
HP OpenView
Service Quality Manager

SQM, TeMIP, and Acanthis KnowledgeWare

Integration Cookbook

Edition: 1.2

December 2004

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Legal notices

Warranty

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products and
services. Nothing herein should be construed as constituting an additional warranty. HP shall not be
liable for technical or editorial errors or omissions contained herein.

License requirement, and U.S. Government legend

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright notices

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Trademark notices

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit
configurations) on all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

Microsoft®, SQL Server®, Windows®, and Windows XP® are U.S. registered trademarks of Microsoft
Corporation.

MySQL is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

Sun, Sun Microsystems, and the Sun Logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Sybase is a trademark of Sybase, Inc.

UNIX® is a registered trademark of The Open Group.

Origin

Printed in France.

2

Contents

Preface ...5

Chapter 1 ...9

Introduction...9
1.1 TeMIP platform ..10
1.1.1 Data collection ..10
1.1.2 Data export ...10
1.2 Service Quality Manager platform ...12
1.2.1 SQL Service Adapter ..12

Chapter 2 ...17

Platform interoperation ..17
2.1 Module deployment..17
2.2 Integrated data collection...17
2.3 Platform interconnection ..18
2.4 Integration licenses ..18

Chapter 3 ...19

TeMIP use cases ...19
3.1 Entity attributes ..19
3.1.1 TeMIP Generic States ..19
3.1.2 DFD definition ...22
3.2 Entity events...23
3.2.1 TeMIP IP ‘reachability’ ..23
3.2.2 DFD definition ...24
3.3 Alarm statistics...25
3.3.1 TeMIP operation context...25
3.3.2 TeMIP alarm object...25
3.3.3 DFD definition ...27
3.4 Performance indicators ..28
3.4.1 TeMIP monitored attributes ..28
3.4.2 DFD definition ...30
3.5 Event attributes ..31
3.5.1 TeMIP OSI configuration events...31
3.5.2 DFD definition ...32

Chapter 4 ...33

Integration lifecycle ..33
4.1 Configuring TeMIP ...33
4.1.1 Collection domains..33

3

4.1.2 Operation contexts..34
4.2 Configuring Acanthis..35
4.2.1 Setting up the databases ..36
4.2.2 Exporting attributes...37
4.2.3 Exporting notifications...41
4.2.4 Extended archiving ...47
4.3 Oracle views and functions ..49
4.3.1 Temporary tables ..49
4.3.2 Triggers...50
4.3.3 Added-value views..56
4.3.4 Stored procedures ..58
4.4 SQL SA discovery..58
4.4.1 Granularity ..59
4.4.2 Automated, or Manual ..59
4.4.3 Filtering ...60
4.5 Updating the SQM model...60
4.5.1 Generating a model ..60
4.5.2 Binding parameters...61
4.5.3 Binding properties ...61
4.5.4 The TeMIP model within SQM..61
4.6 Setting up the SQL SA...62
4.6.1 Uploading the default model ...62
4.6.2 Uploading views automatically..62
4.6.3 Independent discovery and upload...62
4.7 SQM tuning ..62
4.7.1 Subscriber-dependent parameters ...62
4.7.2 Naming Service resolution..63
4.8 Launching user interfaces..63
4.8.1 Typical interfaces launched ..63
4.8.2 Using properties..63

Appendix A..65

Troubleshooting..65
OpenView TeMIP ...65
Acanthis KnowledgeWare ..65
OpenView SQM..65

Appendix B..67

TeMIP/Oracle datatypes ...67

Glossary ..71

4—Contents

Preface

This document describes the steps that you must perform to feed an HP OpenView
Service Quality Manager (SQM) application with key primary data collected by an
existing HP OpenView Telecommunication Management Information Platform
(TeMIP).

These mainly consist in a series of configuration tips and hints for use on the TeMIP,
Acanthis KnowledgeWare and SQM production platforms (each of which is installed
and configured independently). These platforms run under the HP implementation of
UNIX®, HP-UX. HP-UX, which is compatible with various industry standards, is
based on the UNIX System V Release 4 operating system and includes important
features from the Fourth Berkeley Software Distribution.

In performing these instructions you therefore customize SQM and TeMIP so that
they interoperate. This enables SQM to generate Key Performance Indicator (KPI)
measures that integrate TeMIP collected key data. The integrated solution uses
custom SQM SQL Service Adapters to integrate the data in an SQL database.

This document explains how to:

• Configure a TeMIP platform to collect key measures and valuable data from
various sources.

• Extend an existing TeMIP configuration by integrating the Acanthis
KnowledgeWare solution set to export raw or added-value TeMIP data to an
external SQL database.

• Customize an SQL Service Adapter to interface SQM with this external SQL
database.

• Perform administrative tasks relating to TeMIP–SQM interoperation.

Intended audience
This document is intended for Service Quality Manager Administrators and
Integrators.

Required knowledge
Service Quality Manager Administrators and Integrators are expected to be familiar
with the functionality of Service Quality Manager, TeMIP, and Acanthis
KnowledgeWare, and have previous experience of:

• System administration and operations

• SQL database administration and operation

• Service Level Management

5

Service Quality Manager Administrators and Integrators are also expected to be
familiar with the concepts described in the following books:

• HP OpenView Service Quality Manager Overview

• HP OpenView Service Quality Manager Administration Guide

• HP OpenView Service Quality Manager SQL Service Adapter Toolkit Installation,
Configuration and User’s Guide

• HP OpenView TeMIP Overview & Concepts Guide

• Acanthis KnowledgeWare User’s Guide

• Acanthis Attribute Exporter FM User’s Guide

• Acanthis Notification Exporter FM User’s Guide

• Acanthis Extended Archiving FM User’s Guide

Software versions
The software versions referred to in this document are specified in the HP OpenView
Service Quality Manager Overview and the HP OpenView TeMIP Overview.

Typographical conventions
Courier Font:

• Source code and examples of file contents

• Commands that you enter on the screen

• Pathnames

• Keyboard key names

Italic Text:

• Filenames, programs and parameters

• The names of other documents referenced in this manual

Bold Text:

• Introduces new terms and emphasizes important words

Associated documents
For a full list of the Service Quality Manager user documentation, see the
HP OpenView Service Quality Manager Overview.

For a full list of TeMIP user documentation, see the HP OpenView TeMIP Overview.

Support
Please visit our HP OpenView web site at: openview.hp.com/

There you will find contact information as well as details about the products, services,
and support HP OpenView has to offer.

The HP OpenView support area of the HP OpenView web site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

6—Introduction

http://openview.hp.com/

• Training information

• Support program information

7

Chapter 1

1.

2.

3.

Introduction
This document assumes that you already have a detailed specification defining which
relevant data (key performance indicators) your solution should process.

This document is intended only to describe HP OpenView TeMIP, Acanthis
KnowledgeWare, and the HP OpenView SQM collection models that should be used.
The processes and hints contained in this cookbook do not provide information on
data modeling matters.

This integrated solution processes data in three stages as follows:

The TeMIP platform collects data from key network and service elements. Every
TeMIP platform is made up of Access and Functional Modules, each one of
which is responsible for handling a set of managed entities. The collected data
contains information on the attributes of any entity, entity related OSI events, and
alarm objects.

Some of these subsets of collected data are then selected as input data for the
SQM platform. The Acanthis KnowledgeWare product is therefore supplied with
a set of specialized Management Modules for exporting this data into an Oracle
database. These modules can be used to perform five levels of export: real time,
polling, prepackaged transformation by class, generic, or dedicated.

The SQL Service Adapters on the SQM platform collect dedicated database views
from the TeMIP–SQM integrated solution. The system therefore feeds the data
TeMIP collects into the SQM system through the database.

This chapter briefly describes the TeMIP and Acanthis KnowledgeWare product
aspects of this integrated solution. In this integrated platform, the TeMIP and
Acanthis KnowledgeWare products together form the front-end interface responsible
for data collection (also called ‘acquisition’).

The SQM SQL Service Adapters then retrieve this data from the database and feed it
into the SQM system as described in the final section of this chapter.

9

1.1 TeMIP platform
TeMIP is a distributed, scalable and model-based system in which Management
Modules are used to provide the operator with network and fault management
services.

1.1.1 Data collection
Some TeMIP Management Modules, called Access Modules (AMs), provide access
to network elements, whereas others, called Functional Modules (FMs), perform
added-value services such as monitoring the faults, state, and performance of each
entity the system manages.

Access Modules are supplied with a managed entity model that includes attributes
that are organized into partitions, and events that are triggered when something
changes in a network element.

Functional Modules are mainly used to provide fault related services on both
collected and modeled data. These services include performing alarm management,
state management, network discovery, and data correlation tasks. An integrated
solution typically includes the Alarm Handling FM, Notification FM, Expert System
FM, and State Mapper FM, as well as other modules.

TeMIP therefore collects key data consisting in attributes, events and alarms relating
to any entity modeled within TeMIP.

1.1.2 Data export
The Acanthis KnowledgeWare solution set can extract and export any TeMIP data
periodically into an Oracle database. There are many potential situations in which
you can usefully incorporate this software in the integrated solution, depending on
which data is exported (alarms, events, attributes, performance indicators, etc.)

TeMIP data, which is in a standard format, can be integrated in SQM through the
Acanthis KnowledgeWare SQL databases in various ways. You must use more than
one TeMIP Service Adapter, or rather DFD, to represent and map all of the relevant
TeMIP data for this reason.

You can install and configure a different SQM SQL Service Adapter (the appropriate
TeMIP Service Adaptor) for each TeMIP use situation more simply by using the
SQM SQL SA Toolkit.

10—Introduction

This Integration Cookbook highlights which TeMIP data is typically retrieved and
exported. It therefore concentrates on the DFD definition and its associated MRP
definition. It additionally provides details of the system configuration required in
combination with the Oracle database to execute the SQL query run by the SQL
Service Adapter responsible for the DFD concerned. It also specifies the
configuration required by the TeMIP Acanthis Export Modules used.

Identifying what development, integration and configuration tasks are needed for the
SQM TeMIP Service Adapter to meet the operational requirements is therefore key in
a successful implementation.

Exporter

KnowledgeW
are

Export/
Staging/

Production
Database

TeMIP data

SQM
Views/Tables

Export sessions

Alarm Handling |
Function Module |

Access Module

+

View creation tools

TeMIP SA

1.1.2.1 Database requirements

Supported operating systems

TeMIP v5.x runs on the following operating systems:

• HP-UX 11.11

• Sun Solaris 9

• HP Tru64 5.1

The integrated system documented in this Integration Cookbook was implemented
with SQM running under HP-UX and TeMIP running under Tru64, for system
availability reasons. You can use other systems, however, depending on which Third
Party Product versions are supported.

Supported SQL databases

SQL Service Adapter V1.2 supports the following SQL databases:

• ORACLE 8i and 9i

The integrated system documented in this Integration Cookbook was created with an
Oracle 9i server, which is the only database supported by the Acanthis
KnowledgeWare solution set.

Supported SQL data types

The table in appendix B lists all column data types supported by the Acanthis
KnowledgeWare Exporting Functional Modules, together with their associated
mapping in the Oracle database.

11

1.2 Service Quality Manager platform

SQM provides a complete service quality management solution. It consolidates
quality indicators across all domains — telecom, IT networks, servers, and
applications — providing end-to-end visibility on service quality. SQM links service
quality degradations to potential effects on business, allowing network support
personnel to address problems and prioritize actions proactively.

SQM monitors the service quality by aggregating information coming from all data
sources, such as the network, IT infrastructure, and the service provider’s business
processes. Using this information, service operators can pinpoint infrastructure
problems and identify their potential effects on customers, services, and service level
agreements (SLAs).

Figure 1 Service Quality Manager Main Components

The Service Adapters, and the SQL Service Adapter in particular, provi
southbound entry interface to the SQM core. You must configure these
SQM platform level) so that they connect to a SQL database. You must
the mapping between the collected data stored within an SQL database
data model.

For a detailed description of SQM, see the HP OpenView Service Quali
Overview.

Real Time Monitoring
&

Historical Reporting

Definition
&

Configuration

 OpenView Service Quality Manager Core

User
Experience

Mgmt System

IT, Network
Infrastructure
Mgmt System

Service dapters AService dapters A

Historical
Reporting

SLA
Management

Service Level
Management

 GUI Gateways

Service Level & SLA
Degradations and Violations

sent as alarms,
Trouble Tickets, e-mails, etc.

 Gateways GU

1.2.1 SQL Service Adapter
An SQL Service Adapter is a generic Service Adapter that collects data
SQL database. See the SQL SA customization process section of the HP
SQL Service Adapter Toolkit Installation, Configuration and User’s Gu
information on how to configure this acquisition layer.

The SQL Service Adapter serves as a bridge between SQM and an SQL
doing the following:

• Collecting QoS data from SQL tables

• Exposing this data to the SQM core as SQM performance values

12—Introduction

de a
adapters (at
 also define
and the SQM

ty Manager

Service dapters A

Business
Processes

Mgmt System

 from a given
 OpenView

ide for more

 database by

You must specify which method and parameters are used to process the values from
an SQL table column into the SQM data model by configuring the SQL Service
Adapter.

1.2.1.1 SQM data model
The following paragraphs summarize the main definitions of Service Adapter terms
as applied to the SQL Service Adapter. For more information about these important
SQM concepts, see the HP OpenView Service Adapters User’s Guide.

Data Feeder Definition

A Data Feeder Definition (DFD) serves to identify a specific measurement point that
provides a set of indicators (called ‘parameters’) on the quality aspects of a given
resource type (the Response Time at a given service access point, for example). Data
Feeder Definitions therefore contain a logical description of all parameters an SQL
table feeds to the SQM.

