ability to reference third-party URLs to be
included in a portal component. The URL can point to a HTML, JSP, or ASP page, or a
*.gif or *.jpeg file from anywhere on the Internet.

<instructions> Defines the text that describes the purpose of the component in
the “Select Content” form.

<contents> The contents of this element can be any weblication element,
like <table> or <fieldtable>. This tag is equivalent to the
<form> tag, including the ability to specify an onload script to
gather data for the elements contained within.

<configure> This optional form defines configuration parameters to be used
by the <contents> form. If this tag is present, a wrench icon
appears in the portal components toolbar. This tag is equivalent
to the <form> tag. The result of this form submit is stored as
<component.attributes> that are passed in the msg
parameter of the <contents> onload function.

Attribute Description

Attribute Description

href Defines the URL address of the resource.

post If the post attribute is set to “true”, then the data stored in
<component.attributes> (See <configure> above) will be
passed as post data to the URL.

ID If the optional ID attribute is defined, the HTML response
received from the URL will be scanned, and the HTML element
with the given ID will be extracted from the result, discarding all
other page information.
5-12 6/12/00 Portal Components

Portal Plug-Ins
Portal allows the use of plug-ins, small software programs that plug into a larger
application to provide additional functionality. Plug-ins permit the browser to access and
execute files embedded in HTML documents that are in formats the browser would not
recognize such as animation, video, and audio files. Most plug-ins are proprietary.

The following XML script defines reusable plug-in components such as Stock Quotes.
The complete version of this file can be found in plugin.xml.

<!--
Generic Component Samples
--->
<portal-components>
<portal-category name=”getit”>
<title>Get.It! Weblication Components</title>

<!--
AppMenu
--->
<portal-component name=”appmenu”>
<title>Application Menu</title>
<instructions>Links to various modules that comprise this
application.</instructions>

<contents>
<appmenu/>
</contents>
</portal-component>

<!--
Custom Component Container
--->
<portal-component name=”custom” display=”hidden”>
<contents>
<custom-portal-component/>
</contents>
<configure>
<custom-portal-configure/>
</configure>
</portal-component>

<!--
Yahoo Stock Quotes
--->
<portal-component name=”stockquotes” column=”narrow”>
<title>Stock Quotes</title>
<instructions>Monitor your personal portfolio.</instructions>
<contents onload=”portal.getStockQuotes”>
<table record=”MyPortfolio”>
<column label=”Symbol” field=”Symbol”/>
<column label=”Price” field=”Price”/>
<column label=”Change” field=”Change”/>
<column label=”Link” field=”Link”/>
<link target-url=”redirect.jsp” field=”Link”/>
</table>
</contents>
<configure onload=”portal.editStockQuotes”>
<list-builder field=”Symbol” size=”5” default=”PRGN”>
<src type=”edit” label=”Symbol” record=”SymbolChoices”
Portal 6/12/00 5-13

displaylist=”Symbol” valuelist=”Symbol”/>
<dest label=”My Portfolio” record=”MyPortfolio”
displaylist=”Symbol” valuelist=”Symbol”/>

</list-builder>
</configure>
</portal-configure>
5-14 6/12/00 Portal Plug-Ins

Ge
Chapter 6
Get.It! Localization Support
Get.It! allows each user to dynamically select the language in which they
would like the Get.It! windows displayed. This is supported through language-
specific string files which you can update if you are adding your own strings.

General Localization Steps

Before you can localize the strings you create, complete the following two
steps:

1. Use the Administration Module to update the Settings so the “Locale”
field includes the languages you want to have available. Use the two-
character language code defined in the ISO standard. You can find a chart
of the ISO codes in Chapter 2, "Get.It! Administration Module," of the
Get.It! Administration Guide.

2. Update or create your modifications to Get.It! just as you always would. If
needed, refer to Chapter 4, "Tailoring Get.It!," for the steps to complete.

The following is a general overview of the steps you will do to translate your
modifications.

3. Run wbuild getit.

4. Run strbuild getit. This will update your weblication string files.

5. After you run strbuild, look in these files and update all empty quotes
with the correctly translated strings. Search for quote quote (““) to find all
the empty strings.

6. Log into Get.It! When Get.It! attempts to write a screen, it first looks for a
string in a country-specific file. If a string is not found in a country-specific
file, Get.It! then looks in the language-specific file.

See “Localizing your Changes” on page 4-15 for an step-by-step example of
this process.

Make sure the
Locales and Curren-
cies fields in the
Administration Mod-
ule Settings are set
correctly before you
begin localizing files.
t.It! Tailoring Guide 7/20/00 6-1

You can further define language within regions by creating .str files defining
only those strings which are different and adding the country name the file
names. For example, the English extract file for Great Britain could be
getit_en_GB.str.

Archives

A copy of all .str files is stored in an archive file. This archive file is called
...getit\apps\getit.zip. You can transmit this file to a third party
translation service if you do not want to update the .str files yourself.
6-2 7/20/00

Externalizing ECMA Script Messages
The ECMA scripts defined in each Get.It! package also contain some
messages. For example, the following is a script that sends a message to the
user:

User.addMessage(“You have no open problem tickets”);

Messages like these are externalized by storing them in a file named
<package>_en.str found in each package folder. For example, messages
belonging to the Get.Service! package are stored in
...getit/apps/service/service_en.str.

The externalization process is as follows:

1. During development, all messages should be placed in a .str (string) file.
For example:

statusNoTickets, “You have no open problem tickets”

2. Instead of including the message in the ECMA script, use the API
interface shown below:

User.addMessage(IDS.get(“service”, “statusNoTickets”));

The IDS.get() API requires three parameters. The first is package name
where a message is defined. The second is the string ID defined for the entry.
The user’s preferred language is determined by the ScriptRunner.

ID names must be unique within a package. In addition, each ID should be
prefixed by the name of the script file where it is associated.

3. When ready to localize, open the appropriate string file. Save the file in
the same user directory where you saved the script file you updated as
user_languagecode.str where languagecode is the two character code for
the language (user_fr.str for French).

At runtime, Archway picks up messages from the appropriate .str file as
determined by the user session language preferences. Thus, one user could
view English messages while other views them in French at the same time.
Get.It! Localization Support 7/20/00 6-3

Externalizing ECMA Script
Messages with Variables

The IDS interface includes methods for replacing variables into a message.
For example, consider the following message:

"Asset " + strOld + "will be replaced by asset " + strNew

Such a message should be externalized as follows:

ID, "Asset %1 will be replaced by asset %2"

This allows translators to place the %1 and %2 replacement tags anywhere
that makes sense according to grammatical rules of the target locale.

The IDS interface supports the %1 tags with calls such as:

IDS.get(user, strID, str1, str2, ..., strN);

Where str1, str2, ... strN respectively replace %1, %2, ... %N

IDS defines functions for up to three replacement strings. For greater
numbers of replacements, use the get() function that takes a string array.
6-4 7/20/00 Externalizing ECMA Script Messages with Variables

Externalizing Messages in XSL Templates
While it is rare, the Get.It! XSL templates define some messages of their own.
For example, the label for a “back” button is hard coded in the XSL templates,
providing a uniform label anywhere a <back> Weblication element is found.

There are two ways XSL templates externalize strings. The first is by using
the $$IDS() sequence, as shown in the following example:

<xsl:template name=”genBackButton”>
<input type=”button” value=”$$IDS(common,xslBack)”>

</xsl:template>

The XSL above refers to a string defined in the common module’s message
.str file:

xslBack, “Go Back”

The $$IDS() sequence is useful when embedding IDS strings in generated
HTML. However, some XSL code may actually generate JSP scriptlet code. In
such cases, use the normal IDS APIs already described above for Java code
externalization. For example:

<jsp:scriptlet>
if (user.getName().length() > 0)
out.println(IDS.get(user, "portal", "xslWelcome") +
user.getName());

</jsp:scriptlet>

The code above retrieves anIDS string defined in the portal module.
Get.It! Localization Support 7/20/00 6-5

6-6 7/20/00 Externalizing Messages in XSL Templates

Ge
Chapter 7
Troubleshooting
This chapter is designed to answer those questions that are not addressed in other sections
of the manual. This section is updated as questions and comments arise, the byproduct of a
growing product. Some of these questions and ansers are technical in nature, specific to a
particular kind of user and, some instances, uncommon.

This chapter is not a definitive guide. As this guide evolves you will find that it more
helpful. Any suggestions and/or comments are welcome. If you choose to act on this
impulse then consult our Contact section located in the back of this manual. Let us know
how we can better serve you.

There is also a Troubleshooting section in our Help, located on the installation disc. You
can identify this file by its *.chm extension (e.g., getit.chm). Double-clicking on this file
will unveil another form of this manual, an Index for efficient searches, and an advanced
Search Engine for locating those obscure requests. If you did not receive this file or
believe that it is missing, send an e-mail request to our technical support staff for its
prompt delivery.

Weblication

Q: How do I include links in a weblication form that can lead to different queries executed
and displayed on the resulting form?

A: Let's say that you want two links on a page: One that lists Open tickets and another that
lists Closed tickets.

