

Mercury QuickTest Professional
 .NET Add-in
Extensibility Guide

Version 8.2

QuickTest Professional .NET Add-in Extensibility Guide, Version 8.2

This manual, and the accompanying software and other documentation, is protected by U.S. and
international copyright laws, and may be used only in accordance with the accompanying license
agreement. Features of the software, and of other products and services of Mercury Interactive
Corporation, may be covered by one or more of the following patents: U.S. Patent Nos. 5,701,139;
5,657,438; 5,511,185; 5,870,559; 5,958,008; 5,974,572; 6,138,157; 6,144,962; 6,205,122; 6,237,006;
6,341,310; 6,360,332, 6,449,739; 6,470,383; 6,477,483; 6,549,944; 6,560,564; 6,564,342; 6,587,969;
6,631,408; 6,631,411; 6,633,912; 6,694,288; 6,738,813; 6,738,933 and 6,754,701. Other patents
pending. All rights reserved.

Mercury, Mercury Interactive, the Mercury Interactive logo, LoadRunner, LoadRunner TestCenter,
Mercury Business Process Testing, Mercury Quality Center, Quality Center, QuickTest Professional,
SiteScope, SiteSeer, TestDirector, Topaz and WinRunner are trademarks or registered trademarks of
Mercury Interactive Corporation or its subsidiaries, in the United States and/or other countries. The
absence of a trademark from this list does not constitute a waiver of Mercury Interactive's intellectual
property rights concerning that trademark.

All other company, brand and product names are registered trademarks or trademarks of their
respective holders. Mercury Interactive Corporation disclaims any responsibility for specifying which
marks are owned by which companies or which organizations.

Mercury Interactive Corporation
379 North Whisman Road
Mountain View, CA 94043
Tel: (650) 603-5200
Toll Free: (800) TEST-911
Customer Support: (877) TEST-HLP
Fax: (650) 603-5300

© 2004 Mercury Interactive Corporation, All rights reserved

If you have any comments or suggestions regarding this document, please send them via e-mail to
documentation@mercury.com.

QTPNETEXTGD8.2/01

iii

Table of Contents

Welcome..v
Who Should Read this Guide..v
Using This Guide ..vi
Typographical Conventions.. viii
Documentation Updates ..ix

Chapter 1: Introducing QuickTest Professional .NET Add-in
Extensibility ..1

Understanding .NET Add-in Extensibility ..2
Understanding Coding Options—.NET DLL and XML4
Understanding Custom Server Run-Time Contexts5
Understanding Test Object Mapping..7

Chapter 2: Installing the Custom Server C# Project Template9
Before You Install ..10
Running the Installation Program ..10
Uninstalling the Project Template ..11

Chapter 3: Using a .NET DLL to Extend Support for a Custom
Control..13

About Using a .NET DLL to Extend Support for a Custom Control ...14
Creating a Custom Server..14
Using the XML Configuration Segment ...18
Implementing Test Record for a Custom Control Using the

.NET DLL ..19
Implementing Test Run for a Custom Control Using the

.NET DLL ..23
Running Code under Application Under Test from the

QuickTest Context..25
API Overview ...26

Table of Contents

iv

Chapter 4: Using an XML File to Extend Support for a Custom
Control..29

About Using an XML File to Extend Support for a Custom
Control ...29

Understanding the Control Definition XML File30
Example of a Control Definition XML File...33

Chapter 5: Configuring QuickTest to Use the Custom Server35
About Configuring QuickTest to Use the Custom Server35
Understanding the QuickTest System Windows Forms

Configuration File ..36

Chapter 6: Step-by-Step Tutorial ..41
Creating a New Custom Server Project ...41
Implementing Test Record Logic ..45
Implementing Test Run Logic...47
Configuring QuickTest Professional ...48
Testing the Custom Server ..50
Understanding the TrackBarSrv.cs File ...50

Index ..53

v

Welcome

Welcome to QuickTest Professional .NET Add-in Extensibility.

QuickTest Professional .NET Add-in Extensibility enables you to support
testing applications using third-party and custom .NET controls that are not
supported out-of-the-box by the QuickTest Professional .NET Add-in.

Who Should Read this Guide

This guide is intended for programmers, systems analysts, system designers,
and technical managers.

To use this guide, you should be familiar with:

➤ QuickTest Professional Object Model

➤ QuickTest Professional .NET Add-in

➤ XML (basic knowledge)

➤ .NET Programming in C#

Welcome

vi

Using This Guide

This guide explains everything you need to know to use QuickTest
Professional .NET Add-in Extensibility to extend Test Run and Test Record
support for third-party and custom .NET controls. Test Record is the
software module used in the session in which the actions performed on the
application being tested and the application’s resulting behaviors are
recorded and the recording is converted to a test script. Test Run is the
software module used to run this script and track the results to test if the
application is performing as required.

This guide should be used together with the QuickTest Professional .NET
Add-in Extensibility API Reference (provided in online help format). These two
documents should be used in conjunction with the QuickTest Professional
User’s Guide, the QuickTest Professional .NET Add-in Guide, and the QuickTest
Professional Object Model Reference. All of these guides can be accessed online
by selecting Help > QuickTest Professional Help from the QuickTest main
screen. The guides are also available as printed books.

This book contains the following chapters:

 Chapter 1 Introducing QuickTest Professional .NET Add-in Extensibility

Explains the concepts of extending support to custom .NET controls.

 Chapter 2 Installing the Custom Server C# Project Template

Explains how to install the .NET Add-in Extensibility module and how to
configure your QuickTest Professional .NET Add-in project to use
Extensibility.

 Chapter 3 Using a .NET DLL to Extend Support for a Custom Control

Explains how to extend support for a custom control using a .NET DLL.

 Chapter 4 Using an XML File to Extend Support for a Custom Control

Explains how to extend support for a custom control using an XML file.

Welcome

vii

 Chapter 5 Configuring QuickTest to Use the Custom Server

Explains how to configure QuickTest to use the Custom Server and describes
the configuration file format.

 Chapter 6 Step-by-Step Tutorial

Provides instructions and leads you step-by-step through the process of
creating custom support for a control.

Welcome

viii

Typographical Conventions

This book uses the following typographical conventions:

1, 2, 3 Bold numbers indicate steps in a procedure.

> The greater-than sign separates menu levels (for example,
File > Open).

Stone Sans The Stone Sans font indicates names of interface
elements (for example, the Run button) and other items
that require emphasis.

Bold Bold text indicates method or function names.

Italics Italic text indicates method or function arguments and
book titles. It is also used when introducing a new term.

<> Angle brackets enclose a part of a file path or URL address
that may vary from user to user (for example, <MyProduct
installation path>\bin).

Arial The Arial font is used for examples and text that is to be
typed literally.

Arial bold The Arial bold font is used in syntax descriptions for text
that should be typed literally.

SMALL CAPS The SMALL CAPS font indicates keyboard keys.

... In a line of syntax, an ellipsis indicates that more items of
the same format may be included. In a programming
example, an ellipsis is used to indicate lines of a program
that were intentionally omitted.

[] Square brackets enclose optional arguments.

| A vertical bar indicates that one of the options separated
by the bar should be selected.

Welcome

ix

Documentation Updates

Mercury Interactive is continuously updating its product documentation
with new information. You can download the latest version of this
document from the Customer Support Web site (http://support.mercury.com).