An SQL Service Adapter can provide one or more Data Feeder Definitions, each of
which is linked to an SQL database table.

Each Data Feeder Definition must contain the following information:

• A name

• A version

• A set of DFD parameters

A parameter may be global (meaning it is not linked to any subscriber
information) or customer specific (meaning it is collected for a specific
customer). Customer specific parameters can hold different values for different
customers.

In the case of the SQL Service Adapter, a parameter correlates to the SQL table
column from which the parameter values are extracted.

If a parameter is customer specific, another column in the same SQL table must
provide the customer or subscriber information associated with the collected
data.

• A set of properties

Properties are not parameters (that is, they are not performance indicators). They
identify the context of the collected parameters instead. The property value is set
when the data feeder instance is configured.

• A Measurement Reference Point (MRP) naming schema

The MRP naming schema is used to build a unique identifier (by concatenating
DFD properties) for each measurement point.

Data Feeder Instance

A Data Feeder Instance (DFI) publishes a specific measurement point’s collected
values according to a Data Feeder Definition.

When a DFD parameter is customer specific, the DFI collects the perceived QoS
information from a MRP for any of the specific customer’s subscribers.

For information on how to create Data Feeder Instances, see the HP OpenView SQL
Service Adapter Toolkit Installation, Configuration and User’s Guide.

Timestamp management

When the SQL Service Adapter collects information as standard, the SQL database
must contain timestamp information, and you must specify its location in the database

13

when you customize the system. If it does not provide a timestamp, you can use an
SQL view or script to create a specific column containing this information. For more
information, see the advanced customization chapter of the HP OpenView SQL
Service Adapter Toolkit Installation, Configuration and User’s Guide.

The SQL Service Adapter uses the timestamp directly to publish collected values and
identify the latest values entered into the database (according to the difference
between the timestamp and the last timestamp collected).

Customer, and subscriber

As already said, the platform can collect DFD parameter values for a specific
customer (an organization or corporation) or for a specific member of that customer
(a user or a subscriber). The SQL Service Adapter can retrieve QoS data for a
customer or a subscriber directly.

The customer or subscriber information must be stored in a column in the DFD’s
SQL table.

OpenView SQM uses subscriber IDs to link subscribers with customers. These IDs
identify the user of the service in a service quality measurement. The subscriber ID
can be an IP address, a user login name, or an identifier directly associated with a
user, such as a DSL port number for example.

In some cases, the user is also the customer. The subscriber ID then maps directly to
the customer ID. This requires no further mapping, because the default domain is the
generic “ServiceCenter” domain.

A mapping structure links a subscriber ID to a customer. This structure is stored in
the SQM Central Repository. The structure contains the following information:

• Customer name

• Naming plan

A naming plan specifies all customer IDs in each subdomain. A domain logically
groups all customer IDs.

An example of mapping is shown below.

Customer Name: MyNewCustomer
Naming Planes:
{
Domain Identifier: IP
ipaddress: {"16.18.*.*", "16.23.*.*"}
}
{
Domain Identifier: IMSI
ipaddress: {"12202???", "2002???"}
}
{
Domain Identifier: Mail
ipaddress: {"*@hp.com"}
}

For more information on subscriber ID mapping, see the SQM Information Modeling
Reference Guide.

14—Introduction

Note

Customer or subscriber specific parameters require one column of the DFD table to
contain the customer or subscriber information.

If the table contains a subscriber column, the column must contain subscriber IDs for
a single subscriber domain.

1.2.1.2 Data collection overview
The DFD and SQL database table fields must be mapped straightforwardly and
according to the following rules:

• Each DFD must be linked to one SQL table

• Each DFD parameter must be linked to one table column

• Each MPR property must be linked to one table column

• Each MRP can contain several DFD properties

If the database schema does not offer these mapping rules, you must consider using
SQL views instead. For information on creating SQL views, see the appropriate
chapter in the HP OpenView SQL Service Adapter Toolkit Installation, Configuration
and User’s Guide.

The SQL Service Adapter (SQL SA) retrieves data from a database. It uses the
Java™ Database Connectivity (JDBC) drivers provided by the database’s
manufacturers to establish connections to the databases. The application then uses
these connections to send SQL queries that retrieve data from the tables. The SQL
Service Adapter is also responsible for closing the connections.

Depending on the physical configuration and environment required in the integrated
system, you must either install the Service Adapter on the SQL database server or
provide remote database access. Although you can configure the integrated system in
either way, you must bear the following points in mind when you choose the most
suitable configuration for your particular installation:

SQL SA
with a
custom
Data

Feeder

OV SQM Worst

Service
Component

Entity Count

DFD mapping

yers

No. Text SQM SLM Server la

Data Feeder
SQL SA

Parameter
binding

WorstSev Text

2004-04-01 08:00:1040 MO2
2004-04-01 08:00:00 20Critical

EventTime No.

Managed
Entity

Major

MO1

Severity

Problem1
 Problem2

AddText

One row per
entity

SQL
databa se

 table

• If the database is accessed remotely, you must validate the connection to the
dedicated database port.

• If the Service Adapter can only be accessed locally, you must check which
operating system the SQL Service Adapter supports.

15

The SQL Service Adapter uses a polling mechanism to collect performance data. At
each polling interval, the Service Adapter connects to the database to execute an SQL
collection query that retrieves the data values. It then maps the collected data to the
defined DFD parameters and publishes it, with timestamps, to the SQM core layer
(the Service Level Monitoring Client). You must define this DFD mapping as part of
the SQL SA customization process.

The system collects the WorstSeverity and NbAlarms parameters. Both these
parameters are represented as table columns in the database.

The system uses the Entity property as the MRP to uniquely identify where the data is
collected from.

1.2.1.3 Database requirements

Supported operating systems

SQL Service Adapter v1.2 runs on the following operating systems:

• HP-UX 11.11

• Windows 2000®/XP®

Supported SQL databases

SQL Service Adapter V1.2 supports the following SQL databases:

• Sybase 11.9.2

• SQL Server 2000

• MySQL 4.0.15

• Oracle 8i and 9i

Supported SQL data types

If the Service Adapter collects a parameter from a table column whose data type is
not supported, you must create a special view or script to convert the column’s data
type to a supported data type. For information on how to create SQL views, see the
Advanced customization chapter of the HP OpenView SQL Service Adapter Toolkit
Installation, Configuration and User’s Guide. If the column’s data type cannot be
converted to a supported SQM data type, a dedicated function must be developed for
the SQL Service Adapter so that it supports this special type. To request this custom
development, contact your HP Sales Representative.

16—Introduction

Chapter 2

Platform interoperation
SQM and TeMIP interoperate on top of an SQL database. An SQL Service Adapter
defines which DFD parameters and properties the SQM–TeMIP interoperation
collects from the columns of a table in the database, using an SQL query.

2.1 Module deployment
All integration solutions are based on a standard TeMIP director, access server, or
Full Server. You must also install all the Network Element Access Modules and the
Advanced Functional Module on the TeMIP director. Lastly, you must deploy the
Acanthis TeMIP Management Modules used to export the TeMIP data into an Oracle
database.

The TeMIP director is supplied with a set of standard Functional Modules that
include the Alarm Handling Functional Module and the Notification Functional
Module. You can also choose to install additional TeMIP products, such as the Expert
System Functional Module to monitor and correlate alarms, or a specialized Service
Monitoring Functional Module to model and supervise services, for example.

The Acanthis KnowledgeWare solution set is supplied with a complete suite of
Functional Modules that include TeMIP Data Exporter Modules, Oracle Database
Monitoring Modules, a Data Warehouse Workflow Module, and additional Oracle
Transformation Packages for use in specific implementations.

Depending on how you implement the customer use cases described in this chapter,
you might also need to install TeMIP Data Exporter Modules. The exact combination
of modules required varies according to the specific implementation concerned.

SQM does not require the Oracle Database Monitoring Modules in this integrated
solution. These would re-inject data changes occurring in the database into TeMIP,
notably after the data has been staged and transformed.

The Data Warehouse Workflow Module is only needed if the integrated solution
handles parameters that transformation packages calculate based on the data exported
by TeMIP. This data is specific to a particular field, such as IP networks, and it is
obviously refreshed less often than exported data since it is produced by a much
longer process in which the data is exported, staged, transformed, and aggregated.

2.2 Integrated data collection
The Acanthis Exporter Functional Modules collect data for the TeMIP system. Each
module handles one specific aspect of the TeMIP entity model and the default TeMIP
fault management models (attributes, events, or alarms). They do not address other
aspects of the TeMIP application, such as monitoring or logging.

The integrated system uses export contexts to define how data is exported. These
function differently depending on which Data Exporter Module is used.

17

Before you can use the Attribute Exporter FM, you must define which attributes are
exported, so that all the Oracle database tables that receive the exported data are
ready to use.

SQM–TeMIP interoperation uses a polling mechanism to export attributes for each
entity class. It also provides a post-export function hook that you can use to perform
any additional processing required by the collected data, or for other purposes. This
hook performs a show directive on the attributes of entities that are declared as
members of the export context but do not have a special scheduling policy during the
polling period.

Similarly, before you can use the Notification Exporter FM, you must define which
events are exported, so that all the Oracle database tables that receive the exported
data are ready to use.

The Notification Exporter FM can either export events for specific entity classes or
export events for all classes. The export context is event-driven, meaning that when
an event is caught it is exported immediately. It too provides a post-export function
hook that you can use to perform additional processing after the data has been
exported. It performs a notify directive on its associated domain, which is defined as
an export context attribute.

The Extended Archiving FM is supplied with prepackaged tables because it is based
on a standard TeMIP model, the operation context alarm objects.

Its export context is based on a polling mechanism that exports all TeMIP alarms,
regardless of their state, for an operation context. It uses a table to store the alarms
but also uses additional tables to store alarm parameters with complex datatypes.

2.3 Platform interconnection
A key feature of the integration is that the platforms interconnect through the Oracle
database. This means you must ensure the SQM SQL SA products do not overload
the database, and allow the Acanthis product to perform properly. You must also
minimize the effect of Acanthis product use on TeMIP platform performance.

In addition, you must not modify the existing structure of the Oracle database. This is
because the use of Acanthis Data Exporter Modules may be affected if you customize
the export tables.

You can integrate additional packages that work with temporary tables or simple
views based on the export tables, however.

2.4 Integration licenses
The only licenses needed to implement an operational integration solution, in addition
to the standard TeMIP, SQM and Oracle licenses, are the SQM SQL SA Toolkit
license and the Acanthis Exporter license for the Data Exporter Module you use in
the integration.

18—Platform interoperation

Chapter 3

TeMIP use cases
All the following TeMIP use cases have been implemented as studies and are referred
to as examples throughout this Implementation Cookbook. Each is described in the
context of the chapter, and then highlighted and detailed. Every use case introduces
typical problems encountered when implementing an integrated solution.

3.1 Entity attributes
This use case illustrates how you can map a TeMIP entity attribute directly to an
SQM parameter. It is referenced in this document as UC1–Entity Attributes.

Its usefulness is restricted by the semantics and refresh rate of the attribute being
exported, and depends on whether the TeMIP Management Module can compute or
update it.

Its added value is therefore limited to the SQM model that uses the parameter. The
data’s granularity is either at managed entity or class level.

The TeMIP Generic State partition’s attributes are taken as an example in this use
case.

3.1.1 TeMIP Generic States
Every TeMIP entity can support the Generic States partition, which contains a set of
standardized status attributes. It supports it internally, either through the Access
Module or Functional Module or through a TeMIP State Mapper Functional Module
that maps native attributes to generic state attributes.

3.1.1.1 Definition
The Generic State partition contains the following attributes:

• Primary retrieved or computed state attributes:

Name Values Comment

Generic Composite
Operational State

NotManaged (0)
Testing (1)
Unknown (2)
Idle (3)
Active (4)
Busy (5)
Unstable (6)
Partial (7)
Indeterminate (8)
Disrupted (9)
NotFunctional (10)

Computed
automatically
from other
generic states

19

Name Values Comment
FutureUse1 (11)
FutureUse2 (12)

Generic Unknown Status True/False

Generic Operational State Disabled (0)
Enabled (1)

Generic Usage State Idle (0)
Active (1)
Busy (2)
Unknown (3)

Generic Alarm Status Indeterminate (0)
Critical (1)
Major (2)
Minor (3)
Warning (4)
Clear (5)

Generic Availability Status InTest (0)
Failed (1)
PowerOff (2)
OffLine (3)
OffDuty (4)
Dependency (5)
Degraded (6)
NotInstalled (7)
LogFull (8)
Available (9)

Generic Administrative
State

Locked (0)
Unlocked (1)
ShuttingDown (2)

Generic Procedural Status InitializationRequired (0)
NotInitialized (1)
Initializing (2)
Reporting (3)
Terminating (4)
Available (5)

Generic Control Status SubjectToTest (0)
PartOfServicesLocked (1)
ReservedForTest (2)
Suspended (3)
Available (4)

Generic Standby Status HotStandBy (0)
ColdStandBy (1)
ProvidingService (2)

• Operator defined outage state attributes:

Name Values Comment

Generic Managed Status True/False Set by the
operator

20—TeMIP use cases

Name Values Comment

Generic Testing Status True/False Set by the
operator

• Associated timestamps to check and provide information on state validity:

Name Values Comment

Generic Managed Status
Change Timestamp

AbsTime

Generic Testing Status
Change Timestamp

AbsTime

Generic Global Change
Timestamp

AbsTime

Generic Refresh Timestamp AbsTime

3.1.1.2 Architecture
The Acanthis Attribute Exporter FM is required to export TeMIP attributes.

The following diagram illustrates how TeMIP and SQM are integrated through the
Attribute Exporter FM.