Your form might look like the following:

<form name="search">
<title> Search tickets </title>
<fields>

<link target-form="list" param="Status=open"> Open Tickets </link>
<link target-form="list" param="Status=closed"> Closed Tickets </link>

</fields>
</form>
t.It! Tailoring Guide 7/12/00 7-1

Both of these links will call the "list" form. The "list" will have an onload script that is
called and receives the value passed in the param attribute of the links. When you click on
Open Tickets the Status=open values are passed on to the script and subsequently used
by the script’s queries.

Q: Is it safe to use a global script variable in FESI script running within the Archway
environment? The global would be private to the thread but wider in scope. Is there any
possibility of two threads colliding into the variable?

A: The way to maintain session-specific data is to store it in the User object. Each logged
in user has their own user object. You can use something similar to the following script:

user.set("name", "value");

and
value = user.get("name");

Q: I want to obtain details about the Requester into the PurchaseOrder document.
amPOrder has a link field to amRequest, and amRequest has a link field to amEmpDept.
What is the schema syntax for creating the "double" link so that I can get, for example,
Requester.EMail into the PurchaseOrder document?

A: If you want to display the requester's email as a field of a PurchaseOrder then you can
try including an attribute such as the following:

<attribute name="RequesterEMail" field="Request.Requester.EMail"/>

If you want to include the entire Requestor record instead of having EMail as a
PurchaseOrder field, you can add nested Documents to the PurchaseOrder document:

<document name="Request" ...>
<document name="Requester" ...>
<attribute name="EMail" ...>

Q: How do you format a non-editable field?

A: Do not assign a type="text" tag. For example,

<field label="Ticket number" field="Id"/>

<field label="Category" field="Category"/>

Q: How do you adjust Listbox size? The rows and cols and size do not work.

A: You cannot control table width. Height depends on the number of elements in the result
set. You can set the rows attribute but it is maximum value. If the result set has more then
you can use Next and Prev buttons.
7-2 7/12/00 Troubleshooting

Q: Is there a method for determining current user and password?

A: Yes.

user.getName() or user.get("_password") and user.get("_password");

Q: Is there a function to determine the path to the bin directory?
A: Yes.

ini.getPathProperty() + "bin/";

That is, ini.getPathProperty() gives you whatever is saved in GETIT_HOME.

Q: How can I test a script?

A: Assuming, for example, that you have two script functions in a script file named
script.js:

function getTicket(msg)
{

return archway.sendDocQuery("sc", "Problem", msg);
}

function newTicket(msg)
{

var msgProblem = new Message("Problem");
msgProblem.addChildren(msg);
return archway.sendDocInsert("sc", msgProblem);

}

You can test these in a browser by hitting Archway, as in the following:

http://webservername/servlet/archway?visa.getTicket&Number=PM12345

(Assuming that PM12345 is valid)

Or, to create a new ticket:

http://webservername/servlet/archway?visa.newTicket&Descrip-
tion=Testing123

Q: How do I process input data entered by a user in a form containing a table. For exam-
ple, the Get.Resources! catalog screen contains a table of products, and each row has a
spinner field that allows the user to enter a count value. How are these count values sub-
mitted to an archway script, and how should they be processed?

A: Archway defines APIs to, thereby simplifying this process. The first step is to define
the table in a weblication. The following is sample code that defines the product catalog
tables:
Troubleshooting 7/12/00 7-3

<table record="Product" rows="10">
<link target-form="product" field="Id"/>
<column label="Count" field="nCount" type="spinner" key="Id" size="3"/>
<column label="Brand" field="Brand"/>
<column label="Model" field="Model"/>
<column label="Price" field="Price"/>
</table>

Notice the definition of the "Count" column. It defines a column of spinner fields. This
column contains two important attributes:

The second step is to process the data that is entered into the table after the form is
submitted. The following script illustrates this:

function update(msg)

{

// Retrieve a list of all parameters sent to the script

var list = msg.getFieldList();

for (i = 0; i < list.getLength(); i++)

{
// Retrieve the name of the next parameter

var strParam = list.getName(i);

// If the param came from a table "nCount" cell, get the value typed in
var strCellValue = Table.getValue("nCount", strParam, msg);

if (strCellValue != "")
{

// Get the key value of the cell
var strRowKey = Table.getKey("nCount", strParam);

// Do something with strRowKey and strCellValue
...
}

}
}

Attribute Function

field="nCount" States that the column edits and displays "nCount" data

key="Id" States that the "Id" field of the table's Product records will be
used to uniquely identify each nCount entry
7-4 7/12/00 Troubleshooting

This code reads all parameters sent to the script. It then determines those that are part of
the nCount column in the table. Finally, it obtains the unique key that identifies the value.
Once the script obtains these pieces of data it can do whatever is appropriate in the
application.
Troubleshooting 7/12/00 7-5

7-6 7/12/00 Troubleshooting

Ge
Appendix A
Weblication Reference
This chapter is a reference for the weblication Extensible Markup Language Document
Type Definition (XML DTD). XML DTD is the high level XML language used to define
all Get.It! weblications.

Weblication Structure

All XML structure is comprised of tags with supporting attribute and element information.
All basic weblications have the following structure:

<application>
<modules>

<module>
<components>

<component>
</component>

</components>
<activities>

<activity>
<forms>

<form>
</form>

</forms>
</activity>

</activities>
</module>

</modules>
</application>

Weblications are defined by an initial application entry or tag. The application tag is
comprised of one or more modules (e.g., service, request, approval, status, and receiving).
Modules contain elements called components. Each module contains one or more
activities (e.g., the request module contains the following activities: browse catalog,
review shopping cart, submit order, retrieve saved cart). Each activity can have one or
more forms (e.g., the request browser catalog activity has the following forms: category
menu, product list, product detail, bundle list, bundle detail).
t.It! Tailoring Guide 7/20/00 A-1

Weblication Tags

<application>

The <application> element is the starting point for defining a weblication. It accepts the
following attributes and nested elements:

Attribute Description

name A unique name for the weblication. The name should be a single word
starting with a letter.

onload The name of the script that will be invoked when the Weblications main
menu is displayed. For example, the login.xml application file
contains the onload login.login. The script name is made up of the
script file name followed by the script function name.

param When a script is defined with the onload attribute then it can define
parameters that are included within the request message sent to the
script. The string value should be constructed as “key=value” pairs with
multiple parameters separated by ampersands (&). Because an
ampersand is a special character in XML, you should use &(_amp).
The plus sign (+) is converted into a space character. Special characters
can be encoded as a three character string beginning with the percent
sign followed by a two-digit hexadecimal representation of the lower
8-bits of the character. For example:
<application onload=”login.login”
param=”p1=yada$$(_amp)p2=what+ever”>.

home Designates the module which is to be considered the “Home” module
and is reached by clicking on the first module tab. The label for the
home tab will be the short name given to the module in the
description attribute.

<title> Title used in the application's main menu.

<instructions> Instructions that will be displayed in the application’s main menu.

<modules> List of modules that make up the application.

frame Specify whether you want the Get.It! banner to frame your windows.
frame=”true” causes the banners to display.
frame=”false” causes the banner to not display.
A-2 7/20/00 Weblication Reference

<module>

The <module> element defines an application component designed to offer users a
specific application function. For instance, the request module defines interfaces that
permit users to create purchase requests. This element can contain the following attributes
and nested elements:

Attribute Description

name A unique name for the module. The name should be a single word
starting with a letter.

access Defines the name assigned to a user-access definition that is required in
order to access the module. User access is defined by capability words
in ServiceCenter and UserRights in AssetCenter and is set for each user
profile. See “User Authentication” on page 3-3 of the Get.It!
Administrator’s Guide for more information. Enter a valid capability
word or UserRight, or for more general access enter one of the
following:
anonymous = The module can be accessed by any user,

regardless of the user’s profile capabilities.
The module can even be accessed by users
that are not logged into the Weblication.

all = The module can be accessed by all users
who are logged into Get.It!

access-redirect The URL displayed when a user is denied access based on the “access”
attribute (above). If no default URL is specified then
e_login_main_refuse.jsp is used.

appmenu Controls whether the module is included in the header shortcut menu.
When set to false the module is not listed in the Weblication’s header
shortcut menu. The default is true.

apphead Controls whether the module is included on the main menu. When set to
false the module is not listed in the weblication's main menu form. The
default is true.

<title> The title used to identify the module.

<description
image=”X”
short=”Y”
long=”Z”>

This element defines attributes that further describe the module.
• The image attribute defines an image that can be used as a module

logo or link. This is a URL (relative or absolute) pointing to a spe-
cific image of browser-supported filetype.

• The short attribute should be defined by one or two words that can
be used in a link that takes a user to the module.

• The long attribute should contain a longer description that is used as
balloon help for links to the module.
Weblication Reference 7/20/00 A-3

See figure A.1 for a sample of how the <module> tag and its attributes can be used.

<activity>

The <activity> element defines a step within a module's functionality. For instance, the
browse activity in the request module defines interfaces that allow users to browse the
catalog to make a request.

<target URL> Link a different module into this module.You can link any URL. See
“Adding a URL as a Module” on page 4-25 of the Get.It! Tailoring
Guide for details.

<components> The list of forms and subforms that can be used in activities. These must
be defined as components. See “Reusable Form Components
(Subforms)” on page A-34 for details.

<activities> List of activities that comprise the module.