To download updated documentation:

 1 In the Customer Support Web site, click the Documentation link.

 2 Under Select Product Name, select QuickTest Professional.

Note that if QuickTest Professional does not appear in the list, you must add
it to your customer profile. Click My Account to update your profile.

 3 Click Retrieve. The Documentation page opens and lists the documentation
available for the current release and for previous releases. If a document was
recently updated, Updated appears next to the document name.

 4 Click a document link to download the documentation.

http://support.mercury.com

Welcome

x

1

1
Introducing QuickTest Professional .NET
Add-in Extensibility

Welcome to QuickTest Professional .NET Add-in Extensibility.

QuickTest Professional .NET Add-in Extensibility enables you to provide
high-level support for third-party and custom .NET controls that are not
supported out-of-the-box by the QuickTest Professional .NET Add-in.

It is possible to record tests on .NET controls that are not supported out-of-
the-box by the QuickTest Professional .NET Add-in without using the
Extensibility module. However, the recorded script will reflect the low-level
activities passed as Windows messages. By supporting a .NET control with
the Extensibility module, this default low-level support is extended so that
scripts are meaningful, understandable, and easy to modify.

This chapter describes:

➤ Understanding .NET Add-in Extensibility

➤ Understanding Coding Options—.NET DLL and XML

➤ Understanding Custom Server Run-Time Contexts

➤ Understanding Test Object Mapping

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

2

Understanding .NET Add-in Extensibility

QuickTest Professional .NET Add-in Extensibility enables you to support
third-party and custom .NET controls by extending QuickTest test objects
with methods representing the meaningful behaviors of those .NET
controls.

The QuickTest Professional .NET Add-in, without the Extensibility module,
supports many .NET controls out-of-the-box. The .NET Add-in provides test
objects that supply methods representing these controls’ meaningful
behaviors.

The Extensibility module enables you to implement this level of support for
additional .NET controls. Using the Extensibility module, you extend the
.NET Add-in interfaces by overriding existing methods and defining new
ones, creating a Custom Server. When the custom control is mapped to an
existing QuickTest test object, you have the full functionality of a QuickTest
test object, including visibility in IntelliSense, and meaningful steps in the
business component or test script.

Understanding the Concept of Meaningful Behaviors

A control’s meaningful behavior is the behavior that you want to test. For
example, when you click on a button in a radio button group in your
application, you are interested in the value of the selection, not in the Click
event and the coordinates of the click. The meaningful behavior of the radio
button group is the change in the selection.

If you record a test or business component on a custom control without
extending support for the control, you record the low-level behaviors of the
control. For example, the TrackBar control in the sample .NET application
shown below is a control that does not have a corresponding QuickTest test
object.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

3

If you record on the TrackBar without implementing support for the
control, the Keyword View looks like this:

In the Expert View, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,10
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 32,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 34,11
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 51,12
SwfWindow("Sample Application").SwfObject("trackBar1").Drag 50,4
SwfWindow("Sample Application").SwfObject("trackBar1").Drop 23,7
SwfWindow("Sample Application").SwfObject("trackBar1").Click 83,10
SwfWindow("Sample Application").SwfObject("trackBar1").Click 91,11
SwfWindow("Sample Application").SwfButton("Close").Click

Note that the methods recorded are Drag, Drop and Click at specific
coordinates in the control display—the low-level actions of the TrackBar
control. These steps are difficult to understand and modify.

If you use .NET Add-in Extensibility to support the TrackBar control, the
result is more meaningful. Below is the Keyword View of a test recorded on
the TrackBar with a Custom Server:

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

4

In the Expert View, the recorded test looks like this:

SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 5
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 0
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 10
SwfWindow("Sample Application").SwfObject("trackBar1").SetValue 6
SwfWindow("Sample Application").Close

QuickTest is now recording a SetValue operation reflecting the new slider
position, instead of the low-level Drag, Drop, and Click operations recorded
without the custom test object. You can understand and modify this test
script more easily.

Understanding Coding Options—.NET DLL and XML

You can implement QuickTest custom support in two ways:

➤ .NET DLL—Extends support for the control using a .NET Assembly.

➤ XML—Extends support for the control using an XML file.

Guidelines for Selecting a Coding Option

Most Custom Servers are implemented as a .NET DLL. This option is
generally preferred because development is supported by all the services of
the program development environment, such as syntax checking,
debugging, and Microsoft IntelliSense. Furthermore, a Custom Server
implemented as a .NET DLL can perform part of its Test Record functions in
the QuickTest context and part in the Application under test context. For
more information, see “Using a .NET DLL to Extend Support for a Custom
Control” on page 13, and the QuickTest Professional .NET Add-in Extensibility
API Reference.

For information about run-time contexts, see “Understanding Custom
Server Run-Time Contexts” on page 5.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

5

The XML implementation is most practical either with relatively simple,
well documented controls, or with controls that map well to an existing
object but for which you need to replace the Test Record implementation, or
replace or add a small number of test object Test Run methods. It is also
useful when a full programming environment is not available, since it
requires only a text editor.

However, when implementing a custom control with XML, you have none
of the support provided by a program development environment. The XML
implementation runs only in the Application under test context. For more
information, see “Using an XML File to Extend Support for a Custom
Control” on page 29.

For information about setting the coding option, see “Configuring
QuickTest to Use the Custom Server” on page 35.

Understanding Custom Server Run-Time Contexts

Classes supplied by a Custom Server may be instantiated in one of two
software processes, or run-time contexts:

➤ Application under test

➤ QuickTest

An object created in the Application under test context has direct access to
the .NET control’s events, methods, and properties. However, it cannot
listen to Windows messages.

An object created in the QuickTest context can listen to Windows messages.
However, it does not have direct access to the .NET control’s events,
methods, and properties.

If the Custom Server is implemented as a .NET DLL, an object created in the
QuickTest context can create Assistant objects that run in the Application
under test context.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

6

Guidelines for Selecting the Custom Server Run-Time Context

The Custom Server may implement Test Record, Test Run, or both. Test
Record is the software module used in the session in which the actions
performed on the application being tested and the application’s resulting
behaviors are recorded and the recording is converted to a test script. Test
Run is the software module used to run this script and track the results to
test if the application is performing as required.

Test Run is nearly always implemented in the Application under test
context. Direct access to the control makes setting values and calling the
control’s methods straightforward. There is no need to listen to Windows
messages during a Test Run session, so the QuickTest context is not required.
However, if your application makes heavier use of QuickTest services than
services of the custom control, it may be more efficient to implement Test
Run in the QuickTest context.

The programming for Test Record is generally simpler in the Application
under test context. However, if it is essential to use Windows messages for
recording, you must use the QuickTest context.

If the .NET DLL Custom Server must both listen to Windows messages and
access control events and properties, use Assistant classes. The Custom
Server running in the QuickTest context can listen to events in the
Application under test context with Assistant class objects that run in the
Application under test context. These objects also provide direct access to
control properties.

For more information, see “Implementing Test Record for a Custom Control
Using the .NET DLL” on page 19.

For more information about Assistant classes, see “Using a .NET DLL to
Extend Support for a Custom Control” on page 13, and refer to the QuickTest
Professional .NET Add-in Extensibility API Reference.

