
Page 1 of 43

White Paper : Network Node Manager 7.x and MC/ServiceGuard

The purpose of this document is to present the issues and methodology for improving the availability of
network management using Hewlett-Packard's OpenView Network Node Manager (NNM) together with
MC/ServiceGuard. Two approaches are provided for implementation: a MxN setup and conventional
setup. Concepts of MxN are provided later in the document.

 The primary goal from an HP perspective is to increase the availability of mission critical applications
when compared to standard availability, but to do so at a reasonable cost. It is important to first
understand that the fundamental architecture and databases of NNM have not changed. The conditions
under which it was possible to have a corrupted NNM database will exist in the new configuration with
MC/ServiceGuard. While a system crash will force the migration of the NNM processes to the surviving
system, the crash can still potentially corrupt an NNM database. User precautions and backup techniques
previously employed to recover from a corrupt database are still applicable in an NNM configuration with
MC/ServiceGuard..

MC/ServiceGuard is only available on HP9000 Series 800 Servers. The configuration information is only
applicable to those systems. MC/ServiceGuard information is not applicable to NNM on Series 700
Workstations, SUN Solaris and NT.

In addition, these notes do not address the issue of combining an MC/ServiceGuard configuration of
NNM with an MC/ServiceGuard configuration of IT/Operations.

NNM distributed consoles are supported as part of the NNM MC/ServiceGuard enhancements. They are
implemented using a combination of MC/ServiceGuard NFS package configuration and a new version of
ovw, run on the client, called ovwrs. The details of implementing management consoles are discussed
later in the ‘Implementation Notes for Network Node Manager and MC/ServiceGuard’. Users must work
with their OpenView Solution Partners to determine whether their NNM applications will function with
NNM in an MC/ServiceGuard configuration and whether their NNM applications can also be configured
with MC/ServiceGuard. To ensure a common understanding a brief discussion of the concepts of High
Availability and the features and functions of MC/ServiceGuard is provided below. The paper continues
with a description of implementing Network Node Manager with MC/ServiceGuard. The description is
only provided as a guideline. Special customization is left to the user. The methodology can be applied
to either a new installation or an existing configuration. A current implementation of Network Node
Manager with all its user and map customizations can be migrated to an MC/ServiceGuard configuration.
As always, the user is advised to backup their system and NNM configuration before proceeding with any
upgrade.

The terms package and instance mean the same in this document and could be interchanged as applicable.

It should be noted that NetComplete 4.0, which NNM 7.5 is a component, is now HA-compliant. Support
has been given to run NetComplete 4.0 (Extended Topology 4.0) on HA systems.

An Overview of High Availability
Hewlett-Packard's High Availability (HA) solutions seek to reduce the number and length of business
application downtime by providing redundant hardware and rapid failover capabilities. HP's HA
solutions address the issue of single points of failure (SPOFs) of the system and environment where the
failure of any item may cause the entire system to become unavailable. Availability typically does not
take into account planned downtime.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 2 of 43

Examples of SPOFs include SPU (system processing unit), disks and disk controllers, LAN interface
cards and cables, and power connection. These potential SPOFs are removed by clustering SPUs,
mirroring and/or using RAID technology, providing redundant LAN interface cards, and attaching UPSs
to the system. Clustering also facilitates rolling OS and application upgrades. HA solutions cannot
protect against some failures such as bugs in applications and OS panics.

It should be noted that HP's HA solution MC/ServiceGuard does not provide customers with a
continuously available system. For futher discussion on levels of availability please see Clusters for High
Availability: a Primer of HP-UX Solutions by Peter Weygant, Prentice-Hall, 1996.

An Overview of Network Node Manager and MC/ServiceGuard
The following description is only provided as a brief outline of the features, functions and capabilities of
MC/ServiceGuard. MC/ServiceGuard should only be implemented after thorough training.
MC/ServiceGuard is a high availability solution that monitors system, process and LAN failures.
MC/ServiceGuard supports a configuration of up to 8 systems. However, for the purposes of this paper
only a configuration of two systems is considered. The solution is designed around the concept of
moving the service point from one system to another. In the event of a failure on one system, the
designated processes and LAN connection are moved to a standby (failover) system. To provide access
to the applications/processes regardless of the system on which they are running a relocatable IP address
is assigned to each set of application resources grouped into an MC/ServiceGuard package. In this case,
Network Node Manager processes and volatile data are the package. NNM will use the relocatable IP
address to monitor the network and interact with NNM Collection Stations. If the primary system fails,
the backup system acquires the relocatable IP address of NNM, activates the shared disks and starts the
NNM processes. The shared disks are only accessed by one system at a time (primary or standby
system), even though the disks are connected to both systems.

 MC/ServiceGuard ensures that the NNM package will run on only one system at a time. The cluster will
automatically reconfigure itself when it detects that a system has gone down. Heartbeat messages are
exchanged between the primary and failover systems to monitor each other's health. If the two systems
cannot communicate with each other via heartbeat messages, the cluster will reform automatically. Each
system will attempt to obtain the lock on the designated cluster lock disk (see the MC/ServiceGuard
manual for more information on the definition and use of a cluster lock disk). Whichever system gains
control of the cluster lock disk will reform itself as a one-system cluster. The other system will crash
immediately to prevent two servers from running NNM concurrently.

Package switching occurs when a failure (an interruption of the execution of the NNM package and
services, regardless of whether the system continues running) is detected. It is a feature of
MC/ServiceGuard that no more than one minute will pass between the detection of a failure and the start
of the NNM package's startup scripts on another available system. The time for all the NNM services to
be running is dependent on the condition of the NNM database and the normal startup associated with
NNM. The NNM package can fail over from either the designated primary system to the designated
standby system or vice versa. Refer to the MC/ServiceGuard manual for the details and conditions for
automated failover. As stated earlier, if the primary system fails NNM will restart on the standby system.
The NNM package will not automatically fail back to the primary system when that system is repaired.
Fail back is the responsibility of the administrator of the cluster. Fail back is usually performed during
off-hours to minimize interruption of NNM monitoring. Alternatively, NNM can be left running on the
standby system. This will effectively reverse the roles of the systems.

When the NNM package is started on either system or is restarted on either system after a failure, NNM
daemons are started as they would at boot time on servers not running NNM under MC/ServiceGuard.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 3 of 43

Neither MC/ServiceGuard nor NNM require that the two systems have similar values for date and time.
However, different time settings may increase the difficulty of debugging the MC/ServiceGuard log files.
In addition, NNM puts time stamps into its database files. Different time settings may negatively impact
NNM synchronization. For these reasons the use of Network Time Protocol is highly recommended.

MC/ServiceGuard provides a Cluster Manager SNMP subagent. Whenever a cluster is monitored by
NNM (whether or not NNM is running on that cluster), this subagent should be enabled on each node in
the cluster. This subagent provides NNM with additional information to handle the floating IP address.
The subagent is enabled by editing the file /etc/rc.config.d/cmsnmpagt and started by
/sbin/init.d/cmsnmpagt. Start the SNMP master agent (/usr/sbin/ snmpdm) before the subagent.

Implementation notes for standard two node configuration:
These implementation notes assume the reader is familiar with HP-UX system administration, Logical
Volume Manager, MC/ServiceGuard and Network Node Manager. Sample NNM MC/ServiceGuard
configuration files are provided in the Appendix of this paper.

Install NNM on both systems in the cluster. Alternatively, it is possible to maintain a single set of NNM
executables in /opt/OV that is shared between the two systems. With NNM version 7.x, a single license is
available which is shared by all instances of NNM. This license is bound to the floating IP address,
specified in the NNM_INTERFACE field of the ov.conf file.

NNM should be started and tested on both of the systems at this time. This will ensure that NNM is
properly installed on each system. Any NNM discovery or map customization can be done on one system
at this time without compromising moving the configuration under MC/ServiceGuard. This also implies
that a current implementation of Network Node Manager can be upgraded to an MC/ServiceGuard
configuration. Alternatively, the customization can be done after moving to an MC/ServicGuard
configuration. Before proceeding stop the NNM daemons on both systems. NNM operators defined or
planned for on one system must be defined on both systems with the same user and group IDs.

The data in /etc/opt/OV/share and /var/opt/OV/share must be available on all the systems in the cluster
depending on the type of implementation (described later in the document) of the NNM package. A
volume group and two logical volumes must be created on a shared disk. This disk can also serve as the
cluster lock disk. The sizes of these two file systems depend on the configuration. Refer to the “NNM
Performance and Configuration Guide” for assistance in this area. These new file systems can be HFS or
JFS. JFS file systems are recommended for High Availability configurations, but are not required. It is
beyond the scope of this paper to describe the performance differences between these two file system
types when used for the NNM data files.

The following procedure is done on the primary system unless otherwise noted. After creating the
volume group and file systems and stopping the NNM daemons copy the contents of the two file systems
noted earlier to the shared file systems. This copy is done on only one system. Retain file ownership and
permissions when doing the copy. The original contents of /etc/opt/OV/share and /var/opt/OV/share can
now be deleted. (Note: Had these shared file systems been mounted, NNM could have been installed
directly into these shared file systems.) Unmount the shared file systems and remount them on
/etc/opt/OV/share and /var/opt/OV/share. Restart the NNM daemons to ensure that NNM is still properly
functioning. Unmount the shared file systems and deactivate the shared volume group. The original
contents of /etc/opt/OV/share and /var/opt/OV/share on the second system can now be deleted. Import
the volume group information onto the second system in the cluster. Do NOT attempt to manually
activate the shared volume group, mount the shared file systems and try to run NNM on the second
system at this time.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 4 of 43

A new configuration file (ov.conf) has been added to NNM. This file is applicable to MC/SG and non-
MC/SG configurations. This paper only addresses the use of this file in an MC/SG environment. Copy
the sample file provided in the patch from /opt/OV/newconfig/OVNNM-RUN/conf/ov.conf to
/etc/opt/OV/share/conf/ov.conf. Sample configurations of this file is provided in the Appendix E.

Note: If the ov.conf file does not exist, then NNM reverts to its default behavior.