The Generic State attributes are either retrieved directly from the Access Module or
Functional Module, or computed or mapped by a State Mapper Functional Module.
They can then be accessed as attributes or state change events.

GUI

Gateways

Service
Level

Management

 OpenView Service Qu ity Manager Core al

GUI

SQL Service Adapter

TeM
IP

NE AM Tru64 AM Radius AM

State Mapper
FM Attribute

Exporter FM

KnowledgeWare
Export Database

Notification
Exporter FM

Historical
Reporting

SLA
Management

21

3.1.2 DFD definition
The TeMIP State DFD of each entity managed by the TeMIP platform has the
following SQM related characteristics.

DFD Characteristics

DFD Name TeMIPStateDFD

DFD Label TeMIP Generic States DFD

DFD Version V1_0

SA Name TeMIPStateSA

SA Version V1_0

Parameter Name Description Data Type Default
Value

CompositeState Network Element
Composite Operational
State

Enum

UnknownState Network Element
Unknown State

Enum

OperationalState Network Element
Operational State

Enum

UsageState Network Element
Usage State

Enum

AlarmState Network Element
Alarm Status

Enum

AvailabilityState Network Element
Availability Status

Enum

AdministrativeState Network Element
Administrative State

Enum

ProceduralState Network Element
Procedural Status

Enum

ControlState Network Element
Control Status

Enum

StandbyState Network Element
Standby Status

Enum

ManagedStatus Network Element
Managed Status

Enum

TestingStatus Network Element
Testing Status

Enum

ManagedLastTimestamp Managed Status
Change Timestamp

AbsTime

TestingLastTimestamp Testing Status Change
Timestamp

AbsTime

GlobalLastTimestamp Global Change
Timestamp

AbsTime

22—TeMIP use cases

Property Name Description MRP Data Type Default
Value

EntityName Network
Element Full
Entity Name

Yes String

3.2 Entity events
This use case illustrates how you can map specific TeMIP events to an SQM
parameter. It is referenced in the document as UC2–Entity Events.

You can use it to select a set of events for mapping to a number system. It is equally
useful because the events are exported immediately they are received. TeMIP is
supplied with an extensive set of predefined OSI events for many classes.

Its added value lies in providing a global snapshot view of an entity, based on the set
of events it has received. The data’s granularity is either at managed entity, class or
domain level. You can use the domain entity to customize the grouping of managed
entities.

The study takes the TeMIP IP Reachability Up and TeMIP IP Reachability Down
events as an example.

3.2.1 TeMIP IP ‘reachability’
You can use the TeMIP IP Poller Functional Module to check the availability
(“reachability”) of every network element in the infrastructure. It polls the network
elements to check their availability and triggers associated events to reflect that
availability.

3.2.1.1 Definition
The IP availability events are as follows:

Name Comment

IP Reachability Up Received as soon as the Network Element
can be reached again

IP Reachability Down Received as soon as the Network Element
can no longer be reached

These events contain the following attributes:

Name Comment

Event Type

Event Time

Probable Cause

Perceived Severity

Additional Text

Managed Object

23

Only the Event Name, Event Time and the associated Managed Object attributes are
useful in this use case.

3.2.1.2 Architecture
The Acanthis Notification Exporter FM is needed to export TeMIP events.

The following diagram illustrates how the Notification Exporter FM serves to
integrate TeMIP and SQM.

The integrated system triggers IP Reachability events when the IP Poller FM polls the
ICMP and detects that the Network Element does not respond when it is polled. Each
entity managed by TeMIP must support these events together with the GetEvent
directive.

3.2.2 DFD definition
The TeMIP Availability DFD of each entity managed by the TeMIP platform has the
following SQM related characteristics.

DFD
Characteristics

DFD Name AvailabilityDFD

DFD Label TeMIP Availability DFD

DFD Version v1_0

SA Name TeMIPAvailSA

SA Version v1_0

Parameter Name Description Data
Type

Default
Value

Availability Network Element Availability Enum Available

GUI

Gateways

 OpenView Service Quality Manager Core

GUI

SLA
Management

Historical
Reporting

SQL Service Adapter

TeM
IP

Tru64 AM Radius AM DNS AM

IP Poller FM Notification
Exporter FM

Notification
FM

KnowledgeWare
Database

Service
Level

Management

24—TeMIP use cases

Property Name Description MRP Data
Type

Default
Value

EntityName Network
Element Full
Entity Name

Yes String

3.3 Alarm statistics
This use case shows how you can calculate SQM parameters from alarm statistics. It
is described in more detail in the SQM TeMIP Fault SA Specification. It is referenced
in the document as UC3–Alarm Statistics.

You can use it to provide a set of parameters calculated from a set of alarms on a set
of entities or on each entity. Most network operators deal only with alarms collected
in operation contexts. It is particularly useful in providing them with statistics
calculated from what they observe or do when these alarms occur, because this truly
represents the network management view.

This use case offers a broad range of potential granularities. It can focus on a specific
entity, all entities in the same class, a specific set of entities, or all entities in a
domain, for example.

It can also be used to represent all TeMIP domains within SQM, where these are used
to provide a geographical, manufacturing, technology or other grouping. Its aim is not
to represent the entire domain hierarchy in this scenario but to represent key domains
instead, so that the definitions can at least be used to populate or upload the data.

The study takes the TeMIP alarms as an example, because the first use case deals
with using the operation context attributes to produce TeMIP Fault statistics, while
the second use case deals with using operation context events to produce TeMIP Fault
statistics.

3.3.1 TeMIP operation context
A TeMIP operation context serves to group together all TeMIP alarm objects created
when OSI alarm events are collected from TeMIP managed entities belonging to the
operation context’s associated domain. The operation context provides a set of
services focused on the alarm objects, including lifecycle, archiving and similarity
management.

A TeMIP operation context includes many attributes reflecting its characteristics,
states and added value counters. Although such TeMIP fault statistics may be useful,
they relate to one operation context only and cannot be used when the TeMIP
platform collects fault statistics data for each entity managed by the TeMIP system.

3.3.2 TeMIP alarm object
An operation context serves to group together all TeMIP alarms on every managed
entity in the operation context’s related domain. Several operation contexts, each of
which is handled by a different operator, can receive the same OSI alarm event. Each
operation context therefore contains an alarm object. The alarm object is associated
with the operation context, meaning it can be handled entirely differently depending
on the operator’s context and role.

The Access Modules issue the original OSI events, which are then collected by the
Alarm Handling Functional Module. The Alarm Handling Repository then stores
these events as alarm objects.

25

3.3.2.1 Definition

A TeMIP alarm is primarily composed of the following:

Name Values Comment

Identifier Integer Assigned to
the alarm
object for the
operational
context

Managed object FullEntityName Name of the
managed entity

Alarm type CommunicationsAlarm
EnvironmentalAlarm
EquipmentAlarm
IntegrityViolation
OperationalViolation
PhysicalViolation
ProcessingErrorAlarm
QualityofServiceAlarm
SecurityServiceOrMechanismViolation
TimeDomainViolation

Type of alarm

Perceived severity Indeterminate
Clear
Warning
Minor
Major
Critical

Alarm severity

State Outstanding
Acknowledged
Terminated
Archived

Status of the
alarm object

Event Time AbsTime Date and time
the managed
entity received
the alarm event

Creation Timestamp AbsTime Date and time
the alarm
object was
created in the
operation
context

Probable Cause Customizable enumeration type.

Many default values.

Set of
normalized/
predefined
causes of the
alarm

Additional Text String Text linked to
the original
alarm event

26—TeMIP use cases

3.3.2.2 Architecture

The Acanthis Extended Archiving FM is needed to export TeMIP alarms.

The following diagram illustrates how the Extended Archiving FM is used to
integrate TeMIP and SQM.

The TeMIP platform creates an alarm object when it receives an OSI alarm event.

3.3.3 DFD definition
The TeMIP Fault Statistics DFD of each entity the TeMIP platform manages has the
following SQM related characteristics.

DFD Characteristics

DFD Name TeMIPFaultStatsDFD

DFD Label TeMIP Fault Statistics DFD

DFD Version v1_0

SA Name TeMIPFaultStatsSA

SA Version v1_0

Parameter Name Description Data
Type

Default
Value

WorstSev Worst alarm severity Int 0

WorstAddText Worst Additional Text String No text
available

NbOutstandingAlarm Number of outstanding alarms Int 0

NbIndeterminateAlarm Number of indeterminate
alarms

Int 0

NbWarningAlarm Number of warning alarms Int 0

NbMinorAlarm Number of minor alarms Int 0

GUI

Gateways

 OpenView Service Quality Manager Core

GUI

SLA
Management

Historical
Reporting

SQL ter Service Adap

TeM
IP

Tru64 AM Radius AM DNS AM

Extended
Archiving FM

Alarm
Handling FM

KnowledgeWare
Database

Service
Level

Management

27

NbMajorAlarm Number of major alarms Int 0

NbCriticalAlarm Number of critical alarms Int 0

ProbDuration Problem duration Rela-
tiveTime

00:00:00

LastSeverity Last known severity Int 0

LastAddText Last known additional text String No text
available

LastTimestamp Last alarm timestamp AbsTime Now

Property Name Description MRP Data
Type

Default
Value

EntityName Network Element Full
Entity Name

Yes String

OperationContext Operation Context
collecting alarms on
managed object

Yes |
No

String

CollectionDomain Domain containg as a
member the managed
object and used by the
operation context

Yes |
No

String

3.4 Performance indicators
This use case shows how you can extract performance indicators from alarms into
SQM parameters. It is referenced in the document as UC4–Performance Indicators.

It can be used to extract key performance indicators that are not included in the
TeMIP entity model from OSI events. By extension, it can also be used to retrieve
data from event fields such as additional text and monitored attributes containing
formatted data. These event fields are used in certain OSI configuration events, such
as state, relationship, and attribute value change events.

It can also be useful when TeMIP does not manage the data concerned directly
because it is provided by the Third Party Product or network element manager TeMIP
is interfacing with instead. The data’s granularity is at the managed entity level.

The study takes TeMIP alarms containing performance indicator values as an
example. The Additional Text attribute of alarms can be processed in the same way if
it contains necessary information, however.

3.4.1 TeMIP monitored attributes
TeMIP extracts these attributes from the Monitored Attributes OSI alarm events field.

28—TeMIP use cases

3.4.1.1 Definition

The following performance indicators are extracted from the alarms in this example.

• From the Radius MIB:

Name Comment

CPU Utilization

CPU Threshold

File System Free Space

File System Threshold

Response Time

Response Time Threshold

Queue Size

Queue Size Threshold

• From the DNS MIB:

Name Comment

Response Time

Server Address

Severity

3.4.1.2 Architecture
The Acanthis Extended Archiving FM is needed to export TeMIP monitored
attributes.

The following diagram illustrates how the Extended Archiving FM is used to
integrate TeMIP and SQM.

GUI

Gateways

 OpenView Service Quality Manager Core

GUI

SLA Management Historical
Reporting

SQL Service Adapter

TeM
IP

Tru64 AM Radius AM DNS AM

Extended
Archiving FM

Alarm
Handling FM

KnowledgeWare
Database

Service
Level Management

29

In this use case, you must extract and format the monitored attributes from the TeMIP
alarms received for a given entity class.

3.4.2 DFD definition
The TeMIP Radius Performance DFD of each entity managed by the TeMIP platform
has the following SQM related characteristics:

DFD Characteristics

DFD Name RadiusDFD

DFD Label Radius Performance DFD

DFD Version V1_0

SA Name RadiusSA

SA Version V1_0

Parameter Name Description Data
Type

Default
Value

CPUUse CPU Utilization Float

CPUMax CPU Threshold Float

FreeSpace File System Free Space Float

FreeSpaceMin File System Free Space
Threshold

Float

RespTime Response Time Float

RespTimeMax Response Time Threshold Float

QueueSize Queue Size Int

QueueMax Queue Size Threshold Int

Property Name Description MRP Data
Type

Default
Value

EntityName Network Element Full
Entity Name

Yes String

DFD Characteristics

DFD Name RadiusDFD

DFD Label Radius Performance DFD

DFD Version V1_0

SA Name RadiusSA

SA Version V1_0

Parameter Name Description Data
Type

Default
Value

RespTime Response Time Float

ServAddress Server Address String

Severity Severity Int

30—TeMIP use cases

Property Name Description MRP Data
Type

Default
Value

EntityName Network Element Full
Entity Name

Yes String

3.5 Event attributes
This use case shows how you can extract attribute values from OSI events into SQM
parameters. It is referenced in the document as UC5–Event Attributes.

It can be used to provide an alternative method of polling a managed entity’s
attributes. Events are asynchronous, and they only provide information on changes to
an entity’s attributes. There is therefore no need for the TeMIP platform to
systematically poll all attributes (including those that do not change). There is also no
need for it to wait until the end of each export polling period before it retrieves
updated information.

To avoid polling and checking for Generic State attribute changes, for example, the
TeMIP platform uses the Acanthis Notification Exporter FM to export their OSI state
change events.

This avoids the export session polling lag because events are exported automatically
as soon as they arrive. Nevertheless, this method’s behavior when bursts of events are
received requires careful testing. The data’s granularity is at the managed entity level.

The study takes the standard TeMIP OSI events containing attribute values (status
changes, attribute value changes, and relationship changes) as an example.