For more information about setting the context, see “Configuring QuickTest
to Use the Custom Server” on page 35.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

7

Understanding Test Object Mapping

All Custom Servers are mapped to a parent QuickTest test object. When the
test object is applied to the custom control, the Custom Server extends the
parent test object.

When you map your Custom Server to a functionally similar QuickTest test
object, you do not have to override those Test Run methods of the parent
object which apply without change to your custom object. For example,
most controls have a Click method. If the Click method of the parent object
implements the Click method of the custom object adequately, you do not
need to override the parent’s method.

To cover the Test Run functionality of the custom object that does not exist
in the parent, add new methods in your Custom Server. To cover
functionality that has the same method name, but a different
implementation, override the parent methods. The test object type that
supports the custom control is the new type that consists of the Test Run
members of the parent object or overrides of those members, and new
members added by this Custom Server.

Note that mapping is sometimes sufficient without any programming. If the
parent QuickTest test object adequately covers a control, it is sufficient to
map the control to the QuickTest test object. If the QuickTest test object
adequately covers Test Record, but you need to customize Test Run, do not
implement Test Record.

If you do implement Test Record, the implementation replaces that of the
parent object. You must implement all required Test Record functionality.

If you do not specify a mapping, QuickTest maps the custom control to the
default generic test object, SwfObject.

When you edit a script line that references the custom test object, Microsoft
IntelliSense displays the properties and methods of the custom test object in
addition to those of the parent QuickTest test object.

For more information about mapping, see “Configuring QuickTest to Use
the Custom Server” on page 35.

Chapter 1 • Introducing QuickTest Professional .NET Add-in Extensibility

8

9

2
Installing the Custom Server C# Project
Template

This chapter explains how to install the Custom Server C# Project Template
for Microsoft Visual Studio .NET. Refer to the QuickTest Professional .NET
Add-in Readme file in your installation for an updated list of supported
versions of Visual Studio.

This installation provides a Custom Server project template and the wizard
that runs when the template is selected to create a new project.

The Custom Server template provides a framework of blank code, some
sample code, and the QuickTest project references required to build a
Custom Server.

The wizard simplifies setting up a Visual Studio .NET project to create a
Custom Server .NET DLL using the .NET Add-in Extensibility module. For
more information, see “Using a .NET DLL to Extend Support for a Custom
Control” on page 13.

This chapter describes:

➤ Before You Install

➤ Running the Installation Program

➤ Uninstalling the Project Template

Chapter 2 • Installing the Custom Server C# Project Template

10

Before You Install

Before you install the Custom Server C# Project Template, review the
requirements listed below.

➤ You must have access to the InstWizard.msi file. You can access the
InstWizard.msi file from either a computer on which the QuickTest
Professional .NET Add-in is installed, or from the root folder of the
QuickTest Professional .NET Add-in CD-ROM.

➤ Microsoft Visual Studio .NET must be installed on your computer.

Running the Installation Program

The InstWizard.msi file is found in the QuickTest Professional .NET Add-in
installation, and on the QuickTest Professional .NET Add-in CD-ROM.

To install the .NET Add-in Custom Server C# Project Template:

 1 Close all instances of Microsoft Visual Studio .NET.

 2 Locate the InstWizard.msi file. You can find it in one of the following
locations:

➤ In the <QuickTest Professional installation path>\bin\Custom folder on a
computer on which the QuickTest Professional .NET Add-in is installed.

➤ In the root folder of the QuickTest Professional .NET Add-in CD-ROM.

 3 Run the installation by double-clicking on the InstWizard.msi file. The
Custom Server C# Project Template is installed on your computer.

To confirm that the installation was successful:

 1 Open Microsoft Visual Studio .NET.

 2 Choose File > New > Project to open the New Project dialog box.

 3 Select Visual C# Projects in the Project Types list.

Chapter 2 • Installing the Custom Server C# Project Template

11

 4 Confirm that the QuickTest CustomServer template icon appears in the
Templates pane.

Uninstalling the Project Template

You can uninstall the Custom Server C# Project Template from the Windows
Control Panel.

To uninstall the project template:

 1 Select Start > Settings > Control Panel > Add/Remove Programs. The
Add/Remove Programs dialog box opens.

 2 In the Add/Remove Programs list, select Mercury CustomWizard.

 3 Click Remove.

Chapter 2 • Installing the Custom Server C# Project Template

12

13

3
Using a .NET DLL to Extend Support for a
Custom Control

You can support a .NET control by creating a Custom Server implemented as
a .NET DLL.

To create a .NET DLL Custom Server you need to know how to program a
.NET Assembly. The illustrations and instructions in this chapter assume
that you are using Microsoft Visual Studio .NET as your development
environment and that you have installed the Custom Server C# Project
Template. For more information, see “Installing the Custom Server C#
Project Template” on page 9.

This chapter describes:

➤ About Using a .NET DLL to Extend Support for a Custom Control

➤ Creating a Custom Server

➤ Using the XML Configuration Segment

➤ Implementing Test Record for a Custom Control Using the .NET DLL

➤ Implementing Test Run for a Custom Control Using the .NET DLL

➤ Running Code under Application Under Test from the QuickTest Context

➤ API Overview

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

14

About Using a .NET DLL to Extend Support for a Custom
Control

You can create a Custom Server to implement high level support for a
custom .NET control. The Custom Server is a .NET DLL class library that
implements interfaces for Test Record and/or Test Run, and general utilities.
For more information, see “Implementing Test Record for a Custom Control
Using the .NET DLL” on page 19, “Implementing Test Run for a Custom
Control Using the .NET DLL” on page 23, and “API Overview” on page 26.

After creating the Custom Server, configure QuickTest to use it. For more
information, see “Configuring QuickTest to Use the Custom Server” on
page 35.

Creating a Custom Server

To create a Custom Server, set up a .NET project in Microsoft Visual Studio
.NET, code the support for QuickTest Test Record and/or Test Run, and edit
the configuration file so that QuickTest loads the Custom Server.

Setting up the .NET Project

Set up a .NET project in Microsoft Visual Studio .NET using the Custom
Server C# Project Template.

When you set up the .NET project, the template does the following:

➤ Creates an XML file with definitions of the Custom Server that you can copy
into the QuickTest configuration file.

➤ Creates the project files necessary for the build of the .DLL file.

➤ Sets up a C# file with commented code that contains the definitions of
methods that you can override when you implement Test Record or Test
Run.

➤ Provides sample code that demonstrates some Test Record and Test Run
implementation techniques.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

15

To setup a new .NET project:

 1 Start Microsoft Visual Studio .NET.

 2 Choose File > New > Project to open the New Project dialog box, or press
CTRL + SHIFT + N. The New Project dialog box opens.

 3 Select Visual C# Projects in the Project Types list.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

16

 4 Select the QuickTest CustomServer template in the Templates pane. Enter
the name of your new project and the location in which you want to save
the project. Click OK. The QuickTest Custom Server Settings wizard opens.

 5 Make your selections in the Application Settings page of the wizard.

➤ In the Server class name box, provide a descriptive name for your custom
server class.

➤ Check Customize Record process if you intend to implement the Test
Record process in QuickTest.

If you check Customize Record process, the wizard creates a framework
of code for the implementation of recording steps.