Edit the authorization files /etc/opt/OV/share/conf/ovw.auth, /etc/opt/OV/share/conf/ovwdb.auth and
/etc/opt/OV/share/conf/ovspmd.auth to contain entries for both systems in the cluster and the relocatable
IP address name. If LOOPBACK is enabled in ov.conf, then entries for localhost, loopback and loghost
must also appear in the authorization files.

Create the MC/ServiceGuard cluster configuration file. A sample cluster configuration file is provided in
the Appendix. The cluster configuration file must contain a minimum of two (three are recommended)
LAN definitions. Edit the other parameters in the file as normally done for a MC/ServiceGuard
configuration.

Create the NNM package configuration file. At this time NNM does not require any special naming
convention for the package name or package services. A sample package configuration file is provided in
the Appendix B. The sample file contains a single service definition. This service is used to monitor the
NNM daemons. While a service is recommended it is not a requirement for a successful implementation.
The sample file also defines a network for MC/ServiceGuard to monitor. While monitoring the health of
the network is recommended it is not a requirement. If this network is unavailable to the system running
NNM, the NNM package will gracefully fail over (an ovstop is executed to halt the NNM processes) to
the other system (provided it has current access to that network). If neither system has access to the
network, the NNM package will gracefully shut down and would restart on gaining access to the network.

Note: if NNM management consoles are used, an NFS service definition should be added to the package
configuration file as well and the suggested modifications to be made are defined later in this whitepaper.

Create the NNM run/halt script. A sample script is provided in the Appendix C. Use the volume group
and file systems described earlier in this paper. Define the relocatable IP address. This must be on the
same network defined in the NNM package definition file and must resolve to the same DNS name used
in the /etc/opt/OV/share/ conf/ov.conf file described earlier. Add the commands:

cp /etc/opt/OV/share/conf/ov.conf.`hostname` /etc/opt/OV/share/conf/ov.conf
/opt/OV/bin/ovstart –v

to the customer_defined_run_cmds function. The verbose option of ovstart is recommended for debug
and troubleshooting but is not required. Add the commands

/opt/OV/bin/ovstop –v
rm /etc/opt/OV/share/conf/ov.conf
rm /var/opt/OV/share/databases/openview/ovwdb/ovserver

to the customer_defined_halt_cmds function. The verbose option of ovstop is recommended for debug
and troubleshooting but is not required. The removal of the two files is not required, but may facilitate
running NNM outside of MC/ServiceGuard. Complete the service definition if a service was defined in
the package configuration file.

A sample service monitor script is provided in the Appendix D. Defining one restart of the service is
recommended but is not required. The service monitor script checks for the presence of a maintenance
file. This is helpful for troubleshooting or making modifications to files in the shared file system. When
/tmp/maint_NNM exists, NNM can be safely stopped and restarted without MC/ServiceGuard attempting

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 5 of 43

to restart stopped processes. If a maintenance file is created be sure to delete the file after the
modifications are made.

The sample service monitor script checks all the major NNM background daemons. If a daemon is not
running the script will attempt to restart it. The ovstart command in this case will only start daemons that
are not running; this will not affect running daemons. After the restart, if there are NNM daemons that
still are not running, the script will exit. MC/ServiceGuard will either restart the service monitor or
gracefully fail over the NNM package to the other system depending on the service definition.
Remember to copy this file to both systems in the cluster. Also ensure that the executable properties of
the file are retained.

Important note: If management consoles are to be used, then the Package script should contain the
appropriate NFS directives for exporting the server-shared file systems to the appropriate client machines.
and the purchase of the MC/ServiceGuard NFS Toolkit is highly recommended. This toolkit contains all
the necessary scripts for implementing HA NFS within the cluster. In addition, only a single package in a
cluster may be configured with NFS. The processes rpc.statd and rpc.lockd are killed and restarted when
the package configured with NFS halts. This will impact any other applications or packages using NFS
processes. See the MC/ServiceGuard manual for more details. Refer to the section later in the document
indicating the suggested changes to be made in the package configuration and control scripts . When
management consoles are used, ovwrs instead of ovw should be run on the client. ovwrs will detect a loss
of connection to the server, as would be the case if the package failed between cluster nodes. When the
connection to the server is restored ovwrs will restart the ovw session, including the original map if a map
is specified in the parameter list when ovwrs is invoked. The ovw session will restart with the configured
home submap and not the open submap at the time of the failure. For more information see the ovwrs(1)
man page.

The run/halt script should also contain scripting for the start and stop of the NFS processes.
When configuring the NNM management consoles, outside of the special considerations for
MC/ServiceGuard, all other management console configuration procedures should be followed. Lastly,
when mounting the NFS exported directories, use the floating IP address and/or hostname associated with
this address, rather than the hostname associated with the static IP address. When ovw -server is run on
the client, it should return the name of the floating IP address.Use cmcheckconf and cmapplyconf to check
and create the cluster configuration binary file and distribute it to the systems in the cluster. If there are
no errors, execute cmruncl to start the cluster.

Maintenance Notes for Network Node Manager and MC/ServiceGuard:
Rolling upgrades of the Operating System, Network Node Manager and MC/ServiceGuard are supported.
As always be sure a backup is done before the upgrade. Most NNM patches do not directly affect the
files in the shared file systems. However, when applying NNM patches check the log files for errors and
warnings. If possible, each system should be patched when the shared file systems are mounted and the
NNM daemons are not running (i.e., the NNM package is running in maintenance mode, but the NNM
processes are stopped). The following sequence may be used when patching NNM:
 Touch /tmp/maint_NNM
 Stop all ovw sessions
 Stop NNM daemon processes
 Remove the ov.conf file
 Remove the ovserver file
 Install the patch
 Restore the applicable ov.conf file for that server
 Restart the NNM daemon proceses

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 6 of 43

 Remove /tmp/maint_NNM
 Known Issues for Implementing a Single Set of Binaries
The nettl process, which is started at system boot time, has a dependency on /opt/OV/lib/libovextfmt.sl. If
the NNM binaries are relocated to the shared disk, then this library will not be available at system boot
time. As a result, nettl fails to start.

Of the possible options for working around this problem, Hewlett-Packard recommends moving this
library to /usr/lib on the system’s local disk. After moving the library to /usr/lib update the NNM entries
in /etc/nettlgen.conf to indicate the new path to this library:

SS:82:OVS:13:u:/usr/lib/libovextfmt.sl:NULL:ss84fmt::OpenView
SS:84:OVEXTERNAL:12:u:/usr/lib/libovextfmt.sl:NULL:ss84fmt::OpenView
SS:80:OVW:12:u:/usr/lib/libovextfmt.sl:NULL:ss84fmt::OpenView
SS:85:OVWAPI:12:u:/usr/lib/libovextfmt.sl:NULL:ss84fmt::OpenView

NNM 7.x considerations
The modifications that affect MC/ServiceGuard in migrating to 7.5 are:

Daemons: ovuispmd, ovalarmsrv, httpd
 The file ovpause.lock
 Elimination of ovwsessions and ovwlistsessions
 Web access
 Licensing
 DynamicView user credential informations
If using the monitor script, the new daemons should be added. See the MUSTRUN variable in the
monitor example below.

With the advent of ovpause and ovresume, a file, /var/opt/OV/tmp/ovpause.lock, will be created when a
pause (ovpause command) is done. It is possible that in the event of a system failure, the file might still
exist, which would bring up the NNM daemons in a paused state the next time that they are started on that
system. To eliminate this possibility, there should be a check for this file when the package is run and the
halting of the package should remove the file. See the example template for the halt and run commands
below.

In the past, the mechanism to stop ovw sessions was to use ovwlistsessions and ovwsessions. This was
recommended as part of the halt script for the package. With NNM 7.5, these are not needed as the
shutting down of the ovw sessions is controlled by ovuispmd.

For web access, there is a configuration file, /opt/OV/httpd/conf/httpd.conf, which will specify the server
name as the physical nodename when the installation is done. For MC/ServiceGuard, the physical
nodename should be changed to the fully-qualified logical nodename for the following lines:
 ServerAdmin root@spike.hp.com
 ServerName spike.hp.com
(spike.hp.com is the fully-qualified logical nodename). For client applications, web access should be
done using the logical nodename for all operations.

A single license can now be shared by all instances of NNM installed on the cluster nodes. This license is
bound to the floating IP address, specified in the NNM_INTERFACE field of the ov.conf file. Prior to
NNM version 6.x, a nodelock license was required for each of the cluster nodes on which NNM was
installed.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 7 of 43

DynamicView user credentail informations are stored under $OV_AS/webapps/topology/WEB-
INF/dynamicViewsUsers.xml file. As this resides under /opt/OV, it is not transferable between the
clusters. It is always recommended to manually maintain such files.

NNM 7.5 considerations
The NNM 7.5 reporting component, which requires additional configuration steps to run in a
ServiceGuard environment. This section assumes that the previous steps to configure NNM in the
ServiceGuard cluster have already been performed.

For the report scheduler daemon (ovrequestd), data in the /var/opt/OV/analysis/ovrequestd directory must
be available to both systems in the cluster. Be sure to do an "ovstop" before performing this step. The
easiest way to do this is to move this directory from the primary system to /var/opt/OV/share/ovrequestd
on the shared file system, delete /var/opt/OV/analysis/ovrequestd on the secondary system, and then
create a symbolic link from the new directory /var/ opt/OV/share/ovrequestd back to
/var/opt/OV/analysis/ovrequestd on each system. Reports can be configured on the primary system either
before or after the move, since all report configurations will be stored under /var/opt/OV/anal-
ysis/ovrequestd. Logging by ovrequestd will be performed locally to /var/opt/OV/log/ovrequestd.log for
debugging purposes. Reports are stored in /var/opt/OV/www/htdocs. If there is a desire to see past reports
from both systems after a failover, or if the systems are to be kept consistent, this directory must be
shared by both systems and therefore mounted by the package, along the same lines as /var/opt/OV/share
and /etc/opt/OV/share. The following procedure is done on the primary system unless otherwise noted.
After creating the volume group and file system and stopping the NNM daemons, copy the contents of
/var/opt/OV/www/htdocs to the shared file system. This copy is done on only the primary system. Retain
file ownership and permissions when doing the copy. The original contents of /var/ opt/OV/www/htdocs
can now be deleted. Unmount the shared file system and remount it on /var/opt/OV/www/htdocs. Restart
the NNM daemons to ensure that NNM is still properly functioning. Unmount the shared file systems
and deactivate the shared volume group. The original contents of /var/opt/OV/www/htdocs on the second
system can now be deleted. Import the volume group information onto the second system in the cluster.
Do NOT attempt to manually activate the shared volume group; mount the shared file systems and try to
run NNM on the second system at this time.