3.5.1 TeMIP OSI configuration events
This use case actually relates to the TeMIP OSI State Change event, TeMIP Attribute
Value Change event and the TeMIP Relationship Change event in this event partition.

3.5.1.1 Definition
These events contain the following attributes.

Name Comment

Event Type

Event Time

Additional Text

Source Indicator

Attribute Identifier List

State | Relationship | Attribute
Value Change Definition

Contains the list of attributes, with their
old and new values

Notification Identifier

Correlated Notifications

Additional Information

Managed Object

31

Only the State Change Definition, Event Time and the associated Managed Object are
of interest in this use case.

3.5.1.2 Architecture
The Acanthis Notification Exporter FM is needed to export TeMIP events.

The following diagram illustrates how the Notification Exporting FM is used to
integrate TeMIP and SQM.

Unfortunately, very few management modules systematically issue these events. In
the TeMIP state management context, the State Mapper FM provides a good example
of a module that issues these events when a generic state changes. Every managed
entity supports these events and the GetEvent directive.

3.5.2 DFD definition
The DFD is identical to that of TeMIP Generic States. Only its behavior and
extraction method are different.

GUI

Gateways

 OpenView Service Quality Manager Core

GUI

SLA Management Historical
Reporting

SQL Service Adapter

TeM
IP

Tru64 AM Radius AM DNS AM

Notification
Exporter FM

Notification
FM

KnowledgeWare
Database

Service
Level Management

32—TeMIP use cases

Chapter 4

Integration lifecycle
This chapter describes each successive step you must perform when you integrate
TeMIP and SQM in a working solution, using the Acanthis products and the SQL SA
toolkit. It contains appropriate examples illustrating the configuration and adaptation
required in each step.

Its workflow details only the sequence of steps involved in implementing this
process. You do not need to implement each element contained in this chapter of the
Implementation Cookbook, because the various elements it contains relate to different
implementation situations.

4.1 Configuring TeMIP
If the appropriate Access Module and Functional Module have already been installed
on the TeMIP directors, you need only configure TeMIP to prepare the collection
domains used to collect exported alarms and events.

The following examples are based on a TNS directory created by entering the
following command on the TeMIP director:

> tnscp

tnscp> create directory sqm

As in any TeMIP configuration, the network operators must then define the operation
context overlying their collection domains to monitor alarms occurring on the entities
they manage.

4.1.1 Collection domains
Collection domains are used to collect alarms or events on the entities they contain.
They are used by the Alarm Handling FM and the Notification FM.

You can discover all managed entities they contain that can issue events or alarms
(these are collected by the operator’s operation context) by listing all domain
members and only discovering TeMIP global instances within the domain.

Unfortunately, this method provides insufficiently detailed information. You must
then use the TeMIP dictionary to browse the child classes and lastly execute wildcard
show requests for each global entity and its child entities.

An alternative solution consists in listing them directly and explicitly as elements of
the domain. (This solution is recommended for TeMIP V5.X; it is not possible on the
TeMIP V4.X platform.)

On TeMIP V4 platforms, managed entities are grouped into domains, as domain
members. This means that the domain contains global entities, because members can
only be used to track global entities.

33

The following example shows a collection domain created using the FCL PM. It is
contains members that include a subdomain and a global instance. The subdomain
might itself contain entities whose alarms TeMIP must collect.

> manage

TeMIP> create DOMAIN local_ns:.sqm.alarms_statistics_domain

TeMIP> create DOMAIN local_ns:.sqm.alarms_statistics_domain –
 MEMBER local_ns:subdomain

TeMIP> create DOMAIN local_ns:.sqm.alarms_statistics_domain –
 MEMBER local_ns:globalclass_instance

On TeMIP V5 platforms, managed entities are grouped into domains, as either
members or elements. HP recommends you create domain elements, because these
can be used to handle any type of entity, and their associated members are
automatically created and deleted for each element as necessary. This means that
domains can contain either global, child or wildcard entities that you can explicitly
list as belonging to the domain.

The following example shows a collection domain created using the FCL PM. It
contains elements that include a subdomain, global instance, child instance, and
wildcard instance. The subdomain might itself contain entities whose events TeMIP
must collect.

> manage

TeMIP> create DOMAIN local_ns:.sqm.events_aggregation_domain

TeMIP> create DOMAIN local_ns:.sqm.events_aggregation_domain –
 ELEMENT “subdomain” –
 Related Entity = Domain local_ns:.subdomain

TeMIP> create DOMAIN local_ns:.sqm.events_aggregation_domain –
 ELEMENT “globalinstance” -
 Related Entity = OSI_SYSTEM -
 local_ns:.directorname_local

TeMIP> create DOMAIN local_ns:.sqm.events_aggregation_domain -
 ELEMENT “childinstance” -
 Related Entity = OSI_SYSTEM -
 local_ns:.directorname_local –
 TESTOBJ test_local

TeMIP> create DOMAIN local_ns:.sqm.events_aggregation_domain -
 ELEMENT “wildinstance” –
 Related Entity = BSS bss1 CARD *

The Alarm Handling FM associates each collection domain with an operation
context. The Extended Archiving FM then uses the collection domains by associating
each operation context with an extended archiving context. The Notification Exporter
also uses FM Collection domains to export events collected on the domain, however.

4.1.2 Operation contexts
Operation contexts represent the network operator’s view of the alarms occurring on
a set of entities. It provides all the services needed to manage the alarm lifecycle.

34—Integration lifecycle

Each operation context must have an associated collection domain. The collection
domain’s entities (DFIs) are those whose alarms must be exported to SQM. If not,
TeMIP exports alarms on entities that are not required in calculating the SQL view.

Operation contexts are used to do the following:

• Filter and aggregate alarms

• Export associated attributes

• Calculate statistics on an alarm set

• Provide support for independent discovery processes

The scope of a specific context is not necessarily suited to the SQM fault statistic
requirements.

If you are integrating an SQM platform with an existing TeMIP platform, the
operation contexts may already be defined. If the existing operation contexts have a
broader scope, you must take this into account when you perform the integration. In
such cases, you must adapt the integration to avoid calculating statistics for all
entities in the operation context’s domain if only a subset is of use to the SQM
operator.

Where possible, it is better to define collection domains specifically for the SQM
integration’s use case, possibly on a dedicated TeMIP director. All entities used in
calculating fault statistics are then grouped into these domains. The operation
contexts are fully dedicated to feeding the SQM platform with data.

Both approaches are valid, and you must take them both into consideration when you
design the final integrated solution.

The following example shows an operation context created on top of the collection
domain created previously for calculating alarm statistics.

> manage

TeMIP> create OPERATION_CONTEXT -
 local_ns:.sqm.alarms_statistics_oper -
 Associated Domain = -
 local_ns:.sqm.alarms_statistics_domain

4.2 Configuring Acanthis
Configuring the Acanthis products is an important step in the integration process,
because this defines exactly which TeMIP data must be exported into the Oracle
database.

Once you have installed the related Acanthis Data Exporter Functional Modules and
configured, mounted and started the database to which they are linked, you must
define exactly which data must be exported.

You must set up the database in several steps that must be performed in a specific
order. You can choose to distribute the instances on several servers if necessary, or
share them on a single server.

Database configuration is effectively a two-stage process consisting in:

1. Creating and customizing the database’s specific tables;

2. Creating the contexts needed to export the data.

35

The configuration required varies considerably depending on which Data Exporter
Functional Module is used. It respects this global approach in every case, however.

The following Acanthis Data Exporter Functional Modules are available:

• Attribute Exporter FM

• Notification Exporter FM

• Extended Archiving FM

The rest of this chapter contains additional details and examples of this approach. For
further details of the process, see the related Acanthis documentation.

4.2.1 Setting up the databases
You can install the Oracle server locally or remotely depending on the specific
environment and requirements. The only configuration requirement is that the TeMIP
director must be able to access these Oracle database instances.

The Acanthis database instances are:

Instance
name

TNS names Table space User Password

Acanthis acanthis/acanthis

Temipaharchi temipaharchi/temipaharchi

KNWASTAG

 staging/statistics

Production production/statistics

KNWA

KNWAPROD

Bo bo/

KNWAARCH KNWAARCH Archive archive/statistics

The Acanthis database that requires most configuring when you are integrating the
platforms is the KNWASTAG instance, because it receives the exported TeMIP raw
data. Each of these databases is OFA compliant.

Before you integrate the platforms, you must mount and start the database instances.
You must then start the listener on the Oracle server and start these instances’
services. (You can check /etc/oratab to see which databases must be started
manually using the dbstart command or when the integrated system is started, and
check listener.ora in $ORACLE_HOME/network/admin to find a client that can
access the databases.)

You must also check that the $TNS_ADMIN/tnsnames.ora file is up-to-date on the
local TeMIP director, so that the sqlplus tool can connect to the database instances
remotely. You can do so by checking that TNS_ADMIN = /var/opt/temip/conf.

You can either install and configure the Acanthis databases separately, or group them
together in a single database if they are installed as an Acanthis KnowledgeWare
solution. You can also set them up on different database servers if necessary. For
further details of how to set up Acanthis databases, see the ADB Tool User’s Guide in
the Acanthis documentation set.

HP recommends that you use the adbtool script to create and to configure all the
Acanthis databases as a single database automatically, however. This is because you
must set up the database by performing various steps in the correct order due to
internal dependencies between the tables.

Even if all the integrated solution does not require all the tables, because it does not
use all the exporting functions, you set up a consistent environment and platform that

36—Integration lifecycle

can evolve over time as necessary by using the adbtool script to create and to
configure all the Acanthis databases as a single database.

If the integrated solution only requires one exporting module, you should of course
implement the simplest and lightest solution.

4.2.2 Exporting attributes
The Attribute Exporter FM exports attribute values according to attribute export
contexts and export rules that control how the attribute values of TeMIP Network
Elements are exported to the database. You must configure these attribute export
contexts and export rules for your specific environment.

4.2.2.1 Configuring the database tables
The Attribute Exporter FM works with the KNWASTAG database.

You must specify export rules that define which attributes the Attribute Exporter FM
must export and how these must be exported. You do so using the OV TeMIP
dictionary-driven oracle_aefm_configuration_tool utility.

This utility produces both the export rules and the appropriate SQL scripts (for the
Oracle version only) used to create the tables that store attribute values.

The following example shows how to create the export rules for the TeMIP Generic
States partition of the TeMIP IST Tru64 compaq cpqHostOs cpqHoComponent
cpqHoUtil cpqHoCpuUtilTable class. For further details of how to create these export
rules, see UC1.

> oracle_aefm_configuration_tool

* *
* *
* ORACLE ATTRIBUTE EXPORTING FM *
* *
* CONFIGURATION TOOL *
* *
* *

=================== Class ID ===================

Enter class ID with following format:
 <global entity class ID>.<sub entity class ID>.<sub entity c
lass ID>

Enter class ID: 3000.232.11.2.3.1

Do you really want to export the Tru64.compaq.cpqHostOs.cpqHoCo
mponent.cpqHoUtil.cpqHoCpuUtilTable class [YES or NO] (default:
 YES):

============= General rule description ============

Tru64.compaq.cpqHostOs.cpqHoComponent.cpqHoUtil.cpqHoCpuUtilTab
le rule:

 * General characteristics [T|C|E]:
 T | Target | KNWASTAG
 C | Control character mapping | space
 E | Entity length | 255

37

 * Partition list [ID]:
 1 | Identifiers
 4 | Characteristics
 59 | Generic State

 * Generate rule file [G].

Enter your choice: 59

============== Partition description ==============

Characteristics partition:

 * Attribute list [ID|'D'ID]:
 745356 | Generic Composite Operational State |
BIDT_ENUMERATION | varchar2 | 255
 745357 | Generic Refresh Time Stamp |
BinAbsTim | date | 0
 745358 | Generic Global Change Time Stamp |
BinAbsTim | date | 0
 745359 | Generic Managed Status |
Boolean | varchar2 | 255
 745360 | Generic Managed Status Change Time Stamp |
BinAbsTim | date | 0
 745361 | Generic Testing Status |
Boolean | varchar2 | 255
 745362 | Generic Testing Status Change Time Stamp |
BinAbsTim | date | 0
 745363 | Generic Unknown Status |
Boolean | varchar2 | 255
 745364 | Generic Operational State |
BIDT_ENUMERATION | varchar2 | 255
 745365 | Generic Usage State |
BIDT_ENUMERATION | varchar2 | 255
 745366 | Generic Alarm Status |
BIDT_ENUMERATION | varchar2 | 255
 745367 | Generic Availability Status |
BIDT_ENUMERATION | varchar2 | 255
 745368 | Generic Administrative State |
BIDT_ENUMERATION | varchar2 | 255
 745369 | Generic Procedural Status |
BIDT_ENUMERATION | varchar2 | 255
 745370 | Generic Control Status |
BIDT_ENUMERATION | varchar2 | 255
 745371 | Generic Standby Status |
BIDT_ENUMERATION | varchar2 | 255

 * Export all attributes with default values [A].

 * Return to general rule description [R].

Enter your choice: A

============ General rule description ===========

Tru64.compaq.cpqHostOs.cpqHoComponent.cpqHoUtil.cpqHoCpuUtilTab
le rule:

 * General characteristics [T|C|E]:
 T | Target | temip_ae
 C | Control character mapping | space
 E | Entity length | 255

38—Integration lifecycle

 * Partition list [ID]:
 1 | Identifiers
 4 | Characteristics
 >59 | Generic State

 * Generate rule file [G].