Do not select this check box if you are going to create the script manually
in QuickTest, or if you are going to use the Test Record functions of the
parent test object to which this control will be mapped. Note that if you
implement Test Record, the implementation replaces that of the parent
object. You must implement all required Test Record functionality.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

17

➤ Check Customize Run process if you intend to implement the Test Run
functions for the custom control. Enter a name for the Replay Interface
you will create in the Replay interface name box.

If you check Customize Run process, the wizard creates a framework of
code to implement Test Run support.

Check Customize Run process if you are going to override any of the
existing test object’s methods, or extend the test object with new
methods.

➤ Check Generate comments and sample code if you want the wizard to
add comments and samples in the code that it generates.

 6 Click Next. The XML Configuration Settings page of the wizard opens.

 7 Make your selections in the XML Configuration Settings page of the wizard.

➤ Check Auto-generate the XML configuration segment to have the wizard
create a file, Configuration.xml, containing an XML segment with the
configuration information for QuickTest.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

18

➤ In the Customized Control type box, enter the full type name of the
control for which you are creating the Custom Server, including all
wrapping namespaces, for example,
System.Windows.Forms.CustomCheckBox.

➤ In the Mapped to box, select the test object to which you want to map
the Custom Server. If you select No mapping, the Custom Server is
automatically mapped to the SwfObject test object.

For more information, see “Understanding Test Object Mapping” on
page 7.

➤ Select the run-time context for Test Record and/or Test Run: Application
under test or QuickTest.

For more information, see “Understanding Custom Server Run-Time
Contexts” on page 5.

 8 Click Finish. The Wizard closes and the new project opens, ready for coding.

When you click Finish in the wizard, a Configuration.xml file is created and
added to the project. When you are ready to use the Custom Server, update
and modify the configuration information as required and transfer it to the
QuickTest configuration file as described in “Using the XML Configuration
Segment” on page 18.

Using the XML Configuration Segment

The XML segment created by the wizard is used when the Custom Server is
ready for deployment. Before using it, add the information that was not
available when you created the project.

To use the segment when configuring QuickTest:

 1 Edit the Configuration.xml file in the project to ensure that the information
is correct. Set the DllName element value to the location where you will
install the Custom Server. If Test Record and/or Test Run are to be loaded in
different run-time contexts, edit the Context value accordingly.

 2 Copy the entire <Control>...</Control> node. Do not include the enclosing
<Controls> tags.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

19

 3 Open the QuickTest Professional .NET Add-in configuration file, <QuickTest
Professional>\dat\SwfConfig.xml. Paste the Control node from
Configuration.xml at the end of the file, before the closing </Controls> tag.

 4 Save the file.

For more information, see “Configuring QuickTest to Use the Custom
Server” on page 35.

Implementing Test Record for a Custom Control Using the
.NET DLL

Recording a business component or test script on a control means listening
to the activity of that control, translating that activity into test object
method calls, and writing the method calls to the script. Listening to the
activities on the control is done by listening to control events, hooking
Windows messages, or both.

To implement Test Record, implement the methods in the IRecord interface
created by the wizard. Add all the functionality required by your
application. Your Test Record implementation does not inherit from the
parent test object to which the custom control is mapped. It replaces the
parent object’s Test Record implementation entirely. Therefore, if you need
any of the parent object’s functionality, code it explicitly.

Before reading this section, make sure you are familiar with “Understanding
Custom Server Run-Time Contexts” on page 5.

For more details about the interfaces, classes, enumerations, and methods in
this section, refer to the QuickTest Professional .NET Add-in Extensibility API
Reference.

This section describes:

➤ Implementing the IRecord Interface

➤ Writing Test Object Methods to the Script

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

20

Implementing the IRecord Interface

To implement the IRecord interface, override the call-back methods
described in this section, and add the details of your implementation in
your event handlers or message handler.

Callback Method InitEventListener

CustomServerBase.InitEventListener is called by QuickTest when your
Custom Server is loaded. Add your event and message handlers in this
method.

 1 Implement handlers for the control’s events.

A typical handler captures the event and writes a method to the test script.
This is an example of a simple event handler:

public void OnMouseDown(object sender, MouseEventArgs e)
{

// Get the event.
if(e.Button != System.Windows.Forms.MouseButtons.Left)
return;
/*
For more complex events, here you would get any
other information you need from the control.
*/
// Write the test object method to the script
RecordFunction("MouseDown",
RecordingMode.RECORD_SEND_LINE,
e.X,e.Y);

}

For more information, see “Writing Test Object Methods to the Script” on
page 23.

 2 Add your event handlers in InitEventListener:

public override void InitEventListener()
{

.....
// Adding OnMouseDown handler.
Delegate e = new MouseEventHandler(this.OnMouseDown);
AddHandler("MouseDown", e);

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

21

.....
}

Note that if Test Record will run in the Application under test context, you
can use the syntax:

SourceControl.MouseDown += e;

If you use this syntax, you must release the handler in ReleaseEventListener.

 3 Add a Remote Event Listener.

If your Custom Server will run in the QuickTest context, use a remote event
listener to handle events. Implement a remote listener of type
EventListenerBase that handles the events, and add a call to
AddRemoteEventListener in method InitEventListener.

public class EventsListenerAssist : EventsListenerBase
{

// class implementation.
}
public override void InitEventListener()
{

...
AddRemoteEventListener(typeof(EventsListenerAssist));
...

}

When you implement a remote event listener, you must override
EventListenerBase.InitEventListener and
EventListenerBase.ReleaseEventListener in addition to overriding these call-
back functions in CustomServerBase. The use of these two EventListenerBase
call-backs is the same as for the CustomServerBase call-backs. For details,
refer to the EventsListenerBase class in the QuickTest Professional .NET Add-in
Extensibility API Reference.

Note that when you handle events from the QuickTest context, the event
arguments must be serialized. For details, refer to
CustomServerBase.AddHandler(String, Delegate, Type) and the
IEventArgsHelper Interface in the QuickTest Professional .NET Add-in
Extensibility API Reference.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

22

To avoid the complications of remote event listeners, run your event
handlers in the Application under test context, as described above.

Callback Method OnMessage

OnMessage is called on any window message hooked by QuickTest. If Test
Record will run in the QuickTest context and message handling is required,
implement the message handling in this method.

If Test Record will run in the Application under test context, do not override
this function.

For details, refer to CustomServerBase.OnMessage in the QuickTest
Professional .NET Add-in Extensibility API Reference.

Callback Method GetWndMessageFilter

If Test Record will run in the QuickTest context and listen to windows
messages, override this method to inform QuickTest whether the Custom
Server will handle only messages intended for the specific custom object
window, or whether it will handle messages from child windows, as well.

For details, refer to IRecord.GetWndMessageFilter in the QuickTest
Professional .NET Add-in Extensibility API Reference.

Callback Method ReleaseEventListener

QuickTest Professional calls this method at the end of the recording session.
In ReleaseEventListener, unsubscribe from all the events to which the
Custom Server was listening. For example, if you subscribed to OnClick in
InitEventListener with this syntax,

SourceControl.Click += new EventHandler(this.OnClick);

you must release it:

public override void ReleaseEventListener()
{

....
SourceControl.Click -= new EventHandler(this.OnClick);
....

}

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

23

However, if you subscribe to the event with the AddHandler method,
QuickTest unsubscribes automatically.

Writing Test Object Methods to the Script

When information about activities of the control has been received,
whether in the form of events, Windows messages, or a combination of
both, this information must be processed as appropriate for the application
and a script step written as a test object method call.