NNM 7.5 / NC 4.0 considerations

Some of the older versions of NetComplete did not support HA environments. While the NNM
component of this did, the Extended Topology component was not qualified. With NetComplete 4.0, the
Extended Topology component was qualified, so it is now supported.

To operate the Extended Topology component in the HA environment, there is only one additional step to
the configuration for NNM. The file, /etc/opt/OV/share/conf/remoteConfAllow.conf, needs entries for
the IP addresses for cluster nodes and external web browsers that will access the views.

For NNM 7.5, there was the support of AutoPass, the latest licensing technology for NNM. Of key
interest for the HA environment is that this technology is not HA-compliant in two modes. First, the
licenses reside in a file /var/opt/OV/HPOvLIC/LicFile.txt. Some licenses are the newer OvKey4 license
format with NNM using OvKey3, so these licenses have to be converted back to OvKey3 for NNM’s
usage. For NNM and older applications, these licenses are converted or copied back to the
$OV_CONF/.license file for usage.

Overall, this does not appear to be a problem for NNM and most applications, but some applications
expect that the LicFile.txt file and the .license file contain the same licenses. As newer products roll out,
more will have the issue that the LicFile.txt file between cluster nodes might not be in sync. Given this, it

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 8 of 43

is recommended that all licenses tied to package IP addresses be stored in a single file, and this be used to
populate the LicFile.txt files on each system. If new licenses are being added, then the added licenses
should be distributed to all systems by merging the existing licenses and the license file, removing
duplicates, and then copying this information into the LicFile.txt if they apply to a HA package. A simple
model of this is:

cat /var/opt/OV/HPOvLIC/LicFile.txt <common license file> | sort –u > /tmp/licenses.HA

cp /tmp/licenses.HA /var/opt/OV/HPOvLIC/LicFile.txt

If such licenses do not show up in the $OV_CONF/.license file, then running ovnnmInstallLic –migrate
will correct this.

The second problem with AutoPass is that it is now the model for requesting licenses. While
ovnnmPassword still exists, it now uses the AutoPass GUI interface for requesting licenses. The request
interface of AutoPass, however, does not acknowledge HA systems. If licenses are being requested for
floating IP addresses, the user must click on the “No Internet Connection” radio button when requesting
the license, accept the physical IP address for the license, and save the license information to a file. After
saving the license information to a file, the file can be edited to change the IP address to the floating IP
address as needed. This can then be faxed or e-mailed to HP for processing.

Upon receiving the licenses, it is recommended that these be installed using ovautoLic –import. It is
possible that some licenses might be the new OvKey4 format, and only AutoPass understands these. As
part of the import process, these licenses will be copied or converted back into the $OV_CONF/.license
file.

Running Multiple Instances of NNM in the cluster environment :Note: The essential part
here is to understand that there are other ways of implenting the MxN setup and it is upto the user to
decide on the configuration that is most suitable for the intended environment. The setup of MxN means
M+N number of systems are participating in the cluster, where M instance of NNM are running in M
systems, and N number of adaptive systems are designated. In this setup, typically N is less than or equal
to M and thus N out of M NNM instance can failover to N adaptive systems in the cluster. During the
failover scenario, any instance of NNM can failover to any adaptive system and this is purely incidental
and non deterministic. So, From the standpoint of the adaptive systems, this leads to a situation of more
than one instance of NNM trying to failover to one adaptive system. This is described as n:1 resource
sharing/contention problem, where ‘n’ number of instances that are trying to occupy one adaptive
system. So, if this n:1 resource contention problem is avoided, the configuration of MxN NNM in an
MC/SG cluster becomes practical.

The MxN and n:1 systems could be well understood if we consider the following example of 3x2
set up. Here, 5 systems will participate in the cluster. In which 3 instance of NNMs run in three systems
and 2 adaptive systems are configured. So, the possible scerios could be

i. One out of three NNM instances is trying to failover to any one of the adaptive system.

From the standpoint of the adaptive system, this is same as that of the usual scenario
where one application instance is failing over to one of the adaptive system. The choice
of which adaptive system is selected is left to the basic MC/SG system. And so there is
no special case associated with this it is same as that of the classical NNM MG/SG
behaviour.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 9 of 43

ii. Two out of three NNM instances are trying to failover to the available two adaptive
systems almost at the same time.

In this case the possibilities are, the first NNM instance can failover to any one of the
adapative system successfully before the second NNM instance starts its failover in
reality. This case will behave like the classical NNM MC/SG scenaio and when the
second NNM instance failover there is only one adpative system available and it would
also follow the classical NNM MG/SG set up behaviour and there wont be any special
behaviour observed.

If both the NNM instances try to failover at the same time, it is possible that both might
choose the same adaptive system to failver. In this case there is a 2:1 resouce contention
problem, meaning to say that two instances of NNM are trying to failover to one adaptive
system. The adaptive system should only permit one NNM instance to failover
successfully and reject the other NNM instance. The solution for the 2:1 failover is given
below and described as n:1 solution model. The rejected NNM instance should failver to
the other available adaptive system without any problem.

iii. Three out of three NNM instances are trying to failover to the available two adaptive
systems almost at the same time.

Here again, if all the three NNM instances try to failover to one of the two adaptive
systems, it leads to 3:1 resourse contention problem and explained below as the n:1
solution mode. In this case since there are only two adaptive systems in the cluster, only
two out of the three NNM instances will finally succeed in failing over.

Thus MxN configuration of NNM could be achieved if n:1 set could be addressed with the below
mentioned setup. Other than this there is no other difference in the behaviour of NNM in an the classical
NNM in MC/SG setup (1:1) to the MxN setup. Though the example configuration scripts provided in
the annexures are for implementing n:1 model, the same could be extropolated to accommodate MxN
setup also.

n:1 solution model for NNM under MG/SG setup

The concept of n:1 is the existence of n systems cluster, with each system executing an instance of NNM
and having 1 system designated as the adoptive system. The execution of NNM instance on a failover to
the backup system is dependent on a first come first served basis, potentially leading to a resource
contention like mounting of shared disk containing the data in /var/opt/OV/share and /etc/opt/OV/share
directories.. The first instance that establishes the file lock process gets to execute on the adoptive node.
NNM instances that tries to failover to its adoptive node exits on detecting the file lock process. It is
mandatory to execute the lockfile process to avoid the resouce contention.

For understanding purposes, let n = 3 (3:1 setup), implying that there are three systems (nnmHAs1,
nnmHAs2 and nnmHAs3) and three instances of NNM (nnmHAp1, nnmHAp2 and nnmHAp3) with
another additional system (nnmHAs4) as an adoptive node for the three instances of NNM. This implies
that there would be a package control, package config and OpenView configuration file per instance of
NNM, amounting to three sets of scripts in the /etc/cmcluster/nnm directory via: nnm1.config,
nnm2.config, nnm3.config, nnm1.control, nnm2.control, nnm3.control, ov.conf_nnmHAs1,
ov.conf_nnmHAs2 and ov.conf_nnmHAs3 placed in the adoptive node nnmHAs4. The files nnm1.config,
nnm1.control and ov.conf_nnmHAs1 would be placed in the system nnmHAs1, while nnm2.config,
nnm2.control and ov.conf_nnmHAs2 would be placed in the system nnmHAs2 and also nnm3.config,
nnm3.control and ov.conf_nnmHAs3 would be placed in the system nnmHAs3 A copy of

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 10 of 43

nnm_file_lock.ovpl, Monitor is to be distributed on all the four systems in the setup. All these files are to
be placed in the directory /etc/cmcluster/nnm.

On a failover of the package nnmHA1 to the adoptive node nnmHAs4, it would check if the
/etc/cmcluster/nnm/ Nnm_lockNnm_lock file could be created. On an error, the startup of the package
nnmHA1on the adoptive node nnmHAs4 would be terminated, implying that there is already a package
that is currently executing there. A success in creating the lock file is an indication that the adoptive
node nnmHAs4 is free to execute the package nnmHA1 that has failed over.

The package nnmHA1 on the adoptive node nnmHAs4 would then bind the package i/p address to
nnmhas4 and continue to execute as a normal NNM instance. Messages generated by the execution of
NNM package would be available in the log file /etc/cmcluster/nnm/nnm.control.log and
/var/adm/syslog/syslog.log for the message generated by the cluster node participants.

Disclaimer: Behavior of the package on the node cannot be assured if the files nnm_lock in
/etc/cmcluster/nnm directory are deleted manually. There could be problems while cut and pasting these
templates and using them as scripts, please ensure removal of incorrect insertions of newlines. The
suggested templates in this document are per- instance of NNM and suitable number of templates are to
be prepared and distributed to all the system in the setup appropriately to ensure the predicted behavior of
NNM instances in the setup.

In the Appendices A, B, C, D, E and F are the templates suggested for the implementation of the
standard two node or n:1 configuration setup of MC/ServiceGuard for NNM and need appropriate
modifications in tune with the environment that would have the setup. Described further are the
guidelines that indicate the modifications to be made for the templates.

Suggested modification for Appendix A:
The template is used for cluster configuration and could be named cluster.config to be stored in the
directory /etc/cmcluster/nnm. Please consult your systems administrator while modifying or applying
the cluster configuration and is dependent on the type of MC/SerivceGuard setup.

Suggested modification for Appendix B:
The template is used for package configuration and could be named nnm.config to be stored in the
directory /etc/cmcluster/nnm. The changes that are to be made are:

PACKAGE_NAME: Modify the value according to value of n in the n:1 setup.

NODE_NAME: Specify the primary node name and then repeat the variable with the node name of the
adoptive node.