Attribute Description

Fig. A.1 Using the <module> tag

If you did not want this
module included in the
header menu, you
would have included
<appmenu=”false”>
before the <title>
attribute.
A-4 7/20/00 Weblication Reference

This element can contain the following attributes and nested elements:

See figure A.2 for a sample of how the <activity> weblication tag can be used.

Attribute Description

name A unique name for the activity. The name should be a single word
starting with a letter.

access The name of a user capability word that is required to access the
activity. The default value is anonymous, meaning that the activity may
be accessed by any user, regardless of that user’s profile capabilities.
An anonymous activity can be accessed by users that are not even
logged into the weblication.

<title> Title used to identify the activity.

<description
image=”X”
short=”Y”
long=”Z”>

This element defines attributes that further describe the activity.
• The image attribute defines an image that can be used as a activity

logo or link.
• The short attribute should be defined by one or two words that can

be used in a link that takes a user to the activity.
• The long attribute should contain a longer description that is used

as balloon help for links to the activity.

<target URL> Link a module as an activity.You can link any URL. See “Adding a
URL as an Activity” on page 4-25 of the Get.It! Tailoring Guide for
details.

<forms> List of forms that comprise the activity.
Weblication Reference 7/20/00 A-5

<form>

The <form> element is at the center of attention within a weblication. This is where the
specific contents for a screen are defined. For instance, the browser activity in the request
module has a number of forms used to show product categories, product lists, product
details, etc.

Fig. A.2 Using the <activity> tag
A-6 7/20/00 Weblication Reference

This element can contain the following attributes and nested elements:

Note: When a form is loaded to send to a client, it is supplied with an input document.
The input document is a representation of an XML document containing the data

Attribute Description

name A unique name for the form. The name should be a single word
starting with a letter.

onload Name of script to invoke before displaying the form. The message
returned by the script is used to populate fields in the form.

param When a script is defined with the onload attribute then it can define
parameters that are included within the request message sent to the
script. The string value should be constructed as “key=value” pairs
with multiple parameters separated by ampersands (&). Because an
ampersand is a special character in XML, you should use &(_amp).
The plus sign (+) is converted into a space character. Special
characters can be encoded as a three character string beginning with
the percent sign followed by a two-digit hexadecimal representation
of the lower 8-bits of the character. For example:
<application onload=”login.login”
param=”p1=yada$$(_amp)p2=what+ever”>.

onbrowserload Name of the script to invoke on the client before displaying the form.

homepage If set to true, the form is created to become the weblication's
homepage. Only one form should be given this attribute.

<redirect> This element defines a condition that is evaluated before displaying
the form. If the condition is true, an alternative form is displayed
instead. See “<redirect>” on page A-9 for more information

<title> TEXT
</title>

Title used to identify the form.

<instructions>
TEXT
</instructions>

Text giving the user instructions for the form.

<form fields> One or more elements that make up the form, such as entry fields,
labels, tables, menus, etc. See “form fields” on page A-11 for more
information.

<actions> Definition of actions that a user may take when viewing the form.
These are typically displayed as buttons or links that submit the
contents of the form or send the user to another form.

homepage If set to true, the form is created to become the weblication's
homepage. Only one form should be given this attribute.
Weblication Reference 7/20/00 A-7

to be displayed in the form. In most cases, the form's input document is obtained
by executing the form's onload script. The script returns a message object which
represents the document.

Another important point to understand is that a form is frequently invoked with a number
of parameters. Normally these parameters are made up of the values entered in input fields
within the previous form. These parameters are passed on to the form's onload script.

See figure A.3 for a sample of how the <form> tag can be used.

Fig. A.3 Using the <form> tag

The <redirect>,
<table>, and
<action> tags are
explained in detail on
the following pages.
A-8 7/20/00 Weblication Reference

<redirect>

This element defines a condition that is evaluated before displaying the form. if the
condition is true, an alternative form is displayed instead.

For instance, a Weblication could have the following:
<form name="hello" onload="weather.getTemperature">
<redirect target-form="coats" condition="cold"/>
<redirect target-form="shorts" condition="hot"/>

</form>

The code above would redirect the user to the coats page when
weather.getTemperature returns a condition of cold.

It redirects to shorts when the condition is hot. It is the script's responsibility to establish a
condition value that makes the redirection work. This is accomplished via the
Message.setCondition() method.

The <redirect> element can take the following attributes:

Attribute Description

TARGET Defines the target location for the form. There are several ways to
define TARGET location attributes. See “TARGET” on page A-16 for
details on these attributes.

condition The condition value that makes the statement execute. If the condition
value matches the value set in the form's script return message, the
redirection will take place. If no condition is provided, the redirection is
always executed.
Weblication Reference 7/20/00 A-9

component

A component is an element that can be used (and reused) within an activity’s form. The
component is defined separately and then referenced in the form by name. It may contain
a number of fields or elements that are used to display and input data.

Fig. A.4 Using the <redirect> tag

<!-- This form is shown when the search found nothing -->
<form name="catalognone">

<title>Search Results</title>
<instructions>
No catalog entries were found to match search criteria.

</instructions>
<actions>

<back/>
<home> Home </home>

</actions>
</form>

<form name="catalog" onload="procure.getCatalog">
<redirect target-form="catalognone" condition="catalognone"/>
<title> $$(Title) </title>

In the previous example, we used the following string, which includes the <redirect> tag:

When no catalog can be found (the condition of “catalognone”) the following string of tags is used:

Attribute Description

<name> The unique name for the component used as reference within an
activity’s form using the tag <component name=”<name>”/>.

{form fields} One or more elements that comprise a form, such as entry fields, labels,
tables, menus, and other (these elements are described in {form fields}.
A-10 7/20/00 Weblication Reference

form fields

A form may contain a number of fields or elements that are used to display and input data.
Each is described in detail separately below. The following is the list of possible elements:

Attribute Description

<fields> Groups one or more “field” elements, which include <input> and
<field> elements. Sample fields include text boxes, combos, check
boxes, static text fields, input fields. When fields are grouped they are
treated as a group by the weblication, meaning the field labels are
aligned and the input fields are aligned in the window automatically.

<menu> A menu of links.

<table> A table whose rows are obtained dynamically at run-time from the
form's input message.

<listbox> A table whose rows are pre-defined within the weblication.

<html> Allows the insertion of arbitrary HTML code.

<entry table> A table that allows entries in one column and contains descriptions in
another.

<plug in> Allows you to plug in content from any web page that is accessible
through a URL.
Weblication Reference 7/20/00 A-11

<fieldtable>

A <fieldtable> element allows the creation of a formatted table of entry fields. For
example, the Request form is displayed using an <entrytable>. This element is used in
the following manner:

<fieldtable>
<heading> Section heading ... </heading>
<row>

<input> or <field>
<input> or <field>
...

</row>
...

</fieldtable>

Fig. A.5 Using the table element of the form fields
A-12 7/20/00 Weblication Reference

The sample below shows the tag as it is used in the request form definition in the
request.xml file.
<component name="requestform">

<fieldtable>

<heading> When would you like this and what is it for? </heading>
<row>
<input label="Date" type="date" field="RequestedFor" scope="user"/>
<input label="Purpose" type="text" field="Purpose" size="35"

scope="user" required="true"/>
</row>

<heading> Who is this for and where should it be delivered? </heading>
<row>

<input label="First" type="text" field="FirstName" scope="user"
required="true"/>

<input label="Location" type="text" field="LocationName"
scope="user" size="35"/>

</row>
<row>

<input label="Last" type="text" field="LastName" scope="user"
required="true"/>

<input label="Address" type="text" field="Address1" scope="user"
size="35"/>

<input type="hidden" field="Address2" scope="user"
value="$$(Address2)"/>

</row>
...

<row>
<input label="Project" type="select" field="Project"

record="Project" valuelist="Title" displaylist="Title"
scope="user" />

<input type="textarea" field="Comment" rows="3" cols="35"
scope="user" colspan="2" rowspan="2"/>

</row>
<row>
<input label="Budget" type="select" field="Budget" record="Budget"

valuelist="Name" displaylist="Name" scope="user" />
</row>

<heading> Request contents: </heading>

</fieldtable>
Weblication Reference 7/20/00 A-13

This code, when displayed in Get.It!, is shown below.

The following attributes can be specified within the <input> or <field> elements in a
row:

Fig. A.6 The <fieldtable> tag in use.

Attribute Description

colspan=N Normally an input field fills out two columns in a table: a column for its
label, and a column for the field. However, you can use colspan to
specify that the field should take up both columns. For example:

<input type="textarea" field="descriptiom" colspan="2" ...>

The field above is given no label and is defined to span two columns.
Therefore, the textarea takes up both the label and entry columns in a
table. Typical values for colspan are 2 or 4.

rowspan=N Allows a field to span more than one row in height. This is also
typically used with textarea fields in a fieldtable.
A-14 7/20/00 Weblication Reference

<action>

The <action> element contains actions that a user may take when viewing the form.
These are typically displayed as buttons or links that submit the contents of the form or
send the user to another form.

The element may contain several attributes and nested elements. Consider the following
example which is referenced by the descriptions of these attributes and elements below:
<actions target-activity="review">
<submit> Add to shopping cart" </submit>
<submit name="Remove"> Remove from cart </submit>
<link target-form="help"> Help </link>
<back/>
</actions>

Attribute Description

TARGET Defines the destination where the user is taken when the current form is
submitted. Currently, each form may only have one submit destination.
In the sample above, the TARGET for the actions is the review activity of
the current module.