To write a script step, use the RecordFunction method of the
CustomServerBase class or the EventsListenerBase, as appropriate.

Since it is sometimes impossible to know how an activity should be
processed until the next activity occurs, there is a mechanism for storing a
script step and deciding in the subsequent call to RecordFunction whether
to write it to the script. For details, refer to RecordingMode Enumeration in
the QuickTest Professional .NET Add-in Extensibility API Reference.

In order to determine the parameter values for the test object method call, it
may be necessary to retrieve information from the control that is not
available in the event arguments or Windows message. If the Custom Server
Test Record object is running in the Application under test context, use the
SourceControl property of the CustomServerBase class to obtain direct
access to the public members of the control. If the control is not thread-safe,
use the ControlGetProperty method to retrieve control state information.

Implementing Test Run for a Custom Control Using the
.NET DLL

Defining test object methods for Test Run means specifying the actions to
perform when the method is encountered in the business component or test
script. Typically, the implementation of a test object method performs
several of the following actions:

➤ Sets the values of attributes of the control object

➤ Calls a method of the control object

➤ Makes mouse and keyboard simulation calls

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

24

➤ Reports a step outcome to QuickTest

➤ Reports an error to QuickTest

➤ Makes calls to another library (to show a message box, write custom log, and
so forth)

The custom control is mapped to a parent QuickTest test object. If there is
no explicit mapping, it is mapped to SwfObject. The test object type that
supports the custom control is the new type that consists of the members of
the parent object or overrides of those members, and new members added
by this Custom Server.

Define custom Test Run methods if you are overriding existing methods of
the parent test object, or if you are extending the parent test object by
adding new methods.

Ensure that all test object methods recorded are implemented in Test Run,
either by the parent test object, or by this Custom Server.

To define custom Test Run methods, define an interface and identify it to
QuickTest as the Test Run interface by applying the ReplayInterface attribute
to it. Only one replay interface can be implemented in a Custom Server. If
your interface defines methods with the same names as existing methods of
the parent object, the interface methods override the test object
implementation. Methods that do not have the same name as a method of
the parent object, are added as new methods.

Start a test object method implementation with a call to PrepareForReplay,
specify the activities to perform, and end with a call to ReplayReportStep
and/or ReplayThrowError.

For more details, refer to the QuickTest Professional .NET Add-in Extensibility
API Reference.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

25

Running Code under Application Under Test from the
QuickTest Context

When the Custom Server is running in the QuickTest context, there is no
direct access to the control, which is in a different run-time process. To
access the control directly, run part of the code in the Application under test
context.

To launch code from the QuickTest context that will run under the
Application under test context, implement an assistant class that inherits
from CustomAssistantBase. To create an instance of an assistant class, call
CreateRemoteObject. Before using the object, attach it to the control with
SetTargetControl.

Once SetTargetControl has been called, there are two ways to call methods
of the assistant. If the method can run in any thread of the Application
under test process, read and set control values and call control methods
with the simple obj.Member syntax:

int i = oMyAssistant.Add(1,2);

If the method must run in the control’s thread, use the InvokeAssistant
method:

int i = (int)InvokeAssistant(oMyAssistant, "Add", 1, 2);

EventListenerBase is an assistant class that supports listening to control
events.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

26

API Overview

This section provides a quick reference of the most commonly used API
calls. For more details, refer to the QuickTest Professional .NET Add-in
Extensibility API Reference.

Test Record Methods

Test Record Callback Methods

Test Run Methods

AddHandler Adds an event handler as the first handler of
the event.

RecordFunction Records a line in the Test script.

GetWndMessageFilter Called by QuickTest to set the Windows
Message filter.

InitEventListener Called by QuickTest to load event handlers and
start listening for events.

OnMessage Called when window message hooked by
QuickTest.

ReleaseEventListener Stops listening for events.

DragAndDrop, KeyDown,
KeyUp, MouseClick,
MouseDblClick, MouseDown,
MouseMove, MouseUp,
PressKey, PressNKeys,
SendKeys, SendString

Mouse and keyboard simulation methods.

PrepareForReplay Prepares the control for a replay action.

ReplayReportStep Writes an event to the test report.

ReplayThrowError Generates an error message and changes the
reported step status.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

27

Cross-Process Methods

General Methods

ShowError Displays the .NET warning icon.

TestObjectInvokeMethod Invokes one of the methods exposed by the
test object's IDispatch interface.

AddRemoteEventListener Creates an EventListener instance in the
Application under test process.

CreateRemoteObject Creates an instance of an Assistant object in
the Application under test process.

GetEventArgs (IEventArgs) Retrieves and deserializes the EventArgs object.

Init (IEventArgsHelper) Initializes the Event Arguments helper class
with an EventArgs object.

InvokeAssistant Invokes a method of a CustomAssistantBase
class in the control's thread.

InvokeCustomServer Invokes the Custom Server’s methods running
in the QuickTest process from the Application
under test process.

SetTargetControl Attaches to the source control object by the
control's window handle.

ControlGetProperty Retrieves a property of a control that is not
thread-safe.

ControlInvokeMethod Invokes a method of a control that is not
thread-safe.

ControlSetProperty Sets a property of a control that is not thread-
safe.

GetSettingsValue Gets a Parameter value from the settings of this
control in the configuration file.

GetSettingsXML Returns the settings of this control as entered
in the configuration file.

Chapter 3 • Using a .NET DLL to Extend Support for a Custom Control

28

29

4
Using an XML File to Extend Support for a
Custom Control

You can extend support for a customized .NET control using an XML file.
Using an XML file enables you to extend support without a program
development environment.

This chapter describes:

➤ About Using an XML File to Extend Support for a Custom Control

➤ Understanding the Control Definition XML File

➤ Example of a Control Definition XML File

About Using an XML File to Extend Support for a Custom
Control

You can implement custom control support without programming a .NET
DLL by entering the appropriate Test Record and Test Run instructions in a
Control Definition XML file. You can tell QuickTest Professional to load the
instructions by pointing to this control definition file in the QuickTest
configuration file, SwfConfig.xml.

When using this technique, you do not have the support of the .NET
development environment—the object browser and the debugger. However,
by enabling the implementation of custom control support without the
.NET development environment, this technique enables relatively rapid
implementation, even in the field.

Chapter 4 • Using an XML File to Extend Support for a Custom Control

30

This feature is most practical either with relatively simple, well documented
controls, or with controls that map well to an existing object but for which
you need to replace the Test Record definitions, or replace or add a small
number of test object Test Run methods.

Understanding the Control Definition XML File

The Control Definition XML file specifies the control events to be captured
during recording and used to generate steps to be written to the business
component or test script. These steps are calls to methods of the custom
control’s test object. The file also specifies the operations QuickTest
performs for each method during Test Run. You do not always need to enter
both a Record and a Run element.

If the custom object is mapped to a parent test object that implements
either all the required Test Record methods or all the required Test Run
methods, you do not need to create the section of the definition file that
defines that element.

If you create a Record element, the definitions replace the Test Record
implementation of the parent object entirely. If you create a Run element, it
inherits the Test Run implementation of the parent object and extends it.
For more information on test object mapping options, see “Understanding
Test Object Mapping” on page 7.