SUBNET: This should be the subnet id that the cluster would be existing in and is generally identical for
the cluster participants.

If NFS is used add the following service definition:
SERVICE_NAME NFS
SERVICE_FAIL_FAST_ENABLED NO
SERVICE_HALT_TIMEOUT 300

Suggested modification for Appendix C:

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 11 of 43

The template is used for package control and could be named nnm.control to be stored in the directory
/etc/cmcluster/nnm. Mounting of the shared data could be either through NFS or shared disks connected
to the cluster participant.

The suggested changes to be made if shared disk is used for shared data:

VG[0]: Add the volume group that have been made available for the shared data of NNM, to be used by
the primary node and later by the adoptive node on a failover. This configuration change has to be made
for each volume groups that would be mounted for the package. Indicated in the template is the definition
of a single volume group. Consult your sysadmin for the details on the number of volume groups
configured for the cluster.

 LV[0], FS[0] and FS_MOUNT_OPT[0]: Modify these variables according the logical volumes
partitioned in the volume group mentioned above. The logical volume partitions index depends on the
configuration.

IP[0]: Virtual i/p address assigned to the package is to be provided. This virtual i/p address should not be
assigned to any physical device, but should be resolvable by the domain name server.

SUBNET[0]: The subnet id that IP[0] belongs to and could be identical to the SUBNET defined in
nnm.config file.

SERVICE_RESTART[0]="-r 2": The numeric 2 is the number of times a restart of NNM is attempted
before a failover would be initiated. This value is to be modified depending on the requirement.

The suggested changes to be made if NFS is used for shared data:
XFS[0]="-o root=robot /etc/opt/OV/share"
XFS[1]="-o root=robot /var/opt/OV/share"

The service must also be defined in the Package script.
SERVICE_NAME[1]="NFS"
SERVICE_CMD[1]="/etc/cmcluster/nnm/nfs.mon"
SERVICE_RESTART[1]=

Suggested modification for Appendix D:
This template could be named Monitor to be placed in the directory /etc/cmcluster/nnm. There are no
changes required for this template.

Suggested modification for Appendix E:
There are three fields to be configured in the $OV_CONF/ov.conf file: HOSTNAME,
NNM_INTERFACE, USE_LOOPBACK.

HOSTNAME=<>: The value for this field is the actual hostname of the machine currently running NNM.
This entry must reflect the hostname which resolves to the static IP Address of the system on which
NNM is currently running.

NNM_INTERFACE=<>: The value for this field is the network IP name or IP address through which
NNM discovers and manages the network. In a MC/ServiceGuard configuration, the value for this field is
the relocatable IP name or address associated with the NNM package.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 12 of 43

USE_LOOPBACK=<>: The value for this field determines whether loopback is enabled (ON or OFF).
To maintain backward compatibility the default value for this field is OFF). The recommended value for
this field is ON. When set to ON, NNM processes will continue even if all LAN interfaces are down.
The entries are position/line independent.

Copy this file to /etc/opt/OV/share/conf/ov.conf.<hostname1> and
/etc/opt/OV/share/conf/ov.conf.<hostname2>, where <hostname1> and <hostname2> are the hostnames
of the two systems in the cluster. Edit the HOSTNAME field in each of these files to reflect the
respective hostname. Two files are necessary since each system has a different hostname. Two files are
used to simplify NNM package switching between the systems in the cluster, but automating an edit of a
single ov.conf before NNM starts on each system is also acceptable. See the ov.conf(4) man page for a
more detailed description of these fields.

 Suggested modification for Appendix F:
This template could be named nnm_file_lock.ovpl and is to be placed in the directory
/etc/cmcluster/nnm. The changes required for this template are:

Path to the perl location is to be modified as per the installation of NNM. and the version of Perl has to be
at least that of the perl provided along with NNM installation.

Do not introduce any type of quote in the above mentioned files.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 13 of 43

Appendix A : Sample cluster configuration file
Suggested directory to store: /etc/cmcluster/nnm

File permissions: 0755

Ownership: root:sys

 Note: please refer to the suggestion made earlier in the
document for the template modification guideline:

**
********* HIGH AVAILABILITY CLUSTER CONFIGURATION FILE ***************
***** For complete details about cluster parameters and how to ****
***** set them, consult the cmquerycl(1m) manpage or your manual. ****
**

Enter a name for this cluster. This name will be used to identify the
cluster when viewing or manipulating it.
CLUSTER_NAME NNM

Cluster Lock Device Parameters. This is the volume group that
holds the cluster lock which is used to break a cluster formation
tie. This volume group should not be used by any other cluster
as cluster lock device.
FIRST_CLUSTER_LOCK_VG /dev/vgfmpsvr

Definition of nodes in the cluster.
Repeat node definitions as necessary for additional nodes.
NODE_NAME nnmha1
NETWORK_INTERFACE lan0
HEARTBEAT_IP 15.70.182.29
FIRST_CLUSTER_LOCK_PV /dev/dsk/c0t15d0

List of serial device file names
For example:
#SERIAL_DEVICE_FILE /dev/tty1p0

Primary Network Interfaces on Bridged Net 1: lan0.
Warning: There are no standby network interfaces on bridged net 1.
NODE_NAME nnmha2
NETWORK_INTERFACE lan0
HEARTBEAT_IP 15.70.182.30
FIRST_CLUSTER_LOCK_PV /dev/dsk/c0t15d0
List of serial device file names
For example:
#SERIAL_DEVICE_FILE /dev/tty1p0

Primary Network Interfaces on Bridged Net 1: lan0.
Warning: There are no standby network interfaces on bridged net 1.

Cluster Timing Parmeters (microseconds).
HEARTBEAT_INTERVAL 1000000
NODE_TIMEOUT 2000000

Configuration/Reconfiguration Timing Parameters (microseconds).

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 14 of 43

AUTO_START_TIMEOUT 600000000
NETWORK_POLLING_INTERVAL 2000000

Package Configuration Parameters.
Enter the maximum number of packages which will be configured in the cluster.
You can not add packages beyond this limit.
This parameter is required.
MAX_CONFIGURED_PACKAGES 10

List of cluster aware Volume Groups. These volume groups will
be used by clustered applications via the vgchange -a e command.
For example:
VOLUME_GROUP /dev/vgdatabase.
VOLUME_GROUP /dev/vg02.

List of cluster aware Volume Groups. These volume groups will
be used by DLM applications via the vgchange -a s command.
For example:
DLM_VOLUME_GROUP /dev/vgdatabase.
DLM_VOLUME_GROUP /dev/vg02.

DLM_VOLUME_GROUP /dev/vgfmpsvr
DLM_VOLUME_GROUP /dev/vgfmpora1
DLM_VOLUME_GROUP /dev/vgfmpora2
DLM_VOLUME_GROUP /dev/vgfmpmd

DLM parameters.
DLM_ENABLED NO
DLM_CONNECT_TIMEOUT 30000000
DLM_PING_INTERVAL 20000000
DLM_PING_TIMEOUT 60000000
DLM_RECONFIG_TIMEOUT 300000000
DLM_COMMFAIL_TIMEOUT 270000000
DLM_HALT_TIMEOUT 240000000

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 15 of 43

Appendix B: Sample NNM package configuration file
Suggested directory to store: /etc/cmcluster/nnm

File permissions: 0755

Ownership: root:sys

Note: Please refer to the suggestion made earlier in the document
for the template modification guideline:

**
****** HIGH AVAILABILITY PACKAGE CONFIGURATION FILE (template) *******
**
******* Note: This file MUST be edited before it can be used. ********
* For complete details about package parameters and how to set them, *
* consult the MC/ServiceGuard or MC/LockManager manpages or manuals. *
**

Enter a name for this package. This name will be used to identify the
package when viewing or manipulating it. It must be different from
the other configured package names.

PACKAGE_NAME nnm

Enter the names of the nodes configured for this package. Repeat
this line as necessary for additional adoptive nodes.
Order IS relevant. Put the second Adoptive Node AFTER the first
one.
Example : NODE_NAME original_node
NODE_NAME adoptive_node

NODE_NAME nnmha1
NODE_NAME nnmha2

Enter the complete path for the run and halt scripts. In most cases
the run script and halt script specified here will be the same script,
the package control script generated by the cmmakepkg command. This
control script handles the run(ning) and halt(ing) of the package.
If the script has not completed by the specified timeout value,
it will be terminated. The default for each script timeout is
NO_TIMEOUT. Adjust the timeouts as necessary to permit full
execution of each script.
Note: The HALT_SCRIPT_TIMEOUT should be greater than the sum of
all SERVICE_HALT_TIMEOUT specified for all services.

RUN_SCRIPT /etc/cmcluster/nnm/nnm.control
RUN_SCRIPT_TIMEOUT NO_TIMEOUT
HALT_SCRIP /etc/cmcluster/nnm/nnm.control
HALT_SCRIPT_TIMEOUT NO_TIMEOUT

Enter the SERVICE_NAME, the SERVICE_FAIL_FAST_ENABLED and the
SERVICE_HALT_TIMEOUT values for this package. Repeat these
three lines as necessary for additional service names. All
service names MUST correspond to the service names used by
cmrunserv and cmhaltserv commands in the run and halt scripts.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 16 of 43

The value for SERVICE_FAIL_FAST_ENABLED can be either YES or
NO. If set to YES, in the event of a service failure, the
cluster software will halt the node on which the service is
running. If SERVICE_FAIL_FAST_ENABLED is not specified, the
default will be NO.

SERVICE_HALT_TIMEOUT is represented in the number of seconds.
This timeout is used to determine the length of time (in
seconds) the cluster software will wait for the service to
halt before a SIGKILL signal is sent to force the termination
of the service. In the event of a service halt, the cluster
software will first send a SIGTERM signal to terminate the
service. If the service does not halt, after waiting for the
specified SERVICE_HALT_TIMEOUT, the cluster software will send
out the SIGKILL signal to the service to force its termination.
This timeout value should be large enough to allow all cleanup
processes associated with the service to complete. If the
SERVICE_HALT_TIMEOUT is not specified, a zero timeout will be
assumed, meaning the cluster software will not wait at all
before sending the SIGKILL signal to halt the service.