<submit> Defines a submit button for a form. In the example above, the first
submit entry displays a button with the caption Add to shopping cart.
Clicking the button sends you to the form's action target (the review
activity). Any data entered in the form is sent along to the target form
and will be available to the target form's onload script.
Forms typically have one submit button. However, forms with more
than one submit button can differentiate between them using the
optional name attribute.
For example, notice the second submit button. It also sends the user to
the form's target destination (the review activity). However, the script of
the target form can distinguish that is was invoked with the Remove
from cart button because the button's name is sent along with the form.
The script can check for this as follows:
if (msg.get("Remove") != "")
// form called with the "Remove" button ...

<link> Link actions are typically displayed by the weblication just like any
submit button. However, a link button offers a way to sent the user to
any arbitrary TARGET destination. However, when a link is used, the
form's data is not submitted to the target.

<back> Creates a button that takes the user to the previous form.

<home> Creates a button that takes the user to the home menu.
Weblication Reference 7/20/00 A-15

TARGET

Various weblication elements support a set of TARGET attributes that are translated into
links to a browser destination. One of the powerful concepts in a weblication is its ability
to make navigation between pages easy without requiring the developer to hard code
actual destination page names.

The goal behind the target’s design is to encapsulate the contents of each module and
activity, reducing inter-dependencies. Therefore, the targets below allow a developer to
say something like ‘take me from the current activity to some other activity in this
module.” This is done without specifically listing the target form name, thus reducing
dependencies which would make a weblication harder to maintain as modules and
activities are added or rearranged.

Fig. A.7 Using the <action> tag
A-16 7/20/00 Weblication Reference

The following are possible TARGET attributes:

TEXT

Various Weblication elements support the display of arbitrary text. For example, form
instructions are specified by the <instructions> element with some embedded text:

<instructions>
Press button with mouse

</instructions>

However, wherever an element is documented to support TEXT, you can enter more than
just plain words. The text can contain embedded HTML mark-up elements, and it may
also contain references to values in the form's input document. For instance:

Attribute Description

target-form Leads to a named form. This target is used for navigation within the
current activity. That is, the target form must be in the current activity.

target-activity Leads to the first form of the named activity. This target is used for
navigation within activities of the current module. That is, the target
activity must be in the current module.

target-module Links to the first form of the first activity in the named module.

target-url Links to any URL. Anything that could be used in an HTTP href tag
can appear here.

target-script Executes a client-side script when the button is pushed.

target-field Sometimes the target is not known until run-time. This attribute causes
the weblication to look for an input document field that contains a target
URL. For example:

<link target-field="VendorURL"> More information </link>

The target above is evaluated at run time by retrieving the VendorURL
from the form's input document.

param This attribute can accompany any of the target attributes mentioned
above. It defines additional parameters that should be sent to the target
form. For example:

<link target-form="catalog" param="Certification=Desktop"> Desktop
Computers </link>

The link above passes a parameter named Certification with a value of
Desktop to the target catalog form.
Weblication Reference 7/20/00 A-17

<instructions>
Press button with mouse.

If nothing happens repeat until it works!!

</instructions>

The instructions above have embedded HTML tags
, , and . Embedded
HTML must be XML compliant. This means that each starting HTML tag should have an
ending tag (e.g., ...) or use the XML shorthand for the tag (e.g.,
 rather
than
). Attributes inside HTML elements also must be quoted (e.g., rather than).

In addition, you can embed field values in text. For example:
<instructions>

Hello $$(UserName), how are you doing?
</instructions>

The $$(X) syntax is used to extract a field from the form's input document.

$$(X)

The $$(X) element is used to extract information from a field in the form’s input
document. It embeds field values in text. For example:

<instructions>
Hello $$(UserName), how are you doing?

</instructions>

This example will display the value in the UserName field within the form instructions.

Within the HTML contents, you can use $$(X) expressions to include values of fields in
the form's input document.

<menu>

The <menu> element creates a menu of links in a form. For example, the request module
uses a menu to show catalog categories. The following attributes and tags are supported in
a menu:

Attribute Description

<link> Defines an item in the menu. Each <menu> tag should have one or
more embedded <link> tags. Link attributes are described in the table
below.
A-18 7/20/00 Weblication Reference

Link Attributes

Note: <link> elements may also appear inside a <fields> collection.

<table>

The <table> element provides a concise way to create tables in the form. This tag is
specialized in generating tables that are populated with XML documents obtained from
database queries. The following attributes and embedded elements are supported:

Attributes Description

<link TARGET> Defines the destination target of the link.

<link image=X> An image URL to use for the menu link.

<link
window="true">

If this attribute is set, the target of the link is displayed in a separate
browser window.

<link> TEXT
</link>

The text used in the link.
Weblication Reference 7/20/00 A-19

Attribute Description

record This attribute identifies the specific record the table is designed to
display. This record type is found in the form's input XML document.
For instance, consider the following document:
<recordlist>

<Product>
<Brand> X </Brand>
<Price> 1 </Price>
<ProductId> 1356 </ProductId>
<nCount> 1 </nCount>

</Product>
...

</recordlist>

To display a table with a list of products, the record attribute is set to
Product. (This sample XML is used in the examples below)

rows The max number of rows to display in the table. If the query result set
for the table is larger than this number of rows, the table automatically
displays “Next” and “Previous”. If this attribute is not specified, the
table is made as large as needed to display all rows in the record set.

<link TARGET
field=X>

Table element used to make the rows in a table into links to another
form. For example, a catalog table has rows that when clicked display
each product's detail. This element takes two attributes. The TARGET
attribute determines where the link is to take the user. The field
attribute is used as a parameter passed to the target page. It is intended
to uniquely identify the row. For example:

<link target-form="details" field="ProductId"/>

The link above comes from the catalog table. It creates row links that
take the user to the details form. In addition, the ProductId field
of the row's record is sent along as a parameter to the target form. This
way, the target form can be initialized to display the correct details.

<column> Each table should have one or more columns. Columns can be used to
display a variety of things, including static text, pictures, and entry
fields. Each type of column is described in more detail below:

<submit> Allows the transmission of data upon pressing the relevant button.
When set to true the form’s contents are submitted to the target of the
link. User globals are updated. Other changes may be saved.

<submit
target-X>

This supplies a target-X in a <submit> element. For instance,
<actions target-form=”someDefault”

<submit>Save</submit>

<submit target-activity=”review”>Review Before
Saving</submit>

</actions>
A-20 7/20/00 Weblication Reference

Column Types

Type Description

Static Text The default content of a column is static text. The label attribute
specifies the column's heading. The field attribute defines the record
field to display in the column. For example,

<column label=X field=X>

Entry Field These columns display a text entry field where the user can type in
some text. The label and field attributes serve the same purpose as
those of static text columns. The key attribute should contain the name
of a record field that uniquely identifies each row in the column.

<column type="entry" label=X field=X key=X size=X>

The optional size attribute defines how wide to make the entry fields
(in number of characters). For example:

<column label="Count" field="nCount" type="entry" key="ProductId"
size="3"/>

This is a column in the product catalog table that lets users enter a count
with the number of products to order. The column displays the nCount
field from the table's record. The column uses each row's ProductId
to uniquely identify the entry fields. This is necessary so that scripts that
interpret the input entered in a table can match up table entries with an
application or item context.
Weblication Reference 7/20/00 A-21

Select Box
(populated
dynamically)

<column type="select" label=X field=X key=X
record=X valuelist=X displaylist=X >

You can display a select box or combo-box in a column with a list of
valid entry choices from which the user can choose. The choices are
obtained dynamically from the form's input document. The attributes
listed here work the same way as described for entry field columns.
There are two additional attributes: valuelist and displaylist.
These are used to specify the name of the record field containing the
choices for the select box. For example:

<column label="Project" type="select" field="ProductProject"
record="Project" valuelist="Id" displaylist="Title"/>

This column displays select boxes with a list of Project choices. For
this to work, the form's input document should include Project
entries such as:

<recordlist>
<Project>

<Id> 123 </Id>
<Title> New Development 99 </Title>

</Project>
...

</recordlist>

The selected choice is associated with the ProductProject field of
the table's Product record. The choices displayed are determined by the
Title field on the Project records, and the actual values submitted
for each choice are those of the Id field in the Project records.

Select Box
(populated
statically

<column type="select" label=X field=X key=X>

Columns can display select boxes with statically defined choices. The
label, field, and key attributes are the same as those defined above. Here
is an example:

<column label="Approval" type="select" field="Approve">
<option value="1"> Yes </choice>
<option value="0"> No </choice>

</column>

This column displays Approval choices of Yes and No.

Lookup Opens a searchable, pop-up window.

Image <column label=X field=X>

This column displays an image. The image's URL is obtained from the
specified field in the table's input record.