The structure of the Control Definition XML file is:

<?xml version="1.0" encoding="UTF-8" ?>
<Customization>

<Record>
<Events>

<!-- There are 1 to n Event elements -->
<Event name="controlEventName" enabled="true|false">

<RecordedCommand name="theCommandName">
<!-- There are 0 to n Parameter elements -->
<Parameter> param</Parameter>

</RecordedCommand>
</Event>

</Events>

Chapter 4 • Using an XML File to Extend Support for a Custom Control

31

</Record>
<Replay>

<Methods>
<!-- There are 1 to n Method elements -->
<Method name="theCommandName">

<Parameters>
<!-- There are 0 to n Parameter elements -->
<Parameter type="theDataType" name="param 1

name"></Parameter>
</Parameters>
<MethodBody>theCommand</MethodBody>

</Method>
</Methods>

</Replay>
</Customization>

Control Definition File Elements

➤ Customization—The root element.

➤ Record—Information about the conversion of events to steps in a test script.

➤ Events—Collection of control events to capture for generation of test script
steps.

➤ Event—Contains the information needed to convert a specific event to a
step in a test. It has the following attributes:

➤ name—The name of the control event.

➤ enabled—The flag to activate recording for this event. Can be true or
false.

➤ RecordedCommand—Defines the step to be written to the script when the
event described in the parent Event element is received. Has the following
attribute:

➤ name—The test object method name to write to the script.

➤ Parameter—Each Parameter element defines a parameter to be written to
the script after the name of the RecordedCommand. The parameters are
written to the script in the order in which they are defined in the Control
Definition XML file.

Chapter 4 • Using an XML File to Extend Support for a Custom Control

32

A Parameter element has two possible formats. It may contain a single line
of text content that will be evaluated and then written to the script.
Alternatively, it may contain a short section of code to be run in order to
produce the value to be written. In this case, the lang attribute must be
specified, and the final value must be assigned to the return value variable,
Parameter.

Several reserved words are available for use in a Parameter element:

➤ Sender—The object that fired the event.

➤ EventArgs—The object that represents EventArgs parameter of the Event
Handler.

➤ Parameter—The return value of the code.

The Parameter element has the following optional attribute:

➤ lang—If the element contains code, the lang attribute specifies the
programming language. Currently, C# is supported.

➤ Replay—Information about the conversion of test object methods to the
activities to be performed during the Test Run session.

➤ Methods—Collection of Method elements.

➤ Method—Defines a method added to the test object interface. It has the
following attribute:

➤ name—The test object method name.

➤ Parameters—Collection of Parameter elements.

➤ Parameter—Each Parameter element contains instructions for reading a
command line parameter from the script. The order of Parameter elements
must be the same as the order of the command line parameters in the script.

➤ These parameters are used in the MethodBody element to create the method
call. Each parameter element has the following attributes:

➤ type—The data type of the value as it will be used in the MethodBody.

➤ name—The name by which to refer to the value in the MethodBody.

➤ MethodBody—A series of C# instructions to perform when the test object
method is executed.

The reserved word RtObject refers to the run-time object.

Chapter 4 • Using an XML File to Extend Support for a Custom Control

33

Example of a Control Definition XML File

The following example shows the handling of an object whose value
changes at each MouseUp event. The value is in the Value property of the
object. The MouseUp event handler has Button, Clicks, Delta, X, and Y event
arguments.

The Record element describes the conversion of the MouseUp event to a
SetValue command. The Replay mode defines the SetValue command as
setting the value of the object to the recorded Value and displaying the
position of the mouse pointer for debugging purposes.

<?xml version="1.0" encoding="UTF-8"?>
<Customization>
 <Record>
 <Events>
 <Event name="MouseUp" enabled="true">
 <RecordedCommand name="SetValue">
 <Parameter>
 Sender.Value
 </Parameter>
 <Parameter lang="C#">
 String xy;
 xy = EventArgs.X + ";" + EventArgs.Y;
 Parameter = xy;
 </Parameter>
 </RecordedCommand>
 </Event>
 </Events>
 </Record>
 <Replay>
 <Methods>
 <Method name="SetValue">
 <Parameters>
 <Parameter type="int" name="Value"/>
 <Parameter type="String" name="MousePosition"/>
 </Parameters>
 <MethodBody>
 RtObject.Value = Value;

Chapter 4 • Using an XML File to Extend Support for a Custom Control

34

 System.Windows.Forms.MessageBox.Show(MousePosition, "Mouse
Position at Record Time");
 </MethodBody>
 </Method>
 </Methods>
 </Replay>
</Customization>

35

5
Configuring QuickTest to Use the Custom
Server

The QuickTest System Windows Forms Configuration File provides
QuickTest with all the information necessary to load your Custom Server
with the required configuration.

This chapter describes:

➤ About Configuring QuickTest to Use the Custom Server

➤ Understanding the QuickTest System Windows Forms Configuration File

About Configuring QuickTest to Use the Custom Server

To instruct QuickTest to load Custom Servers and to pass the required
configuration, enter the information in the QuickTest System Windows
Forms Configuration File. The configuration file, SwfConfig.xml, is located
in the <QuickTest Professional installation path>\dat folder.

Each control is configured in a Control node in the file.

Chapter 5 • Configuring QuickTest to Use the Custom Server

36

Understanding the QuickTest System Windows Forms
Configuration File

The structure of the SwfConfig.xml file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type=" " MappedTo=”” >
<CustomRecord>

<Component>
<Context> </Context>
<DllName></DllName>
<TypeName></TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context></Context>
<DllName></DllName>
<TypeName></TypeName>

</Component>
</CustomReplay>
<Settings>

<Parameter Name=""> </Parameter>
</Settings>

</Control>
</Controls>

Configuration File Elements

➤ ?xml—The XML declaration, version="1.0" encoding="UTF-8”?, is required.

➤ Controls—The root element.

➤ Control—The information required to support a custom control.

Attributes:

➤ Type—The custom control’s full type including wrapping namespaces,
for example, System.Windows.Forms.CustomCheckBox.

Chapter 5 • Configuring QuickTest to Use the Custom Server

37

➤ MappedTo (optional)—A QuickTest test object class that has similar
behaviors your Custom Server will inherit.

➤ Settings—This element is generally a collection of Parameter elements. It
has two uses. For .NET DLL Custom Servers, the element is optional.

The first use is to pass information for the internal use of your Custom
Server. This use is optional. You can use the Parameters for any purpose
appropriate to your application. You may also use a different structure—you
are not bound to a collection of Parameters. However, if you use a different
structure you must parse it yourself in code, whereas the collection of
Parameters structure has straightforward support in the API.

The second use is required when extended control support is implemented
with XML, and you must use the collection of Parameters structure. The full
path and name of the XML file containing the implementation of the
extended control support is passed in a Parameter where the Name attribute
is ConfigPath and the value of the element is the file path name.

➤ Parameter—A value to be passed to the Custom Server at run time.

➤ Name—The name of the Parameter.

➤ CustomRecord—The information required for the Test Record.

➤ CustomReplay—The information required for the Test Run.

The CustomRecord and CustomReplay nodes both contain a Component
node. Not all Component sub-elements apply to both processes.

➤ Component—The Custom Server component data.

➤ Context—The Custom Server run-time context and the coding option.
There are three options:

➤ AUT—The run-time context is the Application under test process. The
support is implemented as a .NET .DLL Custom Server.