Enter your choice: G
Do you really want to generate a rule file [YES or NO] (default
: YES):

* *
* *
* ORACLE ATTRIBUTE EXPORTING FM *
* CONFIGURATION TOOL *
* *
* FILE(S) GENERATED *
* *
* *

oracle_aefm_temip_ae_Tru64_compaq_cpqHostOs_cpqHoComponent_cpqH
oUtil_cpqHoCpuUtilTable.cfg file generated.
oracle_aefm_temip_ae_Tru64_compaq_cpqHostOs_cpqHoComponent_cpqH
oUtil_cpqHoCpuUtilTable.csh file generated.

You must copy the configuration file under the directory
/var/opt/temip/awh/aefm/oracle/cfg with read rights for the TeMIP
user.

You must execute the shell script on the Oracle server to create the tables for the
Generic States attribute values’ export context for the selected class.

Alternatively, you can use the configuration tool to select which attributes must be
exported if not the entire partition is not required. By default, each attribute is
mapped to a specific Oracle data type. Fortunately, you can tune these by selecting an
alternative data type if the default type does not meet your requirement in the
integrated solution.

You must carefully configure the details of each class attribute in turn.

4.2.2.2 Configuring the export context
The Attribute Exporter FM’s module manages attribute export contexts that ensure
the export workflow works properly.

The attribute export context defines how the TeMIP attributes of the TeMIP entities
belonging to the context (the context members) are exported. Context members are
created in the same way as domain members.

The following example shows how to create the attribute export context for the
TeMIP Generic States partition of the TeMIP IST Tru64 compaq cpqHostOs
cpqHoComponent cpqHoUtil cpqHoCpuUtilTable class. For further details of this
example, see UC1.

> manage

TeMIP> register ORACLE_AEC .sqm.aec_tru64_genstate –
 Operation = plan, -
 Managing Director = -
 .temip.directorname_director

39

TeMIP> create ORACLE_AEC .sqm.aec_tru64_genstate –
 Description = ORACLE_AEC Tru64 example, -
 Target = KNWASTAG, -
 Rows Commit Number = 1, -
 Exporting Mode = Insert, -
 Begin Time = now, -
 Polling Period = 00:00:15, -
 Export Area Management Mode = Delete, -
 Export Area Management Age = 24:00:00, -
 Maximum Number Of Exporting Threads = 10

TeMIP> register ORACLE_AEC .sqm.aec_tru64_genstate

TeMIP> create ORACLE_AEC .sqm.aec_tru64_genstate –

 MEMBER "Tru64 systemname Compaq cpqHostOs cpqHoComponent cpqHoU
til cpqHoCpuUtilTable"

Once you have created the attribute export context, you can easily add new members
to it if the scheduling and export policy defined in the context matches their
requirements.

HP recommends you define an attribute export context for each group of entities with
identical scheduling and export policies. Alternatively, you can define one context for
each entity class.

Attribute export contexts are managed in the same way as operation contexts. You
can use standard directives such as suspend, resume, activate, show and resetcounters
to control an attribute export context, show its attributes and check whether it is
working properly.

> manage

TeMIP> show ORACLE_AEC .sqm.aec_tru64_genstate all attributes

The status partition is useful for checking the status of the data collection and export
processes, while the counters partition is useful for displaying quantitative data to
validate process progress.

4.2.2.3 Processing the export context
The attribute export context performs a show directive for all entities listed as context
members, for all partitions needed in retrieving the list of attributes for export to the
database periodically or on request. It then converts these attribute values into data
type values and stores them in the database, using a separate Functional Module, the
Oracle Data Exporter FM. If an export session takes longer than the polling interval,
the integrated system simply skips the next export session.

The Attribute Exporter FM used (the Oracle version) offers configurable recovery
capabilities enabling the integrated system to recover when an export fails because
the Oracle database cannot be accessed.

The data collection and translation process is therefore separate from the database
export process, meaning that no data is lost if the integrated system cannot access the
database. If the database connection is lost or cannot be established, or if the Oracle
Data Exporter FM crashes, the Attribute Exporter FM continues to create command
files. The Oracle Data Exporter FM then processes these files the next time it
connects to the database successfully. (It tries to connect to the database at the
beginning and end of each collection session.)

40—Integration lifecycle

4.2.2.4 Configuring the purge mechanism

You must set up a purge mechanism for each export context so that the database does
not gradually become full.

Potential purge strategies vary considerably depending on the data volume and
exporting rate concerned. Each of the following solutions is suited to a specific
solution size.

As already said, you can configure the integrated solution so that the attribute export
context exports data in one of two ways. By selecting Update export mode, you can
ensure that if the integrated solution manages a limited number of entities, the data
tables will never contain more than one row per entity. If you select Insert export
mode, you must purge the export tables, however.

One database strategy consists in deleting from the table some rows for a managed
entity each time data is inserted into the table for that entity. This requires a trigger
mechanism that applies a predefined purge policy, such as keeping a managed
entity’s attribute values if a specific attribute it contains equals a certain value. Such
purge mechanisms can be very costly in terms of system resources, and they are not
recommended for large volumes of data.

Another approach consists in executing a post-export script automatically after each
export session, before the next export session begins. This script can use a PL/SQL
purge function to easily maintain the number of rows of data in the table by applying
a predefined purge policy (such as purging data that is more than 24 hours old, for
example). Purging data after each export session can also be excessively costly in
terms of system resources if the integrated solution must handle large volumes of
data, but may be suitable for medium-sized solutions.

Alternatively, if it takes too long to purge data after each exporting session (the
second approach above), you can set up an additional export context that is executed
periodically so that its post-export script cleans up any tables as appropriate. This
export context does not export any data and can be completely desynchronized from
true export contexts.

4.2.3 Exporting notifications
The Notification Exporter FM exports event data according to notification export
contexts and export rules that control how the event data of TeMIP Network
Elements are exported to the database. You must configure these notification export
contexts and export rules for your specific environment.

4.2.3.1 Configuring the database tables
The Notification Exporter FM works with the same KNWASTAG database used when
the platform exports attributes.

You must specify export rules that define which events the Notification Exporter FM
must export and how these must be exported. You do so using the OV TeMIP
dictionary-driven oracle_nefm_configuration_tool utility.

This OV TeMIP utility produces both the data export rules and the appropriate SQL
scripts (for the Oracle version only) used to create the tables that store the event
attribute values.

The following example shows how to create the export rules for the TeMIP OSI State
Change Event. For further details of this example, see UC2.

> oracle_nefm_configuration_tool

* *

41

* *
* ORACLE NOTIFICATION EXPORTING FM *
* *
* CONFIGURATION TOOL *
* *
* *

================ Class ID ===============

Enter class ID with following format:
 <global entity class ID>.<sub entity class ID>.<sub ent
ity class ID>

Enter class ID: 410
Do you really want to export the TEMIP class [YES or NO] (defau
lt: YES):

============ General rule description ===========

TEMIP rule:

 * General characteristics [T|C|E|S|R|Q]:
 T | Target | KNWASTAG
 C | Control character mapping | space
 E | Entity length | 255
 S | Exporting session name length | 255
 R | Generic rule | no
 Q | SQL table name | NULL

 * Event list [ID|'D'ID]:
 1702 | Communications Alarm
 1703 | Environmental Alarm
 1704 | Equipment Alarm
 1705 | Integrity Violation
 1708 | Operational Violation
 1709 | Physical Violation
 1710 | Processing Error Alarm
 1711 | Quality Of Service Alarm
 1713 | Security Service Or Mechanism Violation
 1715 | Time Domain Violation
 1801 | Attribute Value Change
 1806 | Object Creation
 1807 | Object Deletion
 1812 | Relationship Change
 1814 | State Change

 * Generate rule file [G].

Enter your choice: R

=============== Generic rule ==============

Generic rule:

 1 | yes
 2 | no

Enter generic rule (default: 2): 1

42—Integration lifecycle

========== General rule description ============

TEMIP rule:

 * General characteristics [T|C|E|S|R|Q]:
 T | Target | KNWASTAG
 C | Control character mapping | space
 E | Entity length | 255
 S | Exporting session name length | 255
 R | Generic rule | yes
 Q | SQL table name | NULL

 * Event list [ID|'D'ID]:
 1702 | Communications Alarm
 1703 | Environmental Alarm
 1704 | Equipment Alarm
 1705 | Integrity Violation
 1708 | Operational Violation
 1709 | Physical Violation
 1710 | Processing Error Alarm
 1711 | Quality Of Service Alarm
 1713 | Security Service Or Mechanism Violation
 1715 | Time Domain Violation
 1801 | Attribute Value Change
 1806 | Object Creation
 1807 | Object Deletion
 1812 | Relationship Change
 1814 | State Change

 * Generate rule file [G].

Enter your choice: Q

============= SQL Table Name ==============

Enter the SQL table name [<= 30 char] (default: NULL): OSI_STAT
E_CHANGE

============= General rule description ==============

TEMIP rule:

 * General characteristics [T|C|E|S|R|Q]:
 T | Target | KNWASTAG
 C | Control character mapping | space
 E | Entity length | 255
 S | Exporting session name length | 255
 R | Generic rule | yes
 Q | SQL table name |
OSI_STATE_CHANGE

 * Event list [ID|'D'ID]:
 1702 | Communications Alarm
 1703 | Environmental Alarm
 1704 | Equipment Alarm
 1705 | Integrity Violation
 1708 | Operational Violation
 1709 | Physical Violation
 1710 | Processing Error Alarm
 1711 | Quality Of Service Alarm
 1713 | Security Service Or Mechanism Violation
 1715 | Time Domain Violation
 1801 | Attribute Value Change

43

 1806 | Object Creation
 1807 | Object Deletion
 1812 | Relationship Change
 1814 | State Change

 * Generate rule file [G].

Enter your choice: 1814

============= Event description ==============

State Change Event:

 * Argument list [ID|'D'ID]:
 9 | Managed Object | FullEntityName |
varchar2 | 255
 1 | Event Type | BIDT_ENUMERATION |
varchar2 | 255
 2 | Event Time | BinAbsTim | date
| 0
 15 | Source Indicator | BIDT_ENUMERATION |
varchar2 | 255
 13 | Attribute Identifier List | BIDT_SETOF |
varchar2 | 255
 14 | State Change Definition | BIDT_SETOF |
varchar2 | 255
 5 | Notification Identifier | Unsigned32 |
number | 38
 6 | Correlated Notifications | BIDT_SETOF |
varchar2 | 255
 7 | Additional Text | Latin1String |
varchar2 | 255
 8 | Additional Information | BIDT_SETOF |
varchar2 | 255

 * Export all arguments with default values [A].

 * Return to general rule description [R].

Enter your choice: A

============ General rule description ============

TEMIP rule:

 * General characteristics [T|C|E|S|R|Q]:
 T | Target | KNWASTAG
 C | Control character mapping | space
 E | Entity length | 255
 S | Exporting session name length | 255
 R | Generic rule | yes
 Q | SQL table name | State_Change

 * Event list [ID|'D'ID]:
 1702 | Communications Alarm
 1703 | Environmental Alarm
 1704 | Equipment Alarm
 1705 | Integrity Violation
 1708 | Operational Violation
 1709 | Physical Violation
 1710 | Processing Error Alarm
 1711 | Quality Of Service Alarm

44—Integration lifecycle

 1713 | Security Service Or Mechanism Violation
 1715 | Time Domain Violation
 1801 | Attribute Value Change
 1806 | Object Creation
 1807 | Object Deletion
 1812 | Relationship Change
 >1814 | State Change

 * Generate rule file [G].

Enter your choice: G

Do you really want to generate a rule file [YES or NO] (default
: YES):

* *
* *
* ORACLE NOTIFICATION EXPORTING FM *
* CONFIGURATION TOOL *
* FILE(S) GENERATED *
* *

oracle_nefm_temip_ne_NEFMGENERIC_State_Change.cfg file generate
d.
oracle_nefm_temip_ne_NEFMGENERIC_State_Change.csh file generate
d.

You must copy the configuration file under the
/var/opt/temip/awh/nefm/oracle/cfg directory with read rights for the
TeMIP user.

You must execute the shell script on the Oracle server to create the tables for the state
change events’ export context for the selected class.

In this example, a generic rule is generated, meaning the generated table is valid for
any TeMIP class and all state change events are collected, regardless of the managed
entity’s class.

Alternatively, you can generate an export rule for a specific class if necessary, and
you can choose to export only a subset of the event’s attribute data.

With the exception of the generic rule use case, the configuration process is similar to
that used to configure the attribute export process.

4.2.3.2 Configuring the export context
The Notification Exporter FM manages notification export contexts that ensure the
export workflow works properly.

The notification export context defines the TeMIP events of the TeMIP entities
belonging to the collection domain concerned are exported.

The following example shows how to create the notification export context for the
TeMIP OSI State Change event of entities in the sqm.events_aggregation_domain
domain. For further details of this example, see UC2.

> manage

TeMIP> register ORACLE_NEC .sqm.nec_statechange –
 Operation = plan, -
 Managing Director = -
 .temip.directorname_director

45

TeMIP> create ORACLE_NEC .sqm.nec_statechange –
 Description = ORACLE_NEC example, -
 Target = KNWASTAG, -
 Rows Commit Number = 1, -
 Associated Domain = Domain –
 local_ns:.sqm.events_aggregation_domain, -
 Discriminator Construct = {}, -
 Notify Entity List = {}, -
 Notify Events = -
 (Any Configuration Events), -
 Exporting Session Name = -
 "ORACLE_NEC Tru64 example", -
 Maximum Number Of Exporting Threads = 10

TeMIP> register ORACLE_NEC .sqm.nec_statechange

Once you have created the notification export context, you must select which entities
must be managed, and export events by modifying the associated domain’s content.