Type Description
A-22 7/20/00 Weblication Reference

<columns>

It is possible to split a weblication form into columns, as shown in the following:
<columns>

<column>
Weblication elements for this column

</column>
<column>

Weblication elements for this column
</column>

<column>

The sample below shows the tag as it is used in the request.xml catalog category
window.
<columns>

<column>
<fields>

<link target-form="bundles" image="images/catbundle.gif">
Employee Bundles </link>

<link target-form="catalog" param="Certification=Desktop"
image="images/catdesktop.gif"> Desktop Computers </link>

<link target-form="catalog" param="Certification=Laptop"
image="images/catportable.gif"> Portable Computers </link>

<link target-form="catalog" param="Certification=Server"

Radio Button <column label="Current employee" type=”radio”
field="Field1"/>

The field attribute specifies the record field in the form's input
document that should be used to populate the field's value. See
“<columns>” on page A-23 for more information.

<link TARGET
field=X>

Table element used to make the rows in a table into links to another
form. For example, a catalog table has rows that when clicked display
each product's detail. This element takes two attributes. The TARGET
attribute determines where the link is to take the user. The field
attribute is used as a parameter passed to the target page. It is intended
to uniquely identify the row.

Label The column label.

Image This is a static image file name, which can be provided as an
alternative to “field”

Balloon Used only when target-X is defined. This specifies balloon help
for the image link

Type Description
Weblication Reference 7/20/00 A-23

image="images/catserver.gif"> Servers </link>
<link target-form="catalog" param="Certification=Software"

image="images/catsoftware.gif"> Software </link>
</fields>

</column>
<column>

<fields>
<link target-url="e_b2bshop_return_b2blist.jsp"

param="ListAction=B2BShopOnly"
image="images/catshopdirect.gif"> ShopDirect </link>

<link target-form="catalog"param="Certification=Accessories"
image="images/cataccessories.gif"> Accessories </link>

<link target-activity="offcatalog"
image="images/catoffcat.gif"> Request an item not in the
catalog </link>

<link target-form="search" image="images/catsearch.gif">
Search for a specific item </link>

</fields>
</column>

</columns>

This code, when displayed in Get.It!, is shown below.

Fig. A.8 The <column> tag in use.
A-24 7/20/00 Weblication Reference

<listbox>

The <listbox> element is used to display a table in a form. However, unlike the <table>
element, listbox tables contain rows that are statically defined in the weblication. For
example, a listbox is used to display the details of a Knowledge solution in the service
module. (See the solution form in the service.xml file).

The following attributes and nested elements are supported:

Here is a sample listbox that results in a small table with phone numbers to call to contact
support or sales.
<listbox>

<heading>
<field> Name </field>
<field> Phone </field>

<heading>
<row>

<row>
<field> Customer Support </field>
<field> 123-4567 </field>

</row>
<field> Sales </field>
<field> 765-4321 </field>

</row>
</listbox>

Attribute Description

<heading> Defines the listbox headings. This element should be followed by one or
more nested <field> elements that describe each heading.

<row> Defines a row in a listbox. This should be followed by one or more
nested <field> elements that are part of the row.

<field image=X
field=X> Text
</field>

A single element that may be placed in a heading or row cell. The
optional image attribute may point to an image URL to display for the
field. The field attribute may point to a field from the form's input
document. Otherwise, the field displays its text contents.

<input> You can enter any valid input element. See “<input>” on page A-27 for
types of input elements.
Weblication Reference 7/20/00 A-25

<field>

The <field> element creates a static text or image field on a form. These elements must be
placed within the <fields> parent element. The following attributes are supported:

Using the <submit> element will depend upon your data transmission destination. When
set to true, the form's contents are submitted to the target of the link. The <submit> tag
sends data to the default destination. The <submit target-x> tag sends data to a defined
destination.

Attribute Description

label Specifies the label for the field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the value text field.

type Specifies the type of data expected for this field. The default is text type
data. If the type is set to image, the field's value is assumed to be a
URL to an image.

<link TARGET
field=X>

Table element used to make the rows in a table into links to another
form. For example, a catalog table has rows that when clicked display
each product's detail. This element takes two attributes. The TARGET
attribute determines where the link is to take the user. The field
attribute is used as a parameter passed to the target page. It is intended
to uniquely identify the row. For example:

<submit> Allows the transmission of data upon pressing the relevant button.
When set to true the form’s contents are submitted to the target of the
link. User globals are updated. Other changes may be saved.

<submit
target-X>

This supplies a target-X in a <submit> element. For instance,
<actions target-form=”someDefault”

<submit>Save</submit>

<submit target-activity=”review”>Review Before
Saving</submit>

</actions>

<field>TEXT<fie
ld>

The value displayed in the field, displayed if no field attribute is
already defined.
A-26 7/20/00 Weblication Reference

<input>

The <input> element is used to create a variety of entry fields. Each type of field is
described in its own section. Here we define a list of attributes shared by all input fields:

<input> (Text Field)
The <input> element is used to create a variety of entry fields. Below are the attributes
used to define a single line entry field.

Attribute Description

label Specifies the label for the input field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type Specifies the type of field.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

scope Normally data entered in fields is sent along to the server and then
forgotten. However, fields can be given a longer term scope, making
their values available beyond a single submit. Right now, only one
scope is supported: scope="user”. When set, the values entered in a
field are stored in the current user session scope. When the form is
displayed again, or when other forms display <input> elements for a
field with user scope, the last value entered is always remembered.

required If true, the field is flagged as being required. The form will not be
submitted unless the user provides data for the field.

Attributes Description

label Specifies the label for the input field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.
Weblication Reference 7/20/00 A-27

<input> (Text Area)
The <input> element is used to create a variety of entry fields. Below are the attributes
used to define a multiline entry text area.

type="text" To create text entry fields, type should be set to “text”. This is the
default value.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

size Defines the width of the text entry field in characters.

Attributes Description

Attribute Description

label Specifies the label for the input field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="textarea" To create multiline text entry fields, type should be set to “textarea”.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

rows Number of rows in the textarea.

cols Width of the textarea in number of characters.

protect=”readon
ly”

Removes ability to edit. If this attribute is set, the text area will not be
editable.
A-28 7/20/00 Weblication Reference

<input> (Combo/Selection Box)
The <input> element is used to create a variety of entry fields. Below are the attributes
used to define a select box.

For example, consider:
<input label="Budget" type="select" field="RequestBudget"
record="Budget" valuelist="BudgetId" displaylist="Name"/>

This generates a combo box with a label of Budget. The choices in the combo box are
populated by looking at records of type Budget. The current selection is obtained from the
RequestField field in the form's input document.

You can also define selection boxes with static choices (instead of populating the choices
from a database record). Here is a sample:
<input type="select" label="Approval" field="Approve">

<option value="1"> Yes </option>
<option value="0"> No </option>

</input>

Attribute Description

label Specifies the label for the select box.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="select" To create text entry fields, type should be set to “text”. This is the
default value.

record Specifies the record in the form's input document that contains the list
of display and value lists.

valuelist Specifies the field in the select box record that contains the values for
each of the select choices.

displaylist Specifies the field in the select box record that contains the labels for
each of the select choices.
Weblication Reference 7/20/00 A-29

<input> (Checkbox)
The <input> element is used to create a variety of entry fields. Below are the attributes
used to define a checkbox:

For example:
<input type="checkbox" label="Remember me" field="remember"
value="true"> Enable automatic login </input>

This generates a checkbox associated with the form's remember field. If remember is set to
true upon building the form, the checkbox will appear selected. If the user selects the
checkbox the remember field is posted as true with the form.

Attribute Description

label Specifies the label for the checkbox.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="checkbox" To create checkboxes text entry fields, type should be set to
“checkbox”.

value Specifies the value that the checkbox field should have when the
checkbox is selected.

valueoff When this attribute is specified two radio buttons are generated. The
first displays the value (“value=<text>”) when the check box is
selected. The second displays the value when the checkbox is not
selected. This form is also used for selecting one of two items. When
valueoff is used the checkbox description is ignored.

<checkbox> Text
</checkbox>

The checkbox description.
A-30 7/20/00 Weblication Reference

<input> (Radio)
The <input> element is used to create a variety of entry fields. Below are the attributes
used to define a radio button:

For example:
<input type="radio" label="Remember me" field="remember" value="true">
Enable automatic login </input>

This generates a radio button associated with the form's remember field. If remember is
set to true upon building the form, the radio button will appear selected. If the user selects
the radio button the remember field is posted as true with the form.

<input> (Hidden)
Sometimes it is useful to create a hidden field in a form whose only purpose is to add some
data that should be posted when the form's contents are sent back to the server. Below are
the attributes used to define such a hidden field.

Attribute Description

label Specifies the label for the radio button.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="radio" To create radio buttons, type should be set to “radio”.

value Specifies the value that the radio button should have when the radio is
selected.

<radio> Text
</radio>

The radio button description.

Attribute Description

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="text" To create text entry fields, type should be set to text. This is the
default value.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.
Weblication Reference 7/20/00 A-31

<input> (Date)
The <input> element can be used to create a Date entry field. The field contains
drop-down lists for day, month, and year. A calendar button can be pressed to display a
calendar that can be used to select a specific day. Below are attributes to define a single
line entry field.

<input> (Money)
The <input> element can be used to create a Money entry field. The field contains
drop-down lists displaying currency names as defined in the Currency property of the
archway.ini file..

Attribute Description

label This optional attribute specifies the label for the <input> field.