Example: SERVICE_NAME DB_SERVICE
SERVICE_FAIL_FAST_ENABLED NO
SERVICE_HALT_TIMEOUT 300

To configure a service, uncomment the following lines and
fill in the values for all of the keywords.

#SERVICE_NAME <service name>
#SERVICE_FAIL_FAST_ENABLED <YES/NO>
#SERVICE_HALT_TIMEOUT <number of seconds>

SERVICE_NAME nnm
SERVICE_FAIL_FAST_ENABLED NO
SERVICE_HALT_TIMEOUT 300

Enter the network subnet name that is to be monitored for this package.
Repeat this line as necessary for additional subnet names. If any of
the subnets defined goes down, the package will be switched to another
node that is configured for this package and has all the defined subnets
available.

SUBNET 15.70.182.0

The following keywords (RESOURCE_NAME, RESOURCE_POLLING_INTERVAL, and
RESOURCE_UP_VALUE) are used to specify Package Resource Dependencies. To
define a Package Resource Dependency, a RESOURCE_NAME line with a fully
qualified resource path name, and one or more RESOURCE_UP_VALUE lines are
required. A RESOURCE_POLLING_INTERVAL line (how often in seconds the resource
is to be monitored) is optional and defaults to 60 seconds. An operator and
a value are used with RESOURCE_UP_VALUE to define when the resource is to be
considered up. The operators are =, !=, >, <, >=, and <=, depending on the
type of value. Values can be string or numeric. If the type is string, then
only = and != are valid operators. If the string contains whitespace, it
must be enclosed in quotes. String values are case sensitive. For example,

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 17 of 43

Resource is up when its value is

RESOURCE_UP_VALUE = UP "UP"
RESOURCE_UP_VALUE != DOWN Any value except "DOWN"
RESOURCE_UP_VALUE = "On Course" "On Course"

If the type is numeric, then it can specify a threshold, or a range to
define a resource up condition. If it is a threshold, then any operator
may be used. If a range is to be specified, then only > or >= may be used
for the first operator, and only < or <= may be used for the second operator.
For example,
Resource is up when its value is

RESOURCE_UP_VALUE = 5 5 (threshold)
RESOURCE_UP_VALUE > 5.1 greater than 5.1 (threshold)
RESOURCE_UP_VALUE > -5 and < 10 between -5 and 10 (range)

Note that "and" is required between the lower limit and upper limit
when specifying a range. The upper limit must be greater than the lower
limit. If RESOURCE_UP_VALUE is repeated within a RESOURCE_NAME block, then
they are inclusively OR'd together. Package Resource Dependencies may be
defined by repeating the entire RESOURCE_NAME block.

Example : RESOURCE_NAME /net/lan/lan0/res1
RESOURCE_POLLING_INTERVAL 120
RESOURCE_UP_VALUE = RUNNING
RESOURCE_UP_VALUE = ONLINE

Means that the value of resource /net/lan/lan0/res1 will be
checked every 120 seconds, and is considered to be 'up' when
its value is "RUNNING" or "ONLINE".

Uncomment the following lines to specify Package Resource Dependencies.

#RESOURCE_NAME <Full_path_name>
#RESOURCE_POLLING_INTERVAL <numeric_seconds>
#RESOURCE_UP_VALUE <op> <string_or_numeric> [and <op> <numeric>]

The default for PKG_SWITCHING_ENABLED is YES. In the event of a
failure, this permits the cluster software to transfer the package
to an adoptive node. Adjust as necessary.

PKG_SWITCHING_ENABLED YES

The default for NET_SWITCHING_ENABLED is YES. In the event of a
failure, this permits the cluster software to switch LANs locally
(transfer to a standby LAN card). Adjust as necessary.

NET_SWITCHING_ENABLED YES

The default for NODE_FAIL_FAST_ENABLED is NO. If set to YES,
in the event of a failure, the cluster software will halt the node
on which the package is running. Adjust as necessary.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 18 of 43

NODE_FAIL_FAST_ENABLED NO

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 19 of 43

Appendix C: Sample NNM package control file

Suggessted directory to store: /etc/cmcluster/nnm
File permissions: 0755
Ownership: root:sys

Note: Please refer to the suggestion made earlier in the document
for the template modification guideline. This sample file does
not include the entries for NFS that would be required to support
distributed/management consoles:

#"(#) A.10.12 $Date: 09/08/1999 $"
**
* *
* HIGH AVAILABILITY PACKAGE CONTROL SCRIPT (template) *
* *
* Note: This file MUST be edited before it can be used. *
* *
**

UNCOMMENT the variables as you set them.

Set PATH to reference the appropriate directories.

PATH=/usr/bin:/usr/sbin:/etc:/bin

VOLUME GROUP ACTIVATION:
Specify the method of activation for volume groups.
Leave the default ("VGCHANGE="vgchange -a e") if you want volume
groups activated in exclusive mode. This assumes the volume groups have
been initialized with 'vgchange -c y' at the time of creation.

Uncomment the first line (VGCHANGE="vgchange -a e -q n"), and comment
out the default, if your disks are mirrored on separate physical paths,

Uncomment the second line (VGCHANGE="vgchange -a y") if you wish to
use non-exclusive activation mode. Single node cluster configurations
must use non-exclusive activation.

VGCHANGE="vgchange -a e -q n"
VGCHANGE="vgchange -a y"
VGCHANGE="vgchange -a e" # Default

VGCHANGE="vgchange -a e" # Default

VOLUME GROUPS
Specify which volume groups are used by this package. Uncomment VG[0]=""
and fill in the name of your first volume group. You must begin with
VG[0], and increment the list in sequence.

For example, if this package uses your volume groups vg01 and vg02, enter:

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 20 of 43

VG[0]=vg01
VG[1]=vg02

The volume group activation method is defined above. The filesystems
associated with these volume groups are specified below.

#VG[0]=""

VG[0]=vgfmpsvr

FILESYSTEMS
Specify the filesystems which are used by this package. Uncomment
LV[0]=""; FS[0]=""; FS_MOUNT_OPT[0]="" and fill in the name of your first
logical volume, filesystem and mount option for the file system. You must
begin with LV[0], FS[0] and FS_MOUNT_OPT[0] and increment the list in
sequence.

For example, if this package uses the file systems pkg1a and pkg1b,
which are mounted on the logical volumes lvol1 and lvol2 with read and
write options enter:
LV[0]=/dev/vg01/lvol1; FS[0]=/pkg1a; FS_MOUNT_OPT[0]="-o rw"
LV[1]=/dev/vg01/lvol2; FS[1]=/pkg1b; FS_MOUNT_OPT[1]="-o rw"

The filesystems are defined as triplets of entries specifying the logical
volume, the mount point and the mount options for the file system. Each
filesystem will be fsck'd prior to being mounted. The filesystems will be
mounted in the order specified during package startup and will be unmounted
in reverse order during package shutdown. Ensure that volume groups
referenced by the logical volume definitions below are included in
volume group definitions above.

#LV[0]=""; FS[0]=""; FS_MOUNT_OPT[0]=""

LV[0]=/dev/${VG[0]}/lvfmpetc
FS[0]=/etc/opt/OV/share
FS_MOUNT_OPT[0]="-o rw"

LV[1]=/dev/${VG[0]}/lvfmpvar
FS[1]=/var/opt/OV/share
FS_MOUNT_OPT[1]="-o rw"

FILESYSTEM UNMOUNT COUNT
Specify the number of unmount attempts for each filesystem during package
shutdown. The default is set to 1.

FS_UMOUNT_COUNT=1

FILESYSTEM MOUNT RETRY COUNT.
Specify the number of mount retrys for each filesystem.
The default is 0. During startup, if a mount point is busy
and FS_MOUNT_RETRY_COUNT is 0, package startup will fail and
the script will exit with 1. If a mount point is busy and
FS_MOUNT_RETRY_COUNT is greater than 0, the script will attempt
to kill the user responsible for the busy mount point

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 21 of 43

and then mount the file system. It will attempt to kill user and
retry mount, for the number of times specified in FS_MOUNT_RETRY_COUNT.
If the mount still fails after this number of attempts, the script
will exit with 1.
NOTE: If the FS_MOUNT_RETRY_COUNT > 0, the script will execute
"fuser -ku" to freeup busy mount point.

FS_MOUNT_RETRY_COUNT=0

IP ADDRESSES
Specify the IP and Subnet address pairs which are used by this package.
Uncomment IP[0]="" and SUBNET[0]="" and fill in the name of your first
IP and subnet address. You must begin with IP[0] and SUBNET[0] and
increment the list in sequence.

For example, if this package uses an IP of 192.10.25.12 and a subnet of
192.10.25.0 enter:
IP[0]=192.10.25.12
SUBNET[0]=192.10.25.0 # (netmask=255.255.255.0)

Hint: Run "netstat -i" to see the available subnets in the Network field.

IP/Subnet address pairs for each IP address you want to add to a subnet
interface card. Must be set in pairs, even for IP addresses on the same
subnet.

#IP[0]=""
#SUBNET[0]=""

IP[0]="15.70.182.114"
SUBNET[0]="15.70.182.0"

SERVICE NAMES AND COMMANDS.
Specify the service name, command, and restart parameters which are
used by this package. Uncomment SERVICE_NAME[0]="", SERVICE_CMD[0]="",
SERVICE_RESTART[0]="" and fill in the name of the first service, command,
and restart parameters. You must begin with SERVICE_NAME[0], SERVICE_CMD[0],
and SERVICE_RESTART[0] and increment the list in sequence.

For example:
SERVICE_NAME[0]=pkg1a
SERVICE_CMD[0]="/usr/bin/X11/xclock -display 192.10.25.54:0"
SERVICE_RESTART[0]="" # Will not restart the service.

SERVICE_NAME[1]=pkg1b
SERVICE_CMD[1]="/usr/bin/X11/xload -display 192.10.25.54:0"
SERVICE_RESTART[1]="-r 2" # Will restart the service twice.