HP recommends you define a domain for each group of managed entities with
identical associated events and filtering capabilities. Alternatively, you can define a
context for each domain, containing only entities that are scoped under a global class.

Notification export contexts are managed in the same way as operation contexts. You
can use standard directives such as suspend, resume, show and resetcounters to
control a notification export context, show its attributes and check whether it is
working properly.

> manage

TeMIP> show ORACLE_NEC .sqm.nec_statechange all attributes

The status partition is useful for checking the status of the data collection and export
processes, while the counters partition is useful for displaying quantitative data to
validate process progress.

4.2.3.3 Processing the export context
When it is activated, the notification export context listens to any events occurring on
managed entities in its domain. When it does so, the platform applies the following
filters, in order of importance:

• Event list, defining which events must be listened to

• Entity list, defining which entities are of interest

• Discriminator construct, offering more advanced filtering possibilities

The platform then exports filtered events after decoding them and converting them to
the appropriate data type format.

Notification export contexts do not include any concept of start time or periods,
because once they are activated they collect all filtered events and export them
immediately to the database.

4.2.3.4 Configuring the purge mechanism
You must set up a purge mechanism for each export context so that the database does
not gradually become full.

Potential purge strategies vary considerably depending on the data volume and
exporting rate concerned. Each of the following solutions is suited to a specific
solution size.

46—Integration lifecycle

One database strategy consists in deleting from the table some rows for a managed
entity each time data is inserted into the table for that entity. This requires a trigger
mechanism that applies a predefined purge policy, such as keeping a managed
entity’s attribute values if a specific attribute it contains equals a certain value. Such
purge mechanisms can be very costly in terms of system resources, and they are not
recommended for large volumes of data.

Another approach consists in executing a post-export script automatically after each
export session, before the next export session begins. This script can use a PL/SQL
purge function to easily maintain the number of rows of data in the table by applying
a predefined purge policy (such as purging data that is more than 24 hours old, for
example). Purging data after each export session can also be excessively costly in
terms of system resources if the integrated solution must handle large volumes of
data, but may be suitable for medium-sized solutions.

Alternatively, if it takes too long to purge data after each exporting session (the
second approach above), you can set up an additional export context that is executed
periodically so that its post-export script cleans up any tables as appropriate. This
export context does not export any data and can be completely desynchronized from
true export contexts.

4.2.4 Extended archiving
The Extended Archiving FM exports alarm content according to extended archiving
contexts that control how TeMIP Network Element alarms are exported to the
database. You must configure these extended archiving contexts for your specific
environment.

4.2.4.1 Configuring the database tables
You do not need to configure the Oracle database because the necessary environment
(such as the user, tablespace, tables, and PL/SQL functions) is configured
automatically when the database is created.

4.2.4.2 Configuring the export context
The only configuration required consists in defining which operation contexts must
be used in an extended archiving context. You can add new operation contexts to the
extended archiving context if they have a similar export policy; otherwise, you must
add them to a different extended archiving context. For further details of this
example, see UC3.

> manage

TeMIP> register ORACLE_EAC .sqm.eac_alarms_statistics –
 Operation = plan, -
 Managing Director = -
 .temip.directorname_director

TeMIP> create ORACLE_EAC .sqm.eac_alarms_statistics –
 Description = "ORACLE_EAC Alarms Statistics example"

TeMIP> register ORACLE_EAC .sqm.eac_statechange

TeMIP> create ORACLE_EAC .sqm.eac_alarms_statistics –
 MEMBER -
 "OPERATION_CONTEXT local_ns:.sqm.alarms_statistics_oper"

Once you have created the extended archiving context, you can add the operation
contexts to the extended archiving context.

47

HP recommends you have one extended archiving context for each set of operation
contexts under the responsibility of a specific operator.

Extended archiving contexts are managed in the same way as operation contexts. You
can use standard directives such as suspend, resume, activate, show, and
resetcounters to control it, show its attributes and check whether it is working
properly.

> manage

TeMIP> show ORACLE_EAC .sqm.eac_alarms_statistics all
attributes

The status partition is useful for checking the status of the data collection and export
processes, while the counters partition is useful for displaying quantitative data to
validate process progress.

4.2.4.3 Processing the export context
An extended archiving context handles a list of operation contexts that belong to the
archiving context.

Before the platform begins processing and storing previously unarchived alarm
objects, it deletes all rows linked to previous archiving sessions, to avoid database
inconsistencies. This ensures that rows stored using the archive directive are never
modified or deleted.

The platform then reads all unarchived alarm objects, translates them into an
exportable format, and stores them in the same Oracle database and SQL tables as
when the standard OV TeMIP archiving function is used.

4.2.4.4 Configuring the purge mechanism
You must set up a purge mechanism for each export context so that the database does
not gradually become full.

Potential purge strategies vary considerably depending on the data volume and
exporting rate concerned. Each of the following solutions is suited to a specific
solution size.

The extended archiving context is provided with a set of attributes for tuning the
alarm export and purge strategy. For further details of how to use the Extended
Archiving FM, see the associated documentation.

One database strategy consists in deleting from the table some rows for a managed
entity each time data is inserted into the table for that entity. This requires a trigger
mechanism that applies a predefined purge policy, such as keeping a managed
entity’s alarm if a specific alarm attribute it contains equals a certain value. Such
purge mechanisms can be very costly in terms of system resources, and they are not
recommended for large volumes of data.

Another approach consists in executing a post-export script automatically after each
export session, before the next export session begins. This script can use a PL/SQL
purge function to easily maintain the number of rows of data in the table by applying
a predefined purge policy (such as purging data that is more than 24 hours old, for
example).

Alternatively, if it takes too long to purge data after each exporting session (the
second approach above), you can set up an additional export context that is executed
periodically so that its post-export script cleans up any tables as appropriate. This
export context does not export any data and can be completely desynchronized from
true export contexts.

48—Integration lifecycle

4.3 Oracle views and functions
You may be able to work directly with the Acanthis database’s export tables to
extract the parameters for passing to the SQM platform. In general, however, you
must set up views, functions, triggers, and/or temporary tables to handle the
additional processing needed to compute and format the data, and align it with SQM.

4.3.1 Temporary tables
Temporary tables are usually used in combination with triggers or stored PL/SQL
procedures to process the exported data. You can also use them to drive function
processing so that only a part of the exported data is used to compute certain added-
value parameters.

The following example shows how to create a temporary table containing the result of
an independent discovery process that is used as a filter on the raw data and is used in
a PL/SQL script to drive its processing. For further details of this example, see UC3.

CREATE TABLE MANAGEDOBJECTS(
 Entity_Name varchar2(512) not null,
 Domain_Name varchar2(512) not null,
 Operation_Context varchar2(512) not null,
 Scope varchar2(20) not null
);

The following example shows how to create a temporary table that contains only the
transitional attribute values of an entity that changes over time (see UC1):

CREATE TABLE tmp_tru64 (
 Entity_Name varchar2(512) not null,
 Timestamp date,
 Generic_Composit_Operati_State varchar2(255),
 Generic_Refresh_Time_Stamp date,
 Generi_Global_Chang_Time_Stamp date,
 Generic_Managed_Status varchar2(255),
 Gener_Mana_Stat_Chan_Time_Stam date,
 Generic_Testing_Status varchar2(255),
 Gener_Test_Stat_Chan_Time_Stam date,
 Generic_Unknown_Status varchar2(255),
 Generic_Operational_State varchar2(255),
 Generic_Usage_State varchar2(255),
 Generic_Alarm_Status varchar2(255),
 Generic_Availability_Status varchar2(255),
 Generic_Administrative_State varchar2(255),
 Generic_Procedural_Status varchar2(255),
 Generic_Control_Status varchar2(255),
 Generic_Standby_Status varchar2(255));

The following example shows to create two temporary tables. The first of these
contains the event state change definition with several attribute value changes in it,
while the second contains the attribute name and its value extracted from the state
change definition, for each attribute in the state change definition (see UC5):

CREATE TABLE tmp_tru64_attr (entity_name varchar2(300), event_t
ime timestamp, state_change varchar2(255));

CREATE TABLE tmp_state_attr (entity_name varchar2(300), event_t
ime timestamp, attr_name varchar2(1024), attr_value varchar2(10
24));

49

4.3.2 Triggers
Triggers are quite costly in terms of system resource use but can be very useful in
some cases, to simply update a temporary table or purge some data in another table
automatically, for example.

They are used to populate temporary tables with relevant rows defined in their
processing.

The following example shows how to update the temporary table containing attribute
values only if at least one attribute value has changed between successive export
sessions. For further details of this example, see UC1.

--
===
-- {{{ TRIGGER tru64_attr_update_trig
-- --
-- Trigger on attributes insertion
--
===
CREATE OR REPLACE TRIGGER tru64_attr_update_trig
 AFTER INSERT ON tru64 FOR EACH ROW
DECLARE
 entity varchar2(512);
 tstamp timestamp;
 grts varchar2(255);
 ggcts varchar2(255);
 gmscts varchar2(255);
 gtscts varchar2(255);
 gms varchar2(255);
 gts varchar2(255);
 gos varchar2(255);
 guns varchar2(255);
 gcos varchar2(255);
 guss varchar2(255);
 gals varchar2(255);
 gavs varchar2(255);
 gads varchar2(255);
 gps varchar2(255);
 gcs varchar2(255);
 gss varchar2(255);
 is_first_time boolean := FALSE;
BEGIN

 BEGIN

 select Entity_Name,
 Timestamp,
 Generic_Composit_Operati_State,
 Generic_Refresh_Time_Stamp,
 Generi_Global_Chang_Time_Stamp,
 Generic_Managed_Status,
 Gener_Mana_Stat_Chan_Time_Stam,
 Generic_Testing_Status,
 Gener_Test_Stat_Chan_Time_Stam,
 Generic_Unknown_Status,
 Generic_Operational_State,
 Generic_Usage_State,
 Generic_Alarm_Status,
 Generic_Availability_Status,

50—Integration lifecycle

 Generic_Administrative_State,
 Generic_Procedural_Status,
 Generic_Control_Status,
 Generic_Standby_Status
 into entity, tstamp, gcos, grts, ggcts, gms, gmscts,
gts, gtscts, guns,
gos, guss, gals, gavs, gads, gps, gcs, gss
 from (select Entity_Name,
 Timestamp,
 Generic_Composit_Operati_State,
 Generic_Refresh_Time_Stamp,
 Generi_Global_Chang_Time_Stamp,
 Generic_Managed_Status,
 Gener_Mana_Stat_Chan_Time_Stam,
 Generic_Testing_Status,
 Gener_Test_Stat_Chan_Time_Stam,
 Generic_Unknown_Status,
 Generic_Operational_State,
 Generic_Usage_State,
 Generic_Alarm_Status,
 Generic_Availability_Status,
 Generic_Administrative_State,
 Generic_Procedural_Status,
 Generic_Control_Status,
 Generic_Standby_Status
 from tmp_tru64
 where tmp_tru64.Entity_Name = :new.Entity_Name
 order by Timestamp desc)
 where ROWNUM = 1;
 EXCEPTION WHEN NO_DATA_FOUND THEN
 is_first_time := TRUE;
 END;

 IF is_first_time
 THEN
 -- first time in final tmp_tru64 table
 insert into tmp_tru64
 values (:new.Entity_Name,
 :new.Timestamp,
 :new.Generic_Composit_Operati_State,
 :new.Generic_Refresh_Time_Stamp,
 :new.Generi_Global_Chang_Time_Stamp,
 :new.Generic_Managed_Status,
 :new.Gener_Mana_Stat_Chan_Time_Stam,
 :new.Generic_Testing_Status,
 :new.Gener_Test_Stat_Chan_Time_Stam,
 :new.Generic_Unknown_Status,
 :new.Generic_Operational_State,
 :new.Generic_Usage_State,
 :new.Generic_Alarm_Status,
 :new.Generic_Availability_Status,
 :new.Generic_Administrative_State,
 :new.Generic_Procedural_Status,
 :new.Generic_Control_Status,
 :new.Generic_Standby_Status);
 ELSE
 IF entity = :new.Entity_Name and (
 gcos != :new.Generic_Composit_Operati_State or
 grts != :new.Generic_Refresh_Time_Stamp or
 ggcts != :new.Generi_Global_Chang_Time_Stamp or
 gms != :new.Generic_Managed_Status or
 gmscts != :new.Gener_Mana_Stat_Chan_Time_Stam or
 gts != :new.Generic_Testing_Status or

51

 gtscts != :new.Gener_Test_Stat_Chan_Time_Stam or
 guns != :new.Generic_Unknown_Status or
 gos != :new.Generic_Operational_State or
 guss != :new.Generic_Usage_State or
 gals != :new.Generic_Alarm_Status or
 gavs != :new.Generic_Availability_Status or
 gads != :new.Generic_Administrative_State or
 gps != :new.Generic_Procedural_Status or
 gcs != :new.Generic_Control_Status or
 gss != :new.Generic_Standby_Status)
 THEN
 -- any change for same entity name
 insert into tmp_tru64
 values (:new.Entity_Name,
 :new.Timestamp,

:new.Generic_Composit_Operati_State,

:new.Generic_Refresh_Time_Stamp,

:new.Generi_Global_Chang_Time_Stamp,
 :new.Generic_Managed_Status,

:new.Gener_Mana_Stat_Chan_Time_Stam,
 :new.Generic_Testing_Status,

:new.Gener_Test_Stat_Chan_Time_Stam,
 :new.Generic_Unknown_Status,
 :new.Generic_Operational_State,
 :new.Generic_Usage_State,
 :new.Generic_Alarm_Status,

:new.Generic_Availability_Status,

:new.Generic_Administrative_State,
 :new.Generic_Procedural_Status,
 :new.Generic_Control_Status,
 :new.Generic_Standby_Status);

 END IF;
 END IF;
END tru64_attr_update_trig;
/
SHOW ERR;

-- }}}

The next example shows how to extract a state change definition field’s attribute
names and values, and then insert them in a temporary table containing the attribute
name and the attribute value as generic columns. For further details of this example,
see UC5.