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="data" To create date entry fields.

value This is an optional attribute. Normally the value is obtained from the
field attribute to extract a field value from the form’s input document.

startyear Number representing the last year in the drop-down list. This value can
be a positive or negative number, whereby the given number is added to
or subtracted from the current year. If this is omitted the default value
will be 20 years prior to the current year.

endyear Number representing the last year in the drop-down list. This value can
be a positive or negative number, whereby the given number is added to
or subtracted from the current year. If this is omitted the default value
will be 20 years prior to the current year.

Attribute Description

label This optional attribute specifies the label for the input field.
A-32 7/20/00 Weblication Reference

<link>

The <link> element creates a hyperlink field in a form. For example, the request module
uses a menu to show catalog categories. The following attributes and tags are supported in
a menu:

field Used to determine the value of the field. This attribute specifies the
record field in the form's input document that should be used to
populate the field's value.

type="money" To create money entry fields. Specifies the type of data expected for this
field. The default is “text” type data. If the type is set to “image,” the
field’s value is assumed to be a URL to an image. If the type is “date” or
“money,” the value of the field is formatted to user’s preferred locale.

value Normally the value is taken from the field attribute to extract a field
value from the form's input document. However, if a value is specified
explicitly, it will be used when displaying the form.

Attribute Description

Attribute Description

<link TARGET> Defines the destination target of the link. See “TARGET” on page
A-16 for details about the TARGET attribute.

<link image=X> An image URL to use for the menu link.

<link
window="true">

If this attribute is set, the target of the link is displayed in a separate
browser window.

<link> TEXT
</link>

The text used in the link.

<link field>
Weblication Reference 7/20/00 A-33

Reusable Form Components (Subforms)
It is common for a weblication to have several forms that need to display a common set of
components. For example, in Get.Resources!, several forms display a detailed description
of a request containing the request purpose, description, budget, department. These details
appear in places like approval screens, request status screens, and shopping cart review
screens.

To address this need weblications support the definition of reusable component blocks, or
subforms, that can be included wherever necessary. Reusable components are defined at
the beginning of a module definition as shown in this example:
<module name="login">
...

<components>
<!-- Basic "login" screen -->
<component name="login">
<fields>
<input type="text" label="User Name" field="loginuser"
record="Employee" valuelist="Name" displaylist="Name"
required="true"/>
<input type="password" label="Password"
field="loginpass"/>
<break/>
<input type="checkbox" label="Remember me"
field="remember" value="true"> Enable automatic login
</input>
</fields>
</component>
...
</components>

This example defines a reusable subform named login. This block can then be inserted in
any form as shown below:
<!-- This form lets the user logon -->
<form name="start" onload="login.init">
<title> Welcome </title>
<instructions>
Please enter your user name and password to enter the
Get,It! site
</instructions>
<component name="login"/>
<actions target-url="appmenu.jsp">
<login> Login </login>
<link target-activity="register"> Register </link>
</actions>
</form>
A-34 7/20/00 Weblication Reference

The contents of a <component> definition can be anything that is a valid form component,
including tables, listboxes, and fields, etc. Forms can use any number of embedded
component blocks, and they may include other form components as well.

Note: Components referenced in a form must be declared in the form's module. This
makes most blocks reusable across all forms in a module. To define components
that can be reused across modules, you should define the components in their own
files and use <import> statements to add them at the top of a <module>
definition.

A component definition can include an onload attribute. This optional attribute names a
script that should be invoked to provide data used by the component code. If this is
provided, the document returned by the onload script is used for fields and $$(X)
expressions in the component instead of using the form's input document.
Weblication Reference 7/20/00 A-35

Additional Tags

<html>

The <html> tag allows the insertion of any arbitrary HTML code. This should be used
with care, and only when the use of existing Weblication components is not sufficient.
Within the HTML contents, you can use $$(X) expressions to include values of fields in
the form's input document.

The following attributes are supported:

<popupwindow>

The <popupwindow> component allows you to create a pop-up window by use of
JavaScript. A target file is sent to the component for what the pop-up will upload and
display. The window is displayed without a menu bar or a tool bar. This window may be
set to allow for vertical scrolling. This type of window is activated by selecting a button
within the web page.

The following illustrates the standard use of this element:
<popupwindow file=”filename”|target-type=”target” title=”screen title”
height=”pixels” width=”pixels” scroll=”yes/no”>Button Label
</popupwindow>

The following illustrates an example:
<popupwindow file=”file_upload.jsp” title=”Upload SCR File”

Attribute Description

onload Names a script that should be invoked to provide data used by the
HTML code. If this is provided, the document returned by the onload
script is used in $$(X) expressions instead of using the form's input
document.

param When a script is defined with the onload attribute then it can define
parameters that are included within the request message sent to the
script. The string value should be constructed as “key=value” pairs with
multiple parameters separated by ampersands (&). Because an
ampersand is a special character in XML, you should use &(_amp).
The plus sign (+) is converted into a space character. Special characters
can be encoded as a three character string beginning with the percent
sign followed by a two-digit hexadecimal representation of the lower
8-bits of the character. For example:
<application onload=”login.login”
param=”p1=yada$$(_amp)p2=what+ever”>.
A-36 7/20/00 Weblication Reference

height=”175” width=”300” scroll=”no”>Upload A Text File
</popupwindow>

This places a button labelled “Upload A Text File” on the screen. When this button is
pressed a pop-up window will appear, displaying the _upload.jsp file from the current
web directory. It can also be similar to the following, assuming the path exists:
http://www.getit.com/file_upload.jsp. This window will be 175 pixels in height,
300 pixels in width, and without a scroll bar. Assuming that no other title is defined within
the document, the title “Upload SCR File” will appear in the title bar.

Attribute Description

file A string value that denotes a file to load. The format of the string should
be in standard URL notation. I can be relative to the current path. For
example,
file=”file_upload.jsp”

will use the file file_upload.jsp from the current web directory.
It can also be specified similar to the following, assuming the path
exists: http://www.getit.comfile_upload.jsp.

target-type=”ta
rget”

This makes use of the target attribute and uses the same notation and
references. Used to refer to modules, activities, or forms built using
wbuild.

title=”screen
title”

The title of the window, appearing within the title bar. This is used if no
title exists within the loaded document.

height=”pixels” Height of the window, measured in pixels.

width=”pixels” Width of the window, measured in pixels.

scroll=”yes/no” Determines scrolling ability.
Weblication Reference 7/20/00 A-37

Additional Functionality

Searchable Popup Window

Searchable Popup Windows (Lookup Window) are used for searching entries in a form.
Implementing the Lookup field allows you to reuse it throughout the weblication.

To use this function you must add a lookup input field to any form. The following
example illustrates an Employee Lookup:
<input label=”User”

field=”UserId”
displayfield=”UserFullName”
type=”lookup”
readonly=”true”
balloon=”Change User”
target-module=”commonlookup”
target-activity=”employee”/>

The label is the label or name of the field. Field is the hidden field that is to be returned
to the server. The displayfield field is an optional display field name. The type field is
the lookup type. The readonly field controls the edit/read function. The balloon field is
for lookup help when the cursor is placed over an icon. The target-module field is for
generic searching. The target-activity field is for searching activity.

Defining New Popup Windows
The first step to defining a new searchable popup window is to add an activity to
commonlookup.xml., unless the lookup is module-specific whereby the activity can be
added elsewhere. Searching activities take two forms. The first is to display search results.
The second is to process the results. The following is an example of an Employee search:
<activity name=”employee” menu=”false”>

<forms>

<!-- Basic search and result screen-->
<form name=”start” onload=”lookup.getEmployees”

frame=”false” sidebar=”false”>
<table record=”Employee” rows=”10”>

<link target-form=”process” field=”Id”/>
<column label=”Last” field=”Name”/>
<column label=”First” field=”FirstName”/>

</table>
</form>

Once the lookup.getEmployees function is in the code the getX and selectX scripts
must be implemented. For generic activities this occurs in common/jscript/lookup.js.
The following is an example of this script for the Employee search:
function getEmployees(msg)
{

A-38 7/20/00 Weblication Reference

return archway.sendDocQuery(“ac”, “Employee”, msg);
}

The selectX() script processes and returns both the selection field ID and the selection
display field.
function selectEmployee(msg)
{

var msgResponse = new Message();
var strId = msg.get(“Id”);

// Return selected ID as the searchable field
var strField = user.get (“_lookupfield”);
msgResponse.set(strField, strId);

// Return employee’s Full Name as the display field
var strDisplayField = user.get (“_lookupdisplay”);
var msgEmp = archway.sendDocQuery(“ac”,

“SELECT FirstName,LastName,FullName FROM Profile WHERE Id=” =
strId, 0, -1);

msgResponse.add(strDisplayField, msgEmp.get(“FullName”));

This script returns the selected Employee ID as the Lookup Field and then returns the
Employee Full Name field as the LookupDisplay field. These values update all fields in
the calling browser window. The lookup field is a hidden field returned to the server when
a form is submitted. The Lookup Display field is a text or entry field to display a
user-friendly version of the selection.
Weblication Reference 7/20/00 A-39

A-40 7/20/00 Weblication Reference

Ge
Appendix B
Document Schema DTD
This chapter is a specification reference for defining schemas. Chapter 3, "Introduction to
Document Schemas," for additional information, including background and a complete
example of a schema.