SERVICE_NAME[2]=pkg1c
SERVICE_CMD[2]="/usr/sbin/ping"
SERVICE_RESTART[2]="-R" # Will restart the service an infinite
number of times.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 22 of 43

Note: No environmental variables will be passed to the command, this
includes the PATH variable. Absolute path names are required for the
service command definition. Default shell is /usr/bin/sh.

#SERVICE_NAME[0]=""
#SERVICE_CMD[0]=""
#SERVICE_RESTART[0]=""

SERVICE_NAME[0]="nnm"
SERVICE_CMD[0]="/etc/cmcluster/nnm/Monitor"
SERVICE_RESTART[0]="-r 2"

DTC manager information for each DTC.
Example: DTC[0]=dtc_20
#DTC_NAME[0]=

START OF CUSTOMER DEFINED FUNCTIONS

This function is a place holder for customer define functions.
You should define all actions you want to happen here, before the service is
started. You can create as many functions as you need.

this function has been added for nnm to ensure that the process locking
the /etc/cmcluster/nnm/nnm_lock is safely removed using SIGINT. the lock
file is neither deleted nor truncated by the process locking it.
function nnm_exit
{
store the input value passed to this function
 typeset received_value
 receved_value=$1

access the pid from nnm_lock file, now kill the lock process
 kill -2 `cat /etc/cmcluster/nnm/nnm_lock` 2>/dev/null
 echo "-------------------------terminated the lock file process having PID = ${killpid} at `date`"

the file is removed just in case it is still dangling
 if [-e "/etc/cmcluster/nnm/nnm_lock"]
 then
 rm /etc/cmcluster/nnm/nnm_lock 2>/dev/null
 fi

exit from the script with the value received as a parameter to this function
 exit ${received_value}
}
end of function nnm_exit

function customer_defined_run_cmds
{
 # ensure the specified ov.conf file is avialable for NNM to startup
 cp /etc/opt/OV/share/conf/ov.conf.`hostname` /etc/opt/OV/share/conf/ov.conf
 echo "copied the ov.conf file with system name"

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 23 of 43

 # found a previously left over pause lock file ?
 if [-f /var/opt/OV/tmp/ovpause.lock]
 then
 rm /var/opt/OV/tmp/ovpause.lock
 echo "removed the ovpause lock file"
 fi

 # startup NNM as per the configuration
 /opt/OV/bin/ovstart -v

 test_return 51
}

This function is a place holder for customer define functions.
You should define all actions you want to happen here, before the service is
halted.

function customer_defined_halt_cmds
{
 # stop all the configured process of NNM
 /opt/OV/bin/ovstop -v
 echo "stopped all NNM processes"

 # remove the ovserver file name
 rm /var/opt/OV/share/databases/openview/ovwdb/ovserver 2>/dev/null
 echo "removed the ovserver file"

 # found a previously left over pause lock file ?
 if [-f /var/opt/OV/tmp/ovpause.lock]
 then
 rm /var/opt/OV/tmp/ovpause.lock 2>/dev/null
 echo "removed the ovpause lock file"
 fi

 test_return 52
}

END OF CUSTOMER DEFINED FUNCTIONS

START OF RUN FUNCTIONS

function activate_volume_group
{
for I in ${VG[@]}
do
 if [["${VGCHANGE}" = "vgchange -a y"]]
 then
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Activating volume group $I with non-
exclusive option."
 else
 print "$(date '+%b %e %X') - \"$(hostname)\": Activating volume group $I with exclusive option."
 fi

 $VGCHANGE $I

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 24 of 43

 test_return 1
done
}

#This function is used to kill the user to freeup a mountpoint
#that could be busy and then do the mount operation.
#freeup_busy_mountpoint_and_mount_fs(x, y, z)
x = Logical volume group to be mounted.
y = File System where the logical volume is to be mounted.
z = Mount Options to be used for mount operation

function freeup_busy_mountpoint_and_mount_fs
{
typeset vol_to_mount
typeset mount_pt
typeset fs_mount_opt

vol_to_mount=$1
mount_pt=$2
shift 2
fs_mount_opt=$*

print "\tWARNING: Running fuser on ${mount_pt} to remove anyone using the busy mount point
directly."
UM_COUNT=0
RET=1

The control script exits, if the mount failed after
retrying FS_MOUNT_RETRY_COUNT times.

while (($UM_COUNT < $FS_MOUNT_RETRY_COUNT && $RET != 0))
do
 ((UM_COUNT = $UM_COUNT + 1))
 fuser -ku ${mount_pt}
 if (($UM_COUNT == $FS_MOUNT_RETRY_COUNT))
 then
 mount ${fs_mount_opt} ${vol_to_mount} ${mount_pt}
 test_return 17
 else
 mount ${fs_mount_opt} ${vol_to_mount} ${mount_pt}
 ((RET = $?))
 sleep 1
 fi
done
}

For each {file system/logical volume} pair, fsck the file system
and mount it.

function check_and_mount
{
integer R=0

for I in ${LV[@]}
do
 if [[$(mount -p | awk '$1 == "'$I'"') = ""]]

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 25 of 43

 then
 RLV[$R]="${I%/*}/r${I##*/}"

 if [-x /usr/sbin/fstyp]
 then
 fstype[$R]=$(fstyp $I)
 fi
 ((R = $R + 1))
 fi
done

Verify that there is at least one file system to check and what type.
if [[${RLV[@]} != ""]]
then
 print -n "$(date '+%b %e %X') - Node \"$(hostname)\": "
 print "Checking filesystems:"
 print ${LV[@]} | tr ' ' '\012' | sed -e 's/^/ /'

 # If there is more than one filesystem type being checked
 # then each filesystem is check individually.
 #
 R=$(print ${fstype[*]} | tr ' ' '\012' | sort -u | wc -l)
 if ((R > 1))
 then
 R=0
 while ((R < ${#RLV[*]}))
 do
 case ${fstype[$R]} in

 hfs) fsck -F hfs -P ${RLV[$R]}
 test_return 2
 ;;

 vxfs) fsck -F vxfs -y ${RLV[$R]}
 test_return 2
 ;;

 unk*) fsck ${RLV[$R]}
 test_return 2
 ;;

 *) if [[${fstype[$R]} = ""]]
 then
 fsck ${RLV[$R]}
 else
 fsck -F ${fstype[$R]} ${RLV[$R]}
 fi
 test_return 2
 ;;
 esac
 ((R = R + 1))
 done

 # If there is only one filesystem type being checked, then
 # multiple invocations of fsck can be avoided. All filesystems
 # are specified on the command line to one fsck invocation.

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 26 of 43

 #
 else
 case ${fstype} in

 hfs) fsck -F hfs -P ${RLV[@]}
 test_return 2
 ;;

 vxfs) fsck -F vxfs -y ${RLV[@]}
 test_return 2
 ;;

 unk*) fsck ${RLV[@]}
 test_return 2
 ;;

 *) if [[${fstype} = ""]]
 then
 fsck ${RLV[@]}
 else
 fsck -F ${fstype} ${RLV[@]}
 fi
 test_return 2
 ;;
 esac
 fi
fi

Check exit value (set if any proceeding fsck calls failed)

if (($exit_value == 1))
then
 deactivate_volume_group
 print "\n\t########### Node \"$(hostname)\": Package start failed at $(date) ###########"
 nnm_exit 1
fi

integer F=0
for I in ${LV[@]}
do
 if [[$(mount | grep -E $I" ") = ""]]
 then
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Mounting $I at ${FS[$F]}"

 #if there is permission to kill the user, we can
 #run fuser to kill the user, on the mount point.
 #This would freeup the mount point, if it is busy

 if (($FS_MOUNT_RETRY_COUNT > 0))
 then
 mount ${FS_MOUNT_OPT[$F]} $I ${FS[$F]}
 if (($? != 0))
 then
 freeup_busy_mountpoint_and_mount_fs $I ${FS[$F]}
${FS_MOUNT_OPT[$F]}
 fi

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 27 of 43

 else
 mount ${FS_MOUNT_OPT[$F]} $I ${FS[$F]}
 test_return 3
 fi

 else
 print "$(date '+%b %e %X') - Node \"$(hostname)\": WARNING: File system \"${FS[$F]}\"
was already mounted."
 fi
 ((F = $F + 1))
done
}

For each {IP address/subnet} pair, add the IP address to the subnet
using cmmodnet(1m).

function add_ip_address
{
integer S=0
integer error=0

for I in ${IP[@]}
do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Adding IP address $I to subnet
${SUBNET[$S]}"
 XX=$(cmmodnet -a -i $I ${SUBNET[$S]} 2>&1)
 if (($? != 0))
 then
 YY=$(netstat -in | awk '$4 == "'${I}'"')
 if [[-z $YY]]
 then
 print "$XX" >> $0.log
 print "\tERROR: Failed to add IP $I to subnet ${SUBNET[$S]}"
 ((error = 1))
 else
 print "\tWARNING: IP $I is already configured on the subnet ${SUBNET[$S]}"
 fi
 fi
 ((S = $S + 1))
done

if ((error != 0))
then

`let 0` is used to set the value of $? to 1. The function test_return
requires $? to be set to 1 if it has to print error message.

 let 0
 test_return 4
fi

}

Own and reset the DTC connections

function get_ownership_dtc

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 28 of 43

{
for I in ${DTC_NAME[@]}
do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Assigning Ownership of the DTC $I"
 dtcmodifyconfs -o $I
 test_return 5

 for J in ${IP[@]}
 do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Resetting the DTC connections to IP
address $J"
 dtcdiag -Q $J -q -f $I
 test_return 6
 done
done
}

For each {service name/service command string} pair, start the
service command string at the service name using cmrunserv(1m).

function start_services
{
integer C=0
for I in ${SERVICE_NAME[@]}
do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Starting service $I using"
 print " \"${SERVICE_CMD[$C]}\""
 #
 # Check if cmrunserv should be called the old
 # way without a restart count.
 #
 if [["${SERVICE_RESTART[$C]}" = ""]]
 then
 cmrunserv $I ">> $0.log 2>&1 ${SERVICE_CMD[$C]}"
 else
 cmrunserv ${SERVICE_RESTART[$C]} $I ">> $0.log 2>&1 ${SERVICE_CMD[$C]}"
 fi
 test_return 8
 ((C = $C + 1))
done
}

END OF RUN FUNCTIONS.