--
===
-- {{{ TRIGGER notif_state_update_trig
-- --
-- Trigger on state attributes insertion
--
===
CREATE OR REPLACE TRIGGER notif_state_update_trig
 AFTER INSERT ON state_change FOR EACH ROW
 WHEN (new.state_change_definition is not null)

52—Integration lifecycle

DECLARE
 pos1_v number := 1;
 pos2_v number := 0;
 pos3_v number := 0;
 len_v number := 0;
 attr_name_v varchar2(255);
 attr_value_v varchar2(1024);
 state_change_v varchar2(4000);
BEGIN
 state_change_v := :new.state_change_definition;
 len_v := LENGTH(state_change_v);

 WHILE pos1_v < len_v
 LOOP
 -- Reach next newAttributeValue and position after e
qual sign
 pos1_v := INSTR(state_change_v, '=', pos1_v, 3);
 -- Reach associated first comma
 pos2_v := INSTR(state_change_v, ',', pos1_v, 1) + 2;
 -- Reach associated second comma
 pos3_v := INSTR(state_change_v, ',', pos2_v, 1) - 2;

 -- Get attribute name in between
 attr_name_v := SUBSTR(state_change_v, pos2_v, pos3_v
 - pos2_v);

 -- Reach next comma after attribute name
 pos2_v := pos3_v + 4;
 pos3_v := INSTR(state_change_v, ')', pos2_v, 1) - 1;

 -- Get attribute value in between
 attr_value_v := SUBSTR(state_change_v, pos2_v, pos3_
v - pos2_v);

 -- Prepare for next attribute
 IF (pos3_v + 4) > len_v THEN
 -- Final exit
 pos1_v := len_v + 1;
 ELSE
 -- More attributes
 pos1_v := pos3_v;
 END IF;

 --
 Insert attribute name/value retrieved from state_change_defini
tion
 insert into tmp_state_attr values (:new.entity_name,
 temip_intg_
tools.to_timestamp(:new.event_time), attr_name_v, attr_value_v)
;
 END LOOP;
END notif_state_update_trig;
/
SHOW ERR;

-- }}}

The next example shows the two-step process used to finally retrieve the list of
monitored attributes for the newly-exported alarms. For further details of this
example, see UC4.

53

--
===
-- {{{ TRIGGER alarm_object_creation_trig
-- --
-- Trigger on alarm insertion.
--
===
CREATE OR REPLACE TRIGGER alarm_object_creation_trig
 AFTER INSERT ON alarmobject0 FOR EACH ROW
DECLARE
 id_v number(22);
 is_already_known_v boolean := TRUE;
BEGIN
 BEGIN
 select identifier
 into id_v
 from tmp_alarm_object
 where tmp_alarm_object.identifier = :new.identifier;
 EXCEPTION WHEN NO_DATA_FOUND THEN
 is_already_known_v := FALSE;
 END;
 IF is_already_known_v = FALSE THEN
 insert into tmp_alarm_object values (:new.identifier
, :new.manag
edobject, :new.eventtime, :new.monitoredattributes);
 END IF;
END alarm_object_creation_trig;
/
SHOW ERR;

-- }}}

--
===
-- {{{ TRIGGER mon_attr_creation_trig
-- --
-- Trigger on alarms monitoread attributes insertion.
--
===
CREATE OR REPLACE TRIGGER mon_attr_creation_trig
 AFTER INSERT ON monitoredattributes FOR EACH ROW
DECLARE
 aoid_v number(22);
 mobj_v varchar2(300);
 tstamp_v timestamp;
 mattr_v number(22);
 nattr_v varchar2(1024);
 is_processed_v char;
 is_unknown_v boolean := FALSE;
 is_first_time_v boolean := FALSE;
 is_valid_v boolean := TRUE;
BEGIN
 BEGIN

 -- Check if monitored attribute is known

 select tmp_mon_attr.identifier,
 tmp_mon_attr.attr_name
 into mattr_v, nattr_v
 from tmp_mon_attr
 right outer join
 (select tmp_alarm_object.monattrid

54—Integration lifecycle

 from tmp_alarm_object
 where tmp_alarm_object.monattrid = :new.monit
oredattributes
) t_alarm
 on t_alarm.monattrid = tmp_mon_attr.identifier
 where tmp_mon_attr.attr_name = temip_intg_tools.get_att
r_name(:new.monitoredattributes60708)
 and tmp_mon_attr.attr_value = temip_intg_tools.get_attr
_value(:new.monitoredattributes60708);

 EXCEPTION WHEN NO_DATA_FOUND THEN
 is_unknown_v := TRUE;
 END;

 IF is_unknown_v THEN

 BEGIN

 -- Retrieve missing fields from alarm

 select identifier,
 managedobject,

temip_intg_tools.to_utc_timestamp(eventtime),
 monattrid
 into aoid_v,
 mobj_v,
 tstamp_v,
 mattr_v
 from tmp_alarm_object
 where monattrid = :new.monitoredattributes;

 EXCEPTION WHEN NO_DATA_FOUND THEN
 is_valid_v := FALSE;
 END;

 -- Check if everything is available

 IF is_valid_v THEN

 -- Update tmp_mon_attr table

 insert
 into tmp_mon_attr
 values
 (
 mattr_v,
 mobj_v,
 tstamp_v,
 temip_intg_tools.get_attr_name(:
new.monitoredattributes60708),
 temip_intg_tools.get_attr_value(
:new.monitoredattributes60708)
);
 END IF;
 END IF;
END mon_attr_creation_trig;
/
SHOW ERR;

-- }}}

55

4.3.3 Added-value views

You can use these views to gather together data stored in several tables and perform
processing based on certain column values. You can also use these views to define
how the format of specified attributes must be translated to different formats. The
SQL query involved can be very complex, and can include unions, joins, products,
additional indexes, sorting, etc.

The following example shows how to create a view that obtains only a subset of
attributes and converts a timestamp. For further details of this example, see UC1.

CREATE OR REPLACE VIEW TRU64_STATUS_VIEW as
(select ENTITY_NAME,
 GENERIC_OPERATIONAL_STATE,
 GENERIC_ADMINISTRATIVE_STATE,
 TEMIP_INTG_TOOLS.TO_UTC_TIMESTAMP(TIMESTAMP) as GMTTIME
 from TMP_TRU64);

The next example shows how to create a view that converts the received event’s type
into a numerical value. For further details of this example, see UC2.

CREATE OR REPLACE VIEW IP_REACHABILITY_VIEW as
(
select
ENTITY_NAME, TEMIP_INTG_TOOLS.to_utc_timestamp(EVENT_TIME) as G
MTTIME, TEMIP_INTG_TOOLS.to_reachability(PERCEIVED_SEVERITY) as
 REACHABILITY
from ACANTHIS.IP_REACHABILITY_UP
union all
select ENTITY_NAME, TEMIP_INTG_TOOLS.to_utc_timestamp(EVENT_TIM
E) as GMTTIME, TEMIP_INTG_TOOLS.to_reachability(PERCEIVED_SEVER
ITY) as REACHABILITY
from ACANTHIS.IP_REACHABILITY_DOWN
);

The next example shows how to create a view that converts attribute names into
column names, and then assigns them their attribute value as the column value. For
further details of this example, see UC4.

CREATE OR REPLACE VIEW DNS_VIEW as
(
select t_grouped.managedobject, t_grouped.tstamp,
 t1.attr_value as dpServerAddress,
 t2.attr_value as dpSeverity,
 to_number(t3.attr_value) as dpResponseTime
from (select managedobject, tstamp from temipaharchi.tmp_mon_at
tr where substr(managedobject, 1, 3) = 'DNS' group by managedob
ject, tstamp) t_grouped
left outer join
 (select managedobject, tstamp, attr_value from temipaharch
i.tmp_mon_attr where attr_name = 'dpServerAddress ') t1
on t_grouped.managedobject = t1.managedobject and t_grouped.tst
amp = t1.tstamp
left outer join
 (select managedobject, tstamp, attr_value from temipaharch
i.tmp_mon_attr where attr_name = 'dpSeverity ') t2
on t_grouped.managedobject = t2.managedobject and t_grouped.tst
amp = t2.tstamp
left outer join
 (select managedobject, tstamp, attr_value from temipaharch
i.tmp_mon_attr where attr_name = 'dpResponseTime ') t3

56—Integration lifecycle

on t_grouped.managedobject = t3.managedobject and t_grouped.tst
amp = t3.tstamp
);

The next example shows how to create a set of views that compute alarm statistics.
To see a simple version that uses a limited list of statistic parameters, see UC3.

CREATE OR REPLACE VIEW STATISTICS_WORST_VIEW as
(
select managedobject,
 severity,
 eventtime,
 additionaltext
from
(
 select identifier,
 managedobject,

temip_intg_tools.string_to_severity(perceivedseverity) as sever
ity,
 eventtime,
 additionaltext,
 rank() over (partition by managedobject order
by temip_intg_tools.string_to_severity(perceivedseverity), even
ttime, identifier) as rnk
 from temipaharchi.alarmobject0
 where state = 'Outstanding' and clearancetimestamp is N
ULL
)
where rnk = 1
);

CREATE OR REPLACE VIEW STATISTICS_COUNT_VIEW as
(
select distinct managedobject,
 (
 select count(*)
 from alarmobject0
 where state='Outstanding'
 and clearancetimestamp is NULL
 and managedobject= a0.managedobject
) as counter
from alarmobject0 a0
);

CREATE OR REPLACE VIEW STATISTICS_OLDEST_VIEW as
(
select managedobject,
 temip_intg_tools.minus_2AbsTime_sec(
 sys_extract_utc(systimestamp),

acanthis.temip_intg_tools.to_utc_timestamp(eventtime)) as durat
ion
from
(
 select identifier,
 managedobject,
 eventtime,
 rank() over (partition by managedobject order
by eventtime, identifier) as rnk
 from temipaharchi.alarmobject0
 where state = 'Outstanding' and clearancetimestamp is N
ULL

57

)
where rnk = 1
);

CREATE OR REPLACE VIEW STATISTICS_VIEW as
(
select c.managedobject as managedobject,
 c.severity as severity,
 c.additionaltext as additionaltext,
 c.counter as counter,
 NVL(d.duration, '0') as duration,
 sys_extract_utc(systimestamp) as gmttime
from
(
 select b.managedobject as managedobject,
 NVL(a.severity, 0) as severity,
 NVL(a.additionaltext, 'No additional text avail
able') as additionaltext,
 b.counter as counter
 from STATISTICS_WORST_VIEW a
 right join STATISTICS_COUNT_VIEW b
 on a.managedobject = b.managedobject
) c
left join STATISTICS_OLDEST_VIEW d
on c.managedobject = d.managedobject
);

HP recommends you use a single view grouping into one row all parameters passed
for a given managed entity, to simplify the data collection query in the SQL SA.

You may not be able to use views in all situations, however, and some additional
processing may be required to obtain the correct values for passing to SQM. Such
cases include situations such as passing the initial value, where no data is available,
comparisons between the old value and the new value, unchanged data, data
extraction and conversion into columns, among others. For further details of such
additional processing, see chapter 4.3.2, “

Triggers”, and chapter 4.3.4, “Stored procedures”.

4.3.4 Stored procedures
Stored procedures are PL/SQL functions that are called when they are required to
process table data. They are much more efficient than triggers, which are used
systematically whenever tables are updated, and often work on each row in turn.
Stored procedures are preloaded, and work on large datasets instead.

Their use in place of triggers is more a question of performance and volume than a
question of feasibility.

4.4 SQL SA discovery
The SQL SA discovery feature is used to retrieve from TeMIP all instances that must
be considered as DFIs within SQM. In general, this process is based on the entity
name but it can also include other information, such as the domain name, customer
name, etc.

The SQL SA is supplied with an automatic discovery mechanism that runs a SQL
query on a table containing the list of managed entities. It offers a complete set of
features, such as reference set handling and filtering.

58—Integration lifecycle

All exported data includes an entity name, but if nothing is exported the associated
table remains empty, meaning the discovery is performed unnecessarily. This may be
suitable in some cases, but it is inappropriate in most cases.

Discovery must therefore be isolated from the exported data’s availability. HP
recommends you build a temporary table for the discovery process and use it to
contain the list of discovered entities, and then use the default discovery mechanism
supplied with the SQL SA. As an added advantage, when the managed entities are
listed in a separate table, this table can also be used to drive parameter calculations
with other tables.

The following example illustrates the discovery process performed to calculate the
alarm statistics.

CREATE TABLE MANAGEDOBJECTS(
 Entity_Name varchar2(512) not null,
 Domain_Name varchar2(512) not null,
 Operation_Context varchar2(512) not null,
 Scope varchar2(20) not null
);

TeMIP discovery in this context is based on a tool that retrieves the list of a domain’s
elements recursively, and then inserts the associated entities in the temporary table
MANAGEDOBJECTS. The discovery process is performed either each time the
domain changes or periodically in a crontab.