This chapter addresses:

• The Document Schema file template

• Schema attribute tags

• ServiceCenter-specific attributes
t.It! Tailoring Guide 6/12/00 B-1

Document Schema Files
Define each document in its own schema file. The name of the schema file must match the
document’s name. For example, the Problem document is defined in Problem.xml.

The structure of a schema file must fit the following template:

<?xml version="1.0"?>

<!--==
Name: filename.xml
Author: xxx
Date: xxx

===-->

<schema>

<!--==
Generic Schema Definitions

===-->

<documents name="base">

<document name="XXX">
...
</document>

</documents>

<!--==
Derivations. You may have several of these sections (for
ServiceCenter, AssetCenter, user derivations, etc.)

===-->

<documents name="DERIVED_TARGET">

<document name="XXX">
...
</document>

</documents>

</schema>
B-2 6/12/00 Document Schema DTD

Schema Attributes

<document>

This tag defines a document. The document may contain nested <attribute>, <collection>,
and <document> tags.

A schema file should only define a single top-level document and its derivations.

The <document> tag can contain the following attributes:

Nested <document> Tags

Top-level documents may include one or more nested documents. These children (or
nested) documents may be defined in two ways.

The first way is to define nested documents in-place. For instance:

<document name="TopLevel">
<document name="Child">

<attribute name="x">
...

</document>
</document>

More typically, nested documents will reference a document defined in its own schema
file. For instance:

<document name="Product">
<document name="Vendor"/>

</document>

Attribute Description

name
(required)

Uniquely identifies the document being defined. The name of the
schema file must match the document’s name. For example, the
Problem document is defined in Problem.xml.

table Defines the primary database table associated with this document.
While not all document fields have to come from this table, the Primary
Key (ID) for the document must reside in this table. This attribute is
normally only defined by derived document schemas. That is, the
derivations for ServiceCenter, AssetCenter, etc. must define where to
get the document.
Document Schema DTD 6/12/00 B-3

Here the Product document contains a nested Vendor description. But because the nested
Vendor document is defined to be empty, we assume that its definition should be looked
up in the proper schema file (i.e. vendor.xml).

You can find nested documents by doing a search of the following type:

SELECT <Fields> FROM <NestedDocTable>
WHERE <joinfield>=<joinvalue>

The joinfield and joinvalue settings come from the schema’s <collection> entry. For
example:

<collection name="Assets">
<document name="Asset" joinfield="lUserId" joinvalue="Id"/>

</collection>

The entry above defines a nested collection of assets that could appear within a parent
"User" document. The joinfield and joinvalue specify that we want to find entries in the
asset table whose "lUserId" field matches the parent table’s ID field. (The parent’s
joinvalue is specified as a logical document field name).

If no "joinfield" or "joinvalue" are defined, the default is to use the parent table’s ID field
name as the join field.

<attribute>

The <attribute> tag defines a field within a document. Right now this tag can only appear
within a <document> tag. All documents must define at least one mandatory attribute:

<attribute name="Id">

This attribute defines the unique key for locating document instances.
B-4 6/12/00 Document Schema DTD

The <attribute> tag can have the following XML attributes:

Attribute Description

name
(required)

Uniquely identifies an attribute within a document.

type
(optional)

Identifies the type of the field being defined. Possible values are:

id, string, number, date, url

This attribute is currently not used by the document manager. However,
in the future it could be used to verify at run-time that a document is
properly formed.

field The name of the physical field to use in when building queries or
updating the document table. This can be a simple name in the
document’s primary table, or it can be linked field name (AssetCenter
only).

For instance:
<document name="Request" table="amRequest">

...
<attribute name="TotalCost" field="mTotalCost"/>
<attribute name="Budget" field="Budget.Name"/>

...
</document>

• TotalCost is associated with the mTotalCost field in amRequet.
• Budget is associated with the linked field Budget.Name.

link, linktable,
linkfield, linktype,
linkkey

These attributes work together to define how a field from a linked table
should be accessed. Consider the following attribute in the Request
document definition for AssetCenter:

<attribute name="Budget" field="Budget.Name" link="lBudgId"
linktable="amBudget" linkfield="Name"/>

Now consider a request to insert a Request document such as:
<Request>
<Budget> 1999 IS Budget </Budget>
...

</Request>

When the DocumentManager updates of inserts a Request document,
the schema tells it to:

• search the linktable (amBudget) for an entry where the linkfield
(Name) matches "1999 IS Budget".

• use the link entry ID (lBudgId) to update the Request document
table.
Document Schema DTD 6/12/00 B-5

<collection>

The <collection> tag allows the nesting of collections inside a top level document. For
example:

<document name="Request">
...
<collection name="RequestLines">
<document name="RequestLine"/>

</collection>
</document>

This example shows a Request document with a nested collection of RequestLine
documents.

Nested documents are found by doing a search of the following type:

SELECT <Fields> FROM <NestedDocTable> WHERE
<joinfield>=<joinvalue>

The "joinfield" and "joinvalue" settings come from the schema’s <collection> entry. For
instance:

For instance, consider a list of assets owned by a user:
<collection name="Assets" joinfield="lUserId" joinvalue="Id">

The entry above defines a nested collection of assets that could appear within a parent
"User" document. The joinfield and joinvalue specify that we want to find entries in the
asset table whose "lUserId" field matches the parent table’s Id field. (The parent’s
joinvalue is specified as a logical document field name).

If no "joinfield" or "joinvalue are defined, the default is to use the parent table’s Id field
name as the join field.

ServiceCenter Specific Attributes

Several attributes have been defined specifically for supporting ServiceCenter derived
schemas. These are necessary for the following reasons:

• Documents should not be inserted directly into the ServiceCenter database. Instead,
they should be created and updated by related EventServices calls.

• The basic elements of the schema DTD assumes a relational organization of data. Ser-
viceCenter’s non-relational database introduces some requirements.

Consider the following example or a derived Problem schema where ServiceCenter
specific attributes are shown in bold:

<document name="Problem" table="probsummary" insert="pmo" update="pmu">

A collection can
only have one thing
inside of it: a nested
document.
B-6 6/12/00 Document Schema DTD

<attribute name="Id" field="number"/>

<attribute name="OpenTime" field="open.time"/>
<attribute name="Status" field="status"/>
<attribute name="AssignedTo" field="assignee.name"/>
<attribute name="Priority" field="priority.code"/>

<attribute name="Description" field="brief.description"
insert="$ax.field.name" update="_null"/>

<attribute name="Updates" field="update.action"/>
<attribute name="Resolution" field="resolution"/>

</document>

The following attributes are used by SCDocManager, a derived DocManager class that is
used by the SCAdapter:

Note: A field, update, or insert setting with a value of "_null" tells the DocumentManager
that the particular document element is not supported by the system.

Attribute Description

insert This attribute ties a document to a specific input event. The attribute can
be used in two ways.

Within a <document> tag, the insert attribute names the event to use for
inserting document instances.

Within an <attribute> tag, the insert attribute names an event parameter
name to use for a document field. If no insert attribute is defined, the
default field setting is used instead.

update This attribute ties a document to a specific update event. It can be used
within <document> and <attribute> tags in the same way as insert.
Document Schema DTD 6/12/00 B-7

B-8 6/12/00 Document Schema DTD

Ge
Appendix C
Script Polling
There are several classes in Archway that can be used as utilities to facilitate workflow
between disparate systems. There are classes that provide basic message queuing (the
qman package) and there are classes that support polling. The following is an overview of
the polling package.

Script Polling is a function that establishes a repetitive routine. A scheduler initiates a
routine at a specified time as opposed to every n seconds. For example, a scheduler can
run a routine at midnight, every Sunday night, at the end of the month, or quarter, or every
hour (meaning the top of the hour, not 60 minutes from the last run).

Script Polling Manager

There is one class to be concerned with when running a script at intervals. This is the
ScriptPollingManager class. It has very few methods and limited functionality. It will read
a list of scripts to run and execute them at their specified time.

Specifics about instantiating the class can be found in the ScriptPollingManager static
test() function. The following is the source code:
/**Test our functionality assumes the archway environment*/

public static void test(Archway archway) throws Exception
{
ScriptPollingManager spm = new ScriptPollingManager(archway);
spm.registerFromFile("scriptpollers.ini");
spm.startScripts();
Thread.currentThread().sleep(60 * 1000);

// let the poller work for a while
System.out.println(">>>> stopping scripts");
spm.stopScripts();
System.out.println(">>>> stop complete");

}

To add script polling to the archway environment you must add an instance of
the ScriptPollingManager to a convenient place, instantiate it (as in the
example), call the startScripts() function, and call the stopScripts() function
during termination. Failure to call the stopScripts() will cause the threads to
run in a continuous loop.
t.It! Tailoring Guide 6/12/00 C-1

You can define Script Pollers in each package. For example, the b2b and
b2bserver packages have their own scriptpoller.ini files. At run time, Archway
processes all scriptpoller.ini files in the registered packages.