START OF HALT FUNCTIONS

Halt each service using cmhaltserv(1m).

function halt_services
{
for I in ${SERVICE_NAME[@]}
do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Halting service $I"

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 29 of 43

 cmhaltserv $I
 test_return 9
done
}

Disown the DTC.

function disown_dtc
{
for I in ${DTC_NAME[@]}
do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Disowning the DTC $I"
 dtcmodifyconfs -d $I
 test_return 11
done
}

For each IP address/subnet pair, remove the IP address from the subnet
using cmmodnet(1m).

function remove_ip_address
{
integer S=0
integer error=0

for I in ${IP[@]}
do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Remove IP address $I from subnet
${SUBNET[$S]}"
 XX=$(cmmodnet -r -i $I ${SUBNET[$S]} 2>&1)
 if (($? != 0))
 then
 echo $XX | grep "is not configured on the subnet"
 if (($? != 0))
 then
 print "$XX" >> $0.log
 ((error = 1))
 fi
 fi
 ((S = $S + 1))
done
if (($error != 0))
then

`let 0` is used to set the value of $? to 1. The function test_return
requires $? to be set to 1 if it has to print error message.

 let 0
 test_return 12
fi
}

Unmount each logical volume.

function umount_fs
{

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 30 of 43

integer UM_CNT=${FS_UMOUNT_COUNT:-1}
integer ret

set -A LogicalVolumes ${LV[@]} ${CVM_LV[@]}

if [[$UM_CNT < 1]]
then
 UM_CNT=1
fi

integer L=${#LogicalVolumes[*]}
while ((L > 0))
do
 ((L = L - 1))
 I=${LogicalVolumes[$L]}
 mount | grep -e $I" " > /dev/null 2>&1
 if (($? == 0))
 then
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Unmounting fil
esystem on $I"
 umount $I; ret=$?
 if ((ret != 0))
 then
 print "\tWARNING: Running fuser to remove anyone using the
file system directly."
 fi

 UM_COUNT=$UM_CNT
 while ((ret != 0 && UM_COUNT > 0))
 do
 fuser -ku $I
 umount $I; ret=$?
 if ((ret != 0))
 then
 if (($UM_COUNT == 1))
 then
 let 0
 test_return 13
 fi
 ((UM_COUNT = $UM_COUNT - 1))
 sleep 1
 if (($UM_COUNT > 0))
 then
 print "\t$(date '+%b %e %X') - Unmount failed, tr
ying again."
 fi
 fi
 done
 fi
done
}

function deactivate_volume_group
{
for I in ${VG[@]}

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 31 of 43

do
 print "$(date '+%b %e %X') - Node \"$(hostname)\": Deactivating volume group $I"
 vgchange -a n $I
 test_return 14
done
}

END OF HALT FUNCTIONS.

FUNCTIONS COMMON TO BOTH RUN AND HALT.

Test return value of functions and exit with NO RESTART if bad.
Return value of 0 - 50 are reserved for use by Hewlett-Packard.
System administrators can use numbers above 50 for return values.
function test_return
{
if (($? != 0))
then
 case $1 in
 1)
 print "\tERROR: Function activate_volume_group"
 print "\tERROR: Failed to activate $I"
 deactivate_volume_group
 nnm_exit 1
 ;;

 2)
 print "\tERROR: Function check_and_mount"
 print "\tERROR: Failed to fsck one of the logical volumes."
 exit_value=1
 ;;

 3)
 print "\tERROR: Function check_and_mount"
 print "\tERROR: Failed to mount $I to ${FS[$F]}"
 umount_fs
 deactivate_volume_group
 nnm_exit 1
 ;;

 4)
 print "\tERROR: Function add_ip_address"
 print "\tERROR: Failed to add IP address to subnet"
 remove_ip_address
 umount_fs
 deactivate_volume_group
 nnm_exit 1
 ;;

 5)
 print "\tERROR: Function get_ownership_dtc"
 print "\tERROR: Failed to own $I"
 disown_dtc
 remove_ip_address
 umount_fs
 deactivate_volume_group

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 32 of 43

 nnm_exit 1
 ;;

 6)
 print "\tERROR: Function get_ownership_dtc"
 print "\tERROR: Failed to switch $I"
 disown_dtc
 remove_ip_address
 umount_fs
 deactivate_volume_group
 nnm_exit 1
 ;;

 8)
 print "\tERROR: Function start_services"
 print "\tERROR: Failed to start service ${SERVICE_NAME[$C]}"
 halt_services
 customer_defined_halt_cmds
 disown_dtc
 remove_ip_address
 umount_fs
 deactivate_volume_group
 nnm_exit 1
 ;;

 9)
 print "\tFunction halt_services"
 print "\tWARNING: Failed to halt service $I"
 ;;

 11)
 print "\tERROR: Function disown_dtc"
 print "\tERROR: Failed to disown $I from ${SUBNET[$S]}"
 exit_value=1
 ;;

 12)
 print "\tERROR: Function remove_ip_address"
 print "\tERROR: Failed to remove $I"
 exit_value=1
 ;;

 13)
 print "\tERROR: Function umount_fs"
 print "\tERROR: Failed to unmount $I"
 exit_value=1
 ;;

 14)
 print "\tERROR: Function deactivate_volume_group"
 print "\tERROR: Failed to deactivate $I"
 exit_value=1
 ;;

 17)
 print "\tERROR: Function freeup_busy_mountpoint_and_mount_fs"

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 33 of 43

 print "\tERROR: Failed to mount $I to ${FS[$F]}"
 umount_fs
 deactivate_volume_group
 nnm_exit 1
 ;;

 51)
 print "\tERROR: Function customer_defined_run_cmds"
 print "\tERROR: Failed to RUN customer commands"
 halt_services
 customer_defined_halt_cmds
 disown_dtc
 remove_ip_address
 umount_fs
 deactivate_volume_group
 nnm_exit 1
 ;;

 52)
 print "\tERROR: Function customer_defined_halt_cmds"
 print "\tERROR: Failed to HALT customer commands"
 exit_value=1
 ;;

 *)
 print "\tERROR: Failed, unknown error."
 ;;
 esac
fi
}

END OF FUNCTIONS COMMON TO BOTH RUN AND HALT

#-------------------MAINLINE Control Script Code Starts Here-----------------

FUNCTION STARTUP SECTION.

typeset MIN_VERSION="A.10.03" # Minimum version this control script works on

integer exit_value=0
typeset CUR_VERSION

Check that this control script is being run on a A.10.03 or later release
of MC/ServiceGuard or MC/LockManager. The control scripts are forward
compatible but are not backward compatible because newer control
scripts use commands and option not available on older releases.

CUR_VERSION="$(/usr/bin/what /usr/lbin/cmcld | /usr/bin/grep "Date" | \
 /usr/bin/egrep '[AB]\...\...|NTT\...\...' | \
 cut -f2 -d" ")"

if [["${CUR_VERSION}" = ""]] || \
 [["${CUR_VERSION#*.}" < "${MIN_VERSION#*.}"]]
then
 print "ERROR: Mismatched control script version ($MIN_VERSION). You cannot run"

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 34 of 43

 print "\ta version ${MIN_VERSION} control_script on a node running pre"
 print "\t${MIN_VERSION} MC/ServiceGuard or MC/LockManager software"
 exit 1
fi

Test to see if we are being called to run the package, or halt the package.

if [[$1 = "start"]]
then
 print "\n\t########### Node \"$(hostname)\": Starting package at $(date) ###########"

added for NNM High Availability
to ensure that there are no contender for the shared resource for executing
nnm pakcages on the adoptive server. a lock file would by created by the
package at start on a first come first server basis. this lock file exists
until a package exits server. the lock file would be removed by a SIGINT
given to the the lock file process at the termination of the package
execution on the server.
logic for startup of process is that if the lock process exist then exit,
elseif the lock file exists, remove it and startup the lock file process.

 typeset adoptnode
 adoptnode=`cmviewcl -l package -v | grep -v grep | grep "(current)" | awk '{print $1}'`
 if ["${adoptnode}" = "Alternate"]
 then
 typeset lockfile="/etc/cmcluster/nnm/nnm_lock"

startup the lock file process, parent process returns while child continues
to hold the lock file
 /etc/cmcluster/nnm/nnm_file_lock.ovpl

check for the return status from the parent process of lockfile process.
if exit value = 0, then this script has the right to execute package on this
node
if the exit value = 1, then there is already an existence of another lockfile
process, hence exit from further execution
if the exit value = 2, then there is a problem with the node

 case $? in
 0) echo "Secured the lock file, continuing with the package startup\n"
 break;;

 1) echo "The parent lockfile process could not write into ${lockfile} with the child lockfile process,
hence exiting from package startup"
 exit 1 ;;

 2) echo "The parent lockfile process could not either close or unlink ${lockfile} after terminating
the child lockfile process due to a failure in writing the child process pid into ${lockfile}"
 exit 2;;

 3) echo "the lockfile parent process has encountered a fork failure. please remove the
/etc/cmcluster/nnm/nnm_lock file after analysis of the reason for exit"
 exit 3;;

 *) echo "unknown exit received, hence exiting from further execution"

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 35 of 43

 exit 255;;
 esac

display the status of the the execution
 echo "started the lock file process at `date` with lock file $lockfile with a PID = `cat $lockfile` "

 fi
end of addition for NNM High Availability

 activate_volume_group

 check_and_mount

 add_ip_address

 get_ownership_dtc

 customer_defined_run_cmds

 start_services

Check exit value

 if (($exit_value == 1))
 then
 print "\n\t########### Node \"$(hostname)\": Package start failed at $(date)
###########"
 nnm_exit 1
 else
 print "\n\t########### Node \"$(hostname)\": Package start completed at $(date)
###########"
 exit 0
 fi

elif [[$1 = "stop"]]
then
 print "\n\t########### Node \"$(hostname)\": Halting package at $(date) ###########"

 halt_services

 customer_defined_halt_cmds

 disown_dtc

 remove_ip_address

 umount_fs

 deactivate_volume_group

Check exit value
 if (($exit_value == 1))
 then
 print "\n\t########### Node \"$(hostname)\": Package halt failed at $(date)
###########"

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 36 of 43

 nnm_exit 1
 else
 print "\n\t########### Node \"$(hostname)\": Package halt completed at $(date)
###########"
 nnm_exit 0
 fi

fi

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 37 of 43

Appendix D: Sample NNM process monitor script

Suggested directory to store: /etc/cmcluster/nnm

File permissions: 0755

Ownership: root:sys

Note: Please refer to the suggestion made earlier in the document
for the template modification guideline.