> manage

TeMIP> getelement DOMAIN local_ns:.sqm.alarms_statistics_domain
TeMIP> getelement DOMAIN
local_ns:.sqm.alarms_statistics_domain_subdomain1
TeMIP> …

4.4.1 Granularity
A DFI’s granularity depends on its MRP definition. In a TeMIP context, this
normally simply consists in the entity name, which can always be found in exported
data.

You may require additional information, however, if the entity belongs to several data
collection or export context domains.

If the entity is in customer A’s collection domain and is also in customer B’s
collection domain, for example, the domain name is needed to know whether the
parameters were returned from collection in domain A or B. This customer
information may also be retrieved into the Subscriber field.

HP also recommends you provide a script to filter all retrieved entities, as is done in
the automatic SQL discovery process, before you load them into the final Oracle
TeMIP entities table. You can then use this to transform the data or apply default
rules, such as computing the scope (specific, wildcard, or wholetree) from the entity
name.

4.4.2 Automated, or Manual
When you start from a new environment, you must initialize the table containing the
list of TeMIP entities you want to manage as DFIs.

59

You must perform the SQL SA discovery process manually at least once. In addition,
HP recommend that you test the integrated solution by beginning with a small domain
and checking that everything is discovered and works correctly.

You can automate SQL SA discovery by running it in a crontab at appropriate
intervals for the domain changes (daily, for example).

4.4.3 Filtering
The SQL SA discovery feature also includes the possibility of defining a filter to
remove all entities that match regular expressions. For more information on regular
expressions, see the SQL SA Toolkit User’s Guide.

In this phase, the platform loads the discovery query definition file and runs the
discovery query to retrieve all the SQL SA Data Feeder Instance definitions.

In the discovery filtering phase, the discovery tool executes a filtering script. This
script parses the raw discovery file output by the previous command. It removes all
DFI definitions that are not managed by the SQL SA application. This filtering is
mainly used for load balancing (to share the DFI load over several SQL SA
applications). The script generates a new DFI inventory file containing only DFIs that
are managed by the SQL SA application.

A filtering script is supplied for customizing the SQL SA. This default script simply
copies the input raw inventory file to the filtered inventory file without applying any
filtering. You must adapt this script according to your needs.

Additionally, you can add to the SQL SA discovery query a where clause that
specifies which of the discovered entities you want to select.

4.5 Updating the SQM model
The models defined in SQM serve both as service models and as models of the
service level agreements linked to those service models. You may of course wish to
show a certain amount of the TeMIP model within SQM.

SQM commonly sees the TeMIP platform as a Fault Management platform or a
Network Management platform. It therefore presents either a platform model, a fault
model, or a network/service model. By reaching deeper into the TeMIP model details,
however, it can present a much richer model. You can then choose to include more
details in the model.

4.5.1 Generating a model
The integrated platform does not include a tool for generating a service model
automatically. You can design tools to extract the necessary data from the TeMIP
dictionary in order to create a service model within SQM. This inevitably results in an
excessively low-level service model.

Alternatively, you can base an automatic service model creation tool on the Acanthis
tools used to create the database export tables, linking them only to exported data.
Again, this results in an excessively low-level service model. Alternatively, once you
have filled the discovery table with the entity names, you can then use a simple tool
to generate an SCI xml file listing all managed entities.

The DFI discovery process provides a good basis for producing such a service model,
but it is better suited to generating SCI objects that are automatically bound to the
discovered DFIs. A TeMIP Service Definition is therefore needed to encompass the
Service Component Definition that represents the TeMIP managed entity (these are
shared globally, so that the SCIs can be reused). This method offers limited added

60—Integration lifecycle

value, but it may be of some use if you wish to generate a complete mapping model
automatically, to simplify service administration.

The discovery process is based on retrieving the list of all DFIs that the SQL SA
manages from a specific table. It is currently not possible to incorporate in the
discovery engine a feature for generating all SCIs linked to the discovered DFI. An
additional tool could use the generated DFI xml files to generate the associated SCI
xml file, however.

4.5.2 Binding parameters
The integrated platform binds all parameters automatically when it generates the SCIs
from each DFI it discovers. The degree of added value generated by providing the
DFI’s SCIs is open to discussion. Our aim in this case is clearly to automate the
binding of parameters and simplify integration at instantiation time.

4.5.3 Binding properties
Since the integrated platform generates the SCI automatically from the DFI, you can
copy the DFI’s properties to each related SCI quite simply with a matching definition.
By doing so, you can simplify data integration at the SLMonitoring interface and
provide a drill-down feature, as there is no access to DFI data at the SLMonitoring
level.

In this way, all of the parent application’s features can be used to handle data that can
be accessed at the SCI level. Users can then select an SCI parameter and display all
associated alarms from the underlying entity within TeMIP, using the TeMIP entity
name property that is copied at instantiation time.

4.5.4 The TeMIP model within SQM
From an OSS standpoint, the TeMIP platform is a distributed application containing
multiple modules interfaced with network and service element managers.

The platform model is virtually a ‘black box’ providing general parameters that do
not require a detailed model. The model within SQM can be limited to a Service
Definition consisting in the TeMIP platform as a whole and a Service Component
Definition consisting in a TeMIP director.

In most cases, the TeMIP platform serves as a Fault Management platform that
collects alarms and events on a set of entities managed by telecom operators.

The fault model consists in providing all alarms and events that the TeMIP Fault
Manager collects (containment, processing and life-cycle). It concentrates on alarms
that are collected and stored on managed entities in operation contexts. The alarm
life-cycle, and the statistics calculated from them, is then passed to a fault collection
model within SQM.

The model within SQM may consist in a Service Definition that represents the
Network Operator responsible for a set of operation contexts, i.e. a set of managed
entities, comprising the Service Component Definition.

The TeMIP platform can equally be seen as a Network & Service Management
platform that collects and provides data on network elements and their related
services. The model is then highly dependent on the model described in the TeMIP
dictionary. In this case, you must define what level of detail you wish to model in
SQM.

Another standard TeMIP model that can be produced is the domain hierarchy, since
this consists in grouping managed entities according to various criteria such as

61

geography, technology, responsibility, customer, etc. It may be potentially very useful
to model the TeMIP domain as a Service Component Definition.

4.6 Setting up the SQL SA
There are no special considerations in setting up the TeMIP SQL SA. The only
potentially specific aspects relate to loading the SQM model data, setting up the
independent discovery process, and uploading the views. Each of these points is
covered in the following paragraphs.

4.6.1 Uploading the default model
You must load the basic TeMIP model required by the SA into the SRM before the
platform can generate any xml file. This model is only required if the discovery
process also generates SCI files in XML format, to prevent model instantiation errors
occurring.

4.6.2 Uploading views automatically
The sqlexec tool is used to push the SQL views and PL/SQL functions required in
combination with the export tables. You must enter the database URL and the SQL
scripts that must be loaded (in the correct order) as this tool’s arguments. The SQM
acquisition director must be able to access the database.

4.6.3 Independent discovery and upload
The independent discovery process uses a table that has been created in the automatic
view upload phase. Once this is done, you must execute the dedicated discovery tool
on the TeMIP director to populate the discovery table in the database. Again, the
SQM acquisition director must be able to access the database.

Once TeMIP discovery has been run, automatic SQL discovery can begin and
generate the DFI XML files. If model instantiation is also required, you must execute
or activate it after this discovery process, as it is not yet incorporated in the discovery
process. You must then load all of the XML files into the Tibco repository and the
SRM.

4.7 SQM tuning
Once you have loaded the model and created the instances, the SQM platform also
offers tuning features enabling it to deal with special data cases such as subscriber-
dependent data, Naming Service resolution and internal hooks such as auto-
forwarding, naming plan flags, etc. Each of these points is covered in the following
paragraphs.

4.7.1 Subscriber-dependent parameters
Some parameters may be subscriber dependent. The subscriber information may not
always be available in the export data table, however.

In the case of TeMIP classes, this depends on the model concerned and whether it
includes this type of information as an attribute.

In the case of TeMIP events, nothing identifies whether the event is related to a
specific customer.

62—Integration lifecycle

In the operation context attributes, the owner ID, responsible operators or responsible
person can serve as subscriber information if these are filled in. In the alarm object
attributes, only the domain-related parameters (if they are associated with a customer)
or the operator responsible for its operation context can provide subscriber
information.

4.7.2 Naming Service resolution
SQM uses the Naming Service to resolve and retrieve the customer information based
on naming plans. If a parameter is subscriber dependent, the subscriber information
and the subscriber domain are used to map to a customer name. Additionally, if the
subscriber domain is set to ServiceCenter, the Data Collector does not use the
Naming Service to resolve the name (and so bypasses naming resolution).

4.8 Launching user interfaces
The SLMonitoring user interface offers a launch mechanism to navigate from this
interface to the user interface of other applications. It also provides a set of services
for controlling SLMonitoring to activate or open a window for a service within a
service level agreement.

4.8.1 Typical interfaces launched
By default, the TeMIP Gateway and the TeMIP Fault Statistics Service Adapter
launch the “Display associated alarms” interface. This provides drill-up and drill-
down capabilities with TeMIP Client Real Time Alarm Handling.

4.8.2 Using properties
In the SLMonitoring user interface, the user selects an SCI or SI parameter. The
SLMonitoring user interface then launches the TeMIP Client user interface, focusing
on the managed entity defined by the entity’s name property.

This requires the properties contained within the MRP of the DFI’s SCIs.

SLMonitoring cannot access information on the DFI instances and their associated
data. When you are creating a model, you must take this fact into account so that all
data needed to launch the TeMIP Client user interface are available in the created
SCI.

63

Appendix A

Troubleshooting

OpenView TeMIP

For troubleshooting information on OpenView TeMIP, see the troubleshooting
documentation supplied with the TeMIP product.

Acanthis KnowledgeWare

For troubleshooting information on Acanthis KnowledgeWare, see the
troubleshooting documentation supplied with the Acanthis product.

OpenView SQM

For troubleshooting information on OpenView SQM, see the troubleshooting
documentation supplied with the SQM product.

65

Appendix B

TeMIP/Oracle datatypes
OV TeMIP ORACLE

DATE *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_BIN_ABS_TIM

CLOB

FLOAT *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_REAL

CLOB

FLOAT *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_FLOATF

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_BITSET

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_COUNTER32

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_LCOUNTER32

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_UNSIGNED32

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_UNSIGNED32

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_COMPONENT

CLOB

NUMBER(0..38) *MCC_K_DT_IPADDRESS

VARCHAR2(1..4000)

67

OV TeMIP ORACLE
CHAR(1..4000)

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_MCC_ERROR

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_OCTET

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_INTEGER8

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_UNSIGNED8

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_INTEGER16

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_UNSIGNED16

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_COUNTER16

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_LCOUNTER16

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_TIME24

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_INTEGER64

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

CHAR(1..4000)

MCC_K_DT_UNSIGNED64

CLOB

NUMBER(0..38) *

VARCHAR2(1..4000)

MCC_K_DT_COUNTER64

CHAR(1..4000)

68—TeMIP/Oracle datatypes

OV TeMIP ORACLE
CLOB

VARCHAR2(1..4000) *

CHAR(1..4000)

Other OV TeMIP
datatypes

CLOB

69

Glossary

The following table lists the acronyms commonly used in this document.

Term Description

DFD Data feeder definition

DFI Data feeder instance

MO Managed Object

MRP Measurement reference point

NE Network Element

OC Operation Context

OV SQM OpenView Service Quality Manager

OV TeMIP OpenView Telecommunications Management Information
Platform

SA Similar Alarm

SAI Service Adapter Application Name (or Service Adapter
instance)

SL Service Level

SLA Service Level Agreement

SLM Service Level Management

71

	TeMIP platform
	Data collection
	Data export
	Database requirements

	Service Quality Manager platform
	SQL Service Adapter
	SQM data model
	Data collection overview
	Database requirements

	Module deployment
	Integrated data collection
	Platform interconnection
	Integration licenses
	Entity attributes
	TeMIP Generic States
	Definition
	Architecture

	DFD definition

	Entity events
	TeMIP IP ‘reachability’
	Definition
	Architecture

	DFD definition

	Alarm statistics
	TeMIP operation context
	TeMIP alarm object
	Definition
	Architecture

	DFD definition

	Performance indicators
	TeMIP monitored attributes
	Definition
	Architecture

	DFD definition

	Event attributes
	TeMIP OSI configuration events
	Definition
	Architecture

	DFD definition

	Configuring TeMIP
	Collection domains
	Operation contexts

	Configuring Acanthis
	Setting up the databases
	Exporting attributes
	Configuring the database tables
	Configuring the export context
	Processing the export context
	Configuring the purge mechanism

	Exporting notifications
	Configuring the database tables
	Configuring the export context
	Processing the export context
	Configuring the purge mechanism

	Extended archiving
	Configuring the database tables
	Configuring the export context
	Processing the export context
	Configuring the purge mechanism

	Oracle views and functions
	Temporary tables
	Triggers
	Added-value views
	Stored procedures

	SQL SA discovery
	Granularity
	Automated, or Manual
	Filtering

	Updating the SQM model
	Generating a model
	Binding parameters
	Binding properties
	The TeMIP model within SQM

	Setting up the SQL SA
	Uploading the default model
	Uploading views automatically
	Independent discovery and upload

	SQM tuning
	Subscriber-dependent parameters
	Naming Service resolution

	Launching user interfaces
	Typical interfaces launched
	Using properties

	OpenView TeMIP
	Acanthis KnowledgeWare
	OpenView SQM