File Initialization Format

The format of the initialization file is XML. The following is a sample for version 1.0,
specifying two scripts to run. Note the vpollShowTime script.
<?xml version="1.0" encoding="ISO-8859-1"?>
<!--
==
Name: ScriptPollers.ini
Specifies a collection of scripts to run at periodic intervals
(seconds) and a parameter to pass to the script.
==
=-->
<pollers>
<poller>
<name>vpollPmoSco2Q</name>
<interval>4</interval>
<parm></parm>
</poller>
<poller>
<name>vpollShowTime</name>
<interval>1</interval>
<parm></parm>
</poller>
</pollers>

Writing A Polling Routine

T create a polling routine, write an FESI script and save it in the ...getit/apps/user/jscript
directory. Add the script name and polling interval to the scriptpollers.ini file in the
archway bin directory. You can perform a quick test by adding the following line of code
to the ArchwayDebug class:

ScriptPollingManager.test(m_archway);

Put the same functionality that is in the test() function into a more mainstream class (as
discussed above).
C-2 6/12/00 Script Polling

Sample Polling Scripts

There are several polling scripts that exist in Get.It!, and they begin with the characters
vpoll. They display the current time on the console (for illustrative purposes), read from
ServiceCenter eventin, and send to a qman queue in XML format (from eventin format),
receive from a qman input queue (specified by arbitrary name) and send to a qman output
queue (as would happen during transliteration). Receive from the qman output queue and
insert back to ServiceCenter eventin.

The following is the simplest of polling scripts, as described above:

--
// simple poller script, displays current time of day
//
// Two functions are defined:
// start() - executes exactly once
// run() - executes on the polling interval
//
//--
Archway = Packages.com.peregrine.archway;
Message = Archway.Message;
Event = Archway.Event;

//--
// Start funtion .. can build parameters for run method
//--
function start(msg)
{

return msg;
}

//--
// run funtion .. subsequent invocations
//--
function run(msg)
{

var date = new Date();
writeln(">>> The time is " + date.toLocaleString());
return msg;

}

Script Polling 6/12/00 C-3

C-4 6/12/00 Script Polling

Ge
 Index
Symbols
$$(X) A-18
... 1-4
<action> A-15

<back> A-15
<home> A-15
<link> A-15
<submit> A-15
TARGET A-15

<activity> A-4
<application> A-2
<attribute>

insert B-7
update B-7

<back> A-15
<columns> A-23
<component> A-35
<document>

insert B-7
update B-7

<entrytable> A-12
<field> A-26

colspan A-14
rowspan A-14

<fieldtable> A-12
<form>

adding a field 4-12
<home> A-15
<html> A-36
<input> A-27

checkbox A-30
colspan A-14
combo box A-29
hidden field A-31
radio button A-31
rowspan A-14
selection box A-29
text area A-28
text field A-27

<link image=X> A-19
<link TARGET> A-19
<link window="true"> A-19

<link> A-15
attributes A-18
hypertext link A-33

<listbox> A-11, A-25
<menu> A-11, A-18
<module> A-3

access to A-3
attributes A-3

<submit> A-15
<table> A-19

<column> A-19
<link TARGET> A-19
record A-19
rows A-19

<target URL> A-4
_null B-7

A
action property 2-12
activity

changing the name 4-7
Additional Functionality A-38
Additional Tags A-36
apphead A-3
appmenu A-3
archway architecture 4-2

building blocks 2-2
clients 2-3
diagram 2-2
document manager 2-10
executing queries against a system 2-10
how it works 2-3
internal architecture 2-5
query string 2-6
requests 2-6
weblications 2-11
XML 2-3

C
cascading style sheets 2-14
changes

required steps 4-3
where to store 4-4
t.It! Tailoring Guide 7/20/00 Index-1

child documents, See nested documents
clients 2-3
colspan A-14
column

field to display A-21
headings A-21
productid A-21
select box A-22

condition A-9
CSS, See cascading style sheets

D
debugging

script C-2
displaylist A-22, A-29
document manager 2-10, 4-17

E
ECMA script 2-8
entry table A-12

F
field table A-12
form

changing contents 4-12
create a menu of links A-18
finding to edit 4-7
image A-26
input document A-7
reusable components A-34
static text A-26

form fields
<entry table> A-11
<fields> A-11
<html> A-11
<listbox> A-11
<menu> A-11
<plug in> A-11
<table> A-11

form statistics
using to find files 4-7

G
getCatalog 2-14
getOrderParameters 4-21
getProduct 4-15

H
hidden field A-31
HTML A-18
HTML codes A-36
hypertext A-36
hypertext link A-33

I
input document A-7
input> (Combo/Selection Box) A-29

J
joinfield B-4
joinvalue B-4

M
module

adding 4-24
changing the name 4-7
removing from Get.It! 4-27

N
nested documents B-3

finding B-4
in-place B-3
reference B-3

null B-7

O
onload property 2-14
onload script 4-15

P
param A-17
presentation folders 4-5
ProductId A-21

Q
query string 2-6

R
regenerating web pages 4-3
reusable form components A-34
rowspan A-14

S
schema 4-18

<attribute> B-4
<collection> B-6
<document> B-3
attributes B-3
document file B-2
nested documents B-3
ServiceCenter B-6
structure B-2

script
changing 4-20
debugging C-2
user-derived 4-20

script pollers C-2
scripting 2-8
Index-2 7/20/00 Get.It! Tailoring Guide

scripts
hard-coded queries 3-5
SQL queries 3-5

Searchable Popup Window A-38
sendDocInsert 3-5
sendDocQuery 3-5
sendDocUpdate 3-5
ServiceCenter

derived schemas B-6
software

linking in to Get.It! 4-24
subforms A-34
submit A-15

T
table 2-15
tailoring

basics 4-4
testing the user directory 4-9

TARGET
param A-17
target-activity A-17
target-field A-17
target-form A-17
target-module A-17
target-url A-17

TEXT A-17

U
user derived script 4-20
user.xml 4-4
user.xsl 4-23
user-access A-3

V
valuelist A-22, A-29

W
wbuild 3-5, 4-3

parameters 4-5
XSL templates 4-23

web pages
regenerating 4-3

weblication 2-3, 2-11
cascading style sheets
definition 2-14
ingredients 2-13
XSL layout templates 2-13

X
XML 2-3
XSL

purpose of 4-23
to learn more 2-13
wbuild 4-23
when to change 4-23

XSL layout templates 2-13
Get.It! Tailoring Guide 7/20/00 Index-3

Index-4 7/20/00 Get.It! Tailoring Guide

	Contents
	Introduction
	About this Manual
	Organization of the Manual

	Conventions Used in this Manual
	Buttons, Directories, and File Names

	Get.It! Architectural Overview
	High Level Architecture
	Archway Internal Architecture
	Archway Requests
	Scripting
	The Document Manager
	Weblications

	Introduction to Document Schemas
	Definition of a Document Schema
	Using Schemas in a Weblication

	Tailoring Get.It!
	Archway Architecture
	Weblication Toolset
	Before You Make Changes
	File Structures
	Application Definition File
	Archway.ini Use of Packages
	Presentation Folders
	Common Components

	Displaying Form Information
	Debugging Changes
	Where to Make the Modifications
	Necessary Information
	Running the wbuild Command

	Changing Form Contents
	Adding Form Fields
	Data for the New Field (Scripts)

	Localizing your Changes

	Adding Fields to a Document
	Undefined Schema Fields

	Changing Script Behavior
	Changing a JScript

	Changing Weblication Components Layout (XSL)
	When Do I Change the XSL?

	Integrating a New Product with Get.It!
	Integrating a URL
	Adding a URL as a Module
	Adding a URL as an Activity

	Adding a SC or AC Feature as a New Module

	Adding a Feature from AssetCenter
	Adding a JDBC Adapter
	Updating the Archway.ini File
	Updating the admin.xml File

	Portal
	Portal
	Customizing (GUI)
	Customize
	Copy
	Move
	Hide/Show
	Remove

	Select Content
	Get.It! Weblication Components
	Personal Utilities

	Create New (web page)
	Change Layout
	Edit Preferences

	Portal API
	Portal Components
	<portal-category>
	<portal-component>
	<plugin>

	Portal Plug-Ins

	Get.It! Localization Support
	General Localization Steps
	Archives
	Externalizing ECMA Script Messages
	Externalizing ECMA Script Messages with Variables
	Externalizing Messages in XSL Templates

	Troubleshooting
	Weblication

	Weblication Reference
	Weblication Structure
	Weblication Tags
	<application>
	<module>
	<activity>
	<form>
	<redirect>
	component
	form fields
	<fieldtable>
	<action>
	TARGET
	TEXT
	$$(X)
	<menu>
	Link Attributes

	<table>
	Column Types

	<columns>
	<listbox>
	<field>
	<input>
	<input> (Text Field)
	<input> (Text Area)
	<input> (Combo/Selection Box)
	<input> (Checkbox)
	<input> (Radio)
	<input> (Hidden)
	<input> (Date)
	<input> (Money)

	<link>

	Reusable Form Components (Subforms)
	Additional Tags
	<html>
	<popupwindow>

	Additional Functionality
	Searchable Popup Window
	Defining New Popup Windows

	Document Schema DTD
	Document Schema Files
	Schema Attributes
	<document>
	Nested <document> Tags
	<attribute>
	<collection>
	ServiceCenter Specific Attributes

	Script Polling
	Script Polling Manager
	File Initialization Format
	Writing A Polling Routine
	Sample Polling Scripts

	Index