➤ QTP—The run-time context is the QuickTest process. The support is
implemented as a .NET DLL Custom Server.

➤ AUT-XML—The run-time context is the Application under test process.
The support is implemented in an XML file.

Chapter 5 • Configuring QuickTest to Use the Custom Server

38

➤ DllName—The filename of the DLL in which the user’s class type is defined.
Applies to the .NET DLL coding option only. There are two formats for
identifying the assembly:

➤ The full path and file name.

➤ If the Custom Server assembly is installed in the global assembly cache
(GAC), pass the type name with the standard syntax, for example:

myQTCustomServer
or

myQTCustomServer, Version=1.0.1234.0
or

myQTCustomServer, Version=1.0.1234.0, Culture="en-US",
PublicKeyToken=b77a5c561934e089c

➤ TypeName—The name of the type created by the Custom Server, including
wrapping namespaces. Applies to the .NET DLL coding option only.

Example of a Configuration XML File

Following is an example of a file that configures QuickTest to recognize two
controls.

Support for the CustomMyListView.CustListView control is implemented in
a .NET DLL Custom Server. MyListView is mapped to the SwfListView test
object, and runs in the Application under test context. The Custom Server is
not installed in the GAC.

Support for the mySmileyControls.SmileyControl2 control is implemented
in an XML file.

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control
Type="MyCompany.WinControls.MyListView “
MappedTo="SwfListView" >

<CustomRecord>
<Component>

<Context>AUT</Context>
<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>

Chapter 5 • Configuring QuickTest to Use the Custom Server

39

<TypeName>CustomMyListView.CustListView</TypeName>
</Component>

</CustomRecord>

 <CustomReplay>
 <Component>

<Context>AUT</Context>

<DllName>C:\MyProducts\Bin\CustomMyList View.dll</DllName>
<TypeName>CustomMyListView.CustListView</TypeName>

</Component>
</CustomReplay>

<Settings>
<Parameter Name="sample name">sample value</Parameter>

</Settings>
</Control>

<Control Type="mySmileyControls.SmileyControl2">
<Settings>

<Parameter Name="ConfigPath">d:\Qtp\bin\ConfigSmiley.xml
</Parameter>

</Settings>

 <CustomRecord>
<Component>

<Context>AUT-XML</Context>

</Component>
</CustomRecord>

 <CustomReplay>
 <Component>

<Context>AUT-XML</Context>

</Component>
</CustomReplay>

</Control>
</Controls>

Chapter 5 • Configuring QuickTest to Use the Custom Server

40

41

6
Step-by-Step Tutorial

In this tutorial, you will learn how to build a Custom Server for a Microsoft
TrackBar control that enables QuickTest Professional to record and run a
SetValue operation on the control.

This chapter describes:

➤ Creating a New Custom Server Project

➤ Implementing Test Record Logic

➤ Implementing Test Run Logic

➤ Configuring QuickTest Professional

➤ Testing the Custom Server

➤ Understanding the TrackBarSrv.cs File

Creating a New Custom Server Project

The first step in creating support for the TrackBar control is to create a new
Custom Server project.

To create a new Custom Server project:

 1 Open Microsoft Visual Studio .NET.

Chapter 6 • Step-by-Step Tutorial

42

 2 Select File > New > Project. The New Project dialog box opens.

 3 Specify the following settings:

➤ Select Visual C# Projects in the Project Types list.

➤ Select QuickTest CustomServer in the Templates pane.

➤ In the Name box, specify the project name QTCustServer.

➤ In the Location box, specify the location in which to save your project.

➤ Accept the rest of the default settings.

Chapter 6 • Step-by-Step Tutorial

43

 4 Click the OK button. The QuickTest Custom Server Settings wizard opens.

 5 In the Application Settings page, specify the following settings:

➤ In the Server class name box, enter TrackBarSrv.

➤ Select the Customize Record process check box.

➤ Select the Customize Run process check box.

➤ Accept the rest of the default settings.

Chapter 6 • Step-by-Step Tutorial

44

 6 Click Next. The XML Configuration Settings page opens.

 7 In the XML Configuration Settings page, specify the following settings:

➤ Make sure the Auto-generate the XML configuration segment check box
is selected.

➤ In the Customized Control type box, enter
System.Windows.Forms.TrackBar.

➤ Accept the rest of the default settings.

Chapter 6 • Step-by-Step Tutorial

45

 8 Click Finish. In the Class View window, you can see that the wizard created a
TrackBarSrv class derived from the CustomServerBase class and
ITrackBarSrvReplay interface.

Implementing Test Record Logic

You will now implement the logic that records a SetValue(X) command
when a ValueChanged event occurs, using an event handler function.

To implement the Test Record logic:

 1 Right-click the TrackBarSrv class name in the Class View window and select
Add > Add Method.

Chapter 6 • Step-by-Step Tutorial

46

The C# Add Method Wizard opens.

 2 Use the C# Add Method Wizard to add a new method with the following
signature:

public void OnValueChanged(object sender, EventArgs e) { }

Note: Alternatively, you can add the new method manually without using
the C# Add Method Wizard.

 3 Add the following implementation to the function we just added:

public void OnValueChanged(object sender, EventArgs e)
{
 System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)sender;
 // get the new value
 int newValue = trackBar.Value;

Chapter 6 • Step-by-Step Tutorial

47

 // Record SetValue command to the test script
 RecordFunction("SetValue", RecordingMode.RECORD_SEND_LINE,
newValue);
}

 4 Register the OnValueChanged event handler for the ValueChanged event,
by adding the following code to the InitEventListener method:

public override void InitEventListener()
{
 Delegate e = new System.EventHandler(this.OnValueChanged);
 AddHandler("ValueChanged", e);
}

Implementing Test Run Logic

You will now implement a SetValue method for the test or business
component Test Run.

To implement the Test Run logic:

 1 Add the following method definition to the ITrackBarSrvReplay interface:

[ReplayInterface]
public interface ItrackBarSrvReplay
{
 void SetValue(int newValue);
}

 2 Add the following method implementation to the TrackBarSrv class:

public void SetValue(int newValue)
{
 System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)SourceControl;
 trackBar.Value = newValue;
}

 3 Build your project.

Chapter 6 • Step-by-Step Tutorial

48

Note: You can see the full source code of the TrackBarSrv class in
“Understanding the TrackBarSrv.cs File” on page 50.

Configuring QuickTest Professional

Now that you have created the QuickTest Custom Server, you need to
configure QuickTest Professional to use this Custom Server when recording
and running tests on the TrackBar control.