#!/usr/bin/sh
**
************ NNM SERVICE GUARD Monitor Daemon Script ****************
**

MONITOR Shell Script for NNM &
MC/ServiceGuard

This shell script monitors NNM by making sure that the necessary
NNM background processes are up and running.

PATH=/opt/OV/bin:/bin:/usr/bin:$PATH

Set MUSTRUN to contain names of NNM processes that should be monitored.
MUSTRUN="netmon ovspmd ovtrapd ovwdb ovtopmd ovuispmd ovalarmsrv httpd"

trap "exit " 15

Monitor the NNM processes by making sure that all required processes are running.

while true
do
 for i in $MUSTRUN
 do
 # Check that MUSTRUN processes are running
 ps -ef | grep $i | grep -v grep > /dev/null 2>&1
 if [$? -eq 1]
 then
 # If a process is not running, then rerun ovstart to restart
 # the failed processes. ovstart will only restart failed
 # processes.
 /opt/OV/bin/ovstart
 sleep 5 # wait ovspmd execution of daemon to fail
 for j in $MUSTRUN
 do
 ps -ef | grep $j | grep -v grep > /dev/null 2>&1
 if [$? -eq 1]
 # If a process won't run, then exit
 then
 echo "Process $j won't run exiting service"
 exit 1

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 38 of 43

 fi
 done
 fi
 done
 sleep 30
 echo "Found all processes `date`, message from /etc/cmcluster/nnm/Monitor script"
done

exit 0

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 39 of 43

Appendix E: Sample NNM ov.conf file

Suggested directory to store: /etc/cmcluster/nnm

File permissions: 0755

Ownership: root:sys

Note: Please refer to the suggestion made earlier in the document
for the template modification guideline:

Sample file for /etc/opt/OV/share/conf/ov.conf.sgtest1
HOSTNAME=sgtest1.hp.com
NNM_INTERFACE=spike.hp.com
USE_LOOPBACK=OFF

#Sample file for /etc/opt/OV/share/conf/ov.conf.sgtest2
HOSTNAME=sgtest2.hp.com
NNM_INTERFACE=spike..hp.com
USE_LOOPBACK=OFF

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 40 of 43

AppendixF : Sample NNM lockfile process script

Suggested directory to store: /etc/cmcluster/nnm

File permissions: 0755

Ownership: root:sys

Note: Please refer to the suggestion made earlier in the document
for the template modification guideline. This code is to be used
for the n:1 setup:

#!/opt/OV/bin/Perl/bin/perl
@(#) revision S.01.00 (01/02/2002) Copyright : Hewlett-Packard Company Ltd.

file name : nnm_file_lock.ovpl
version :
description : nnm_file_lock.ovpl is for avoiding resource
contention on a failover to the backup server. the logic behind is
check for creating the lock file in the /etc/cmcluster/nnm/.
directory with a file name nnm_lock containing the pid of the process
that is assigned at execution of this perl script. the signal handler
is set for SIGINT which is used to terminate this process. untill the
SIGINT is received, the process would be in sleep loop, on termination
the file handle is close & the lock file removed. it is now time for a
clean exit. the SIGINT would be delivered at the time of the package
shutdown by the /etc/cmcluster/nnm/nnm.control file.
usage : nnm_file_lock.ovpl
note : at any cost do not remove the lock file created by
this process without killing the process indicated in the lock file.
if in case this process does not exist, the lock file could be removed.
creation date : 1st Feb 2002
modification details :
copyright : Hewlett-Packard

modules used are
use Fcntl;

setup the local variables used in this script
local $lockfile="/etc/cmcluster/nnm/nnm_lock"; # lock file location
local $childpid;

function name : received_signal
description : on receiving signal from the o/s, close the file
descriptor that was used to lock the /etc/cmcluster/nnm/nnm_lock
file & exit after cleanup. the input parameter is the signal name
placed in the variable $received. also record the signal received in
the log file /etc/cmcluster/nnm/nnm.control.log which is done
automatically of executed from the mc/sg environment. the functionality

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 41 of 43

in this function would be to close the file descriptor used to write
into the nnm_lock, unlink the file & then exit with value 2 so that it
would be received by nnm.control script for further processing. this
function is the exit point for the script. if there is an error while
closing or unlinking the file then the exit value would be set to 2 &
acted upon by nnm.control script for error handling.
called from : main
calling function : nil
input : signal type through positional parameter
output : exit value of either 0 or 1 or 2.
note : certain code is repeated for logic traceablity.
modification details :

sub received_signal
{
 local $exitvalue=2; # this value => nnm_lock to be removed manually
 local ($received) = @_; # get the signal received

 print "\nReceived the signal $received for the process "
 . "nnm_file_lock.ovpl with process id $$ \n\n"; # for ref.

the parent failed to write the child pid into the lock file after the fork,
remove the child process before exiting
this is an easy way of implementing the case structure

this is reached if the parent could not get the lock on the lockfile
 if ($received eq "OpenFail")
 {
 $exitvalue = 1;
 print "Could not get the lockfile, $lockfile file open failed : $!\n";
 };

this is reached if the parent process fails on a writing the pid of the
child process into nnm_lock, so kill the child with SIGINT
 if ($received eq "WriteFail")
 {
 $exitvalue = 2;
 kill 2, $childpid;
 print "Killed child lockfile pid $childpid by the parent pid $$\n";
 close(file_hndl) or $exitvalue = 2;
 unlink $lockfile or $exitvalue = 2;
 };

this is reached if the parent process failed to fork the child lockfile
process
 if ($received eq "ForkFail")
 {
 $exitvalue = 3;
 print "Fork failed by parent lockfile process with pid $$: $!\n";
 close(file_hndl) or $exitvalue = 3;
 unlink $lockfile or $exitvalue = 3;
 };

received a SIGINT for the child process to perform a normal exit, this value
would not be caught by the nnm.control script, but the message would be
logged in /etc/cmcluster/nnm/nnm.control.log file

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 42 of 43

 if ($received eq "INT")
 {
 $exitvalue = 0;
 print "SIGINT received for $$ \n";
 close(file_hndl)or $exitvalue = 4;
 unlink $lockfile or $exitvalue = 4;
 if ($exitvalue == 4)
 {
 print "\nChild lockfile process could not either close "
 . "or unlink the $lockfile, please remove the $lockfile "
 . "after analysis or the reason for failure";
 }
 else
 {
 print "\nNormal exit of child lockfile process with $$ pid, "
 . "unlinked $lockfile";
 }
 };

normal exit from the script & would be used by the parent process
 if ($received eq "NormalExit")
 {
 $exitvalue = 0;
 print "Normal exit from nnm_file_lock.ovpl\n";
 };

do an exit as per the setting
 print "doing an exit with value $exitvalue\n";
 exit($exitvalue);
}
end of function received_signal

* main logic * #

create the lock file in the /etc/cmcluster/nnm/. directory
open the file that contains the child pid, on failure of sysopening would be
handled by the function received_signal
sysopen(file_hndl, $lockfile, O_CREAT|O_TRUNC|O_WRONLY|O_EXCL)
 or received_signal(OpenFail);
print "nnm_lock file created by parent process $$ \n";

ignore the interrupt
$SIG{INT} = 'IGNORE';

fork a child
$pid = fork;

if ($pid == 0)
{
 # child process - reset the signal handler function to received_signal
 $SIG{INT} = 'received_signal';

 # get the childpid

White Paper : Network Node Manager 7.x and MC/ServiceGuard

Page 43 of 43

 $childpid = $$;

 # sleep & then wakeup on a signal to close the file
 print "\nChild going to sleep with pid $$\n";
 sleep ; # infinite sleep

 # close the file handler that was opened for the file directory
 # /etc/cmcluster/nnm/nnm_lock if it gets past the sleep loop just in case.
 # THE CONTROL SHOULD NOT REACH THIS CODE
 received_signal(INT);
}
else
{
 # parent process - check for fork error, error handled by the function
 # received_signal
 if ($pid == -1)
 {
 # detected a fork failure
 print "detected a fork failure in the parent process $$: $!\n";
 received_signal(ForkFail);
 }

 # store the pid of the child process in the lock file so that it could be
 # picked up for terminating this scirpt with SIGINT. also put the process
 # id in the /etc/cmcluster/nnm/nnm.control.log file for ref. failure of
 # write would be handled by the function received_signal
 syswrite file_hndl, "$pid \n", 512, 0 or received_signal(WriteFail);
 print "\nProcess id = $pid for nnm_file_lock.ovpl "; # for ref

 # exit the parent process
 received_signal(NormalExit); # normal exit
}

THE CONTROL SHOULD NOT REACH THIS CODE
received_signal(INT); # normal exit

White Paper : Network Node Manager 7.x and MC/ServiceGuard

	White Paper : Network Node Manager 7.x and MC/ServiceGuard
	An Overview of High Availability
	An Overview of Network Node Manager and MC/ServiceGuard
	Implementation notes for standard two node configuration:
	Maintenance Notes for Network Node Manager and MC/ServiceGua
	NNM 7.x considerations
	NNM 7.5 considerations
	Suggested modification for Appendix A:
	Suggested modification for Appendix B:
	Suggested modification for Appendix C:
	Suggested modification for Appendix D:
	Suggested modification for Appendix E:
	Suggested modification for Appendix F:
	Appendix A : Sample cluster configuration file
	Appendix B: Sample NNM package configuration file
	Appendix C: Sample NNM package control file
	Appendix D: Sample NNM process monitor script
	Appendix E: Sample NNM ov.conf file