To configure QuickTest Professional to use the Custom Server:

 1 In the Solution Explorer window, click the Configuration.XML file.

The following content should be displayed:

<!-- Merge this XML content into file "<QuickTest Professional>\dat\
SwfConfig.xml". -->
<Control Type="System.Windows.Forms.TrackBar">

<CustomRecord>
<Component>

<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>

Chapter 6 • Step-by-Step Tutorial

49

</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomReplay>
<!--<Settings>

 <Parameter Name="sample name">sample value</Parameter>
</Settings> -->

</Control>

 2 Select the <Control>…</Control> segment and select Edit > Copy from the
menu.

 3 Open the SwfConfig.xml file located in <QuickTest Professional installation
folder>\dat.

 4 Paste the <Control>…</Control> segment you copied from
Configuration.xml into SwfConfig.xml, under the <Controls> tag in
SwfConfig.xml. After you paste the segment, the SwfConfig.xml file should
look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Controls>

<Control Type="System.Windows.Forms.TrackBar">
<CustomRecord>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>
<TypeName>QTCustServer.TrackBarSrv</TypeName>

</Component>
</CustomRecord>
<CustomReplay>

<Component>
<Context>AUT</Context>
<DllName>D:\Projects\QTCustServer\Bin\QTCustServer.dll

</DllName>

Chapter 6 • Step-by-Step Tutorial

50

<TypeName>QTCustServer.TrackBarSrv</TypeName>
</Component>

</CustomReplay>
</Control>

</Controls>

 5 Make sure that the <DllName> elements contain the correct path to your
Custom Server DLL.

 6 Save the SwfConfig.xml file.

Testing the Custom Server

You can now check that QuickTest records and runs tests or components as
expected on the custom TrackBar control.

To test the Custom Server:

 1 Open QuickTest Professional with the .NET Add-in loaded.

 2 Start recording on a .NET application with a
System.Windows.Forms.TrackBar control.

 3 Click the TrackBar control. QuickTest should record commands such as:

SwfWindow("Form1").SwfObject("trackBar1").SetValue 2

 4 Run the test. The TrackBar control should receive the correct values.

Understanding the TrackBarSrv.cs File

Following is the full source code for the TrackBarSrv class.

using System;
using Mercury.QTP.CustomServer;

namespace QTCustServer
{

[ReplayInterface]
public interface ITrackBarSrvReplay
{

Chapter 6 • Step-by-Step Tutorial

51

void SetValue(int newValue);
}
public class TrackBarSrv:

CustomServerBase,
ITrackBarSrvReplay

{
public TrackBarSrv()
{
}

public override void InitEventListener()
{

Delegate e = new System.EventHandler(this.OnValueChanged);
AddHandler("ValueChanged", e);

}

public override void ReleaseEventListener()
{
}

public void OnValueChanged(object sender, EventArgs e)
{

System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)sender;

int newValue = trackBar.Value;
RecordFunction("SetValue",

RecordingMode.RECORD_SEND_LINE,
newValue);

}

public void SetValue(int newValue)
{

System.Windows.Forms.TrackBar trackBar =
(System.Windows.Forms.TrackBar)SourceControl;

trackBar.Value = newValue;
}

}
}

Chapter 6 • Step-by-Step Tutorial

52

Index
A

API overview 26
Application under test run-time context 5,

25
Assistant classes 6, 25

C

C# project template
installing 9
uninstalling 11

coding options 4
Component, Configuration XML tag 37
Configuration XML file

example 38
configuration XML file 36
configuring the Custom Server 35
Context, Configuration XML tag 37
Control Definition XML file

example 33
explaining 30

control events 25
Control, Configuration XML tag 36
Controls, Configuration XML tag 36
Cross-Process methods 27
Custom Server 2

configuring 35
installing template 9
mapping 7, 18, 23
uninstalling template 11

CustomAssistantBase class 25
Customization, Control Definition XML tag

31
customizing

Test Record 16
Test Run 17
XML configuration 17

CustomRecord, Configuration XML tag 37
CustomReplay, Configuration XML tag 37

D

DllName, Configuration XML tag 38
documentation

updates ix

E

enabled, Event Control Definition XML tag
attribute 31

Event, Control Definition XML tag 31
Events, Control Definition XML tag 31
EventsListenerBase class 20

I

installation, requirements 10
installing Custom Server template 9
InstWizard.msi file 10
IRecord interface 19

L

listening to control events 25

M

MappedTo, Control Configuration XML tag
attribute 37

mapping 7, 18, 23
Method, Control Definition XML tag 32
MethodBody, Control Definition XML tag

32
53

Index
methods
Cross-Process 27
Test Record 26
Test Record Callback 26
Test Run 26

Methods, Control Definition XML tag 32

N

name
Event Control Definition XML tag

attribute 31
Method Control Definition XML tag

attribute 32
Parameter Control Definition XML

tag attribute 32
RecordedCommand Control

Definition XML tag attribute 31
Name, Parameter Configuration XML tag

attribute 37
.NET DLL Custom Server

creating 14
introduction 13

P

Parameter
Configuration XML tag 37
Record element Control Definition

XML tag 31
Run element Control Definition XML

tag 32
Parameters, Control Definition XML tag 32

Q

QuickTest Custom Server Wizard 16
QuickTest run-time context 5
QuickTest, configuring to use Custom Server

35
QuickText Custom Server 10

R

Record
Control Definition XML tag 31
customizing 16

Record (continued)
implementing with a .NET DLL 19

RecordedCommand, Control Definition
XML tag 31

Replay, Control Definition XML tag 32
ReplayInterface 24
requirements, installation 10
Run

customizing 17
implementing with a .NET DLL 23

run-time contexts 5
Application under test 5, 18
guidelines 6
QuickTest 5, 18

S

Settings, Configuration XML tag 37
SwfConfig.xml file 36
SwfObject 24
SwfObject test object 7

T

template
installing Custom Server 9
uninstalling Custom Server 11

test object mapping 7, 18, 23
test object methods, writing to the script 23
Test Record

customizing 16
implementing with a .NET DLL 19

Test Record Callback methods 26
Test Record methods 26
Test Run

customizing 17
implementing with a .NET DLL 23

Test Run methods 26
tutorial 41
Type, Control Configuration XML tag

attribute 36
type, Parameter Control Definition XML tag

attribute 32
TypeName, Configuration XML tag 38
typographical conventions viii
54

Index
U

uninstalling Custom Server template 11
updates, documentation ix

X

XML configuration, customizing 17
XML Custom Server 29
XML file

Configuration 38
55

Index
56

	Mercury QuickTest Professional .NET Add-in Exensibility Guide
	Table of Contents
	Who Should Read this Guide
	Using This Guide
	Typographical Conventions
	Documentation Updates

	Introducing QuickTest Professional .NET Add-in Extensibility
	Understanding .NET Add-in Extensibility
	Understanding Coding Options-.NET DLL and XML
	Understanding Custom Server Run-Time Contexts
	Understanding Test Object Mapping

	Installing the Custom Server C# Project Template
	Before You Install
	Running the Installation Program
	Uninstalling the Project Template

	Using a .NET DLL to Extend Support for a Custom Control
	About Using a .NET DLL to Extend Support for a Custom Control
	Creating a Custom Server
	Using the XML Configuration Segment
	Implementing Test Record for a Custom Control Using the .NET DLL
	Implementing Test Run for a Custom Control Using the .NET DLL
	Running Code under Application Under Test from the QuickTest Context
	API Overview

	Using an XML File to Extend Support for a Custom Control
	About Using an XML File to Extend Support for a Custom Control
	Understanding the Control Definition XML File
	Example of a Control Definition XML File

	Configuring QuickTest to Use the Custom Server
	About Configuring QuickTest to Use the Custom Server
	Understanding the QuickTest System Windows Forms Configuration File

	Step-by-Step Tutorial
	Creating a New Custom Server Project
	Implementing Test Record Logic
	Implementing Test Run Logic
	Configuring QuickTest Professional
	Testing the Custom Server
	Understanding the TrackBarSrv.cs File
	Index

